
Sheared Interpolation and Gradient Estimation
for Real-Time Volume Rendering

Hanspeter Pfister, Frank Wessels, and Arie Kaufman

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400, U.S.A.

Abstract Cube-3 implements ray-casting, a powerful volume
rendering technique that offers high image quality while

In this paper we present a technique for the interactive allowing for algorithmic optimizations which signifi
control and display of static and dynamic 3D datasets. cantly reduce image generation times [6, 13, 14]. Rays
We describe novel ways of tri-linear interpolation and are cast from the viewing position into the volume data.
gradient estimation for a real-time volume rendering At evenly spaced locations along each ray, the data
system, using coherency between rays. We show simu is tri-linearly interpolated using values of surrounding
lation results that compare the proposed methods to tra voxels. Central differences of voxels around the sample
ditional algorithms and present them in the cantezt of point yield a gradient which is used as a surface normal
Cube-B, a special-purpose architecture capable afrender approximation. Using the gradient and the interpolated
ing 5123 16-bit per vozel datasets at over 20 frames per sample value, a local shading model is applied and a
second. sample opacity is assigned. Finally, ray samples along

the ray are composited into pixel values to produce an
1. 	Introduction image [11].

An important problem of ray-casting is the nonNumerous scientific applications, including biomed
uniform mapping of samples onto voxels, since voxels ical and geophysical analysis, computational fluid dy
may contain more than one ray sample or may be innamics and finite element models, require the rapid dis
volved in multiple gradient calculations. This leads play of dynamically acquired or computer generated 3D
to redundant data accesses and irregular interprocessor datasets. Real-time visualization of dynamic volume
communication that affect the performance. In Cube-3data, called 4D (spatial-temporal) visualization, permits
we use a ray-casting approach that transforms the volobservation of 3D data changes, such as the study of
ume into an intermediate coordinate system for which fluid flow in rocks or the study of a beating heart. In
there is a mapping of ray samples onto the volume thatorder to reveal the internal structure of the data, direct
is one-to-one. This allows for efficient projections onto volume rendering methods have to be employed that
a face of the volume, and the distorted image is thengenerate an image without pre-processing and allow for
warped (2D transformed and projected) onto the viewthe interactive control of viewing parameters [6].
plane. 	 .The massive computational resources necessary to

Using a similar approach, Yagel and Kaufman [20]achieve 4D visualization at high frame rates place
describe a template based ray-casting scheme to simhard to meet requirements on sequential implementa
plify path generation for rays through the volume, and tions and general-purpose computers. Only parallelism
Schroder and Stoll [17] have implemented this method among a dedicated set of processors caD. achieve the
on a Princeton Engine of 1024 processors and have necessary high memory bandwidth and arithmetic per
achieved sub-second rendering times for a 1283 dataset.formance [4, 7, 12, 15] [6, Chapter 6]. While relatively
Cameron and Underill [3] efficiently use an intermedifast algorithms exist for the display of static datasets
ate volume transformation to reduce data communicaon massively parallel architectures [17, 18], very little
tion in a. SIMD parallel processor. Lacroute and Levoyattention has been paid to the real-time visualization
[10] recently reported on a fast implementation using a of dynamically changing high-resolution 3D data. This
shear-warp transformation and were able to achieve inis the main objective of Cube-3, a special-purpose ar
teractive rendering times for 2563 datasets on a graphchitecture capable of rendering 5123 16-bit per voxel
ics workstation. All these implementations require adatasets at over 20 frames per second [16].
pre-processing step to calculate the gradient field or to
generate color and opacity volumes and are therefore Autho!:ll' email:
not suitable for 4D visualization.pftsterOes.sun:rsb.edu. franltwOcs.sunysb.edu, ariOcs.sun:rsb.edu

70

http:ariOcs.sun:rsb.edu
http:franltwOcs.sunysb.edu
http:pftsterOes.sun:rsb.edu
http://www.eg.org
http://diglib.eg.org

This paper presents two new methods that allow for
real-time tri-linear interpolation and gradient estima
tion without pre-computation. They are suitable for
4D visua.li.zation and lead to an efficient implementation
in hardware. Section 2 describes the underlying real
time ray-casting approach that transforms the volume
into an intermediate sheared coordinate space. Section
3 discusses the problems associated with performing in
terpolation in this sheared space and introduces sheared
tri-linear interpolation as an efFective solution. We then
present a new way of gradient approximation using co
herency between rays in Section 4. Section 5 describes
the main architectural features of Cube-3 and Section 6
gives results on the proposed interpolation and shading
methods.

2. Real-Time Ray-Casting

Our real-time ray-casting algorithm assumes that
the volume is sampled on a rectilinear grid. A distorted
intermediate image is projected onto the volume face
that is most perpendicular to the viewing direction. Us
ing a term by Yagel and Kaufman [20] we eall this face
the base-plane. A 2D warp of the base-plane projection
produces the final image.

