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Abstract

Progressive stochastic ray tracing algorithms are increasingly used in in-
teractive applications such as design reviews and digital content creation.
This dissertation contains three contributions to further advance this devel-
opment.

The first contribution is a noise reduction method for stochastic ray trac-
ing that is especially tailored to interactive progressive rendering. High-
variance light paths are accumulated in a separate buffer, which is filtered
by a high-quality, edge-preserving filter. Then a combination of the noisy
unfiltered samples and the less noisy (but biased) filtered samples is added
to the low-variance samples in order to form the final image. A novel per-
pixel blending operator combines both contributions in a way that respects
a user-defined threshold on perceived noise. For progressive rendering, this
method is superior to similar approaches in several aspects. First, the bias
due to filtering vanishes in the limit, making the method consistent. Second,
the user can interactively balance noise versus bias while the image is ren-
dering, leaving the possibility to hide filtering artifacts under a low level of
dithering noise. Third, the filtering step is more robust in the presence of re-
flecting/refracting surfaces and high-frequency textures, making the method
more broadly applicable than similar approaches for interactive rendering.
The dissertation also contains some optimizations that improve runtime, re-
cover antialiased edges, reduce blurring, and withhold spike noise from the
preview images.

The second contribution is the radiance filtering algorithm, another noise
reduction method. Again, the basic idea is to exploit spatial coherence in
the image and reuse information from neighboring pixels. However, in con-
trast to image filtering techniques, radiance filtering does not simply filter
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pixel values. Instead, it only reuses the incident illumination of neighboring
pixels in a filtering step with shrinking kernels. This approach significantly
reduces the variance in radiance estimates without blurring details in ge-
ometry or texture. Radiance filtering is consistent and orthogonal to many
common optimizations such as importance, adaptive, and stratified sampling.
In addition to the practical evaluation, the dissertation contains a theoretical
analysis with convergence rates for bias and variance. It also contains some
optimizations that improve the performance of radiance filtering on reflect-
ing/refracting surfaces and highly glossy surfaces.

The last contribution of this dissertation is a system architecture for ex-
changeable rendering back-ends under a common application layer in dis-
tributed rendering systems. The primary goal was to find a practical and
non-intrusive way to use potentially very different rendering back-ends with-
out impairing their strengths and without burdening the back-ends or the
application with details of the cluster environment. The approach is based
on a mediator layer that can be plugged into the OpenSG infrastructure.
This design allows the mediator to elegantly use OpenSG’s multithreading
and clustering capabilities. The mediator can also sync incremental changes
very efficiently. The approach is evaluated with two case studies, including
an interactive ray tracer.
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1 Introduction

This chapter states the problem that motivated this dissertation. It also
lists original contributions and relevant publications. Finally, it pro-
vides an overview of the remaining chapters.

The fields of interactive and offline photorealistic rendering are currently
undergoing a dramatic change. With the advent of interactive ray tracing
on consumer-grade hardware and in the cloud these two areas, mostly sep-
arated in the past, are gradually growing together. Stochastic ray tracing
algorithms, in particular variants of path tracing [68], find their way into
interactive rendering [18, 92, 65, 51]. These algorithms are based on a very
realistic model of light transport and naturally capture many global illumi-
nation effects that were previously not available in interactive applications
or only as very crude approximations (e.g. soft shadows, caustics, and inter-
reflections).

Being essentially a Monte Carlo integration over the space of light paths
(see Chapter 2), the beauty of these methods lies in their conceptual sim-
plicity and generality. However, they can exhibit high variance in the es-
timator, which manifests itself as noise in the rendered image. The noise
gradually disappears as more and more samples are averaged, but for in-
teresting scenes convergence is still too slow to generate noise-free images
at interactive rates. Therefore, interactive progressive rendering setups are
typically used, in which the renderer can react instantaneously to discrete
changes in the scene, but then has a few seconds to let the image con-
verge.
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1 Introduction

If unbiased methods for reducing the variance such as importance sampling
or stratification are not sufficient, one can try to further reduce noise by
biasing the result. A common approach is to exploit spatial coherence in
the image and reuse information of neighboring pixels or light paths by fil-
tering. However, the relatively new combination of interactive and progres-
sive stochastic ray tracing entails some unique requirements (detailed in the
following section), which existing methods do not take into account suffi-
ciently.

The primary goal of this dissertation is to develop robust and general noise
reduction methods for interactive progressive stochastic ray tracing algo-
rithms. Robust means the methods should work well for a wide range of
input scenes. General means the methods should be compatible with a wide
range of path sampling methods and common optimizations. The primary
application of the methods is to provide fast, low-noise previews of global
illumination.

Of course, noise reduction for stochastic ray tracing is not the only approach
to rendering such previews. Progressive photon mapping [56, 52] and virtual
point lights (VPLs) [71, 27] are other popular methods. We chose classic
Monte Carlo path integration as a basis because of its generality and con-
ceptual simplicity. The first means a wide range of scenes can be handled,
the latter means efficient implementations on modern graphics hardware are
possible.

In a recent study, Ou et al. [93] evaluated the potential of the aforementioned
three classes of algorithms for preview rendering in appearance design tasks.
The subjects preferred path tracing over progressive photon mapping and
VPL rendering. For appearance design, they judged the high-frequency noise
of path tracing to be less objectionable than the banding artifacts of VPL
rendering or the extreme low-frequency noise of progressive photon mapping.
Although unfiltered path tracing was used in the study, we like to think this
study provides a retroactive empirical justification for our decision. At the
very least it suggests that with careful noise reduction, path tracing would
have performed even better.

2



1.1 Problem Statement

1.1 Problem Statement

The merging of interactive and offline photorealistic rendering brings up two
problems that motivated this dissertation.

Problem 1: Fast, reliable previews; consistent renderer. This is an algo-
rithmic problem and the main motivation for our work. Applications
such as interactive design reviews and digital content creation greatly
benefit from photorealistic rendering with interactive feedback. How-
ever, as mentioned above, full global illumination simulations are ex-
pensive – and although interactive feedback is possible with current
technology, truly interactive performance (¡ 10Hz) is still out of reach
for interesting scenes. Therefore, techniques that can provide fast, reli-
able previews of global illumination are of much interest. At the same
time, these techniques should take the special requirements of interac-
tive progressive rendering into account. In particular:

• The methods should produce acceptable results as early as possi-
ble, with only a few samples per pixel.

• The user watches the image while it is being generated, this means
the methods should continually provide updates.

• The system must remain responsive, that is it has to react to
changes in less than a second.

• The rendering should still converge to the correct result, this
means the estimator for each pixel should be consistent.

• The techniques should be compatible with common optimizations
such as importance sampling and stratification.

Problem 2: System design for flexible rendering back-ends. This is a
software engineering problem. As new rendering algorithms find their
way into interactive systems, the need to support multiple, exchange-
able rendering back-ends increases. This is an important concern for

3



1 Introduction

generic distributed visualization packages. They typically have to sup-
port a wide range of applications (from visualization of large CAD
models to photorealistic rendering) on a wide range of platforms (from
CAVEs to Laptops). Yet, one usually wants to use the same application
layer for all scenarios. These systems need practical and efficient ways
to use potentially very different rendering back-ends without impairing
their strengths and without burdening the back-ends or the application
with details of the cluster environment.

This dissertation addresses the problem concretely for Fraunhofer’s In-
stantReality [43] platform, a virtual/augmented reality system based on
X3D [8]. This distributed system needs an extension to support spe-
cialized rendering back-ends (from GPU-rasterization to progressive ray
tracing) under a common application layer (X3D).

1.2 Contributions

This dissertation makes the following contributions:

Filtering and blending with perceptual control. (Addresses Problem 1.) In
Chapter 3, we present a practical noise reduction method for interactive
progressive stochastic ray tracing. The radiance of high-variance light
paths is accumulated in a separate buffer and filtered by a high-quality
edge-preserving filter. A novel per-pixel blending operator combines
the filtered and unfiltered pixels in a way that respects a user-defined
threshold on perceived noise. The method can provide fast low-noise
previews with only a few samples per pixel and is more robust than
related approaches in the presence of complex features such as high-
frequency textures and specular reflection/refraction. At the same time,
it is consistent in that the bias due to filtering vanishes in the limit. This
is a two-fold contribution, consisting of the perceptual-based blending
operator and the adapted version of the cross bilateral filter.

Also in Chapter 3, we present four optimizations that improve the over-
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1.2 Contributions

all performance of the original approach and make it more broadly
applicable. The primary target of these optimizations is the method
described in Chapter 3, but some of the ideas and techniques are ap-
plicable to similar approaches. In particular, the antialiasing recovery
step, the heuristic bandwidth adaption, and the spike noise removal
step are valuable contributions.

Radiance filtering. (Addresses Problem 1.) In Chapter 4, we present an-
other noise reduction method for interactive progressive path tracing.
Instead of filtering pixel values, only the incident illumination of neigh-
boring pixels is reused in a filtering step with shrinking kernels. The
filter’s bandwidth is adapted to reach a user-defined target variance.
This approach significantly reduces the variance in radiance estimates
without blurring details in geometry or texture. It also handles an-
tialiased edges better and works naturally with distribution effects such
as depth of field and motion blur. As an additional contribution, we
provide a theoretical analysis of the method, including derivations of
convergence rates for bias and variance.

Also in Chapter 4, we present a hybrid approach that combines the
approaches described in Chapters 3 and 4. The hybrid filter performs
better than the constituent approaches alone for scenes that contain
both, perfect specular reflecting/refracting surfaces and non-specular
surfaces. In addition, we present optimizations for highly glossy sur-
faces and sharp features in the indirect illumination (e.g. caustics), both
of which cause problems with the original approach.

System architecture for flexible rendering back-ends. (Addresses Problem
2.) In Chapter 5, we describe a novel approach to using different ren-
dering back-ends with a common application layer. The approach is
based on a mediator layer that can be plugged into the OpenSG [32]
infrastructure. The mediator and OpenSG provide multithreading and
clustering capabilities as well as building blocks for efficient incremental
updates. This way, the back-ends can retain their individual strengths
and neither the back-ends nor the application layer are burdened with
details of the cluster environment.
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A related contribution are several X3D extensions for photorealistic
rendering that are sketched in the appendices of Chapter 5. They
provide X3D with a modern, physically-based material description that
is portable across a wide range of rendering back-ends. These extensions
are indicative of the growing overlap of photo-realistic and interactive
rendering and the practical problems that arise from this development.

1.3 Publications

Large parts of this dissertation were already published as papers. The fol-
lowing publications are directly relevant (i.e. material was copied verbatim
or with minimal editing).

[125] Schwenk, K., Kuijper, A., Behr, J., and Fellner, D. W. Prac-
tical noise reduction for progressive stochastic ray tracing with percep-
tual control. IEEE Computer Graphics and Applications 32 (2012),
46–55.

[121] Schwenk, K., Behr, J., and Fellner, D. W. Filtering noise
in progressive stochastic ray tracing – four optimizations to improve
speed and robustness. The Visual Computer 29, 5 (2013), 359–368.
Also appeared in Proceedings of CGI 2012 .

[122] Schwenk, K., and Drevensek, T. Radiance filtering for interac-
tive path tracing. In ACM SIGGRAPH 2012 Posters (New York, NY,
USA, 2012), SIGGRAPH ’12, ACM, pp. 109:1–109:1.

[119] Schwenk, K. Radiance filtering: Interactive low-noise previews of
path traced global illumination, 2012. Submitted to Computer Graphics
Forum, under review.

[126] Schwenk, K., Voß, G., Behr, J., Jung, Y., Limper, M., Herzig,
P., and Kuijper, A. Extending a distributed virtual reality system
with exchangeable rendering back-ends. The Visual Computer (2013),

6
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1–11. Online first. This is an extended version of our CW2012 paper
A System Architecture for Flexible Rendering Back-ends in Distributed
Virtual Reality Applications.

[123] Schwenk, K., Jung, Y., Behr, J., and Fellner, D. W. A
modern declarative surface shader for X3D. In Proceedings of the 15th
International Conference on Web 3D Technology (2010), Web3D ’10,
ACM, pp. 7–16.

[124] Schwenk, K., Jung, Y., Voß, G., Sturm, T., and Behr, J.
CommonSurfaceShader revisited: improvements and experiences. In
Proceedings of the 17th International Conference on 3D Web Technology
(New York, NY, USA, 2012), Web3D ’12, ACM, pp. 93–96.

[120] Schwenk, K., Behr, J., and Fellner, D. W. CommonVolume-
Shader: simple and portable specification of volumetric light transport
in X3D. In Proceedings of the 16th International Conference on 3D
Web Technology (2011), Web3D ’11, ACM, pp. 39–43.

Supplementary materials containing the original images and some videos
for most of these papers can be found at http://karsten-schwenk.de/
papers/. Especially the videos are worth a look, as they convey the interac-
tive aspects of the techniques presented here much better than still images.
Also, in some of the image comparisons the differences are hard to see in
print and it is better to compare the original images on-screen (or view the
PDF version of this dissertation).

1.4 Outline

The remainder of this dissertation is organized as follows.

Chapter 2 briefly reviews relevant background information on radiometry,
light transport, and Monte Carlo rendering. That chapter is merely a
refresher and introduces the most important symbols and equations. It

7

http://karsten-schwenk.de/papers/
http://karsten-schwenk.de/papers/


1 Introduction

is by no means a complete reference and may be skipped by readers
familiar with these topics.

Chapter 3 contains our first contribution: a method to reduce noise in
stochastic ray tracing that is especially tailored to interactive progres-
sive rendering. We show that this method can provide fast, reliable
previews, even in the presence of complex features such as specular
surfaces and high-frequency textures. At the same time, it is consistent
in that the bias due to filtering vanishes in the limit. The chapter also
describes a number of optimizations that make the method more robust
and faster.

Chapter 4 contains another contribution: radiance filtering, a noise reduc-
tion method based on filtering incident radiance. In contrast to image
filtering techniques, such as the one presented in Chapter 3, this method
does not simply filter pixel values. Instead, it only reuses the incident
illumination of neighboring pixels. We show that this approach sig-
nificantly reduces the variance in radiance estimates without blurring
details in geometry or texture. In a theoretical analysis, we derive
convergence rates and compare the algorithm conceptually to related
approaches. The chapter also discusses some optimizations.

Chapter 5 contains our final contribution: a system architecture for ex-
changeable rendering back-ends in distributed system. Focus is on the
photorealistic ray tracer used in Chapters 3 and 4, but the architecture
can (and does) support other renderers. We demonstrate results with
two case studies.

Chapter 6 concludes the dissertation with a summary of contributions and
findings. It also provides some directions for future work.

The observant reader may have noticed that there is no dedicated chapter
about related work. Instead of providing one inflated chapter with related
research for all chapters, each chapter includes a separate review of related
work. This makes it easier to classify the contributions of each chapter indi-
vidually and to discuss them in their respective contexts.
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2 Background

This chapter provides a brief review of the physical and algorithmic
background of this dissertation. It introduces the radiometric quantities
necessary to formulate the light transport problem and describes how
path tracing solves this problem by Monte Carlo integration.

The purpose of this chapter is twofold. First, we want to introduce the
quantities, equations and concepts that are relevant for this dissertation.
Second, we want to provide a more formal, mathematical view on the mo-
tivation for our work. To do this, we will first state the rendering problem
as an unbiased Monte Carlo integration. Then, we will show that biasing
the estimator can decrease the variance and the overall error. If such an
estimator is consistent, it will still converge to the correct result, but because
it may have a much lower error at the beginning, it can be used for fast
previews.

The discussion is based on Eric Veach’s dissertation [137] and we will mostly
adopt his notation. Further Reading is discussed in Section 2.4, at the end
of this chapter.

2.1 Radiometry

Radiometry is the field of study involved with the measurement of electromag-
netic radiation, including, but not limited to, visible light. This section re-
views the most important quantities for measuring light.
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2 Background

2.1.1 Domains and Measures

In the following, integrals over surfaces and solid angles will appear. Let
M � R3 be the union of all surfaces in the scene and ApMq,M � M the
usual surface area measure onM. Further let S2 � R3 be the unit sphere and
σpSq, S � S2 the usual surface area measure on S2 (the solid angle occupied
by S). For a function f :M� S2 Ñ R

I �
»

M

»
S2
fpx, ωq dσpωqdApxq (2.1)

is the Lebesgue integral of f with respect to solid angle and surface area.

Often the measure is clear from the context and one simply writes

I �
»

M

»
S2
fpx, ωq dωdx. (2.2)

For a given surface point x P M with normal npxq P S2 the upward (or
positive) hemisphere is defined as

H2
�pxq � tω P S2|pω � npxqq ¡ 0u, (2.3)

where pω � npxqq is the dot product in R3. Analogously, the downward (or
negative) hemisphere consist of all directions facing away from the normal:

H2
�pxq � tω P S2|pω � npxqq   0u. (2.4)

2.1.2 Radiant Energy

Radiant energy is the energy carried by an electromagnetic wave (or pho-
tons). In particular, it is the total energy emitted by a light source over
a given period of time. The symbol is Q and it is measured in Joules
[J].

10



2.1 Radiometry

2.1.3 Radiant Power

Radiant power is radiant energy per unit time:

Φ � dQ
dt , (2.5)

usually measured in Watts [W � J{s]. In particular, it is the amount of radiant
energy flowing through (or to or from) a surface (real or imaginary) per unit
time. This is why it is also called radiant flux.

2.1.4 Irradiance and Radiant Exitance

Irradiance is incident radiant power per unit surface area. It is expressed in
Watts per square-meter [W{m2] and can be thought of as the area density of
radiant flux. It is defined as

Epxq � dΦpxq
dApxq . (2.6)

Usually, one implicitly restricts Φ to the incident power from one hemi-
sphere.

Radiant exitance (M) is the power leaving per unit surface area. The formula
and units are the same as for irradiance, but with Φ restricted to the exitant
power from one hemisphere, not the incident.

Radiosity (usually denoted B) is radiant exitance, but typically with the
implicit assumption of an uniform energy distribution over the hemisphere.
Using the definition of radiance (see below) this means the surface is a per-
fectly diffuse emitter and reflector producing uniform exitant radiance over
the hemisphere.
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2.1.5 Radiance

Radiance is radiant flux per unit projected area per unit solid angle. The
definition in terms of radiant flux is:

Lpx, ωq � d2Φpx, ωq
dσpωq dApxq| cos θ| , (2.7)

where θ is the angle between the normal of dApxq and the direction ω. The
SI unit of radiance is Watts per steradian per square meter rW{sr m2s. Intu-
itively, radiance can be thought of as the power traveling through a point
x in direction ω. A nice property of radiance is that it remains constant
along straight paths through empty space, so it is easy to propagate through
a scene. This makes radiance the most important radiometric quantity in
computer graphics.

