
Fast Techniques for Mosaic Rendering

G. Di Blasi, G. Gallo, M. Petralia

D.M.I., University of Catania

Abstract
Art often provides valuable hints for technological innovations especially in the field of
Image Processing and Computer Graphics. In this paper we survey in an unified framework
three methods to transform a raster input image into good quality mosaics: artificial
mosaic, photomosaic and puzzle image mosaic. The common and different ideas among
these methods are reported. The main goal of all the methods is to produce good results in
an acceptable time and without user intervention. Examples reported in the paper show
how the right mixture of mathematical tools may lead to impressive results.

Categories and Subject Descriptors (according to ACM CCS): J.5 [ARTS AND HUMANITIES]:
Fine arts

1. Introduction
The creation of digital mosaics of artistic

quality is one of the challenges of the Computer
Graphics and is one of the most recent research
directions in the field of Non- Photorealistic
Rendering. Digital mosaics are illustrations
composed by a collection of small images called
“tile”. The tiles “tessellate” a source picture in
order to reproduce it in a “mosaic - like” style.
Starting from the same source image it is
possible to create different kind of digital
mosaics depending on the choice of the tile
dataset and the imposed constraints to
positioning and deformations.

The first step to solve the problem of the
creation of digital mosaics is to reformulate the
problem itself into a mathematical framework. In
particular it is possible to put the mosaic
construction from a source raster image in
terms of a mathematical optimization problem
as follows:

Given a rectangular region I2 in the plane R2,
a tile dataset and a set of constraints, find N
sites Pi(xi, y i) in I2 and place N tiles, one at
each Pi, such that all tiles are disjoint, the
area they cover is maximized and the
constraints are verified as much as possible.

The definition above is general and is suitable
for many applications even beyond Computer
Graphics field. Within this framework the
problem can be viewed as a particular case of
the “cover problem” or as a “search and
optimization problem”. The mosaic construction

as formulated above can also be regarded as a
“low- energy configuration of particles problem”.

In our case three different definitions can be
given to solve specific problems:

Artificial Mosaic - Given an image I2 in the
plane R2 and a vector field (x,y)Φ defined on
that region representing the edges of I2, find
N sites Pi(xi, y i) in I2 and place N rectangles,
one at each Pi, oriented with sides parallel to

(x,y),Φ such that all rectangles are disjoint,
the area they cover is maximized and each
tile is colored by a color which reproduces
the image portion covered by the tile.

Photomosaic - Given an image I2 in the plane
R2, a dataset of small rectangular images and
a regular rectangular grid of N cells, find N
tile images in the dataset and place them in
the grid such that each cell is covered by a
tile that “reminds” the image portion
covered by the tile.

Puzzle Image Mosaic - Given an image I2 in
the plane R2, a dataset of small irregular
images and an irregular grid of N cells, find
N tile images in the dataset and place them
in the grid such that the tiles are disjoint and
each cell is covered by a tile that “reminds”
the image portion covered by the tile.

Different solutions have been proposed to
solve the above problems in particular
respectively in [Hau01], [SH97] and [KP02] the
proposed solutions lead to good aesthetic

Computational Aesthetics in Graphics, Visualization and Imaging (2005)
L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors)

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

results. Unfortunately the required computa tion
time is often prohibitive and does not allow to
develop the above techniques as standard plug-
ins in a typical user - end software. Further user
intervention is needed to perform the task. For
these reasons in this paper we review three
recent techniques ([DG05a], [DP05a] and
[DGP05a]) to transform a raster input image into
good quality mosaic; these methods outperform
the previous ones in terms of computational
cost leading to good aesthetic results. Further no
user intervention is needed.

Each method introduces a novel idea (or a
new way to use an old idea) in the field of
Computer Graphics; in [DG05a] the concept of
“directional guidelines” is presented; this image
feature characterizes the semantic of the picture
that one wishes to render in mosaic. Directional
guidelines are related with the salient edges of
the image and it is, “per se”, an interesting and
challenging problem to automatically provide
them. In [DP05a] the Antipole strategy [CFP*04]
is used to speed up the photomosaic rendering
showing how this data structure is suitable to
solve NPR problems. Finally in [DGP05a] the
previous ideas are merged to produce good
quality puzzle image mosaic in an acceptable
computation time.

