
A Parallel-Pipelined Multiprocessor System for the
Radiosity Method

L.S. Shen, and E.F. Deprettere

ABSTRACT Ray-tracing and radiosity algorithms can produce very realistic images,
but they require a lot of computations which make them impractical for scenes of high
complexity. Several attempts have been made to speed up computations through parallel
processing. To get orders of magnitude speedup, massive parallelism involving multiple
streams will be necessary. In this paper, a parallel-pipelined multiprocessor system is de-·
scribed, which is made of clusters of specialized computing modules, each constructed of aD

Intersection Computation Unit (lCU) and a number of Cell Traversal Units (CTUs). Both
lCU and CTU are of type pipeline and with data-driven execution. A pseudo-dyn.:lxnic
scheduling is used to reconfigure the system at run time so that the workloads distributed
over clusters can be more or less balanced. Furthermore, a hierarchical memory struc
ture is proposed to reduce the average loading time of patches. Performance evaluation
has been done and 15% more speedup can be obtained as observed by queueing network
simulation. A complete system level simulation is under way by using BONeS which is a
block oriented network simulator.

1.1 Introduction

Recently, several techniques have been developed for rendering high quality images on
a video screen. The most noticeable examples are ray tracing and radiosity. Despite the
fact of improved realism, they proved to be extremely time-consuming which makes them
impractical for rendering complex scenes. An obvious answer to this dilemma lies in
parallel processing.

Many parallel architectures have been proposed and developed for computer graph
ics. These can be classified into three types: (1) Vector Processor, (2) Array Processor,
and (3) Multiprocessor. Computation for image creation consists primarily of 3D vector
and matrix operations, in which the dimension is nrdinarily very low. Hence, computer
systems of type 1 like the Cray 1 are not fit for this purpose. Usually, there are two rea
sons for pursuing computer systems of type 2: (1) it is more cost-effective in any given
technology because of the saving in the instruction and decode hardware, and (2) it is
conceptually easier to program and debug. However, it is very difficult to keep all proce:3-
sors doing useful work all the time, and so processor utilization might be very low. One
noted example is Pixel-planes 4 in which no screen partitioning is built. When rendering
polygons, Pixel-planes 4 disables all the pixels outside a polygon, and hence all these
pixels' processors remaining idle until the next polygon arrives. Consider a complex scene
that is composed mostly of very small polygons, and in which many polygons cover only
a handful of pixels. The result would be a rather inefficient use of processors. The same

106

http://www.eg.org
http://diglib.eg.org

problem can arise when one attempts to use the Connection Machine for computer graph
ics. Multiprocessor architectures can range from multiprocessors sharing memory over a
common bus (Sequent Balance), through multiprocessors sharing memory on a multistage
network (BBN Butterfly), to multiprocessor message- passing systems (Ncube). With this
type of computer systems, care must be taken when mapping algorithms from computer
graphics onto multiple processors. Inadequate mapping strategies are detrimental to the
system performance.

In this paper, we concentrate on multiprocessor architectures since ray-tracing al
gorithms cannot be efficiently mapped onto computer systems of types 1 and 2 as de
scribed above. Published architectures can be classified into three classes: processing
without dataflow [5, 6], processing with ray dataflow [1, 2], and processing with object
dataflow [3, 7]. The drawback of the first class is that either the entire scene database
should be replicated for each processor (limiting the scene complexity for rendering) or
the scene database must be in a shared memory (limiting the size of possible configu
rations). As for the second class, the system performance will be degraded due to the
communication overhead of passing ray messages through a number of processors. This·
can be resolved by assigning rays to processors as the third class does, but it requires
an efficient way to access the objects from the database. In [9, 10], we proposed a new
space partitioning called the shelling technique that can reduce algorithmic complexity
considerably. In this paper, we discuss a pseudo-dynamic scheduling that can map the
shelling technique onto a parallel-pipelined architecture classified to the third class. In
order to access the objects efficiently, we propose a memory structure which is a hierarchy
of main memory, local memory, and cache.

The outline of the paper is as follows. After establishing the background of the shelling
technique in Section 1.2, we explain why a parallel-pipelined architecture is chosen and
how to map the radiosity method onto it. After that, we give an overview of the system
and discuss some crucial issues regarding memory structure, synchronization mechanism,
and main primitive functions. Finally, we show the results of some practical scenes and
give a conclusion.

