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Abstract 

Designers of computer graphics hardware have used increasing 
device counts available from IC manufacturers to increase 
parallelism using techniques such as putting a longer pipeline of 
data path elements on integrated circuits. or developing designs 
which use an array of processors. Pixel-Planes 1-5 and 
PixelFIow l are examples of architectures which use an array of 
pixel processors for rasterization. Early generations of Pixel­
Planes attempted to make these arrays as large as the display 
providing one processor for each display pixel. Later generations 
improved performance by grouping processors into multiple 
smaller arrays, subdividing the screen into sections of a 
corresponding size and having the arrays independently process 
the screen subdivisions. This paper describes'simulations which 
were performed to determine the optimum size subdivision for a 
graphics computer which uses Pixel-Planes type parallelism. i.e. 

• .st~tjc. tv.:0 dimensional screen subdivision parallel polygon 
rastenzatJon. We then develop a mathematical approach to 
determining the optimal subdivision size and show that it agrees 
well with the experimental data. For special purpose architectures 
we show that the optimal size depends nOI only on the polygon 
size bUI also on the silicon area consumed by the rasterizer 
overhead. The mathematical approach can be directly applied to 
special purpose architectures. and we show how it can be 
modified for use in analyzing algorithms developed for general 
purpose architectures such as the Intel Touchstone or Paragon. or 
the Thinking Machines CM-5. 

1 Introduction 

Architectures, such as Pixel-Planes 1-5 and PixelFIow implement 
the rasterizer with a two dimensional array of pixel processors. 
where each pixel processor is dedicated to a pixel on the screen. 
In the early generations of Pixel-Planes, the designers attempted 
to create an array of pixel processors equal to the number of pixels 
on the screen. For example. for a 512x512 display size, an array 
of 512x512 pixel processors was provided. This would ensure 
that all polygons would be processed only once. However, the 
designers discovered that most of the pixel processors remained 
idle during the processing of any particular polygon, since the 
average size of a polygon is much smaller than the screen size and 
only the pixel processors actually covered by a polygon are 
utilized in processing that polygon. Later generations of Pixel­
Planes sub-divided the screen into regions, and provided multiple 
arrays where each array was the size of one region. This approach 
resulted in higher pixel processor utilization. but resulted in some 

IPixel-Planes 1-5 and PixelFlow were developed at the 
University of North Carolina. 

polygons having to be processed more than once since they 
overlapped more than one region of the screen. (The average 
number of regions covered by a polygon is referred to as the 
overlap factor.) However, the higher pixel processor utilization 
more than compensated for this penalty. 

The designers of Pixel-Planes discovered that it is more efficient 
to provide pixel processor arrays smaller than the size of the 
display. Other researchers have also investigated methods to 
improve performance by intelligently . performing screen 
subdivision. In [ROBLS8] and (WHIT94] methods are described 
which dynamically subdivide the screen, where subdivisions are 
created to improve processor load balanCing. Pixel-Planes 5 
[FUCH89] uses a static screen subdivision and load balancing is 
improved by using dynamic assignment of pixel processor arrays 
to the subdivisions. In [EU..S94] a static screen subdivision 
method is described. and it is shown that load balancing in a static 
approach depends on a high "granularity ratio", which is the ratio 
of regions to rasterizers. A high granularity ratio implies 
subdividing the screen a large number of times, but more 
subdivisions imply more polygons will be processed multiple 
times. A balance between these two factors must be achieved. 

In this paper we describe a method which analytically determines 
the optimal size of static screen subdivisions. It seems intuitive 
that the optimum size is dependent on the average size of the 
polygons. As it turns out, polygon size is only one factor. Our 
research has discovered a more complex relationship between the 
polygon size and the overhead inherent in the rasterizer hardware. 
Overhead is any logic which is not part of a pixel processor but 
needs to be provided for each array, an example is logic which 
controls the array. In the extreme case where there is no 
overhead. the optimum subdivision size is independent of the 
polygon size! The optimum size is dependent on rasterizer 
performance and cost, and the number of polygons which overlap 
multiple regions. In [MOLN94] an equation for determining the 
overlap factor was presented. We use a more accurate equation in 
our analysis, presented in Section 6.0 below. 

