
Optimal Static 2-Dimensional Screen Subdivision for

Parallel Rasterization Architectures

Donald McManus and Carl Beckmann

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755

Sanders, a Lockheed Martin Co., Nashua, NH 03061

e-mail [donald.mcmanus,carl.beckmann]@dartmouth.edu

Abstract

Designers of computer graphics hardware have used increasing
device counts available from IC manufacturers to increase
parallelism using techniques such as putting a longer pipeline of
data path elements on integrated circuits. or developing designs
which use an array of processors. Pixel-Planes 1-5 and
PixelFIow l are examples of architectures which use an array of
pixel processors for rasterization. Early generations of Pixel­
Planes attempted to make these arrays as large as the display
providing one processor for each display pixel. Later generations
improved performance by grouping processors into multiple
smaller arrays, subdividing the screen into sections of a
corresponding size and having the arrays independently process
the screen subdivisions. This paper describes'simulations which
were performed to determine the optimum size subdivision for a
graphics computer which uses Pixel-Planes type parallelism. i.e.

• .st~tjc. tv.:0 dimensional screen subdivision parallel polygon
rastenzatJon. We then develop a mathematical approach to
determining the optimal subdivision size and show that it agrees
well with the experimental data. For special purpose architectures
we show that the optimal size depends nOI only on the polygon
size bUI also on the silicon area consumed by the rasterizer
overhead. The mathematical approach can be directly applied to
special purpose architectures. and we show how it can be
modified for use in analyzing algorithms developed for general
purpose architectures such as the Intel Touchstone or Paragon. or
the Thinking Machines CM-5.

1 Introduction

Architectures, such as Pixel-Planes 1-5 and PixelFIow implement
the rasterizer with a two dimensional array of pixel processors.
where each pixel processor is dedicated to a pixel on the screen.
In the early generations of Pixel-Planes, the designers attempted
to create an array of pixel processors equal to the number of pixels
on the screen. For example. for a 512x512 display size, an array
of 512x512 pixel processors was provided. This would ensure
that all polygons would be processed only once. However, the
designers discovered that most of the pixel processors remained
idle during the processing of any particular polygon, since the
average size of a polygon is much smaller than the screen size and
only the pixel processors actually covered by a polygon are
utilized in processing that polygon. Later generations of Pixel­
Planes sub-divided the screen into regions, and provided multiple
arrays where each array was the size of one region. This approach
resulted in higher pixel processor utilization. but resulted in some

IPixel-Planes 1-5 and PixelFlow were developed at the
University of North Carolina.

polygons having to be processed more than once since they
overlapped more than one region of the screen. (The average
number of regions covered by a polygon is referred to as the
overlap factor.) However, the higher pixel processor utilization
more than compensated for this penalty.

The designers of Pixel-Planes discovered that it is more efficient
to provide pixel processor arrays smaller than the size of the
display. Other researchers have also investigated methods to
improve performance by intelligently . performing screen
subdivision. In [ROBLS8] and (WHIT94] methods are described
which dynamically subdivide the screen, where subdivisions are
created to improve processor load balanCing. Pixel-Planes 5
[FUCH89] uses a static screen subdivision and load balancing is
improved by using dynamic assignment of pixel processor arrays
to the subdivisions. In [EU..S94] a static screen subdivision
method is described. and it is shown that load balancing in a static
approach depends on a high "granularity ratio", which is the ratio
of regions to rasterizers. A high granularity ratio implies
subdividing the screen a large number of times, but more
subdivisions imply more polygons will be processed multiple
times. A balance between these two factors must be achieved.

In this paper we describe a method which analytically determines
the optimal size of static screen subdivisions. It seems intuitive
that the optimum size is dependent on the average size of the
polygons. As it turns out, polygon size is only one factor. Our
research has discovered a more complex relationship between the
polygon size and the overhead inherent in the rasterizer hardware.
Overhead is any logic which is not part of a pixel processor but
needs to be provided for each array, an example is logic which
controls the array. In the extreme case where there is no
overhead. the optimum subdivision size is independent of the
polygon size! The optimum size is dependent on rasterizer
performance and cost, and the number of polygons which overlap
multiple regions. In [MOLN94] an equation for determining the
overlap factor was presented. We use a more accurate equation in
our analysis, presented in Section 6.0 below.

