
Pixel-Planes 4: A Summary

John Eyles, John Austint, Henry Fuchs, Trey Greer, John Poulton

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27514

We describe the current state of the Pixel-planes research project, whose
goal is to develop powerful raster graphics systems for the next generation of
workstations, The first full-scale prototype has been in regular use in our
department's computer graphics laboratory since its first demonstration at SIG­
GRAPH '86, more than a year ago, We describe the final hardware configuration
of the prototype system, filling in some of the engineering details heretofore
unpublished, Next we outline the programming environment for the machine and
summarize the major algorithms that have been developed, Finally we discuss our
progress towards a new generation of the Pixel-planes architecture, Pixel­
planes 5,

1. Motivation and Overview
The goal of the Pixel-planes research project has been to build an affordable and
generally useful system for interactive 3-D display. As personal dedicated comput­
ers have matured over the years, an increasing percentage of machine resources has
been devoted to the user interface. The idea of giving each user a dedicated proces­
sor and high resolution display, although once controversial, has now been widely
adopted and forms the basis for modern desk-top workstations [Kay, 1977; Thacker
et al., 1979]. The next plateau in workstation performance will be reached, we
believe, when desk-top systems allow the user to manipulate and modify realistic,
3-D, colored images of objects in real time. The availability of such systems at a
reasonable price should have a great impact in such diverse areas as mechanical
design, medical diagnosis and therapy, molecular modelling, architectural design,
and vehicle simulation for pilot and driver training. Workstations with real-time
3-D displays will likely be characterized by hardware largely devoted to the user
interface, because the computational task of rendering realistic images of objects is
extremely demanding, far beyond the capabilities of the most powerful existing
general-purpose computers.

Pixel-planes is a raster graphics system for rapidly rendering 3-D objects and
scenes. It features a 'smart' frame buffer composed of custom, logic-enhanced

tNow with Sun Microsystems, Inc" 500-C Uwharrie Ct., Raleigh, NC 27806

http://www.eg.org
http://diglib.eg.org

184

memory chips that can be programmed to perform most pixel-oriented tasks in
parallel at each pixel. The novel feature of the approach is a unifying mathemati­
cal formulation that expresses the parallel execution of these tasks. This formula­
tion is supported on an efficient tree-structured computation unit that calculates
inside each chip the proper values for every pixel in parallel.

The 'front-end' of the system specifies the objects on the screen in a pixel­
independent form and broadcasts this description to the custom memory chips that
form the frame buffer. These chips generate an image directly from this descrip­
tion. Image primitives such as lines, polygons, and spheres are each described by
expressions (and operations) that are linear in screen space, that is by coefficients
A, B, C, such that the value needed at a pixel is Ax +By +C, where x, y is the
pixel's location on the screen. These ABC's and operation codes are passed to the
frame buffer and processed simultaneously at every pixel.

Pixel-planes is a radical approach to raster graphics [Fuchs and Poulton, 1981;
Fuchs et al., 1982; Poulton et al., 1985; Fuchs et al., 1985]. The information passed
to the frame buffer is not address/data pairs (x, y addresses, RGB data) as in con­
ventional systems, but linear expressions processed simultaneously at every pixel.
While other raster graphics systems perform the most time-consuming calculations
either on general-purpose processors or on special hardware that executes only a
particular set of graphics functions, Pixel-planes is a general-purpose engine, espe­
cially powerful when the pixel operations can be described in terms of linear
expressions.

2. 	 Hardware Configuration
The Pixel-planes 4 system (Photograph 1, Figure I) consists of a Digital

Equipment Corporation MicroVax II workstation, which acts as host, and a
separate cabinet which contains the prototype custom hardware; the prototype con­
tains two racks: a Multibus and a fully custom backplane. The host is connected to
the prototype by a DMA link. The DMA link is supported at the host end by a
DRllW card and in the Pixel-planes prototype by a custom 'host interface' in the
Multibus. The host controls the system by performing reads and writes on the
Multibus using this link.

The prototype is composed of two parts: a Graphics Processor and a Frame
Buffer. The Graphics Processor is a floating-point uni-processor; it traverses a
hierarchical display list, computes viewing transformations, performs lighting calcu­
lations, clips primitives that are not visible, performs perspective division, and
translates the resulting screen-space descriptions into the form of data (A, B, C) for
linear expressions, together with instructions. The Frame Buffer is made from cus­
tom VLSI processor-enhanced memories and is 512 x 512 pixels by 72 bits per
pixel in size; it accepts the word-parallel A, B, C coefficient sets and instruction
op-codes to create raster images and refreshes a standard RGB monitor.

185

Graphics _"'"
...---Proao.,..-.....---,

dUopI.yU.._
viGWIn& t:rmIf~
liJhtin& modo!

=~~W

Frame Buffer

'"<:35==- Bit-1CriaJ.

ot. 1nJIt.
",D,C

Figure I: System block diagram; exploded view shows details of the custom processor­
enhanced memory chip, an array of which forms the 'smart' frame buffer.

2.1. Graphics Processor
The Graphics Processor (GP) is implemented using the Weitek 8032 XL chip

set. The chip set consists of a sequencer chip, an integer ALU chip, primarily used
to compute instruction addresses, and a floating-point ALU chip. The OP is a Har­
vard architecture, with separate busses and memory systems for instructions and
data.

The static-RAM code store has 512 KBytes, arranged in 64 bit words.
Instructions are fetched using the GP's code address and code busses. Although
the Weitek architecture supports instruction caching, we have not implemented it in
this system. The code store is read-only from the GP's code bus, and write-only
from the Multibus; this allows easy loading of code from the host, using the DMA
link to the host interface.

The GP has 8 MegaBytes of CMOS dynamic-RAM data store, contained on
1 MegaBit parts. A custom memory controller controls memory refresh, supports
fast page mode addressing, and provides dual access ports. For normal operation

186

the data store is accessed by the GP's 32-bit data bus; the second port maps the
data store onto the Multibus, allowing reads and writes from the host using the
DMA link to the host interface.

