
An Extended Volume Visualization Systelll for Arbitrary
Parallel Projection

R. Bakalash, A. Kaufman, R. Pacheco, H. Pfister

ABSTRACT
We present a special architecture for arbitrary parallel projection for visualization of
volumetric data. Using a ray-casting technique, parallel memory access, and pipelined
processing of rays in a composition tree, we can achieve interactive rendering rates
for a 5123 dataset.

1.1 The Cube Architecture

Cube is a special-purpose computer architecture for volume visualization [1]. The heart
of the architecture is a Cubic Frame Buffer (CFB) , which is a la.rge (e.g., 128M voxels
for a 5123 CFB) three-dimensional memory of voxels. The voxel is a quantum unit of
volume, which has a value representing some measurable properties of the real object or
phenomenon, such as the color, fluorescent level, material, and translucency ratio.

Cube's processing speed is achieved by handling beams of voxels rather than single
voxels. In order to access a full beam of voxels simultaneously, a 3D modular organization
of the CFB has been designed [1]. A special 3D skewed organization of the CFB enables
conflict-free access to a full beam (axial ray) of n voxels, in any orthographic direction.

The SD Viewing P1'Ocessor (VPS) [2] generates 2D shaded orthographic projections
of the CFB images. It casts rays into the CFB in the specified viewing direction, and
utilizes the CFB parallel memory organization for conflict-free retrieval of a beam and then
determines the pixel projection along that beam. It employs a sequence of n processing
units which team up to generate the projection along a beam of n voxels in O(1og n) time
for a CFB of n3 voxels. Consequently, the time necessary to generate an orthographic
projection of n2 pixels is only 0(n2 log n), rather than the conventional 0(71,3) time. The
VP3 "a.lso shades the projected pixels concurrently with the projection stage by employing
the depth-gradient congradient shading technique [3].

Arbitrary parallel projections are currently created by first rotating the scene and then
viewing it through a principal orthographic direction. However, the CFB image is distorted
every time a. rotation is executed. A major goal of the extended Cube architecture project,
presented in this papre, is to develop and prototype an alternative mechanism for pa.rallel
viewing that supports real-time arbitrary viewing.

1.2 The Extended Cube Architecture

The new architecture described here is an extension of the existing orthographic projection
mechanism of Cube. It enahles arbitrary parallel projection in the same time complexity
as orthographic projection, 0(n2 log n). Perspective projection can also be generated in a
similar fashion [41, but requires a more complex architecture.

A projection ray, originating at a pixel in the projection plane and cast through the
CFB in an arbitrary direction, is the basic unit of projected data. Two processing stages
are concerned with this data: first there is a need to retrieve the data from the CFB,
and then to obtain the projection along the ray. In the original Cube architecture, where
only orthographic viewing is supported, projection rays always coincide with orthogra.phic

64

http://www.eg.org
http://diglib.eg.org

R. Bakalash, A. Kaufman, R. Pacheco, H. Pfister

beams and are fetched and processed by the beam projection mechanism. However, for
arbitrary viewing there is no direct way to fetch arbitrary discrete rays from the eFB
in paralleL The set of projection rays belonging to the same scan line of the projected
2D frame-buffer form a slanted plane, termed the Projection Ray Plane (PRP). For every
parallel projection, all the PRPs can be made parallel to one major axis by fixing a degree
of freedom in specifying the projection parameters, namely, by rotating the projection
plane about the viewing axis. A whole PRP of beams (now parallel to an axis) is fetched
in n memory cycles and stored in a 2D temporary buffer called the 2D Skewed BujJer
(2DSB).

The direction of the viewing ray within the original PRP depends on the observer's
viewing direction. When a PRP is copied from the eFB to a 2D memory, it undergoes
a 2D shearing to align all the viewing rays into beams along a direction parallel to a
2D axis (e.g., vertical). This step is a de-skewing step that is accomplished by a barrel
shifter (see below). Once the viewing rays are aligned within the 2D memory, they can
be individually fetched and treated by the ray projection mechanism.

This imposes a basic structural condition on the 2D memory. It should be capable
of parallel access for storing "horizontal" beams corning from the PRP, and for parallel
retrieval of "vertical" viewing rays. The structure chosen for the 2D memory is a 2D
Skewed Buffer (2DSB), described below.