When talking about radiance, one often prepends different qualifiers to make
clear what fraction of radiance is meant in a given context. The most common
ones are incident radiance Lipx, ωq and exitant radiance Lopx, ωq, meaning
the radiance arriving from direction ω or the radiance leaving in direction
ω, respectively. This distinction primarily makes sense at surfaces. Here,
Li usually refers to incident flux (“photons just arriving”) and Lo to exitant
flux (“photons just leaving”), analogously to irradiance and radiant exitance.
Exitant radiance is sometimes further divided into reflected radiance Lr and
self-emitted radiance Le.

2.1.6 Spectral Radiance

Spectral radiance (Lλ or more explicitly Lλpx, ω, λq) represents radiant flux
per unit projected area per unit solid angle per unit wavelength:

Lλpx, ω, λq � d3Φpx, ω, λq
dσpωq dApxq| cos θ| dλ. (2.8)

It has units W{sr m3.
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2.2 Light Transport

In computer graphics, one often uses pre-integrated spectra (colors) and
works with three separate radiances instead of the full spectrum. This is
not correct, but for most use cases the error is deemed negligible compared
to the gain in runtime [113]. For an RGB color space, the “color radiances”
are

Lc �
»

Λ
mcpλqLλpλq dλ c P tr, g, bu, (2.9)

for some set of color matching functions mc and a spectrum of wavelengths
Λ. Usually, the subscript is dropped and one implicitly assumes three color
channels when referring to a radiance.

2.2 Light Transport

Now that the fundamental quantities for measuring light have been intro-
duced, we can review how light propagates through a scene. Photorealistic
rendering in the sense of this dissertation is physically based simulation of
light transport. Usually linear geometrical optics is used as the underlying
physical model, with some extensions toward wave optics (e.g. for interfer-
ence). We will also assume a simplified scene model here. In particular, light
only interacts with the scene directly at surfaces, where interaction means
emission, absorption, or scattering. In other words, there is no participating
medium and no subsurface scattering or similar effects.

2.2.1 Bidirectional Scattering Distribution Function

The bidirectional scattering distribution function (BSDF) of a surface de-
scribes the relationship between incoming and scattered light. More for-
mally, it is the ratio of the differential radiance scattered in direction ωo to
the differential irradiance incident from direction ωi at a surface point x:

fspx, ωi, ωoq � dLopx, ωoq
dEpx, ωiq �

dLopx, ωoq
Lipx, ωiq | cos θi|dωi . (2.10)
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2 Background

Intuitively, fs describes the “throughput” of a surface point for a pair of
directions.

A special case of BSDF that only describes reflection (ωi and ωo in the same
hemisphere) is the bidirectional reflectance distribution function (BRDF, fr).
Another special case is the bidirectional transmittance distribution func-
tion (BTDF, ft), which describes transmission (ωi and ωo in different hemi-
spheres). So, the BSDF of a surface can be split into two BRDF/BTDF pairs
(one for each hemisphere).

There are a number of properties that are expected from physically valid
BSDFs (the most important one being energy conservation) but we will not
go into details here. Furthermore, there exist a number of generalizations for
effects beyond simple reflection and transmission (e.g. subsurface scattering)
[103].

To make the direction of light flow more explicit, one often writes LipxÐ ωiq,
fspωi Ñ x Ñ ωoq, and Lopx Ñ ωoq, a notation we will use for the following
transport equations.

2.2.2 Local Scattering

With the BSDF, we can calculate the exitant (scattered) radiance due to the
incident radiance from all directions. This quantity is given by

LopxÑ ωoq �
»

S2
fspωi Ñ xÑ ωoqLipxÐ ωiq| cos θi| dωi. (2.11)

This integral describes the appearance of a surface under a particular lighting
condition. If restricted to the upper hemisphere and the BRDF, this equation
becomes the reflection equation (or local reflectance integral).
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2.2 Light Transport

2.2.3 Rendering Equation

To model general radiance transport, we have to add the emitted radiance Le.
Also, the exitant radiance of one point is potentially part of the incident ra-
diance at other points (indirect illumination). Thus extended, Equation 2.11
becomes the rendering equation [68, 64]:

LpxÑ ωoq � LepxÑ ωoq�
»

S2
fspωi Ñ xÑ ωoqLpxÐ ωiq| cos θi| dωi. (2.12)

This recursive integral equation describes the radiance function of a scene
(the light field).

The equation given here is actually a special case of a more general light
transport equation with certain restrictions and boundary conditions [103,
Ch. 16].

2.2.4 Measurement Equation

Working with radiance is practical for simulating light propagation, but in
the end we usually need to calculate a sensor response (make a measurement
in the virtual scene). The sensor can be a pixel in a digital image, an area
on a simulated chemical film, or similar concepts. The general measurement
equation for a sensor is

R �
»
I�S2

WepxÐ ωqLipxÐ ωq dx dω, (2.13)

where I is the surface of the sensor and We is the sensitivity (also called
emitted importance, importance is the adjoint quantity of radiance; remember
that the arrow indicates the direction of light flow, so importance is emitted
opposite to the arrow’s direction). Note that we use the “color radiance”
here. With spectral rendering, we would have to integrate over wavelengths
against a spectral sensitivity in addition to the integral over surface and solid
angle. With time-dependent sensitivity or incident radiance, another integral
over (exposure) time would be necessary.
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2.2.5 Path Integral Formulation

The rendering equation in the form given above is a surface-centric formula-
tion of the problem: it describes light transport as recursive scattering events
at surface points. Veach [137, Ch. 8] introduced a more elegant formulation,
which combines the measurement equation and the rendering equation into a
single non-recursive integral. In the so-called path integral formulation, each
measurement is expressed as an integral over the space of all possible light
transport paths:

R �
»

X
fpx̄q dµpx̄q, (2.14)

where X is the set of transport paths of finite length, µ is a measure on X ,
and f is the measurement contribution function. Each path is a sequence of
vertices that are surface points:

x̄ � x0x1 � � � xk xi PM. (2.15)

In theory, the path length is not bounded, that is 0   k   8. In practice,
however, we usually have to impose some upper limit. The measurement con-
tribution function returns the contribution a path makes to the final measure-
ment. The exact definitions and derivations are not particularly complicated
but a bit lengthy, which is why we omit them here and refer to Veach [137,
Ch. 8] for details.

2.3 Monte Carlo Rendering

Equation 2.14 states the light transport problem as an integral over a high-
dimensional space with an integrand that may contain discontinuities and
singularities. The method of choice for such problems is Monte Carlo inte-
gration. We will quickly review the concept and show how it is applied to
light transport.
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2.3 Monte Carlo Rendering

2.3.1 Monte Carlo Integration

The basic idea of Monte Carlo integration is to recast the integral as the
expected value of a random variable. Given the integral

I �
»
R
fpxq dx, (2.16)

we can define the estimator

Î � fpXq
ppXq , (2.17)

with X distributed according to a probability density function (pdf) p that
is non-zero whenever f is non-zero (so p does not miss any regions that
contribute to the integral).

The expected value of this estimator is

E
�
Î
�
�
»
R

fpxq
ppxq ppxq dx � I. (2.18)

According to the strong law of large numbers, the sample average will con-
verge to the expected value (with probability one). So, to compute the inte-
gral, we can repeatedly sample the estimator and average:

I � ¯̂
IN � 1

N

Ņ

i�1

fpXiq
ppXiq , (2.19)

with Xi distributed according to p. Sometimes Î is called the primary esti-
mator and ¯̂

IN the secondary estimator.

2.3.2 Path Sampling

With the little review above, the elegance of the path integral formulation
immediately becomes apparent. We can directly apply Monte Carlo integra-
tion to Equation 2.14. For each measurement (e.g. a pixel), an estimator can
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be defined:

¯̂
RN � 1

N

Ņ

i�1

fpX̄iq
ppX̄iq

� R �
»

X
fpx̄q dµpx̄q. (2.20)

To compute an image, we simply generate random light paths according to
some sampling strategy, evaluate their contributions fpX̄q, and average them
(weighted by the pdf p).

Different path sampling strategies result in different algorithms. The most
important ones are

• path tracing [68, 103] (construct paths starting from camera),

• light tracing [3, 38] (construct paths starting from lights),

• bidirectional path tracing [138, 80, 103] (construct paths from both
sides),

• Metropolis light transport [139, 103] (construct paths by perturbing al-
ready sampled paths), and

• instant radiosity [71, 38] (construct many light paths in pre-process,
connect eye paths of length 1 to all vertices of all light paths).

This is only a top-level classification, each algorithm can be subdivided fur-
ther on the basis of sampling strategies. A complete description and classifi-
cation is not the subject of this dissertation and we refer to Veach [137] and
Pharr & Humphreys [103] for further details.

Some methods allow fuzzy connections between paths, the most popular one
is (progressive) photon mapping [66, 55]. These methods can efficiently sam-
ple paths that classic path sampling cannot handle very well, e.g. caustic
paths (so called SDS paths in Heckbert’s notation [60]; see Veach [137] and
Hachisuka [53]). They can be integrated into the path sampling framework
with a little extension [57, 48].

A way to approach the light transport problem without Monte Carlo is to
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divide the scene (and sometimes the unit sphere) into discrete patches. This
transforms the rendering equation (Eq. 2.12) into a system of linear equations,
which can be solved with the usual methods. This is an application of the
finite element method to rendering and the idea behind the classic radiosity
methods. However, these algorithms typically impose some severe restrictions
and have increasingly fallen out of favor with rendering engineers, at least if
generality is a major concern.

2.3.3 Unbiased and Consistent Estimators

Important concepts for this dissertation are unbiasedness and consistency.
In general, an estimator approximates an unknown quantity with N samples:

I � ¯̂
INpX1, X2, . . . , XNq. (2.21)

The error of this approximation is

¯̂εN � ¯̂
IN � I. (2.22)

The expected value of the error E
�¯̂εN� is called bias. If E

�¯̂εN� � 0 the
estimator is called unbiased. An alternative formulation is to say the expected
value of the estimator is the quantity we want to compute. Loosely speaking,
an unbiased estimator has no systematic error, that means the error is only
due to variance and averages out.

An estimator is said to be consistent, if it converges in probability to the quan-
tity we want to compute as the sample count approaches infinity:

plim
NÑ8

¯̂
IN � I. (2.23)

Note that this does not require unbiasedness, but it requires that the bias
vanishes in the limit (with probability one). So, there may be a systematic
error, but it can be made arbitrarily small by investing more samples. It
should be mentioned that an estimator can have vanishing bias and still be
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not consistent. In fact, an estimator can be unbiased and not consistent. For
example, if we used only the first sample (X1) in Eq. 2.19 to estimate the
integral, the expected value would still be the integral I. But the estima-
tor would not converge to its expected value. However, if the variance and
the bias vanish simultaneously, the estimate converges and the estimator is
consistent.

In rendered images, variance typically manifests itself as noise. (Imagine sev-
eral pixel estimators looking at the same point: the variance in the estimator
will lead to a different estimate for each pixel, producing a noisy image.) Bias
typically takes the form of blurring, banding, or similar artifacts. (Imagine
several pixel estimators that reuse samples from their neighbors: each esti-
mator may be unbiased, but “pulling in” samples from neighbors may change
the expected value and thus introduce bias (blurring).)

In general, we want at least consistent estimators in photorealistic rendering,
that means estimators that converge to the correct result, but may be biased.
Nevertheless, unbiased estimators have some advantages over consistent es-
timators. The biggest advantage is that we can directly estimate the error
from the variance of the estimator, since the variance is the only source of
error. This is explored in the following subsection.

2.3.4 Variance Reduction and Expected Error

The expected squared error (MSE) of an estimator can be decomposed into
bias and variance:

E
�
ε̂2
�loomoon

MSE

� E rε̂s2loomoon
squared bias

�Var rε̂sloomoon
variance

. (2.24)

This is a rearrangement of the well-known relation

Var rXs � E
�
X2�� E rXs2 (2.25)

and called bias variance decomposition or bias variance trade-off. So, the ex-
pected squared error can be reduced by reducing variance or bias.
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Let us look at the variance of an estimator of the form

¯̂
IN � 1

N

Ņ

i�1
Îi. (2.26)

If the variances of all Îi are equal and finite, the variance of ¯̂
IN decreases

linearly with N :

Var
� ¯̂
IN

�
� Var

�
1
N

Ņ

i�1
Îi

�
� 1
N2

Ņ

i�1
Var

�
Îi

�
� 1
N

Var
�
Î
�
. (2.27)

As stated above (Eq. 2.24), for unbiased estimators the variance is the only
source of error, so the expected (RMS) error decreases as the standard devi-
ation with a rate of O

�
N�1{2�. Variance reduction without introducing bias

obviously leads to faster convergence. The classic unbiased variance reduction
techniques are importance sampling, correlated sampling (control variates),
and stratification.

However, as is evident from Equation 2.24, we can balance bias and variance
to some extent. It is often possible to reduce variance significantly by allow-
ing a certain amount of bias. If the bias is relatively low and the variance
reduction is relatively high, we can reach a lower overall error faster with
biased techniques.

This is the essence of the algorithms presented in this dissertation:
to trade variance for bias in order to produce fast previews with low error.
We also require consistency to ensure the methods converge to the correct
result eventually.

2.4 Further Reading

Of course, we have only scratched the surface in this chapter. In large parts,
this chapter is a condensed version of several chapters of Eric Veach’s dis-
sertation “Robust Monte Carlo Methods for Light Transport Simulation”
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[137, Ch. 1,2,3,8]. This is a good reference for unbiased Monte Carlo render-
ing based on path sampling. A more practice-oriented approach is taken by
Matt Pharr and Greg Humphreys in their book “Physically Based Rendering:
From Theory to Implementation” [103], which cannot be recommend highly
enough.

Henrik Wann Jensen’s book “Realistic Image Synthesis Using Photon Map-
ping” [66] is a good reference on photon mapping, a biased Monte Carlo
technique. For modern variants of photon mapping we refer to the work by
Toshiya Hachisuka and his colleagues, in particular the recent SIGGRAPH
course “State of the Art in Photon Density Estimation” [52]. These methods
are particularly interesting in the context of this dissertation since they too
try to achieve faster convergence by trading variance for bias. A very recent
work with potential toward preview-rendering is adaptive progressive photon
mapping [70].

An overview of other global illumination techniques, with focus on radiosity,
is given in “Advanced Global Illumination” [38] by Philip Dutré, Kavita Bala,
and Philippe Bekaert.

The SIGGRAPH courses “Practical Physically Based Shading in Film and
Game Production” [85] and “Global illumination Across Industries” [77] pro-
vide an overview of techniques used in production rendering.

Good references for interactive stochastic ray tracing on GPUs are Jacco
Bikker’s PhD Thesis [14] and Dietger van Antwerpen’s Master thesis [136].
A general survey of interactive methods with focus on real-time is given by
Ritchel et al. in their state-of-the-art report [110].

A nice survey of importance sampling techniques is “A Survey of Impor-
tance Sampling Applications in Unbiased Physically Based Rendering” [135]
by Dietger van Antwerpen. Another worthwhile reference is the SIGGRAPH
course “Importance Sampling in Production Rendering” [26].

For Quasi Monte Carlo methods have a look at the work by Alexander Keller
and his colleagues. The SIGGRAPH course “Advanced (Quasi) Monte Carlo
Methods for Image Synthesis” [73] is a good entry point.
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Readers interested in the physics of light transport may want to look at
Eugene Hecht’s aptly titled book “Optics” [59]. For an extensive treatment
of light as an electromagnetic wave see “Principles of Optics” [17] by Max
Born and Emil Wolf.
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3 Filtering Pixel Radiance

This chapter presents a noise reduction method based on filtering image
pixels. The radiance of high-variance light paths is accumulated in a
separate buffer and filtered by a high-quality edge-preserving filter. A
novel per-pixel blending operator combines the filtered and unfiltered
pixels according to a user-defined threshold on perceived noise.

3.1 Introduction

Using filtering to reduce noise in images rendered by Monte Carlo techniques
has a long history in computer graphics. Several approaches exist, but they
are all based on the idea of exploiting inter-pixel coherence by averaging the
estimates for adjacent pixels. In general, including neighbors into a pixel
estimator will not only have the desired effect of reducing variance, but will
also change the expected value. So, usually filtering means trading noise for
bias.

Until recently, most techniques have been developed with offline systems in
mind, which use the filter in one final pass to clean up a rendered image.
These approaches are usually designed to operate on relatively low noise lev-
els and are not directly applicable to interactive renderers, where the filter has
to be applied from the beginning of rendering. With the advent of interactive
stochastic ray tracing, methods aimed at real-time performance were devel-
oped. These approaches usually prefer speed over quality and their filters
may introduce blur or other artifacts in difficult scenes with high-frequency
textures and (nearly) perfect specular objects.
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We present a noise reduction method that combines filtering with blending,
using a user-supplied decomposition of path space into high-variance and
low-variance paths. The key idea is to maintain two separate buffers for
high-variance paths. One buffer contains the unbiased original paths and one
contains a filtered version that is biased, but has reduced variance. Then
a simple self-adapting blending operator adds the optimal amount of both
buffers to the contribution of the low-variance paths to form the final image.
Here “optimal” means the highest amount of unbiased contribution that is
possible while respecting a user-defined threshold on perceived noise. Early
in the rendering process, the blending operator will assign high weights to
the filtered buffer, thus producing an image with a low noise level but bias.
As more samples are gathered, the unbiased buffer will become more reliable
and take over. So, the method introduces bias, but is consistent (the bias
will vanish eventually). For the filtering step, we use an adapted cross bi-
lateral filter that is able to produce a low-noise image without visible blur
in many scenarios. The combination of this filter and the blending operator
can present a high-quality image to the viewer after only a few samples per
pixel.

The two key contributions of this chapter are the development of the per-
ceptual-based blending operator and the adaption of the cross bilateral filter.
In addition, we present some optimizations for the original method which
improve the overall performance. The new method is easy to implement and
has acceptable overhead per frame.

Throughout this dissertation, we will refer to the specific method presented
here as “pixel filtering”, mainly to emphasize the conceptual difference to
“radiance filtering”, which is presented in the next chapter. To refer to the
general class of algorithms that are based on filtering image pixels, we will
use “image filtering”.
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3.2 Related Work

Reducing the noise in images produced by Monte Carlo techniques has been
a research subject for a long time. Popular methods include stratification,
importance sampling, control variates, and adaptive sampling. Colbert et
al. [26] provided a recent survey. In contrast to these techniques, our work
belongs to the class of approaches that filter the resulting image to remove
noise and do not alter the underlying sampling process.