The first step is to transform the volume into an in
termediate coordinate system for which there is a simple
mapping of voxels onto base-plane pixels. In a recent
approach, Lacroute and Levoy [10] use a shear-warp fac
torization of the viewing transform and project the vol
ume in a slice-parallel fashion onto the base-plane. The
volume is treated as a set of 2D slices which are subject
to a 2D shear-scale and resampling operation according
to the viewing transform. Each slice is treated inde
pendently without computing individual rays, and the
resulting base-plane image is warped onto the viewing
plane.

Other approaches [20] operate in a ray-parallel fash
ion, where resampling and compositing operations take
place on rays cast from each pixel of the base-plane. In
both approaches the 3D volume is traversed only once
per projection. The algorithms involve one resampling
of the volume and an inexpensive 2D image warp. In
Cube-3 we adopted the ray-parallel approach because
it allows for efficient parallel implementations of com
positing along rays.

Using a technique by Yagel and Kaufman [20], we
generate lookup tables or templates to cast discrete
rays from the base-plane into the volume. Figure 1
shows an example of a parallel and perspective pro
jection. 26-connected discrete lines are pre-generated
using a 3D variation [8] [6, pp. 280-301] of Bresenham's
algorithm modified for non-integer endpoints. This al
gorithm guarantees constant stepping by a distance of
one along the major axis (the Z-axis in Figure 1). The
stepping along the two other axes (the X- and Y-axes in

Figure 1) is stored in two templates. For parallel pro
jections, where neighboring rays follow the exact same
path through the volume, the templates store n posi
tions for an n3 volume. For perspective projections they
are of size n 2 each (see Figure 1).

Y-Template

y~ y~
~<9?Atm

x X-Template x X-Template

a) ParaUelProjectiOD b)Pe~tiveProjeetioD

Figure 1: X/V-Templates for Discrete Rays.

Figure 2 schematieally shows how the algorithm pro
ceeds. All the discrete rays belonging to the same scan
line of the base-plane image reside on the same plane
inside the volume, called the Projection Ray Plane
(PRP). By fetching all voxels on a PRP and transform
ing them accordingly into a 2D bufFer, all discrete rays
can be aligned along a direction parallel to an axis, e.g.
horizontal. If we define beams to be rays parallel to
a main axis of the Cubic Frame BufFer (CFB), then
for parallel projections this transformation is simply a
shear of beams to the left or right (see Figure 2). For
perspective projections each voxel belonging to a dis
crete ray has to be shifted by a difFerent amount. We
refer to this process as de-fanning, since diverging rays
are stored adjacent to each other in the 2D bufFer.

Tri-LinearFetch and Shear
Interpolation

=- :iIJ..!IJ

'. Cvzrent Below

Ray Cubic Frame Buffer ..
(eFB)

_.~;~~f-If

···1

lmagePlaae Composlting Gradient
and ZD Warp Estimation

. and Shading

Figure 2: Real-Time Ray-Casting.

As soon as two PRPs are stored in two 2D bufFers
(referred to as the above and ·current bufFers in Figure
2), a tri-linear interpolation is performed to generate

71

sample points on continuous rays using the voxels of
four discrete rays as input data (see Section 3). The
two 2D buffers generate one interpolated plane of con
tinuous rays. Three such planes, above, below and cur
rent, are needed for local gradient approximations using
neighboring rays (see Section 4).

The samples of the rays are shaded and opacities
are assigned using a user controllable transfer function.
The shaded rays are composited into a final pixel color
using a parallel implementation ofthe front-to-back (or
back-ta-front) compositing:

c' = CL +(1 - O<L)CR

a' = O<L+(l-aL)aR (1)

Here the subscripts L and R indicate sample color C
or opacity a from left or right children of the binary tree,
respectively. Other parallel projection schemes such as
first or last opaque projection, maximum or minimum
voxel value and weighted summation can also be em
ployed.

The next section discusses the issues of tri-linear in
terpolation between discrete rays to generate continu
ous rays, and Section 4 shows how to compute the local
gradient at each continuous sample point.

s. Sheared Tri-Linear Interpolation
Tri-linear interpolation generates a value at non

integer locations by fetching the eight surrounding vox
els and interpolating as follows:

PAhe :::: Pooo (1 0.)(1 - b}(l - c) +P100 0.(1 - &)(1 - c) +
POlO (1- o.)b(1 - c) + POOl (1- 0.)(1- b)c +
P 101 0.(1 - b}c + POll (1 - o.)bc +
PUll o.b(l - c) + P111 o.bc. (2)

Here the relative 3D coordinate of a sample point
within a cube with respect to the corner voxel closest to
the origin is (a, b, c) and the data values associated with
the corner voxels of the cube are Pi;1c, where i, j, k =
oor 1, and the interpolated data value associated with
the sample point is Pelie. Different optiIirlzations aim
at reducing the arithmetic complexity of this operation
[9, 16], but the arbitrary memory access to fetch eight
neighboring voxels for each sample point makes this one
of the most time consuming operations during volume
rendering.

By transforming discrete rays from the PRP so that
they are aligned and storing them in two 2D buffers
(see Figure 2), we can greatly reduce this data access
and communication cost. Instead of fetching the eight
neighborhood of each resampling location, four discrete
rays are fetched from the buffer, two from each of the
above and below planes. In parallel implementations,

neighboring rays reside in adjacent interpolation mod
ules, requiring only a local shift operation of one voxel
unit between neighbors.