2 MIMD Array of SIMD Processors 

The interesting problem posed by PixelFlow is that it uses two 
levels of parallelism. The rasterizer is a 2-dimensional array of 
SIMD pixel processors (the first level of parallelism). A rasterizer 
is paired with a geometry engine to form a renderer, and the 
renderer is replicated in a MIMD array (the second level of 
parallelism). Increasing the size of the SIMD array of pixel 
processors will reduce the overlap factor, and speed-up polygon 
processing. However, increasing the SIMD array makes it more 
expensive to replicate and will lower the number of renderers in 
the MIMD array, given a fixed system cost. Therefore a trade-off 
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must be performed to determine the optimal size of the SIMD 
array so that it can be efficiently replicated. 

To aid in our discussion we need to briefly review the PixelFlow 
architecture. (For a complete description of the PixelFlow 
architecture see [MOLN92].) In PixelFlow (see figure 1), 
polygons are randomly distributed to the geometry engines. The 
geometry engines transform the polygons then sort them into bins 
dependent on which screen subdivision the polygon is in with 
some polygons put in more than one bin. After all polygons are 
transformed the local rasterizer processes polygons in the first bin 
then moves on to the other bins. The rasterizer array operates by 
having each pixel processor in the array determine whether it is 
inside or outside of the current polygon [FUCH82]. If it is 
outside it turns itself off, otherwise it participates in the 
calculations for the current polygon. The time required for a 
region to process a polygon is independent of the polygon's size, 
since the polygon's pixel values are simultaneously calculated. 
Therefore, the amount of time required by PixelFlow to rasterize 
an image can be calculated by determining how many polygons 
are processed in each region. This demonstrates that PixelFlow's 
rasterizer array processing power increases proportionally with the 
screen subdivision size (which may not be the case in other 
architectures). The pixels generated by the rasterizers are then 
combined by the composition nodes to create the final image. 

Figure l) PixelFlow Block Diagram 

Throughout the remainder of the paper we will be discussing 
PixelFlow, however most of the discussion is applicable to any 
architecture or algorithm which uses 2-dimensional screen 
subdivision for rasterization. Also, throughout the rest of the 
paper we will use the term pixel processor when referring to one 
of the processors in the rasterizer array. We will use the term 
array or rasterizer when referring to an array of pixel processors. 
We will use the term renderer to refer to a geometry engine I 
rasterizer pair, and use the term system to refer to all renderers. 

3 Modeling PixelF10w 

Our research began by developing a VHDL algorithmic model 
similar to OpenGL, the graphics pipeline we plan to implement. 
The VHDL model includes all operations required to transform 
polygon vertices, calculate lighting values, clip to the view 
volume, rasterize the transformed polygons and perform all per 
pixel operations. The model was used to generate all the images 
in figure 8 (last page). The figures (a) through (d) in figure 8 
were selected because they represent real application data. 
Figures (a) and (b) are generated from digital terrain and elevation 
data which is widely used in military applications. Figures (c) and 

(d) are from the National Computer Graphics Association. 
Graphics Performance Characterization Committee's Picture 
Level Benchmark and represent some typical scientific and 
animation data. Figures (e) and (f) do not necessarily represent 
real application data, but were included to test our model against 
extreme examples, figure (e) uses unusually large triangles, and 
figure (f) has a high depth complexity. 

