SAMBA: Steadied choreographies

Jarek Rossignac, Mark Luffel and Àlvar Vinacua

1 School of Interactive Computing, College of Computing, Georgia Institute of Technology
2 Technical University of Catalonia, Spain

Abstract
Given the start positions of a group of dancers, a choreographer specifies their end positions and says: “Run!” Each dancer has the choice of his/her motion. These choices influence the perceived beauty (or grace) of the overall choreography. We report experiments with an automatic approach, SAMBA, that computes a pleasing choreography. Rossignac and Vinacua focused on affine motions, which, in the plane, correspond to choreographies for three independent dancers. They proposed the inverse of the Average Relative Acceleration (ARA) as a measure of grace and their Steady Affine Morph (SAM) as the most graceful interpolating motion. Here, we extend their approach to larger groups. We start with a discretized (uniformly time-sampled) choreography, where each dancer moves with constant speed. Each SAMBA iteration steadies the choreography by tweaking the positions of dancers at all intermediate frames towards corresponding predicted positions. The prediction for the position of dancer at a given frame is computed by using a novel combination of a distance weighted, least-squares registration between a previous and a subsequent frame and of a modified SAM interpolation. SAMBA is fully automatic, converges in a fraction of a second, and produces pleasing and interesting motions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Generation—I.3.7 [Computer Graphics]: Animation—I.2.10 [Image Processing and Computer Vision]: Motion—

1. Introduction
Our long-term goal is to devise: (1) a mathematical formulation that measures the beauty (or grace) of a choreography and (2) a practical algorithm for computing the most beautiful choreography, given a set of constraints or choreographer’s directives. In the present paper, we focus on a specific sub-problem: iteratively improving the beauty of a planar motion of a small group of particles, given a time interval and their initial and final positions. These particles may represent the instantaneous positions of a small group of dancers, hence, we will use a terminology derived from this metaphor, even though we have not validated the benefit of our approach for this application domain.

We consider a group of \(n \) dancers, each represented by a point on the plane. Let \(P_i \) denote the position of dancer \(i \) at time \(t \). Note that we use a preceding superscript to identify a time or frame. Without loss of generality, we assume that \(t \) varies between 0 and 1. We are given the start position \(P_{i0} \) and the end position \(P_{i1} \) of each dancer \(i \). We wish to compute their motions. The term choreography will refer to the combined set of these motions.

Our algorithm discretizes the choreography, representing it by a set of frames at evenly spaced time samples. Each frame is associated with a time \(t \) and defines the instantaneous positions \(P_i \) of each dancer. Continuous motions may be obtained by computing an interpolating spline or subdivision curve for each dancer.

The perception of beauty of a choreography is clearly subjective and often influenced by expertise (being a dancer versus a computer programmer), priming (watching modern dance versus soccer), and context (accompanying music). Still, objective guidelines for designing beautiful motions have been offered by members of the artistic community.

© The Eurographics Association 2012.
The first guideline of interest states that straight-line, constant-velocity motions should be avoided [TJ95, WNS’10]. This may be seen as an extension of early guidelines proposed by Hogarth, who stated that “straight lines ... signify stasis, death, or inanimate objects” [Hog53]. The second guideline, voiced by Chekhov in a letter to Maxim Gorky claims that grace is inversely proportional to the amount of superfluous movement: “When a person expends the least amount of motion on one action, that is grace” [Che76].

Combining these two guidelines, we seek a choreography that is the simplest (in some sense), and yet not made of linear motions. When the group has a single dancer, these two guidelines seem incompatible and a linear interpolation appears to be the only natural choice, as seen in fig. 1a. For a pair of dancers at constant distance a possible choice would be a circular motion, which in general is uniquely defined by the start and end poses (fig. 1b).

Figure 1: For one dancer, a linear motion (top) is the natural choice. For a group of two dancers at constant distance of each other, we advocate a pure rotation (second from top). When the distance between the dancers is different at the start and end frames, we advocate a logarithmic spiral (third from top). For three dancers, we advocate a SAM (bottom). Each of these motions in uniquely defined by the placement of the dancers.

To gain some insight and appreciation of the problem at hand, let us focus on a group of two dancers and compare three choreographies that interpolate the same set of constraints: LINEAR choreography (fig. 2 top), DYNAMIC (fig. 2 middle), and SPIRAL (fig. 2 bottom). These are also compared in the accompanying video.

