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ABSTRACT 
We present a special architecture for arbitrary parallel projection for visualization of 
volumetric data. Using a ray-casting technique, parallel memory access, and pipelined 
processing of rays in a composition tree, we can achieve interactive rendering rates 
for a 5123 dataset. 

1.1 The Cube Architecture 

Cube is a special-purpose computer architecture for volume visualization [1]. The heart 
of the architecture is a Cubic Frame Buffer (CFB) , which is a la.rge (e.g., 128M voxels 
for a 5123 CFB) three-dimensional memory of voxels. The voxel is a quantum unit of 
volume, which has a value representing some measurable properties of the real object or 
phenomenon, such as the color, fluorescent level, material, and translucency ratio. 

Cube's processing speed is achieved by handling beams of voxels rather than single 
voxels. In order to access a full beam of voxels simultaneously, a 3D modular organization 
of the CFB has been designed [1]. A special 3D skewed organization of the CFB enables 
conflict-free access to a full beam (axial ray) of n voxels, in any orthographic direction. 

The SD Viewing P1'Ocessor (VPS) [2] generates 2D shaded orthographic projections 
of the CFB images. It casts rays into the CFB in the specified viewing direction, and 
utilizes the CFB parallel memory organization for conflict-free retrieval of a beam and then 
determines the pixel projection along that beam. It employs a sequence of n processing 
units which team up to generate the projection along a beam of n voxels in O(1og n) time 
for a CFB of n3 voxels. Consequently, the time necessary to generate an orthographic 
projection of n2 pixels is only 0(n2 log n), rather than the conventional 0(71,3) time. The 
VP3 "a.lso shades the projected pixels concurrently with the projection stage by employing 
the depth-gradient congradient shading technique [3]. 

Arbitrary parallel projections are currently created by first rotating the scene and then 
viewing it through a principal orthographic direction. However, the CFB image is distorted 
every time a. rotation is executed. A major goal of the extended Cube architecture project, 
presented in this papre, is to develop and prototype an alternative mechanism for pa.rallel 
viewing that supports real-time arbitrary viewing. 

1.2 The Extended Cube Architecture 

The new architecture described here is an extension of the existing orthographic projection 
mechanism of Cube. It enahles arbitrary parallel projection in the same time complexity 
as orthographic projection, 0(n2 log n). Perspective projection can also be generated in a 
similar fashion [41, but requires a more complex architecture. 

A projection ray, originating at a pixel in the projection plane and cast through the 
CFB in an arbitrary direction, is the basic unit of projected data. Two processing stages 
are concerned with this data: first there is a need to retrieve the data from the CFB, 
and then to obtain the projection along the ray. In the original Cube architecture, where 
only orthographic viewing is supported, projection rays always coincide with orthogra.phic 
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beams and are fetched and processed by the beam projection mechanism. However, for 
arbitrary viewing there is no direct way to fetch arbitrary discrete rays from the eFB 
in paralleL The set of projection rays belonging to the same scan line of the projected 
2D frame-buffer form a slanted plane, termed the Projection Ray Plane (PRP). For every 
parallel projection, all the PRPs can be made parallel to one major axis by fixing a degree 
of freedom in specifying the projection parameters, namely, by rotating the projection 
plane about the viewing axis. A whole PRP of beams (now parallel to an axis) is fetched 
in n memory cycles and stored in a 2D temporary buffer called the 2D Skewed BujJer 
(2DSB). 

The direction of the viewing ray within the original PRP depends on the observer's 
viewing direction. When a PRP is copied from the eFB to a 2D memory, it undergoes 
a 2D shearing to align all the viewing rays into beams along a direction parallel to a 
2D axis (e.g., vertical). This step is a de-skewing step that is accomplished by a barrel 
shifter (see below). Once the viewing rays are aligned within the 2D memory, they can 
be individually fetched and treated by the ray projection mechanism. 

This imposes a basic structural condition on the 2D memory. It should be capable 
of parallel access for storing "horizontal" beams corning from the PRP, and for parallel 
retrieval of "vertical" viewing rays. The structure chosen for the 2D memory is a 2D 
Skewed Buffer (2DSB), described below. 

The retrieved "vertical" rays must pa.ss through another de-skewing process on their 
way to the ray projection mechanism in order to match the physical sequential order of the 
modules in the projection mechanism. The latter is a Ray Projection Tree (RPT), which 
is a hardware mechanism structured as a. hierarchical pipeline, capable of implementing 
a variety of projection functions (see below). 

The communication mechanism that bridges between the CFB and the 2DSB, and 
between the 2DSB and RPT and performs the de-skewing steps, is a unique beam-based 
barrel-shifting mechanism, termed the Conveyor [6], and is described below. 

Fig. 1.1 illustrates the genera.! architecture of the extended system for arbitrary parallel 
viewing comprising of the Cubic Frame Buffer (CFB), the 2D Skewed Buffer (2DSB), the 
Ray Processing Tree (RPT), and two Conveyors for ray de-skewing. 