The VHDL model gives direct access to all intermediate data in 
the pipeline. For the array size experiments we were particularly 
interested in the intermediate polygon data after geometric 
transformations, but before rasterization. In the PixelFlow 
architecture these transformed wlygons are sorted into bins, one 
bin for each screen subdivision. Statistics gathering routines in 
our model measure the properties of the transformed polygons. 
One measure is how many rasterization cycles are required for 
different screen subdivision sizes. We first determine in which 
bins each polygon is put if the screen is subdivided into regions of 
size A by A pixels. To speed up sorting. the rectangular bounding 
box is used instead of the actual polygon to determine the bins. 
This approach significantly simplifies the sorting but also creates 
some inefficiency by having some polygons put in bins in which 
they don't need to be. The values ofA we used were all powers of 
2 up to the dimensions of the screen size. That is, for a screen 
size of 512x512 pixels, we used subdivision region sizes of lxI, 
2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128xl28, 256x256 iwd 
512x512. The statistics from the image shown in figure 8a, 
containing 50,041 polygons with an average polygon bounding 
box size of 23.91 pixels, is shown in table 1. 

Subdivision 
Size 
(AxA) 

Number of· 
Rasterization 
Cycles (R

A 
) 

Overlap Factor 

Ixl 1,196,367 23.91 
2x2 418,132 8.36 
4x4 182,325 3.64 
8x8 103,069 2.06 
16xl6 73,077 1.46 
32x32 60,400 1.21 
64x64 54,714 1.09 
128xl28 - 52,020 1.04 
256x256 50,754 1.01 
512x512 50,041 1.00 

Table 1) Rasterization Time and Overlap Factor versus 

Subdivision Size 


As seen in table I, screen regions of Ixl required the most 
rasterization cycles to complete, and regions of 512x512 required 
the fewest to complete. In fact, the cycles required for the 
512x512 array is equal to the number of polygons, since each 
polygon fits into the array. 

The time to generate a frame can be calculated by using the 
number of rasterization cycles for a particular array size, divided 
by the number of arrays of that size which are provided in the 
system multiplied by the time to perform I rasterization cycle (this 
assumes perfect load balancing between rasterizers). For 
example, if two 512x512 arrays are provided and a rasterization 
cycle is 1 microsecond, then the time to generate the frame is: 
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2 

R5Il *seconds/ 

# Renderers / raster - cycle 


=50,041 ... 0.000001 

= 0.025021 seconds 

In the extreme case, if R512 512x512 arrays were provided, the 
time to generate a frame would be one raster cycle, i.e. ] 
microsecond. If Ixl arrays were used, the rasterization time can 
also be brought down to I microsecond by providing R, ]x I 
processor arrays. Using the numbers from table 1, the total 
number of pixel processors for each array sjze for systems which 
require only one raster cycle is: 

For 512x512 array: 
Rm *{512 *512} 50,041 * 262,144 

= 13,117,947,900 

For I x I array: 
R, ... (1 * 1) =1,196.367* 1 

= },196,367, 
. "~'~.. ­

From this example we see that several orders of magnitude fewer 
pixel processors are required for the lxl array size to achieve 
maximum performance. However, numbers of pixel processors is 
only one factor to consider. Determining which array size to 
choose, also requires determining the cost of each array. The cost 
of the array needs to take into account the other hardware 
necessary to make the array fit in the system, i.e. control logic, 
geometry engine(s), etc. These additional costs will be addressed 
in Section 5.0. 

4 Rasterizer Array Cost 

In the image from table 1, which was composed mostly of small 
polygons, given the choice of one 512x512 or four 256x256 
arrays where both choices have the same number of pixel 
processors, the better selection would be the four 256x256 arrays. 
However, even though the two choices have equal numbers of 
pixel processors, the cost of four 256x256 arrays is greater than 
one 512x512. This is because there is overhead associated with 
each array. In the case of PlxelFlow, there is the overhead of an 
additional controller chip, the integrated circuits to implement the 
geometry engine, and memory chips to hold the sorted polygons. 
An accurate cost model for an array must include this overhead. 

