
Hardware Supported Bump Mapping:

A Step towards Ingber Quality Real-Time Rendering

I. Emst*, D. Jackel**, H. Riisseler*, O. Wittig*

*German National Research Center for Information Technology,

Institute for Computer Architecture and Software Technology (GMD FIRST)

**University Rostock, Hansestadt Rostock Germany

Abstract

Today's high-end Gouraud renderers produce nicely textured scenes

by mapping two-dimensional images onto modeled objects in real·

time.

We present a renderer which textures surfaces in the normal sense of

the word using bump textures to simulate wrinkled or dimpled color­

ful surfaces. Using a simplified bump mapping method we first suc­

ceeded in designing a real-time bump mapping renderer based on the

high-quality Phong shading model.

Applying several improvements to our former Phong shading hard­

ware we are able to walk through perspectively correct bump mapped

scenes illuminated by colored lightsources.

This paper describes the main building blocks of the overall architec­

ture, including reflectance cubes to support a local viewer, a Taylor­

series based division to calculate homogeneous coordinates and our

hardware adapted bump mapping method.

Keywords: bump mapping, reflectance cube, normal vector interpo­

lation, hardware division, local viewer, unlimited colored light­

sources, Phong shading, real-time rendering

1. Introduction

A contemporary "high-end" graphics workstations has a
rendering performance of typically one million polygons
per second in conjunction with hardware supported
transparency, anti-aliasing, perspective texture mapping,
image compositing, etc. In spite of the fact that great
steps have been taken to improve the realistic display of
very complex objects and scenes, many problems remain
to be solved in order to achieve

• 	 image generation rate of complex scenes (>500.000
polygons) of at least 30-50 frames per second

• 	 more photorealistic image generation by means of
hardware supported "normal vector shading" as well
as improved "anti-aliasing" or "bump mapping".

• 	 linear scaleability of the rendering performance and
an improvement of the cost-performance relationship.

In the past decade, many attempts have been undertaken
to make "normal vector shading" applicable for hard­
ware implementations. M. Deering et al.[6] presented a
simulated VLSI-approach of a· normal vector shader
(NVS) chip suitable for Phong shading [4]. Bishop and
Weimar [3] suggested a method which approximates
Phong's normal interpolation and light reflection equa­
tion by a Taylor series expansion. Bishop and Weimar's
fast Phong shading reduces the number of computation
steps per pixel to only 5 additions and one memory
access. Another alternative, suggested by U. Clausen [5],
interpolates polar angles instead of normal vectors,
which has the advantage that the normal vector unit
length remains unchanged during the interpolation. Our
normal-vector shading approach [11] is based on the
approximation of the illumination model geometry by
using the reflection map method. This shading tech­
nique, which is used since 1989 in our VISA-systems
(VISA=VISualization Accelerator), operates similar to
the reflection vector shading hardware of Voorhies and
Foran [13]. Instead ofthe single precalculated map of the
VISA-shader, Voorhies and Foran propose a six-sided
cube, which incorporates the specular spread function
values. Similarly to the reflection map method, each face
of the cube is indexed by an unnormalized reflection
vector.

An additional step towards photorealistic image genera­
tion can be achieved by means of bump-mapping. Half
of the work of hardware supported bump-mapping is
done when using a normal vector shader instead of a
gouraud shader. This paper is focus on the extension of
our normal vector shading method for achieving a simple
and efficient hardware bump-mapping support.

First, we discuss the principle of hardware Phong-shad­
ing. In section 3 the extension of this shading technique
to achieve bump-mapped surfaces is presented. Finally,
the hardware implementation aspect of our bump-map­

63

http://www.eg.org
http://diglib.eg.org

ping method and some simulation results are discussed
in more detail.

2. Hardware Phong Shading

Phong shading as proposed in [11], uses a planar reflec­
tance map to "pick" the intensity.

The "picking" of the reflectance map is done as follows:

u, = atanl::J. u =atanl~:J2

Considering the simplified geometry using parallel light
and parallel viewer the amount of light reflected by an
object's surface is given by r = f(0.1' 0.2) .

There are some disadvantages to our former approach
using a reflectance map:

• 	 visible artifacts caused by point sampling the reflec­
tance map;

• 	 visible distortions at the borders of the atan map
(angle> 80 degrees);

• 	 illumination model allows parallel viewer only;

• 	 costly computation for reflectance map if viewer
changes.