S5 II·..·····..····

S4

S3 II

S2

oDiscrete Ray A
• Discrete Ray B

SI IlMissing Voxels

a) Parallel Projection b)Pe~tiveProjectioD

Figure 3: Problems with Discrete Ray Interpolation.

However, there is a problem intrinsic to interpola
tion between discrete rays. Figure 3 illustrates this in
2D. The samples on the continuous ray have to be inter
polated using bi-linear interpolation between samples of
the discrete rays A (white) and B (black). Sample SI
can be correctly interpolated using four voxels from A
and B, since they form a rectangle, i.e., the rays do not
make a discrete step to the left or right.

As soon as the discrete rays step to the left or right
as is the case for samples S2 and S4, the neighboring
voxels form a parallelogram, and a straightforward bi
linear interpolation would produce the wrong sample
values. The grey shaded square voxels in Figure 3a
would be needed to yield the correct result, but they
reside on rays two units apart from ray B.

This problem is exacerbated for perspective projec
tions (Figure 3b). The discrete rays diverge, and the
correct neighboring voxels are not even stored in the
2D plane buffers. For example, only two voxels ohay A
contribute to the correct interpolation at sample point
S3. In the 3D case as many as six voxels may be miss
ing in the immediate neighborhood of a sample point
for perspective projections.

The solution is to perform a IIheared tri-linear in
terpolation by factoring it into four linear and one bi
linear interpolation. Instead of specifying the sample
location with respect to a corner voxel closest to the
origin, each 3D coordinate along the ray consists of rel
ative weights for linear interpolations along each axis in
possibly sheared voxel neighborhoods. These weights
can be pre-computed and stored in the X/Y-templates
discussed in Section 2. Figure 4 shows the necessary
interpolation steps in 3D.

First we perform four linear interpolations in direc
tion of the major axis (the Z-axis in Figure 4) using

72

oDiscrete Ray A Back Planes
• Discrete Ray B
.Linearlye InterpOlated

Samples
x Ray Sample

a) Parallel Projection b) Perspective Projection

Figure 4: Sheared Tri-Linear Interpolation.

eight voxels of four neighboring discrete rays inside the
2D buffers. These eight voxels are the vertices of an
oblique para.llelepiped for para.llel projections (see Fig
ure 4a) or of a frustum of a pyramid for perspective
projections (see Figure 4b). Four voxels each reside on
two separate planes one unit apart, which we ca.ll the
front or the back plane depending on when it is encoun
tered during ray traversal in the direction of the major
axis. Therefore, only one weight factor has to be stored,
corresponding to the distance between the front plane
and the position of the ray sample point. The result
ing four interpolated values form a rectangle and can be
bi-Iinearly interpolated to yield the final sample value.
We split this bi-Iinear interpolation into two linear in
terpolations between the corner values and a final linear
interpolation between the edge values. At the bottom
of Figure 4 this is shown as two interpolations in X
direction followed by one interpolation in Y-direction.

o Discrete Ray A
• Discrete Ray B

@Out-of-Range
WSamp\es

a)NoOffset b) Offset in Range c) Offset out of Range

Figure 5: Variable Ray Offsets in Major Direction.

The sample points corresponding to the continuous
rays have to be inside the polyhedron defined by the
voxels on the four surrounding discrete rays. When
constructing the discrete rays, a.ll continuous rays start

at integer positions ofthe base plane, i.e., they coincide
with voxels ofthe first slice of the volume dataset. How
ever, as Figure 5a shows, using these rays during ray
casting effectively reduces the tri-Iinear interpolation to
a bi-Iinear interpolation, because a.ll sample points along
the ray fa.ll onto the front planes of the para.llelepipeds
or pyramid frustum.

Using X and Y integer positions on the base-plane
we can a.llow an offset from the base-plane in major
direction as a degree of freedom and are able to perform
sheared tri-Iinear interpolations (Figure 5b). But for
offsets in major direction that are too big, as shown in
Figure Sc), some of the samples along the rays may fa.ll
outside the bounding box defined by the discrete rays.

In order to get an upper bound for admissible offsets
we have to understand how steps in non-major direction
along discrete rays occur. Figure 6 shows the situation
in 2D. The view vector is split into a dz component
along the X-axis (d;Jl and dy in 3D) and a unit vec
tor in direction of the major axis (the Y-axis in Figure
6). Stepping in direction of the major axis, we add the
viewing vector to the current sample position at S", in
order to get the new sample position at S",+l.

dy=l

Figure 6: Maximum Offset Estimation.

Suppose that the addition of dz at point Son leads
to a step of the discrete rays in ;Jl direction. This step
can only occur if S .. has a relative z offset with respect
to the lower left corner voxel of more than 1 - dz for
positive d;Jl (or less than 1 +dz for negative d;Jl). In
other words, sample S", was inside the rectangle of size
d;Jl by 1 shown in Figure 6. However, only the shaded
region of this rectangle contains sample positions inside
the para.llelepiped defined by the comer voxels. Taking
the sma.llest side in major axis as the worst-case, this
means that in-range samples have a maximal relative y
offset of no more than 1 - d;Jl for positive d;Jl (no less
than 1 + dill for negative dz).

