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Abstract

This paper proposes an efficient and feature-preserving locally optimal projection operator (FLOP) for geometry

reconstruction. We first develop a bilateral weighted local optimal projection operator. We then present a novel

fast FLOP operator based on random sampling of Kernel Density Estimate (KDE), which greatly accelerates

FLOP. The experimental results show that the proposed algorithms are efficient and robust for feature-preserving

geometry reconstruction.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

With the advances of scanning technologies, reconstruct-

ing geometry from raw scanned data is an on-going re-

search topic in computer graphics [HDD∗92, LCOLTE07].

Although many methods can produce pleasing reconstruc-

tion results, however, due to geometry shape complexity

and noise (outliers), in addition, with the high accuracy re-

construction requirement and new arisen applications, many

problems remain to be addressed.

Recently, Lipman et al. [LCOLTE07] developed a

parameterization-free locally optimal projection operator

(LOP) for geometry reconstruction. LOP operates well on

raw data without relying on a local parameterization of the

points or on their local orientation, and is robust to noise and

outlines of raw scanned data. This LOP method is a fixed-

point iteration and originated from the multivariate L1 me-

dian. However, this method suffers from high computational

cost for local optimal minimization and fails to preserve the

geometry features well. Furthermore, this method may fail

to converge, and oscillate near a solution. Recently, by in-

corporating an adaptive density weights into LOP, Huang

et al. [HLZ∗09] modified LOP operator to deal with non-

uniform distributions in raw point set data, received more

uniform reconstructed point set. They also presented a robust
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normal estimation method by using a priority-driven normal

propagation scheme and an orientation-aware PCA method.

In this paper, we introduce an efficient and feature-

preserving locally optimal projection operator (FLOP)

for geometry reconstruction. We first develop a bilateral

weighted local optimal projection operator for preserving

features. Then, inspired by [FK09], we present a fast lo-

cally optimal projection operator which is based on random

sampling of Kernel Density Estimate (KDE) for the origi-

nal point-set data. We show that geometry reconstruction re-

sults are close to those generated using the complete point

set data, to within a given accuracy, while time complexity

of the proposed fast FLOP is considerably lower than that of

the original FLOP.

2. Fast Feature-preserving Local Optimal Projection

2.1. Review of Local Optimal Projection

LOP [LCOLTE07] is a parameterization free algorithm for

geometry reconstruction. Given the point set data P =

{p j} j∈J ⊂ ℜ3, LOP projects an arbitrary point-set X (0) =

{x
(0)
i }i∈I ⊂ℜ3 onto the set P , where I, J denote the indices

sets. The set of projected points Q = {qi}i∈I , that minimizes

the sum of weighted distances of each qi to all point set P,

can be considered as the approximate geometry to the origi-

nal data set P.

c© The Eurographics Association 2011.

http://www.eg.org
http://diglib.eg.org


B. Liao et al. / Geometry Reconstruction

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: (a) Raw scanned data (65,235 points), (b)(c)(d) reconstruction results using 38,051 points applying methods of

[LCOLTE07], [HLZ∗09] and our method, respectively. (e)(f)(g) reconstruction results using 16,041 points applying methods

of [LCOLTE07], [HLZ∗09] and our method, respectively. (h)reconstruction results using our method with 8,143 points.

More specially, LOP defines the desired points Q as the

fixed point solution of the equation

Q = G (Q)

where

G (C) = arg min
X={xi}i∈I

{E1 (X ,P,C)+ E2 (X ,C)}

E1 (X ,P,C) = ∑i∈I ∑ j∈J
‖ xi − p j ‖ θ

(

‖ ci − p j ‖
)

E2 (X ,C) =∑i
′∈I

λ
i
′ ∑i∈I\{i

′}η
(

‖ x
i
′ − ci ‖

)

θ
(

‖ c
i
′ − ci ‖

)

Here θ(r) is a fast-decreasing smooth weight function

with compact support radius h defining the size of the influ-

ence radius (for example, θ (r) = e−r2/(h/4)2

). The term E1

drives the projected points Q to approximate the geometry of

P, which is also called multivariate L1 median. The term E2

is a repulsion term, and η(r) is another decreasing function

preventing x
i
′ from getting too close to other points. {λi}i∈I

are balancing terms between the two cost functions.