LINEAR minimizes travel distance and moves each dancer with constant velocity:

\[\mathbf{p}_t = (1 - t) \mathbf{p}_0 + t \mathbf{p}_1 \]

Unfortunately this solution is often unacceptable, for example, animators abhor straight-line and uniform-speed motions (as mentioned above).

DYNAMIC produces an interpolating motion that preserves linear and angular momenta. In our metaphor, this choreography simulates a two-body motion free from external forces and torques, but where the two dancers pull or push on each other to change the distance that separates them. For simplicity, we have chosen to vary that distance linearly, but other options could be explored. We include it in this comparison, because physical plausibility is a natural option for defining optimal choreographies. We discuss below some of its aesthetic drawbacks.

SPIRAL computes a fixed point of the similarity

\[\mathbf{p}_t = (1 - t) \mathbf{p}_0 + t \mathbf{p}_1 \]

© The Eurographics Association 2012.
transform that maps the start frame to the end frame (fig. 1c) and uses a synchronized constant angular speed rotation with an exponential scaling, both about the fixed point, which may be computed as a solution of a linear system of two variables [WNS10]. Logarithmic spirals appear to provide an accurate model of numerous phenomena observed in nature, such as the growth processes and patterns of vegetation, arrangements of stars in galaxies, and swirls of fluids. We include the SPIRAL option in this preliminary discussion, because it captures the spirit and some of the advantages of the proposed solution, which caters to larger groups.

These three choreographies look very different from each other (especially on video). Let us point out more formally the similarities and differences between them.

The distance between the dancers varies linearly in DYNAMIC, exponentially in SPIRAL, and possibly non-monotonically in LINEAR. The latter is probably the most important drawback of LINEAR (fig. 3 top).

The midpoint (center of mass) of the dancers moves with constant velocity in LINEAR and DYNAMIC. This linear motion of the center of mass violates the artistic principle discussed above. SPIRAL moves the center of mass along a more pleasing arc.

LINEAR is often unacceptable, because the straight line motion of each dancer appear too mechanical and because it portrays a rather selfish choreography, where each dancer appears uninterested in the behavior of other dancers.

DYNAMIC may be the proper choice when the dancers hold each other and are swirling on the dance floor or on ice (without skates). But the overall motion of (the center of mass of) the couple is uninterestingly linear and the choreography seems passive, lacking determination and energy.

Assume that the line segment drawn between the two dancers represents their arms (as if they were holding hands) or the direction of their gaze towards each other. Notice that the angle between this line segment and the instantaneous velocity of each dancer varies in both LINEAR and DYNAMIC, but remains constant in SPIRAL. Also note that the orientation of the line segment between the dancers rotates at constant speed in SPIRAL, slows down as distance increases in DYNAMIC, and can be more chaotic (non-monotonic) in LINEAR. For these reasons, we believe that SPIRAL is perceived as being more harmonious than the other two.

The advantage of SPIRAL over the other two approaches becomes even more obvious if one translates the two end positions so that the start and end positions of one dancer (say A) coincide. In that case (as shown in fig. 3 and accompanying video), LINEAR leaves A in place, while moving the other dancer (say B) along a straight line, which may pass close to A. DYNAMIC moves both A and B, and the motion of B seems unnecessarily complex. SPIRAL leaves A in place and moves B along a spiral at a constant angular speed around A. In fact, if the distance between the two dancers is the same in the start and end frames, it remains constant throughout the SPIRAL choreography and B moves along a circular arc (1 b). We conjecture that this behavior would be viewed by most observers as the most natural of the three.

In the remainder of this paper, we extend this SPIRAL behavior to larger groups of dancers.

We claim three novel contributions:

1. We propose to measure the trace of the choreography by the integral over time (approximated by the normalized sum over all intermediate frames and dancers) of a local measure of steadiness. This new measure is an extension (to non-affine motions) of the steadiness measure originally proposed in [RV11], which was restricted to affine motions (fig. 1d). We provide a precise definition for this extended measure of steadiness.

2. We propose a novel formulation of the local, instantaneous approximation of the choreography around any given dancer at an intermediate frame. We call it the Local Instantaneous Steady Affine Motion Approximation (LISAMA) and define is using a Steady Affine Morph (SAM) or a Steady Logarithmic Spiral Morph between a preceding and a succeeding frame (not necessarily the previous and next). LISAMA extends the classical model of an instantaneous velocity approximation of the motion of a single point to the instantaneous affine motion.