Since we step with a unit vector in the direction
of the major axis, a.ll relative offsets along the ray are
determined by the offsets of the first ray samples from
the base-plane. The above argument easily extends to
3D, making the maximum a.llowed offset in direction of
the major axis:

min(l- dz,l- dy), dz,dy ~ 0

73

min(l + tk, 1 - dy), tk < O,dy ~ 0

min(l- tk, 1 + dy), tk ~ O,dy < °
min(l + tk, 1 + dy), tk,dy < 0, (3)

where dz and dy are the components of the viewing
vector in z and y direction, respectively. Notice that
for 45" viewing angle d;tJ and dyare 1, yielding an offset
of 0 and bi-linear interpolation as in Figure Sa. This
fact will be of importance when discussing the results
in Section 6.

In our implementation we cast a single ray from the
origin of the image plane onto the base-plane using uni
form distance between samples and choose the offset in
major direction of the first sample after penetration of
the base-plane. If necessary the offset is iteratively re
duced until it satisfies the above condition. This leads to
view dependent offsets in major direction and to varying
resampling of the dataset. The variation of resampling
points according to viewing direction is an advantage
for interactive visualization, because more of the inter
nal data structure can be revealed.

Each discrete ray consists of n voxels, independent
of the viewing direction. Since the maximum viewing
angle difference with the major axis is not more than
45 degrees, the volume sample rate is defined by the
diagonal through the cube and is by a factor of v'3
higher for orthographic viewing. We found that for ray
compositing this is not an important consideration due
to the averaging nature of the compositing operator.

A more severe problem is the varying size of the
sample neighborhood (see Figure 4). For parallel pro
jections, the eight voxels sunounding the sample point
either form a cube with sides oflength one or an oblique
parallelepiped as in Figure 4a. For perspective projec
tions, however, the surrounding voxels may form the
frustum ofa pyramid with parallel front and back planes
as in Figure 4b. Due to the divergence of rays to
wards the back of the dataset, the volume spanned by
this frustum increases, thereby reducing the precision
of the hi-linear interpolation. However, we found that
the distance between neighboring discrete rays at the
end of the volume never exceeded two voxels for a 2563

dataset while still achieving a high amount of perspec
tivity. Furthermore, in typical datasets the samples at
the back of the volume have little influence on the final
pixel color due to compositing along the ray.

The center of projection 0 and the field-or-view
(FOV) in perspective projections also influence the sam
pling rate (see Figure 7). The discrete line algorithm
casts exactly one ray per pixel of the base-plane, or a
maximum of 2n rays per scanline. In cases where the
FOV extends across the the dataset (Figure 780) this
guarantees better sampling than regular image order
ray-casting, which would cast n rays spanning the FOV
and send wasteful rays that miss the dataset. However,
for a small FOV the discrete line stepping yields under
sampling in the active regions of the base-plane (Figure

'~~FOV V FOV

C
a) Correct Sampling

c
b) Undersampling

c
c:) Two Base-Plane

Projec:tioos

Figure 7: Sampling for Perspective Projections.

7b). Figure 7c shows a case where two base-plane im
ages contribute to the final view image. The worst case
in 3D is the generation of three base-plane projections
for a single perspective image.

Section 6 presents comparisons between image or
der ray-casting using a view independent sampling rate
along the rays, tri-linear interpolation employing equa
tion 2 using the correct voxels, and the proposed sheared
tri-linear interpolation among discrete rays. The next
section describes methods for gradient estimation using
samples on neighboring rays.

4. ABC Gradient Estimation

To approximate the surface normals necessary for
shading and classification we use the gray-level gradient
which is computed by the differences between the values
of the cunent sample and its immediate neighbors [5].
In order to evaluate the gradient at a particular point,
we form central differences between the tri-linearly in
terpolated values of rays on the immediate left, right,
above and below, as well as the values of the current ray.
Since this amounts to storing three consecutive planes
of ray samples, we call this method ABO gradient es
timation for the above, below, and cunent ray sample
buffers.

The simplest approach, shown in Figure 8 for 2D,
is to use the 6-neighborhood gradient, which uses
the differences of neighboring sample values along the
ray, p(n,m+1) - P(n,m-l) in base-plane direction and
P(n+l,m-l) - P(n-I,m+1) in the ray direction. Although
the left, right, above and below ray samples are in the
same plane and orthogonal to each other, the samples
in the ray direction may be slanted. A more critical
problem occurs during a switch of base-plane. Figure
880 shows the situation for almost 45° viewing direction,
where an image is projected onto the horizontal base
plane. For any angle greater than 45° a switch of base
planes occurs, and the values of P(n+l,m) - P(n-l,m) are
used instead to calculate the gradient in the base-plane
direction. This leads to intolerable temporal aliasing.

We also simulated the use of a 26-neighborhood gra
dient (Figure 9). Instead offetching sample values from

74

11-1

........•.•......•,.........