2 MIMD Array of SIMD Processors

The interesting problem posed by PixelFlow is that it uses two
levels of parallelism. The rasterizer is a 2-dimensional array of
SIMD pixel processors (the first level of parallelism). A rasterizer
is paired with a geometry engine to form a renderer, and the
renderer is replicated in a MIMD array (the second level of
parallelism). Increasing the size of the SIMD array of pixel
processors will reduce the overlap factor, and speed-up polygon
processing. However, increasing the SIMD array makes it more
expensive to replicate and will lower the number of renderers in
the MIMD array, given a fixed system cost. Therefore a trade-off

59

mailto:donald.mcmanus,carl.beckmann]@dartmouth.edu
http://www.eg.org
http://diglib.eg.org

must be performed to determine the optimal size of the SIMD
array so that it can be efficiently replicated.

To aid in our discussion we need to briefly review the PixelFlow
architecture. (For a complete description of the PixelFlow
architecture see [MOLN92].) In PixelFlow (see figure 1),
polygons are randomly distributed to the geometry engines. The
geometry engines transform the polygons then sort them into bins
dependent on which screen subdivision the polygon is in with
some polygons put in more than one bin. After all polygons are
transformed the local rasterizer processes polygons in the first bin
then moves on to the other bins. The rasterizer array operates by
having each pixel processor in the array determine whether it is
inside or outside of the current polygon [FUCH82]. If it is
outside it turns itself off, otherwise it participates in the
calculations for the current polygon. The time required for a
region to process a polygon is independent of the polygon's size,
since the polygon's pixel values are simultaneously calculated.
Therefore, the amount of time required by PixelFlow to rasterize
an image can be calculated by determining how many polygons
are processed in each region. This demonstrates that PixelFlow's
rasterizer array processing power increases proportionally with the
screen subdivision size (which may not be the case in other
architectures). The pixels generated by the rasterizers are then
combined by the composition nodes to create the final image.

Figure l) PixelFlow Block Diagram

Throughout the remainder of the paper we will be discussing
PixelFlow, however most of the discussion is applicable to any
architecture or algorithm which uses 2-dimensional screen
subdivision for rasterization. Also, throughout the rest of the
paper we will use the term pixel processor when referring to one
of the processors in the rasterizer array. We will use the term
array or rasterizer when referring to an array of pixel processors.
We will use the term renderer to refer to a geometry engine I
rasterizer pair, and use the term system to refer to all renderers.

3 Modeling PixelF10w

Our research began by developing a VHDL algorithmic model
similar to OpenGL, the graphics pipeline we plan to implement.
The VHDL model includes all operations required to transform
polygon vertices, calculate lighting values, clip to the view
volume, rasterize the transformed polygons and perform all per
pixel operations. The model was used to generate all the images
in figure 8 (last page). The figures (a) through (d) in figure 8
were selected because they represent real application data.
Figures (a) and (b) are generated from digital terrain and elevation
data which is widely used in military applications. Figures (c) and

(d) are from the National Computer Graphics Association.
Graphics Performance Characterization Committee's Picture
Level Benchmark and represent some typical scientific and
animation data. Figures (e) and (f) do not necessarily represent
real application data, but were included to test our model against
extreme examples, figure (e) uses unusually large triangles, and
figure (f) has a high depth complexity.

The VHDL model gives direct access to all intermediate data in
the pipeline. For the array size experiments we were particularly
interested in the intermediate polygon data after geometric
transformations, but before rasterization. In the PixelFlow
architecture these transformed wlygons are sorted into bins, one
bin for each screen subdivision. Statistics gathering routines in
our model measure the properties of the transformed polygons.
One measure is how many rasterization cycles are required for
different screen subdivision sizes. We first determine in which
bins each polygon is put if the screen is subdivided into regions of
size A by A pixels. To speed up sorting. the rectangular bounding
box is used instead of the actual polygon to determine the bins.
This approach significantly simplifies the sorting but also creates
some inefficiency by having some polygons put in bins in which
they don't need to be. The values ofA we used were all powers of
2 up to the dimensions of the screen size. That is, for a screen
size of 512x512 pixels, we used subdivision region sizes of lxI,
2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128xl28, 256x256 iwd
512x512. The statistics from the image shown in figure 8a,
containing 50,041 polygons with an average polygon bounding
box size of 23.91 pixels, is shown in table 1.