3. We propose a novel approach, called SAMBA, which starts with an initial choreography (possibly modified by the choreographer) and improves its steadiness through a series of steadying steps. A steadying step first estimates the position of each dancer in each intermediate frame using LISAMA. Then it moves these positions (half-way by default) towards their estimates. Successive passes increase the steadiness of the choreography and may be executed with increasing (temporal) locality (narrowing the time interval between preceding and succeeding frames) to accelerate convergence. We say that SAMBA produces a steadied choreography that morphs between two frames of a group of dancers.

Several stages of a typical SAMBA process and the resulting steadied choreography are shown in figure 4. Our steadiness measure is only one dimension of the
2. Notation and Background

We are interested in choreographies that exhibit a certain degree of continuity in the time evolution of a local arrangement of nearby dancers. Hence, we propose to measure the quality of a choreography by its steadiness. The concept of steadiness has been defined for affine motions [RV11]. We extend it here to non-affine choreographies.

The motion of a group of points is affine if there exists a continuous function that maps time t to an affinity A such that $tP_i = tA_i P_i$ for all points.

The motion is steady if an affinity A exists such that

$$A' = A^t$$

Here t is a real number between 0 and 1 and the notation A' defines the non-integer power (also called root) of an affinity. Closed-form solutions in two and three dimensions that compute a real matrix A', when it exists, from the matrix representation of affinity A have been proposed in [RV11]. In the rare situations where a real matrix A' does not exist, one must use an unsteady alternative. In this case we default to a SAM between two affinities, which are related by a similarity transform.

Given the start and end positions of a group of 3 dancers, the Steady Affine Morph (SAM) proposed by Rossignac and Vinacua [RV11] computes an interpolating steady motion (fig. 1d).

To compute the position of the three dancers at time t, SAM computes the affinity B that brings the points $(0,0),(1,0),(0,1)$ to their corresponding positions in the start frame and the affinity C that brings the same points to their corresponding positions in the end frame. Then it computes $A = CB^{-1}$ and finally A' as $A'B$.

An example of a SAM choreography is shown in figure 1d, which also illustrates that SPIRAL, pure rotation, and pure translations are special cases of SAM.

A measure of steadiness was introduced by Rossignac and Vinacua [RV11] as the inverse of the Average Relative Acceleration (ARA). They define ARA as the integral over space and time of the acceleration with respect to a local frame. In the present context, lacking such a local frame, we measure ARA as the 2-norm of the difference $A - A'$. Hence, for a steady motion, $ARA = 0$.

The difficulty of using ARA to define steadiness of a choreography of dancers in a larger group is that the choreography of a group is in general not affine. Hence, our solution uses LISAMA to compute a predictor Q_i of the location of each dancer P_i in an intermediate

beauty of a motion, and its usefulness depends upon the application domain. It may prove useful as an analysis tool by making it possible to factor out the steady part of a motion so as to accentuate or stylize the unsteady characteristics.

In the remainder of the paper: (1) we define our notation more precisely and summarize prior work on steady motions, (2) we review relevant prior art, (3) we provide the details of LISAMA, (4) we present the SAMBA algorithm, and (5) we show results and discuss limitations.
3. Prior Art

Several computer vision techniques developed for video compression or segmentation and for shape or camera tracking [MV98, Mod04, GKB’07] compute affine displacement maps (registration) [KC96, KC98, Kro98] that maximize color or gradient correspondence between one portion of the image in one frame and a portion in a subsequent frame. As such, they build a local affine approximation [BA96] or hierarchies of these [ACM’10] of the choreography between two frames. The problem addressed in this paper is somewhat orthogonal to these computer vision problems: In our case correspondence is given (as pairs of initial and final positions of particles) and the goal is not to produce a local affine map (that part is standard [BLCD02, SMW06]), but to compute the detail of the interpolating choreography, i.e., the intermediate (non affine) trajectories for all the particles. Our solution may be of interest and potentially applicable to computer vision for producing smooth slow motions, i.e., generating inter-frame images.