.......•....•••.

n+2

0+1

o

11-1

.......--''-----'--7'<:----'" 0-2 n-2
m-2 m-l m m+l m+2 m-2 m-l m m+! m+2

(a) 6-neighborhood, 	 , (b) 6-neighborhood,
Horizontal Base-Plane Vertical Base-Plane

Figure 8: 6-neighborhood Gradient.

four neighboring rays, 26 interpolated samples from 8
neighboring rays are fetched. Each sample is assigned a
weight factor corresponding to the inverse Manhattan
distance in the interpolated buffer to the center sample.
For example, sample P(n,m-l) in Figure 9a has a weight
of 1, whereas sample P(n+l,m-2) has a weight of t. In
3D we also get weight factors of ~ for the corner sam
ples of the 26-neighborhood. However, to simplify the
arithmetic we use powers of 2, so that these samples are
multiplied by a weight of ~. The gradient is estimated
by taking weighted sums of ray samples and differences
between opposite sample planes. For the 2D example
in Figure 9a this corresponds to:

1 1
[ip(..+l.m) +PC..,m+l) + iP(..-l.... H»)

1 1
[i P(.. +1,m.-2) + PC...--l) + iP(n-l.m)]

1 	 1
G",.'J = [iJt..+1.m-2) + p("+l,m-l) + iP('A+1.m)]

1 1
[iJt..-1,m) +P(..-l,m+l) + iP(..-l,mH)l (4)

This method leads to better overall image quality
when compared to the 6-neighborhood gradient, but the
switching of major axis is still noticeable (com pare Fig
ure 9a and 9b).

·x·······')1(··..··.,··.···..··•·..,····.. ····, n+2

0+1

o

D-l

.......-'---'--....;;1(-......;::--. D-2

m-2 mol m m+l m+2 m-2 m-l m m+l m+2

n+2

)i(i······!)G·····!)G,.·· ·, ..·••·•·..·1 0+1

11-1

0-2

(a) 26-neighborbood, 	 (b) 26-neighborbood,
Horizontal Base-Plane Vertical Base-Plane

Figure 9: 26-neighborhood Gradient.

To circumvent this problem we take a similar ap
proach to the 6-neighborhood method but use an ad
ditional linear interpolation step to resample the rays

on correct orthogonal positions. Figure 10 shows how
the round samples on the left and right ray are used to
linearly interpolate the correct square samples. We call
this approach the 10-neighborhood gradient estimation
for the 3D case, since 10 voxels participate in the com
putation. It adequately solves the problem of switching
the major axis during object rotations and yields high
image quality. The linear interpolation weights are con
stant along a ray and correspond to a shift ofall samples
in the viewing direction. Section 6 presents a direct
comparison between the 6-, 10- and 26-neighborhood
gradient methods.

..•• , ••.••.••• , ••.•.•.•• , D+2

DIG-····,.·,··.. ·······: n+1

o

0·1

'--_'--___....;;1(_......::.:" 0-2

)1(........*.........,..........,,.......... n+2

.••..:,........... n+l

......
c.........,,........

r-······r····· n-l

0-2
m-2 m-I m m+1 m+2 m·2 mol m m+l m+2

(a) IO-neighborhood, 	 (b) to-neighborhood,
Horizontal Base-Plane Vertical Base-Plane

Figure 10: 10-neighborhood Gradient.

In the case of perspective projections, the front of
each PRP is uniformly sampled with n rays one unit
apart. As the rays diverge towards the back of the vol
ume, the distance between rays increases, and the gradi
ent estimation becomes less accurate. However, because
of the usually small distance between rays and due to
the averaging nature of shading, classification and com
positing, these effects do not influence image quality for
typical datasets.·

With the gradient estimation and light vector di
rections, the sample intensity can be generated using
a variety of shading methods (e.g., using lookup tables
[10]). Opacity values for compositing are generated us
ing a transfer function represented as a 2D lookup table
indexed by sample density and gradient magnitude [11].

The next section shows how the presented sheared
tri-linear interpolation and ABC gradient estimation
are supported in the Cube-3 architecture in order to
achieve real-time 4D visualization.

5. Cube-S Architecture
Cube-3 is a special-purpose real-time volume visu

alization system that allows for the display of high
resolution 5123 16-bit per voxel datasets at frames rates
over 20 Hz. It contains a large CFB memory to hold the
volumetric dataset and performs base-plane projections
according to user controlled parameters. A host com
puter, connected to Cube-3 and containing the frame
buffer for the final image display, runs the user inter

75

face software and performs the final 2D image warp onto
the viewing plane. Real-time acquisition devices such
as a confocal microscope, microtomograph, ultrasound,
or a computer running a simulation model are tightly
coupled to the Cube-3 memory using high-bandwidth
optieallinks for the input of dynamically changing 3D
datasets.

The Cube-3 architecture is highly-parallel and
pipelined [16]. Figure 11 shows a block diagram of the
overall dataflow. The CFB is a 3D memory organized in
n dual-access memory modules, each storing n 2 voxels.
A special 3D skewed organization enables the conflict
free access to any beam ofn voxels [7]. PRPs are fetched
as a sequence of voxel beams and stored in consecutive
2D Skewed Buffers (2DSB). A high-bandwidth intereon
nection network, the Fast Bus, allows the alignment of
the diserete rays on the PRP parallel to a main axis in
the 2DSB modules.