The GP's interface to the Frame Buffer consists of 1024 36-bil words of first­
in/first-out (FIFO) memory, which provides time load balancing. The interface is
mapped onto 16 memory locations on the GP's data bus. When the GP writes to
the interface, the 32 bits from the GP data bus and the 4 LSB's of address form a
36-bit FIFO word. The 4 extra bits form a register address for the Frame Buffer,
and tag the 32-bit quantity as an A, B, or C coefficient, instruction op-code, or ini­
tialization and control information.

The GP is contained on three 12" x 12" dual-height Multibus wire-wrap cards,
which reside in the prototype's Multibus. The XL chip set and code store are con­
tained on one half-full card. The data store fills another card. The third card con­
tains about 20 parts comprising the Frame Buffer FIFO interface.

The GP attains peak performance of 16 MegaFlops, based on 1 multiply­
accumulate per cycle at an 8 MHz clock rate. This is sufficient to match the speed
of the Frame Buffer on most algorithms. On some algorithms the GP is able to
keep up with the Frame Buffer with only C coding. On other algorithms, such as
the polygon rendering algorithm, inner loops (i.e.: the procedure to render one
polygon) must be microcoded in order to keep up. Programming the GP will be
discussed in the next section.

2.2. 	 Frame Buffer
The Frame Buffer consists of 3 parts: the array of custom VLSI processor­

enhanced memory chips, the Image Generation Controller, and the Video Con­
troller.

The custom chips that compose the frame buffer have three main parts: a con­
ventional memory array that stores all pixel data for a 128-pixel column (72 bits
per pixel), an array of 128 tiny one-bit ALU's that carry out pixel-local arithmetic
and logical operations, and a multiplier tree that generates bilinear expressions
Ax +By +C simultaneously for all pixels. In generating these bilinear expressions,
the multiplier provides the power of two lO-bit bit-serial M/A's at every pixel, but
at much less expense in silic~m area. The chips are implemented in 3-micron nMOS
technology and contain approximately 63,000 transistors each. Of the chip's active
area, 70% is dedicated to memory and 30% to processing circuitry.

An array of 2048 of these processor-enhanced memory chips forms the core of
a massively parallel (512 x 512), bit-serial, single instruction, multiple data (SIMD)
machine. On each micro-cycle, each pixel processor receives one bit of the tree
result Ax+By+C, generated in the multiplier tree from global ABC bit-streams;
the pixel ALU's execute a micro-instruction, and one bit in pixel memory is
accessed. During any given micro-cycle, pixel ALU's for every pixel in the system
execute the same micro-instruction simultaneously, and the same location in pixel

187

memory is addressed at every pixel; however, although ABC are the same for every
pixel, the tree result Ax +By +C will in general be different.

The enhanced memory chips are contained on thirty-two 15" x 15" printed
circuit boards which reside in a custom backplane. The backplane provides:

(1) 	 approximately 600 amps at 5 volts and 100 amps at 7 volts to power the
memories,

(2) 	 a simple broadcast bus for distributing control signals to the memories, and

(3) 	 a daisy-chained path which links the boards together in a 'video train', which
operates at pixel rates to collect video output data from the chips and channel
it to the Video Controller.

Each board contains 64 enhanced memory chips, 5 driver chips for distributing the
control signals, and one stage of the 32-bit wide shift register which forms the video
train.

The Image Generation Controller (IGC) and Video Controller (VC) together
provide all control signals for the enhanced memory chips. The IGC provides the
SIMD instruction for the pixel ALU's, the address into local pixel memory, and the
bit streams for the A, B, C linear coefficients. The VC provides the control signals
for the video output port of the enhanced memories and the video train, and con­
tains color lookup tables and DAC's to generate analog RGB video. The IGC and
VC function almost independently, with two exceptions. Firstly, the enhanced
memories' video output ports require that the IGC address the 32 bits of pixel
memory to be funneled into the video train at least once per video scan line (and,
since the pixel memory is dynamic, it must address the remainder of the 72 pixel
memory bits at least once every few milliseconds). Secondly, when doing a double­
buffered display, the IGC must synchronize with a vertical retrace control signal
from the VC, so that updating of the display buffer will occur during vertical
retrace to avoid screen "tear".

Image Generation Controller. The IGC is based on a simple microcode sequencer,
which generates the SIMD instructions for the array of enhanced memory, and a
set of shift registers to bit serialize the A, B, C coefficients. The microcode
sequencer has 256 words of code store, 32 bits in width. Sequence control is very
simple: there is no stack; there are unconditional branches, and 5 types of condi­
tional branches. For maximum efficiency and programmability the sequencer does
not use pipelined instruction pre-fetch; each instruction is fetched during the first
half of a clock cycle, and the instruction is executed and the next address generated
during the latter half of the clock cycle.

Microcode is generated using a simple microcode assembler written in C which
runs on the host. Microcode is loaded into the IGC's static-RAM microcode store
via the FIFO interface from the GP. This allows easy rewrites and test of new IGC
microcode.

The SIMD instruction for the pixel ALD's is generated directly from the
microcode data register. The address into pixel memory is generated by a set of 3

188

counters: two are initialized from "destination address" and "source address" fields
of the instruction op-code from the GP; the third generates addresses for memory
refresh and to support the video scan-out mechanism, during cycles for which nei­
ther the destination address or source address is operative. The bit-streams for the
A, B, C coefficients are generated by a set of shift registers which are controlled by
microcode bits; the shifters also provide tokens representing the position of the
LSB and sign-bit of the tree result Ax + By + C, which are used to qualify condi­
tional branches, thereby synchronizing the ALU and pixel memory micro­
instructions with the multiplier tree. This synchronization is necessary, since, for
maximum efficiency, instructions can be overlapped; that is, while one instruction
executes in the pixel ALU and pixel memory, the multiplier tree can generate the
tree result for the next instruction.

The IGC is built using about 80 FAST-TTL parts, 8 high-speed MOS static­
RAM's (for the microcode store), and one 8,000 transistor nMOS custom VLSI
chip (for bit-serializing the coefficients). It is contained on one 12" x 12" Multibus
wire-wrap card.