3.2.1 Filtering for Monte Carlo Noise Reduction

Lee and Redner [81] advertised the use of nonlinear median and alpha-
trimmed mean filters to reduce spike noise in rendered images. These fil-
ters can produce nearly noise-free images, but can also introduce artifacts
and heavily bias the result. For example, the median filter is not energy-
preserving and can offset edges [86] or shift colors [29]; similarly, the alpha-
trimmed mean simply removes offending “outliers”, although they are car-
rying a valid contribution. Jensen and Christensen [67] applied non-linear
filters only to the indirect diffuse component of the image to reduce these
artifacts. We follow their insight and take it one step further: we only filter
light paths that have been classified as high-variance paths by the user (e.g.
only indirect illumination or only caustic paths).

A relatively straightforward technique is to locally adapt the bandwidth of
filters in order to balance smoothing and preservation of high-frequency fea-
tures. Rushmeier and Ward [117] introduced a class of energy-preserving,
non-linear filters that spread out high-variance samples with a variable-width
kernel. The adaptive kernel width reduces blurring artifacts, but since the
shape of the kernel itself does not respect edges, high-variance samples may
still be spread out over a large area and cause undesirable blurring.

McCool [86] investigated the use of anisotropic diffusion for Monte Carlo
noise reduction. Anisotropic diffusion preserves edges and energy. The main
drawback of the method is its incremental nature, which makes it expensive
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to compute and requires a carefully chosen stopping criterion. It is also not
immediately clear how to apply the technique to progressive rendering (other
than recomputing all iterations every frame).

Suykens and Willems [132] adapted the idea of splatting samples with a
variable-width kernel to progressive rendering. This means they applied their
filter not as a post process but during image formation. The method is similar
in spirit to Rushmeier and Ward’s approach [117] and suffers from similar
problems. In particular, the blurring of high-variance regions is objectionable
(although as the number of samples increases the kernel size is reduced and
the blurring will eventually vanish).

Xu and Pattanaik [149] applied a variant of bilateral filtering to the indirect
illumination in order to reduce noise. They used a Gauss-filter as a pre-
process to spread out visual outliers and then used the smoothed values as
reference values for each pixel. (But the values for the gathered pixels in
the range kernel were still taken from the original image, which is an im-
portant difference to cross bilateral filtering. In that regard, the method lies
in between the classic bilateral filter and the cross bilateral filter.) They
applied their filter only as a post-process to clean up images with relatively
low noise levels, which permitted a narrow spatial kernel and made the al-
gorithm comparatively fast. The method works well for untextured scenes
where direct illumination dominates, but tends to blur textures and geomet-
ric edges in areas where indirect illumination is strong. In addition, filtering
higher noise levels requires larger kernels and significantly more processing
time (the bilateral filter is not separable).

DeCoro et al. [29] developed a method to specifically remove spike noise.
The idea is to withhold samples with high energy but low probability (one
could say perceived outliers) from the image, so that existing filtering meth-
ods can be used to remove the remaining noise. Pajot et al. [96] recently
presented a similar approach based on density estimation. These techniques
are orthogonal to ours and combining their outlier rejection with pixel filter-
ing could be an interesting direction for future work. (Pixel filtering spreads
out extreme perceived outliers; sometimes it may be desirable to remove or
withhold them, see Section 3.6.4.)
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With the advent of interactive stochastic ray tracing, methods aimed at real-
time performance started to emerge. In an early effort, Keller [72] and Wald
et al. [142] used a discontinuity buffer for geometry-aware filtering of inter-
leaved sampling patterns. More recently, Dammertz et al. [28] used an edge-
avoiding À-Trous wavelet transform to filter noisy images from an interactive
path tracer. Edges were defined using multiple edge stopping functions (nor-
mals, positions, direct illumination), similar to cross bilateral filtering. But
the À-Trous transform allowed them to compute large kernels in real-time.
They achieved impressive results and geometric edges seem to be preserved
very well in general, but the filter can blur across high-frequency texture
details. (Especially for non-diffuse scenes, when the deferred rendering ap-
proach described in the paper cannot be used.) Furthermore, the À-Trous
scheme can produce objectionable ringing artifacts; and aliasing in the ge-
ometry buffers can produce artifacts, too.

In work developed parallel to ours, Bauszat et al. [7] introduced a very inter-
esting and fundamentally different approach to illumination filtering. Instead
of filtering a noisy illumination estimate using geometry information as guid-
ance, they used a guided image filter [58] to locally fit the noise-free geometry
information (normals and depth) to the illumination estimate. This led to a
very fast algorithm that produces results comparable to (sometimes even su-
perior to) cross bilateral filtering in terms of mean square error. The biggest
limitation of the method is that is does not respect edges that are not present
in the geometry buffers. How the method performs for textured glossy sur-
faces, where filtering irradiance becomes less viable, is not shown in the paper.
Also, it is not clear how reflecting and refracting objects can be handled, as
only results for (nearly) diffuse surfaces are shown.

Very recently, after our original paper [125] was accepted, Chen et al. [23]
introduced a screen-space statistical filtering method based on incremental
PCA that exploits temporal coherence. We have not yet had the opportu-
nity to evaluate this approach, but the noise-reduction seems to be on par
with bilateral filtering. However, it is intended for flicker-free interactive
(even real-time) animations, not progressive rendering, and is not consis-
tent.
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The main difference between these filtering methods and our method (pixel
filtering) is that pixel filtering does not display the filtered buffer directly,
but blends it with the original samples in a way that tries to respect a user-
defined noise level. This has several advantages: First, pixel filtering remains
consistent if used with a consistent progressive renderer, because as the noise
level in the unbiased buffer decreases the weights for filtered (biased) buffer
will approach zero. Second, pixel filtering can leave a controlled amount of
equally distributed low-amplitude, high-frequency noise in the image, which
helps masking filtering artifacts. Third, pixel filtering does not have to fil-
ter every presented frame, because new samples contribute via the unbiased
buffer, even though they are not yet in the filtered buffer. This allows us to
use the relatively expensive bilateral filter during image creation. This filter
results in very strong noise reduction with good edge-preservation and accept-
able overhead from the beginning of image formation, which is important for
progressive rendering.

These properties of pixel filtering reflect the fact that it was designed with
a slightly different application area in mind: interactive progressive render-
ing. In contrast to related approaches, pixel filtering does not try to present a
noise-free image “at all costs” (i.e. possibly with severe filtering artifacts). In-
stead, the objective is to deliver a reliable preview of the image as early as pos-
sible – with a carefully chosen balance of noise and bias.

3.2.2 Bilateral Filtering

Pixel filtering uses an adapted cross bilateral filter. The bilateral filter is
a technique to smooth images while preserving important edges proposed
by Aurich and Weule [4], Smith and Brady [129], and Tomasi and Man-
duchi [134]. The filter weights for each pixel are computed using the distance
in the spatial domain and the distance in the range domain. Usually two
Gaussians are used as the weighting functions. The metric in the spatial
domain is the typically the Euclidian distance and in the range domain some
intensity or color difference is used.

The cross (or joint) bilateral filter separates the image defining the edges from
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the image to be smoothed. Using a separate “range image” (sometimes called
“edge image”, although it does not contain the edges directly) is useful if the
image to be smoothed has been heavily corrupted by noise. Then the classic
bilateral filter cannot discern real edges and outliers due to noise. Eisemann
and Durand [41] and Petschnigg et al. [101] applied this idea to “flash no-
flash” image pairs, where the “flash” image provides the edges to smooth the
“no-flash” image. Kopf et al. [76] used the cross bilateral filter in a general
upsampling framework.

Direct implementations of the bilateral filter are comparatively slow, because
it is not a linear convolution with a constant kernel and not separable. Several
acceleration techniques exist, some of the approaches mentioned here were
evaluated for the optimizations in Section 3.6.1.

The bilateral grid was proposed by Chen et al. [22] and generalized previous
approaches by Durand and Dorsey [35] and Paris and Durand [97, 98]. The
basic idea is to recast the bilateral filter as a linear convolution in a low-
resolution higher-dimensional space (space � intensity) followed by a non-
linear slicing step that extracts the approximately bilaterally filtered data.
The biggest weakness of the method is that it poorly scales with increasing
range dimensions – often only a 3d grid with two spatial and one range
dimension (typically intensity) is practical. The idea was recently generalized
to the Gaussian kd-tree by Adams et al. [1]. Gaussian kd-trees scale better
with increasing range dimensions and are more accurate for large spatial
standard deviations, but generally slower.

Weiss [146] described a histogram-based acceleration technique, but the spa-
tial weighting is restricted to a step function and the technique can lead to
color bleeding [97]. Pham and van Vliet [102] applied a one-dimensional bi-
lateral filter first horizontally and then vertically, effectively treating it as if
it was separable. The technique is very fast and works surprisingly well for
small spatial kernels (3-5 pixels), but for larger kernels the artifacts quickly
become too objectionable.

Porikli [104] and Yang et al. [151] proposed fast bilateral filters that run in
constant time per pixel, regardless of the kernel size. Some more interest-
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ing approaches were published after the work described in this chapter was
done [46, 5]. We have not evaluated these approaches with pixel filtering, but
they should be compatible.

3.2.3 Other Edge-preserving Filters

Finally, we want to briefly discuss other edge-preserving filters that we con-
sidered for pixel filtering, but eventually dismissed.

Anisotropic diffusion was already mentioned. It was proposed as an image
filter by Perona and Malik [100] and later extended to robust anisotropic dif-
fusion by Black et al. [15]. Although it is very flexible, we did not choose this
method because of its iterative nature and unintuitive parameters. However,
anisotropic diffusion is closely related to bilateral filtering as was pointed out
by Barash [6] and Buades et al. [21].

Felsberg et al. [42] described channel smoothing, a technique similar to the
bilateral grid based on a B-Spline encoding of the data. We have not directly
compared the two, but the bilateral grid seemed conceptually simpler, faster,
and altogether better suited to a GPU-implementation.

Choudhury and Tumblin [24] proposed a new trilateral filter that incorporates
local image gradients and smoothes towards a piecewise linear image (the
bilateral filter smoothes towards a piecewise constant image). The method
should provide better noise reduction in high-gradient regions, but since we
did not know of any effective acceleration techniques, we chose the bilateral
filter.

3.3 Method

Before we begin, a note on terminology: in a general setting pixels measure
radiant energy. However, because pixel filtering does not work well with depth
of field and motion blur, we will assume a pinhole camera with instantaneous
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Llv radiance of low-variance paths
Lu unfiltered radiance of high-variance paths
Lf filtered radiance of high-variance paths
Lhv combined (blended) radiance of high-variance paths
s blend factor for combining unfiltered and filtered pixels
t user-defined threshold on variance
VarLb

r�s perceived variance wrt. background radiance Lb
u � VarLb

rLus perceived variance of unfiltered buffer
f � VarLb

rLf s perceived variance of filtered buffer
ai pixel weights for filtering step
σc std. dev. for colors in cross bilateral filter
σd std. dev. for depths in cross bilateral filter
σs std. dev. for spatial distance

Table 3.1: Quick reference for the most important symbols used in this chapter.

exposure and a high-resolution pixel grid. This means pixel values can be re-
garded as averaged radiance over a small area and solid angle, and we will for-
mulate pixel estimates as radiance estimates. Table 3.1 provides an overview
of the most important symbols used in this chapter.

Figure 3.1 shows a schematic of pixel filtering. As was already outlined in the
introduction, we split light paths into two categories which are accumulated
in two separate buffers. Paths that potentially have high variance go into the
high-variance buffer (Lu), and those that have a comparatively low variance
go into the low-variance buffer (Llv). This path classification is specified by
the user before the rendering starts. Typically, the low-variance buffer holds
the direct illumination and the high-variance buffer the indirect illumination,
but other classifications are possible. For example, one could only classify
caustic paths as high-variance paths.

Furthermore, we maintain an additional buffer that holds a filtered version
of the high-variance buffer. So there are in fact two buffers for high-variance
paths: one holds the original unfiltered radiance Lu, the other one a filtered
version, Lf . To get the final contribution of high-variance paths for a pixel,
Lhv, we combine the two with a simple linear blend:

Lhv � sLu � p1� sqLf . (3.1)
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Low variance

High variance

Filtered high variance

Blended high variance

Final result

Filter

Blend

Add

Figure 3.1: Schematic data flow of pixel filtering. The user classifies light paths into those that
potentially carry high variance and those that carry low variance. These two classes of paths are
accumulated in separate buffers. The high-variance buffer is filtered by an edge-preserving filter to
reduce noise. The blending operator mixes the filtered and unfiltered versions of the high-variance
buffer (attempting to reach a user-defined noise level) and adds the result to the low-variance buffer.

Conceptually, the blend factor s balances an unbiased but noisy contribution
(Lu) with a biased but less noisy one (Lf ). Given a threshold on the noise
level, we want the largest possible contribution of Lu and blend in just enough
of Lf to get below the threshold. The remainder of this section deals with
how to find s.

3.3.1 Perceived Variance

At most adaption levels, the ratio of a just noticeable difference (JND) ∆LJND

against some background radiance Lb is constant (about 1% under good view-
ing conditions). This relationship is known as Weber’s law [16, 107], the ratio
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is the Weber fraction K:

K � ∆LJND

Lb
. (3.2)

Let L̂ be an estimate for a real radiance L. If the error in the estimator is
in the order of a JND, we can define the perceived error with respect to a
background radiance Lb as

εLb
� L̂� L

Lb
. (3.3)

The same absolute error triggers a larger response in the visual system when
viewed against a low background radiance than it does when viewed against
a high background radiance.

For unbiased estimators, this error is due only to the variance in the estimator.
(Of course the renderer may be biased, too, but bias in the renderer is not
addressed by our algorithm and we simply ignore it.) We define the perceived
variance as a measure for the perceived noise level as

VarLb
rL̂s :� VarrεLb

s � 1
L2
b

VarrL̂s. (3.4)

For a given background radiance, this perceived variance can be seen as a
function that scales the absolute variance according to Weber’s law. Similar
measures have been used by Mitchell [89] and Hachisuka et al. [54]. It should
be noted that the variance of the estimator is a measure for the expected
amount of noise, not the actual amount, and that in practice estimates of
variances are used (see Section 3.3.2).

We would also like to point out that, although we will be using the per-
ceived variance as defined above as a measure for the perceived noise level,
only the last step of our algorithm (Sec. 3.3.5) uses this measure. All other
components are based on the absolute variance and other functions could be
used to map absolute variance to a perceived noise level in the last step. For
example, we could include characteristics of the tone mapping operator into
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the metric. Our perceived variance assumes a perfect tone mapping operator,
in the sense that it perfectly recreates the sensation a viewer would experi-
ence when watching the real scene. More precisely: the perceived error when
watching the image equals the perceived error when watching the real scene.
An advantage of our perceived variance is that it makes it easy to specify
thresholds, because it can be thought of as the variance of a relative noise
corrupting the signal.

3.3.2 Variances of the Buffers

In order to find the blend factor in Equation 3.1, the per-pixel variances of
both buffers, filtered and unfiltered, must be estimated.

VarrLus, the variance in the unfiltered buffer, can be estimated with a method
for incremental variance calculation while the image is rendering. In practice,
however, a problem arises because at the beginning of rendering the estimated
variance will not be very reliable, and estimates of neighboring pixels can
differ greatly, although they have very similar variances. If the blend factors
are computed per pixel using these variance estimates, the blend factors may
differ greatly from pixel to pixel and noise will creep back into the blended
image – due not to the variance in the filtered radiance buffer but to the
variance in the per-pixel blend factors. To prevent this, we filter the variance
values along with the radiance values in the filtering step (described in the
following section) and use this smoothed variance as VarrLus. Variances and
radiances use the same range buffer (i.e. the same weights), so they can be
computed in one pass.

VarrLf s, the variance of the filtered pixels, depends on the filter kernel. To
estimate the variance of filtered pixels we will assume that neighboring pix-
els are independent realizations of the same random variable. In practice,
neighboring pixels will represent different variables, but usually they are very
similar so this is a reasonably approximation (although it will break down in
the presence of hard edges, see Section 3.3.3). Under this assumption, a filter
can reduce variance by computing a weighted sum of independent realizations
of the same random variable (the pixels inside the kernel). The variance of a
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filtered pixel is

VarrLf,js � Var
�¸

i

aiLu,i

�
(a)�
�¸

i

a2
i

�
VarrLu,js, (3.5)

where the ai are the filter weights and the Lu,i are the radiances of the pixels
inside the kernel. Step (a) in Equation 3.5 uses the approximation described
above to estimate the variance of a filtered pixel only with knowledge of its
own variance. For reasonable filters |ai|   1 and

°
i ai � 1 hold, so the

term
°
i a

2
i   1 will reduce variance. A wide, strongly blurring filter with

equally distributed weights will reduce variance better then a narrow filter
with weights concentrated around the center.

We use an adapted version of the cross bilateral filter (described in the fol-
lowing section), but it should be noted that the blending operator does not
depend on a particular choice for the filter. As long as an estimate for the vari-
ance reduction can be computed, any filter can be used.

3.3.3 The Filter

The assumption made in the previous section that neighboring pixels are
independent realizations of the same random variable breaks down in the
presence of discontinuities (edges) in the image. This offers a probabilistic
view on blurring artifacts: they are the failed attempt to reduce variance by
incorporating samples into an estimate that were drawn from a distribution
with a different expected value (and thus bias the estimator). To ensure that
pixels whose expected values differ from the current pixel’s do not contribute
significantly, we use a bilateral filter.

Unfortunately, the classic bilateral filter is not directly applicable to the
scenario at hand, because, especially at the beginning of image formation,
the noise level is too high and the range domain kernel cannot reliably
identify pixels with similar expected values. (Remember that the samples
in the buffer have been explicitly classified as potential high-variance sam-
ples.) Therefore, we use a cross bilateral filter to decouple the data defining
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Figure 3.2: Left: a test scene containing reflecting/refracting surfaces. Middle:
color range buffer generated by rendering with a single unoccluded head light and
ambient light. It captures normals and textures (even in reflections/refractions).
Right: depth range buffer containing geometric edges.

the edges (the range buffer) from the data being filtered (the high-variance
buffer).

The range buffer should exhibit the edges of the image to be filtered but
be (almost) noise-free. Furthermore, its computation should involve little
overhead. At first sight, the low-variance buffer (all samples not classified as
high-variance) seems suitable, but this approach has two problems. Consider
the typical case where the low-variance buffer contains the direct illumination
and the high-variance buffer the indirect illumination. In shadowed regions,
the low-variance buffer will be completely black. So exactly in the regions
where the indirect illumination is likely to make a large contribution, no edges
would be defined. Conversely, hard direct shadows would define edges that
are irrelevant to indirect illumination. The second problem is that even direct
illumination can contain spike noise in the presence of difficult to sample area
light sources.