RP Parallel Beam Fetch Discrete Ray Fetch

, ~
. ast~ ---. '~I 111*1111'

CubiC Frame Buffer 2D Skewed Buffer TRILIN
(CFB) (IDSB) Tri-Linear I

~ ;~j......
Projection

2DWarping

Frame Buffer 	 Ray Projection ABC Shading
Cone(RPC) Units

Figure 11: Cube-3 System Overview.

Three 2DSBs are used in a pipelined fashion to sup
port sheared tri-linear interpolation. Aligned discrete
rays from 2DSBs are fetched conflict-free and placed
into special purpose Tn-Linear Interpolation (TRILIN)
units. The resulting continuous projection rays are
placed onto ABC Shading Units, where the gradients
are estimated and each ray sample is converted into
both an intensity and an associated opacity value ac
cording to lighting and data segmentation parameters.
These intensity/opacity ray samples are' fed into the
leaves of a Ray Projection Cone (RPC). The RPC is
a folded binary tree that generates in parallel and in
a pipelined fashion the final pixel value using a variety
of projection schemes on the cone nodes. The result
ing base-plane pixel is transmitted to the host where
it is post-processed (e.g., post-shaded or splat ted) and
2D transformed (warped) onto the viewing plane. The
result is stored in the 2D frame-buffer.

The parallel conflict-free memory architecture of
Cube-3 reduces the memory access bottleneck from
O(n8) per projection to O(n2) and allows for very high
data throughput. For a dataset size of 5128 IS-bit vox

els we estimate a performance of up to 30 frames per
second. Such a system would require 8 boards and a
custom fabricated backplane.

Cube-3 is a scalable and flexible architecture that
allows the user to interactively control the following
parameters: viewing angle from any parallel and per
spective direction, control over shading and projection
(e.g., first opaque, maximum value, x-ray, composit
ing), color segmentation and thresholding, control over
translucency, sectioning and slicing. It will provide a
rendering performance that is an order of magnitude
higher than that of previously reported systems and
thereby revolutionize the way scientists conduct their
studies.

6. Results

We implemented the different interpolation and gra
dient estimation methods in software and conducted
several experiments. The first program, Vo1B.en imple
ments traditional image order volume rendering. Rays
are cast from the image plane into the volume and sam
pled at uniform steps. The hi-linear interpolation is
performed according to Equation 2 using the correct 8
neighborhood around sample points. The gradient is
estimated using central differences of tri-linear interpo
lated values in a 6-neighborhood around each sample.

The second program, True3D, uses our real-time dis
crete ray-casting method, but instead of performing
sheared tri-linear interpolation it fetches the exact 8
neighborhood around each sample point. The last pro
gram, Sheared3D, implements the same algorithm but
with the proposed sheared tri-linear interpolation. Both
TrueSD and Sheared3D can use any of the 6-, 26- or
lO-neighborhood gradient methods for comparison pur
poses. For the implementation of these algorithms we
used the VolVis volume visualization system, developed
at the State University of New York at Stony Brook
[2, 1]. (The source code of VolVis is freely available by
sending email to volvisOcs.sunysb.edv..)

6.1. Tri-Linear Interpolation Comparison

First we compare images resulting from Sheared3D
to results obtained from Vo1B.en and TrueSD. The gra
dient approximation method used for Sheared3D and
TrueSD was the proposed lO-neighborhood gradient es
timation.

The dataset, a CT study of a cadaver head of size
256 x 256 x 225 voxels at 8-bit per voxel, was taken on
a General Electric CT Scanner and provided courtesy
of North Carolina Memorial Hospital. All programs use
the same shading model and an opacity transfer func
tion that maps voxel values below 80 to Q = 0, has a
linear ramp for Q from 0 to 0.75 for values between 80
and 100, and assigns Q = 0.75-to values above 100. We
chose this particular transfer function to classify bone

76

Figure 12: Dataset rendered with sheared tri-linear interpolation (left) and the difference image to traditional volume
rendering (right) for 45° rotation angle. This is the worst case for sheared tri-linear interpolation.

in the dataset as opaque in order to try to ma..ximize
the display of aliasing effects on the forehead of the CT
skull.

For the experiments we rotated the dataset by 70°
around the horizontal axis with respect to the world
coordinate system, and during animations we rotated it
around a vertical axis between 0° and 90° in steps of 5°.
As error measure between the resulting images we use
the average Euclidean distance of RGB values between
conesponding pixels. Figure 12 shows the dataset ro
tated by 45° around the vertical axis. The left image
was generated using Sheared3D and the image on the
right is the difference image, mapped to gray-scale, com
paring the corresponding Sheared3D and VolRen im
ages for this rotation angle.

Figure 13 shows the relative Euclidean enor in per
centage between images from Sheared3D and VolRen
and between Sheared3D and True3D, respectively. The
comparison with VolRen (top curve) shows how the er
ror raises towards 45° rotation angle and reaches a min
imum at 0° and 90°. The peak at 45° is due to the dif
ferent sampling distance along the ray, which is by v'3
bigger for discrete line stepping (see Section 3). fur
thermore, due to the offset 'considerations explained in
Section 3, our algorithm performs only bi-linear inter
polation as opposed to the the tri-linear interpolation
in VolRen.

