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Abstract 

The amount of power dissipated by the implementation of an algorithm, for instance in the form of a dedicated 
chip-set, is considered to be one of the most important constraints for the selection of a high performance graph
ics algorithm. This is due to the fact that the realization of computational capability within the reach of one Tera 
operations per second is non-practical with general purpose CPU-chips. The case study of a high performance 
surface visualization engine is used to introduce the reader with the aspect of power dissipation in relation to 
computational power. We introduce a low-power' parallel datapath' RISe processor, based on a highly efficient 
mapping of locality of reference in the algorithm onto silicon. A subsequent classification is made for various 
high performance graphics algorithms. 

Introduction 

In this paper we will address the role of power dissipa
tion and locality of reference when developing a high 
performance graphics engine. As example we use a 
surface rendering engine. 

A Surface Render ing Example 

A surface rendering engine will reproduce the projec
tion of a 3D scene on a 2D display unit. The common 
technique to solve this problem is to fill the projection 
of patches on the display screen with a constant inten
sity value. A much more realistic image can be 
obtained with relatively large patches when the inten
sity values are not taken to be constant. For instance the 
graphics processor designed by our group [I] in collab
oration with the CWI [2], can solve a constant, first 
order and second order forward difference equation, 
between two arbitrary points A and B with an index 
from 0 .. . 1023, given the value of the Intensity (I) and 
its first (DI) and second derivative (DDI), using a sys
tolic engine built from 1024 identical processing ele
ments. In Figure 1 the algorithm is shown. 

28 DDlr :DI 2 

~1 18 
DI)v"", DI 

8 
--0 

I 

10 A 8 A 8 X 

Fig. 1 

56 

The new values for I, DI and DDI are, just like the 
decremented values of A and/or B calculated in the first 
generation design of the high performance surface ren
dering algorithm, using a mUltipIexed 3 x 12 bit ALU 
with pipelined ripple carry adders. A dedicated con
troller moves the values ofl, DJ, DDI, A and B to and 
from a bank of registers located in the current proces
sing element as well as as in the next one. 

A floorplan of the first generation design is given in 
Figure 2. The areas with a dark shading represent the 
ALU, the medium shaded areas are occupied by regis
ters . The light shaded area is the controller. The black 
line represents one wire in the interprocessor bus. 

Fig. 2 
The chip was designed for operation at 80MHz, it 
should be noted however that this speed had to be der
ated, due to the 5.2 Watt of power dissipated at the tar
get speed, as most available packages could dissipate 
no more than a mere 2Watt forreasonable junction tem-
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peratures. Given these results, we realized that power 
dissipation was the main obstacle to extend the capabil
ities of the design. 

Power dissipation 

The amount of power dissipated in a VLSI-chip is: .5 x 
V cc2 x Cpd x f, where V cc is typically 5 Volt, Cpd is the 
average sum of capacities being charged or discharged 
and fthe frequency of operation. It is useful to split the 
value of Cpd into a part due to arithmetic, one due to 
register usage, and one due to interconnect. The 3 x 12 
bit multiplexed ALU in the first generation design was 
not fast enough for the required 80 Mhz operation, or 
12.5 ns cycle time, as the time for one bit-addition is 
about 1.5 ns. The inclusion of pipeline registers in the 
ALU and the additional control logic for the registers, 
made a 12 ns design feasible . Note that multiplexing is 
a slow-down operation, whereas pipelining is a 
speed-up operation. 

Multiplexing caused operands to be moved 5 times 
over the chip from the registers to the ALU of the cur
rent and the next processor. The use of pipeline regis
ters placed in the control lines of the registers made the 
registers relatively large. As a consequence they were 
also relatively 'far' away from theALU, resulting in a 
relatively high wiring capacity. 

The second generation design 

We have used another technique for the second genera
tion design. Using a parallel datapath approach, we 
took advantage of the fact that two n-bit additions can 
be executed in slightly more than n times the carry 
propagation speed, as the sum-bits in a ripple carry 
adder are already after one sum-propagation time 
avai lable, as shown in Figure 3. 