Video Controller. The VC also is based on a microcode sequencer. Bits of the
microcode word define blanking and sync signals to support a variety of displays.
Other fields control the video output port of the enhanced memory chips and the
video train. The VC contains color lookup tables and DIA converters to produce
analog RGB output. Like the IGC, the VC has a microcode assembler and a RAM
microcode store accessible from the Multibus. The color lookup tables also are
loaded from the Multibus. The VC is larger, more complicated, and more versatile
than is necessary. It was implemented in this way in order to ease system develop­
ment; for example, it was microcoded to fill the entire screen in an early prototype
with only 64 x 64 pixels of enhanced memory. It also can be programmed to utilize
the 72 bits of pixel-memory in different ways and in conjunction with various color
lookup tables.

The VC is implemented using about 100 TTL and MOS memory parts. It is
contained on one 12" x 12" Multibus wire-wrap card.

2.3. 	 Input Devices

The Multibus rack contains a wire-wrap card containing a 16-channel analog
to digital converter. A user input box contains two 3-degree of freedom, deflection­
encoded joysticks and a slider potentiometer. These are connected to 7 of the AID
channels. The remaining channels are available for additional input devices. The
AID converter is accessed from the host MicroVax via the host interface and DMA
link.

189

3. Software Environment
To program Pixel-planes, a programmer works with the three major com­

ponents of the system: the host MicroVax workstation, the Graphics Processor, and
the Frame Buffer. Typically, the host program downloads the executable for the GP
and starts its execution, reads the user input devices and keyboard, and sends and
receives messages and data to and from the GP program. The program on the GP
does the more computation intensive algorithms to generate A, B, C coefficient sets
and sends these coefficients along with instructions to the Frame Buffer.

The lowest-level programmer, who wishes to implement new algorithms for the
Pixel-planes architecture, must be concerned with all three components of the sys­
tem, including the details of rendering on the Frame Buffer. The following sections
will be at this level, since it is most helpful for understanding the functioning of the
system; however, some higher-level approaches are discussed in Section 3.8.

3.1. Frame Buffer programming model
The Frame Buffer is an array of 512 x 512 processors operating in SIMD

fashion. These processors map directly onto the 512 x 512 display. Each pixel pro­
cessor receives one output of the multiplier tree, Ax+By +C, where x, y is the
address of the pixel processor on the display screen, and A, Band C are the
instruction coefficients; this tree result is produced in bit-serial form. Each pixel
processor has 72 bits of local pixel memory and an ALU. This pixel-ALU operates
bit-serially on data in the pixel memory, as well as on the tree result. The ALU also
contains an Enable register, which qualifies all writes into pixel memory. On each
microcycle, the multiplier tree receives a bit of the A, B, C coefficients, and each
pixel processor receives a bit of the tree result Ax +By +C, an address in the 72 bit
pixel memory, and an ALU micro-instruction. The pixel memory address, ALD
microinstruction, and A, B, C coefficients are the same for all of the 512 x 512 pro­
cessors. However, a different tree result is available at each processor since the tree
result is dependent on the processor's x, y address; furthermore, execution of
instructions at the pixel processors may be conditioned by the values of the indivi­
dual Enable registers.

The bit-serialized A, B, C coefficients, ALU micro-instructions, and pixel
memory addresses are generated by the IGC. The programmer deals only with the
IGC and not directly with the pixel processors. The IGC effectively hides the bit­
serial nature of the machine from the programmer. It receives 32- or 64-bit instruc­
tion op codes plus A, B, C coefficient sets as IEEE standard 32-bit format single­
precision floating point numbers, and generates the cycle by cycle coefficient bits,
ALU micro-instructions, and pixel memory addresses required to execute the
specified instruction.

The instruction set for the IGC (that is, for the Frame Buffer) looks very simi­
lar to the instruction set of a very simple microprocessor; it supports addition, sub­
traction, comparison, and logical combinations of two quantities. However, the
operand quantities, rather than being restricted to 8-. 16-, or 32-bit words, can be

190

segments of pixel memory of arbitrary length; additionally, the tree result
Ax+ By+C can be an operand, so that an instruction can, for example, add the
tree result to the contents of a segment of pixel memory.

Since the Frame Buffer is SIMD, branching is not be supported. Rather, a set
of instructions is provided for modifying the contents of the ALU Enable register.
For example, the Enable register can be loaded with, or logically combined with, a
bit of pixel memory, the sign-bit of a tree result, or the result of a comparison of
two pixel memory segments or the tree result and a pixel memory segment. Once a
pattern of Enable register settings is created using these commands, all subsequent
commands which perform write operations into pixel memory are effectively
ignored by pixel processors with a 0 in their Enable register, since writes into pixel
memory are disabled.

3.2. 	 Interface from GP to Frame Buffer
The IGC is mapped onto several memory mapped locations in the GP's data

space. (As described in Section 2.2, this interface is buffered with a FIFO). These
memory locations can be thought of as an instruction op-code register and A, B,
and C coefficient registers. Some instructions, which operate only on the data in
local pixel memory andlor the Enable register, are invoked simply by writing to the
instruction op-code register. For instructions which use the tree result, the program­
mer must first write the A, B, C coefficient values to those registers, and then write
the op-code to the instruction register.

3.3. 	 Programming the GP
A GP program accesses the Frame Buffer (IGC) registers using a set of macros

with arguments, as supported by the C language pre-processor. These macros are
of the form:

FB A (coefficient value);

FB-B (coefficient value);

FB-C (coefficient value);

FB)NSTRUCTION-NAME (instruction arguments);

The 3 coefficient macros simply push the floating-point coefficient value to the
correct memory address on the interface. The INSTRUCTION-NAME macro
assembles the instruction arguments into a 32- or 64-bit IGC op-code and push-es
this to the memory interface.

Code for the GP is written in the high-level language C. The C code is com­
piled on the host Micro V ax using a cross-compiler supplied and supported by
Weitek, and is downloaded to the GP via the DMA link. For applications in which
the GP has difficulty keeping up with the Frame Buffer, portions of the GP code
can be hand microcoded using an assembler, also supported on the MicroVax.

GP 	programs are linked with a library containing routines which handle

191

details of loading microcode into the IGC and Vc. Microcoding of the IGC and
VC is beyond the scope of this discussion. A fairly complete set of IGC instructions
and VC scan-out regimens has been created by the designers of those sub-systems.
When required for a new application, additional microcode for the appropriate
controller can be fairly easily generated; for example, writing and debugging IGC
microcode for a new FB _ instruction generally requires about one hour.

