
Computational Aesthetics in Graphics, Visualization and Imaging (2005)
L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors)

An Information-Theoretic Framework for Image Complexity

J. Rigau, M. Feixas, and M. Sbert

Institut d’Informàtica i Aplicacions, Universitat de Girona, Spain

Abstract
In this paper, we introduce a new information-theoretic approach to study the complexity of an image. The new
framework we present here is based on considering the information channel that goes from the histogram to the
regions of the partitioned image, maximizing the mutual information. Image complexity has been related to the
entropy of the image intensity histogram. This disregards the spatial distribution of pixels, as well as the fact that a
complexity measure must take into account at what level one wants to describe an object. We define the complexity
by using two measures which take into account the level at which the image is considered. One is the number of
partitioning regions needed to extract a given ratio of information from the image. The other is the compositional
complexity given by the Jensen-Shannon divergence of the partitioned image.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computing Methodologies]: Computer Graph-
icsPicture/Image Generation; I.4.0 [Computing Methodologies]: Image Processing and Computer VisionImage
Processing Software; I.4.6 [Computing Methodologies]: Image Processing and Computer VisionSegmentation

1. Introduction

In this paper, we introduce a new framework based on in-
formation theory and image segmentation to study the com-
plexity of an image. Different authors have established a
relationship between aesthetics and complexity. In 1928,
G.D. Birkhoff introduced the concept of the aesthetic mea-
sure, defined as the ratio between order and complexity
[Bir33, Bir50]. The complexity is roughly the number of el-
ements that the image consists of and the order is a measure
for the number of regularities found in the image [SB93].
Using information theory, M. Bense transformed Birkhoff’s
measure into an informational measure: redundance divided
by statistical information. To compute the complexity, he in-
troduced the assumption that an input pattern can always
be described as a two dimensional grid of discrete symbols
from a pre-defined repertoire. On the other hand, he ob-
served that order corresponds to the possibility of perceiving
large structures [Ben65, SB93]. A. Moles held that an aes-
thetic measure is closely related to image complexity, and
based his measure of image complexity on information the-
ory [Mol71,MC98]. P. Machado and A. Cardoso established
that an aesthetic visual measure depends on two factors: pro-
cessing complexity and image complexity [MC98]. They
consider that images that are simultaneously visually com-
plex and easy to process are the images that have a higher

aesthetic value. From the above discussed works, it appears
that complexity is at the core of aesthetics. With the guide-
line that understanding complexity can shed light on aesthet-
ics, we will explore image complexity from an information-
theoretic perspective.

Image complexity has also been related to entropy of the
image intensity histogram. However, this measure does not
take into account the spatial distribution of pixels, neither
the fact that a complexity measure must take into account
at what level one wants to describe an object. For instance,
a random sequence requires a long description if all details
are to be described, but a very short one if a rough picture is
required [Li97].

In image processing, an image is segmented by grouping
the image’s pixels into units that are homogeneous in respect
to one or more characteristics, or features. Segmentation of
nontrivial images is one of the most difficult tasks in im-
age processing. Image segmentation algorithms are gener-
ally based on one of two basic properties of intensity val-
ues: discontinuity and similarity. In the first category, the
approach is to partition the image based on abrupt changes
in intensity, such as edges in an image. The principal ap-
proaches in the second category are based in partitioning an
image into regions that are similar according to a set of pre-
defined criteria. Thresholding, region growing, and region
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(a) Baboon (b) Earth rise (c) Flowers (d) Lena (e) NY (f ) Peppers

Figure 1: In your opinion, how complex are these images?

splitting and merging are examples of methods in this cate-
gory [BB82, GW02].

This paper is organized as follows. In Section 2, we
present an algorithm which splits an image in relatively ho-
mogeneous regions using a binary space partition (BSP) or a
quad-tree. In Section 3, complexity is defined by using two
measures which take into account the level at which the im-
age is considered. Finally, in Section 4, we present our con-
clusions and future research.

2. Previous Work

In this section, the most fundamental definitions and inequal-
ities of information theory [CT91] are reviewed. In addition,
the meaning of complexity and its diverse interpretations are
presented.