Several useful measures of cost include silicon area, dollars 
(manufacturing and parts purchase costs), weight and power. The 
metric we use throughout this paper is silicon area, but all 
discussions could be applied to any of the listed metrics. The 
metric of silicon area was chosen for two reasons: First, because 
one of our primary concerns was board area due to the target 
environment of our system, and second because the metric of 
silicon area measures the efficiency of the architecture. If two 
systems are designed for identical purposes, and they have equal 
performance, then the system which uses less silicon is making 
more efficient use of the silicon. 

Taking into account the silicon area including overhead in the 
above example, a more fair comparison may be between one 
512x512 array and two 256x256 arrays since these two systems 
may require roughly the same amount of silicon. The correct 
choice is now less intuitive, but using table 1 the better choice is 
still the 256x256 arrays. 

4.1 Additional Cost and Performance Factors 

Additional factors affect system design. most of which can be 
incorporated directly into our analysis: 

• 	 Other Cost Metrics. Since we mention that one of our 
primary concerns is with board area, it may seem to make 
more sense to use package sizes instead of silicon sizes. It 
would be possible to package each IC separately. or as part 
of an MCM (Multi-chip-module). Our end goal is to work 
toward an MCM implementation so silicon area was the best 
choice for us. It would be possible to do the same analysis 
using package sizes in which case there will be more discrete 
steps in cost, i.e. a Ixl array would probably be put in the 
same package as a 2x2 array. 

• 	 Anti-aliasing. Pixel processor arrays can perform super­
sampled anti-aliasing by either assigning multiple processors 
to the same pixel (offset by sub-pixel amounts), or by 
processing a polygon multiple times (offsetting the entire 
array for successive processing cycles and accumulating the 
results). Both approaches can be directly accounted for in 
our analysis. If mUltiple processors are assigned to the same 
pixel then the array size needs to be divided by the number 
of samples per pixel. If a polygon is processed multiple 
times, the rasterization cycle time needs to be divided by the 
number of times the polygon is to be processed. 

• 	 Operations Beyond Rasterization. It would be possible to 
use the pixel processor arrays for operations other than 
rasterization, in which case the performance or utilization 
may be different. For example. in PixelFlow it is possible to 
do deferred Phong shading which would typically have a 
higher processor utilization. Deferred Phong shading will 
utilize all the processors that were covered by any of the 
polygons processed in the current screen region whereas 
rasterization handles polygons one at a time. 

• 	 Array Size and Bandwidth. Pixels are transferred over the 
composition bus in blocks related to the processor array size 
with each transfer having an associated overhead. For small 
arrays the transfer block size will be small and the percent 
overhead on the bus will increase. Additionally, if the width 
of the composition bus is scaled with the size of the array, 
the overall bandwidth will be reduced. After completing the 
analysis presented in this paper it is important to check the 
resulting design to ensure you have met the bandwidth 
requirement on the composition bus. 
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5 Raster Cycles vs. Silicon Area 

To compare the efficiency of the different array sizes, we can plot 
system speed, measured in raster cycles, versus the silicon area of 
the system. Figure 2 shows the number of rasterization cycles vs. 
silicon area required to compute the image shown in figure 8a. In 
this plot, only the silicon area used by the pixel processors in the 
renderer was considered, i.e., no overhead. Each line in the plot 
represents a system composed of renderers with different array 
sizes. The upper left end of each line is the performance and area 
of a system using one array of the given size, the bottom right end 
of each line is the performance and area of a system using a 
thousand arrays. 

Figure 2 shows that the most efficient array size is lxl. This is 
explained by considering pixel processor utilization, which can be 
alternately viewed as how well different array sizes fit to an 
arbitrary polygon shape. Since the screen has been subdivided 
into regions corresponding to the size of the pixel processor array, 
a polygon must be processed once for each subdivision it even 
partly covers. In the case where .the subdivisions are lxI, a 
polygon processed in a subdivision will utilize all processors in 
that subdivision since there is only one processor and if the 
polygon covers that. subdivision it will cover that processor. With 
a 2x2 array, it is possible that a polygon will cover I, 2, 3 or 4 
pixels in that subdivision, leaving 3;" 2, 1 or 0 processors, 
respectively, unutilized. This lower pixel processor utilization 
causes the curve for 2x2 arrays to be shifted to the right of Ixl 
arrays.. As the arrays size increases further! the percent of non­
utilized pixel processors increases and causes the curves to 
continue shifting to the right. 
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Figure 2) Raster Cycles vs. Silicon Area, No Overhead 