Several morphing techniques have been studied, where the particles are samples of a lower-dimensional manifold, i.e., vertices of a curve in 2D or of a surface in 3D. Some of these techniques establish correspondence from the orientation of the manifold [KR92], from proximity [ESE06], or from both [CLRW10]. Other techniques assume a given correspondence [SG92, SGWM93]. Some morphing techniques use linear trajectories. The ball morph [WR09, WR10] generates circular trajectories that are orthogonal to the initial and final manifolds. BetweenIT [WNS’10] generates logarithmic spirals or blends of such spirals. Some approaches are focused on the evolution of the shape and of its orientation, but not on the actual motion followed by the shape during the morph [SGWM93, Kor02]. We cannot directly benefit from these solutions, because our group of particles are not samples of a manifold and hence do not remain aligned along a curve or surface throughout the motion.

Several morphing techniques establish a triangular or rectangular lattice that either connect the particles [ACOLO00] or surrounds them [MHTG05, RJ07, SDC09]. They endow these full dimensional cells (triangles or quads) with stiffness or other rigidity properties and evolve them from their initial configuration to their final configuration while striving to keep them as-rigid-as-possible [IMH05] or to make them each evolve in a continuous manner. These techniques are most effective when the initial and final configuration have a common triangulation [SG01] or quadrangulation, and when the desired deformation is free from self-overlaps. We are interested in supporting more general choreographies, where this may not be the case.

Particle based fluid simulation techniques [MSKG05] advect the particles striving to simulate an incompressible viscous flow. For that, they compute accelerations from local measures of particle density and friction. The flow is the result of a forward dynamic simulation. Hence, these techniques cannot be used directly to solve our morphing problem, although we plan to explore using SAMBA for artistic design of fluid flows.

Tools for designing animations of crowds [JCP’10, THL’04], flocks [Rey87], or schools [TT98] may benefit from SAMBA in situations where the initial and final positions of all of the particles, or at least of some “leader” particles, are either provided by the artist or captured from sensors or cameras. A particularly effective solution for designing such animations was proposed by Kwon et al. [KLLT08]. They build a (possibly different) Delaunay triangulation of the particles at each frame, but allow the artist to edit the resulting “formation edges” interactively. They connect each particle of an intermediate frame to the corresponding particle in the previous and next frame, hence linking successive per-frame triangulations through these “motion edges”. Then they let the user deform this multi-frame graph by moving and pinning any vertex of that graph. They use the As-Rigid-As-Possible shape manipulation technique [IMH05] to minimize the distortion from the original graph while satisfying the “pinned” constraints. Their approach minimizes a distortion metric that sums the squares of the differences between the current and initial locations of each particle, expressing these locations in a local frame defined by three neighboring particles. They solve for the new configuration using a constrained least square optimization. They also propose further improvements (scale-free Laplacian and post-processing scale-compensation) to reduce undesirable effects of local scaling and distortions near degenerate triangles. Their approach is particularly effective when it is desired to maintain the relative (local) formations of nearby particles throughout the choreography. Our SAMBA solution does not rely on instantaneous triangulations, and hence does not suffer from artifacts that may occur when the connectivity (formation edges) changes from one frame to the next. Furthermore, it does not require the choreographer to specify the original graph. (In our case, the trajectories are
The continuum crowds method [TCP06] produces crowd motion by tracing particles through an evolving potential field generated from user-defined goals, scalar cost field, and the positions and velocities of other agents. The potential field is stored on a grid and computed by the fast marching method per group of agents that share a common goal.

The SAMBA solution proposed here builds upon ideas from these different fields, but differs significantly from them. In particular, it does not assume or compute a connectivity graph.

4. LISAMA

Our Local Instantaneous Steady Affine Motion Approximation (LISAMA) computes a steady motion that approximates the choreography near the position \(P_i \) of a given dancer \(P_i \) at time \(\beta \in [0, 1] \) of an intermediate frame. In what follows we use \(a, b, c, \ldots \) to refer to frames (numbered from 0 to \(m \)), and \(\alpha, \beta, \gamma, \ldots \) for their respective times.

First, we compute weights \(\beta_{wik} \) for each other dancer \(P_k \) that are inversely proportional to the distance between \(\beta P_i \) and \(P_k \) as follows:

\[
\begin{align*}
\beta_{wik} &= \max(0, (1 - (||\beta P_i - P_k||/r)^3) \\
&= \max(0, (1 - (||\beta P_i - P_k||/r)^3)
\end{align*}
\]

(3)

Here \(r \) is a radius of influence, chosen globally for the group. It may be used by the choreographer to enhance the locality of the behavior: a relatively small value of \(r \) will prevent a sub-group of nearby dancers from being influenced by a sub-group that passes at a distance. The resulting weights are non-zero only within a circle of radius \(r \) around \(\beta P_i \), localizing the effects of LISAMA. In the figures and accompanying video, we use \(r = 150 \) pixels. The blending kernel (3) is a common polynomial spline [FM03]. Finally, we normalize these weights, dividing each one by their sum.