2.1. Information Theory

2.1.1. Entropy and Mutual Information

The Shannon entropy H(X) of a discrete random variable X
with values in the set X = {x1,x2, . . . ,xn} is defined as

H(X) = −
n

∑
i=1

pi log pi, (1)

where n = |X |, pi = Pr[X = xi] for i∈{1, . . . ,n}. As − log pi
represents the information associated with the result xi, the
entropy gives us the average information or uncertainty of
a random variable. The logarithms are taken in base 2 and
entropy is expressed in bits. We use the convention that
0 log0 = 0. We can use interchangeably the notation H(X)
or H(p) for the entropy, where p = {p1, p2, . . . , pn} is the
corresponding probability distribution.

If we consider another random variable Y with marginal
probability distribution q, corresponding to values in the set
Y = {y1,y2, . . . ,ym}, the conditional entropy is defined as

H(X |Y ) = −
m

∑
j=1

n

∑
i=1

pi j log pi| j, (2)

where m = |Y| and pi| j = Pr[X = ai|Y = b j] is the condi-
tional probability. H(X |Y ) corresponds to the uncertainty in
the channel input from the receiver’s point of view, and vice
versa for H(Y |X). Note that in general H(X |Y ) 6= H(Y |X)
and H(X) ≥ H(X |Y ) ≥ 0.

The mutual information (MI) between two random vari-
ables X and Y is defined as

I(X ,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X)

=
n

∑
i=1

m

∑
j=1

pi j log
pi j

piq j
, (3)

pi j = Pr[X = xi,Y = y j] is the joint probability. Mutual in-
formation represents the amount of information that one ran-
dom variable, the output of the channel, contains about a
second random variable, the input of the channel, and vice
versa. I(X ,Y ) is a measure of the shared information or de-
pendence between X and Y .

2.1.2. Basic Inequalities

The following inequalities are fundamental to develop the
most basic ideas in this paper.

2.1.2.1. Jensen’s Inequality If f is a convex function on
the interval [a,b], then

n

∑
i=1

λi f (xi)− f

(
n

∑
i=1

λixi

)
≥ 0 , (4)

where 0≤ λ≤ 1, ∑n
i=1 λi = 1, and xi ∈ [a,b]. If f is a concave

function, the inequality is reversed. Hence, if f is substituted
by the Shannon entropy, which is a concave function, we
obtain the Jensen-Shannon divergence [BR82]:

J({Πi} : {πi}) = H(
n

∑
i=1

πiΠi)−
n

∑
i=1

πiH(Πi) ≥ 0, (5)

where Π1,Π2, . . . ,Πn are a set of probability distributions
and π1,π2, . . . ,πn are the priori probabilities or weights,
fulfilling ∑n

i=1 πi = 1. The Jensen-Shannon divergence co-
incides with I(X ,Y ) when {πi} is the marginal probabil-
ity distribution {pi} of X and {Πi} are the rows {Pi} of
the conditional probability matrix of the channel, i.e., Pi =
(p1|i, p2|i, . . . , pm|i).

2.1.2.2. Data processing inequality If X → Y → Z is a
Markov chain, i.e., p(x,y,z) = p(x)p(y|x)p(z|y), then

I(X ,Y ) ≥ I(X ,Z). (6)

This inequality demonstrates that no processing of Y , de-
terministic or random, can increase the information that Y
contains about X [CT91].
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2.1.2.3. Fano’s inequality Suppose we have two corre-
lated random variables X and Y and we wish to measure the
probability of error in guessing X from the knowledge of Y .
Fano’s inequality gives us a tight lower bound on this error
probability in terms of the conditional entropy H(X |Y ). As
H(X |Y ) is zero if and only if X is a function of Y , we can
estimate X from Y with zero probability of error if and only
if H(X |Y ) = 0. Intuitively, we expect to be able to estimate
X with a low probability of error if and only if H(X |Y ) is
small [CT91].