Subdivision
Size
(AxA)

Number of·
Rasterization
Cycles (R

A
)

Overlap Factor

Ixl 1,196,367 23.91
2x2 418,132 8.36
4x4 182,325 3.64
8x8 103,069 2.06
16xl6 73,077 1.46
32x32 60,400 1.21
64x64 54,714 1.09
128xl28 - 52,020 1.04
256x256 50,754 1.01
512x512 50,041 1.00

Table 1) Rasterization Time and Overlap Factor versus

Subdivision Size

As seen in table I, screen regions of Ixl required the most
rasterization cycles to complete, and regions of 512x512 required
the fewest to complete. In fact, the cycles required for the
512x512 array is equal to the number of polygons, since each
polygon fits into the array.

The time to generate a frame can be calculated by using the
number of rasterization cycles for a particular array size, divided
by the number of arrays of that size which are provided in the
system multiplied by the time to perform I rasterization cycle (this
assumes perfect load balancing between rasterizers). For
example, if two 512x512 arrays are provided and a rasterization
cycle is 1 microsecond, then the time to generate the frame is:

60

2

R5Il *seconds/

Renderers / raster - cycle

=50,041 ... 0.000001

= 0.025021 seconds

In the extreme case, if R512 512x512 arrays were provided, the
time to generate a frame would be one raster cycle, i.e.]
microsecond. If Ixl arrays were used, the rasterization time can
also be brought down to I microsecond by providing R,]x I
processor arrays. Using the numbers from table 1, the total
number of pixel processors for each array sjze for systems which
require only one raster cycle is:

For 512x512 array:
Rm *{512 *512} 50,041 * 262,144

= 13,117,947,900

For I x I array:
R, ... (1 * 1) =1,196.367* 1

= },196,367,
. "~'~.. ­

From this example we see that several orders of magnitude fewer
pixel processors are required for the lxl array size to achieve
maximum performance. However, numbers of pixel processors is
only one factor to consider. Determining which array size to
choose, also requires determining the cost of each array. The cost
of the array needs to take into account the other hardware
necessary to make the array fit in the system, i.e. control logic,
geometry engine(s), etc. These additional costs will be addressed
in Section 5.0.

4 Rasterizer Array Cost

In the image from table 1, which was composed mostly of small
polygons, given the choice of one 512x512 or four 256x256
arrays where both choices have the same number of pixel
processors, the better selection would be the four 256x256 arrays.
However, even though the two choices have equal numbers of
pixel processors, the cost of four 256x256 arrays is greater than
one 512x512. This is because there is overhead associated with
each array. In the case of PlxelFlow, there is the overhead of an
additional controller chip, the integrated circuits to implement the
geometry engine, and memory chips to hold the sorted polygons.
An accurate cost model for an array must include this overhead.

Several useful measures of cost include silicon area, dollars
(manufacturing and parts purchase costs), weight and power. The
metric we use throughout this paper is silicon area, but all
discussions could be applied to any of the listed metrics. The
metric of silicon area was chosen for two reasons: First, because
one of our primary concerns was board area due to the target
environment of our system, and second because the metric of
silicon area measures the efficiency of the architecture. If two
systems are designed for identical purposes, and they have equal
performance, then the system which uses less silicon is making
more efficient use of the silicon.

Taking into account the silicon area including overhead in the
above example, a more fair comparison may be between one
512x512 array and two 256x256 arrays since these two systems
may require roughly the same amount of silicon. The correct
choice is now less intuitive, but using table 1 the better choice is
still the 256x256 arrays.

4.1 Additional Cost and Performance Factors

Additional factors affect system design. most of which can be
incorporated directly into our analysis:

• 	 Other Cost Metrics. Since we mention that one of our
primary concerns is with board area, it may seem to make
more sense to use package sizes instead of silicon sizes. It
would be possible to package each IC separately. or as part
of an MCM (Multi-chip-module). Our end goal is to work
toward an MCM implementation so silicon area was the best
choice for us. It would be possible to do the same analysis
using package sizes in which case there will be more discrete
steps in cost, i.e. a Ixl array would probably be put in the
same package as a 2x2 array.