So any arithmetic expression with n-bit wide additions 
(+/- operators) nested k levels deep can be calculated 
in n x Tcarry + k x Tsum. 

We used this observation for the design given in Fig
ure 4. Five identical PE-sections were cascaded with
out any intermediate registers. These units compute 
five ou tput values in 60 ns, resulting in a computation 
rate of one value every 12 ns . The power dissipated by 
this design can be expressed in full-adder equivalents, 
using the following equivalence rules expressed in full 
adder equivalents: 

I) A fa.~ t (12ns) register => .5 FA Equivalents 

2) A slow (60ns) register => .2 FA Equivalents 

3) One wire spanning the width of a FA => .02 FA Equivalents 

4) One wire spanning the height of a FA => .05 FA Equivalents 
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Using these figures a good mapping should be found 
from the algorithmic structure in Figure 4 to a layout on 
silicon. A good mapping is already given in Figure 4, 
provided that the most significant bits of the full adders 
for DI and I are aligned, i.e. one should not place these 
28 and 18 bit adders under each other but immediately 
adjacent to each other. 

The overall graphics processor is realized using the 
floorplan of Figure 5. Individual PE-slices are 2 full 
adders wide. Five slices are grouped into units of 500 
!-tm wide and 6.5 mm high in a 1.5 !-tm process. A total 
of 100 PE-slices can be realized on a single chip, di ssi 
pating less than 2Watt. This is a considerable gain 
compared to the first design. where 9 PEs dissipated 
5.2 Watt. 
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Preservation of locality of reference 

Looking at the steps taken which led to the second, 
highly efficient design, we observe that the mapping of 
locality of reference in the algorithmic structure onto 
locality of reference on the chip is a very important fea
ture. This had as effect that the 86 wires which enter 
and leave each PE-slice are only 100 !-lm long. In prin
ciple it is possible to use a package with lOO input pins 
and 100 output pins, but a package with fewer pins is 
cheaper. This makes it necessary to multiplex the 
incomi ng and outcoming information . It should be 
noted however that this multiplexing needs to be per
formed only once. 

In contrast we see the useofa3mm long interprocessor 
distance, which carries in essence the same informa
tion, using a high (5x) multiplex rate. A calculation of 
the resulting power dissipation can be found in [3) . 

Maximum arithmetic capabilities 

The arithmetic capabilities, expressed for instance in 
terms of the maximum number of 8-bit additions 
executed on a 7 x 7 mm2, 1.5!-lm CMOS chip, will no~ 
be calculated, assuming that5 slow registers are used in 
conjunction with 2 8-bits arithmetic units, to store 
intermediate results of calculation. Six such units fit in 
an area of I mm2. So at most 2 x 6 x 7 x 7 = 588, 8-bit 
full adders with accompanying registers would fit on a 
7 x 7 mm2 chip. These arithmetic units could be 
clocked at a rate of one operation in 20 ns even if the 
ari thmetic operations are nested up to five levels, so the 
overall computational power of a 7 x 7 mm2 1.6 !-lm 

chip is about 50 x 103 x 600 = 30 Giga operations per 
second. The value of Cpd for the full adder is 500 fF, 
this gi ves a total dissipated power of: 112 x 52 x 600 x 24 
x 500 10- 15 x 50 106 = 4.5 Watt. Half of this amount 
will under normal circumstances be dissipated if we 
assume a probability of 50% that any bit will change. 

Efficiency of algorithm mappings 

The mUltiplexed ALU in the first generation design 
was constructed from 3 12-bit wide adders. The 
instruction set used five cycles of this ALU to solve the 
forward difference equation for a single step along the 
scan-line. This gives an arithmetic power-complexity 
of 900 full-adder equivalents for the arithmetic of 5 
PEs. The registers, excluding the pipeline registers 
have an power-complexity of 660 full-adder equiva
lent for 5 PEs. The mapping of the arithmetic on regis
ters is much more efficient in the second generation 
design, as all word-lengths used are minimal. More
over the detection of the interval A-B can be done with 
two 3 bit comparators only, as the global location of the 
interval may be computed once per section of 5 PEs, 
using two 12 bits comparators. The registers used to 
store intermediate results in the first generation design 
are fully absent in the second generation design. This 
has as net effect that the amount of power dissipated in 
the second generation design, due to register usage is 
144 Full Adder power-equivalents, whereas this same 
figure is 660 Full Adder power-equivalents in the first 
generation design . This shows that one may obtain a 
more efficient implementation of a given algorithm 
using adequate word-lengths and locality of reference 
aspects . 