1.2 Background

The shelling technique is a space partitioning that can reduce the communication overhead
of loading patches. An example of a shell-like structure built by the shelling technique
is shown in Figure 1.1. The half-space seen by the source patch is first partitioned into
shells. Then, a shell is partitioned into a number of subshells based on the ADRCI of the
local neighborhood of the object space. Once the structure has been constructed, each
relevant patch within the subshell currently considered can compute intersection points
with a bundle of rays which is determined by the spherical bounding box2 of this patch.
With this arrangement, a relevant patch is necessary to be loaded only once.

On the other hand, the shelling technique is a mapping that can map the partitioned
space onto a parallel-pipelined architecture. This is done by a two-step procedure: (1) the
object space is uniformly partitioned into subspaces by equally distributed !:J..O and ~¢
angles, and a low density ray casting is performed recording the number of cell traversals

1 ADRC stands for Average Degree of Ray Coherence that represents the average number of rays shot
from a sample point 0 over which a hemisphere is placed that hit a patch.

2The spherical bounding box of a subshell (or a patch) is a superset of the convex hull on spherical
geometry of the su bshell (or the patch).

107

and intersection computations for each subspace, and (2) based on the information of the
low density ray casting, the object space is reorganized into sections/sectors by using a
Binary Space Partitioning (BSP) subdivision such that the estimated workloads among
them are evenly distributed. While mapping this partitioning onto a parallel-pipelined
architecture, a section and its corresponding sectors can be mapped onto a cluster which
consists of an leU and a number of CTUs. Both lCU and CTU are of type pipeline.

target patch •

Fig. 1.1. A shell-like structure built by the shelling technique.

1.3 A Parallel-Pipelined Architecture

At a superficial level, there exists a high degree of inherent parallelism in the ray tracing al
gorithms applied to compute form-factors for the radiosity method. In a naive ray-tracing
algorithm, it is relatively easy to broadcast the objects of a scene and the accompanying
ray-tracing program to multiple processors, then have each processor process a ray or
group of rays assigned to it. For optimum load-balancing, a given processor's rays should
be interleaved with the others. Even with a trivial mapping strategy, speedup can be gen
erally high. However, all processors turn out to be very inefficient because they are doing
wasteful work most of the time. Conventional space partition techniques can be used to'
reduce wasteful work by searching for relevant objects, thereby accelerating ray tracing.
However, the searching procedure makes the scheduling problem complicated. On the one
hand, the amount of computation and communication, as well as execution dependen
cies cannot be known a priori. On the other hand, relevant objects are routed to certain
processors instead of broadcasting them to all processors, and so heavy communication
overhead is involved.

In a multiprocessor ray-tracing algorithm, it is indispensable to moving objects dy
namically. Our strategy is to move objects only when necessary and then keep them
stationary as much time as possible. This led to the concept of the shelling technique. In
the shelling technique, any relevant patch found by a ray is routed to a processor and can
continue testing against a bundle of rays. It is difficult to exploit this run-time chang
ing parallelism by assigning a separate processor to each ray stream. Pipeline processing

108

seems appropriate for this purpose because it can handle changes in the number of ray
streams in a natural way. Due to the property of object coherence: the local neighbor
hoods of space tend to be occupied by the same ob ject, multiple processors can be used for
processing distinctly different parts of the space to achieve higher system performance. In
conclusion, we argue that a parallel-pipelined architecture is well suited to the radiosity
method.

1.3.1 Pseudo-Dynamic Scheduling

Scheduling implies determining when (scheduling in time) and where (assignment to a
processor) each process is executed. For the purposes of this paper, we may distinguish
between static and dynamic scheduling. VV'ithin the realm of dynamic scheduling, we fur
ther distinguish between fully dynamic and quasi-dynamic scheduling. In the case of static
scheduling, information regarding the processes in the system is assumed to be available a
priori. Hence, the compiler can determine when and where each process is to be executed
before program execution. Static scheduling is attractive since it needs only be performed
once. In our case, very little a priori knowledge about the processes in the system is
available. So the scheduling can only be performed dynamically as the parallel program
ex,,~cutes.· For fully dynamic scheduling, a process ready for processing is assigned to an
idle processor at run time. It is claimed to be most effective in utilizing resources and to
fully exploit the concurrency of an algorithm, regardless of the amount of dependency.
However, it requires much hardware/software run-time overhead. Furthermore, it is usu
ally not practical to make globally optimal scheduling decisions at run time. In view of
the inapplicability of static scheduling and the high cost of fully dynamic scheduling, we
should take a closer look at our problem to determine a suitable scheduling strategy.

