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Abstract
Monte Carlo estimation of direct lighting is often dominated by visibility queries. If an error is tolerable, the
calculations can be sped up by using a simple scalar occlusion factor per light source to attenuate radiance, thus
decoupling the expensive estimation of visibility from the comparatively cheap sampling of unshadowed radiance
and BRDF. In this paper we analyze the error associated with this approximation and derive an upper bound.
We demonstrate in a simple relighting application how our result can be used to reduce noise by introducing a
controlled error if a reliable estimate of the visibility is already available.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—

1. Introduction

Accurately computing direct illumination from an area light
source requires the evaluation of an integral over the visi-
ble part of the light. In practice Monte Carlo integration by
means of stochastic ray tracing is often used to evaluate this
integral. Determining the visibility of samples on the light
source by tracing shadow rays is usually a major part of
the overall computation time. For some applications, espe-
cially in interactive computer graphics, the overall look of
ray-traced soft shadows is desirable, but a completely accu-
rate solution is not necessary. A well-behaved error may be
tolerable if rendering time can be decreased by introducing
it.

In this paper we study the consequences of factoring the
visibility function out of the local reflectance integral and
replacing it by a scalar visibility factor. Once factored out,
this visibility factor can be estimated independently of the
remaining terms in the integrand. By decoupling the rela-
tively expensive estimation of visibility from the relatively
cheap sampling of radiance and BRDF an application gains
more freedom to optimize. For example one estimate can be
(partially) reused if only the other changes, or samples can
be selectively invested in the estimator with the highest vari-
ance to reduce noise faster.

Our main contribution is the analysis of the error associ-

ated with this approximation and the derivation of an upper
bound for the error. In addition we describe how our result
can be used in practice to enhance a simple relighting ap-
plication. We believe that especially upcoming GPU-based
progressive renderers using stochastic ray tracing with focus
on interactivity can benefit from our results.

2. Related Work

Methods for reducing the number and costs of visibility tests
have received much attention by the computer graphics com-
munity.

Many approaches use a preprocessing step to build ac-
celeration structures. Lehtinen et al. [LLA06] reconstruct
the visibility function from a list of silhouette edges that
is quickly fetched from a BSP tree. Xie et al. [XTP07] ac-
celerate soft shadows by tracing rays against a multilayer
transparent shadow map instead of the scene geometry. Clar-
berg and Akenine-Möller [CAM08] exploit coherence in the
visibility function by using a visibility cache to construct a
control variate for the local reflectance integral. Soler and
Sillion [SS96] use the visibility error in form factors as
a subdivision criterion for hierarchical radiosity. Walter et
al. [WFA∗05] analyze and bound the error associated with
a cluster in their Lightcuts approach, but they assume each
light is fully visible.
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In addition to these methods there are techniques for adap-
tive and importance sampling [CPF10]. Ghosh and Hei-
drich [GH06] obtain an initial energy estimate and detect
partially occluded regions in a first pass, and use this in-
formation in a second pass to explore penumbrae using
Metropolis sampling. Donikian et al. [DWB∗06] iteratively
construct an optimized PDF per pixel over multiple passes.

In real-time rendering approximations based on ambient
occlusion, shadow maps and PRT are most common, we re-
fer to [HLHS03] and [Ram09] for thorough surveys on these
techniques. A notable exception is Nichols et al. [NPW10],
who resolve visibility by ray marching a screen-space vox-
elization of the scene.

With our work we hope to further bridge the gap between
fast but very approximate real-time methods and the accurate
but rather involved approaches used in offline rendering.

3. An Error Bound for Decoupled Visibility

We begin our derivation with the local reflectance integral in
surface form:

Lo(x′,x′′) =
∫

A
L(x,x′) fr(x,x′,x′′)G(x,x′)V (x,x′)dx. (1)

Lo is the radiance leaving x′ towards x′′, A is the surface of
the light source, L is the radiance leaving a point x on the
light source towards x′, fr is the BRDF, and G is the geom-
etry factor G(x,x′) = cosθcosθ

′r−2, where r is the distance
between x and x′; θ and θ

′ are the angles between the line
segment connecting x and x′ and the surface normals at those
points.

By fixing x′ and x′′ and setting LB(x) = L(x) fr(x)G(x) we
can write this compactly as

Lo =
∫

A
LB(x)V (x)dx. (2)

The idea is to sample LB independently from V and use a
scalar visibility factor, V̂ ∈ [0,1], as an approximation:

Lo =
∫

A
LB(x)V (x)dx≈

∫
A

LB(x)dx · V̂ . (3)

We choose V̂ = E[V ] to be the expected visibility of the sam-
ples drawn for LB(x). (This is not necessarily the average
visibility of the light source.) This choice guarantees that our
derivation is correct in the presence of importance sampling,
as will become clear in the following section.