It should be noted however that locality of reference in 
the layout of the algorithm plays an even more impor
tant role, as can be seen by the difference between both 
designs concerning the effect of the wiring capacitance 
on the total amount of power dissipated by the algo
rithm. 

Aspects of graphics architectures ranging 
from general purpose to dedicated 

We will now discuss some of the performance criteria 
for various forms of chip-realization in terms of the 
desired performance of a given algorithm. The arith
meticcapability of the chip will be taken as a reference 
point with respect to which we may argue that further 
improvement is not possible. 

The effectivity of a general purpose solution depends 
much on properties of the target algorithm, like: 
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Is it desired to realize the worst-case performance or 
should the graphics algori thm realize the desired 
performance for some average case? 



2 Is the IQ-bandwidth of the chip sufficient, i.e. does 
the algorithm require random data from an external 
RAM? 

3 Should special techniques be used, like dedicated 
RAS/CAS selection for fast RAM access? 

The parallel-datapath RISC-engine 

One type of general purpose processor might be a par
allel datapath RISC processor. Such a processor would 
fetch a word from the external memory and decode and 
execute all instructions fetched in parallel, using 8 
decoders without internal registers. When a 128-bit 
wide memory interface is used in conjunction with a 
16-bit instruction format, it could execute at most 8 
1 28-bit instructions at a time. 

8xDecoder 8x128-bit ALU 

Fig. 6 

These instructions might be partitioned into 8-, 16-, 
32-,64- or 128-bit units and be configured to execute a 
fast carry select addition or subtraction, an nxn multi
plication, a 2nxn division etc. So one instruction fetch 
might be used to execute 8 x 16= 128 8-bitadd-subtract 
instructions or 8 x 4 = 32 32-bit add-subtract instruc
tions in say 20 ns. The architecture introduced can 
reach a considerable speed of about 1.6 Giga 32-bits 
add-subtract instructions per second. This is especially 
favorablecompared to modern RISC processors which 
use considerably more power for a fraction of the 
workload, in a much more advanced process. The final 
bottleneck for a parallel datapath RISC engine will be 
the IO-bandwidth, and its restricted ability to output 
results using the 10 subsystem . This bottleneck is how
ever inherent to the idea of a general purpose machine. 

The loop-unrolling engine 

The ability of the parallel datapath engine to control not 
more than 8 arithmetic and logic units each executing 
one sequential instruction from the instruction stream, 
may be seen as a disadvantage. An instruction set with 

special features for loop-unrolling might be a solution 
to this problem. The prefetch mechanism would 
repeatedly fetch instructions from a LOOP ... 
ENDLOOP construct, until either all ALUs available 
have got instructions and the repeated LOOP execution 
can start, or the LOOP is sufficiently rolled out. Using 
this way of prefetching one can set-up a quite effic ient 
repeated execution of the instructions to be executed 
within the LOOP ... ENDLOOP construct. 

Locality of reference within programs 

Even the loop-unrolling engine will not be able to reach 
its performance limit when the graphics program to be 
executed needs abundant la-bandwidth, as ultra-high 
bandwidth requires either an unrealistic pin-count or 
ultra-high speed IQ-pads. On-chip memories may be 
used to increase the la-bandwidth of an algorithm, 
either as implicit cache or as explicit intermediate stor
age, to reduce the off-chip IO-rate. One extreme is to 
put all RAM on-chip. This may be a problem as the 
advanced technology makes off-chip RAM always 
faster and larger than on-chip RAM. An alternative 
might be to put a moderate size graphics processor on 
the mask-set of an external RAM, to fully exploit the 
high (e.g. 512-bit) on-chip bandwidth. The proposed 
merge of on-chip RAM and a graphics processor is 
however frequently impossible, as the chip-foundry 
has specialized production lines for RAM and for 
logic, such as CPUs. 