The rest of this paper is organized as follows:
in Section 2 we summarize a complete history of
digital mosaic, Section 3 explains the algorithm
to detect directional guideline and Section 4
shows how to use this result to obtain ancient
mosaics. In Section 5 we present the Antipole
strategy. Section 6 is devoted to present the
method to create photomosaic, while Section 7
presents the Puzzle Image Mosaic technique. In
Section 8 we show the experimental results.
Finally in Section 9 we suggest directions for
future work and research.

2. History of digital mosaic

Computer Graphics attempts to simulate
mosaics inscribe themselves into the broader
area of non- photorealistic rendering (NPR). In
this section we limit our review only to the
published works that explicitly name themselves
as “mosaic”. Although mosaics are a traditional
art form attempts to simulate them in the digital
realm are recent. Commercial image processing
software (the examples in Figure 1a and Figure
1b have been produced with Adobe Photoshop)
provide “mosaic filters” to obtain tessellated
images.

More sophisticated approaches try to adopt
smart strategies using computational geometry
together with image processing. Haeberli [Hae90]
used Voronoi diagrams, placing the sites at
random and filling each region with a color

sampled from the image. This approach
tessellates the image, but tile shapes are too
variable and do not attempt to follow edge
features (see Figure 1c). This technique is also
available in many user - end applications usually
under the name of “crystallization” and it
simulates the typical effect of some glass
windows in the churches. In [DHJN02] Dobashi
et al. reprised the Haeberli's idea obtaining good
results (see Figure 1d).

“Photomosaic” [SH97] transform an input
image into a rectangular grid of thumbnail
images (see Figure 1e). In this approach the
algorithm searches in a large database of images
for one that approximates a block of pixels in
the main image. The resulting effect is very
impressive, but even in this case no edge
features are respected. The idea was
successively extended by Klein et al. [KGFC02] to
videos obtaining a video mosaic. Recently Di
Blasi and Petralia [DP05a] presented an approach
to speed up the search process based on the
Antipole strategy [CFP*04].

Hausner [Hau01] obtains very good results
using centroidal Voronoi diagrams, edge
features, L1 (Manhattan) distance and graphic
hardware acceleration to optimize the results
(Figure 1f). A very advanced approach to the
rendering of traditional mosaics is presented in
[EW03]. This technique is based on offset curves
that get trimmed - off the self intersecting
segments with the guidance of Voronoi
diagrams. The algorithm requires a
mathematical description, as B- splines, of the
edges and allows a very precise tile placement
(Figure 1g). Other bonus of this approach is the
use of variable size tiles. Although the results
are very good the technique seems limited to the
case of a single, user - selected and close edge
curve. Another approach for the creation of
ancient mosaics is presented in [DG05a]; this
approach is based on directional guidelines,
distance transform, mathematical tools and
century proved ideas from mosaicists and leads
to impressive results (Figure 1h).

Kim and Pellacini [KP02] introduce a
mosaicing technique where image tiles of
arbitrary shapes are used to compose the final
picture. The idea is quite similar to the
photomosaic, but the final effect is very
different and interesting (Figure 1 i). Another
approach for the creation of the same kind of
mosaics is presented in [DGP05a]; this approach
is based again on the Antipole strategy and leads
to impressive results in an acceptable
computation time (Figure 1 j).

For sake of completeness we also cite
“Escherization” [KS00], a technique that
produces tilings of the plane using slightly
distor ted version of an image (Figure 1k). It

c© The Eurographics Association 2005.

30

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

relies on symmetry groups and regular tilings. It
is very different from the other kind of methods
we reviewed above and it is aimed to the
production of a sophis ticated kind of aesthetic
effects different than mosaics.

a. Adobe
Photoshop

b. Adobe
Photoshop

c. Haeberli

d. Dobashi et
al.

e. photomosaic f. Hausner

g. Elber and
Wolberg h. Di Blasi and

Gallo

i. Jigsaw
Image Mosaic

j. Puzzle
Image Mosaic

k.
Escherization

effect

Figure 1 : Mosaic effects

3 Directional Guidelines Detection

In this section we will present a technique
that can be used to automatically detect the
directional guidelines of an image. To solve this
kind of problem the edge detection algorithms
available in literature (see for example [MG01])
are of little use, because here we are searching
for “directional guidelines”, which are perceptual
features not always identifiable with the
conventional edges especially in the case of

photographic images (see Figure 2). Observe that
what we call “directional guidelines” is strongly
related with Marr's primal sketch idea (see
[Mar82]).