3.4. 	 Programming the host

Code for the host is written in C under UHrix, DEC's version of UNIX. A
library is provided for allowing the host program to read the user input devices via
the AID board. Another library handles communications with the GP via the
DMA link; the routines allow the host program to download executables to the
GP's code store, start and stop execution of GP programs, and transfer data to and
from the GP's dual-access data memory.

Special assemblers on the host are used to generate microcode for the IGC,
microcode for the VC, and configuration information for the enhanced memory
chips (defining the x, y position of each chip's 128-pixel column on the display).
Microcode for the IGC is downloaded to the GP and transferred to the IGC via its
interface on the GP bus. Microcode for the VC is written to the VC's microcode
store over the Multibus using the DMA link to the host interface. Enhanced
memory chip configuration data is written to the VC via the Multibus and sent to
the enhanced memory array using the scan-out control mechanism.

3.5. 	 Communications between host and GP
Communications between the host and the GP can be done in two ways: using

shared memory, and using interrupts.

Executables for the GP are generated using Weitek's assembler and linker, and
the resulting executable is translated into an object module which is linked into the
host executable. In doing this, the host program is permitted to access any variable
declared as external in the GP program by prefixing the variable name with gp ;
hardware support for this is provided by the GP's dual-access data memory. Usrng
these variables, semaphores can be set up to allow the GP to signal the host that it
has finished processing a frame, for the host to signal that another frame is ready,
and so forth.

Alternatively, the GP can generate interrupts which are detected by the host
interface, causing the DRIIW to generate an interrupt on the host.

3.6. 	 Video Controller support

The Video Controller supports both 8-bit and 24-bit modes of operation. In
the 24-bit mode, the least significant 3 bytes of pixel memory (pixel memory
addresses 0 through 23) are used to address the red, green, and blue color lookup
tables; these lookup tables typically contain gamma corrections. The low-level

192

programmer structures algorithms so that the desired red intensity for a pixel is
placed in pixel-memory addresses 0 through 7, green at addresses 8-15, and blue at
addresses 16-23.

The 8 bit mode is used in more complicated applications when pixel-memory
is too scarce to permit the "full color" 24-bit mode. In 8-bit mode, the red, green,
and blue color lookup tables are all addressed by the least significant 8 bits of pixel
memory (pixel memory addresses 0 through 7). The tables are loaded so that the 2
MSB's select white, red, green, or blue, and the 6 LSB's determine color intensity;
no secondary or tertiary colors (other than white) are provided. The 8-bit mode can
also be used with lookup tables that provide a monochromatic image, for image
data such as medical ultrasound and CT scans.

3.7. 	 Programming examples
A C program running on the GP might contain the following lines. This

demonstrates rendering one triangle and updating the display buffer in a double­
buffered application. In this example, the Z-buffer is 24 bits long, at pixel memory
addresses 48-71, the image is computed using full 3-byte color at pixel memory
addresses 24-47, and screen is refreshed from display buffers at pixel memory
addresses 0-23.

FB 	SETENABS 0;
FB-A (..); FB B (o.); FB C (..); FB TREEgeZERO 0;
FB-A (..); FB-B (..); FB-C (..); FB-TREEgeZERO 0;
FB-A (..); FB-B (..); FB-C (..); FB-TREEgeZERO 0;
FB-A (..); FB-B (...); FB-C (..); FB-MEMleTREE (48,24);
FB-A (..); FB-B (..); FB-C (..); FB-LOAD (48,24);
FB-A (o.); FB-B (o.); FB-C (..); FB-LOAD (24,8);
FB-A (..); FB-B (..); FB-C (..); FB-LOAD (32, 8);
FB= A (..); FB-B (..); FB=C (o.); FB=LOAD (40, 8);

FB 	SETENABS 0;
FB-CPY (0,24,24);

The commands SETENABS and TREEgeZERO are used to scan-convert the trian­
gle. First, SETENABS sets the Enable register for all pixels. For the first edge of
the triangle, the GP computes the equation of a line in the form Ax +By +C = 0,
signed so that the tree result evaluates positive for pixels on the inside side of the
edge and negative for pixels on the outside side of the edge. The GP sends this

193

coefficient set to the Frame Buffer using the FB A, FB B, and FB C macros, along
with the TREEgeZERO ("tree greater than or equal to 0") mstruction. This
instruction causes the Enable register to be cleared if and only if Ax +By +C is
negative. TREEgeZERO instructions are sent for the other two edges. Finally, only
those pixel processors for pixels inside the convex region of the triangle are left
enabled (with l's in the Enable register). (For larger convex polygons, additional
TREEgeZERO commands are used for the additional edges).

To do Z-buffer hidden surface elimination, the GP computes the equation for
the plane of the polygon in the form Z = Ax +By +C. This coefficient set is sent
to the Frame Buffer with the MEMleTREE ("memory less than or equal to tree")
instruction. This instruction compares the tree result to a segment of pixel-memory
(specified according to its LSB and bit-length by the two instruction arguments),
and clears the Enable register if the tree result is not less than or equal to the con­
tents of the memory segment. This segment of pixel-memory, the Z-buffer, contains
the Z-value of the "nearest" polygon which has been processed so far at that pixel;
thus, those pixels which are hidden by previously drawn polygons are disabled.

The FB LOAD instruction is then used to load the new values for the Z­
buffer into pIXel memory, for those pixels which are still enabled after scan conver­
sion and hidden surface elimination. As with the MEMleTREE command, the two
arguments to FB LOAD specify the location and size of a segment of pixel
memory used for the Z-buffer.

Finally, coefficient sets are for the red, green, and blue intensity planes are
computed according to the Gouraud or other lighting model, and FB LOAD is
used to load the color intensity buffers in pixel memory. ­

After all triangles are rendered, the CPY command is used to transfer the con­
tents of the red, green, and blue intensity buffers (at pixel memory address 24
through 47) to pixel memory addresses 0 through 23, which produce the RGB out­
put when the VC is in 24-bit mode. Arguments to the CPY command are destina­
tion address, source address, and segment length.