If X and Y have the joint distribution p(x,y) = p(x)p(y|x),
from Y we calculate a function g(Y ) = X̃ which is an esti-
mate of X . The probability of error is defined by

Pe = Pr[X̃ 6= X ] (7)

and the Fano’s inequality is given by H(X |Y ) ≤ H(Pe) +
Pe log(n−1) or equivalently by

I(X ,Y ) ≥ H(X)−H(Pe)−Pe log(n−1), (8)

where H(Pe) is the binary entropy from {Pe,1−Pe}. Thus,
Fano’s inequality bounds the probability that X̃ 6= X .

2.2. Complexity

In the last two decades, the study of complexity has be-
come a very active research area in many different fields (au-
tomata, information theory, computer science, physics, biol-
ogy, neuro-science, etc.) [BP97]. But, what is complexity?
Webster’s dictionary (1986) defines a complex object to be
’an arrangement of parts, so intricate as to be hard to under-
stand or deal with.’ According to W. Li’s, the meaning of
this quantity should be very close to certain measures of dif-
ficulty concerning the object or the system in question: the
difficulty in constructing an object, the difficulty in describ-
ing a system, the difficulty in reaching a goal, the difficulty
in performing a task, and so on [Li91]. There are many defi-
nitions of complexity [Gra86, Li91, BP97] corresponding to
the different ways of quantifying these difficulties.

A list of complexity measures provided by Seth
Lloyd [Llo02] is grouped under three questions: how hard is
it to describe, how hard is it to create, and what is its degree
of organization? In the first group, entropy is widely applica-
ble for indicating randomness. It also measures uncertainty,
ignorance, surprise, or information. In the second group, the
computational complexity quantifies the amount of compu-
tational resources (usually time or space) needed to solve a
problem [HU79]. Finally, in the third group, mutual informa-
tion expresses the concept of complexity that quantifies the
degree of structure or correlation of a system [Li91, FC98]
or the amount of information shared between the parts of a
system as a result of this organizational structure.

To our knowledge, the only framework existing until now
dealing with image complexity is defined in [PS90], which
deals with comparing the performance of ATR applications.

In this context, image complexity is defined as a measure of
the inherent difficulty of finding a true target in a given im-
age. Such a metric should predict the performance of a large
class of ATRs on diverse imagery, without advanced knowl-
edge of the targets. A split and merge segmentation algo-
rithm is first applied that partitions an image into compact
regions of uniform gray-level, no larger than the expected
target size. Recursive thresholding determines the splits. Af-
ter the segmentation procedure is applied, the target simi-
larity of each region is estimated. The distribution of this
similarity is taken as a basis for complexity measurement.
For instance, if there are many regions with target similarity
near the maximum the image is relatively complex. Three
complexity measures are then given. The first is the number
of regions whose target-similarity exceeds a given threshold,
the second measures the distance from the body of the dis-
tribution to the most significant outlier, and the third is the
weighted average of the distance to all outliers.

→

Figure 2: Input and output distributions for the partitioning
of channel.

3. Method

Given an image with N pixels and an intensity histogram
with ni pixels in bin i, we define a discrete information chan-
nel where input X represents the bins of the histogram, with
probability distribution {pi} = { ni

N }, output Y the pixel-to-
pixel image partition, with uniform distribution {q j}= { 1

N },
and conditional probability {p j|i} of the channel is the tran-
sition probability from bin i of the histogram to pixel j of
the image [RFS04]. This information channel can be repre-
sented by

X −→ Y (9)

{pi}
{p j|i}
−→ {q j}

As we have seen in Section 2.1.1, mutual information
I(X ,Y ) is a measure of the dependence or shared information
between X and Y . It can be seen that in the previous chan-
nel (9), given a pixel, there is no uncertainty about the cor-
responding bin of the histogram, or equivalently I(X ,Y ) =
H(X). From the data processing inequality (6), any cluster-
ing over X or Y will reduce I(X ,Y ).