3.1. Derivation

The error associated with the approximation in Eq. 3 is

Err(LB,V ) =
∫

A
LB(x)V (x)dx−

∫
A

LB(x)dx · V̂ . (4)

Given the problem in this form it is relatively straightfor-
ward to bound the error using probability theory. By intro-
ducing a valid probability density function p(x) for sampling

x we can relate the integrals to the expected values of random
variables and their covariance:

Err(LB,V ) =
∫

A

LB(x)V (x)
p(x)

p(x)dx

−
∫

A

LB(x)
p(x)

p(x)dx ·
∫

A
V (x)p(x)dx

= E
[

LBV
p

]
−E

[
LB
p

]
E [V ]

= Cov
(

LB
p

,V
)

. (5)

If the correlation coefficient is defined, i.e. the variances
of both variables are finite and not zero, we have

Cov
(

LB
p

,V
)

= Corr
(

LB
p

,V
)√

Var
(

LB
p

)
Var(V ), (6)

and since the correlation coefficient always is in [−1,1] we
can bound the error as

|Err(LB,V )| ≤

√
Var
(

LB
p

)
Var(V ). (7)

A special case worth noting is if p(x) = 1/|A|, i.e. if uni-
form sampling is used. Then the error bound is

|Err(LB,V )| ≤ |A|
√

Var(LB)Var(V ). (8)

3.2. Interpretation

We will use 〈·〉 to refer to estimated quantities. For the sake
of brevity we will refer to samples used to estimate 〈LBV 〉 ≈∫

LB(x)V (x)dx, 〈LB〉 ≈
∫

LB(x)dx, and 〈V 〉 ≈ V̂ as LBV -
samples, LB-samples, and V -samples, respectively.

Eq. 5 is mainly interesting from a theoretical point of
view. It expresses in mathematical form what one would in-
tuitively expect: In a scenario where LB-samples are strongly
correlated to V -samples the error introduced by decoupling
V -samples is large. An example of such a situation is a light
source with a very bright spot and an occluder that only oc-
cludes this spot. The error is smaller if LB-samples and V -
samples are weakly correlated. An example is a moderately
sized diffuse white area light source (uniformly sampled)
shining on a diffuse surface. Due to the low frequency con-
tent of LB it does not matter much exactly which parts of the
light are occluded.

Eq. 7 is the main result of this paper, as it can be used
to determine a priori whether the error will be tolerable, if
reliable estimates of Var(LB/p) and Var(V ) are available.
Note that we are only required to sample LB and V with the
same PDF for Eq. 7 to hold, not with the same samples. This
means we can decouple the relatively cheap evaluation of
LB from the relatively expensive evaluation of V and reuse
variance estimates if only one function is changing. One ap-
plication that immediately comes into mind is relighting and
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material editing. The following section describes how such
a system may take advantage of Eq. 7.

4. Application to Relighting

The basic idea of our relighting approach is to treat noise for
error – more precisely, to reduce the variance in the estima-
tor for direct lighting (and thus to reduce noise in the image)
by introducing bias. In an environment where the lighting
or BRDFs often change, but visibility stays constant, a con-
trolled error may be preferable to an unbiased but noisy re-
sult.

Assume we already have a converged visibility solution
and have estimates of Var(V ) and E[V ] ≈ 〈V 〉 per pixel,
e.g. by using a method for incremental variance calculation.
We can then change the LB term for any pixel, i.e. change
the light’s radiance distribution or the BRDF of the surface
point, quickly collect some relatively cheap samples of LB,
estimate Var(LB/p) and apply Eq. 7 to estimate the error we
introduce by simply reusing 〈V 〉 as a scalar visibility factor.
The noise in the image can be reduced by blending an unbi-
ased estimator with the approximation of Eq. 3:

〈Lo〉= (1− t)〈LBV 〉+ t〈LB〉〈V 〉. (9)

A reliable (already converged) 〈V 〉will in general reduce the
variance in the second term, because the variance in V dis-
appears. In addition, 〈LB〉 will usually converge faster than
〈LBV 〉, simply due to the fact that one can evaluate more
samples in the same time. The estimator given in Eq. 9 is bi-
ased (it is not even consistent), but if we use Eq. 7 to choose
t, we can bound the expected error.