• 	 Anti-aliasing. Pixel processor arrays can perform super­
sampled anti-aliasing by either assigning multiple processors
to the same pixel (offset by sub-pixel amounts), or by
processing a polygon multiple times (offsetting the entire
array for successive processing cycles and accumulating the
results). Both approaches can be directly accounted for in
our analysis. If mUltiple processors are assigned to the same
pixel then the array size needs to be divided by the number
of samples per pixel. If a polygon is processed multiple
times, the rasterization cycle time needs to be divided by the
number of times the polygon is to be processed.

• 	 Operations Beyond Rasterization. It would be possible to
use the pixel processor arrays for operations other than
rasterization, in which case the performance or utilization
may be different. For example. in PixelFlow it is possible to
do deferred Phong shading which would typically have a
higher processor utilization. Deferred Phong shading will
utilize all the processors that were covered by any of the
polygons processed in the current screen region whereas
rasterization handles polygons one at a time.

• 	 Array Size and Bandwidth. Pixels are transferred over the
composition bus in blocks related to the processor array size
with each transfer having an associated overhead. For small
arrays the transfer block size will be small and the percent
overhead on the bus will increase. Additionally, if the width
of the composition bus is scaled with the size of the array,
the overall bandwidth will be reduced. After completing the
analysis presented in this paper it is important to check the
resulting design to ensure you have met the bandwidth
requirement on the composition bus.

61

5 Raster Cycles vs. Silicon Area

To compare the efficiency of the different array sizes, we can plot
system speed, measured in raster cycles, versus the silicon area of
the system. Figure 2 shows the number of rasterization cycles vs.
silicon area required to compute the image shown in figure 8a. In
this plot, only the silicon area used by the pixel processors in the
renderer was considered, i.e., no overhead. Each line in the plot
represents a system composed of renderers with different array
sizes. The upper left end of each line is the performance and area
of a system using one array of the given size, the bottom right end
of each line is the performance and area of a system using a
thousand arrays.

Figure 2 shows that the most efficient array size is lxl. This is
explained by considering pixel processor utilization, which can be
alternately viewed as how well different array sizes fit to an
arbitrary polygon shape. Since the screen has been subdivided
into regions corresponding to the size of the pixel processor array,
a polygon must be processed once for each subdivision it even
partly covers. In the case where .the subdivisions are lxI, a
polygon processed in a subdivision will utilize all processors in
that subdivision since there is only one processor and if the
polygon covers that. subdivision it will cover that processor. With
a 2x2 array, it is possible that a polygon will cover I, 2, 3 or 4
pixels in that subdivision, leaving 3;" 2, 1 or 0 processors,
respectively, unutilized. This lower pixel processor utilization
causes the curve for 2x2 arrays to be shifted to the right of Ixl
arrays.. As the arrays size increases further! the percent of non­
utilized pixel processors increases and causes the curves to
continue shifting to the right.

1&+06 K ~ _ n __...,. ..._L... --f u.,. ...,......L (..-4 ... _ •.~!

100000

6'

g.

e 10000

!
.,

Iii 1000

1j

a:..

100

10 ~I~~~~~__~~~__~~__~~~~

0.001 	 0.01 0.1 1 10 100 1000 100001000001&+00
Silicon Area in Square Inches (!.og10)

Figure 2) Raster Cycles vs. Silicon Area, No Overhead

5.1 Geometry Engine Sizing

The design of PixelFlow requires that each array be paired with a
geometry engine. Therefore, with each additional pixel processor
array, an additional geometry engine needs to be replicated. Since
larger arrays can process more polygons per second (due to the
smaller overlap factor) they require larger geometry engines
capable of transforming more polygons. To empirically estimate
the silicon area required for a given level of geometry engine
performance, we conducted a brief survey of present-day

microprocessors and related their performance to an i860, for
which geometry processing performance is well known.

Our analysis is based on using a microprocessor as the geometry
engine. Microprocessors include overhead which is not necessary
for geometry processing. This has driven some designers to
develop custom geometry processors which make more efficient
use of silicon. It would be possible to make an estimate of the
silicon area needed for a custom geometry processor versus
performance and use that estimate in place of equation (I) shown
below.

