
The Role of Power Dissipation and Locality of Reference in the
Specification of High Performance Graphics Algorithms

J. Smit, MJ. Bentum, M .M . Samsom
University ofTwente

Laboratory for Network Theory and VLSI Design
P.O. Box 217

7500 AE Enschede
The Netherlands

jaap@nt.e!.utwente.nl

Abstract

The amount of power dissipated by the implementation of an algorithm, for instance in the form of a dedicated
chip-set, is considered to be one of the most important constraints for the selection of a high performance graph
ics algorithm. This is due to the fact that the realization of computational capability within the reach of one Tera
operations per second is non-practical with general purpose CPU-chips. The case study of a high performance
surface visualization engine is used to introduce the reader with the aspect of power dissipation in relation to
computational power. We introduce a low-power' parallel datapath' RISe processor, based on a highly efficient
mapping of locality of reference in the algorithm onto silicon. A subsequent classification is made for various
high performance graphics algorithms.

Introduction

In this paper we will address the role of power dissipa
tion and locality of reference when developing a high
performance graphics engine. As example we use a
surface rendering engine.

A Surface Render ing Example

A surface rendering engine will reproduce the projec
tion of a 3D scene on a 2D display unit. The common
technique to solve this problem is to fill the projection
of patches on the display screen with a constant inten
sity value. A much more realistic image can be
obtained with relatively large patches when the inten
sity values are not taken to be constant. For instance the
graphics processor designed by our group [I] in collab
oration with the CWI [2], can solve a constant, first
order and second order forward difference equation,
between two arbitrary points A and B with an index
from 0 .. . 1023, given the value of the Intensity (I) and
its first (DI) and second derivative (DDI), using a sys
tolic engine built from 1024 identical processing ele
ments. In Figure 1 the algorithm is shown.

28 DDlr :DI 2

~1 18
DI)v"", DI

8
--0

I

10 A 8 A 8 X

Fig. 1

56

The new values for I, DI and DDI are, just like the
decremented values of A and/or B calculated in the first
generation design of the high performance surface ren
dering algorithm, using a mUltipIexed 3 x 12 bit ALU
with pipelined ripple carry adders. A dedicated con
troller moves the values ofl, DJ, DDI, A and B to and
from a bank of registers located in the current proces
sing element as well as as in the next one.

A floorplan of the first generation design is given in
Figure 2. The areas with a dark shading represent the
ALU, the medium shaded areas are occupied by regis
ters . The light shaded area is the controller. The black
line represents one wire in the interprocessor bus.

Fig. 2
The chip was designed for operation at 80MHz, it
should be noted however that this speed had to be der
ated, due to the 5.2 Watt of power dissipated at the tar
get speed, as most available packages could dissipate
no more than a mere 2Watt forreasonable junction tem-

http://www.eg.org
http://diglib.eg.org

peratures. Given these results, we realized that power
dissipation was the main obstacle to extend the capabil
ities of the design.

Power dissipation

The amount of power dissipated in a VLSI-chip is: .5 x
V cc2 x Cpd x f, where V cc is typically 5 Volt, Cpd is the
average sum of capacities being charged or discharged
and fthe frequency of operation. It is useful to split the
value of Cpd into a part due to arithmetic, one due to
register usage, and one due to interconnect. The 3 x 12
bit multiplexed ALU in the first generation design was
not fast enough for the required 80 Mhz operation, or
12.5 ns cycle time, as the time for one bit-addition is
about 1.5 ns. The inclusion of pipeline registers in the
ALU and the additional control logic for the registers,
made a 12 ns design feasible . Note that multiplexing is
a slow-down operation, whereas pipelining is a
speed-up operation.

Multiplexing caused operands to be moved 5 times
over the chip from the registers to the ALU of the cur
rent and the next processor. The use of pipeline regis
ters placed in the control lines of the registers made the
registers relatively large. As a consequence they were
also relatively 'far' away from theALU, resulting in a
relatively high wiring capacity.

The second generation design

We have used another technique for the second genera
tion design. Using a parallel datapath approach, we
took advantage of the fact that two n-bit additions can
be executed in slightly more than n times the carry
propagation speed, as the sum-bits in a ripple carry
adder are already after one sum-propagation time
avai lable, as shown in Figure 3.