Let us consider two other frames, \(a \) and \(c \), with corresponding time values satisfying \(\alpha < \beta < \gamma \). The definition of LISAMA does not impose other constraints on these frames, but in practice, during the first pass of SAMBA, we chose \(\alpha = 0 \) and \(\gamma = 1 \). Hence, we compute the approximating choreography from the initial and final frames. In subsequent passes, \(a \) and \(c \) are selected closer to \(b \) when possible. In the final passes, \(a, b, \) and \(c \) are three consecutive frames.

We compute an affinity \(A \) that maps \(\beta P_i \) to \(\gamma P_i \) and also minimizes the weighted quadratic error for the other dancers. Specifically, we compute a \(2 \times 2 \) matrix \(L \) of a linear transformation that minimizes the quadratic norm

\[
\sum_{k} \beta_{wik} (\beta P_k - \gamma P_k - L(\alpha P_k - \gamma P_k))^2
\]

(4)

This quadratic form may be solved trivially, as discussed in [SMW06, Xie95], but here, instead of the centroids, we use \(\beta P_i \) and \(\gamma P_i \).

Using \(\alpha_{wik} \) for \(\alpha P_i - \gamma P_k \) and \(\gamma_{wik} \) for \(\gamma P_k - \gamma P_i \), setting the derivative of the above expression to zero yields

\[
\sum_{k} \beta_{wik} (\gamma_{wik}) L(\alpha_{wik}) \cdot \alpha_{wik}^T = 0
\]

(5)

which leads to

\[
\sum_{k} \beta_{wik} \gamma_{wik} \cdot \alpha_{wik}^T = \sum_{k} \beta_{wik} \alpha_{wik} \cdot \gamma_{wik}^T
\]

(6)

and one finally obtains

\[
L = \left(\sum_{k} \beta_{wik} \gamma_{wik} \cdot \alpha_{wik} \right) \left(\sum_{k} \beta_{wik} \alpha_{wik} \cdot \gamma_{wik}^T \right)^{-1}
\]

(7)

We then define the affinity \(A \) as the composition of the linear transformation \(L \) with a translation by vector \(\gamma P_i - \gamma P_i \). The LISAMA motion from \(\alpha P_i \) to \(\gamma P_i \) is \(A'(\alpha P_i) \). A typical result is shown in figure 5.

![Figure 5: The steady motion of a given dancer is computed from a modified affine registration or, in cases where no SAM exists, a similarity registration between a preceding frame (left) and succeeding frame (right).](Image)

When the matrix \(L \) has a real logarithm, we compute the SAM \(A' \). When \(L \) has no real logarithm, no SAM exists. In this case we find a similarity transform that minimizes (4) as in [SMW06], and use its SAM, which always exists. Both SAMs may be computed using closed form expressions by the EAR algorithm [RV11] or using the numeric approach proposed in [Ale02].

5. SAMBA

The main step of SAMBA computes a target location \(\beta Q_i \) for a dancer \(\beta P_i \) of an intermediate frame from the LISAMA of \(\beta P_i \) as

\[
\beta Q_i = A'(\alpha P_i)
\]

(8)

where the time \(u = \frac{\beta - \alpha}{\gamma - \alpha} \).

The first SAMBA pass sets \(\alpha = 0 \) and \(\gamma = 1 \) for...
all intermediate frames and computes these target locations for all dancers in the intermediate frames using $\beta P_i = \beta Q_i$. Since during this initial pass, we do not have positions for the intermediate frames, we compute weights from the initial and final frames and average them.

Hence, each one of these initial trajectories is steady. A typical result is shown in figure 4 top.

During each pass, we execute Algorithm 1.