If the geometry engine were designed after selecting a
microprocessor, only discreet performance levels could be
achieved corresponding to multiples of the microprocessor's
performance. We chose to develop a more theoretical model of
the geometry engine size to avoid making our calculations
dependent on a specific microprocessor. In our sizing estimate,
we used the starting point that a 50MHz i860XP can transform
150,000 polygons per second [MOLN92]. Comparing the
Specfp92 performance of the i860XP, which is several years old,
to the newer HP-PA7200 and MIPS RlOOOO microprocessors, we

. estimate that the PA7200 can transform 483,000 polygons/sec and
the~IOOOO can transform 1,1~l,OOO polygons/sec. The die ar~a
of the PA7200 is 0.3255 in and the Rl0000 is 0.4603 in .

"Higher geometry engine performance can be achieved using two
. processors, with twice the silicon area and twice the performance

(minus some percentage. to account for multiprocessing overhead,
5% in our analysis). This provides another set of performance­
area data points for each MPU.

We can use a least squares fit to obtain a simple linear
performance-area model for the geometry engine, based on
current microprocessor characteristics. This, in tum, can be used
as the cost overhead model for the system, and can be combined
with Table 1 (or similar) data to give an analytic performance
model of the system. The least squares fit (which includes the
microprocessor, memory for each microprocessor and I controller
chip) generates a line with the formula:

G(A) == (7.4645 X 10-7)P(A) +13673

R(A)==O.OOO871A2 +G(A) (1)

G(A) ::: Area of geometry engine for array of size AxA

peA) ::: Performance of array of size AxA in Polygons/sec

R(A) = Area of renderer for array size ofAxA

(0.000871 is the area of 1 pixel processor)

Table 2 shows the geometry engine (G.E.) size, the pixel
processor array size and the total renderer size for a renderer built
for each of the different array sizes.

62

Subdivision.
Size
(AxA)

Array
Perform.
(PolyslS)

G.B.
Size
(Sq. in)

Processor
Array Area
(Sq. in.)

Total
Area
(Sq. in.)

Ixl 41,828 1.399 0.00087 1.400
2x2 119,678 1.457 0.00348 1.460
4x4 274,460 1.572 0.0l394 1.586
8x8 485,510 1.730 0.05574 1.786
16xl6 684,770 1.878 0.22298 2.101
32x32 828,493 1.986 0.89190 2.878
64x64 914,592 2.050 3.56762 5.618
128x128 961,957 2.085 14.27047 16.355
256x256 985.952 2.103 57.08186 59.185
512x512 1,000,000 2.114 228.32742 230.441

Table 2) Geometry Engine, Array and Renderer Sizes

When the silicon area of the geometry engine is included with the
area of the processor array. there is a change of the ordering of the
curves. Figure 3 shows the new plot of raster cycles vs. silicon
area, and shows that the optimal array size for the image in figure
8a is 16x16, since it is the lowest curve (lowest time for a given
area). In this specific case, selection of either the Rl0000 or HP­
P A 7200 would not change the optimal array size. Choosing the
HP-PA72oo would cause incremental shifts between the,4.x4 and
8x8, and 128x128 and 256x256 curves, but the shifts-are not large
enough to change the final answer.

Rasler Cycles vs. Silicon Area (Frame 20)
1&+06

100000
6'
g.

!
e 10000
fII

1000 ..a::.. ~
100

10~~~~--~~~--~--~~~~~~~

0.001 0.01 0.1 1 10 100 1000 100001000001&+06
S~icon Area in Square Inches (Logl0)

Figure 3) Raster Cycles vs. Silicon Area, Overhead included

5.2 Performance vs. Silicon Area

To determine why the 16xl6 array is optimal we need to look at
how performance is related to silicon area. Performance is
inversely proportional to the number of raster cycles to generate
the image. Figure 4 shows a plot of performance vs. silicon area
for different size arrays, including geometry engine area, based on
the Table 2 data.