Note that the locations and lengths of these segments of pixel memory are
completely programmable, with the exception that the VC must be specially micro­
coded if pixel memory addresses other than 0-7 or 0-23 are to be displayed.

3.8. User and higher-level programming support

Higher-level programming. A fairly complete set of libraries has been written for
host and GP programs. These are useful for the programmer who wishes to write a
custom application, without being concerned with the details of rendering in the
Frame Buffer described above.

For example, a user who wishes to define a custom user interface may only
need to program the host. Library routines are used to set up display lists on the
GP. The application then reads the input devices and perhaps some custom key­
board interface, and calls routines which cause frames to be generated from the

194

display list according to a set of frame parameters which include viewing transfor­
mation matrices, lighting parameters, and the like.

A somewhat lower-level programmer may write code for both the host and the
GP. However, rather than sending low level commands directly to the Frame
Buffer, this programmer might call library routines on the GP which perform the
beginning of frame setup in the Frame Buffer, then render polygons, spheres, and
other primitives, and finally do the end of frame operations such as copying the
image into the low 8 or 24 bits of pixel memory which refresh the display.

User support. We have developed standard programs for the user who wishes to
interact with his/her databases at the high performance levels provided by Pixel­
planes but who does not wish to do any programming.

For example, to use the program front, a user supplies a data base of polygon
or sphere primitives, as an ASCII file in a generic format. Front dmvnloads the
data base to the GP via the DMA link, creating a display list in the GP's data
store. Next front loads a program into the GP which interprets frame commands.
Front then monitors the input devices interfaced to the A/D converter, and issues
commands to the GP for displaying frames, using various viewing transformation
matrices, lighting vectors, fields-of-view, and so forth. The GP program interprets
these frame commands from the host, traversing the display list to generate an
image in the Frame Buffer using the basic Frame Buffer commands.

Front interprets the two deflection-encoded 3 degree-of-freedom joysticks to
define translations and rotations of the data base. The slider is used to define field­
of-view. A simple keyboard interface is used to toggle through other joystick
modes, for example, to vary light source orientation. If several database files are
specified, the user can translate and rotate one or more relative to the others by
selecting the appropriate object using the keyboard interface. The keyboard inter­
face also provides for changing background colors, type of anti-aliasing. and so
forth.

Other standard programs are being written by the software team. These
include walkthru, for walking through architectural models, and csg. for editing and
viewing constructive solid geometry objects.

4. 	 Algorithms and Performance

In this section, we briefly describe the algorithms which have been imple­
mented on Pixel-planes 4 to date, along with some performance figures.

It is our strong belief that many of these algorithms would not have been
implemented on Pixel-planes 4 were it not for the relative ease of programmability
of the machine. Programmability is facilitated because:

(1) 	 the GP is a uni-processor which performs all the pre-processing computations
for Pixel-planes, rather than a pipelined or vectorized unit, and

(2) 	 the GP is programmable in a high-level language.

195

We believe that the importance of ease of programmability in such experimental
machines cannot be overemphasized.

Additionally, we believe that the importance of Pixel-planes transcends its
potential for accelerating graphics applications. It in fact represents a radically new
way of looking at graphics algorithms, and as such, we believe it has the potential
to change the structure of these algorithms and suggest new methods for solving
problems.

Fast Polygon Rendering. Pixel-planes was originally conceived as a fast polygon
renderer. It can render 35,000 triangles per second, with Z-buffer hidden surface
elimination and Gouraud shading. Rendering speeds for polygons with more than 3
edges are somewhat slower; for example, quadrilaterals are rendered about 20%
slower.

Shadow Casting. Photograph 2 shows the results of a shadow-casting algorithm
developed for the machine by Jeff Hultquist [Fuchs et aL, 1985]. Shadows are cal­
culated as a post-processing pass following normal image rendering. In this post­
processing pass, the polygons in the scene are processed sequentially, as in the
rendering pass. For each polygon, the planes defining the shadow frustum cast by
that polygon are broadcast and compared to the Z-buffer value computed during
the rendering pass, to define the pixels for which the scene intersects the shadow
frustum. For each pixel, a logical union is maintained which defines whether that
pixel was shadowed by at least one of the polygons. At the end of the post­
processing pass, the intensity of shadowed pixels is attenuated.

Since these shadows are computed using shadow volumes, rather than being
treated as separate objects, they can drape naturally over other complex objects in
the scene. Scenes with shadows require approximately twice the rendering time of
equivalent scenes without shadows. Pixel-planes 4 is the only graphics system, to
our knowledge, that can cast true shadow volumes at real-time rates.

Anti-aliasing. We have implemented an algorithm for reducing aliasing effects in
polygonal images; some results are shown in Photograph 3. The image in
Photograph 3a was generated without anti-aliasing -- note the "jaggies" on diagonal
edges of polygons. The image in Photograph 3b has aliasing effects reduced by tak­
ing multiple samples per pixel ('super-sampling'), and then averaging the samples
with a filter. After rendering the non-antialiased image, the system continues sam­
pling until it has covered a 7x7-sample filter kernel; however, this super-sampling is
interrupted if the user moves an input device. Thus the technique does not dimin­
ish the rapid interactive system response; in other words, the anti-aliased version of
an image is generated only when the system has time. This is the 'adaptive
refinement' concept [Bergman et aL, 1986]: the massive computational resources
needed for interactive computer graphics should be utilized to improve image qual­
ity when the image is static.

Sphere rendering. Fred Brooks observed that since the quadratic part of the equa­
tion for a circle is constant for all circles, it can be pre-calculated and stored at

196

each pixel; circles are drawn by describing center and radius in a linear expression
-- they are effectively polygons with one edge. The algorithms for hidden-surface
elimination and smooth-shading of polygons can be extended to spheres in an
analogous way, to generate smooth-shaded inter-penetrating spheres [Fuchs et at,
1985]. The image in Photograph 4 shows the molecule Trimethoprime, an anti­
cancer drug under development at Wellcome Research Laboratory, and a complex
enzyme it is intended to interact with. This image contains about 1,300 spheres
and can be updated 11 times per second.