a. The input image b. Edge obtained by the
algorithm proposed in

[Mee01]

c. Directional
guideline obtained by

our algorithm

d. Directional guideline
obtained manually

Figure 2 : Edge detection versus directional
guideline detection

The technique to compute guidelines is very
simple but effective. It works on the luminance
channel of an image and starts performing an
histogram equalization. It then convolves the
image with the origin- centered 2D Gaussian
function (=16σ):

This leads to a new image I1 (a smoothed
version of the original image). Let μ be the mean
value of I1 and let Σ be the variance value. It is
hence possible to compute the I2 image given by
the function:

The threshold value T has been chosen
because we have, by trial and error, obtained
with such a choice the best results in the
successive processing. Finally it convolves I2 with
a Laplace edge detector obtaining, after
removing isolated points, the directional
guidelines. Figure 3 visualizes the successive
steps of the algorithm.

G x , y = 1

22 e
−x 2 y2

2

I 2 x , y ={1 i f ∣I 1x , y −∣T ; w h er e T =

4

0 elsewhere

c© The Eurographics Association 2005.

31

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

a. The input image b. The equalized gray
scaled image

c. The segment image d. The directional
guidelines

Figure 3 : Directional Guidelines Detection

4. The Artificial Mosaic

We begin this Section with a more accurate
discussion of what the mosaicists do when they
create a ancient mosaic. Later we show how this
may be translated into an algorithm.

4.1 How the Mosaicists Work

To create a mosaic the artisans first outline
the shapes of the image they want to obtain,
next they fill the shapes with a sequence of
parallel (offset) curves and finally they place the
tiles along such curves. These concepts,
illustrated in any standard “mosaic producing”
handbook (see for example [Kin03], [Nit04]), are
clearly illustrated in Figure 4.

Figure 4 : How the mosaicists work (image from
[Tum05])

The first two steps of the creation of a
mosaic are very simple and usually do not
represents a problem for the mosaicists. The last
one is the more complex one, because
mosaicists have a limited set of tile shapes.
Usually only rectangular shapes are available, so
they must adapt (by cutting) the tiles to insert
them in the figure they are realizing. This
traditional approach to the problem together
with the commonly adopted solutions are very
clear observing again Figure 4.

4.2 How to Emulate the Mosaicists' Work

We now suppose to have an image and its
directional guidelines as input (Figure 5a and
Figure 5b). Using the directional guidelines we
evaluate for each pixel of the image the distance
transform [HS92], i.e. its minimum distance from
any guideline pixel, obtaining a matrix (dtM) that
is illustrated in Figure 5c (here nearest pixels are
white, farthest pixels are black and guideline
pixels are yellow). The use of the distance
transform in the field of NPR was previously
proposed by Gooch et al [GCS02], for a different
purpose.

Starting from the distance transform matrix
we can obtain another two matrices needed to
perform the final mosaicing: the gradient matrix
(gM) and the level line matrix (llM). These
matrices are computed as follows:

g M x , y =a rc t an
dtM x , y 1−dtM x , y−1
dtM x1 , y −dtM x−1 , y

llM x , y ={1 i f mo du le dtM x , y , 2⋅tSize= 0
2 i f mo du le dtM x , y , 2⋅tSize=tSize
0 elsewhere

where tSize is the user - selected size for the tiles.
The gM and llM matrices are illustrated in Figure
5d and Figure 5e (in Figure 5e, black pixels have
value 1, green pixels have value 2).
Observe that:
1. there is no need for the tiles to be square

they can have any aspect ratio; however only
one dimension, tSize , is required to compute
the llM matrix;

2. the function used to compute the llM matrix
can be easily adapted in order to prepare the
image to the accommodat ion of variable size
tiles as in [EW03].
We are now ready to place the tiles, initially

all of the same shape and size, using the pixels
in llM with value 2. Observe that such pixels
form chain- like sequences. Of course in the
process of placing the tiles their shape has to be
altered in order to resolve overlapping.