Algorithm 1

1. for each intermediate frame b
2. $a = \max(0, b-d)$
3. $c = \min(f+1, b+d)$
4. $u = (b-a) / (c-a)$
5. for each dancer P_i
6. $A = LISAMA(i, a, c)$
7. $\beta Q_i = A^u (\alpha P_i)$
8. }
9. for each dancer P_i
10. $\beta P_i = \beta P_i + 0.5*(\beta Q_i - \beta P_i)$
11. }
12. $d = \text{spread}(\text{stepnum})$;

The function `spread` controls a trade-off between local (small spread) and global (large spread) motion predictions. We achieve faster convergence by applying a gradually diminishing spread. Figure 6 shows a naïve “Fixed Spread” strategy (where the spread is always 1) compared with our preferred “Halving Spread” strategy that starts with the largest possible spread (half the intermediate frames) and reduces this by half at each iteration. Once the spread is reduced to 1 we stop halving and keep a fixed spread until we reach our error threshold and terminate the process. In the figures and accompanying video, we use a halving spread, starting with $d = 8$. Using a larger starting spread produces a more globally steady motion, which is often, but not always desirable.

Note that this process is similar to a pyramidal Laplace smoothing of a polygonal curve, except that, instead of using a linear interpolation, we are using LISAMA.

Since steady motions have predictable, stabilizing properties (they vary area monotonically and use minimal acceleration), the resulting smoothing provided by SAMBA inherits these characteristics inasmuch as possible (different dancers may establish contradicting goals for the choreography, and SAMBA must then adopt a compromise, parameterized by the kernel radius r, and expressed by making nearby trajectories mutually agreeable.

6. Results and discussion

In this section, we summarize the results of our experiments with SAMBA.

To demonstrate the benefit of subsequent SAMBA passes, we use a configuration where the initial positions of the dancers in the group have two distinct clusters. Although the two clusters are clearly disjoint in both the initial and final frames, their trajectories produced by the first pass of SAMBA result in a temporary “interpenetration” of the two clusters during the choreography. Figure 7 shows how subsequent SAMBA passes resolve this interpenetration, delaying the rightward-moving dancers by pushing their trajectories upward and accelerating the leftward-moving dancers at the beginning of their journey.

In the accompanying video, we include several example, showing a LINEAR choreography and the steadied one produced by SAMBA. Our experiments suggest that SAMBA produces pleasing and interesting choreographies, which are sometimes very different from the linear interpolation.

6.1. Limitations

SAMBA uses a local search/optimization approach, therefore it may fail to converge to the global optimum or may converge to a solution that the choreographer dislikes.

The choreographer can alter dancers’ positions in the
start and end keyframes of the group, but small changes in these initial or final positions may result in qualitatively different overall choreographies. Hence, restricting the choreographer’s interaction to the editing of the start and end frames may not provide sufficient flexibility for precise design, even though it may be a valuable automation tool when the choreography is working at a high-level.

Because changes to the initial choreography from which SAMBA starts may lead to qualitatively different solutions, we also provide a semi-automatic option, which allows the choreographer to edit the initial solution by adding intermediate constraints to be interpolated by a specific dancer. This is done simply by clicking on a path to pick a dancer \(i \) and a time \(t \) and by dragging to a new location to establish a constraint for \(\mathcal{P}_i \).

For each dancer, we compute a smooth motion that interpolates all such constraints. We use a gradient descent method to smoothen the location of the unconstrained positions. The technique works in realtime and the choreographer can directly manipulate the path and see sampled positions. Then, SAMBA is used to steady the resulting motions.

6.2. Future Work

We are preparing to conduct a study to evaluate the perceived beauty of SAMBA motions. Our subject pool will consist of choreographers and dancers who will be asked to rate motions created by linear interpolation, LISAMA, and SAMBA. We will also ask the subjects what they like and do not like about the motions and have them judge whether the SAMBA solution may be useful to them.

If these preliminary evaluations indicate that SAMBA may be of value for choreography design, we will seek a partnership with a dance company, so as to install a ceiling-mounted camera that tracks dancers’ motions and a projector that guides their motions by shining a colored dot in front of each dancer. With this set-up, we will be able to capture and analyze choreographies and explore improvements based on SAMBA.

7. Conclusions

We have presented a technique for generating a harmonious choreography of a group of dancers, given only their start and end positions. The technique uses an iterative local smoothing, in the spirit of Laplacian smoothing, estimating dancer motion based on the relative configurations of neighboring dancers. Local neighborhoods are defined by a kernel function with finite support, which enables realtime performance of the SAMBA smoothing.

8. Acknowledgements

This work was supported in part by grant TIN2010-20590-C02-01 from the “Ministerio de Ciencia e Innovación” of the Spanish Government, and by grant CCF-0811485 from the NSF.

References