Image enhancement. John Austin has implemented Stephen Pizer's adaptive histo­
gram equalization (AHE) [Pizer et al., 1984] algorithm on Pixel-planes 4 [Austin
and Pizer, 1987]. The image in Photograph 5a is the original CT scan of a human
chest. The data contains a much larger range of intensities than can be displayed
or perceived. The image in Photograph 5b is contrast-enhanced using AHE. Since
this procedure requires a local ranking of each pixel in a 512x512 image, it takes
about 2 hours on a V AX 11 1785 (although an approximation to AHE, the algorithm
in about 4 seconds.

Constructive solid geometry. Steve Molnar, Greg Turk, and Clare Durand are
working on rendering constructive solid geometry (CSG) objects on Pixel-planes 4,
modeling them as complex polyhedra, that is, by using planar approximations to
convex CSG primitives. Although this does not provide greatly increased rendering
speeds over a polygonal boundary representation of the same scene, the method
does allow intersections and logical subtractions of CSG primitives (like a hole
drilled through a cylinder) to be computed in real-time on the frame buffer. With a
boundary representation, offsetting of intersecting objects requires a lengthy com­
putation to compute the new set of polygons.

The algorithm is implemented by broadcasting the planar equations for each
front- and back-facing facet of the polyhedron and maintaining 2 separate z­
buffers, a minimum buffer and a maximum buffer; these buffers describe the range
of z-values which lie inside the primitive at each pixel address [Jansen, 1986]. An
example from this work is shown in Photograph 6a. Also shown is an image from
the host display running a CSG editor (Photograph 6b), with which a user can
interactively create a CSG object, viewing the rendered object on Pixel-planes and
the CSG expression tree on the host monitor.

Mandelbrot and Julia sets. Photograph 7 shows results of an algorithm imple­
mented by Greg Turk for displaying Mandelbrot and Julia sets. It allows the user
to explore the 2-D plane of the set interactively; the image is updated at frame
rates. Since all pixel processors are enabled virtually all of the time, this algorithm
gives far better utilization of the raw computational power of the Pixel-planes sys­
tem than we have achieved with any other algorithm; to update these images on the
512 x 512 display at 25 Hz, the enhanced memories perform 1300 million 15-bit
adds plus 655 million I5-bit multiplies per second.

197

5. 	 The Next Generation Architecture

We plan to define and implement a new generation of the Pixel-planes archi­
tecture. We are currently finalizing the architectural specification for this new sys­
tem, Pixel-planes 5, and are beginning design of the system.

We expect Pixel-planes 5 to be a dramatically more powerful machine than
Pixel-planes 4, for two reasons: first, speed on the algorithms performed by the
current machine will be considerably greater, due to the higher clock rates and
addition of per-object parallelism; second, the architecture is far less restricted than
Pixel-planes 4, with backing store and random access to pixels, which should allow
whole new classes of algorithms to be implemented. In addition to its enhanced
performance, Pixel-planes 5 will be configurable in a variety of ways that allow cost
to be traded for performance. The machine will also be physically much smaller
than Pixel-planes 4 and will consume far less electrical power.

5.1. 	 Performance Increases for Current Algorithms

Performance on currently implemented algorithms will be increased by using
higher clock speeds in the processor enhanced memories and by providing a per­
object parallelism in addition to the per-pixel parallelism which forms the basis of
the Pixel-planes approach. Additionally, the pre-processing Graphics Processor
must have greatly increased capability to support this higher performance.

Higher clock speeds. We plan to run the enhanced memory chips of Pixel-planes 5
at 40 MHz, for a direct 4-fold speed up over Pixel-planes 4, which runs at 10 MHz.
This should not be difficult on the enhanced memory chips because of the much
smaller silicon geometries. Upgrading the Image Generation Controller (the
sequencer which controls the enhanced memory chips) to these higher clock speeds
will, however, be a significant challenge.

Per-object parallelism. When rendering polygons, the first thing that Pixel-Planes 4
does is to disable all pixels on the outside of the first edge of the polygon. Subse­
quently, all pixels outside the polygon are disabled, and not until the beginning of
the next polygon are any of these pixels' processors performing any useful compu­
tation. Since complex databases generally contain mostly very small polygons, the
processors of the enhanced memories have a very low utilization. To remedy this,
we plan to provide means for processing multiple polygons, lying in disjoint parts
of the display screen, simultaneously. This can be thought of as a per-object paral­
lelism superimposed on the per-pixel parallelism of Pixel-Planes 4.

To implement this per-object parallelism, the frame buffer will contain a
number of Image Generation Controllers. These IGC's control pixel processors
representing disjoint regions of the display screen. Each IGC has a FIFO input
buffer. The pre-processor (which computes the A, B, C coefficient sets and frame
buffer instructions) broadcasts each primitive only to those IGC's whose portion of
the display is covered by that primitive. Since polygons will be quite small, the
majority of polygons will be processed by only one IGC. Thus if the IGC's FIFO's

198

are deep enough and if the order of the broadcast primitives is reasonably uncorre­
tated with their screen position, the multiple IGC's should be able to process
several different primitives simultaneously. Simulations with reasonable assump­
tions about primitive randomization and FIFO depth and typical databases show
speed-ups of 4X or better for systems using 16 IGC's.

Pre-processing power. These increases in performance rely upon the availability of
a graphics processor capable of computing the required number of coefficient sets
for up to perhaps one million polygons per second. Since no single processor can
provide this amount of floating-point computational power, some form of parallel­
ism is required. The graphic processor will be implemented using many, perhaps 8
or 16, Weitek XL chip sets of the type used in the Pixel-planes 4 GP, operating in
parallel.

5.2. 	 Architectural Enhancements

We plan to enhance the architecture of Pixel-planes 5 in several ways, making
it possible to do new classes of algorithms. First, we plan to tightly couple the
enhanced memories to a conventional memory backing store. Second, we plan to
provide a separate conventional frame buffer from which the display screen is
refreshed and to which images can be block transferred from the backing store at
very high rates. Third, we plan to upgrade the pixel processors of the enhanced
memory chips to evaluate quadratic expressions in parallel for all pixels and to

have more bits of local pixel memory.