Let 〈Err〉 be the error estimated by the procedure de-
scribed above, i.e. by applying Eq. 7 with estimates for
Var(LB/p) and Var(V ). We define the estimated relative er-
ror as

〈Errrel〉=
〈Err〉
〈LB〉 . (10)

The blending factor t in Eq. 9 is set to

t = clamp
(

ErrrelThres
〈Errrel〉

,0,1− ε

)
, (11)

where ErrrelThres is the maximum relative error we want in
the final estimator, and ε is a small factor to accommodate
the fact that the relative error is only estimated and to guar-
antee that the unbiased part of the estimator contributes at
least a small fraction. We use the color channel that gives
the highest relative error to determine t. In regions with very
low estimated luminance levels or very low estimated vari-
ance, the denominator in Eq. 10 or Eq. 11 can be (close to)
zero. We set t = 1− ε in these cases. If the relative error ap-
proaches zero t = 1− ε is the natural limit of Eq. 11, and if
the luminance level is almost zero a potential relative error
of 1 still results in a low absolute error.

Figure 2: Top: Var(V ) and Var(LB). Bottom: Estimated and
actual absolute error for Fig. 1.

4.1. Results and Discussion

Fig. 1 shows a relighting scenario using our technique. Af-
ter obtaining a converged solution with a light source of the
same geometry, we switched to the red and green pattern.
Then we used the procedure outlined in the previous section
to sample the radiance distribution, i.e. we reused already
gathered visibility samples while respecting the given error
threshold. Note that Fig. 1 is a very difficult case for de-
coupled visibility, because there are areas that will receive
only green or only red light. A completely decoupled solu-
tion would light these areas with an attenuated yellow.

As the main purpose of our relighting application is to
demonstrate Eq. 7 in practice, not to provide a state-of-the-
art relighting system, we will primarily discuss issues related
to Eq. 7 here.

Error bound. Fig. 2 shows that our upper bound is rea-
sonably close to the actual error. However, overestimation
occurs in regions where either Var(LB/p) or Var(V ) is very
large (glossy surfaces or penumbrae), due do the assumption
of perfect correlation. Please see the supplemental material
for a discussion of this issue. Also note that Eq. 7 delivers
more than just a penumbra-detection, because it accounts for
the variance in LB, too (as can be seen on the glossy table).

Adaptive sampling. The idea of mixing an unbiased with
a biased estimator can be taken one step further by imple-
menting an adaptive sampling in the sense that the number
of samples an estimator receives is proportional to the blend-
ing factor. This is similar to adaptive sampling using the per-
pixel variance of Lo, but there is an important difference: We
can get a quick-start if only LB changes, because we already
have an estimate of Var(V ) and an estimate of Var(LB/p)
can be quickly obtained in one frame. However, the images
in this paper did not use this extension.

Overhead. Without adaptive sampling the runtime over-
head of our implementation for the scene in Fig. 1 was 16%
for the first frame (when Var(LB/p) needs to be estimated)
and 5% for the following frames. Storage requirements are
2 × 3 floats per pixel for the running mean and variance of
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Figure 1: Conference room model (by Grynberg and Ward) after a lighting change. Top row from left to right: Classical
stochastic ray tracing after 9 V -samples; reference (1024 V -samples); our method with a permitted relative error of 0.25
after 8 V -samples (approx. same time as classical solution, ε = 0.1, Var(LB) was estimated with 64 samples after the lighting
change). Bottom row: Area around the lectern enlarged. Please note that the images are gamma-encoded and the relative error
was calculated in linear RGB space.

LB, and 2 floats per pixel for the mean and variance of V .
(These costs may accrue per light source, see Multiple light
sources below.)

Other optimizations. Our technique is compatible with
general Monte-Carlo optimizations like stratification and ba-
sic importance sampling. Advanced variance reduction tech-
niques and caching structures may conflict with our ap-
proach, but we consider those to be uncommon in the class
of applications we target.

Fixed view, direct light. Since we are storing the esti-
mates per pixel, we can only apply our method to direct
lighting and have to discard the cached information if geom-
etry or view are changing. If, however, the information was
stored in a world-space data structure, the method should be
usable with indirect illumination and varying viewpoints.

Multiple light sources. Eq. 7 works best for a single,
moderately sized light source. Multiple light sources can be
handled, but with a performance penalty. They can either
be modeled as a single disconnected light source (which
will possibly increase the variances in Eq. 7 and lead to
an overly conservative error estimate) or as multiple light
sources (which will require a separate estimation of means
and variances and lead to additional storage costs).

5. Conclusion

We have analyzed the error associated with replacing the vis-
ibility function by a single scalar visibility factor. An up-
per bound was derived that allows an a priori estimation of
the error introduced by such a decoupled sampling. We also
demonstrated how our result can be used in practice in a sim-
ple relighting application.
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