5.1 Geometry Engine Sizing 

The design of PixelFlow requires that each array be paired with a 
geometry engine. Therefore, with each additional pixel processor 
array, an additional geometry engine needs to be replicated. Since 
larger arrays can process more polygons per second (due to the 
smaller overlap factor) they require larger geometry engines 
capable of transforming more polygons. To empirically estimate 
the silicon area required for a given level of geometry engine 
performance, we conducted a brief survey of present-day 

microprocessors and related their performance to an i860, for 
which geometry processing performance is well known. 

Our analysis is based on using a microprocessor as the geometry 
engine. Microprocessors include overhead which is not necessary 
for geometry processing. This has driven some designers to 
develop custom geometry processors which make more efficient 
use of silicon. It would be possible to make an estimate of the 
silicon area needed for a custom geometry processor versus 
performance and use that estimate in place of equation (I) shown 
below. 

If the geometry engine were designed after selecting a 
microprocessor, only discreet performance levels could be 
achieved corresponding to multiples of the microprocessor's 
performance. We chose to develop a more theoretical model of 
the geometry engine size to avoid making our calculations 
dependent on a specific microprocessor. In our sizing estimate, 
we used the starting point that a 50MHz i860XP can transform 
150,000 polygons per second [MOLN92]. Comparing the 
Specfp92 performance of the i860XP, which is several years old, 
to the newer HP-PA7200 and MIPS RlOOOO microprocessors, we 

. estimate that the PA7200 can transform 483,000 polygons/sec and 
the~IOOOO can transform 1,1~l,OOO polygons/sec. The die ar~a 
of the PA7200 is 0.3255 in and the Rl0000 is 0.4603 in . 

"Higher geometry engine performance can be achieved using two 
. processors, with twice the silicon area and twice the performance 

(minus some percentage. to account for multiprocessing overhead, 
5% in our analysis). This provides another set of performance­
area data points for each MPU. 

We can use a least squares fit to obtain a simple linear 
performance-area model for the geometry engine, based on 
current microprocessor characteristics. This, in tum, can be used 
as the cost overhead model for the system, and can be combined 
with Table 1 (or similar) data to give an analytic performance 
model of the system. The least squares fit (which includes the 
microprocessor, memory for each microprocessor and I controller 
chip) generates a line with the formula: 

G(A) == (7.4645 X 10-7 )P(A) +13673 

R(A)==O.OOO871A2 +G(A) (1) 

G(A) ::: Area of geometry engine for array of size AxA 

peA) ::: Performance of array of size AxA in Polygons/sec 

R(A) = Area of renderer for array size ofAxA 


(0.000871 is the area of 1 pixel processor) 

Table 2 shows the geometry engine (G.E.) size, the pixel 
processor array size and the total renderer size for a renderer built 
for each of the different array sizes. 

62 



Subdivision. 
Size 
(AxA) 

Array 
Perform. 
(PolyslS) 

G.B. 
Size 
(Sq. in) 

Processor 
Array Area 
(Sq. in.) 

Total 
Area 
(Sq. in.) 