The comparison to True3D shows zero error for 45°
because both algorithms perform bi-linear interpolation
and use the same gradient estimation technique. The
relative enor in percent compared to VolRen stays be

low 1.3%, and compared to True3D it stays below 0.3%.

Sheared Tri-Linear Interpolation

1.0 	f--·-+--·-·-+---·---·i-..·-;;I-·_-_·-·-_··_·+-\;

0.8

0.4 1-.---+..-_..-;_....._._.,...---..._--.--... ..,--- ..;--_.-.,..._ ...-...---.-....~

1.4 r---r-.--,...--....---.----;,...--....---.----;
[[VoiRen

1.2 t----+-,--·---i---·--;f-\-+·--·~-::r~e-3D-.""=

0.0 '---'-_-'----'-_""---''''-'_--'--_J....---'-----'

o 	 ill W M ~ ~ 00 W ~ ~
Degrees

Fig1l1'e 13: Sheared Interpolation Percentage Error.

6.2. ABC Gradient Estimation Comparison

For the comparison ofthe different ABC gradient es
timation techniques we use a voxelized model ofa sphere
as dataset. The sphere is scan-converted using the vol
ume sampling method described in [19]. The surface
intersection points are obtained by thresholding, i.e., as
soon as a certain voxel valu~ is exceeded we calculate
the gradient at that point. Each gradient is compared
to the true geometric surface normal. As error measure
we use the magnitUde of angular difference between two
vectors. All differences are aCcumulated and averaged
over all surface intersection points.

77

Figure 14: Error magnitude of comparing surface normals of 10- (Top) and 26-neighborhood gradients (Bottom) to

the true analytic normal of the voxelized sphere. Notice the jump of regions of high error for the 26-neighborhood

gradient between 4S'" and 50° rotation angle.

Dark: 0° ::; lei < 8.5"', Medium: 8.5° ::; lei < 20°, Light: 20°::; lei < 31.So, White: lei;::: 31.5°.

Rotation angles (left to right): 30°, 3S"', 40"', 4S"', SO"', 55"',60"'.

Figure 15 shows the results of rotating the sphere
around a vertical axis between 0° and 90" in steps of 5°.
The top two curves compare the analytic normal with
the 26- and the 6-neighborhood gradient, respectively.
The error increases towards 45'" rotation angle due to
the non-orthogonality of the gradient directions which
reaches a maximum at 45°. Although the 26-gradient
shows a little higher error magnitude, the dift'erence be
tween these two methods is not significant.

magnitude, light shaded regions indicate higher error
magnitudes. The top row shows the 10-neighborhood
gradient method with a fairly regular error transition
from left to right during a switch of base-planes at 45°
(center sphere). The bottom row, depicting the 26
neighborhood gradient method, shows a generally larger
error magnitude. Additionally, the region of largest er
ror jumps from the right side of the sphere to the left
during the switch of base-planes. This jump leads to
noticeable changes in image intensity during object ro

Gradient Average Error
25

I 20

{l

j
~
~

~

~ 5

<:

i 26-(Jrad
, 6-Grad ,..........,
~",10-6rad"".",'",.'"

15 ,-"-"L.-,,.,L,-W.L-.--

10 I----!-~-;",-#

,--:i~~;L~'/"/~____,L""'"t
c••• O'••,'···-e"'·!

o I I
o 	 ill W m ~ ~ 00 W 00 W

Degrees Rotation

Figure 15: Average Error Magnitude for ABC Gradient
Estimations Compared to the Analytic Normal.

The curve on the bottom in Figure 15 shows
the comparison of the analytic normal with the 10
neighborhood gradient estimation. The error magni
tude is significantly smaller than for the other gradient
methods. The error also increases towards 45'" rotation
angle. This is due to the dift'erent distances between
samples that are used for the gradient calculations in
the three orthogonal directions.

Figure 14 shows how the error propagates around
the sphere for rotation angles from 30" to 60° in steps
of 5"'. Dark shaded regions indicate regions of low error

tation, an effect that we described as temporal aliasing
in Section 4.

1. Conclusions
In order to achieve the goal of real-time visualiza

tion of dynamic datasets we developed Cube-3, a scal
able architecture that exploits parallelism and pipelin
ing. In this paper we presented the underlying real-time
ray-casting approach that allows for a mapping of ray
samples onto voxels that is one-to-one. Using templates
and shearing/de-fanning of beams, we fetch 2D planes
from the volume dataset and perform sheared tri-linear
interpolation between discrete neighboring rays. Us
ing the resulting interpolated ray samples from above,
current and below planes, we described novel ways of
gradient estimation using coherency between rays.

Using software simulations we compared the pro
posed methods to traditional image order ray-casting.
The error of using sheared tri-linear interpolation in
stead of performing image order ray-casting is be
low 1.3% relative dift'erence in Euclidean distance of
the resulting image pixels. . We showed that use of
the proposed 10-neighborhood instead of a 6- or 26
neighborhood gradient approach reduces both the av
erage error compared to analytically computed normals
and the temporal aliasing tha.t arises from switching
base-planes during object rotations. We presented both

78

methods in the context of Cube-3, a special purpose ar
chitecture aimed at real-time 4D visualization of high
resolution volumetric datasets.