Solutions to reduce the size of the planar maps are given
by for example in [12]. [10]. To avoid distortions in the
border area of the map. it is straightforward to use a
hemi-cube over one polygon. This algorithm is com­
monly used for radiosity methods and to approximate
normal vector directions. Distortions which occur at the
comers of the hemi-cube will be reduced by using an
arctan map in the range of -45 to 45 degrees. similar to
the reflectance map approach. Bilinear interpolation of

the four neighboring cube elements reduces point sam­
pling artifacts.

Despite the progress on planar or hemi-cube maps the
restriction to parallel viewers could not be alleviated.
One reason for this is that all progress is focused on the
use of normal vectors to address cube faces. In [8]. [13]
it is proposed to use the reflection of the eye vector on
the surface to address a six sided cube. Since the reflec­
tion of the viewer is closely related to the specular com­
ponent of the Phong shading algorithm. this method can
also be applied to shading. Furthermore a six-sided cube
contains all possible reflection vector directions around
a fixed normal vector, the viewer can be local. As a con­
sequence, this method allows for the view point to be
changed without recomputation of the cube map.

As indicated in [13] it is possible to calculate the reflec­
tion vector Ru without normalization of the surface nor­
mal N u and the eye vector by-multiplying both sides by
the length of the unnormalized normal vector squared:

Ru = 2·Nu · (Nu·E) -E- (Nu·Nu) (EQl)

To calculate the diffuse component, another six sided
cube map can be used which can be indexed by the
unnormalized normal vector similar to the hemi cube
approach. Calculating colors at the polygon vertices and
bilinearly interpolating these colors over the polygon is
not sufficient because highlights in the middle of a trian­
gle cannot be generated. To reduce cube map space and
calculation time methods proposed in [12], [10] are used.
In Figure 1 the indexing of the cube's faces is illustrated.

specular cube

-x

-y

diffuse cube

+x

ElementS
contain
diffuse
value~

Figure 1: Application of cube faces to calculate phong illumination

64

3. Bump mapping

Bump mapping is an elegant technique to simulate wrin­
kled or dimpled surfaces without the need to model sur­
face properties geometrically.

This is done by angular perturbing the surface normals
according to information given in a two dimensional
bump map.

Since intensity is mainly a function of the surface nor­
mal, the local reflection model produces local variations
on a smooth surface dependent on the perturbation
defined in the bump map.

Bump mapping is important because it textures a surface
in the normal sense of the word rather than modulating
the color of flat surfaces.

3.1. Classic Bump mapping

Blinn [1] first developed a scheme that perturbs the nor­
mal vector independently of the orientation and position
of the surface. In the case of animations, otherwise it is
obvious that the normal at a particular point must always
receive the same rate of perturbation. Otherwise the
bump map detail moves as the object moves. This is
achieved by aligning the perturbation on a coordinate
system based on local derivatives.

If 0 (u, v) is a function representing position vectors of
points 0 on the surface of an object, we first add a small
increment, derived from the bump map B (u, v) to
define O'(u, v):

N
0' (u, v) = 0 (u, v) + B (u, v) IN!

Because the displacement function B is small compared
with its spatial extend by differentiating we get:

(EQ 2)N'(u,v) = OuXOv+BuC~ XoJ

+BJ OuXI~)+BuB,(~~n

NXN)The last term BB (-- =0 and can be1N!2dropped. U v

Note that the normal to a surface at a point is given by
N = 0 U X 0 v where 0 u and 0 v are the partial deriv­
atives of the surface at point 0 lying in the tangent plane
(see Figure 2).

Figure 2:

N. 	 Tangent vectors 0 u' 0 v

at a point on a sphere with
normal vector N.

From equation (EQ 2) it can be seen that implementing
bump mapping in hardware is not possible without sim­
plifying the calculation scheme.

3.2. Hardware adapted Bump mapping

Using Phong vertex normal interpolation, we already
know the surface normal at a point. This surface normal
N represents the orientation of the surface independent
of the rotation about N .

Our new renderer VISA II will use a bump mapping
scheme closely related to texture mapping .