Ixl 41,828 1.399 0.00087 1.400 
2x2 119,678 1.457 0.00348 1.460 
4x4 274,460 1.572 0.0l394 1.586 
8x8 485,510 1.730 0.05574 1.786 
16xl6 684,770 1.878 0.22298 2.101 
32x32 828,493 1.986 0.89190 2.878 
64x64 914,592 2.050 3.56762 5.618 
128x128 961,957 2.085 14.27047 16.355 
256x256 985.952 2.103 57.08186 59.185 
512x512 1,000,000 2.114 228.32742 230.441 

Table 2) Geometry Engine, Array and Renderer Sizes 

When the silicon area of the geometry engine is included with the 
area of the processor array. there is a change of the ordering of the 
curves. Figure 3 shows the new plot of raster cycles vs. silicon 
area, and shows that the optimal array size for the image in figure 
8a is 16x16, since it is the lowest curve (lowest time for a given 
area). In this specific case, selection of either the Rl0000 or HP­
P A 7200 would not change the optimal array size. Choosing the 
HP-PA72oo would cause incremental shifts between the,4.x4 and 
8x8, and 128x128 and 256x256 curves, but the shifts-are not large 
enough to change the final answer. 
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Figure 3) Raster Cycles vs. Silicon Area, Overhead included 

5.2 Performance vs. Silicon Area 

To determine why the 16xl6 array is optimal we need to look at 
how performance is related to silicon area. Performance is 
inversely proportional to the number of raster cycles to generate 
the image. Figure 4 shows a plot of performance vs. silicon area 
for different size arrays, including geometry engine area, based on 
the Table 2 data. 

In figure 4, the first part of the curve exhibits super-linear speed­
up for area increases. The cause for this effect is that the silicon 
area for the processor array increases at a different rate than the 
silicon area for the geometry engine. Initially the area of the 
geometry engine dominates, while the size of the array has a large 

effect on performance. Eventually the combination of 
diminishing returns for increasing the processor array size. and 
the silicon area of the array becoming dominant causes the curve 
to flatten out below linear speed up. 

Performance vs. SiIioon Area (Frame 20) 
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Figure 4) Performance VS. Silicon Area 

In the PixelFlow architecture, linear speed-up can be achieved by 
adding more renderers. Linear speed-up is achieved because all 
the area of the renderer is replicated to create another renderer 
with exactly the same performance. Therefore, we can make a 
trade-off between when it is better to increase the size of the 
processor array versus when it is better to replicate the renderer. 
Since we can achieve linear speed-up from replicating renderers. 
we should pick the point on the array size curve where the slope 
equals the slope of the linear speed-up curve for that point. When 
the slope is greater than linear speed-up, we get a better increase 
in performance by moving to a larger array size. When the slope 
is less than linear speed-up, we get a better increase by replicating 
renderers. Table 3 shows the optimal array sizes for the images 
shown in figure 8. 

Image 
Ave. Polygon 
Size 

Ave Bounding 
Box Size 

Optimal Array 
SiZe 

Frame20 10.43 23.91 16x16 
Frame70 13.05 59.50 16x16 
Headlow 9.99 21.81 l'6x16 
ShuttleB 121.29 367.47 32x32 
Room 16,620.88 23,235.70 64x64 
Cube20 44.12 60.31 16x16 

Table 3) Test Image Statistics and optimal array sizes 

6 Derivation of Performance Area Curves and 
Optimal Array 

To facilitate determining the optimal array size for an image 
without running the simulations, we developed an analytical 
method to predict the performance of different size arrays given 
only the average bounding box size of polygons to be rendered. 
We then developed a method to use this prediction to accurately 
calculate the optimal array size required. 
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The bounding box of a polygon will be a rectangle with an 
arbitrary aspect ratio. Bounding boxes with the same area, but 
different aspect ratios will overlap differing numbers of screen 
regions, however the variance is fairly small. Therefore we 
simplified the problem to consider only square bounding boxes. 
To determine how many regions are overlapPed we must examine 
which regions are overlapped for each possible position of a 
bounding box. The position of the bounding box is defined by the 
placement of the lower left comer in a reference region. For 
example, if we consider a region size of 2x2 pixels, and a 
bounding box which is 7 pixels on a side, then there are 4 
positions for the bounding box in the reference region. For each 
position, the number of regions covered by the bounding box is 
16 (a square of 4 regions up and 4 regions to the right). If we 
consider a bounding box which is 8 pixels on a side and a region 
size of 2x2, then there is one position where 16 regions are 
overlapped, two positions where 20 regions are overlapped, and 1 
position where 25 regions are overlapped. This case is shown in 
figure 5. (The 2x2 reference region is dark shaded, the polygon is 
the bold square, regions not covered are lightly shaded). 