These issues imply that we should seek for locality of 
reference in the application program and seek for 
opportunities to include the mapping of the algorithm 
onto silicon as part of the compilation process, when 
extreme speed is of importance. 

Statistics of graphics engines 

A true Von Neumann computer adapts itself, by its very 
nature always to the statistics of the given algorithm. 
The aspect of random access in the instruction stream 
and the datastream is the most helpful property in this 
respect. It is this same aspect however which limits the 
performance of architectures with a Von Neumann 
structure, as the la-bandwidth of the chips used, be it 
the memory chips or the CPU is frequently the limiting 
performance factor for Von Neumann machines. The 
classical technique used to improve the performance of 
such a system: acceleration of the ALU, has as main 
effect that the power dissipation goes up considerably 
more (sometimes as much as two orders of magnitude) 
than one would expect on the basis of the increased pro
cessing speed. Thearchitectures discussed so far can be 
used to run algorithms at a much higher speed than 
classical architectures. This high speed can even be 
obtained at power dissipation levels which are quite 
attractive. Most algorithms loose on such architectures 
thei r ability to adapt to the statistics of the algorithm , 



instead they are capable to execute a graphics algo
rithm at worst case performance conditions. 

Specific algorithms: 

The surface rendering example 

One of the techniques used to obtain the desired perfor
mance level is the use of instructions which are fed over 
an array of processing elements as shown in Figure 4. 
An implementation of a systolic engine in which the 
instructions may either flow from left to right or the 
other way round is shown in Figure 5 . This architecture 
may also be used to let instTuctions jump over PE
blocks, when it is known that an instruction would not 
be executed at any of the PEs within the block. This 
aspect makes it easier to let the proposed engine bor
row processing power from adjacent PE blocks. Bor
rowing processing power from adjacent scan-lines 
makes it necessary to include at least multiple pixel 
intensity accumulation registers as well as a provision 
to indicate in the instructions which scan-line should be 
affected . 

The algorithm used in the architecture of Figure 4 for 
the shading of 2D patches from 3D data, requires that 
the values of I, DI and DDI are computed at a worst
case rate of 200 values per scan-line. This makes this 
algorithm very IO-dependent. Moreover the actual cal
culation of these values is a big problem as it requires 
high precision (floating point) arithmetic. An algo
rithm which would locally subdivide a 3D patch into 
smaller ones until the patch could be shaded with first 
order (Gouraud) shading techniques can use the aspect 
of on-chip locality of reference much better. Multiple, 
interpolated look-up tables may be used in such a vari
ant of the algorithm to calculate intensity values for the 
patches involved. 

The mapping of the algorithm on the VLSI-chip 
becomes very inhomogeneous when the description of 
the3D patches would bedone with floating-pointarith
metic, whereas all intensity values would be calculated 
with 8-bit accuracy. This is not a problem for a dedi
cated chip, but it is likely to be a problem for the general 
purpose solutions shown before. An alternative hard
ware realization might be here a "Sea of arithmetic 
building blocks", which could be programmed using a 
static program, downloaded from an external EPROM, 
like a field programmable gate array. A library with 
primitives rangi ng from floating point units to simple 
8-bits arithmetic elements may be used to con figure the 
chip for the algorithm. 

The volume rendering algorithm 

Medical imagi ng appl ications of the vol ume renderi ng 
algori thm usually start from a 3D set of say 2563 or 
5 I 22x64 opacity and colo r values located on a grid in 
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the object-space. The col or values are precalculated 
with the common light equation. Opacity values are 
assigned on the basis of a tissue classi fication step. It is 
in this way that a user may select skin and bone to be 
transparent, but brain opaque etc. 

The given color and opacity values are sampled at the 
grid-points of the display space and interpolated for 
subsequent use in a non-linear difference equation, 
which solves the propagation of light in a non-homoge
neous medium. 