Backing store. Pixel-planes 4's memory organization presents three primary limita­

tions: First, the Frame Buffer's contents are directly scanned out to refresh a
screen, but there is no means of reading pixel data back to the host or GP.
Second, the only method for addressing an individual pixel (the standard operation
of a conventional frame buffer) is to scan convert a Ixl pixel rectangle, and this
can be done no faster than about 3JLSec/pixel. Third, there is no communication
between pixels, so one pixel cannot directly make use of data stored in a neighbor.

We plan to address these three problems in a unified way, by tightly coupling
the processor-enhanced memory chips to dense commercial memories, the backing
store. We plan to make use of the fast serial port on commercial Video RAM's to
support rapid backing store operations to and from our enhanced memory chips,
which will have a special 110 port designed to support a serial protocol that com­
plements that of the Video RAM. The primary difficulty in building such a scheme
is the unconventional arrangement of our enhanced memories. In frame buffers
built from commercial RAMs, the bits of a pixel are spread across multiple
memory chips (to increase bandwidth), whereas on our enhanced memory chips, all
the bits of a pixel are together on one chip. We plan a simple custom chip to inter­
pret between the different arrangements of the two memories.

The random 110 port of the video-RAM's will be mapped onto the Pixel­
planes 5's main data bus, so that pixels can be accessed in the conventional random
fashion. Various backing store operations will be supported: pixel data from the

199

enhanced memories can be moved to other parts of the system (to the Graphics
Processor, for example) and used in other calculations; data can be written into the
backing store in normal random fashion and then transferred into the enhanced
memories, perhaps to be processed in vector form; pixel data from the enhanced
memories can be shuffled using the random port to simulate inter-pixel communica­
tion.

Separate frame buffer. The current Pixel-Planes 4 system implements a 512 x 512
array of physical pixel processors, which directly refresh the display screen, with a
one-to-one correspondence between pixel processors and displayed pixels. In Pixel­
planes 5, rather than directly refreshing the display from the enhanced memories,
we plan to refresh the screen from a frame buffer built from Video RAMs in the
standard fashion. Pixel data will be moved in blocks from the enhanced memories
to the frame buffer on the system's high-speed bus. This will support higher display
resolutions, (lK x lK and higher) without the necessity of providing greater
amounts of the very expensive enhanced memory. Alternatively, lower performance
systems can be built with fewer than 512x512 pixel processors.

Improved pixel processors. We plan to enhance the power of each pixel processor
in two significant ways: First, the number of bits of local pixel memory at each
pixel will be increased to 256 bits, versus the 72 bits per pixel of Pixel-planes 4.
Second, the bilinear multiplier tree of Pixel-planes 4 will be replaced by a quadratic
unit that evaluates the general 2nd-order polynomial in 2 variables
(Dx2+ Exy+ F/+ Ax+ By+C) simultaneously for every pixel. This will permit
much faster sphere rendering, rendering generalized conic sections, and 'fast'
Phong-shading [Bishop, 1986]. This new quadratic tree requires approximately dou­
ble the silicon area required for the simple bilinear tree of Pixel-planes 4. This,
combined with the larger amount of local pixel memory, means that the Pixel­
planes 5 enhanced memory chip will retain the 30170 processor/memory area ratio
of Pixel-planes 4.

5.3. Physical Size and Cost Issues

Pixel-planes 4 is physically a very large system, conslstmg of thirty-two
15" x 15" cards containing 2048 custom VLSI chips for the Frame Buffer, eight
12" x 12" cards for the Image Generation and Video controllers and the GP, and
ten 750 watt power supplies. We intend for Pixel-planes 5 to be a considerably
smaller, less costly, and less power hungry machine. It will reside in one 19" wide
rack and will use no more than 2000 watts of electrical power. These goals will be
achieved in several ways.

First, the Pixel-planes approach has the fortunate property that its systems
directly benefit, without modification, from advances in semiconductor technology.
Recent announcements of 256KBit static memories suggest that enhanced memory
chips of at least 64 KBits can readily be built on commercial fabrication lines. We
plan to use a 1.2 micron CMOS process, with double metal and polycide, to
increase the number of pixe1 processors on a chip, thereby reducing. the number of
chips in the enhanced memory array.

200

Equally important for reducing system size and cost is the use of more aggres­
sive packaging technologies than the dual in-line and pin-grid array packages and
through-hole circuit boards used in Pixel-planes 4. The new system will use lead­
less packages, surface mounted on multi-layered printed circuits, not only to reduce
system size but also to help support higher clock speeds.

Finally, we plan to make liberal use of application-specific integrated circuits
(ASIC's) in the system to reduce the number of TTL

Pixel-planes 5 will be a more modular system than was its predecessor. The
pre-processor and enhanced memory array will each be implemented on multiple
identical boards; the boards of the system will be connected by a very high
bandwidth bus structure. The components can be assembled in a variety of ways to
build, for example, small, inexpensive systems with modest performance or large
systems with very high performance. The goal is to provide a range of
cost/performance with a small set of basic components.

6. Acknowledgements
The work we have reported was funded jointly by the National Science Foun­

dation (grant no. 8300970) and the Defense Advanced Research Projects Agency
(contract no. DAAG 29-83-K-0148).

We thank our team of graduate student research assistants, who developed
much of the software environment and many of the algorithms described here:
Clare Durand, David Ellsworth, Howard Good, Victoria Interrante, Roman Kuch­
kuda, Steve Molnar, John Rhoades, Brice Tebbs, and Greg Turk.

Our work in system building would have been impossible without our
department's Microelectronic Systems Laboratory, its director Vernon Chi, and
staff members Mark Monger, John Thomas, and Brad Bennett.

We thank our team mathematician, Jack Goldfeather of Carleton College, for
lending mathematical rigor, ideas, curved surfaces, and quadratic expression evalua­
tors.

We thank Mark Kellam and Wayne Dettloff, of the Microelectronics Center of
North Carolina, for help with system design and testing and chip fabrication.

We thank our colleague, Professor Frederick P. Brooks, Jr., for years of advice
and support and for the sphere rendering algorithm.

We thank our past graduate assistants: Greg Abram, John Cromer, Amarie
Helton, Justin Heinecke, Scott Hennes, Cheng-Hong Hsieh, Jeff Hultquist, Alex
Melnick, Mary Ranade, and Susan Spach, for years of dedicated creative effort.