;: ,. '~, :. :'.' .,: _; ,'. ' ..c.:-- " ; '_', 

I ' • 
"' '. .-',;! I ! 

i ...•. ',,- • t,0 .••..•.••..,'...•..•.•..•. ; 
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• ~"' .. 
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Figure 5) a)' polygon placement covering 16 regions; 

b & c) polygon placement covering 20 regions; 


d) polygon placement covering 25 regions. 


A generalization is that for each region size, there are 3 
subregions. In subregion I, there are ;2 overlapping regions, in 

subregion II, ;2 +; regions overlap, and in subregion III, (; + 1)2 
regions overlap. The size of subregions I, II and III depends on 
the relationship between the size of the screen regions and the 
bounding box. There will always be a subregion 1, but not always 
a subregion II and III. The value of i is also dependent on the 
difference in size between the bounding box and the region size. 
Let A represent the width and height of the region; for example 
when A=2, the region size, and therefore the pixel processor array 
size, is 2x2 and contains 4 pixel processors. Let N represent the 
number of pixels in the bounding box, i.e. if N=49 then the 
bounding box is 7x7 pixels, then i can be found by using: 

i=r~l (2) 

where the r1 brackets represent the ceiling function, i.e. round 
up to the nearest integer. The size of the different regions are 

Size of subregion I = a = «i x A) -..[N + 1)2 (3) 

Size of subregion III = y=(..[N-«i 1)XA-l)2 (4) 

Size of subregion II = /3 =A2 - a - y (5) 

Using these relations the formula for determining the average 
number of regions covered by a bounding box of size N, is: 

[(12 xa)+«i2 +i)x/3)+«i+l)2 xy)] (6) 
C(A) Al 

If we set N equal to the average bounding box size for an image, 
then equation (6) gives the average number of arrays covered by 
the bounding boxes in that image. Equation (7) uses equation (6) 
to calculate the performance of an array, where performance is 
polygons/second (since there is one polygon for each bounding 
box). 

1 (7)P(A)=-xT
C(A) 

Where T is the speed of the array in number of rasterizer cycles 
per second. Our simulations showed that equation (6) and (7) 
agree closely with the experimental results for the image in figure 
8a, with the experimental and analytical results varying no more 
than 7.8%. In order to see how performance varies with silicon 
area, we need to find the relationship between array size and 
silicon area since equation (6) is in terms of array size. In section 
5.1 we developed equation (1). which is a formula for determining 
renderer size given the array size and array performance. Using 
equations (I) and (7) we can plot the calculated performance 
versus silicon area. Figure 6 shows the plot of this function with 
the plot of the experimental results from section 5. 
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Figure 6) Array Performance 

In section 5.2 we saw that the optimal array size is where the 
slope of the performance curve equals the slope of the linear 
speed-up. With equations (I) and (7) we can get performance P 
in terms of array size A, and we can get renderer size R in terms of 
array size A. To find the optimal array size we need to find the 
equality between P'(R) and the slope of the linear speed-up 
curve, L(R). The slope of the linear speed-up curve is simply: 

L(R) = peR) _ PeA) (8) 
R - R(A) 

and since 
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peR) P(A(R» (9) 

we can determine P'(R) using: 

(10)peR) =P'(A)A'(R) =	peA) 
R'(A) 

The equations for peA) and R(A) were determined previously, i.e. 
equations (7) and (1) respectively. So all that remains is to find 
their derivatives. To calculate the derivatives it is necessary to 
approximate equation (2) to remove the ceiling function. The 
approximation used is: 

i =.IN +0.5 
A 

The derivatives are: 

(I 1) 