We chose to explicitly generate a separate range buffer. For each viewing
ray, we store the hemispherical reflectivity of the first non-specular surface it
hits (perfect specular surfaces reflect and refract rays Whitted-style). This
roughly corresponds to an image rendered with only unoccluded ambient
lighting and captures the edges present in textures. In addition, we light the
scene with a single unoccluded head light. This produces most of the edges
that result from variation in the normals. We believe this to be a simple but
quite elegant solution, because lighting with a headlight conveys information
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similar to that in a normal buffer (as far as edges are concerned), but avoids
the aliasing problems and the storage costs of an additional buffer. Especially
in the presence of realistic specular surfaces (that reflect and refract at the
same time) or alpha blended surfaces, pixels can be a linear combination of
many reflected and refracted light paths. It is not easy to decide what to
store as the normal in these cases. High-frequency normal maps can make it
even worse. The only geometry information we use directly is the depth of
the first surface a primary ray hits, in order to resolve objects with similar
normals and textures that are partially occluding each other. The depth is
stored in the alpha channel of the range buffer. Figure 3.2 shows a test scene
and the corresponding range buffer.

Note that this range buffer generated with a single headlight and an ambient
term can be regarded as an artificially generated “flash image”, in the sense
of the “flash no-flash” pairs of Eisemann and Durand [41] and Petschnigg
et al. [101]. Recently, after our paper was published, Moon et al. [90] used
the same idea for noise reduction and coined the term “virtual flash image”,
which is actually quite appropriate.

Generating the range image usually has little overhead: No shadow rays have
to be traced, no lighting calculations have to be done (apart from the diffuse
response to the single unshadowed head light). If one has access to the under-
lying renderer, even the hit points of the primary rays can be reused, and the
range image can be computed alongside the other buffers. To antialias the
range buffer, we usually accumulate 4 samples per pixel per filter pass, this
means the first filter pass uses a range buffer with 4x stochastic supersam-
pling, the second pass 8x, and so on. For depths, we keep the nearest depth
per pixel, although this produces slightly jagged edges.

Now we have all the components to define our cross bilateral filter and calcu-
late by which amount it reduces the variance of a pixel. The filter is defined
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as

Lf,j � 1
A

¸
i

aiLu,i, (3.6)

with ai � gσsp||p0 � pi||qgσcp||cj � ci||qgσd
p|dj � di|q

and A �
¸
i

ai.

Lf,j is the value of the filtered pixel, gσptq � exp p�1
2
t2

σ2 q is a Gaussian with
zero mean and standard deviation σ (σs for the spatial domain, σc for colors,
and σd for depths), pi are the pixel positions, ci and di are the colors and
depths in the range buffer, and Lu,i are the entries of the unfiltered high-
variance buffer. We use the Euclidean distance in pixel space and linear sRGB
color space (although other color differences may produce better results at
the expense of additional computation).

Compared to the unfiltered pixel, the variance of the filtered pixel is approx-
imately reduced by a factor of r � °

i a
2
i (Eq. 3.5). We calculate this factor

during the filtering process and store it in the alpha channel of the filtered
image.

Applying a wide bilateral filter is an expensive operation. However, with
our approach it is not necessary to apply the filter every frame. With a wide
filter new samples have little influence on the filtered image, because (in most
regions) the filter has already averaged a lot of similarly distributed samples.
So, the filtered image does not change much, even during the early frames.
In addition, new samples do contribute via the unfiltered buffer, even if they
are not yet present in the filtered buffer. This allows pixel filtering to apply
the filter only every 2ith frame; usually starting with frame 4. With this
progression, even a brute-force implementation of the bilateral filter becomes
practical. Further speed-up can be achieved with the optimizations described
in Section 3.6.
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3.3.4 Variance of the Blended Result

With estimates for VarrLus and VarrLf s, we can estimate the variance of the
blended result:

VarrLhvs � Var rsLu � p1� sqLf s
� s2VarrLus � p1� sq2VarrLf s � 2sp1� sqCovrLu, Lf s. (3.7)

The covariance is not zero, because (in general) Lu is a part of the filtered
pixel Lf . It depends on the filter kernel and the radiance values:

CovrLu, Lf s � ErLuLf s � ErLusErLf s

� E
�
Lu,0

¸
i

ai ErLu,is
�
� ErLusE

�¸
i

aiLu,i

�

�
¸
i

ErLu,0aiLu,is � ErLusE
�¸

i

aiLu,i

�
(a)� a0 ErL2

u,0s �
¸
i¡0

ai ErLu,is2 � ErLusE
�¸

i

aiLu,0

�
� a0

�
ErL2

u,0s � ErLu,0s2
�

� a0VarrLu,0s (3.8)

where a0 and Lu,0 are the weight and the radiance of the central pixel. Er�s is
the expected value. The approximation (a) uses the assumption that neigh-
boring pixels are independent realizations of the same random variable. Note
that the covariance tends to increase with a large central weight or a central
spike in variance, as one would intuitively expect. Equation 3.8 can be used
to estimate CovrLu, Lf s, but for the broad filters we use a0 is quite small
(typically   0.1). We usually set it to zero in practice, sacrificing a small
amount of accuracy for runtime. (If the filter is not able to gather many
similar pixels in the neighborhood, the covariance and the error in the blend
factor will increase, but in this case the filtered and the original pixel will be
very similar. In that case, the error in the blend factor is acceptable, because
we are blending very similar values.)
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3.3.5 The Blend Factor

In order to find s in Equation 3.1, we have to rewrite Equation 3.7 in terms
of perceived variance

VarLb
rLhvs � 1

L2
b

Var rsLu � p1� sqLf s , (3.9)

and need to find the background radiance Lb. Although we use a global tone
mapping operator (Reinhard’s photographic operator [107]) using the global
adaption luminance proved to be a poor choice. In our current implementa-
tion, we use the sum of the filtered radiance of the high-variance buffer and
the radiance of the low-variance buffer:

Lb � Lf � Llv. (3.10)

This way, we can compute Lb in the filtering pass without much additional
overhead. Another option is to calculate Lb from the local adaption luminance
of a local tone mapping operator, but we have not tried this yet.

With Equation 3.9, finding a blend factor that satisfies some user-defined
threshold on perceived variance

VarLb
rLhvs ¤ t (3.11)

consists simply of solving a quadratic equation for s. Note that in practice an
estimate for VarLb

rLhvs is used, so the real variance remaining in the image
may be larger.

The solution that maximizes the unbiased contribution (assuming
CovrLu, Lf s � 0) is

s1 � f �?
tu� tf � uf

u� f
, (3.12)

with u � VarLb
rLus and f � VarLb

rLf s
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The actual blend factor requires handling two special cases:

s �

$'''&'''%
0 if tu� tf � uf   0 (case 1)

1 if u ¤ t (case 2)

s1 otherwise. (case 3)

(3.13)

In case 1, s1 is not a real number, this means it is not possible to satisfy the
threshold because even the filtered buffer has too high a variance. In case
2, the unfiltered buffer already fulfills the threshold, this means the filtering
step is unnecessary. (Note that if u � f � 0 case 2 applies; if t � 0 and u ¡ 0
case 1 applies; so spuq is well-defined for u ¥ 0, t ¥ 0.)

The definition of s clearly shows that the bias due to filtering vanishes in
the limit, if the unfiltered image converges (and t ¡ 0). At some point, the
variance of the unfiltered buffer will drop below the threshold (u ¤ t). This
is case 2 in Equation 3.13, so s � 1 and only the unfiltered buffer is used,
which does not contain bias. Appendix 3.A contains a formal analysis of the
blend factor.

3.4 Results

In this section, we show results and discuss several important aspects of
pixel filtering. We implemented pixel filtering for a CUDA-based progres-
sive path tracer build on top of the OptiX ray tracing engine [99]. If not
otherwise stated, all images and numbers were produced with this configura-
tion: NVIDIA GeForce GTX 470 1.2GB; 768� 768 resolution; σs � 8 pixels,
σc � 0.02, σd � 2m; spatial kernel truncated after 3σs; next event estimation;
maximum path length 6 vertices, Russian roulette starts after 3; one path
per pixel traced per presented frame; box filter as pixel reconstruction filter.
Since we want to evaluate filtering performance, we filter exitant radiance,
even for diffuse surfaces, where one could use irradiance filtering ([75], [28],
[7]) to preserve the textures better. Chapter 4 shows and discusses filter
variants that do that.
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path tracing vs. filtered
(6 spp vs. 4 spp)

path tracing vs. filtered
(40 spp vs. 32 spp)

path tracing vs. filtered
(528 spp vs. 512 spp)

Figure 3.3: Side-by-side comparison of unfiltered path tracing (left half of each image) and pixel
filtering (our method, right half). Rendering times are comparable, t � 0.1. Top: final images with a
different number of samples per pixel (spp). Bottom: corresponding per-pixel blend factors.

Figure 3.3 shows a typical application of pixel filtering to a progressive render-
ing. The two perfect specular objects lead to a high variance in the indirect
illumination, resulting in a very noisy image in regions where indirect light
dominates (top and bottom). Pixel filtering can provide a strongly reduced
noise level very early in rendering process, after 4 samples per pixel (spp).
The original path traced image is hardly recognizable after a comparable ren-
dering time (6 spp). Applying a classic bilateral filter to this image would
yield no usable results, but our adapted cross bilateral filter can smooth the
image. Note that reflected and refracted edges on the specular objects are
preserved, too; only caustics are blurred. After 32 spp, pixel filtering reaches
a noise level comparable to 200 spp of unfiltered path tracing in the high-

44



3.4 Results

variance areas. The walls and the back of the box have comparatively low
variance and the blending operator can already assign a high weight to the
unfiltered buffer after 32 paths in these areas. Note that the method does
not try to remove all visible noise in this case, it attempts to maintain a
uniform noise level just below a user-specified threshold. As a result, the
formerly blurred caustics are becoming sharper. After 512 paths the unfil-
tered buffer has reached the threshold almost everywhere and the blending
operator has effectively switched completely to the original path traced im-
age.

Figure 3.4 shows results for three distinct scenes. A scene with clearly defined
edges and perfect specular objects causing caustics, a scene with textures (in-
cluding normal and specular maps) dominated by indirect illumination, and a
scene lit by partially occluded area lights. The threshold used in these images
corresponds approximately to a standard deviation of 1 JND, so the blend-
ing operator tries to remove almost all noise. Again, pixel filtering achieves
a strong noise reduction, but it cannot satisfy the threshold everywhere. Al-
though the Cornell box scene has clearly defined edges, the filter has problems
to find similar neighbors for antialiased pixels directly on those edges. In the
Sponza scene, the filter has the complementary problem: it blurs across the
very fine variations in the texture of the stones (but clear edges in the tex-
tures are very well preserved). In the kitchen scene, the filter works very well,
but much of the variance in that image is due to direct illumination, which
is not included in the high-variance buffer and therefore not smoothed. The
filtering artifacts can be addressed by fine-tuning the filter parameters, but
this is tedious and sometimes it is not possible to find parameters that are
optimal for all possible views of a scene. However, a nice property of pixel
filtering is that filtering artifacts can be hidden to some extend by specify-
ing a more generous threshold, which leaves a high-frequency, low-amplitude
“dithering” noise in the image. Still, especially in the early frames, artifacts
may be present in the resulting image – although seldom to an extent where
one would judge the unfiltered image to be “better”.

Table 3.2 shows some performance measurements for the scenes in Figure 3.4.
For the Cornell box scene, the range buffer generation is relatively expensive,
because the specular surfaces require a lot of secondary rays to be traced.
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path tracing
(4118 samples per pixel)

path tracing vs. filtered
(6 spp vs. 4 spp)

path tracing vs. filtered
(40 spp vs. 32 spp)

NRMSE (%): 13.0 vs. 4.30 7.55 vs. 2.55

NRMSE (%): 9.02 vs. 2.04 4.32 vs. 1.19

NRMSE (%): 10.88 vs. 5.83 6.21 vs. 2.46

Figure 3.4: Pixel filtering applied to three scenes, t � 0.001. Rendering times
in side-by-side comparisons are similar. The number below each comparison is
the normalized RMSE (in percent) of the whole image compared to the reference
solution to the left. The images in the second row had their brightness increased
for print.
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scene path tracing range buffer filtering relative overhead
(ms) (ms) (ms) 32 frames

cornell 499 547 349 18%
sponza 731 95 333 7%
kitchen 688 69 337 7%

Table 3.2: Performance measurements for the three scenes in Figure 3.4. Timings
are given for one filtered frame (except right column) with 10242 pixels.

Figure 3.5: Effects of adjusting the threshold. Top row, left to right: reference, range buffer, blended
result with t � 0.002, t � 0.02, and t � 0.2. Bottom row: variance of unbiased high-variance buffer,
variance of filtered high-variance buffer, blend factors for t � 0.002, t � 0.02, and t � 0.2. All images
used 16 spp, only the reference used 4118.

For the other scenes, filtering dominates. As a rule of thumb, one application
of the filter (including range buffer generation) costs 1-2 path tracing frames.
However, since pixel filtering does not filter every frame, the relative overhead
for a fixed number of frames (Tab. 3.2, right column) is the more interesting
number. Considering the results (Fig. 3.4, right column) this overhead should
be acceptable.

Figure 3.5 illustrates the effects of the threshold on the blend factor and how
it can be used to mask filtering artifacts at the beginning of the rendering
process (16 spp). A threshold of t � 0.002 leaves little noise in the image;
and although the enlarged part does not contain any striking artifacts, it has
a filtered, slightly unnatural look. A threshold of t � 0.02 attenuates the
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noise significantly (compared to unfiltered path tracing), but leaves enough
noise in the image to hide the unnatural look of the filtered contribution.
A threshold of t � 0.2 does not reduce noise to an acceptable level. With
pixel filtering the user can balance noise versus bias at any time, even while
the image is rendering. For quick, reliable previews this behavior may be
preferable to a noise-free but “overfiltered” image.

Figure 3.6 shows the effects σs and σc have on the final blended result of
pixel filtering. The depth-kernel has been deactivated for this experiment,
so that the edge between the pillar and the wall in the background is hardly
discernible in the range buffer. (Admittedly, this example is a bit contrived,
but the intention was to clearly show the effects.) σc � 0.001 is too restrictive
and the filter will not be able to gather enough similar pixels to smooth out
the noise. σc � 0.1, on the other hand, leads to a range kernel that is too wide
and blurs across the edge. (It also blurs the texture of the pillar.) σc � 0.01,
is a reasonable compromise of noise reduction and blurring. For the spatial
kernel σs � 4 or σs � 8 (or a value in between) are a good choices. σs � 16
leaks too much light into the shadowed region.

Figure 3.7 shows pixel filtering applied to a difficult case with environment
lighting. The dragon on the left has extremely detailed texture maps (diffuse,
specular, and normal), the one on the right is perfectly specular. Because
direct light with a relatively high variance dominates the scene, we have
classified all light paths as high-variance paths (i.e. this whole image is fil-
tered, not just the indirect illumination). Filtering artifacts (blurring on the
dragons) are present during the early frames, but vanish quickly. Consid-
ering the difficulties involved in filtering this image, pixel filtering performs
still satisfactorily. Related work has not yet been demonstrated with such
scenes.

Figure 3.8 compares variants of the bilateral filter. The original cross bilat-
eral filter (using only the color range buffer) cannot reliably detect the edge
between the pillar and the wall in the background and partially filters across
this edge. Adding a kernel that weighs samples based on depth information
reduces this problem, but leads to aliasing along the edges. Color bleeding
is even worse for the bilateral grid, because it can only use a single scalar
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σc � 0.001 σc � 0.01 σc � 0.1

σ
s
�

4
σ
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�

8
σ
s
�

16

Figure 3.6: Effects of varying filter parameters. Top: reference, reference en-
larged, range buffer enlarged. Bottom: matrix of different values for σs and σc.
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in its range kernel. We used the luminance, so the filter also bled across
isoluminant edges. The artifact is particularly bad for the yellow parts of the
curtain bleeding into the background. The separated filter shows streaking
artifacts, created by applying the filter first horizontally and then vertically.
These streaking artifacts are visually more disturbing than the color bleeding,
because the human brain instantly recognizes a vertical streaking pattern all
over the image. The À-Trous scheme lies in between the bilateral grid and
our method.
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4 spp 32 spp 128 spp

6 spp 40 spp 140 spp

Figure 3.7: Example with environment lighting and complex materials. Top: pixel filtering (our
method, t � 0.05, σs � 6, σc � 0.007, all light paths classified as high-variance paths). Bottom:
unfiltered path tracing after similar rendering time. Filtering artifacts are visible after 4 spp (blurring
on the dragons’ heads); after 32 spp they are less objectionable but still visible; after 128 spp they have
practically vanished.
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bilateral bilat. + depth bilateral grid sep. bilateral à-trous

179 ms
2.54%

187 ms
2.38%

26 ms
2.84%

24 ms
2.65%

44 ms
2.76%

Figure 3.8: Comparison of different variants of the bilateral filter. From left to right: cross bilateral
with color range buffer, cross bilateral with color + depth (our method), bilateral grid, separated cross
bilateral, À-Trous filter. First row: direct + filtered indirect; second row: only filtered indirect; third
row: filtered indirect enlarged. Parameters: σs � 8, σc � 0.01, σd � 2m. Because the bilateral grid
only works with luminance values, it used σc � 0.006 (which gave comparable filtering performance
to the other techniques that used the Euclidean distance in linear sRGB). The filters where applied
to the indirect component of a noisy (4 spp) path traced image. The last row shows performance
measurements for the filtering pass (excluding range buffer creation) and the normalized RMSE of the
filtered version compared to a reference solution (only the indirect component was compared). For the
blow-ups in the bottom row the brightness was increased slightly to make the difference better visible
in print.
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3.5 Discussion

3.5.1 Comparison with Related Work

Direct comparison with related work is not possible, since our method fea-
tures a unique blending component. Therefore, we only compare our filtering
component with several other approaches. We consider the Gauss-filtered
range buffer by Xu and Pattanaik [149], the À-Trous filter by Dammertz
et al. [28], and the guided image filter by Bauszat et al. [7] to be the most
closely related work. However, it should be noted that the area of applica-
tion is slightly different for these approaches. Our method aims at filtering
for progressive interactive rendering. Xu and Pattanaik provide a filter to
clean up an image in a final pass. Dammertz et al. and Bauszat et al. focus
on providing a noise-free solution for interactive (non-progressive) render-
ing.