So any arithmetic expression with n-bit wide additions
(+/- operators) nested k levels deep can be calculated
in n x Tcarry + k x Tsum.

We used this observation for the design given in Fig
ure 4. Five identical PE-sections were cascaded with
out any intermediate registers. These units compute
five ou tput values in 60 ns, resulting in a computation
rate of one value every 12 ns . The power dissipated by
this design can be expressed in full-adder equivalents,
using the following equivalence rules expressed in full
adder equivalents:

I) A fa.~ t (12ns) register => .5 FA Equivalents

2) A slow (60ns) register => .2 FA Equivalents

3) One wire spanning the width of a FA => .02 FA Equivalents

4) One wire spanning the height of a FA => .05 FA Equivalents

86 bits

76543210 Bit

Fig. 3

Fig. 4

-1 -@
86 bits -5

Using these figures a good mapping should be found
from the algorithmic structure in Figure 4 to a layout on
silicon. A good mapping is already given in Figure 4,
provided that the most significant bits of the full adders
for DI and I are aligned, i.e. one should not place these
28 and 18 bit adders under each other but immediately
adjacent to each other.

The overall graphics processor is realized using the
floorplan of Figure 5. Individual PE-slices are 2 full
adders wide. Five slices are grouped into units of 500
!-tm wide and 6.5 mm high in a 1.5 !-tm process. A total
of 100 PE-slices can be realized on a single chip, di ssi
pating less than 2Watt. This is a considerable gain
compared to the first design. where 9 PEs dissipated
5.2 Watt.

Controlling
processor

L-----.,_-,--_....J i860 or

86 bits

88 pin package

Fig. 5

Transputer

Preservation of locality of reference

Looking at the steps taken which led to the second,
highly efficient design, we observe that the mapping of
locality of reference in the algorithmic structure onto
locality of reference on the chip is a very important fea
ture. This had as effect that the 86 wires which enter
and leave each PE-slice are only 100 !-lm long. In prin
ciple it is possible to use a package with lOO input pins
and 100 output pins, but a package with fewer pins is
cheaper. This makes it necessary to multiplex the
incomi ng and outcoming information . It should be
noted however that this multiplexing needs to be per
formed only once.

In contrast we see the useofa3mm long interprocessor
distance, which carries in essence the same informa
tion, using a high (5x) multiplex rate. A calculation of
the resulting power dissipation can be found in [3) .

Maximum arithmetic capabilities

The arithmetic capabilities, expressed for instance in
terms of the maximum number of 8-bit additions
executed on a 7 x 7 mm2, 1.5!-lm CMOS chip, will no~
be calculated, assuming that5 slow registers are used in
conjunction with 2 8-bits arithmetic units, to store
intermediate results of calculation. Six such units fit in
an area of I mm2. So at most 2 x 6 x 7 x 7 = 588, 8-bit
full adders with accompanying registers would fit on a
7 x 7 mm2 chip. These arithmetic units could be
clocked at a rate of one operation in 20 ns even if the
ari thmetic operations are nested up to five levels, so the
overall computational power of a 7 x 7 mm2 1.6 !-lm

chip is about 50 x 103 x 600 = 30 Giga operations per
second. The value of Cpd for the full adder is 500 fF,
this gi ves a total dissipated power of: 112 x 52 x 600 x 24
x 500 10- 15 x 50 106 = 4.5 Watt. Half of this amount
will under normal circumstances be dissipated if we
assume a probability of 50% that any bit will change.

Efficiency of algorithm mappings

The mUltiplexed ALU in the first generation design
was constructed from 3 12-bit wide adders. The
instruction set used five cycles of this ALU to solve the
forward difference equation for a single step along the
scan-line. This gives an arithmetic power-complexity
of 900 full-adder equivalents for the arithmetic of 5
PEs. The registers, excluding the pipeline registers
have an power-complexity of 660 full-adder equiva
lent for 5 PEs. The mapping of the arithmetic on regis
ters is much more efficient in the second generation
design, as all word-lengths used are minimal. More
over the detection of the interval A-B can be done with
two 3 bit comparators only, as the global location of the
interval may be computed once per section of 5 PEs,
using two 12 bits comparators. The registers used to
store intermediate results in the first generation design
are fully absent in the second generation design. This
has as net effect that the amount of power dissipated in
the second generation design, due to register usage is
144 Full Adder power-equivalents, whereas this same
figure is 660 Full Adder power-equivalents in the first
generation design . This shows that one may obtain a
more efficient implementation of a given algorithm
using adequate word-lengths and locality of reference
aspects .