1.3 The 2D Skewed Buffer 

The 2DSB is used for storing the slanted PRP. The slanted PRP is loaded into the 2DSB 
one beam at a time, from the closest beam to t.he furthest. Each beam is shifted to the left 
or to the right within the 2DSB in order to align the viewing rays vertically. Since there 
may be 2n-l para.llel rays entering the slanted PRP (one for each voxel on the visible edges 
of the slanted PRP), the 2D memory must be at least 2n-l columns wide. Once the slanted 
PRP has been loaded onto the 2DSB one "horizonta1" beam at a time, each vertical ray is 
retrieved in turn, and transferred into the RPT. The rays are shifted as they are transferred 
in order to ensure that the closest "oxel in the ray appears at the desired position in the 
RPT. The 2DSB is physically divided into n modules and diagonally skewed to allow the 
writing of an entire horizontal beam simultaneously (conflict free), as well as the conflict 
free retrievaJ of an entire vertical ray (see Fig. 1.2 ). Each ray is processed in parallel to 
compute a pixel value to be displayed for that ray. Certain algorithms require that the 
values of the entire neighborhood of up to 26 voxels surrounding a central voxel be used in 
computing the pixel value. This requires information from slanted PRPs just above and 
just below the plane containing the ray currently being processed. This is accomplished 
by using multiple parallel 2DSBs and processing rays in a plane only after the succeeding 
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FIGURE 1.1. Block diagram of the arbitrary parallel viewing architecture 
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FIGURE 1.2. Transfer of the projection ray plane to 2D skewed buffer 
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slanted PRP has been loaded. By using a special skewing scheme, it is also possible to 
achieve conflict free retrieval of the entire 27 connected neighborhood of voxels [7J. The 
central voxel and its 26 voxel neighborhood may then be extracted and transferred to the 
RPT in paralleL Including a fourth plane in the 2DSB allows the concurrent projection of 
rays and loading of the next slanted PRP. While three of the planes are used for extracting 
a 27 voxel cube, the fourth plane is loaded with the next slanted PRP. This conforms to 
the desired pipelining scheme. 

1.4 The Ray Projection Tree (RPT) 

The RPT accepts as input at the leaves a set of n voxels along the viewing ray and 
produces at the root the final color for the corresponding pixel. The tree is a hierarchical 
binary tree of n-l primitive computation nodes called Voxel Combination Units (VCU). 
Each VCU accepts two voxel values as input and combines them into an output voxel 
value in 7 time units. The 11. input voxels comprising a ray a.re fed into n/2 VCUs that 
produce n/2 results after 7 time units. These results are fed into the next stage of the 
tree (containing n/4 VCUs) while at the same time the next ray of 11. voxels is fed into 
the first stage. After a short period of initia.lization time (7 log 11. time units), the tree 
is processing log 11. rays simultaneously in a pipeline fashion, producing a new pixel color 
every 7 time units. 

Each VCU is capable of combining its two input voxels in a variety of schemes in order 
to implement first or last opaque projection, maximum or minimum voxel value, weighted 
summation, and compositing projection [9J. 

1.5 The Conveyor 

The Conveyor is a modular barrel-shifting mechanism based on a special flow-through 
network that interconnects the 11. modules [6J. Its basic component is a modular barrel
switch unit which is serving s pairs of input and output clients receiving from each input, 
a single bit of data (s bits in total), barrel-shifting it on, and storing it in the output client. 
Every two neighbors of the m = nls switch units are linked by an s-bit communication 
path. A general width of 'W bits of data requires 'W duplicates of the Conveyor. This layout 
provides modularity and flexibility of the entire network. The network is extendible in 
its overall length, by serially connecting arbitrary numbers of switch units, and in data 
width, by stacking up any number of Conveyors, one layer per data bit [5]. 

A method of combining the two conveyors, Conveyor A and Conveyor B, into one 
physical conveyor is being used to conserve resources. \Ve are able to fit the two into one 
conveyor chip without compromising system parallelization. This is done by interleaving 
the use of the shift lines and sharing the data I/O lines. The output of each conveyor is 
connected to the input of the other. This allows data to be loaded into or read from both 
conveyors at the same time. The double conveyor is also designed to allow the reading and 
writing of new data without interfering with data. already in the shifting mechanism. This 
is useful for minimizing the time of the pipeline stages by overlapping memory access and 
shifting times. This feature greatly increases the speed of the the system by contracting 
the pipeline segments. 
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L6 Practical Liluitations 

A system constructed for a cube space of 5123 requires 512 parallel processing units with 
512 memory modules each using a 16 bit data bus and a 19 bit address bus as well as 
controls. This amounts to an order of 18,000 lines of information operating in parallel. 
This is dearly a serious consideration for implementation. Another size consideration is 
the amount of intermodule communication required by the system. Each conveyor would 
be connected to its neighboring equivalent by 256 lines (16 bits x 16 shift places). A third 
consideration involves the connection of the conveyors to the modules data lines. The 
module data lines are grouped by module and the conveyor data lines are grouped by bit 
position. This presents routing considerations. One more consideration involving physical 
dimension is the number of chips needed to implement the system. The memory modules 
alone may require as many as 1,024 chips. Implementaion of the system includes the use 
of custom ASICs as well as programmable gate arrays such as Xilinx [8]. The amount 
of board space necessary to contain such a system is of serious concern as well as the 
inter-module communication traffic. 
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