The radiosity method generally progresses through a sequence of refinement steps
that allow rapid generation of good images. Often, the execution time associated with
each step is relatively large, and the workload and communication requirements do not
change a lot during a step. It might be advantageous to redistribute data objects and
associated workloads by a static assignment at the beginning of each step if the overhead
is low. Our approach is to use a low density ray casting to give an estimation of workloa.ds.
Based on this estimation, we can partition the space into sections/sectors assuming more
or less ba.lanced workloads. They are then assigned to processors and kept unchanged
until the next step. In this way, a process is statically assigned to a processor at run time,
but when to execute it should be determined by a local run-time scheduler. We call this
pseudo-dynamic (or iterative static) scheduling. The drawback in this approach is that
dependency relations among processes have been neglected in the assignment procedure.
To remedy this, we propose a dynamic workload balancing scheme to adjust workloads at
run time. In addition, a fine-grained synchronization mechanism is introduced to exploit
the concurrency of an algorithm as much as possible.

109

1.3.2 System Overview

The system configuration is shown in Figure 1.2. The heart of the system is a pool of
CTUs and lCUs which can be configured into clusters at run time via the Interconnection
Network and under host control. The host is responsible for a low density ray casting from
which workloads are estimated and the space is partitioned into sections/sectors that are
balanced in terms of computational load. Based on this partitioning, the Interconnection
Network is configured to form clusters. More on this subject can be found in [10]. The
host controls input/output operations such as the distribution of patches through the
Distributor for processing and waiting for intensity messages coming from the Collector.
Because we use BSP to form sections/sectors, each patch can be easily assigned with a
tag that denotes the address of its destination processor. The Distributor consists of a
tree of switches controlled by the tag of a patch. The Collector packs the contribution of
ray-patch hits into an intensity message and sends it to the host. Since the intensity of
a patch can be totally or partially determined in a cluster, the Collector can be viewed
as a collection of units distributed over clusters. In the following, we explain two main
modules: CTU and lCU. The memory module will be discussed in Subsection 1.3.3.

From the Host

Distributor

....

Interconnection Network

....

Collector

To the Host

Fig. 1.2. System configurat.ion.

110

synch

..

, <subshell>

Subshell
Generator

A

From
AveragingQ

..
~ SBB

I

CTRay
CTRay Queue

p Memory

,ill.

n <sbb> i i yes .. CTRay
Generator

<ccray> <ccray'"

<ccray>

H'

<cell>. id
To iCell Traversal ... -Mem ory System

llf<ccray>.t

Test
t < radius

M.
<su bshell> .radius

Fig. 1.3. Block diagram of CTU.

The block diagram of CTU is depicted in Figure 1.3. To start with a new subshell
generated by Subshell Cenemtor, a window in CT Ray Memory is defined by CT Ray
Cenemtor based on the spherical bounding box of the subshell. Each ray stored in CT
Ray Memory has a flag indicating whether it was already shot or not, and only rays not
shot yet are output. All the rays in the window are checked and output when necessary.
They are enqueued to CT Ray Queue in sequence. When a ray is dequeued from CT Ray
Queue, a single-step cell traversal is done by Cell Tmversal to determine its next cell
address and update its distance to ray origin. It will be enqueued again if its distance
is smaller than the current subshell radius. The next cell address will be output to the
memory system to access the patches stored in this cell.