3.5.1.1 Comparison with Gauss-filtered Range Buffer

Xu and Pattanaik’s method is a practical approach to clean up images that
have a relatively low noise level, but still some visual outliers. However, it has
massive problems dealing with high noise levels in areas that are dominated
by indirect illumination, because edges cannot be detected reliably. In that
case, the filter blurs high-frequency details in geometry and texture. Lower-
ing the extent of the spatial kernel can reduce blurring, but then the filter
smoothes not enough and produces a splotched image. In some of our test
cases, this issue rendered the filter effectively unusable until 100-200 samples
per pixel were collected (Fig. 3.9). In addition, the asymmetry introduced in
the range kernel (comparing Gauss-filtered pixel against original pixels) can
lead to energy loss when filtering very noisy images. This results in filtered
images that are substantially darker than the reference solution. Our filter
can better cope with this scenario, mainly due to the use of a separate range
buffer (Fig. 3.4). On the other hand, our filtering step is slightly slower, due
to the generation of the very same separate range buffer.
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4 spp, σs � 1 32 spp, σs � 1 4 spp, σs � 4 32 spp, σs � 4

Figure 3.9: Cases where the Gauss-filtered range buffer technique breaks down
(strong noise in areas dominated by indirect illumination). Because the noise level
demands large kernels, but the filter offers only weak edge preservation, it is im-
possible to find an acceptable balance between blurring and noise reduction. The
images show the same areas as Figure 3.4, which shows how our filter handles
these cases. For the bottom row brightness was increased by 50% to compensate
the energy loss.

3.5.1.2 Comparison with À-Trous Filter

We have slightly modified the À-Trous technique presented by Dammertz et
al. [28] for this comparison. First, we have added our range buffer (Sec. 3.3.3)
as source for an additional edge-stopping function and dropped the noisy “rt”
buffer used in the original paper as well as the position and normal buffers.
This was necessary to limit the blurring of high-frequency texture details.
Second, we apply only 3 iterations (with a wider kernel) of the filter instead
of the 5 (with a narrower kernel) in the original paper. This was necessary to
reduce the ringing/stippling artifacts to an acceptable level (a problem also
reported by Bausatz et al. [7]).

The filtering quality of the modified À-Trous filter is comparable to our cross
bilateral filter (Figs. 3.8 and 3.10), but slightly worse. The artifacts men-
tioned above are still present in our variant of the À-Trous filter (Fig. 3.10,
right), but attenuated to a level where they are hardly visible. Unfortunately,
the wider kernel needed to suppress the artifacts eats up some portion of the
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à-trous ours à-trous ours

3.95% 3.72% 2.07% 1.94%

Figure 3.10: Comparison of our filter with the À Trous filter (input was only the indirect component
rendered with 4 spp). The section of the image shown is the same as in Figure 3.4. The last row gives
the normalized RMSE (of the whole image) compared to a reference solution rendered with 4096 spp.
The two images on the right have their brightness increased by 25% to make the difference visible in
print.

potential gain in speed. Also, we compute the three iterations with three
separate kernel-launches and pay the launch-overhead three times. As a re-
sult, the À-Trous filter was “only” about four times as fast as our bilateral
filter. An optimized version should yield even higher gains. The overhead
for generating the edge information is similar in both approaches. For our
method as a whole, we prefer the slightly better filtering performance of
the classic cross bilateral filter to the faster running time of the À-Trous fil-
ter. Mainly because the running time of the filtering step is not a highly
critical factor (because of the progression scheme the filter is applied very
economically). Therefore, we kept the cross bilateral filter as our main high-
quality filtering algorithm. However, the À-Trous filter can be used as a fast
filtering algorithm in our framework, if the user prefers speed over quality
(Sec. 3.6.1).

3.5.1.3 Comparison with Guided Image Filter

We have not yet had the opportunity to implement the method of Bauszat et
al. [7] and directly compare it with ours. This comparison is based solely on
reading the paper and should be taken with a grain of salt. The computation
times given in the paper are similar to the À-Trous technique and much faster
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than our straightforward implementation of the cross bilateral filter. The cost
of generating the edge information should be similar. The paper also includes
a clever mechanism to fight the aliasing problems that other approaches based
on geometry buffers have and geometric edges seem to be very well preserved.
However, how the method handles complex refracting/reflecting objects and
high-frequency textures if irradiance filtering cannot be used is not clearly
shown in the paper. Overall, we believe our filter to be superior in respecting
edges that are present in textures, while their method seems to preserve
geometric discontinuities better. The guided image filtering technique could
replace the cross bilateral filter in our filtering step.

3.5.1.4 Comparison with Adaptive Kernel Widths

Our blending approach can be interpreted as a procedure to modify the (spa-
tial) filter kernel by assigning a larger weight to the central pixel without
modifying the weights of the other pixels relative to each other. In our opin-
ion, this is a better way of balancing noise and bias than variable-width
kernels, for the following two reasons. First, the non-linear nature of edge-
preserving filters makes it difficult to find an adequate kernel width. The
problem is that the weights ai adapt to the signal (i.e. the pixels), which
makes it hard to estimate the variance reduction with Equation 3.5 a priori.
Finding a numerical solution in a single frame requires multiple evaluations
of the filter and has an unacceptable performance overhead. Interleaving
over multiple frames alleviates the performance issue, but then the methods
tend to become unstable since the function they are working on is changing
between evaluations and not very smooth. The second reason is that with
adaptive widths, the only way to reduce bias (blurring) is to reduce the kernel
width. Doing this will quickly lead to a splotchy image (Fig. 3.11 right). In
contrast, our method blends in the original samples that are not blurred at
all and that usually contain high-frequency noise. The eye is less sensitive to
this noise than to splotches. So, whenever the user prefers a small amount
of noise to an image with low-frequency filtering artifacts, the blending ap-
proach is a better choice. However, it can make sense to combine adaptive
filter widths with our blending operator as an optimization, as outlined in
Section 3.6.3.
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Figure 3.11: Our blending approach (left) vs. adaptive kernel widths (right). The blending operator
used t � 0.1 and left some high-frequency noise in the image. For the right image, we tried to reach
the same variance reduction by iteratively adapting the kernel width with a bisection method. The filter
removed high-frequency noise, but this resulted in a splotchy image, because the widths necessary to
reach t � 0.1 are (by definition) too narrow to smooth out the splotches. The figure shows the same
enlarged portion of the Sponza scene as Fig. 3.4, after 4 spp.

3.5.2 General Observations

In summary, we have made the following observations.

Filtering performance. In general, the quality of our filtering step is su-
perior to current state-of-the-art approaches in interactive rendering,
especially in difficult scenes with high-frequency textures, much indi-
rect illumination, and perfect specular objects that cause reflection,
refraction, and caustics. The price we pay for this enhanced quality is
a higher running time, but thanks to the progressive filtering scheme
this is acceptable. Nonetheless, the filter can produce artifacts in some
cases. Extreme intensity spikes can lead to splotches if they are spread
out by the filter. On antialiased edges the filter may not find enough
similar pixels and may not be able to reduce noise to acceptable levels.
(But our method handles antialiased edges better than most approaches
that build solely on geometry information for edge detection.) Finally,
color bleeding can occur over edges that are not detected. Usually the
blending operator can hide these artifacts by leaving a small amount of
noise in the image.

Blending operator. The blending operator works well in general. However,
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very early in the rendering process the variance estimates may be un-
reliable. In this case, the operator may not be able to satisfy the user-
defined threshold.

Configuring parameters. Pixel filtering requires four parameters to be ad-
justed: t, variance of perceived noise that should remain in the image;
σs, standard deviation for the Gaussian kernel in the spatial domain
(controls maximum smoothing); and σc and σd, standard deviations for
the range domain kernels (colors and depths – controls edge preser-
vation). The parameters are relatively intuitive and default values of
t � 0.01, σs � 8 pixels, σc � 0.02, and σd � 2m usually produce ac-
ceptable results. However, in order to achieve optimal results careful
manual adjustments may be necessary. Reducing the set of parameters
or setting some of them automatically would improve the usability of
our method.

Compatibility. In principle, pixel filtering should be compatible with any ren-
derer based on Monte-Carlo path sampling. General optimizations like
stratification, importance sampling, and adaptive sampling are orthog-
onal to pixel filtering. With stratified sampling the algorithm may not
correctly estimate the variance reduction in the filtering step (Eq. 3.5),
but since this estimation is a relatively rough approximation anyway
this is usually not a problem in practice. We have not yet tested our
method with advanced sampling techniques that produce correlated
pixels and their own characteristic noise pattern (such as Metropo-
lis Light Transport or other Markov chain Monte Carlo methods). It
would be interesting to see how the correlation affects our algorithm.
The renderer has to provide the range image, the separate high-variance
radiance buffer, and the corresponding per-pixel variance values. Apart
from that, pixel filtering does not interfere with the rendering process
and should be relatively easy to integrate into existing pipelines. How-
ever, it is not a pure post-processing.

Overhead. The runtime overhead of pixel filtering consists mainly of the
filtering step and range image generation (equivalent to 1-2 spp in our
implementation). Due to the progressive filtering scheme, this overhead
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quickly approaches zero as the number of samples grows. The blending
is essentially for free. These numbers assume that the renderer does
already keep track of variances (our renderer does). If that is not the
case, this overhead has to be taken into account, too.

In terms of memory requirements, our methods adds 15 floats per pixel
(2�3 for the low- and high-variance buffers, 3 for the blurred high-
variance buffer, 4 for the range buffer, and 2�1 for the variances). This
overhead is comparable to similar approaches and should be acceptable
in general.

No bias estimate. Our method tries to limit bias by using bilateral filtering.
We have not derived a theoretical bound on the bias or included an
estimate of bias into the algorithm. So, in theory, the bias could eat up
the benefits gained from variance reduction and the overall rendering
error could in fact increase. However, the RMS-error in all of our test
cases was significantly reduced by our algorithm, which indicates that
this does not happen in practice.

It is also important to note that our algorithm is based on an estimate of
variance. The bound on variance could be made more rigorous by using
confidence intervals, but since the primary objective of our algorithm
is to provide visual previews, we have not deemed this necessary.

Distribution effects. Effects like motion blur and depth of field are prob-
lematic, because the algorithm relies on clear per-pixel edges in the
range buffer. In theory, it is possible to generate a range buffer that
includes these effects, but in order to keep the range buffer free of noise
an unacceptable overhead would have to be paid.

3.6 Optimizations

This section briefly discusses some additional optimizations to improve the
speed and quality of pixel filtering. There are four notable contributions:
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Faster filter. We replace the cross bilateral filter by a fast approximation
that allows the filtering step to run more frequently at the price of a
small loss in quality.

Adaptive filter width. We introduce a heuristic to adapt the width of the
spatial kernel per pixel, which reduces runtime and blurring artifacts.

Spike noise removal. We present a way to withhold spike noise from the
final image, which improves the perceived smoothness of the resulting
image.

Antialiasing recovery. We extent the filtering step with a procedure that
allows us to treat antialiased pixels more correctly.

Our primary objective is to extent the original method, but we would like
to point out that many of the ideas and techniques presented in this chapter
are applicable to similar approaches.

Note that only the images in this section use these optimizations, the other
images are rendered with the original method.

3.6.1 Faster Filter

The original method uses a brute-force implementation of the cross bilateral
filter. This produces a filtered buffer of very high quality, but the filter is very
expensive, although the progression scheme (filtering only every 2ith (i ¡ 1)
frame) can hide the costs well. Nonetheless, in highly dynamic scenes it can
be beneficial to have a fast path available and to be able to apply the filter
more often early in the image formation process – if the loss in quality is
acceptable.

We have investigated three methods: the “separable” bilateral filter by Pham
and van Vliet [102], the bilateral grid by Chen et al. [22], and the À-Trous
scheme by Dammertz et al. [28].
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The bilateral grid is very fast but has some serious weaknesses. First, the
range kernel can only operate on luminance values, which can lead to color
bleeding across isoluminant edges. Also, it cannot use the depth buffer,
which can lead to a huge loss in quality for some scenes. (Gaussian kd-
trees [1] could be used, too, but from the figures in the paper they seem to
lose a lot of their performance gain with the filter sizes we use, and we have
not yet tested them.) Second, it requires additional memory for the three-
dimensional grid structure. For the kernel sizes we use, the grid structure
takes up approximately as much memory as the frame buffer, which should
be acceptable in most cases, but it is a noticeable overhead. Third, it was not
obvious to us how the variance of the filtered result can be recovered from
the grid (i.e. the sum of the squares of the weights). Fourth, the bilateral
grid does not allow varying kernel widths, so the adaptive kernels described
in the following section cannot be used.

The À-Trous scheme performs very well (with a few simple modifications).
The filtering quality is only slightly worse than that of the original cross
bilateral filter and it is quite fast. However, it is not as fast as Pham’s
“separable” filter, and for our fast path we wanted to make speed the prior-
ity.

So, in the end, we have chosen Pham’s “separable” filter. This approach
simply treats the bilateral filter as if it was separable and splits the filter-
ing process in two one-dimensional (horizontal and vertical) passes. Naively
applying the scheme results in objectionable streaking artifacts (which is
the reason why we discarded the approach at first). However, Gastal and
Oliveira [45] mention a nice trick that can remove these artifacts almost
completely: multiple passes with a shrinking spatial kernel are applied iter-
atively.

They base their scheme on the observation that streaking artifacts are only
present along the last filtered dimension. Since the next iteration will start
with a one-dimensional pass along the other dimension, it can remove the
streaks of the last iteration. The standard deviation σpkqs for the kernel of the
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k-th iteration is given as [45]

σpkqs � σs
?

3 2pN�kq?
4N � 1

, (3.14)

where σs is the standard deviation of the desired (combined) kernel and N is
the number of iterations. We use three iterations as default.

Figure 3.12 shows a comparison of different filters. The cross bilateral filter
used in the original approach provides the best result (in terms of PSNR),
but it is also the slowest. The modified separable approximation we use is
about nine times faster. Early in the image formation process the separa-
ble approximation produces clearly results of lower quality (Fig. 3.12 upper
block). However, as more samples are gathered and the input improves, the
difference in quality quickly vanishes (Fig. 3.12 lower block). We have also
included the À-Trous scheme [28] in the comparison. It lies in between the
original filter and the separable filter. However, as already mentioned, speed
was the priority for us and we chose the separable filter.

Figure 3.13 shows a comparison between a naive application of the separa-
ble filter and the iterative version we use. The naive filter produces vertical
streaks; the iterative version effectively removes these artifacts.

3.6.2 Extended Range Buffer

Orthogonal to speed considerations, an improved range buffer with additional
edge-stopping functions can improve the filtering quality. This subsection
outlines some possible extensions.

A normal buffer can provide some benefit in cases where normal information
is not adequately captured by shading with a single head light. Also, if direct
illumination is to be filtered, it can make sense to augment the original range
buffer with shadowed direct lighting (especially if the lights cast hard shad-
ows). Depending on the number and type of light sources this may increase
the shading costs for the range buffer significantly.
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reference
4096 spp

input
4 spp

22.9 dB

bilateral
265 ms
32.5 dB

à trous
64 ms

32.2 dB

separable
28 ms

31.9 dB

4096 spp 32 spp / 31.1 dB 36.3 dB 36.4 dB 36.2 dB

Figure 3.12: A comparison of filtering steps. “bilateral” is the cross bilateral filter
used in the original algorithm, “à trous” is a variant of the À-Trous scheme [28],
and “separable” is our variant of the separable bilateral filter [102]. Below the
identifiers are the number of samples per pixel (spp), filtering time (in ms), and
the PSNR (in dB). The blow-ups had their brightness increased for print.
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reference reference input (4 spp) separable sep. iterative

Figure 3.13: A naive application of the separable bilateral filter produces vertical streaking artifacts.
Iterating the filter as described in Section 3.6.1 removes these artifacts.

Aliasing is a huge problem when storing geometry information. When storing
depths, we only store the nearest sample (with respect to the camera), which
produces artifacts (jagged edges) in the filtered result. Using a geometry-
aware look-up as recently introduced by Bauszat et al. [7] may improve the
situation, but we have not tried that yet.

Another modification can improve filter quality in the presence of complex
specular objects in front of featureless backgrounds. Then the specular object
appears only as a faint “ghost” in the range buffer, and the filter (whose σc
has been adjusted to the diffuse surfaces) will smooth across large parts of
the specular object, resulting in a slightly painted look. This artifact can be
reduced by shading specular surfaces as if they also had a diffuse component
in the range buffer. This clearly brings out the normal deviations and gives
the object a structured surface in the range buffer.

The metric used to measure color differences for the range kernel can also be
modified. Currently, we use the Euclidian distance in linear sRGB space per
default. Since our renderer works in that space, it is a reasonable compromise
between performance and accuracy. However, this color space is perceptu-
ally non-uniform and may lead to suboptimal results. Other color spaces or
metrics like CIELAB [87] may improve filtering results and the performance
loss may be acceptable, but so far we have only implemented the Euclidian
distance in sRGB.
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3.6.3 Adaptive Filter Widths

The original algorithm uses a constant spatial kernel for the whole image.
An adaptive kernel size can improve the filtered result in two ways: First, it
can improve performance if large parts of the image have low variance and a
small kernel is sufficient to filter out the noise. Second, it can improve the
filtered result if the edge preservation fails, that is if the filter blurs across
relevant edges. In this case, an adapted smaller spatial kernel will reduce the
blurring artifacts that occur.

Unfortunately, the non-linear nature of the bilateral filter poses a problem,
as described in Section 3.5.1.4. The variance of the filtered buffer is reduced
by a factor of r � °

i a
2
i compared to the unfiltered buffer, where the ai are

the filter weights. The problem is that for the bilateral filter the weights ai
are not constant, but depend on the filtered pixels themselves. This makes it
hard to estimate a kernel width that reduces the variance to certain amount
a priori.

We have experimented with several numerical root-finding algorithms. How-
ever, these methods tend to be unstable, because the function for which
they are searching the root is not constant, but changes continually (radi-
ances and variances are updated each rendered frame). A simple heuristic
that we have found to work quite well is to calculate what extent a simple
box filter would have to have to reach a given variance reduction and then
translate this extent into a σs for the spatial kernel width of the bilateral
filter.