.....
",,".
~ '.
::s
Cf.l

" ...~

§'"
...... ~

:::t....
o·
::s
S
~
><

clip coordinate system
Figure 3: Mapping from clip space to texture space

65

texture coordinate system

vi

The bump map describes the perturbation Au, Av of

normal [0,0, 1] T in texture space u, v, w.

u

·•·· .. 1 c:L .--1

~ ~[l~
....... 1
 r~

~. U~

§. ~ 'a~
t3 8.gS~pe i-v----v---•

Auj

:~:ltI t X 111 tr Xrr It
Figure 4: Effect of bump map on surface shape

Figure 4 shows a precomputed bump map to simulate
brick structures. Notice the u and v projections of line Iu
and IV" The first line (shape) depicts surface orientations of
the cut along lu' Iv on the brick structure. The second line
shows the displacement Au, Av . Positive Au, Av val­
ues represent a displacement of the underlying pixel nor­
mal in direction of u, v; negative values represent
opposite directions. The third line shows the resulting sur­
face shape and its perturbed surface normals. Notice the
effect of the displacement between two brick stones to
simulate the groove.

Transformation of the bump map onto an object is done
similar to texture mapping. By using homogenous coordi­

nates the resulting address (~. ;) is the perspectively cor­
rect pixel index on the bump map.

To guarantee a perturbation in the desired direction u, v,
the object coordinate system must be transformed such
that the w -axis equals the surface normal vector direction
N and the u - and v - coordinate axis are rotated about
N according to the polygon mapping defined by the mod­
eler.

Figure 3 illustrates the mapping of the polygon

[Xl' Yl' Zl' WI] T,

[x2, Y2' Z2' W 2] T, [x3, Y3' Z3' W 3] T in the clip coordi­

nate system x, y, Z, W to the edges [~ ~]T W 'W ' 1 1
U2 V2] T U3 V3]T

[w3' w3 in the texture coordinate sys­[W 'w ' 2 2

tern u, v, w.

The transformation matrix A carries out this mapping by
projecting the local polygon coordinate system u', v', N
on the texture coordinate system u, v, W .

To obtain the perturbed per pixel normal

N' = [n'x. n'y' n'J T, Au, Av transformed by A is

added to the ~urface normal N = [nx' ny, nJ T :

n'x = nx + Au· Aoo + Av· AOl

n'y = ny +Au·A lO +Av.A ll

n'z = nz+Au·A20+Av·A21

The resulting normal is used to calculate the pixel color in
the Phong illumination model described in the previous
sections.

4. Proposed Architecture

The scan-converting procedure for triangles is described
in detail in [11]. Given the triangle's start coordinate with
its start attributes and slope increments, the Scan Line lni­
tializer computes the relevant data at the start point of
every new scanline, while the Pixel Calculator interpo­
lates the coordinates and attributes within a scanline. This
differs from the former design in the interpolation of an
extended data set. In particular, we extend the interpolator
to homogenous x, y, Z, W space, which is necessary for
achieving perspective texture mapping [9], texture·,
bump-coordinates (u, v) ,eye vector [ex' e y' ezl T •

After rasterization, the obtained pixel fragment describes
the position and orientation of small surface elements in
3D-space, the direction of reflection, the ~, ; texture and
bump coordinates.

Figure 5 shows a sketch of the proposed architecture.

The non-shaded boxes will be discussed in more detail.
The operation principle of the interpolation-units is pre­
sented in [11]. To visit the pixels of adjacent triangles
only once, the edge traverser was slightly modified [7].
This is essential for color blending.

66

Input Parameter Set

c o c
8.
E o
u
(;j
.;::

~
E

u,v Nonnal· & Eye-VectOr
InterpOlation

A.....
c:: '" ,.::...

,(

~

...-_..l-_...,A
Calculation of
Coordinates

l'Y'z,w

color x y z
Figure 5: Overall blockdiagram of the rendering engine

The bump engine perturbs the pixel normal by the corre­
sponding bump map entry .6.u,.6.v . The bump map is
aligned perpendicular to the surface normal. This is done
by multiplying the bump map entries by A:

ox oy nz

nx' ny' oz·

Figure 6: Bump Engine

~ ~

N = N + [.6.u, .6.v] . A

The reflectance cubes are addressed by the normal for the
diffuse color component or by the reflected ray for the
specular component. The address calculation unit for the
reflected ray can be foundin [13]. The vector's major axis
determines the corresponding reflectance cube face.
Indexing this map is done by dividing the vector's minor
axis values by the major axis value.