8. 	Acknowledgments
This work has been supported by the National Sci

ence Foundation under grant CCR-9205047. We would
like to thank Lisa Sobierajski and Rick A vila for their
helpful suggestions during the development of these
methods. Sidney Wang provided us with the sphere
dataset and helped with the generation of Figure 14.
A discussion with Claudio Silva gave us the insight
into the various error metrics we used. We also thank
Patrick Tonra for helpful system administration during
the more hectic moments in the development of this
project.

References

1. 	AVILA, R., HE, T., HONG, L., KAUFMAN, A.,
PFISTER, H., SILVA, C., SOBIERAJSKI, L., AND
WANG, S. VolVis: A diversified system for volume
visualization research and development. To appear
in Proceedings of Visualization '9./ (Washington,
DC, Oct. 1994).

2. 	 AVILA, R., SOBIERAJSKI, L., AND KAUFMAN, A.
Towards a comprehensive volume visualization sys
tem. In Proceedings of Visualization '92 (Boston,
MA, Oct. 1992), IEEE Computer Society Press,
pp. 13-20.

3. 	 CAMERON, G., AND UNDERILL, P. E. Rendering
volumetric medical image data on a SIMD archi
tecture computer. In Proceedings of Third Euro
graphics Worbhop on Rendering (May 1992).

4. 	 FUCHS, H., POULTON, J., EYLES, J., GREER, T.,
GOLDFEATHER, J., ELLSWORTH, D., MOLNAR,
S., TURK, G., TEBBS, B., AND ISRAEL, L. Pixel
Planes 5: A heterogeneous multiprocessor graphics
system using processor-enhanced memories. Oom
puter Graphics 23, No.3 (July 1989), 79-88.

5. 	 HOHNE, K. H., AND BERNSTEIN, R. Shading 3D
images from CT using gray-level gradients. IEEE
7ransactions on Medical Imaging MI-S, 1 (Mar.
1986), 45-47.

6. 	 KAUFMAN, A. Volume Visualization. IEEE CS
Press Tutorial, Los Alamitos, CA, 1991.

7. 	 KAUFMAN, A., AND BAKALASH, R. Memory
and processing architecture for 3D voxel-based im
agery. IEEE Oomputer Graphics tJ Applications 8,
6 (Nov. 1988), 10-23.

8. 	 KAUFMAN, A., AND SHIMONY, E. 3D sean
conversion algorithms for voxel-based graphics.
In AOM Workshop on Interactive 3D Graphics
(Chapel Hill, NC, Oct. 1986), pp. 45-76.

9. 	 KNITTEL, G. VERVE: Voxel engine for real
time visualization and examination. In Oomputer
Graphics Forum (September 1993), vol. 12, No.3,
pp. C-37 - C-48.

10. 	LACROUTE, P., AND LEVOY, M. Fast volume ren
dering using a shear-warp factorization ofthe view
ing transform. Oomputer Graphics, Proceedings of
SIGGRAPH '9./ (July 1994),451-457.

11. 	LEVOY, M. Display of surfaces from volume
data. IEEE Oomputer Graphic, tJ Applications 8,
5 (May 1988), 29-37.

12. 	LEVOY, M. Design for real-time high-quality vol
ume rendering workstation. In 1989 Work'hop
on Volume Visualization (Chapel Hill, NC, May
1989), pp. 85-90.

13. 	LEVOY, M. Efficient ray tracing of volume data.
AOM 7ransactions on Graphics 9, 3 (July 1990),
245-261.

14. 	LEVOY, M. Volume rendering by adaptive refine
ment. The Visual Oomputer (July 1990), 2-7.

15. 	MOLNAR, S., EYLES, J., AND POULTON, J. Pix
elflow: High-speed rendering using image compo
sition. Computer Graphics 26, 2 (July 1992), 231
240.

16. PFISTER, H., 	KAUFMAN, A., AND CHIUEH, T.
Cube-3: A Real-Time Architecture for High
Resolution Volume Visualization. To appear in
199./ Workshop on Volume Visualization (Wash
ington, DC, Oct. 1994).

17. 	SCHRODER, P., AND STOLL, G. Data parallel vol
ume rendering as line drawing. In 1992 Workshop
on Volume Visualization (Boston, MA, Oct. 1992),
pp.25-31.

18. 	VEZINA, G., FLETCHER., P., AND ROBER.TSON, P.
Volume rendering on the MasPar MP-1. In 1992
Workshop on Volume Visualization (Boston, MA,
Oct. 1992), pp. 3-8.

19. 	WANG, S., AND KAUFMAN, A. Volume sampled
voxelization ofgeometric primitives. In Proceeding'
of Visualization '93 (San Jose, CA, Oct. 1993),
IEEE Computer Society Press, pp. 78-84.

20. 	YAGEL, R., AND KAUFMAN, A. Template-based
volume viewing. Oomputer Graphics Forum 11, 3
(Sept. 1992), 153-167.

79