It should be noted however that locality of reference in
the layout of the algorithm plays an even more impor
tant role, as can be seen by the difference between both
designs concerning the effect of the wiring capacitance
on the total amount of power dissipated by the algo
rithm.

Aspects of graphics architectures ranging
from general purpose to dedicated

We will now discuss some of the performance criteria
for various forms of chip-realization in terms of the
desired performance of a given algorithm. The arith
meticcapability of the chip will be taken as a reference
point with respect to which we may argue that further
improvement is not possible.

The effectivity of a general purpose solution depends
much on properties of the target algorithm, like:

58

Is it desired to realize the worst-case performance or
should the graphics algori thm realize the desired
performance for some average case?

2 Is the IQ-bandwidth of the chip sufficient, i.e. does
the algorithm require random data from an external
RAM?

3 Should special techniques be used, like dedicated
RAS/CAS selection for fast RAM access?

The parallel-datapath RISC-engine

One type of general purpose processor might be a par
allel datapath RISC processor. Such a processor would
fetch a word from the external memory and decode and
execute all instructions fetched in parallel, using 8
decoders without internal registers. When a 128-bit
wide memory interface is used in conjunction with a
16-bit instruction format, it could execute at most 8
1 28-bit instructions at a time.

8xDecoder 8x128-bit ALU

Fig. 6

These instructions might be partitioned into 8-, 16-,
32-,64- or 128-bit units and be configured to execute a
fast carry select addition or subtraction, an nxn multi
plication, a 2nxn division etc. So one instruction fetch
might be used to execute 8 x 16= 128 8-bitadd-subtract
instructions or 8 x 4 = 32 32-bit add-subtract instruc
tions in say 20 ns. The architecture introduced can
reach a considerable speed of about 1.6 Giga 32-bits
add-subtract instructions per second. This is especially
favorablecompared to modern RISC processors which
use considerably more power for a fraction of the
workload, in a much more advanced process. The final
bottleneck for a parallel datapath RISC engine will be
the IO-bandwidth, and its restricted ability to output
results using the 10 subsystem . This bottleneck is how
ever inherent to the idea of a general purpose machine.

The loop-unrolling engine

The ability of the parallel datapath engine to control not
more than 8 arithmetic and logic units each executing
one sequential instruction from the instruction stream,
may be seen as a disadvantage. An instruction set with

special features for loop-unrolling might be a solution
to this problem. The prefetch mechanism would
repeatedly fetch instructions from a LOOP ...
ENDLOOP construct, until either all ALUs available
have got instructions and the repeated LOOP execution
can start, or the LOOP is sufficiently rolled out. Using
this way of prefetching one can set-up a quite effic ient
repeated execution of the instructions to be executed
within the LOOP ... ENDLOOP construct.

Locality of reference within programs

Even the loop-unrolling engine will not be able to reach
its performance limit when the graphics program to be
executed needs abundant la-bandwidth, as ultra-high
bandwidth requires either an unrealistic pin-count or
ultra-high speed IQ-pads. On-chip memories may be
used to increase the la-bandwidth of an algorithm,
either as implicit cache or as explicit intermediate stor
age, to reduce the off-chip IO-rate. One extreme is to
put all RAM on-chip. This may be a problem as the
advanced technology makes off-chip RAM always
faster and larger than on-chip RAM. An alternative
might be to put a moderate size graphics processor on
the mask-set of an external RAM, to fully exploit the
high (e.g. 512-bit) on-chip bandwidth. The proposed
merge of on-chip RAM and a graphics processor is
however frequently impossible, as the chip-foundry
has specialized production lines for RAM and for
logic, such as CPUs.

These issues imply that we should seek for locality of
reference in the application program and seek for
opportunities to include the mapping of the algorithm
onto silicon as part of the compilation process, when
extreme speed is of importance.