More precisely the algorithm proceeds as
follows:

c© The Eurographics Association 2005.

32

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

• while there are chains of pixels with value 2
not yet processed:
a. select a chain;
b. starting from an arbitrary pixel on it

“follow” the chain;
c. place new tiles at regular distances along

the path (the orientation of the tiles is
assigned using the gradient information
from matrix gM) .

The distance along the chain that separates
successive tiles is equal to sSize when tiles of
dimension tSizexsSize have been adopted.

a. The input image b. The directional
guidelines

c. The distance
transform matrix

d. The gradient matrix

e. The level line matrix

Figure 5 : The input of our algorithm and the
matrices used by the algorithm

If tiles of fixed size and shape are positioned
only according to the method described insofar
two main difficulties arise:
1. tiles may overlap;
2. a single tile may cover an area across the

“black pixels lines” (i.e. the pixels with value
1 in llM).
Both of these effects are unpleasant. In

particular the problem in 2 completely destroys
the guideline patterns and would result in

blurred images.
To address these difficulties we adopt a very

simple strategy. The overlapping of tiles is easily
detected by maintaining a boolean mask of
covered pixels. If a tile that we are trying to
place contains pixels already covered by
previously placed tiles we change the original
rectangular shape of the tile “cutting away” the
overlapping pixels (see Figure 6a and Figure 6b);
if a new tile crosses any “black pixel line” it is
trimmed against this line (see Figure 6c and
Figure 6d).

Note that until now our tiles have been
placed leaving no grout space.

Once the tile positioning and cutting phase
has been completely carried out a couple of
post - processing steps have to be performed in
order to achieve a pleasant aesthetic effect.

First, as it has been pointed earlier in the
paper, “grout spaces” between tiles are
importan t. To achieve the effect of cement
showing through tiles a downscaling of each tile
is done. This frees some pixels that will be
assigned a unique color for concrete under the
mosaic.

Second, for each tile we calculate a uniform
color equal to the color of the pixel
corresponding to its center in the source image.
Other choices may lead to different artistic
effects.

a. tile A has previously
placed and tile B is
about to be placed.
Triangle C is the set of
overlapping pixels

b. tile A is left
unchanged, the shape
of tile B is changed
“cutting away” triangle
C

c. tile A is about to be
placed; it crosses the
border l: region B is
beyond the border

d. tile A has been
trimmed against l:
region B has been cut
away

Figure 6 : How to cut the tiles

c© The Eurographics Association 2005.

33

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

5. The Antipole Clustering Strategy

The Antipole Tree Data Structure is suitable
for searches over large record sets embedded
into a metric space (X, d). Records are grouped
into clusters of bounded radius by an efficient
clustering algorithm: the Antipole Tree
Clustering [CFP*04]. The clustering algorithm
works in such a way that “far” elements lie in
different clusters. The algorithm is able to find a
pair (A , B) (called Antipole), such that A and B
are far apart, in linear time. Then, elements of
the set are partitioned according to their
proximity to one of the two Antipole endpoints.
This splitting procedure is repeated recursively
on each subset and it will produce a binary tree
whose leaves are the final clusters. The Antipole
Tree Data Structure leads to an efficient nearest
neighbor search. The search, starting from the
root, proceeds by following the path in the tree,
which guarantees to find the nearest cluster
centroid pruning the impossible branches. A
backtracking search explores the remaining
branches of the tree to assure a correct answer.
This results in a nearest neighbor search
procedure which is faster than the linear Nearest
Neighbor search.

6. Photomosaic

The algorithm can be ideally divided into two
different steps: database acquisition and
photomosaic creation. The following subsections
explain in detail these steps.

6.1 Database Acquisition

This first step acquires the database of
images and creates the Antipole data structure.
The acquisition is very simple: it partitions each
image of the database into 9 equal rectangles
arranged in a 3x3 grid and computes the RGB
mean values for each rectangle. This leads to a
vector x composed by 27 components (three RGB
components for each recta ngle). x is the feature
vector of the image in the data structure. When
all the images in the database have their own
feature vector the Antipole clustering can be
performed as explained in the previous section.
At the end of this step the Antipole tree is ready
for photomosaic creation. Note that, since this
process doesn' t depend on the input image, it
may be performed only once on the whole
database.