Locality of reference in the object space can be 
·exploited in the following ways : 

The way in which an external RAM is accessed can 
be optimized in such a way that the val ues which 
may be reached from a given row, lie in a subspace 
of the object space withalmostequal sizes in X, Y, z. 

2 The object space may be traversed in such a way that 
it is hardly necessary to fetch values from the exter
nal RAM twice. 

3 The interpolation necessary in the object space may 
be done rather efficiently with a plane interpolator 
shown in Fig. 7 . This is a so called parallel datapath 
unit which calculates 16 interpolated values given 
the four values A, B, C and D using a bilinear inter
polation. The plane interpolator can be placed at any 
depth in a unit cell of the object space using four lin
ear interpolators to calculate the values A, ... D from 
the corresponding values in say the front and the 
back of the unit grid-cell. 

(A) 
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Fig.7 
Locality of reference in the display space can be 
exploited in the following ways : 

The calculation of opacity and color values along a 
ray, the composition operation, can be done either 
front to back or back to front. These algorithms use 
local accumulators. The balanced tree version of the 
composition operation is less regular and hence does 
not map locality of reference in the algorithm to 
locality of reference on the chip . The differences are 
howeverslight in this case as the composi tion opera-



tion needs large mUltipliers which have a lot of inter
nallocality of reference but the external components 
are relatively far away anyhow. 

2 The fact that the cross-section of a ray in the display
space with the object space gives a ray in the object 
space, leads to a loss of locality of reference in the 
object space. The use of an n x n bundle of rays over
comes this problem. It should be noted however that 
this requires a total of n2 accumulator values, which 
have to be stored in an intermediate memory. 

3 To minimize the on-chip traffic even more we pro
cess all interpolation planes which span a single ele
mentary cell in the object space. This lowers the rate 
at which accumulated values of opacity and col or 
should be accessed. 

4 The generation of the many object space addresses 
for all locations in the display space can be done 
using a differential analyzer. This requires however 
calculations with a high (21 bit) precision. Instead 
one may use the locality of reference in the display 
space to generate all addresses in the bundle-plane 
all at once using a plane interpolator, given at least 
four points calculated with a differential analyzer. 
The interpolation can bedone with a highly reduced 
precision, as the final resolution which we want to 
maintain corresponds with an interpolation factor of 
4 on the object-space grid. 

Statistics of graphics algorithms 

Three-dimensional visualization algorithms like those 
used in flight simulators, are frequently designed to 
handle an object space which is considerably larger 
than the object space typically used in volume render
ing. This makes high accuracy, say 32-bit, (floating 
point) arithmetic necessary. The large object space is 
however necessarily sparse. This has as effect that 
these algorithms rely much more on random access. 
The capabilities of those algorithms are however also 
much more restricted, as texture mapping is frequently 
not supported. Hidden surface removal runs frequently 
with little or no hardware support. It will be clear from 
the material discussed in this paper that those algo
rithms run normally with a relatively poor perfor
mance, which is highly restricted by the degree of 
sparseness of the object space. A sparse implementa
tion of the volume rendering algorithm, which fills the 

3D object space with a set of small volumes which con
tain all visible parts of the scene might be used to obtain 
a realistic visualization of large, complex scenes with 
improved performance and better realism through 
additional object detail. The hardware support for hid
den surface removal, transparency and texture for fine 
details is one of the features which the volume render
ing algorithm adds to the general technique of handling 
a large sparse object-space. 

Discussion 

We hope that the contents of this article will contribute 
to a further understanding of the importance oflocality 
of reference in algorithms and the ways in which this 
can be mapped onto silicon to obtain a performance 
gain of some orders of magnitude. We are convinced of 
the fact that any method to increase the performance of 
(graphics) algorithms will be bound by aspects of the 
reduction of power dissipation, as power dissipation is 
a very fundamental effect, which becomes more and 
more important when we want to extent the computa
tionallimits beyond present limits. The ways in which 
the desired performance limits can be reached are in no 
way the only ones. This is why we have given adescrip
tion of the main lines of thought used by us to develop 
high performance graphics engines. In addition we 
have presented alternative ways to exploit similar per
formance levels using new programming techniques. 
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