201

We also thank: The MOSIS Project, for IC and circuit board fabrication; John
Ousterhout, who has provided tools for the U.S. university VLSI community;
Chuck Seitz, whose ideas have greatly influenced our design style [Seitz, 1985]; our
colleagues at Xerox PARC, Alan Paeth (now at University of Waterloo), Lynn
Conway (now at University of Michigan), and Alan Bell, who collaborated on early
designs; Data General, for gifts of cabinets and power supplies; and SCI Inc., for
wave soldering services.

202

7. References

Austin, J. and S. Pizer. 1987. "A Multiprocessor Histogram Equalization
Machine," Proceedings of the Xth Information Processing in Medical Imaging
International Conference, Utrecht, The Netherlands.

Bishop, T.G. 1986. "Fast Phong Shading," Computer Graphics, 20(4), (Proceedings
of SIGGRAPH '86), pp 103-106.

Fuchs, 	 H. and J. Poulton. 3rd Quarter, 1981. "Pixel-planes: A VLSI-Oriented
Design for a Raster Graphics Engine," VLSI Design, 2(3), pp 20-28.

Fuchs, H., 1. Poulton, A. Paeth, and A. Bell. January, 1982. "Developing Pixel
Planes, A Smart Memory-Based Raster Graphics System," Proceedings of the
1982 MIT Conference on Advanced Research in VLSI, Dedham, MA, Artech
House, pp 137-146.

Fuchs, H., I Goldfeather, J.P. Hultquist, S. Spach, ID. Austin, F.P.3rooks, IG.
Eyles, and J. Poulton. "July, 1985. "Fast Spheres, Shadows, Textures, Tran­
sparencies, and Image Enhancements in Pixel-planes," Computer Graphics,
19(3), (Proceedings af SIGGRAPH '85), pp 111-120.

Goldfeather, I, IP.M. Hultquist, and H. Fuchs. August, 1986. "Fast Constructive
Solid Geometry Display in the Pixel-Powers Graphics System," Computer
Graphics, 20(4), (Proceedings of SIGGRAPH '86), pp 107-116.

Jansen, F.W. May, 1986. "A Polygon-Halfspace Representation far Rendering
Linear Approximations of Curved Surfaces," (submitted for publication).

Kay, A. September, 1977. "Microelectronics and the Personal Computer,"
Scientific American, 237(3).

Pizer, S.M., J.B. Zimmerman, and E.V. Staab. 1984. "Adaptive Grey Level Assign­
ment in CT Scan Display," Journal of Computer Assisted Tomography, 8(2), pp
300-305.

Poulton, I, H. Fuchs, ID. Austin, J.G. Eyles, J. Heinecke, C-HHsieh, J. Gold­
feather, IP. Hultquist, and S. Spach. " 1985. "PIXEL-PLANES: Building a
VLSI-Based Graphic System," Proceedings of the 1985 Chapel Hill Conference
on VLSI, Rockville, MD, Computer Science Press, pp 35-60.

Poulton, l, H. Fuchs, ID. Austin, lG. EyJes, and Trey Greer. 1987. "Building a
512x512 Pixel-planes System," Proceedings of the 1987 Stanford Conference on
Advanced Research in VLSI, Cambridge, MA, MIT Press, pp 57-71.

Seitz, c.L., A.H. Frey, S. Mattisson, S.D. Rabin, D.A. Speck, andlL.A. van de
Snepscheut. 1985. "Hot-Clock nMOS," Proceedings of the 1985 Chapel HillII

Conference on VLSI, Rockville, MD, Computer Science Press, pp 1-17.

Thacker, c.P., E.M. McCreight, B.W. Lampson, R.F. Sproull, and D.R.Boggs. /I

1979. "ALTO: A Personal Computer," Xerox Corp.; also in Siewiarek, Darnel
P., C. Gordon Bell, and Allen Newell, Computer Structures: Principles and
Examples, McGraw-Hill, 1982, pp 549-572.

203

Photograph 1: Pixel-planes graphics system. Cabinet containing custom hardware on the
left smalJ upper rack contains Graphics Processor, Image Generation Controller, and
Video Controller; large lower ,rack contains 2048 logic-enhanced memory chips. Host
and Pixel-planes monitor are on the right with PI Henry Fuchs manipulating joysticks.

Photograph 2: Polygonal image with true shadow volumes. Updated at frame rates. Da­
tabase cOurtesy of Lee Westover.

204

Photograph 3a) and b): Polygonal image before (top) and after (bottom) anti-aliasing.
Non-antialiased image updated at 8 frames per second; anti-aliased image generated in
about 6 seconds after user releases input devices. Speed penalty is equal to the number
of sub-samples taken. A non-antialiased image is produced as the image moves, but
when the image becomes static the super-sampling algorithm is applied in successive
refinements (with an increasing number of sub-pixel samples). Database courtesy of
Don Eyles.

Photograph 4: (top) Molecular modeling using
fast sphere algorithm. Large molecule is the
protein Dihydro Folate Reductase, smaller
molecule (all white) is a drug Trimethoprime
under study at Wellcome Research Labora­
tories. Image contains about 1300 spheres and
is updated at II frames per second. Database
courtesy of Helga Thorvaldsdottir and
BUIToughs-Wellcome.

Photograph 5 a) and b): (bottom)
Original CT image (upper) and
AHE processed image (lower).
Processed image generated in 4
seconds. Data courtesy of UNe
Memorial Hospital Nuclear Medi­
cine.

206

Photograph 6:
a) (top) Constructive solid geometry (CSG) objects are rendered by modeling them as

complex polyhedra, that is, by using planar approximations to convex CSG primitives.

Connecting rod generated from 19 primitives at 7 updates per second; database courtesy

of U.S. Army BRL.

b) (bottom) Window showing interactive CSG editor on MicroVax II graphics terminal.

u ()

u
•

u

u

Y-:-- l - [J

e"- ,, - 0

207

Photograph 7: Fractal images. Mandelbrot set shown in inset window. Main image
shows Julia set derived from point in Mandelbrot set defined by crosshairs in inset.
These images are updated a~ frame rates.