2.2. Feature-preserving LOP

We observe that the multivariate L1 median term E1(x) is

defined as the sum of Euclidean distances to the data points,

and is located using only a space distance based weight func-

tion θ(r), not considering geometry features existing on the

point-set surface. This definition may fail to preserve geo-

metric features, causing sharp features such as edges and

corners blurred. Motivated by the geometry bilateral filtering

[FDCO03, JDD03], we propose bilateral weighted LOP op-

erator to reconstruct feature-preserving geometry from noisy

point set.

We integrate a feature preservation weight θr into the L1

median term E1 and define a feature preserving projection

operator. The term E1(X ,P,C) is modified and defined as

following:

E1 (X ,P,C) = ∑i∈I ∑ j∈J
‖ xi − p j ‖ θs

(

ξi j

)

θr(ζi j),

where ξi j = ‖ci − p j‖ and ζi j = 〈ni,ci − p j〉, ni is the nor-

mal of point ci which can be estimated using the method

[HLZ∗09]. The weight function θr is feature preservation

weight that penalizes large variation in geometry similarity,

which is defined as the height difference of point pi over
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the tangent plane of the point ci [FDCO03]. We define func-

tion θr(x) as the standard Gaussian filter θr(x) = e−x2/2σ2
r ,

and define fast-decaying weight function θs (x) = e−x2/(h/4)2

with the finite support radius h.

We keep the repulsion term E2 unaltered. Similarly to

LOP algorithm [LCOLTE07], the desired projected points Q

is the fixed point iteration solution of the equation (2). Given

the initial projection point set X (0), we derive our fixed point

iterations as follows. We define X (1) = {x
(1)
i }i∈I by

x
(1)
i′

=
∑ j∈J p jθs

(

‖ p j − x
(0)
i′

‖
)

θr(〈ni′ , p j − x
(0)
i′

〉

)

∑ j∈J θs

(

‖ p j − x
(0)
i′

‖
)

θr(〈ni′ , p j − x
(0)
i′

〉

)
.

Then, at each iteration k = 1,2,3, ..., the new projected

point x
(k+1)

i
′ is computed as:

x
(k+1)

i
′ = ∑

j∈J

p j

αi′

j

∑ j∈J αi
′

j

+µ ∑
i∈I\{i

′}

(

x
(k)

i
′ − x

(k)
i

) βi
′

i

∑i∈I\{i
′} βi

′

i

where

αi′

j =
θs(‖x

(k)
i′ − p j‖)θr(〈n

(k)
i′ ,x

(k)
i′ − p j〉)

‖x
(k)
i′

− p j‖

βi′

i =
θs(‖x

(k)
i′

− x
(k)
i ‖)

‖x
(k)
i′ − x

(k)
i ‖

∣

∣

∣

∣

∂η

∂r
(‖x

(k)
i′

− x
(k)
i ‖)

∣

∣

∣

∣

The k + 1 iteration result {x
(k+1)
i′

}i′∈I is the final projec-

tion result. Similar to [HLZ∗09], we define η (r) =−r which

produces locally regular point distribution. Practically, the it-

eration procedure tends to converge in a very small number

of steps, typically around 10. In our experiments, we use the

repulsion parameter µ as µ ∈ [0,1].

Although our method incorporates normal information,

however, our method does not require accurate normal esti-

mation. In the situations when reconstructing complex mod-

els such as thin surface features and close-by surface sheet.

we employ the method presented in [MN03] to estimate

the normal ni for point pi. We first clean the data set, then

we use a priority-driven normal propagation scheme and an

orientation-aware PCA to work complementarily and itera-

tively for robust normal estimation.

In Fig.1, we give the comparison results with

[LCOLTE07] and [HLZ∗09]. Clearly, our proposed

method preserves the features better and the projected

points are uniformly distributed.