The block diagram of I CU, running asynchronously with CTU, is shown in Figure 1.4.
A patch retrieved from the memory system first undergoes a coordinate transformation
via CtoR. Its spherical bounding box is then computed from the transformed vertices
of the patch. The spherical bounding box is accumulated by A vemging D to set up the
next subshell. Based 011 the spherical bounding box, a window in IC Ray Memory can
be defined by IC Ray Cenemtor that can output a number of rays. Each ray stored in
Ie Ray lvfemory has a flag indicating whether it already hit or not, and only rays not
hit yet are output. They will be enqueued to IC Ray Queue in sequence. Together with
the accompanying patch, they will flow through a pipelined Intersection Computation to
calculate distances from the point over which a hemisphere is placed to the intersection
points. A ray is declared as hit if the distance to the nearest intersection point is smaller
than the current subshell radius and the nearest patch is declared as the intersected
patch. The updated ray will be written back to IC Ray Memory. We neglect Deferred Ray
~M emory for a moment and leave it for discussion in Subsection 1.3.4. For convenience, we
use the notations of <x> and <:r>. y to denote a data structure x and a member y in x,
respectively.

111

To
Subshell Generator •

synch syncv
-. Averaging Q

ICRay
Memory

Deferred
~ Ray Memory

<patch>_----"""<patch:::> __ -......l.--.... <sbb>.r-__ '.II.iI' __ .., <ic_ray> <icjay>
From

Memory System
... GtoR

<subshell>.radius ...

Patch
Queue

... ICRay
Generator

... <patch>

ICRay
Queue

Intersection Computation

<icjay> I L-________________ ~

Fig. 1.4. Block diagram of leu.

112

1.3.3 Memory Structure

In the shelling technique, neighbouring rays will traverse the same cells, and give rise to
multiple references to the same patches. Furthermore, in the shelling technique, successive
references to cells or patches are made to entries in a local neighborhood of the object
space. Due to this so-called locality of reference, cache memories seem appropriate within
the proposed memory structure. Nonetheless, it turns out that the derived memory band
width still cannot keep up with the required processing throughput. For achieving a better
balancing between processing throughput and memory bandwidth, we propose a memory
structure which is a hierarchy of resident set, cache, and main memory. A resident set is
a memory scheme which can be accessed directly and with less overhead than that asso
ciated with a cache memory. For a reference to a patch, the data management algorithm
will first check if the resident set contains this patch. If this is the case, then it can be
retrieved directly from the resident set. Otherwise, the algorithm will check the cache and
finally, if necessary, main memory. In this Subsection, we first describe a two-step proce
dure: (1) patch identification and (2) patch classification, that can determine patches to
be stored in local resident sets (or local memories). After that, different policies in cache
design are investigated.

Paich Identification

For practical scenes, a relatively small percentage of patches in a database usually account
for a large percentage of references to the database. This is because (1) there exist some
big patches which will account for many references to the database, and (2) there might
be many patches hidden by other patches. Certainly, those big patches which are noL
hidden by other patches are potential candidates in the resident set. The question is how
to search for them with low overhead. In the shelling technique, a low density ray casting
is advocated for scheduling purpose. Why not just use those patches found by the low
density ray casting as potential candidates in the resident set for the high density ray
casting? This is because only big patches can probably be captured by the low density
ray casting. We use an example as shown in Figure 1.5, 1.6 to demonstrate that.

Suppose that the frequency function3 fh of the high density ray casting is known, and
let Uh be the usage function 4 derived from fl.. If we are allowed to select the resident set
from Uh , then an optimum solution can be obtained. Certainly, this will not be the case.
Let fl and U/ be the frequency function and the usage function of the low densi, y ray
casting. Instead of selecting the optimum resident set Rh(k) = {Uh(l), Uh(2), ... , Uh(k)},
only R/(k) = {Ul(1),U1(2), ... ,UI(k)} can be selected by the low density ray casting.
Then, the effectiveness E(k) of R/(k) is defined as

where N is the number of patches found in the low density ray casting.

The E(k) can be used to indicate the effectiveness of the resident set selected by the
low density ray casting. Some results of practical scenes will be shown in the next Section.

3 A frequency function f is a function that ret.urns the number of occurrences of a patch in a reference
string.

4Patches in a reference string can be ordered in sequence based on the number of occurrences of each
patch. A usage function U is a function that returns a patch by using the usage sequence of the pat.ch.
That is, U(l) is the most frequently used patch and U(N) is the least. frequently used patch.