The retrieved "vertical" rays must pa.ss through another de-skewing process on their
way to the ray projection mechanism in order to match the physical sequential order of the
modules in the projection mechanism. The latter is a Ray Projection Tree (RPT), which
is a hardware mechanism structured as a. hierarchical pipeline, capable of implementing
a variety of projection functions (see below).

The communication mechanism that bridges between the CFB and the 2DSB, and
between the 2DSB and RPT and performs the de-skewing steps, is a unique beam-based
barrel-shifting mechanism, termed the Conveyor [6], and is described below.

Fig. 1.1 illustrates the genera.! architecture of the extended system for arbitrary parallel
viewing comprising of the Cubic Frame Buffer (CFB), the 2D Skewed Buffer (2DSB), the
Ray Processing Tree (RPT), and two Conveyors for ray de-skewing.

1.3 The 2D Skewed Buffer

The 2DSB is used for storing the slanted PRP. The slanted PRP is loaded into the 2DSB
one beam at a time, from the closest beam to t.he furthest. Each beam is shifted to the left
or to the right within the 2DSB in order to align the viewing rays vertically. Since there
may be 2n-l para.llel rays entering the slanted PRP (one for each voxel on the visible edges
of the slanted PRP), the 2D memory must be at least 2n-l columns wide. Once the slanted
PRP has been loaded onto the 2DSB one "horizonta1" beam at a time, each vertical ray is
retrieved in turn, and transferred into the RPT. The rays are shifted as they are transferred
in order to ensure that the closest "oxel in the ray appears at the desired position in the
RPT. The 2DSB is physically divided into n modules and diagonally skewed to allow the
writing of an entire horizontal beam simultaneously (conflict free), as well as the conflict
free retrievaJ of an entire vertical ray (see Fig. 1.2). Each ray is processed in parallel to
compute a pixel value to be displayed for that ray. Certain algorithms require that the
values of the entire neighborhood of up to 26 voxels surrounding a central voxel be used in
computing the pixel value. This requires information from slanted PRPs just above and
just below the plane containing the ray currently being processed. This is accomplished
by using multiple parallel 2DSBs and processing rays in a plane only after the succeeding

65

orthogonal
beams -

An Extended Volume Visualization System for Arbitrary Parallel Projection

Conveyor A

2DSB ¢I '---C_onveyor-----JB I ¢ PRT

FIGURE 1.1. Block diagram of the arbitrary parallel viewing architecture

I
I .'

,

!
~

,
..

// "--------"
.:~:.

~
I

2D Memory ill I

viewing
angle viewing

angle

FIGURE 1.2. Transfer of the projection ray plane to 2D skewed buffer

66

R. Bakalash, A. Kaufman, R. Pacheco, H. Pfist.er

slanted PRP has been loaded. By using a special skewing scheme, it is also possible to
achieve conflict free retrieval of the entire 27 connected neighborhood of voxels [7J. The
central voxel and its 26 voxel neighborhood may then be extracted and transferred to the
RPT in paralleL Including a fourth plane in the 2DSB allows the concurrent projection of
rays and loading of the next slanted PRP. While three of the planes are used for extracting
a 27 voxel cube, the fourth plane is loaded with the next slanted PRP. This conforms to
the desired pipelining scheme.

1.4 The Ray Projection Tree (RPT)

The RPT accepts as input at the leaves a set of n voxels along the viewing ray and
produces at the root the final color for the corresponding pixel. The tree is a hierarchical
binary tree of n-l primitive computation nodes called Voxel Combination Units (VCU).
Each VCU accepts two voxel values as input and combines them into an output voxel
value in 7 time units. The 11. input voxels comprising a ray a.re fed into n/2 VCUs that
produce n/2 results after 7 time units. These results are fed into the next stage of the
tree (containing n/4 VCUs) while at the same time the next ray of 11. voxels is fed into
the first stage. After a short period of initia.lization time (7 log 11. time units), the tree
is processing log 11. rays simultaneously in a pipeline fashion, producing a new pixel color
every 7 time units.

Each VCU is capable of combining its two input voxels in a variety of schemes in order
to implement first or last opaque projection, maximum or minimum voxel value, weighted
summation, and compositing projection [9J.