An information channel can be defined for each color
component of an image. All the algorithms presented in this
paper can be applied to each channel component of a color
system.
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(a.i) Pe = 0.8 (b.i) Pe = 0.6 (c.i) Pe = 0.4 (d.i) Pe = 0.2

(a.ii) MIR = 0.2 (b.ii) MIR = 0.4 (c.ii) MIR = 0.6 (d.ii) MIR = 0.8

Figure 3: Lena image with luminance Y709 for differents values of Pe (i) and MIR (ii). The (RMSE, PSNR) values for (i) are
(45.47, 14.66), (30.02, 18.27), (14.03, 24.88), and (8.21, 29.54), respectively. For (ii) we have (32.98, 17.45), (16.23, 23.61),
(9.71, 28.07), and (6.25, 31.90), respectively.

(a) R (b) G (c) B (d) RGB

Figure 4: Lena image in RGB system with Pe = 0.4. We obtain (a) 1835 (r = 0.70), (b) 3692 (r = 1.41), and (c) 4179 (r = 1.57)
regions. The merging image (d) has RMSE=13.20 and PSNR=25.32.

(a) BSP (r = 0.010, MIR = 42.34) (b) Quad-tree (r = 0.010, MIR = 39.10) (c) Quad-tree (r = 0.014, MIR = 42.34)

Figure 5: BSP vs quad-tree splitting for NY image (Fig. 1.e) where (a) and (b) have 5002 regions and (c) 6859. The values of
(RMSE, PSNR) for each image are (27.43, 19.37), (30.72, 18.38), and (29.59, 18.71), respectively.
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3.1. Image Partitioning

In this section, we present a greedy algorithm which parti-
tions an image in quasi-homogeneous regions. The optimal
partitioning algorithm is NP-complete. To do this partition, a
natural approach could consider the above channel (9) as the
starting point for the image partitioning, designing a pixel
clustering algorithm which minimizes the loss of MI. This
process can be described by a Markov chain, X → Y → Ŷ ,
where Ŷ = f (Y ) represents a clustering of Y .

However, due to the computational cost of this algorithm,
a completely opposite strategy has been adopted: a top-down
splitting algorithm takes the full image as the unique initial
partition and progressively subdivides it with vertical or hor-
izontal lines (BSP) chosen according to the maximum MI
gain for each partitioning step. Note that other types of lines
could be used, obtaining a varied polygonal subdivision. Our
splitting process is represented over the channel (see Fig. 2)

X −→ Ŷ . (10)

The channel varies at each partition step because the num-
ber of regions is increased and, consequently, the marginal
probabilities of Ŷ and the conditional probabilities of Ŷ over
X also change. This process can be interpreted in the fol-
lowing way: the choice of the partition which maximizes the
MI increases the chances of guessing the intensity of a pixel
chosen randomly from the knowledge of the region it per-
tains to.

The algorithm proposed here generates a partitioning tree
for a given probability of error Pe by maximizing the mutual
information gain at each partitioning step. This algorithm is
based on Fano’s inequality and was introduced by Sethi and
Sarvarayudu [SS82] in the context of pattern recognition.
Similar algorithms with different split criteria have been
used in learning [KLV98] and DNA segmentation [BOR99].

Given the error probability Pe allowed in partitioning,
Fano’s inequality (8) provides us with a lower bound for the
gain of mutual information. Taking the equality, we obtain
the minimum value of MI needed in the partitioning algo-
rithm for a given probability of error:

Imin(X ,Y ) = H(X)−H(Pe)−Pe log(B−1), (11)

where B is the number of bins of the histogram. Note that
Imin(X ,Y ) is calculated from the initial channel (9).

The partitioning process can then be seen as follows. At
each partitioning step, the tree acquires information from the
original image. The total I(X ,Ŷ ) captured by the tree can be
obtained adding up the mutual information available at the
non-terminal nodes of the tree weighted by the relative area
of the region, i.e., the relative number of pixels, correspond-
ing to each node. The mutual information Ii of an interior
node i is only the information gained with its corresponding
splitting. Thus, the total mutual information acquired in the

process is given by

I(X ,Ŷ ) =
T

∑
i=1

ni

N
Ii, (12)

where T is the number of non-terminal nodes and ni is the
number of pixels corresponding to node i. It is important
to stress that this process of extracting information enables
us to decide locally which is the best partition. Partitioning
stops when I(X ,Ŷ ) ≥ Imin(X ,Y ). Alternatively, a predefined
ratio of mutual information (MIR) can be given as a stopping
criterion. Note that I(X ,Ŷ ) is the MI of the channel obtained
at the end of the process.