The weights of the box filter are simply the inverse of the number of pixels
inside the support, so the extent e of a box filter needed to reduce the variance
of the filtered buffer to some target f is

u
1

p2e� 1q2 � f ñ e � 1
2

c
u

f
� 1

2 , (3.15)

where u is the variance of the unfiltered buffer. We then simply map e

to a σs by σs � 1.5e, where 1.5 is a constant determined by experimenta-
tion.
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A problem with this approach is that the value for u is estimated from a
blurred version of the variance buffer. This can lead to a value for σs that de-
viates significantly from the optimal value, especially during the early frames,
when the estimates are still unreliable. If σs is chosen too small for pixels
containing intensity spikes, the energy is not distributed enough and remains
in a small neighborhood around the pixel. This can create objectionable
splotches in the image. To alleviate this issue, we do not allow a completely
free adaption of the kernel width, but restrict it to an interval around a guide
line of decreasing values:

σ1s � clamppc�1σspnq, cσspnq, σsq, (3.16)

where c is a constant defining the width of the interval (we use c � 4 as
default) and σspnq is a sequence of values decreasing with the number of
samples n:

σspnq � n�
1
2σsp0q, (3.17)

where σsp0q is the user-defined base value for the standard deviation and the
factor n� 1

2 stems from the expected convergence of the default Monte Carlo
method. It is possible to adjust the exponent in this factor to accommodate
for different sampling strategies (e.g. stratification), but this is usually not
necessary since the σspnq only provide a guide line for the σs that are used by
the algorithm (and adjusted per pixel). This little trick works quite well in
practice, but of course a spike noise removal mechanism in the filtering step,
similar to the one for the blending step described in the following section,
would be a better solution for the future.

Figure 3.14 shows a comparison of the original approach with a fixed kernel
size and the heuristically adapted kernel described here. The adaptive kernel
preserves the sharp caustic and the glossy reflection on the sphere much
better.

Figure 3.15 shows a comparison of our method using a restricted adaptive
kernel and a completely free adaptive kernel. An unrestricted kernel produces
splotches from pixels with high intensity. The restricted kernel eliminates
these artifacts.
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reference input (32 spp) nonadaptive adaptive

Figure 3.14: Filtering with adaptive spatial kernel. The original approach with
fixed kernel size blurs the glossy reflection and the sharp caustic too much. Using
a kernel size that was adapted using the optimization from Section 3.6.3 produces
sharper edges and still attenuates the noise below the user-defined threshold.

reference reference input (16 spp) free adaptive restricted adaptive

Figure 3.15: Allowing a completely free adaptive kernel size may result in too narrow kernels. Re-
stricting the kernel size reduces the problem.
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3.6.4 Spike Noise Removal

Spike noise is a huge problem for the original method. It is caused by pixels
whose values deviate significantly from their expected value (usually due to
bad sampling strategies). The first problem are the splotches mentioned in
the previous section that can occur in the filtering step. If the value of the
pixel is significantly larger than that of its neighbors or the spatial kernel of
the filter is too small, the energy is not distributed in an area large enough
and remains concentrated in a single bright splotch. The second problem
is that the blending operator blends based on a blurred version of the pixel-
variance. So, spike noise samples that are not yet present in the filtered buffer
are not blended correctly (because they are also not in the blurred variance
buffer). In addition, spike noise pixels that are present may be blended with
too high a weight, because the blurred variance may be smaller than the
actual variance of the pixel. They will be attenuated to some extent, but the
spike will still be visible in the blended result.

We propose a simple mechanism to withhold spike noise from the blended
result, this means we address only the second problem – the filtering step
is unchanged. There exist sophisticated methods for spike noise removal
[29, 96], but since we have a filtered version of the radiance buffer readily
available, we can use a simpler and faster approach. Spike noise can be
efficiently removed during the blending step by simply clamping the unfiltered
pixel (Lu) that may contain spikes to an interval centered on the value of the
filtered pixel (Lf ):

L1u � clamppc�1Lf , cLf , Luq, (3.18)

where c is a constant that defines the borders of the interval. We use c � 2
as a default, so the unfiltered contribution is always between half and two
times the filtered value.

A potential problem is that very small bright image features that are spread
out by the filtering pass may be (wrongly) identified as spike noise and may
be removed. This happens if the filtering pass uses a large spatial kernel and
fails to detect the relevant edges. However, in combination with the adaptive
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reference reference input (32 spp) orig. blending spike removal

Figure 3.16: Blending with spike noise removal. The glossy Buddha produces some intensity spikes
on the wall. The original blending operator does not effectively withhold these spikes from the image.
The optimized operator removes the intensity spikes and produces a cleaner image.

kernel width we propose in Section 3.6.3, this problem disappears as more
samples are averaged and the kernel size shrinks.

Figure 3.16 shows a comparison of the original blending operator with the
optimized version that features spike noise removal. The glossy Buddha and
the specular surface produce some intensity spikes. The original blending
operator transfers these spikes into the final result. They are attenuated by
the blending operator as described above, but remain visually objectionable.
The optimized version can withhold spike noise from the blended image with
practically no overhead. This can improve the perceived quality of the filtered
result significantly.

3.6.5 Antialiasing Recovery

Antialiased edges cause problems in the filtering step of the original algo-
rithm. Since the range buffer is supersampled stochastically, the bilateral
filter often cannot find enough neighbors with similar values for pixels on
antialiased edges. That is because their color is a combination of the regions
adjacent to the edge and not present in the (undiscretized) signal itself. The
result is that sometimes the filter cannot sufficiently smooth out noise for
antialiased pixels. We present a simple edge model for the separable cross bi-
lateral filter to address this issue. It is is based on recent work in antialiasing
recovery by Yang et al. [150].
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Figure 3.17: Illustration of our edge model in a 2D red-green color space with two
examples. Left: fully antialiased pixel; right: partially antialiased pixel. The pixel
in question (here the central pixel) is projected onto the line segment defined by the
gradient in color space. (In this illustration, we have only depicted two neighbors,
but our implementation actually uses the Sobel operator to calculate the gradient,
which takes a 3� 3 neighborhood into account.) The distances a and b can be used
to recover antialiased pixels during the filtering step.

In each one-dimensional filtering pass, we try to detect and fit a simple edge
model to the center pixel. Similar to Yang et al., our edge model assumes
a pixel either covers an antialiased edge connecting exactly two regions, or
it is not antialiased at all. First, we apply a one-dimensional Sobel filter
in the current filtering dimension to get the corresponding component of
the gradient. Then we project the color of the central pixel onto the line
segment defined by the gradient in RGB color space (Fig. 3.17). This yields
two distances: a and b. The distance b tells us how close the central pixel
is to the line segment. A small distance means the central pixel is close to
being a linear combination of its neighbors and thus we can assume with high
confidence it is an antialiased pixel (it is a good match to our simplified edge
model). The distance a tells us how much each neighbor contributes (i.e. the
coverage).

To preserve antialiasing during the filtering step, we filter with three range
values: the original antialiased range value and the range values of the neigh-
bors (Fig. 3.18). This can be thought of as three filter windows in the color
range domain. The two contributions corresponding to the neighbors (L0, L2)
are blended based on the coverage (a) to get the contribution of the edge
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Pixels

Intensity

Figure 3.18: Illustration of the filtering step with antialiasing recovery. Instead
of filtering only with the range value for the antialiased pixel (which will not collect
any samples but the central pixel itself), we also use two range values defined by the
neighbors (which will collect samples). The three results are then blended based on
the recovered antialiasing information (Fig. 3.17). The dashed lines illustrate the
borders and search directions of the range filter windows: the window for the left
(right) neighbor extents only to the left (right) and collects only samples similar
the the left (right) range value, the window for the central pixel extents in both
directions and collects samples similar to the central range value.

model (Le):

Le � p1� âqL0 � âL2, (3.19)

where â � a{||P2 � P0|| is the normalized coverage. Then Le is blended with
the contribution of the antialiased range value (La) based on the “goodness”
of the fit (b):

L � wLe � p1� wqLa, w � gσcpbq, (3.20)

where gσcpbq � exp
�
�1

2
b2

σ2
c

	
is an unnormalized Gaussian with zero mean and

standard deviation σc. It turns out σc, the standard deviation of the color
range kernel, is a good value to weigh the “goodness” of the fit. Equation 3.20
states that if the edge model was a good fit, the result will be a coverage-
weighted combination of the regions adjacent to the edge; if the model cannot
be fitted well, the original filtered value is used.

A problem of our simple edge model in combination with stochastic supersam-
pling and the separable filter is that thin lines that run along the first filter di-
mension may be thinned out. This is because the noise due to supersampling
along these lines looks like many small edges to the algorithm (Fig. 3.19 bot-
tom). However, as the noise in the range buffer disappears, the antialiasing
recovery step can detect antialiased edges more reliably.
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reference reference input (8 spp) orig. filter aa recovery

Figure 3.19: Antialiasing recovery during the filtering step. The original algorithm has problems
smoothing out noise on antialiased edges. Top: the extension for antialiasing recovery can smooth
antialiased pixels and remove the intensity spikes on the edges caused by the specular surface. Bottom:
under certain circumstances our simple edge model may let thin lines appear fainter than they actually
are (details in text).

Figure 3.19 compares the original algorithm with a version that uses our ex-
tension for antialiasing recovery. The specular surfaces cause some intensity
spikes on the edges of the circular checkerboard pattern. The original filter
cannot smooth out all of these spikes, because it cannot find enough neigh-
bors with similar range buffer entries. The antialiasing recovery step reliably
detects and recovers antialiased edges. The bottom row of Figure 3.19 illus-
trates the problem with thin lines that run along the first filter dimension
(here horizontally). Horizontal lines appear slightly thinner in the filtered
version than they are in the reference image.

3.7 Conclusions

We have described a combined filtering and blending approach to reduce
noise in stochastic ray tracing. The method is especially tailored to progres-
sive rendering and achieves strong noise reduction right from the beginning
of the rendering process. Filtering performance reflects the target application
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(progressive rendering of high-quality images). Our filter is slower than most
related approaches for interactive rendering, but the quality of the filtered
results is better, especially for more complex scenes featuring high-frequency
textures on non-diffuse surfaces and reflective/refractive objects. The biggest
innovation of our approach, however, is the blending operator, that allows a
user to interactively balance noise versus bias as the image is rendered. Fur-
thermore, it allows the method to use a progressive filtering scheme, which
hides the comparatively high filtering costs. We have also described sev-
eral optimizations that improve the performance of the original method in
specialized cases.

The two most pressing issues that remain for future work are the process of
finding suitable parameters and reducing filtering artifacts. The method pre-
sented in the following chapter addresses these shortcomings.

Appendix 3.A Theoretical Analysis of Blend
Factor

This appendix analyzes the blend factor s (Eq. 3.13) in more detail.

First, let us state the argument for consistency given in Section 3.3.5 more
formally. If the unfiltered image converges, we have plimnÑ8 û � 0 for each
pixel, with a consistent estimator û for u. This means there exists with
probability one an n0 after which û ¤ t. As is evident from the definition of s
(Eq. 3.13), this means s � 1. In other words, only the unfiltered buffer is used
after n0 samples, which means the bias has vanished.

Furthermore, it is interesting to look at how s behaves for u ¥ t, t ¡ 0.
It should be noted that the following is an idealized discussion of s as a
function of u and f , ignoring the fact that in practice only estimates of u
and f are available. Figure 3.20 shows s plotted against u for t � 1 and
f � 0.1u. As u approaches t, s approaches 1. The curve has two interesting
points: at point (a) s1 is clamped to 1 (u � t, s � 1), at point (b) s1 starts
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Figure 3.20: Blend factor (spuq) plotted against variance in unfiltered buffer (u).
The plot depicts a rather low variance reduction in the filtered buffer (f � 0.1u,
with threshold t � 1) to clearly show the discontinuity at (b). In practice, pixel
filtering usually achieves higher variance reduction ratios and (b) moves closer to
s � 0.

to become a complex number with an imaginary part ¡ 0 (u � ft{pf � tq,
s � f{pu� fq).

We will show that spuq is continuous at (a), not continuous at (b), and strictly
monotonic decreasing in the interval between (a) and (b). This means as the
variance in the unfiltered buffer decreases, the blended result will contain less
and less of the filtered buffer until case 2 is reached and only the unfiltered
buffer is used.

At point (a), we have u � t. Cases 2 and 3 by themselves are continuous
there, so s is continuous there if s1 � 1, which is true:

s1 � f �?
tu� tf � uf

u� f
(3.21)

� f �?
uu� uf � uf

u� f

� f � u

u� f
� 1.

At point (b) s is not continuous. We have tu � tf � uf � 0 and case 3
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evaluates to

s1 � f �?
tu� tf � uf

u� f
(3.22)

� f

u� f
,

which does not match case 1. At first, one would expect this point to coincide
with s � 0, but it occurs at s ¡ 0. This is because Equation 3.12 ignores
covariance. This leads the blending operator to believe it can produce a
better result by mixing Lf with a small amount of Lu than by taking only
Lf . Therefore, it starts with an s slightly greater than 0 – because it is not
aware that Lf has already a small amount of Lu mixed in. The theoretical
worst case occurs if f � u, that is if the filter does not reduce variance at
all. Then s1 � 1{2, but (at least with reasonable filters) this means that
the buffer was not filtered at all (Lf � Lu) and we would blend between the
same values. In practice, the filter will usually reduce variance significantly,
and this value will drop towards zero (for a 3 � 3 box filter it is already
  0.1).

To show that spuq is strictly monotonic decreasing between points (a) and
(b) we show that the derivative of s1 with respect to u exists and is negative
in this interval. Assuming a linear variance reduction by the filter of f � ru,
with r ¤ 1, the derivative is

d
dus

1 � � t

2u
a
uprt� ru� tq , (3.23)

which is well-defined for t   u   ft{pf � tq (the interval between (a) and (b),
excluding the points) and negative.

With adaptive kernels, we can assume the filter keeps f constant and inde-
pendent of u, i.e.

d
dus

1 � Bs1
Bu �

Bs1
Bf

df
du �

Bs1
Bu (3.24)

� �2f
?
tu� tf � uf � uf � f 2 � tu� tf

2pu� fq2?tu� tf � uf
,

which is again well-defined for t   u   ft{pf � tq. The denominator is
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positive, so the nominator dictates the sign; and the nominator is nega-
tive:

� 2f
a
tu� tf � uf � tu� tf � uf � f 2 (3.25)

�� 2f
a
tu� tf � uf � ptu� tf � ufq � f 2

 � f 2 ¤ 0,

where we have used that ptu�tf�ufq ¡ 0 (so the first two terms are negative
and removing them will make the result larger).
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This chapter presents a noise reduction method based on filtering inci-
dent radiance. Instead of filtering pixel values or irradiance, the incident
radiance of neighboring pixels is reused in a filtering step with shrinking
kernels. The filter’s bandwidth is adapted to reach a user-defined target
variance. This approach significantly reduces the variance in radiance
estimates without blurring details in geometry or texture.

4.1 Introduction

In this chapter, we present another noise reduction method for interactive
progressive path tracing, which we call “radiance filtering”. As in Chapter 3,
the idea is to exploit spatial coherence in the image and reuse information
of neighboring pixels by filtering. However, in contrast to the method pre-
sented in Chapter 3 (and most other methods currently used in interactive
rendering), radiance filtering does not simply filter pixel values or irradiance.
Instead, it filters the incident (indirect) radiance. This approach significantly
reduces the variance in the (indirect) illumination without blurring details in
geometry or texture and typically leads to higher quality solutions than image
filtering. In comparison to more sophisticated sample-based approaches such
as light field reconstruction [83] and random parameter filtering [127], radi-
ance filtering is faster and better suited for interactive progressive rendering,
where keeping the system responsive is key.

The primary objective of radiance filtering is to provide fast, reliable previews
of global illumination in dynamic scenes. The method is easy to integrate
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into existing renderers and retains the conceptual simplicity of path trac-
ing, which may be appealing to existing GPU-based implementations. It is
also compatible with many common optimizations such as importance, adap-
tive, and stratified sampling. Furthermore, it is consistent in that any bias
introduced during filtering vanishes as the number of samples approaches
infinity.

The main contribution of this chapter is this novel approach for noise reduc-
tion in interactive progressive path tracing. We also provide a theoretical
analysis with convergence rates for bias and variance as well as a practi-
cal evaluation. The primary applications we have in mind for our work are
interactive design reviews and interactive previews in digital content cre-
ation.

4.2 Related Work

In this section, we will focus on approaches that aim to reduce noise in
stochastic ray tracing by caching or filtering samples. The balancing act all
these methods try to accomplish is to remove (or at least reduce) Monte
Carlo noise while preserving genuine scene features. For other techniques
geared towards interactive global illumination, we refer to the recent survey
by Ritschel et al. [110]. Specifically for many-light methods, the survey by
Dachsbacher et al. [27] is a good reference.

4.2.1 Adaptive Sampling and Reconstruction

The approaches for filtering with adaptive kernels by Rushmeier and Ward
[117] as well as by Suykens and Willems [132] were already discussed in
Chapter 3.

Kontkanen et al. [75] introduced irradiance filtering. Irradiance is integrated
at a few sample locations that are determined by a coarse ray tracing pass.
Then these noisy irradiance estimates are filtered by a filter that adapts lo-
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cally to the irradiance signal. The method is similar in spirit (and name)
to ours. One key difference is that our method works for non-diffuse sur-
faces. In that sense, radiance filtering offers the same improvement over
irradiance filtering as radiance caching did over irradiance caching. Another
difference is our focus on interactive progressive rendering. Irradiance filter-
ing as proposed by Kontkanen et al. is not well-suited for interactive feed-
back in dynamic scenes because the irradiance samples have to be recalcu-
lated completely after each change. In that regard Kontkanen’s algorithm
is quite similar to irradiance caching. Compared to radiance filtering, there
are also some differences in the computation of the kernel’s bandwidth and
weights.

Hachisuka et al. [54] combined anisotropic reconstruction with adaptive sam-
pling in a method that works directly in the high-dimensional sample space.
An initial set of probing samples is stored in a kd-tree, the set is then adap-
tively refined in regions with high variance. Finally, an anisotropic recon-
struction of the radiance signal is performed, which exploits the smoothness
of the signal in the high-dimensional sample space. The method provides
good results in offline rendering, but the requirement to build complex auxil-
iary data structures and statistics hinder the adaption to interactive progres-
sive rendering. A related factor is the relatively high memory consumption,
which limit the technique to low-dimensional sample spaces (ca. 5 dimen-
sions).

Adaptive wavelet rendering by Overbeck et al. [94] renders directly into an
image-space wavelet basis and adaptively distributes samples according to the
coefficients. The image is then reconstructed using soft thresholding on the
coefficients in order to remove the remaining noise. The overhead is relatively
low for an approach designed for offline rendering, but still an order of magni-
tude away from being practical for interactive rendering.