6.2 Photomosaic Creation

The photomosaic creation is very simple and
easy to explain in few steps. First it subdivides
the input image into a regular grid, then each

cell of the grid into another 3x3 sub- grid.
Second it computes the RGB mean values for
each sub - cell of the sub- grid. This leads to a
vector x composed by 27 components (three RGB
components for each sub- cell). x is the feature
vector of the cell and can be used to perform the
search in the Antipole tree. After performing the
best matching it resizes the selected tile to fit
and paint it over the cell. The concept of
minimum distance between equal tiles has been
implemented in order to improve the final result:
if the algorithm chooses a tile, then it cannot be
chosen again in its neighborhood (whenever this
is possible).

7. Puzzle Image Mosaic

7.1 Shape Similarity and Distance

In this subsection we describe how to map a
tile into the metric space X in order to create the
Antipole data structure. The mapping is very
simple: the characterizing features of a tile (for
this kind of problem) are its shape and colour.
The shape of a tile is composed by the pixels of
the image having a non- transparen t colour. In
our approach the colour value is not considered
in this step and it will be taken into account only
in a second moment.

There are many techniques to map a shape
into a metric space and to evaluate the distance
(similarity) between shapes (see for example
[LL00] and [SF00]). Here we use a simple but
effective method. First we evaluate the shape’s
center of mass. Then we subdivide the shape
into 90 segments, obtaining 90 vertices. Now we
compute the Euclidean distance of each vertex
from the center of mass and normalize the value
in [0,1]. The normalization is done in order to
make the distances “scale independent”. This
leads us to a vector x composed by 90
components. x is the feature vector of the image
in the data structure. The shapes distance is
computed evaluating the Euclidean distance
between feature vectors. The computation takes
into account all the possible shifting between the
two arrays (that is all the possible mutual
rotations of the two shapes). This operation is
done in order to make the distance “rotation
independent” and “starting point independent”.
Since a shape is subdivided in 90 segments a
rotation error of at most 4 degree (π/45
radians) is commit ted: we consider this error
acceptable for our purposes.

When all the images in the database have
their own feature vector the Antipole clustering
can be performed as explained in the previous
Section. At the end of this step the Antipole tree
is ready for PIM creation. Note that, since this
process does not depend on the source image, it

c© The Eurographics Association 2005.

34

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

may be performed only once on the whole
database.

7.2 Merging All Together

In this Subsection we describe how to obtain
the final effect. Figure 7 shows the main steps of
our algorithm.

We start with an input image (Figure 7a), in
the first step the algorithm performs the
directional guideline detection (as described in
Section 3) and the morphological operation
“dilate” obtaining the image G shown in Figure
7b (the dilatation is performed only for better
aesthetic results and it does not affect the
subsequent steps).

The second step computes a Voronoi diagram
V of the same size of the input image; the set of
points is randomly chosen and its cardinality is
inversely proportional to the median size of the
Dirichlet Regions (see Figure 7c).

The third step merges the images G and V
obtaining the image R shown in Figure 7d .

a. The input image b. The dilated
directional guidelines

c. The Voronoi Diagram d. The final subdivision

Figure 7 : The main steps of the PIM algorithm

Now the most important step of the
algorithm takes place. For each region Ri of R, we
perform the algorithm described in Subsection
7.1 in order to obtain the feature vector x of Ri. x
can hence be used to perform the search in the
Antipole tree. After performing the best
matching we:
1. perform a simple colour shifting in order to

align the median colour of the selected tile
with the median colour of Ri;

2. rotate and resize the tile to fit and paint it
over the region.

8. Experimental Results and Examples

To illustrate the effectiveness of the
proposed techniques we report some examples
and quantitative results. The algorithms has
been implemented in Java2 Standard Edition
1.4.2 and all experiments have been carried out
on a PC Athlon XP- M 1800+, 192MB RAM, with
Windows XP Home Edition. To allow the reader
to directly test the quality of the algorithms
three applets are free available respectively at
the URLs [DG05b], [DP05b] and [DGP05b] at the
same URLs are also available for download the
JGimp plug- ins and the Java applications. Some
examples of the proposed algorithms are
reported in Figures 8 and 9.