Fig. 1.5. An example showing the patches captured by the low density ray casting.

Fig. 1.6. The patches captured by the high density ray casting but not shown in Figure 1.5.

114

Patch Classification

Since each processor (ICU /CTU) is responsible for a section/sector which is a part of
the entire space, only those patches intersecting with this section/sector are potential
candidates for its resident set. As described above, workload balancing is achieved by
recursively applying a BSP technique to form sections/sectors. For BSP levell, the entire
space which is initially subdivided in uniform subspaces, is subdivided into 2i parts by
using l median planes. The ith bit of a patch's tag that denotes the address of its desti
nation processor is determined by classifying to which part it belongs. It is sufficient to
classify subspaces against median planes. Only when a median plane is inside a subspace,
we classify patches residing in the subspace against the median plane. We now pursue
patch classification in this sense. We need the following theorem to derive the spherical
bounding box of a polygonal patch, which is essential to the patch-classification step.

Theorem 1: Let H be a unit hemisphere with center 0 and normal vector directed at
Z direction, let P be a polygonal patch with vertices 1"i, i = 1,2, ... ,v, and let CH be
the convex hull on spherical geometry of P on H. Furthermore, let emin , emax , </;min, and
</;min be the minimal and maximal e and </; angles of the vertices of P. Then, S, the set
of bounded by

is a superset of that bounded by CH, where

Jl - 2sin2 (D.I1)
-1 (4)

cma.x = cos 1 . 2(b.B) ,
-sm 4

and t::.e = emax - emin'

Proof: (refer to [8]).

In case of a Bezier patch, 16 control points are used instead to derive the spherical
bounding box of the patch. By definition, a subspace is a region bounded by two constant
e and two constant-</; planes. The spherical bounding box of a patch is also defined by
two constant-B and two constant-</; angles. So the patch classification can be done by just
comparing those angles.

Cache Design

There are four placement policies in cache design: direct, fully associative, set-associative,
and sector mappings (see [4]). We have implemented the first two policies in our cache
design. Direct mapping is the simplest one in the sense that a simple rule: address i in
main memory maps to the frame i modulo S of a cache with size S, is a.pplied for both
placement and replacement policies. Furthermore, it does not rely on a special hardware
for an associative search of address tags. On the contrary, fully associative mapping is
the most flexible one: an address in main memory can map to any frame of a cache and
almost any replacement policy can be implemented. However, its perforrnance relies on
a. fast associative search of address tags. The results of using those two policies will be
shown in the next Section.

115

1.3.4 Synchronization Mechanism

As pointed out earlier, we have neglected dependency relations among processes in the
assignment procedure, and let a local run-time scheduler determine when a process is to
be executed. As a result, our approach can tolerate more data dependency if there exists
a synchronization mechanism that can support fine-grained parallelism.

We borrow a concept called I-structure memory from dataflow concept for this pur
pose. Each I-structure memory location has presence bits indicating whether it is full or
empty. Each location is permitted to be written only once and any read of an empty
location is deferred until the corresponding write occurs. It is this concept that allows
us to initiate many subshells in parallel. This can be explained by using a Task Prece
dence Graph among subshells as shown in Figure 1. 7. When the processing of the current
Subshell (0,0) is completed, we can start with both Subshell (0,1) and Subshell (1,0). A
patch found in Subshell (0,1) can only start testing against the rays leaving Subshell (0,0)
those leaving Subshell (1,0) being available ()111y through the use of I-structure memory as
shown in Figure 1.8. The presence bit of a ray in Subshell (1,0) remains empty until Sub
shell (1,0) is completed. The ray will be stored in Defel1'ed Ray Memory (see Figure 1.4)
and tested against the accompanying patch only when the presence bit has become full.
In this approach, the processing of subshells is reminiscent of wavefronts swept over entire
space. It is current challenge to determine subshells and give them an ordering so that
processing wavefront can propagate with high throughput. We shall not discuss this issue
in this paper.