In figure 4, the first part of the curve exhibits super-linear speed­
up for area increases. The cause for this effect is that the silicon
area for the processor array increases at a different rate than the
silicon area for the geometry engine. Initially the area of the
geometry engine dominates, while the size of the array has a large

effect on performance. Eventually the combination of
diminishing returns for increasing the processor array size. and
the silicon area of the array becoming dominant causes the curve
to flatten out below linear speed up.

Performance vs. SiIioon Area (Frame 20)
1400

1200

I 1000

8­

i 800

8008

~ 400.g
~

200

25 30

Figure 4) Performance VS. Silicon Area

In the PixelFlow architecture, linear speed-up can be achieved by
adding more renderers. Linear speed-up is achieved because all
the area of the renderer is replicated to create another renderer
with exactly the same performance. Therefore, we can make a
trade-off between when it is better to increase the size of the
processor array versus when it is better to replicate the renderer.
Since we can achieve linear speed-up from replicating renderers.
we should pick the point on the array size curve where the slope
equals the slope of the linear speed-up curve for that point. When
the slope is greater than linear speed-up, we get a better increase
in performance by moving to a larger array size. When the slope
is less than linear speed-up, we get a better increase by replicating
renderers. Table 3 shows the optimal array sizes for the images
shown in figure 8.

Image
Ave. Polygon
Size

Ave Bounding
Box Size

Optimal Array
SiZe

Frame20 10.43 23.91 16x16
Frame70 13.05 59.50 16x16
Headlow 9.99 21.81 l'6x16
ShuttleB 121.29 367.47 32x32
Room 16,620.88 23,235.70 64x64
Cube20 44.12 60.31 16x16

Table 3) Test Image Statistics and optimal array sizes

6 Derivation of Performance Area Curves and
Optimal Array

To facilitate determining the optimal array size for an image
without running the simulations, we developed an analytical
method to predict the performance of different size arrays given
only the average bounding box size of polygons to be rendered.
We then developed a method to use this prediction to accurately
calculate the optimal array size required.

63

http:the,4.x4

The bounding box of a polygon will be a rectangle with an
arbitrary aspect ratio. Bounding boxes with the same area, but
different aspect ratios will overlap differing numbers of screen
regions, however the variance is fairly small. Therefore we
simplified the problem to consider only square bounding boxes.
To determine how many regions are overlapPed we must examine
which regions are overlapped for each possible position of a
bounding box. The position of the bounding box is defined by the
placement of the lower left comer in a reference region. For
example, if we consider a region size of 2x2 pixels, and a
bounding box which is 7 pixels on a side, then there are 4
positions for the bounding box in the reference region. For each
position, the number of regions covered by the bounding box is
16 (a square of 4 regions up and 4 regions to the right). If we
consider a bounding box which is 8 pixels on a side and a region
size of 2x2, then there is one position where 16 regions are
overlapped, two positions where 20 regions are overlapped, and 1
position where 25 regions are overlapped. This case is shown in
figure 5. (The 2x2 reference region is dark shaded, the polygon is
the bold square, regions not covered are lightly shaded).

;: ,. '~, :. :'.' .,: _; ,'. ' ..c.:-- " ; '_',

I ' •
"' '. .-',;! I !

i ...•. ',,- • t,0 .••..•.••..,'...•..•.•..•. ;

~. I I . ..

i, ;

, ~ / ;

• ~"' ..
a) b) c) d)

Figure 5) a)' polygon placement covering 16 regions;

b & c) polygon placement covering 20 regions;

d) polygon placement covering 25 regions.

A generalization is that for each region size, there are 3
subregions. In subregion I, there are ;2 overlapping regions, in

subregion II, ;2 +; regions overlap, and in subregion III, (; + 1)2
regions overlap. The size of subregions I, II and III depends on
the relationship between the size of the screen regions and the
bounding box. There will always be a subregion 1, but not always
a subregion II and III. The value of i is also dependent on the
difference in size between the bounding box and the region size.
Let A represent the width and height of the region; for example
when A=2, the region size, and therefore the pixel processor array
size, is 2x2 and contains 4 pixel processors. Let N represent the
number of pixels in the bounding box, i.e. if N=49 then the
bounding box is 7x7 pixels, then i can be found by using:

i=r~l (2)

where the r1 brackets represent the ceiling function, i.e. round
up to the nearest integer. The size of the different regions are