Timing results (Table 1 , Table 2 and Table 3)
show that the algorithms are fast enough to be
used as a plug- in in a typical user - end software.
Note that the total mean time in Table 2 and
Table 3 takes into account the Database
Acquisition Mean Time (3.475 sec. for
photomosaic and 176.384 sec. for PIM): this
operation may be executed only once on the
whole database.

9. Conclusions & Future work

In this paper we reviewed three new methods
to speed - up the creation of digital mosaics.
Experimental results show the soundness of the
algorithms.

There are several ways to improve the
aesthetic of the results and several ideas started
from these works:
1. automatic optimized choices of tile scale

relative to each input image is an open
problem worth of further investigations;

2. generalization of the “mosaicists ' heuristic”
to other kind of primitive based non
photorealistic image processing seems
possible and quite promising;

3. the extension of mosaic technique to other
kind of mosaics as proposed in [EW03];

4. the use of Antipole tree or other data
structures in other fields of non -
photorealistic rendering to speed - up the
rendering process;

5. a different method to better find the
directional guidelines is an important
research investigation issue;

6. extension of the proposed methods for
mosaic rendering of 3D surface is probably
the most exciting direction of research.

c© The Eurographics Association 2005.

35

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

References

[CFP*04] Cantone D., Ferro A., Pulvirenti A.,
Reforgiato Recupero D., Shasha D., Antipole
Tree indexing to support range search and K-
nearest neighbor search in metric spaces .
Accepted to IEEE Transactions on Knowledge
and Data Engineering, 2004

[DG05a] Di Blasi G., Gallo G., Artificial Mosaic .
The Visual Computer 21, pp. 373- 383

[DG05b] Di Blasi G, Gallo G., the Artificial Mosaic
Creator applet
www.dmi.unict.it / ~g diblasi / mosaic / m osaic.ht
ml , JGimp plug- in and Java application
www.dmi.unict.it / ~g diblasi / mosaic / m osaic.jar ,
2005

[DP05a] Di Blasi G., Petralia M., Fast Photomosaic .
In poster proceedings of ACM/WSCG2005

[DP05b] Di Blasi G., Petralia M., The Photomosaic
Creator applet.
www.dmi.unict.it / ~g diblasi / pho to m osaic / ph o t
omosaic.html JGimp plug- in and Java
application
www.dmi.unict.it / ~g diblasi / pho to m osaic / ph o t
omosaic.jar , 2005

[DGP05a] Di Blasi G., Gallo G., Petralia M., Puzzle
Image Mosaic . In proceedings of IASTED
VIIP2005

[DGP05b] Di Blasi G., Gallo G., Petralia M., the
Puzzle Image Mosaic Creator applet
www.dmi.unict.it / ~g diblasi /PIM/PIM.html ,
JGimp plug- in and Java application
www.dmi.unict.it / ~g diblasi /PIM/PIM.jar , 2005

[DHJN02] Dobashi J., Haga T., Johan H., Nishita
T., A Method for Creating Mosaic Images Using
Voronoi Diagrams . In proceedings of
Eurographics2002

[EW03] Elber E., Wolberg G., Rendering
Traditional Mosaics . The Visual Computer 19,
pp. 67- 78

[GCS02] Gooch B., Coombe G., Shirley P., Artistic
Vision: Painterly Rendering using Computer
Vision Techniques . In proceedings of
NPAR2002, pp. 83- 90

[Hae90] Haeberli P., Paint by Numbers . In
proceedings of SIGGRAPH1990, pp. 207- 214

[HS92] Haralick R., Shapiro L., Computer and
Robot Vision - Vol. 1. Addison - Wesley
Publishing Company, 1992

[Hau01] Hausner A., Simulating Decorative
Mosaics . In proceedings of SIGGRAPH2001, pp.
573- 580

[Kin03] King S., Mosaic Techniques & Traditions:
Projects & Designs from Around the World .
Sterling, 2003

[KGFC02] Klein A.W., Grant T., Finkelstein A.,
Cohen M.F., Video Mosaics . In proceedings of
NPAR2002, pp. 21- 28

[KS00] Kaplan C., Salesin D., Escherization . In
proceedings of SIGGRAPH2000, pp. 499- 510

[KP02] Kim J., Pellacini F., Jigsaw Image Mosaics .
In proceedings of SIGGRAPH2002, pp. 657- 664