Selection of reflection map:

[nx' ny, nJ -7 max {Inxl' Inyl, Inzl}, sign (nx' ny, nz)

Address function:

4.1. Division with on chip ROM

Perspective correct texturing and calculating the intersec­
tions of the normal and reflection vectors with the cube
faces need one division ~er pixel. A common approach is
to build the reciprocal ; followed by a multiplication.
Convergence division algorithms normalize the divisor to
a positive interval, typically 0,5:::; w < 1 ; positive num­
bers are shifted up or down by a priority encoded shifter
code. Negative numbers are first converted to signed pos­
itive values (complement +1). The result;; is corrected by
the exponent of the normalization.

In the following we focus on the computation of the recip­
rocal ;; by Taylor-series approximation [14] about
W = W h • After the normalization step, we can write:

With Aw = w-wh SO, one can develop
31 1 Aw Awl Aw

; = ;;-+2"+-3 +-4 + .. , .
h W W Wh h h

For a reasonable hardware realization, the number of
terms in the sum has to be small and the on-chip ROM
implementation has to be memory efficient.

Truncating after the third term of the sum and vsing B as
the output of the look up table approximating ;;- , one can
rewrite the above formula: h

1 2 3 2- =B+B ·Aw+B ·Aw +error
w

= B· (l +B·Aw· (l +B·Aw» :+error

67

The error is a function of the number of sum-tenns t , the
number of look-up-table entries m - 1 and b the number
of bits per word B. (Remember: m are the relevant bits
ofwh = O,lw2w3 .. ·wm_Iwmll)

Figure 7 shows the division by the homogenous factor
w. With technology currently available, first simula­
tions estimate an area of ca. 25mm

2 for this unit. The
division of the vector's major axis needs less accuracy,
resulting in a smaller silicon area.

normalized W

28

w
LUT

B

llW

Figure 7: Divider for IIw

5. Results

One limitation of the bump mapping method described
above is that all normals on a polygon are perturbed rel­

a.,-t::

ative to the surface nonnal direction. To calculate the
correct perturbed normals for each per pixel nonnal,
recalculation of transfonnation matrix A for each pixel
is necessary. Although the perturbation of pixel nonnals
varying from the surface nonnal is not correct, it causes
only a slight movement of the centroid of the highlight.

In Figure 8, spherical interpolation of a per pixel nonnal
(black) is shown. Given the shown lightsource and the
viewer directions the centroid of the highlight lies
exactly in the middle of the polygon. Applying linear
interpolation (gray) the nonnal pointing exactly to the
lightsource and the viewer is located slightly on the left
causing the highlight to move to the left. In general this
effect is not visible in animated scenes.

,,' I
:~. L

BE
.' .

.....

~
cenlrotd of highlight

Figure 8: Spherical interpolation versus linear interpolation

I
I

I

\
\
\
\

40

1

Figure 9: Mexican H:ud. Structure carved in tin plane

68

Texture

Figure 11: Simulation of graffiti on rotten wall.

69

Another disadvantage caused by the calculation of A
relative to the surface normal is shown in Figure 10:

surface
nonnall

mesh 1

angle
variation

Figure 10: False illumination at edge of neighboring poly­
gons.

Simulating extreme curvature of adjacent polygon
meshes by modeling vertex normals leads to machband
effects at the edges. The vertex normal v 1 of mesh 1 is
perturbed dependent on the surface normal (dashed nor­
mal). The same rate of perturbation is applied to v2 of
mesh 2 perpendicular to the surface normal of mesh 2
(dashed gray normal). Assuming the vertex normal
direction to be the perfect mirror direction, slight varia­
tions of vertex normals v1 and v2 generate different
shading intensities. These shading intensity variations
can be seen clearly along the edge revealing triangula­
tion structures.

Therefore the modeler's responsibility is to avoid
extreme curvature simulations or to use finer triangula­
tion of these scene parts

Figure 9 shows a bluish tin plane illuminated by a purple
(upper left) and a white (front) lightsource. The plane is
assembled out of two bump textured triangles. A Mexi­

r:; -r::::,":--'-"'-""--::-n
T'

Bump sketch

can head function is used to calculate the normal pertur­
bation for a 40x40 bump map (see Figure 9 right).
Applying the bump map to the plane repeatedly leads to
the desired carving. The zoomed patch in the middle of
Figure 9 clearly shows correct purple and white high­
lights given by the illumination geometry.