A Sector

Subshell
(0,1)

Subshell
(0,0)

Task Precedence Graph

Fig. 1.7. Task precedence graph among subshells.

ll(j

Subshell
(1,1)

Subshell
(1,0)

...
&ic_rayl ...
<i.c ray!>

&ic ral2 ...
&icJay2 ...

syncv &icJay2 ...
<i.c fal2>

<ic ral2>

presence values
bits

full <icJayl>

empty

Deferre -read lists

end

Fig. 1.8. I-structure memory.

1.3.5 Primitive Functions

In this Subsection, we use pseudo-code with some C notation to explain the functions of
three main primitives: Spherical Bounding Box Computation, Intersection Computation,
and Cell TraversaL The pseudo-codes for them are given as follows. As can be seen they
are tailored to hardware implementation.

Spherical BoundingBox(patch)
if patch is a Polygon

,6..8 = ComputeSpanningAngleTheta(patch, &<Pmin, &<Pmax);
ComputeAnglePhi(patch, &<pmin, &<Pmax);
£ = ComputeErrorTerm(<Pmin,,6..8); 1* Can use Table Look-up */
<Pmin = Min(O, <Pmin - £);

if patch is a Bezier
C Hxy ~ ConvexHullxy(patch);

,6..8 = ComputeSpanningAngleTheta(CHxy, &<pmin, &<Pmax);
ComputeAnglePhi(patch, &<pmin, &<Pmax);
£ = Compute Error Term(<Pmin, ,6..8); /* Can use Table Look-up * /
<Pmin = Min(O, <Pm in -E);

117

point 0; /* a sample point * /
lntersection(0, ray,patch);

triangle = Triangulize(patch);
for each triangle with vertices A, B, C

nAB = ComputeNormal(0, A, B);
nBC = ComputeNorma!(0, B, C);
nCA = ComputeNormal(O,C,A);
dAB = DistanceFromPlane(nAB, ray);

dBC = DistanceFromPlane(nBC, ray);
dCA = DistanceFromPlane(nCA, ray);
if dAB;::: 0 and dBc ;::: 0 and dCA ;::: 0

Subdivide(dAB,dBC,dcA , &u, &v);

int Ax, Ay , Az; /* x, y, z components of cell address * /
float dx , dy, dz ; /* x, y, z components of the direction vector of a ray * /
float tx, i y, t z; /* x, y, z components of the distance parameter of a ray * /
CellT raversal(ray)

t = MinimaIDistance(ray);

if tx == t

ifty==t

Ay = Ay + Sign(dy);

if t z == t

Fig. 1.9. Test scene scene 1 contains 244 patches.

118

Fig. 1.10. Test scene scene 2 contains 1473 patches.

1 4: R.esults

In this Section, the results of two test scenes as depicted in Figure 1.9 and Figure 1.10
are shown.

I} The Effectiveness of Low Density Ray Casting (refer to Figure 1.11, 1.12)

The effectiveness of low density ray casting is about 0.7-0.8 when Iii_Low_Ratio5 is
chosen as twice the ADRC of a scene. A highly effective resident set can be selected
by low density ray casting with a small overhead relative to high density ray casting
when a scene consists of many large patches.

e The Miss Ratio of Two Replacement Policies (refer to Figure 1.13, 1.14)

Two placements policies, i.e., direct and fully associative mappings, have been im~
plementecl ill Ol1r cache design. In fully associative mapping, we choose LFU (Least
Frequently Used) as the replacement policy. From the figures, ,ve see that fully as
sociative mapping is better than direct mapping as expected and a reasonable miss
ratio can be achieved with small cache size.

@J Speedup (rder t.o Figure 1.15)

For test scene 2, 15% more speedup can be obtained when using the proposed
memory structure. The result only shows one progressive refinement step of the
radiosity method. A complete system level simulation is under way by using BONeS
which is a block oriented network simulator.

5Hi_Low--Fl..alio represents the proportionality of the number of rays shot in high aud low resolution
ray cast.ings.

lHl

1.0

0.8

~
W

0.6 til
en
<1.l

~
>-

'.;:j 0.4 <.)

~
U.l

0.2

0.0
0.0 0.2

""G ... --

'"

Hi_Low _Ratio = 50

Hi_Low _Ratio = 100

Hi_Low _Ratio = 200

Hi_Low _Ratio = 300

0.4 0.6 0.8
kIN

1.0

Fig. 1.11. The effectiveness of low density ray casting for scene 1 with ADRC = 124.01.