This process can also be visualized from equation

H(X) = I(X ,Ŷ )+H(X |Ŷ ), (13)

where the acquisition of information increases I(X , Ŷ ) and
decreases H(X |Ŷ ), producing a reduction of uncertainty due
to the equalization of the regions. Observe that the maximum
mutual information that can be achieved is H(X).

3.2. Results

Throughout this paper, the color channels used are Y709, R,
G, and B, although any other color space could be used with
our algorithms. Also, the regions in all the partitioned im-
ages are shown with their average intensity. The default par-
tition tree is BSP and the main test image is Lena in Fig. 1.d.

The performance of our partitioning approach is shown in
Figures 3-6. A set of partitions over the test image, shown
in Fig. 3, illustrates the behavior of the BSP partitioning al-
gorithm. The first row (i) has been obtained using the er-
ror probability Pe stopping criterion and the second (ii) the
MIR criterion. The behavior of both root mean square error
(RMSE) and peak signal-to-noise ratio (PSNR) values is as
expected, decreasing the RMSE (respectively increasing the
PSNR) with decreasing Pe (respectively increasing MIR).

The partition of the test image in the RGB space for er-
ror probability Pe = 0.4 is shown in Fig. 4. Each channel is
independently partitioned and the merging of Fig. 4.a-c is
shown in Fig. 4.d. The ratio r = R

N , where R is the number
of regions obtained and N is the number of pixels, is shown
in this figure.

The quality of the two splitting variants, BSP and quad-
tree, is analyzed in Fig. 5. Observe that, for a given error
probability, the quad-tree solution has more partitions than
the BSP one. In general, the quad-tree needs more regions
than the BSP to extract the same quantity of information. In
addition, for the same MIR, the quality of the BSP option
is better than for the quad-tree one. Observe in Fig. 5 that
both RMSE and PSNR values are ranked accordingly with
the visual quality.

The ratio r obtained from the processing of the six images
in Fig. 1 is presented in Fig. 6. Observe that, for instance, the
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Baboon image (Fig. 1.a) requires 7.45 times more regions
than the Earth rise image (Fig. 1.b) for the same MIR = 0.9.

Figure 6: Ratio of the number of regions r with respect to
MIR for the images of Fig. 1 with luminance Y709.

4. Image Complexity

4.1. Complexity Measures

According to Li [Li97], a measure of complexity of an object
is a measure of complexity of a task performed on that ob-
ject. As we have seen in Sec. 2.2, the concept of complexity
is closely related to the difficulty of understanding an object,
which, at the same time, is related to the accuracy of the
description of it [BP97]. On the other hand, the measure of
complexity must take into account at what level one wants
to describe the object. Thus, we can describe every detail
of an object or only its non-random regularities [Li97]. Ac-
cording to this, an important group of complexity measures
tries to capture the organizational structure or the degree of
regularity versus randomness. In this section, we are going
to present two complexity measures rooted in these criteria
and based on image partitioning.

To introduce our complexity framework, we will reinter-
pret the previous partitioning approach from the point of
view of the maximization of the Jensen-Shannon divergence.
This perspective, although equivalent to the maximization of
mutual information, is more appropriate to deal with image
complexity and has been introduced in the study of the DNA
complexity [RBO98].

First, we define a complexity measure, the Jensen-
Shannon divergence, which expresses the image composi-
tional complexity (ICC) of an image. This measure can be
interpreted as the spatial heterogeneity of an image from
a given partition. From (5), the Jensen-Shannon divergence
applied to an image is given by

JS(X ,Ŷ ) = H(X)−
R

∑
i=1

ni

N
H(Xi)

= H(X)−H(X |Ŷ ) = I(X ,Ŷ ) (14)

where R is the number of regions of the image, Xi is the
random variable associated with region i, representing the
intensity histogram of this region, ni is the number of pixels
of region i, and N is the total number of pixels of the image.
Observe that for the information channel (10), the Jensen-
Shannon divergence coincides with the MI. The composi-
tional complexity (14) fullfils the following properties:

• It increases with a finer partition.
• It is null for a single partition.
• For a random image and a coarse resolution it would be

close to 0.
• For a random image and the finest resolution it would be

maximum and equal to H(X).