Rousselle et al. [114] recently proposed a method that iteratively adapts the
bandwidths of pixel reconstruction filters and the locations of new samples in
order to minimize relative MSE (consisting of variance and bias) for a given
number of samples. Again, the method was not presented in the context of
interactive progressive rendering, but in this case an adaption seems to be
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relatively straightforward and would be interesting for a direct comparison.
A year later, Rousselle et al. [115] extended the approach with Buades et
al.’s [20] edge-aware non-local means filter.

Lehtinen et al. [83] used anisotropic reconstruction to approximate the indi-
rect light field from a set of initial samples and then sample this reconstruc-
tion instead of the underlying scene to generate the image. The approach
was developed in parallel to radiance filtering and achieves very high quality,
but the reconstruction procedure is quite expensive and currently not feasi-
ble for interactive progressive rendering. In earlier work Lehtinen et al. [82]
used a similar approach to reconstruct motion blur, depth of field, and soft
shadows.

Another interesting line of work is the frequency-space analysis of light trans-
port by Durand et al. [36], which was followed by several approaches to
offline-rendering of distribution effects (e.g. [40, 39]) and, very recently, an in-
teractive approach to rendering global illumination [88]. Incorporating some
of these results into a kernel adaption scheme for radiance filtering is an
interesting direction for future work.

4.2.2 Edge-aware Image Filtering

Another line of work that has recently gained popularity in interactive ren-
dering is fast edge-aware filtering.

Notable approaches are McCool [86] (anisotropic diffusion), Dammertz et
al. [28] (edge-avoiding À-Trous wavelet transform), and Bauszat et al. [7]
(guided image filter). For details on these methods we refer to the discussion
in Section 3.2.

Our approach from Chapter 3 [125] uses cross bilateral filtering [101, 41] in
a similar fashion to Dammertz et al. The main innovation is to combine the
filtering step with a subsequent blending step that tries to keep the variance
in the final image below a user-defined threshold and makes the method
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consistent in a progressive rendering setup. The method also handles specular
surfaces better.

Sen and Darabi [127] introduced an interesting variation of cross bilateral
filtering by applying random parameter filtering. In addition to the classic
weighting according to distance, color and normal they added terms that
reduce the contribution of samples based on their dependence on random
parameters. The algorithm produces impressive results with low-dimensional
sample spaces, where working with large numbers of samples is practical, but
currently the overhead incurred by tracking sample statistics prevents the
approach from being used in interactive systems.

4.2.3 Caching Sample Information

Krivanek et al. [78, 79] introduced radiance caching as an extension of ir-
radiance caching [145, 25] to glossy reflections. The incident radiance at
specific points is cached as a spherical harmonics representation; these sam-
ples are interpolated at each shading point and combined with BRDFs in
the same representation. To our knowledge, the algorithm has not been
used in interactive progressive rendering, although it seems possible to build
the samples progressively and recent variants achieve near-interactive perfor-
mance by making some limiting assumptions (e.g. Scherzer et al. [118]). Of
course, the cache records will usually be generated on demand, and in this
sense progressively, but each individual record will be constructed in one step
(and not progressively). This leads to a huge initial overhead when rendering
(re)starts and a blank cache has to be populated. Another important point
with respect to our target scenario is that the method is not consistent. In
the end, radiance filtering and radiance caching could be used in combina-
tion. For example, it may be possible to use radiance filtering to quickly fill
a radiance cache. This is one of the items we have identified for future work
(Sec. 4.7).

Walter et al. [144] decouple shading from image generation and lazily recon-
struct an image by (re)projecting adaptively generated point samples. The
algorithm is primarily designed to exploit temporal coherence for interactive
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walkthroughs with slowly moving view points, not for variance reduction.
It also breaks down on large, abrupt changes, which result in popping arti-
facts. The shading cache [133] alleviates some of these issues but the popping
artifacts remain. Both methods are not consistent.

4.2.4 Progressive Photon Mapping

Hachisuka et al. [56, 55, 74] presented (stochastic) progressive photon map-
ping, which computes an image by progressive density estimation. The filter-
ing step in radiance filtering is conceptually similar to the density estimation
step in photon mapping, but there are a number of differences between the
algorithms and their goals. We provide a detailed comparison of progressive
photon mapping and radiance filtering in Section 4.4.2, after the complete
description of radiance filtering.

Recently, there has been interest in an unification of classic Monte Carlo path
sampling and photon mapping [57, 49, 48]. In a way, radiance filtering can
be seen as an instance of such an algorithm, where the fuzzy connection is
made between different eye-paths and only at the first non-specular surface
the paths hit. It would be interesting to see if radiance filtering can be
recast in the framework of Hachisuka et al. [57]. However, this is reserved
for future work. Radiance filtering also bears a conceptual similarity to eye
path reprojection [61] and similar path re-use techniques [11, 148], but we
only reproject the first non-specular vertices of neighboring paths for each
pixel.

4.2.5 Summary of Related Work

In summary, none of the reviewed methods provides a satisfactory solution
to the problem at hand. That is to provide fast, reliable previews of global
illumination in interactive progressive rendering with dynamic scenes, while
being consistent. Edge-aware and adaptive filtering for interactive (or even
real-time) applications are fast, but all of these methods blur textures and
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Lipx, ωiq incident radiance at x from ωi
frpx, ωi, ωoq BRDF at x
Lopx, ωoq exitant radiance at x in ωoxLokpx, ωoq exitant radiance estimate of path tracing in frame k�Lokpx, ωoq exitant radiance estimate of radiance filtering in frame k
Tu user-defined threshold on variance
Tk target variance in frame k
rsk image-space radius of filter kernel in frame k
Mk target number of radiance samples in kernel in frame k
ε̃k error with radiance filtering in frame k
¯̃εN accumulated error with radiance filtering after N frames
ε̂k error with path tracing in frame k
¯̂εN accumulated error with path tracing after N frames

Table 4.1: Quick reference for the most important symbols used in this chapter.

other features to some extent or suffer from aliasing in their edge-detection.
For diffuse surfaces, one can filter irradiance and postmultiply by the dif-
fuse BRDF, but this does not work well for non-diffuse materials. Caching
algorithms are not consistent or not well-suited for fast previews of interac-
tive scenes, because they have to pay the initial overhead of reconstructing
the cache each time the scene changes. Sophisticated adaptive sampling and
reconstruction algorithms provide high-quality results, but are intended for
offline rendering and not feasible for interactive applications. Progressive
photon mapping is in parts similar to our method, but does not incorporate
the focus on previews as much as we do. It is also a complete rendering algo-
rithm on its own, while we regard radiance filtering merely as an extension
to path tracing.

4.3 Method

We will explain radiance filtering for (unidirectional) path tracing, which is
the only variant we have implemented and tested. However, adapting the
idea to similar rendering algorithms based on random path sampling should
easily be possible.

Table 4.1 explains the most important symbols we will use. In general, �̃ refers
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pixel grid

Step 1: Trace paths Step 2: Extract radiance samples Step 3: Adapt kernel size Step 4: Filter radiance

image-space kernel

position direction radianceindirectdirect variance �lter radius �ltered
indirect

un�ltered
indirect

accumulated
result

Figure 4.1: A schematic overview of one frame of radiance filtering with some of the relevant buffers.

to a filtered quantity, �̂ to the corresponding unfiltered path traced estimate,
and �̄ to an average or accumulated quantity.

The objective of radiance filtering is to provide fast previews of global illumi-
nation for interactive scenes and to keep the rendering algorithm consistent
at the same time. The method achieves fast previews by filtering the in-
cident radiance with the goal to keep the variance of each pixel just below
a user-defined threshold. Consistency is achieved by progressively shrink-
ing the filter kernels. Figure 4.1 shows a schematic overview of the algo-
rithm.

Section 4.3.1 describes a single frame of radiance filtering, Section 4.3.3 shows
how a series of these filtering steps can be embedded into a progressive scheme
that ensures the goals of fast previews and consistency. Sections 4.3.4, 4.3.5,
and 4.3.6 further detail some aspects of the method.

4.3.1 Filtering Step

The basic idea behind the filtering step is to treat radiance samples of neigh-
boring pixels as independent realizations of the same random variable. The
variance of this variable (and thus the noise in the image) can be reduced by
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taking a weighted average of independent realizations (i.e. by filtering). In
general neighboring samples represent different variables, so this assumption
is only approximately true and filtering means trading noise for bias.

The key observation is that the unwanted portion of the variance in the
outgoing radiance is due to the incident radiance, not the other terms in
the local reflectance integral (if proper BRDF importance sampling is per-
formed).

The following paragraphs explain how radiance filtering is implemented on
top of path tracing. The discussion is based on the steps outlined in Fig-
ure 4.1.

Step 1: Trace paths. We begin with standard path tracing, but we accu-
mulate only direct lighting. The sampled indirect illumination for each
path is stored in a radiance sample, which is used later in the filtering
step to make the result of the path available to neighboring pixels. Per-
fect specular surfaces are traversed stochastically, similar to progressive
photon mapping. So, the radiance sample for a path contains a sample
of the incident indirect radiance at the first non-specular surface the
path hits. The exact contributions depend on the implementation of
the path tracer, but typically all explicit light connections (next event
estimation) at subsequent path vertices are included as well as implicit
connections (direct light hits).

Step 2: Extract radiance samples. The radiance samples are extracted
and stored in the pixel through which the path started. There is no ad-
ditional data structure. Typically the algorithm works with one sample
per pixel, but it is possible to store multiple samples if more than one
path is traced in one pass. A radiance sample consists of position, direc-
tion, and radiance. The collection of radiance samples can be thought
of as an image-space photon map, generated by path tracing, not by a
photon tracing pass. The reasoning behind storing the radiance sam-
ples in pixels is that we can quickly find relevant samples by searching
image-space neighbors. This breaks down in the presence of geometric
edges and complex specular objects, but usually there is some spatial
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coherence to exploit.

Step 3: Adapt kernel size. The goal of the filtering step in each frame k is
to reach a given target variance Tk. To do this, we need to average Mk

samples:

Tk � Var
�

1
Mk

Mķ

j

pLij
�
paq� 1

Mk

Varr pLis
ñMk � Varr pLis

Tk
, (4.1)

where the approximation (a) uses the assumption that neighboring pix-
els are realizations of the same random variable.

Since we have one sample per pixel, we expect approximately Mk sam-
ples in the kernel if it covers Mk pixels. This gives us the kernel radius
in image-space. Assuming a circular footprint it is

rsk �
a
Mk

1
2

4
π
�

gffeVar
� pLi�
Tk

1
2

4
π

(4.2)

pixels. For a quadratic footprint, the factor 4{π has to be omitted.

We also scale the radius by an ambient occlusion factor α P r0, 1s.
This has an effect similar to the harmonic mean distance in irradiance
caching and effectively and reduces the kernel size in highly occluded re-
gions, which helps reducing light leaks and blurred shadows. The effect
is relatively subtle, but since we can get a screen-space approximation
of ambient occlusion essentially for free (we loop over the screen-space
neighbors anyway), we include the scaling per default.

Step 4: Filter radiance. In order to avoid pulling in samples that are close
in image-space, but far in world-space, we project the kernel into world-
space and apply the filter there. The projection can be done with ray
differentials or with a geometric construction using the surface normal
of the shading point, as described in Section 4.3.5. After projecting
the kernel, we loop over all pixels that the image-space kernel covers
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and accumulate their radiance samples, weighing them according to the
weights described in the following subsection. This estimate of indirect
illumination is then added to the direct illumination to form the preview
image.

4.3.2 The Filtered Radiance Estimate

The exact formula for the filter can be derived in the framework of multiple
importance sampling [137, Ch. 9]. We want to combinem samples drawn with
(potentially) different pdfs into one estimator while keeping the variance low.
The exitant radiance can be estimated from the incident radiance samples as

�Lopx, ωoq � m̧

j�1
vj
Fj
Pj
, (4.3)

where

Fj � frpx, ωi,j, ωoq qLipxj, ωi,jqpn � ωi,jq (4.4)

is the jth radiance sample reflected at the current shading point x and

Pj � pjpωi,jq (4.5)

is the pdf for sampling direction ωi,j at point xj. ( qLi is the path tracing
estimate pLi without the division by the pdf.)

The balance heuristic defines the weights vj as

vj � pjpωi,jq°m
k�1 pkpωi,jq

. (4.6)

However, m is usually quite large in the early frames and reevaluating all
pdfs for each sample is at odds with our goal of interactivity. Therefore, we
assume all pk are equal to the pdf of the current shading point p and set
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vj � pjpωi,jq
mppωi,jq . (4.7)

If we substitute these weights into Equation 4.3 the pj cancel and we arrive
at

�Lopx, ωoq � 1
m

¸
j

frpx, ωi,j, ωoq qLipxj, ωi,jqpn � ωi,jq
ppωi,jq . (4.8)

Note that there are two sources of bias in this estimate. The first is the
obvious proximity bias that stems from taking qLipxj, ωi,jq from neighboring
points. The other source of bias is more subtle and stems from the approx-
imation in Equation 4.7. The approximation has the effect of producing a
very smooth result, because we always combine the BRDF of point x with
the pdf of point x, which helps reducing intensity spikes that could occur
if BRDF and pdf would not match each other. Unfortunately, it also in-
troduces bias, because the pdf at x does not represent the true probability
density with which the qLi were sampled. This “pdf bias” is usually negligible,
but for highly glossy, curved surfaces it can be problematic (because the pdf
can change quite dramatically for neighboring pixels).

To reduce proximity bias, we weigh the samples with a world-space spatial
kernel σpxj, xq, as already described. To limit pdf bias, we use a simple
heuristic based on the glossiness of the surface and the normal difference:

νpnj, nq � maxp0, pnj � nqqe, (4.9)

where e the is the exponent of the Blinn microfacet distribution. (It should
easily be possible to derive similar heuristics for other shading models.) Note
that for mildly glossy surfaces (e Æ 128) this can be set to one, which can
save the extra normal buffer that is otherwise not needed by our algorithm.
For extremely glossy surfaces (e Ç 4096) it usually makes more sense to treat
them as perfectly specular and continue tracing the rays.
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The final estimate is thus

�Lopx, ωoq � 1
W

¸
j

wj
frpx, ωi,j, ωoq qLipxj, ωi,jqpn � ωi,jq

ppωi,jq , (4.10)

with weights

wj � 1
m
σpxj, xqνpnj, nq (4.11)

and normalization factor

1
W

� 1°
j wj

. (4.12)

Note that x, n, and ωo in the estimate are taken from the current shading
point, not the neighbors, which reduces blurring in the factors fr and pn�ωi,jq.
However, shadows and sharp glossy reflections are still blurred, as they are in-
cluded in Li. Usually we only filter indirect illumination, which is the primary
source of noise and can be expected to be reasonably smooth, but the algo-
rithm can also be applied to smooth direct illumination.

4.3.3 Progressive Setup

In a progressive rendering setup, we want the variance of the accumulated
result to stay below a user-defined threshold Tu. At the same time we have
to guarantee that both, variance and bias, vanish as the number of samples
approaches infinity.

For the first frame pk � 1q we can use Tk � Tu as target variance. We can
derive the target variance Tk � Var

�rLk� for each frame k ¡ 1 by induction.
Here, rLk is the filtered radiance estimate of one pixel calculated in frame
k. Assume Var

�rLk�1

�
¤ Tu, i.e. the accumulated filtered radiance up to

frame k � 1 fulfills the threshold. If we combine frame k with the already
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8 spp 64 spp 512 spp 4096 spp

Figure 4.2: A typical progressive rendering (top row) with corresponding image-
space radii (bottom row).

accumulated samples the variance will be

Var
�rLk� � Var

�
k � 1
k

rLk�1 � 1
k
rLk�

�
�pk � 1q

k


2

Var
�rLk�1

�
� 1
k2 Var

�rLk�
¤
�pk � 1q

k


2

Tu � 1
k2Tk. (4.13)

Solving
�
pk�1q
k

	2
Tu � 1

k2Tk ¤ Tu for Tk gives

Tk ¤ k2

�
1�

�
k � 1
k


2
�
Tu � p2k � 1qTu, (4.14)

which allows us to find the target variance for filtering step k directly from
the user-defined threshold. With Equation 4.2, Tk can be translated into an
image-space kernel radius. Note that the target variance Tk is allowed to
increase linearly with the number of frames, this means the (screen-space)
radius of the kernel will decrease with the square root. Figure 4.2 shows this
process in practice. Radii are high in regions with high variance and decrease
with more samples.
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per-pixel variance estimate
4 spp

filtered variance estimate
4 spp

Figure 4.3: The noisy and the filtered variance estimate. Note that this is the
“perceived variance” as described in Section 3.3.1, which is why dark regions have
high values.

When the target variance for frame k is already larger than the variance of
the path tracing estimator, the filtering step becomes unnecessary (the radius
drops below the pixel size). Then we start accumulating unfiltered samples,
which will not introduce additional bias (as they are raw path tracing sam-
ples). Since every pixel with finite variance will reach this point eventually,
the accumulated bias will vanish as the number of samples continues to grow.
This is an intuitive argument for the consistency of radiance filtering, a more
thorough analysis in carried out in Section 4.4.

4.3.4 Remarks on the Variance Estimate

It is important to note that in practice the calculations are based on an
estimate of the variance, since the real variance is not known. Therefore,
unreliable estimates, especially in the first few frames, can lead to wrong
kernel sizes. To deal with this issue we use a “warm-up” kernel radius for
the first frames (usually 4-8) and then switch to the adapted version based
on the per-pixel variance described in Section 4.3.1. The warm-up radius for
frame k is

rwk � rw1k
� 1

2 , k ¡ 1, (4.15)

where rw1 is a user-defined initial value; the factor k� 1
2 stems from the ex-

pected decrease of the kernel radius (Sec. 4.3.3).
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A related issue is that the variance estimates themselves are contaminated
by noise, this means the estimates may differ greatly from pixel to pixel,
although the variances are in fact very similar. In order to obtain smooth
variance estimates in image-space that still respect relevant geometric edges,
we filter the variance estimates alongside the radiance values in the filtering
step. This has little additional overhead and greatly improves the robustness
of the algorithm, especially during the first few frames. Figure 4.3 shows the
per-pixel variances and the filtered version.

Furthermore, we actually use the perceived variance as defined in Section 3.3.1.
As a quick reminder: This is a simple measure of the perceived noise level of
an image that incorporates Weber’s law [16, 107]. It acknowledges the fact
that the same absolute error triggers a larger response in the visual system
when viewed against a low background radiance than it does when viewed
against a high background radiance. For each pixel, this background radiance
is fixed and the perceived variance is just a scaled version of the absolute vari-
ance relative to this fixed background intensity, so all equations remain valid.
We currently use the sum of the direct and the filtered indirect radiance as
background radiance, which is a smooth function that we can compute in the
filtering step without much additional overhead.