[LL00] Latecki L.J., Lakaèmper R., Shape
Similarity Measure Based on Correspondence of
Visual Parts . IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1185-
1190, October 2000

[Mar82] Marr D., Vision . W.H. Freeman and
Company, New York, 1982

[MG01] Meer P., Georgescu B., Edge Detection
with Embedded Confidence . Transaction on
Pattern Analysis and Machine Intelligence 23
(12), pp. 1351- 1365, 2001

[Nit04] Nittolo F., Il mosaico.
http: / /www.ravennar te.it / ra r te -
ing/mosaico.htm , 2004

[SF00] Sako Y., Fujimura K., Shape Similarity by
Homotopic Deformation . The Visual Computer,
pages 47- 61, February 2000

[SH97] Silvers R., Hawley M., Photomosaics . Henry
Holt, New York, 1997

[Tum05] Tumminello S., Descrizione e Tecnica
utilizzata nei mosaici del Duomo di Monreale.
http: / /www.parrocchie.it /monreale / s scrocifiss
o/italia /mosaici.htm , 2005

Size

Guideline
Mean

Detection
Time (sec.)

Mosaic
Mean Time

(sec.)

Total
Mean
Time
(sec.)

600x600 1.402 10.485 11.887

800x600 1.402 12.689 14.091

593x886 1.602 15.182 16.784

1024x768 2.243 22.142 24.385

Table 1 : Timing results of artificial mosaic

Size Total Mean
Time (sec.)

Size Total
Mean
Time
(sec.)

275x276 6.701 640x480 16.044

320x240 5.980 600x600 16.053

400x327 7.511 800x600 19.058

400x486 10.265 593x886 24.786

407x550 11.176 970x676 25.614

512x512 12.459 1024x768 32.487

Table 2 : Timing results of photomosaic (1417
tiles, tile size of 10x10 pixels, minimu m distance
of 5 tiles)

c© The Eurographics Association 2005.

36

http://www.dmi.unict.it/~gdiblasi/mosaic/mosaic.html
http://www.dmi.unict.it/~gdiblasi/mosaic/mosaic.html
http://www.parrocchie.it/monreale/sscrocifisso/italia/mosaici.htm
http://www.parrocchie.it/monreale/sscrocifisso/italia/mosaici.htm
http://www.ravennarte.it/rarte-ing/mosaico.htm
http://www.ravennarte.it/rarte-ing/mosaico.htm
file:///Users/giampo76/Giampo/dottorato/mosaico/Materiale x EG Workshop on Computational Aesthetics 2005/www.dmi.unict.it/~gdiblasi/PIM/PIM.jar
file:///Users/giampo76/Giampo/dottorato/mosaico/Materiale x EG Workshop on Computational Aesthetics 2005/www.dmi.unict.it/~gdiblasi/PIM/PIM.html
http://www.dmi.unict.it/~gdiblasi/photomosaic/photomosaic.jar
http://www.dmi.unict.it/~gdiblasi/photomosaic/photomosaic.jar
http://www.dmi.unict.it/~gdiblasi/photomosaic/photomosaic.html
http://www.dmi.unict.it/~gdiblasi/photomosaic/photomosaic.html
http://www.dmi.unict.it/~gdiblasi/mosaic/mosaic.jar

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

Size Guideline
Detection

Mean Time
(sec.)

PIM Mean
Time
(sec.)

Total
Mean
Time
(sec.)

275x276 741 14431 191556

400x486 1738 51093 229215

600x600 2069 88678 267131

896x601 4597 106714 287695

899x615 4427 111911 292722

Table 3 : Timing results of PIM (1025 tiles. median
size of Dirichlet Regions of 15 pixels)

c© The Eurographics Association 2005.

37

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

a. The original image b. The ancient mosaic version

c. The photomosaic version d. The PIM version

Figure 8 : An example of the proposed technique applied on a Cezanne's painting

c© The Eurographics Association 2005.

38

Di Blasi G., Gallo G., Petralia M./Fast Techniques for Mosaic Rendering

a. The original image b. The ancient mosaic version

c. The photomosaic version d. The PIM version

Figure 9 : Another example of the proposed technique applied on the Yin/Yang image

c© The Eurographics Association 2005.

39