In Figure 11 the creation of complex images using con­
ventional textures and bump textures is shown. In our
example we rebuilt a small part of the "Berlin Wall"
painting a graffiti texture (Figure 11 middle). To simu­
late carving and rotting of the wall we created a grey­
scale image which was converted to a bump map. Notice
the writing "Berlin Haup(t)stadt" chiseled in the wall
(see Figure 11 left (bump sketch) and right (resulting
image». An animation of the "Berlin Wall" example
scene generates the impression of moving sky trackers
over the rotten wall.

6. Conclusions and Future Work

We have designed and simulated a real time renderer
supporting unique features like Phong shading and bump
textures. With the presented renderer we are capable of
generating animated scenes of higher quality then with
conventional gouraud shading renderers.

This technique could be improved further by:

• 	 techniques to simulate spherical interpolation of un­
normalized normal vectors to avoid slight translations
of highlights on polygons;

• 	 new hardware adapted methods to avoid artifacts
caused by angle variations of neighboring polygons;

• 	 artifact reduced MIP mapping for bump textures;

• 	 implementation of "living" ~xtures;

• specification of a set of extensions for the OpenGL Hardware", Siggraph Proceedings 1994, pp 163-166

graphics language to support our unique graphic fea­ [14] D. Wong, M. Flynn, "Fast Division Using Accurate Quo­
tient Approximations to Reduce the Number ofIterations",
IEEE TRANSACTION ON COMPUTERS, VOL.41 , NO.
8, pp. 981 - 995, August 1992

tures.

Furthermore, it is desirable to switch between conven­
tional texturing, bump texturing, reaction diffusion textur­
ing and displacement mapping [2].

7. Acknowledgments

We would like to thank the following people for their sug­
gestions and contributions to this work: J. Duenow (scan­
liner and parameter generation), L. Guangming (error
analysis on division algorithms), T. Le Yin (Verilog simu­
lation of arithmetic units, including silicon real estate esti­
mation), and S. Budianto (Register Transfer Level
Simulation). In addition, we would like to thank the many
people who have commented on this paper.

Literature

[1] 	 J. E Blinn, "Simulation of Wrinkled Surfaces", Computer
Graphics, 12(3), pp. 286-292, (Proc. SIOGRAPH '78)

[2] 	 B.G. Becker, N.L. Max, "Smooth Transitions between
Bump Rendering Algorithms", SIGGRAPH '93, pp 183­
190

[3] 	 G. Bishop, D. M. Weimar, "Fast Phong Shading", Computer
Graphics, VoL 20, No.4, pp. 103 - 106, 1986

[4] 	 Phong, Bui Thong. "Illumination for Computer Generated
Pictures". Communications ofthe ACM, Vol. 18, No.6
(1975), pp. 311-317

[5] 	 U. Clausen, "Reducing the Phong Shading Method", Proc.
Eurographics 89, Eds. W. Hansmann, ER.A Hopgood, W.
StraBer; pp. 333 - 344, North-Holland, 1989

[6] 	 M. Deering, S. Winner, B. Schediwy, C. Duffy, N. Hunt,
"The Triangle Processor and Normal Vector Shader: A
VLSI System for High Performance Graphics", Computer
Graphics, VoL 22, No.4; pp 21-30, 1988

[7] 	 J. Duenow, "Strategien zur Abbildung der OpenGL Soft­
warebibliothek auf die vorhandene VISA Hardware", inter­
nal Report, GMD First, Spring 1995

[8] 	 J. D. Foley, A. van Dam, S. K. Feiner, J. E Hughes: "Com­
puter Graphics: Principles and Practice", 2nd Edition, Addi­
son-Wesley, 1990

[9] 	 Heckbert, H. P. Moreton; "Interpolation for Polygon Texture
Mapping and Shading", in State of the Art Computer Graph­
ics: Visualization and Modeling; pp 101- 111, Springer '91

(10) 	 T. Ikeda, "A scalable high-performance graphics processor:
GVIP" , The Visual Computer (1995),11 pp. 121-133,
Springer 1995.

[11] 	 D. Jackel, H. Riisseler, "A Real Time Rendering System
with Normal Vector Shading", 9th Eurographics Workshop
on Graphics Hardware, Oslo, Norway, 1994, pp 48-57

[12] 	 J. T. van Scheltinga, J. Smit, M. Bosma, "Design of an on­
chip reflectance map" , EO Hardware Workshop 1995,
Maastrich, 28-29 August

[13] 	 D. Voorhies and Jim Foran, "Reflection Vector Shading

70