Thus, given an image partition, we can express the hetero-
geneity of an image using the JS-divergence applied to the
probability distribution of each region.

We can also ask which partition maximizes the composi-
tional complexity, for a given number of regions. As we have
seen in Sec. 3, this partition should extract the maximum in-
formation of the image and create the maximum heterogene-
ity between the generated parts. Finding this partition is an
NP-complete problem. We have approached the solution to
this problem in Sec. 3 using a greedy algorithm.

Our second measure is the number of needed regions in
the partitioned image to extract a given ratio of information.
It is related to the complexity in describing an image, and
depends on the accuracy level given by Pe or MIR. The jus-
tification for our measure is that the number of regions is
the number of leaves of the tree created in the partitioning
process. The coding of this tree (or equivalently the descrip-
tion of the image) will be clearly dependent on this number.
This is further justified by taking into account that our algo-
rithm tries to create homogeneous regions with the minimum
splitting. In this case, the error probability of the channel is
interpreted as the compression error and thus the number of
regions is also related to the difficulty of compression.

4.2. Results

We use a uniform partition to test the compositional com-
plexity on the images in Fig. 1. The results obtained are
shown in Fig. 7 for the number of partitions running from
2× 2 to the number of pixels in the respective images. We
observe that the relative ordering of the complexities de-
pends on the resolution level (number of partitions). For in-
stance, the earth rise image appears to be the most complex
at resolution 4×4 while the wild flowers appears as the least
one. However, this behavior is reversed at high resolution.

In Figure 6 we can analyze the behavior of the second
proposed complexity measure. While the lines in the graph
in Fig 7 cross themselves, the ones in Figure 6 keep a regular
ordering. Observe their exponential growing with MIR that
is due to the increasing cost of the MI extraction. It is im-
portant to note that for MIR = 0.5 we obtain a good quality
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Figure 7: Compositional complexity ICC over the number of
regions R of the partitioned images of Fig. 1 with luminance
Y709. The number of partitions goes from 2×2 to the number
of pixels N in the respective images.

with a few number of regions. With respect to the number of
regions, the most complex image appears to be the Baboon
and the least one is the Earth rise.

It can also be shown (Figure 8) that while blurring an im-
age will cause a loss of complexity, increasing the contrast
causes the opposite effect. For instance, for a MIR = 1 and
the luminance channel Y709, the contrasted Lena image of
Figure 8.b (r = 91.7) needs more regions than the original
Lena image (r = 89.4) and the blurred image of Figure 8.a
(r = 48.3) needs less regions.

(a) (b)

Figure 8: Lena image: (a) Out of focus and (b) more con-
trasted than its original.

5. Conclusions and Future Research

We have introduced in this paper a new framework to study
the complexity of an image, based on information theory.
The framework is based on the segmentation of an image.
We defined a generic information channel that takes an im-
age and its histogram as its input and outputs a partitioned
image. The channel evolves with the output, which at the be-
ginning is formed by the image as a single region, the root
of the partitioning tree. The mutual information between the

input and output variables drives the partitioning so that the
next splitting is chosen to maximize the gain in mutual in-
formation. This process stops when the accumulated gain in
mutual information ensures, by the data processing inequal-
ity, that we have reached a given error probability. At the end
of the process we have a segmented image that provides us
with two complexity measures. The first represents the com-
positional complexity, and is given by the Jensen-Shannon
divergence of the partitioned image. The second is the num-
ber of regions in which the image was partitioned for a given
information gain, and gives us the difficulty in describing the
image.

In our future work, the relationship between image com-
plexity and aesthetic measures will be further investigated in
line with the work started by Birkhoff. Short and long cor-
relations in an image will be studied, and also their relation
with image compression.
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