2.3. Fast Local Optimal Projection

We find a Ê1(x) that is close to E1(x) under a

user controlled approximation, while using much

fewer point set P̂ = {p̂ j} j∈K ∈ R3 to generate

Ê1(x), (|K| ≪ |J|). In general, we wish to find

the point set P̂ that minimize the following prob-

lem: min
{p̂k}K

k=1

D(E1(x), Ê1(x)) subject to Ê1

(

X , P̂,C
)

=

∑i∈I ∑ j∈K ‖ xi − p̂ j ‖ θs

(

‖ ci − p̂ j ‖
)

θr(〈ni , ci − p̂ j

〉

),
where D is a distance measure between these two terms,

which can be defined using the Lp type distances.

Similar to [FK09], we define the point set P̂ using a sam-

pling technique. The sampling procedure is based on random

sampling ofKDE f (x) = 1
|J| ∑

J
j=1 ΘH

(

x− p j

)

, where func-

tion f (x) is defined on the original point set data P, and ΘH

is standard Gaussian Kernel. To sample points K from KDE,

for each k = 1, ..., |K|, we choose p̂k in following three steps:

1. choose a random integer rk ∈ {1, ...,J}; 2. choose a ran-

dom sample δk from θH (•); 3. set p̂k = prk + hδk. Freed-

man et al. [FK09] have proved that p̂k is a proper sample of

f (x). When Ê1(x) is constructed on the samples P̂ defined as

above, the reduced multivariate L1 median Ê1(x) is close to

E1(x) defined on complete data under a controlled approxi-

mation accuracy.

Using the compact KDE based L1 median term

Ê1(X , P̂,C), we perform fast FLOP minimization in the fol-

lowing two steps:

1. Sampling: Take |K| samples of the KDE f (x) to yield

{p̂k}
K
k=1. Construct the new median term Ê1

(

X , P̂,C
)

=

∑i∈I ∑ j∈K ‖ xi − p̂ j ‖ θs

(

‖ ci − p̂ j ‖
)

θr(〈ni , ci − p̂ j

〉

),

2. Local optimal projection: G (C) =
argminX={xi}i∈K

{Ê1(X , P̂,C)+ E2(X ,C)}.

Using the proposed sampling techniques, instead of using

all J points to compute the projected points Q, we use the

reduced set of K samples, which is much smaller than J,

that is, |K| ≪ |J|. The computational complexity of E1(x)
have been reduced from O(J) to O(K), and the optimization

procedure is greatly accelerated.

3. Experimental results and discussion

We provide experimental results using the proposed method,

and compare our algorithm to related work [LCOLTE07,

HLZ∗09] on both performance and quality. Our approach

is implemented using C++ on a machine equipped with

Pentium (R) Dual-Core CPU E5200@2.50GHz with 2GB

RAM.

In Fig. 1 and Fig. 2 , we give reconstruction results

from the noisy raw scanned data. We have given compar-

ison results with [LCOLTE07] and [HLZ∗09]. Compared

with [LCOLTE07], our method preserves the features bet-

ter, and the projected points are distributed fairly. Although

the weighted locally optimal projection operator [HLZ∗09]

improves the points distribution of method [LCOLTE07],

however, this method still can not preserve the features well.

We also present comparison results with [LCOLTE07] and

[HLZ∗09] on less projected points in Fig. 1.
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(a) (b) (c) (d) (e)

Figure 2: (a) the Terra Catta Warriors point set with slight noise, (b) reconstruction result using existed method [LCOLTE07],

(c) reconstruction result of [HLZ∗09], (d) result of our algorithm, (e) result of our algorithm with less projected points.

(a) (b) (c)

Figure 3: (a) The scanned point set, (b) reconstruction result

using LOP [LCOLTE07], (c) result of our algorithm.

In Fig.3, we presented reconstruction results on scanned

point set with outliers. At each iteration, we estimate the nor-

mal using the method presented in [HLZ∗09]. To produce

clean point set from the raw scanned data with outlines, as

well as preserving the features, at first several iterations, we

set a large value for σr in the feature preservation weight θr,

which make the FLOP work like LOP. For last several iter-

ations, the value for σr is small to preserve the geometric

features.

4. Conclusion and future work

In this paper, we present an efficient FLOP for geometry

reconstruction. We first develop a bilateral weighted LOP

operator, which takes both spatial and geometric feature in-

formation into consideration for feature-preserving geome-

try reconstruction. We also present sampling technique that

is based on the random sampling of KDE to accelerate the

FLOP computing.
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