Size of subregion I = a = «i x A) -..[N + 1)2 (3)

Size of subregion III = y=(..[N-«i 1)XA-l)2 (4)

Size of subregion II = /3 =A2 - a - y (5)

Using these relations the formula for determining the average
number of regions covered by a bounding box of size N, is:

[(12 xa)+«i2 +i)x/3)+«i+l)2 xy)] (6)
C(A) Al

If we set N equal to the average bounding box size for an image,
then equation (6) gives the average number of arrays covered by
the bounding boxes in that image. Equation (7) uses equation (6)
to calculate the performance of an array, where performance is
polygons/second (since there is one polygon for each bounding
box).

1 (7)P(A)=-xT
C(A)

Where T is the speed of the array in number of rasterizer cycles
per second. Our simulations showed that equation (6) and (7)
agree closely with the experimental results for the image in figure
8a, with the experimental and analytical results varying no more
than 7.8%. In order to see how performance varies with silicon
area, we need to find the relationship between array size and
silicon area since equation (6) is in terms of array size. In section
5.1 we developed equation (1). which is a formula for determining
renderer size given the array size and array performance. Using
equations (I) and (7) we can plot the calculated performance
versus silicon area. Figure 6 shows the plot of this function with
the plot of the experimental results from section 5.

Performance lIS. Silicon Area (Frame 20)

1400

"experimental" ­
'analytical" - ­

1200
U
CD

j 1000

&.
.'" BOO

~
600

~

~
 400.g
&

200

0
·5 o 5 10 15 20 25 30

Silicon Area in Square Ina-

Figure 6) Array Performance

In section 5.2 we saw that the optimal array size is where the
slope of the performance curve equals the slope of the linear
speed-up. With equations (I) and (7) we can get performance P
in terms of array size A, and we can get renderer size R in terms of
array size A. To find the optimal array size we need to find the
equality between P'(R) and the slope of the linear speed-up
curve, L(R). The slope of the linear speed-up curve is simply:

L(R) = peR) _ PeA) (8)
R - R(A)

and since

64

peR) P(A(R» (9)

we can determine P'(R) using:

(10)peR) =P'(A)A'(R) =	peA)
R'(A)

The equations for peA) and R(A) were determined previously, i.e.
equations (7) and (1) respectively. So all that remains is to find
their derivatives. To calculate the derivatives it is necessary to
approximate equation (2) to remove the ceiling function. The
approximation used is:

i =.IN +0.5
A

The derivatives are:

(I 1)

Where:
h =1.5.JN-2

j= 2N::;: 4.JN

k=2.JN

a = 1.5575
b = 3.75.JN

c = 4.75N -Il.JN +4

d =3N.JN -ION + 13.JN

e N2-4N.JN-S.JN+ION

f = 4N.JN - s.JN + ION

g==4N

and,

R'(A) = 0.00] 742A + (7.4645 x IO-7)P(A) (12)

To find where the functions expressed in equations'l8)" and (10)
intersect we simply set them equal as follows:

L(R) == PeR)

peA) peA)
--::;:-­
R(A) R'(A)

peA) _ P'(A) ::;; 0

R(A) R'(A)

(13)

A plot of L(R) and P'(R) is shown in figure 7 using the value of

the average bounding box size from the image in figure 8a of
N=23.9. Figure 7 shows that the analytical solution is very close
to the experimental solution.

Slope V$. Silicon Area (Frame 20)
500000

450000

400000

350000

300000

~ 250000
iii

200000

'linear_slope'
"perf_slope'

1x' 	

64)(64 :
150000

100000

50000

0
1 234 5 6

Siiicon Area in Square Inches

Figure 7) Optimal Array Size

7 General Purpose Massively Parallel Computers

While the above discussion focused on a custom designed
massively parallel architecture, the results can also be used to aid
in the design of rasterization algorithms which run on general
purpose massively parallel computers. In the case of general
purpose machines, the number of processors available is fixed, but
often times the configuration of those processors is controllable.
In equation (13) from section 6.0, the optimum size pixel
processor array is determined. However, for general purpose
computers this equation is not appropriate. In the above
discussion, the goal was to develop the most efficient
configuration, and with special purpose deSigns the designer has
control over both performance and silicon area. However, for
general purpose computers the number of processors is fixed, and
the amount of silicon area is fixed. The only control the
designer/programmer has is to effect performance by optimizing
code and choosing the optimum processor configuration.