Statistics of graphics engines

A true Von Neumann computer adapts itself, by its very
nature always to the statistics of the given algorithm.
The aspect of random access in the instruction stream
and the datastream is the most helpful property in this
respect. It is this same aspect however which limits the
performance of architectures with a Von Neumann
structure, as the la-bandwidth of the chips used, be it
the memory chips or the CPU is frequently the limiting
performance factor for Von Neumann machines. The
classical technique used to improve the performance of
such a system: acceleration of the ALU, has as main
effect that the power dissipation goes up considerably
more (sometimes as much as two orders of magnitude)
than one would expect on the basis of the increased pro
cessing speed. Thearchitectures discussed so far can be
used to run algorithms at a much higher speed than
classical architectures. This high speed can even be
obtained at power dissipation levels which are quite
attractive. Most algorithms loose on such architectures
thei r ability to adapt to the statistics of the algorithm ,

instead they are capable to execute a graphics algo
rithm at worst case performance conditions.

Specific algorithms:

The surface rendering example

One of the techniques used to obtain the desired perfor
mance level is the use of instructions which are fed over
an array of processing elements as shown in Figure 4.
An implementation of a systolic engine in which the
instructions may either flow from left to right or the
other way round is shown in Figure 5 . This architecture
may also be used to let instTuctions jump over PE
blocks, when it is known that an instruction would not
be executed at any of the PEs within the block. This
aspect makes it easier to let the proposed engine bor
row processing power from adjacent PE blocks. Bor
rowing processing power from adjacent scan-lines
makes it necessary to include at least multiple pixel
intensity accumulation registers as well as a provision
to indicate in the instructions which scan-line should be
affected .

The algorithm used in the architecture of Figure 4 for
the shading of 2D patches from 3D data, requires that
the values of I, DI and DDI are computed at a worst
case rate of 200 values per scan-line. This makes this
algorithm very IO-dependent. Moreover the actual cal
culation of these values is a big problem as it requires
high precision (floating point) arithmetic. An algo
rithm which would locally subdivide a 3D patch into
smaller ones until the patch could be shaded with first
order (Gouraud) shading techniques can use the aspect
of on-chip locality of reference much better. Multiple,
interpolated look-up tables may be used in such a vari
ant of the algorithm to calculate intensity values for the
patches involved.

The mapping of the algorithm on the VLSI-chip
becomes very inhomogeneous when the description of
the3D patches would bedone with floating-pointarith
metic, whereas all intensity values would be calculated
with 8-bit accuracy. This is not a problem for a dedi
cated chip, but it is likely to be a problem for the general
purpose solutions shown before. An alternative hard
ware realization might be here a "Sea of arithmetic
building blocks", which could be programmed using a
static program, downloaded from an external EPROM,
like a field programmable gate array. A library with
primitives rangi ng from floating point units to simple
8-bits arithmetic elements may be used to con figure the
chip for the algorithm.

The volume rendering algorithm

Medical imagi ng appl ications of the vol ume renderi ng
algori thm usually start from a 3D set of say 2563 or
5 I 22x64 opacity and colo r values located on a grid in

60

the object-space. The col or values are precalculated
with the common light equation. Opacity values are
assigned on the basis of a tissue classi fication step. It is
in this way that a user may select skin and bone to be
transparent, but brain opaque etc.

The given color and opacity values are sampled at the
grid-points of the display space and interpolated for
subsequent use in a non-linear difference equation,
which solves the propagation of light in a non-homoge
neous medium.

Locality of reference in the object space can be
·exploited in the following ways :

The way in which an external RAM is accessed can
be optimized in such a way that the val ues which
may be reached from a given row, lie in a subspace
of the object space withalmostequal sizes in X, Y, z.

2 The object space may be traversed in such a way that
it is hardly necessary to fetch values from the exter
nal RAM twice.

3 The interpolation necessary in the object space may
be done rather efficiently with a plane interpolator
shown in Fig. 7 . This is a so called parallel datapath
unit which calculates 16 interpolated values given
the four values A, B, C and D using a bilinear inter
polation. The plane interpolator can be placed at any
depth in a unit cell of the object space using four lin
ear interpolators to calculate the values A, ... D from
the corresponding values in say the front and the
back of the unit grid-cell.