1.0

0.8

~
'-"
U.l 0.6 en
til
<1.l
§
>-

'.;:j 0.4 u
<l.l c: w

0.2

0.0
0.0 0.2

Hi_Low _Ratio = 50

Hi_Low _Ratio = 100

Hi_Low _Ratio = 200

0.4 0.6 0.8 1.0
kIN

Fig. 1.12. The effectiveness of low density ray casting for scene 2 with ADRC = 76.01.

0.3

0.2

0.1

fully associative

direct

0.0 -!--.,.--,---r---,--,,-r--r--y--r--,---.----,-

o 20 40 60 80 100 120
Cache Size

Fig. 1.13. Two placement policies for scene 1 with ADRC = 124.01.

120

'" </l

~

0.3

0.2

0.1

fully associative

direct

0.0 +--r---.--".-r---r---.---,---.--,--".---,,.--,--

o 20 40 60 80 100 120
Cache Size

Fig. 1.14. Two placement policies for scene 2 with ADRC = 76.01.

10 l
ideal

1
a

0 MM
8

a MMlLM

0.. 6
:::l

'"0
(j)
(j)
0.. 4 IZl

2

0
0 2 4 6 8

of IeUs

Fig. 1.15. Speedup vs the # of reus.

121

1.5 Conclusion

In this paper we proposed a parallel-pipelined architecture that is well-suited for the ra
diosity method. At the beginning of each progressive refinement step, a pseudo-dynamic
(or iterative static) scheduling is invoked to redistribute data objects and associated work
loads to processors. Together with a proposed I-structure memory, it offers an economical
way to make the most of concurrency of an algorithm. Further improvement in perfor
mance is accomplished by using a hierarchical memory structure. Block diagrams have
been defined that allow a system level simulation to be run under a block oriented network
simulator called BONeS.

Acknowledgements

This research has been supported in part by the commission of the EEC under the ES
PRIT program, project BRA 3280 (NANA) and by the Dutch Technology Foundation
under contract DEL 99.1982. The author would like to thank Prof. F.W. Jansen and
Dr. A.J.F. Kok from the Informatics Department for many valuable comments. Thanks
are also due to G.J. Hekstra and M.T. Verelst for many fruitful discussions.

1.6 References

[1] J. Cleary, B. Wyvill, G. Birtwistle, and R. Vatti. l\iultiprocessor ray tracing. Computer Graphics
Forum, pages 3-12,1986.

[2] M. Dippe and J. Swensen. An adaptive subdivision algorithm and parallel architecture for realistic
image synthesis. SIGGRAPH'84, pages 149-157, 1984.

[3J S. Green, D. Paddon, and E. Lewis. A parallel algorithm and tree-based computer architecture IGr
ray traced computergraphics. Parallel Processing for Computer Vision and Display, 1988.

[4] K. Hwang and F.A. Briggs. Computer architecture and parallel processing. McGraw-Hill Inc.,
pages 98-118, 1984.

[5J K. Murakami, K. Hirota, and M. Ishii. Fast ray tracing. FUJITSU Sci. Technical Journal, pages
1.50-159, 1988.

[6J T. Naruse, M. Yoshida, T. Takahashi, and S. Naito. Sight: A dedicated computer graphics machine.
Computer Graphics Forum, pages 327-334, 1987.

[7J T. Priol and K. Bouat.ouch. Static load balancing for a parallel ray tracingon a mimd hypercube.
The VisualCompllier, pages 109-119, 1989.

[8J L.S. Shen and Ed. F. Deprettere. A hierarchical memory structure for the 3d shelling technique.
Technical Report, Delft University of Technology, 1991.

[9J L.S. Shen, Ed. F. Deprettere, and P. Dewilde. A new space partitioning for mapping computations
of the radiosity ontoa highly pipelined parallel architecture (i). Fifth Eurographics Workshop on
Graphics Hardware, 1990.

[10] L.S. Shen, F.A.J. Laarakker, and E. Deprettere. A new space partitioning for mapping computatiullS
of the radiosity ontoa highly pipelined parallel architecture (ii). Sixth Eurographics Workshop on
Graphics Hardware, 1991.

122