For general purpose massively parallel computers, equation (7)
can still be used to predict performance dependent on pixel
processor array size. Using this equation we can develop a
formula for predicting the performance if the number of pixel
processors is fixed. If the total number of pixel processors is X,
we simply divide the predicted performance by the number ofAxA
arrays which can be formed with X processors. The equation is:

_1_xT
, ForASX (14)PG,.{A) =C(Ai-

A

This equation can be used as a component in the analysis of
algorithms developed for general purpose machines. A complete
analysis will depend on other factors such as interprocessor
communication costs.

8 Conclusions

We have shown that the optimal :;ize array for a graphics
computer which uses 2-D arrays of pixel processors for

65

raslerization can be analytically detennined. In the case of a
special purpose computer design, the optimal array size is
dependent on the average size of polygons being processed, and
on the overhead associated with each array. The optimum size
occurs when the slope of the performance curve equals the slope
of the linear speed-up curve, since linear speed-up can be attained
by replicating processor arrays. We have shown that the
performance curve can be accurately predicted with equation (7).
Overhead of the rasterization array plays an important role in
detennining the optimum array size, and in the extreme case
where there is no overhead, the optimal array size is Ixl and is
independent of polygon size.

In the case of general purpose multiprocessor computers, the
optimal array size is also dependent on the average size of
polygons being processed, but is independent of array overhead
since the overhead is fixed. Equation (7) can be modified to
become equation (14), and used to detennine the optimal
processor configuration given a fixed number of pixel processors.

9 Future Work

We plan on implementing the PixelFlow architecture with the
array sizes optimized for our application2.

In related work, we are investigating caching sttcitegies for
rendering systems based on multiprocessor systems. These
systems are not configured as arrays of pixel processors.

10 Acknowledgments

We would like to thank the Eurographics Hardware Workshop
reviewers for their constructive comments, many of which we
included in the final draft of this paper.

11 References

[ELLS94] 	 David Ellsworth, "A New Algorithm for
Interactive Graphics on Multicomputers", IEEE
Computer Graphics and Applications, July 1994,
pp.33-40.

[FUCH82] 	 Henry Fuchs, John Poulton, Alan Paeth, Alan
Bell, "Developing Pixel-Planes, A Smart
Memory-Based Raster Graphics System",
Proceedings of 1992 Conference on Advanced
Research in VLSI, M.I.T., pp. 137-146.

[FUCH89] 	 Henry Fuchs, John Poulton, John Eyles, Trey
Greer, Jack Goldfeather, David Ellsworth, Steve
Molnar, Greg Turk, Brice Tebbs, Laura Israel,
"Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-Enhanced
Memories", Proceeding of SIGGRAPH 1989, pp.
79-88.

[MOLN92]

[MOLN94]

[ROBL88]

[WHIT94]

.---.....­

Steven Molnar, John Eyles, John Poulton,
"PixeIFlow: High-Speed Rendering Using Image
Composition", Proceeding of SIGGRAPH 1992,
pp. 231-240.

Steven Molnar, Michael Cox, David Ellsworth
and Henry Fuchs, "A Sorting Classification of
Parallel Rendering", IEEE Computer Graphics
and Applications, July 1994, pp. 23-32.

D.R. Roble, "A Load Balanced Parallel ScanJine
Z-buffer Algorithm for the iPSC Hypercube",
Proceedings First International Conference Pixim
88, Editions Hermes, Paris, 1988, pp. 177-192.

Scott Whitman, "Dynamic Load Balancing for
Parallel Polygon Rendering", IEEE Computer
Graphics and Applications, July 1994, pp. 41-48.

2 The PixelFlow architecture is covered by patents and
requires a license agreement for use.

66

a) frame 20 b) frame70

c) headlow d) shuttleB

f) cube20

Figure 8) a) & b) were generated from digital terrain and elevation data, c) & d) are from the Picture Level Benchmark
developed by the Graphics Performance Characterization Committee of the National Computer Graphics
Association. e) & f) were generated by the authors.

67