1.5 The Conveyor

The Conveyor is a modular barrel-shifting mechanism based on a special flow-through
network that interconnects the 11. modules [6J. Its basic component is a modular barrel
switch unit which is serving s pairs of input and output clients receiving from each input,
a single bit of data (s bits in total), barrel-shifting it on, and storing it in the output client.
Every two neighbors of the m = nls switch units are linked by an s-bit communication
path. A general width of 'W bits of data requires 'W duplicates of the Conveyor. This layout
provides modularity and flexibility of the entire network. The network is extendible in
its overall length, by serially connecting arbitrary numbers of switch units, and in data
width, by stacking up any number of Conveyors, one layer per data bit [5].

A method of combining the two conveyors, Conveyor A and Conveyor B, into one
physical conveyor is being used to conserve resources. \Ve are able to fit the two into one
conveyor chip without compromising system parallelization. This is done by interleaving
the use of the shift lines and sharing the data I/O lines. The output of each conveyor is
connected to the input of the other. This allows data to be loaded into or read from both
conveyors at the same time. The double conveyor is also designed to allow the reading and
writing of new data without interfering with data. already in the shifting mechanism. This
is useful for minimizing the time of the pipeline stages by overlapping memory access and
shifting times. This feature greatly increases the speed of the the system by contracting
the pipeline segments.

67

An Extended Volume Visualization System for Arbitrary Parallel Projection

L6 Practical Liluitations

A system constructed for a cube space of 5123 requires 512 parallel processing units with
512 memory modules each using a 16 bit data bus and a 19 bit address bus as well as
controls. This amounts to an order of 18,000 lines of information operating in parallel.
This is dearly a serious consideration for implementation. Another size consideration is
the amount of intermodule communication required by the system. Each conveyor would
be connected to its neighboring equivalent by 256 lines (16 bits x 16 shift places). A third
consideration involves the connection of the conveyors to the modules data lines. The
module data lines are grouped by module and the conveyor data lines are grouped by bit
position. This presents routing considerations. One more consideration involving physical
dimension is the number of chips needed to implement the system. The memory modules
alone may require as many as 1,024 chips. Implementaion of the system includes the use
of custom ASICs as well as programmable gate arrays such as Xilinx [8]. The amount
of board space necessary to contain such a system is of serious concern as well as the
inter-module communication traffic.

1.7 Acknowledgluents

This project has been supported by the National Science Foundation under grant MIP-
880,5130 and a grant from Hewlett Packard.

1.8 References

[1] Kaufman, A., and Baka.lash, R., "l'.1emory and Processing Architecture for 3D Voxel
Based Imagery", IEEE Comput.eT Graphics and Applications, 8, 6, November 1988,
10-23.

[2] Kaufman, A., Bakalash, R., and Cohen, D., "Viewing and Rendering Processor for a
Volume Visualizat.ion System", in Advances in Graphics Hardware IV, R. 1,. Grims
dale and VV. Strasser, (eds.), Springer-Verlag, Berlin, 1991,171-178.

[3] Cohen, D., Kaufman, A., Bakalash, R. and Bergman, S., "Real-Time Discrete Shad
ing", The Visual Computer, 6, 1 (February 1990), 16-27.

[4] Kaufman, A. and Shimony, E., "Arbitrary Parallel and Perspective Projection Archi
tecture for Voxel Images", Technical Report 89/21, Computer Science, Stony Brook,
1989.

[5] Bakalash, R. and Xu, Z., "Barrel Shift Microsystem for Parallel Processing", Proc.
!v1icTO 23, 231'd Symposium and Workshop on .Microprogramming and Ahcroarchitec
tUTe, Orlando, Florida, November 1990.

[6] Cohen, D. and Bakalash, R., "The Conveyor - an Interconnection Device for Paral
lel Volumetric Transformations", 6th EG V/orkshop on Graphics Hw'dware, Vienna,
Austria, September 1991.

[7] Chor, B., Leiserson, C. E., and Rivest, R. L., "An application of number theory to
the organization of raster-graphics memory", ConI Rec. 2.grd A nnual IEEE Symp.
Foundations of Comput.er Science, Chicago, 1982, 92-99.

[8] Xilinx, Inc., The Prograln.mable Gate Array Data Book, 1989.

68

R. Bakalash, A. Kaufman, R. Pacheco, H. Pfister

[9] Levoy, M., "Display of Surfaces from Volume Data", it IEEE Computer Graphics
and Applications, 8, 5, May 1988, 29-37.

69