(A)

., ~ out
a e (a + b) 12
b 9

Fig.7
Locality of reference in the display space can be
exploited in the following ways :

The calculation of opacity and color values along a
ray, the composition operation, can be done either
front to back or back to front. These algorithms use
local accumulators. The balanced tree version of the
composition operation is less regular and hence does
not map locality of reference in the algorithm to
locality of reference on the chip . The differences are
howeverslight in this case as the composi tion opera-

tion needs large mUltipliers which have a lot of inter
nallocality of reference but the external components
are relatively far away anyhow.

2 The fact that the cross-section of a ray in the display
space with the object space gives a ray in the object
space, leads to a loss of locality of reference in the
object space. The use of an n x n bundle of rays over
comes this problem. It should be noted however that
this requires a total of n2 accumulator values, which
have to be stored in an intermediate memory.

3 To minimize the on-chip traffic even more we pro
cess all interpolation planes which span a single ele
mentary cell in the object space. This lowers the rate
at which accumulated values of opacity and col or
should be accessed.

4 The generation of the many object space addresses
for all locations in the display space can be done
using a differential analyzer. This requires however
calculations with a high (21 bit) precision. Instead
one may use the locality of reference in the display
space to generate all addresses in the bundle-plane
all at once using a plane interpolator, given at least
four points calculated with a differential analyzer.
The interpolation can bedone with a highly reduced
precision, as the final resolution which we want to
maintain corresponds with an interpolation factor of
4 on the object-space grid.

Statistics of graphics algorithms

Three-dimensional visualization algorithms like those
used in flight simulators, are frequently designed to
handle an object space which is considerably larger
than the object space typically used in volume render
ing. This makes high accuracy, say 32-bit, (floating
point) arithmetic necessary. The large object space is
however necessarily sparse. This has as effect that
these algorithms rely much more on random access.
The capabilities of those algorithms are however also
much more restricted, as texture mapping is frequently
not supported. Hidden surface removal runs frequently
with little or no hardware support. It will be clear from
the material discussed in this paper that those algo
rithms run normally with a relatively poor perfor
mance, which is highly restricted by the degree of
sparseness of the object space. A sparse implementa
tion of the volume rendering algorithm, which fills the

3D object space with a set of small volumes which con
tain all visible parts of the scene might be used to obtain
a realistic visualization of large, complex scenes with
improved performance and better realism through
additional object detail. The hardware support for hid
den surface removal, transparency and texture for fine
details is one of the features which the volume render
ing algorithm adds to the general technique of handling
a large sparse object-space.

Discussion

We hope that the contents of this article will contribute
to a further understanding of the importance oflocality
of reference in algorithms and the ways in which this
can be mapped onto silicon to obtain a performance
gain of some orders of magnitude. We are convinced of
the fact that any method to increase the performance of
(graphics) algorithms will be bound by aspects of the
reduction of power dissipation, as power dissipation is
a very fundamental effect, which becomes more and
more important when we want to extent the computa
tionallimits beyond present limits. The ways in which
the desired performance limits can be reached are in no
way the only ones. This is why we have given adescrip
tion of the main lines of thought used by us to develop
high performance graphics engines. In addition we
have presented alternative ways to exploit similar per
formance levels using new programming techniques.

References

[I] J .A.K.S. Jayasinghe et aI. , "Two-Ievel Pipelined
Systolic Array Graphics Engine," IEEE Journal of
Solid-State Circuits, Vol. 26, no. 3, March 1991,
pages 229-236

[2] PJ.w. ten Hagen. A.A.M. Kuijk and e.G. Triene
kens . "Display Architecture for a VLSI-based
Graphics Workstation ." internal report no.
CS -R8637, CWI, Amsterdam, 1986

[3] J. Smit, M.M. Samsom and H. Snijders. "High
Speed Surface Rendering of 3D Images Using a
Novel Chip-Design Methodology," in proceedings
of the ProRISC IEEE Benelux Workshop on Cir
cuits. Systems and Signal Processing, Houthalen
Belgium. Marcb 24-25 1993, pages 227-232