Where: 
h =1.5.JN-2 


j= 2N::;: 4.JN 


k=2.JN 


a = 1.5575 
b = 3.75.JN 


c = 4.75N -Il.JN +4 

d =3N.JN -ION + 13.JN 


e N2-4N.JN-S.JN+ION 


f = 4N.JN - s.JN + ION 


g==4N 


and, 

R'(A) = 0.00] 742A + (7.4645 x IO-7 )P(A) (12) 

To find where the functions expressed in equations'l8)" and (10) 
intersect we simply set them equal as follows: 

L(R) == PeR) 


peA) peA)
--::;:-­
R(A) R'(A) 


peA) _ P'(A) ::;; 0 

R(A) R'(A) 


(13) 

A plot of L(R) and P'(R) is shown in figure 7 using the value of 

the average bounding box size from the image in figure 8a of 
N=23.9. Figure 7 shows that the analytical solution is very close 
to the experimental solution. 
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Figure 7) Optimal Array Size 

7 General Purpose Massively Parallel Computers 

While the above discussion focused on a custom designed 
massively parallel architecture, the results can also be used to aid 
in the design of rasterization algorithms which run on general 
purpose massively parallel computers. In the case of general 
purpose machines, the number of processors available is fixed, but 
often times the configuration of those processors is controllable. 
In equation (13) from section 6.0, the optimum size pixel 
processor array is determined. However, for general purpose 
computers this equation is not appropriate. In the above 
discussion, the goal was to develop the most efficient 
configuration, and with special purpose deSigns the designer has 
control over both performance and silicon area. However, for 
general purpose computers the number of processors is fixed, and 
the amount of silicon area is fixed. The only control the 
designer/programmer has is to effect performance by optimizing 
code and choosing the optimum processor configuration. 

For general purpose massively parallel computers, equation (7) 
can still be used to predict performance dependent on pixel 
processor array size. Using this equation we can develop a 
formula for predicting the performance if the number of pixel 
processors is fixed. If the total number of pixel processors is X, 
we simply divide the predicted performance by the number ofAxA 
arrays which can be formed with X processors. The equation is: 

_1_xT 
, ForASX (14)PG,.{A) =C(Ai-

A 

This equation can be used as a component in the analysis of 
algorithms developed for general purpose machines. A complete 
analysis will depend on other factors such as interprocessor 
communication costs. 

8 Conclusions 

We have shown that the optimal :;ize array for a graphics 
computer which uses 2-D arrays of pixel processors for 
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raslerization can be analytically detennined. In the case of a 
special purpose computer design, the optimal array size is 
dependent on the average size of polygons being processed, and 
on the overhead associated with each array. The optimum size 
occurs when the slope of the performance curve equals the slope 
of the linear speed-up curve, since linear speed-up can be attained 
by replicating processor arrays. We have shown that the 
performance curve can be accurately predicted with equation (7). 
Overhead of the rasterization array plays an important role in 
detennining the optimum array size, and in the extreme case 
where there is no overhead, the optimal array size is Ixl and is 
independent of polygon size. 

In the case of general purpose multiprocessor computers, the 
optimal array size is also dependent on the average size of 
polygons being processed, but is independent of array overhead 
since the overhead is fixed. Equation (7) can be modified to 
become equation (14), and used to detennine the optimal 
processor configuration given a fixed number of pixel processors. 

9 Future Work 

We plan on implementing the PixelFlow architecture with the 
array sizes optimized for our application2. 

In related work, we are investigating caching sttcitegies for 
rendering systems based on multiprocessor systems. These 
systems are not configured as arrays of pixel processors. 
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a) frame 20 b) frame70 

c) headlow d) shuttleB 

f) cube20 

Figure 8) a) & b) were generated from digital terrain and elevation data, c) & d) are from the Picture Level Benchmark 
developed by the Graphics Performance Characterization Committee of the National Computer Graphics 
Association. e) & f) were generated by the authors. 
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