It should also be noted that the filtering step can only remove variance in
the illumination. Noise due to stochastic supersampling or other distribution
effects in the image plane like depth of field is not reduced (see Section 4.5).
However, many renderers keep track of the total pixel variance, including
these effects as well as direct illumination. Such a variance estimate can
still be used with radiance filtering. Doing this usually results in a slight
overestimation of the variance, and consequently to slightly larger kernels,
but in most cases this is not a problem in practice.

4.3.5 Projection of Kernel

After step 3 of the algorithm (“adapt kernel size” in Section 4.3.1), we have
the footprint of the kernel as a rectangle in image-space (Fig. 4.4). In prac-
tice, we apply a scaling factor prior to the projection that makes the kernel
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∆x

P0 ∆Px

Figure 4.4: The image-space kernel is projected into the tangent space of the
shading point.

A ray differential is illustrated in Figure 1.  If we evaluate the ray
differentials as a ray propagates in addition to the position and
direction of the ray, then the distance between neighboring rays
(and hence the ray’s footprint) can be estimated with a first-order
differential approximation:
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We can compute the initial value of the ray differential in the x
direction by differentiating (5) with respect to x:
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A similar expression can be derived for the y direction.  Although
we only track first-order derivatives, higher-order derivatives
could be computed as well for a better approximation or for error
bounding.  However, we have found that discontinuities limit the
effectiveness of higher-order approximations and that a first-order
approximation is sufficient in practice.

3.1 Propagation
Given an expression for the propagation of a ray for any
phenomenon (i.e., how a phenomenon affects the ray’s value),
then we can find the expression for the propagation of a ray
differential by simply differentiating the expression.  Here, we
will derive the formulae for the three common ray tracing
operations: transfer, reflection, and refraction.  We will express
our formulae as derivatives with respect to x without any loss in
generality.

3.1.1 Transfer
Transfer is the simple operation of propagating a ray through a
homogenous medium to the point of intersection with a surface.
The equation for transfer onto a surface at a distance t is given by:

DD
DPP

=′
+=′ t (9)

For a ray differential, we differentiate (9) to get:
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For a planar surface N (defined as the locus of points P′′ such that
P′′ • N = 0), t is given by:

ND
NP
×
×−=t (11)

Differentiating this and re-expressing it in terms of t, we get:
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Note that the fourth component of N is irrelevant in this equation
(its dot product is taken with directions only), and it can thus be
viewed as the normal of the surface.  Equations (10) and (12)
actually have a geometric interpretation: the first two terms of the
first equation in (10) express the fact that as a ray travels through
homogeneous space, the positional offset of a differentially offset
ray changes according to its directional offset and the distance
traveled.  Then, the third term orthographically projects this
positional offset in the direction of the ray onto the plane.

Although a formal proof is beyond the scope of this paper,
(12) is not only valid for a plane, but is also correct for an
arbitrary surface.  In the case of an arbitrary surface, N is just the
normal of the surface at the point of intersection.  The intuition
behind this is that a surface has a fixed shape and curvature at an
intersection point.  As we intersect an offset ray against this
surface by smaller and smaller offsets, the surface will look more
and more like the tangent plane at the intersection point.  In the
limit, a differentially offset ray intersects the surface in the
tangent plane of the intersection point.

3.1.2 Reflection
Given a ray that has been transferred onto a surface by (9), the
equation for a reflection ray [7] is given by:
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For a ray differential, reflection is given by:
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where:
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This equation requires the evaluation of the derivative of the
normal at the point of intersection, a topic that will be addressed
in Sections 3.2 and 3.3.

3.1.3 Refraction
Once a ray has been transferred onto a surface, the equation for a
refracted ray [7] can be expressed as:

NDD
PP

µ−η=′
=′

(16)

where we use the shorthand notation:
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Figure 1: A Ray Differential.  The diagram above illustrates
the positions and directions of a ray and a differentially
offset ray after a reflection.  The difference between these
positions and directions represents a ray differential.

Figure 4.5: A ray differential (after Igehy [63]).

slightly larger. This is to compensate for invalid samples due to edges or
reflection/refraction. Also, if no uniform kernel is used, we have to adjust
the kernel size to account for different weights. Section 4.3.6 discusses some
possible choices of kernels.

Let P0 be the position where we want to apply the kernel in world-space.
Note that due to refraction and reflection this point is not necessarily on the
first surface a ray hits. A reasonable approximation is to project the image-
space kernel footprint as a parallelogram into the tangent plane at P0. This
means we need to find

P0 � pr�∆Px,�∆Pxs � r�∆Py,�∆Pysq , (4.16)

as illustrated in Figure 4.4.

With ray differentials [63], two differentially offset rays are traced in addition
to the main ray (Fig. 4.5). Let BP {Bx be the positional component of the
ray differential in x, propagated to the tangent plane at P0 as described by
Igehy [63]. Intuitively, this describes how the position in the tangent plane
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changes if we move in x-direction in image-space. We can approximate ∆Px
to first-order as

∆Px � ∆xBPBx , (4.17)

where ∆x � rsk is set to the image-space radius of frame k (Sec. 4.3.3). The
formula for ∆Py is analogous.

In practice, we have to extrude this parallelogram slightly along the normal
N0, to get a non-zero volume:

P0 � pr�∆Px,�∆Pxs � r�∆Py,�∆Pys � r�δN0, δN0sq . (4.18)

An arbitrary kernel can then be embedded into this prism.

The advantage of using ray differentials is that they propagate correctly
through perfect specular surfaces, taking the local curvature into account.
If the renderer does not trace ray differentials, a simple geometric construc-
tion can be used, which is described in the following.

Let P0 be the shading point, and N0 its surface normal as above. We can
construct a parallelogram with principal axes aD and aS in the tangent plane
using the direction of the incident ray D:

aD � D � pD �N0qN0

aS � aD �N0. (4.19)

If D and N0 are (almost) parallel, aD can be an arbitrary vector orthogonal
to D, since the orientation in the tangent plane does not matter in this
case.

Let xaD and xaS be the normalized versions of the vectors above. The extent
in direction xaS can simply be approximated using the intercept theorem:

rS � dP0

dR
rR, (4.20)

94



4.3 Method

uniform epanechnikov silverman gaussian

more variance ÝÑ ÐÝ more bias

Figure 4.6: Comparison of different kernels. Note that these images were intentionally rendered with
too small a radius, in order to clearly show the kernel shapes.

where dP0 is the path length to P0 (including refraction/reflection), dR is the
distance to some known reference plane (e.g. the near plane) and rR is the
extent on that plane. The extent in direction xaD has to take surface slope
into account, since we want an elongated parallelogram in case of a shallow
angle of incidence. This elongation is inversely proportional to the cosine of
the angle of incidence:

rD � rS
maxpε,�pD �N0qq , (4.21)

with a small ε ¡ 0 to prevent division by zero (and, in practice, excessive
elongation).

The kernel can then be embedded into the prism

P0 � pr�rSxaS,�rSxaSs � r�rDxaD,�rDxaDs � r�δN0, δN0sq . (4.22)

4.3.6 Choice of Kernel

The algorithm does not depend on a particular choice of kernel. (Although
the derivations of the convergence rates in Appendix 4.A make some mild
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assumptions.) Apart from the canonical uniform kernel, we have evaluated
the Epanechnikov kernel as used by Walter [143], the Silverman kernel as
used by Shirley et al. [128], and a simple windowed Gaussian kernel (σ � 1{3,
cut-off at 3σ).

Figure 4.6 shows how the choice of kernel affects the result of radiance filter-
ing. As one would expect, narrow kernels with strong fall-off (Silverman or
Gaussian) introduce less bias, but also provide less variance reduction than
wider kernels (Epanechnikov or uniform). The uniform kernel has the best
variance reduction properties, but the reconstructed function is not contin-
uous, which leads to blocky artifacts in practice. The Gaussian kernel does
not reduce variance enough in practice, since many of the collected samples
are “wasted” with a low weight. We typically use the Epanechnikov ker-
nel or, if higher-order smoothness properties are necessary, the Silverman
kernel.

4.4 Theoretical Analysis

Radiance filtering has two phases: a “preview” phase where the algorithm
tries to keep variance at a constant, low level and bias is introduced; and
a “correction” phase where the remaining variance and the bias from the
preview phase are simultaneously reduced. Note that the phase is determined
for each pixel independently and at any time some pixels may be in preview
phase while others may already be in correction phase. It is also possible
(but unlikely) for a pixel to drop out of the correction phase again, due to
an unreliable variance estimate.

In the following subsection, we examine the asymptotic behavior of the overall
error ¯̃εN � 1

N

°N
k�1 ε̃k after N frames, where ε̃k � �Lok � Lo is the error intro-

duced in frame k. More specifically, we look at the bias E
�¯̃εN� and the vari-

ance Var
�¯̃εN� in each of the two phases of the algorithm.
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4.4.1 Convergence Rates

In the preview phase, the variance is

Var
�¯̃εN� � Op1q, (4.23)

with Var
�¯̃εN� ! Var

�¯̂εN� for smaller N , i.e. variance is approximately con-
stant but usually much lower than with path tracing.

The accumulated bias is

E
�¯̃εN� � O

�
logN
N



. (4.24)

We derive this result in Appendix 4.A.

In the correction phase, radiance filtering reduces to path tracing, so the
variance is

Var
�¯̃εN� � O

�
1
N



. (4.25)

No additional bias is introduced in the correction phase, so the accumulated
bias decreases with the number of samples:

E
�¯̃εN� � O

�
1
N



, (4.26)

for which we provide a short derivation in Appendix 4.B.

In fact, we can accumulate the path tracing estimators in a separate buffer
and then switch to this buffer completely once a pixel enters the correction
phase. With this little trick, all accumulated bias disappears instantaneously
at the cost of an additional buffer. Unfortunately, the accumulated variance
may also spike above the user-defined threshold after the switch, but this
may be tolerable for some applications.

It is interesting to compare these convergence rates to progressive photon
mapping and path tracing. Figure 4.7 shows plots for variance and bias which
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Figure 4.7: Convergence rates for path tracing (PT), progressive photon mapping (PPM, α � 0.7),
and radiance filtering (RF) in a loglog-plot with arbitrary scale. (We use α � 0.7 here, which was used
in the original stochastic progressive photon mapping paper [55], although it was later shown that the
optimal asymptotic convergence is reached with α � 2{3 [70].) These plots illustrate the asymptotic
behavior of the algorithms as described in Section 4.4. The arrows indicate the point where radiance
filtering switches into correction phase (N � 102).

reflect the different goals of the algorithms. Path Tracing in its ideal form is
unbiased, but usually starts with high variance, which vanishes as Op1{Nq.
Progressive photon mapping lets variance and bias vanish simultaneously
as Op1{Nαq and Op1{N1�αq, respectively, α P p0, 1q [74]. The graph for
radiance filtering clearly shows the focus on low-noise previews. Variance
is constant but low at the beginning; bias is potentially high, but drops
quickly. Note that OplogN{Nq is asymptotically better than Op1{N1�αq for
any fixed α P p0, 1q. Because in the preview phase radiance filtering does not
reduce variance and bias simultaneously, it can shrink the kernel radius more
aggressively than progressive photon mapping and consequently reduce bias
faster. In the correction phase, the algorithm then removes the remaining
bias and variance.

It ought to be mentioned that this discussion is primarily of theoretical inter-
est. Specifically, although progressive photon mapping has the worst asymp-
totic convergence of the three algorithms, in practice it is usually the best
algorithm and provides a visually converged image faster. We do not ad-
vertise radiance filtering as an alternative to progressive photon mapping
or a fully-fledged rendering algorithm, but as an extension of path tracing
that can provide a visually pleasing image very early in a progressive ren-
dering setup. However, the many conceptual similarities to progressive pho-
ton mapping suggest a comparison. The similarities were already pointed
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out in Section 4.3; in the following section we discuss the conceptual differ-
ences.

4.4.2 Comparison with Progressive Photon Mapping

Conceptually, the main difference to progressive photon mapping is that ra-
diance filtering distributes radiance samples in image-space during path trac-
ing, not flux samples in world space during a separate photon tracing path.
The advantage is that radiance filtering can expect a sample density of one
sample per pixel. This means we can adapt the kernel to try to collect as
many samples as needed to reach a user-defined threshold on variance. This
almost eliminates the splotches that are typical for early stages of progressive
photon mapping. The assumption that neighboring pixels contain relevant
radiance samples breaks down in the presence of geometric edges and com-
plex perfect specular objects, but in most practical cases there will be at
least some spatial coherence in the image. A disadvantage in comparison to
progressive photon mapping is that radiance filtering inherits the weaknesses
of path tracing with respect to SDS paths, where photon mapping is clearly
the superior algorithm.

Also, radiance filtering does not perform a classic density estimation at the
measurement points and is more akin to a simple filter. (There is no area
in the radiance filtering estimate and the samples carry radiance, not flux.)
As a consequence, it does not suffer from bias that is due to wrong area es-
timates. Specifically there is no boundary bias and no topological bias [111].
(Although the “pdf bias” is similar to topological bias in that it occurs on
curved surfaces.) There is, however, proximity bias, and the typical artifacts
resulting from it (e.g. light leaks and blurred caustics). This is especially
a problem early in the rendering process, when kernel sizes are relatively
large, see Section 4.5. Note that with radiance filtering no samples are de-
posited on invisible surfaces, so light does not leak from invisible regions
(e.g. back walls) as in photon mapping. In that sense there is no occlusion
bias.
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4.4.3 Comparison with Image Filtering

Approaches based on (cross) bilateral filtering or similar edge-aware filters
usually filter pixel values and try to limit bias by reducing the influence of
strongly biasing pixels. The biggest problem of these approaches is that in
most practical situations the filter will either be too wide and blur fine details
in geometry or texture, or it will be too narrow and will not reduce variance
enough. One can preserve textures by multiplying the diffuse BRDF by a
filtered irradiance estimate, but this approach does not work well for non-
diffuse surfaces. Another problem is that most filters do not handle sharp
antialiased edges correctly, because the pixel value is a linear combination
of the regions adjacent to the edge and not present in the undiscretized
signal itself. Addressing these two issues was the primary motivation for our
work.

Blurring is significantly reduced with our approach of just filtering the inci-
dent radiance instead of the pixel values. Also, radiance filtering averages
before the pixel reconstruction filter is applied, so it handles antialiased
pixels correctly, which is another advantage over image filtering. A dis-
advantage is the slightly higher overhead due to repeated BRDF evalua-
tions.

4.5 Results

4.5.1 Comparison with Pixel Filtering

As the purpose of radiance filtering is to improve upon methods based on cross
bilateral filtering, we first compare it to the approach introduced in Chapter 3
(“pixel filtering”). We use the progressive scheme described in Section 3.3.3
and the adaptive bandwidth selection described in Section 3.6.3).

Figure 4.8 shows a setting where radiance filtering performs best: Mostly
diffuse surfaces predominantly lit by smooth light. Since the surfaces are
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“Sponza hallway”
3 sec equal time comparison

reference
16K spp

path tracing
15 spp

15.69 dB

pixel filtering
13 spp

30.80 dB

rad. filtering
8 spp

32.10 dB

“Streets of Asia 2”
4 sec equal time comparison

reference
16K spp

path tracing
11 spp

19.62 dB

pixel filtering
10 spp

26.51 dB

rad. filtering
8 spp

30.18 dB

Figure 4.8: Equal-time comparison of path tracing, pixel filtering, and radiance filtering. For “Sponza
hallway”, both filtering algorithms were applied only to the indirect illumination. For “Streets of Asia
2”, both filtering algorithms were applied to direct and indirect illumination. For each algorithm, the
number of samples per pixel (spp) and the PSNR relative to the reference solution (in dB) are given.
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scene t̃8 t̂8 t̃8 � t̂8 relative
(seconds) (seconds) (seconds) overhead

“Sponza hallway” 0.282 0.171 0.111 39%
“Streets of Asia 2” 0.383 0.305 0.13 23%

scene ¯̃t8 ¯̂t8 ¯̃t8 � ¯̂t8 relative
(seconds) (seconds) (seconds) overhead

“Sponza hallway” 2.761 1.365 1.396 51%
“Streets of Asia 2” 3.195 2.44 0.755 24%

Table 4.2: Timings for the scenes in Figure 4.8. Top: a single frame; bottom:
multiple frames. t̃8 is the time frame 8 took to compute with radiance filtering, t̂8
is how long frame 8 took with path tracing (1 spp). ¯̃t8 and ¯̂t8 are the accumulated
timings for 8 frames, i.e. how long it took to compute an image with 8 spp. Relative
overhead is the percentage of rendering time spent on the filtering procedure.

mostly diffuse, we did not use the MIS-approximation and the ν-factor for
these test scenes.

Although both approaches achieve a very good noise reduction, radiance
filtering has a constantly higher peak signal to noise ratio (PSNR). The green
blow-up of “Sponza hallway” also shows a typical artifact of (cross) bilateral
filtering that does not occur with radiance filtering: color bleeding due to
unrecognized edges. (Although for diffuse surfaces this can be addressed by
filtering irradiance, see the following subsection.) A problem from which
both approaches suffer is light leaks (note the missing shadows under the
red carpet). This is a manifestation of proximity bias and vanishes as the
rendering converges.

“Streets of Asia 2” in Figure 4.8 shows radiance filtering applied to direct
illumination. The illumination is relatively smooth (cloudy day), but there
is still some directionality in the light, as can be seen in the blue blow-up
(soft shadow under the balcony). Both filtering techniques retain this feature.
Another subtle global illumination effect that would not be easily possible
with simplified lighting is the indirect light that falls from the glossy blue vase
onto the pillar in the green blow-up. The image filter again has problems with
fine texture details. The blow-ups also show its tendency to produce jagged
edges.
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Sponza diffuse Sponza glossy Cornell specular

Figure 4.9: Three test scenes (diffuse, glossy, specular). The marked regions correspond to the blow-
ups in Figures 4.11, 4.12, 4.13.

Table 4.2 shows timings and the relative overhead for the renderings in Fig-
ure 4.8. As one would expect, the overhead is quite substantial during the
early frames, when the radii are still large – but it decreases as the rendering
progresses. For all images the increased PSNR is worth the overhead, as the
equal-time comparisons show.

4.5.2 Comparison using Three Distinct Scenes

In this subsection, we present results for the three scenes shown in Figure 4.9,
one with diffuse, one with glossy and one with perfectly specular materials.
We compare our method to Dammertz et al. [28] (atrous) and Schwenk et
al. [125] (headlight – this is the method from Chapter 3, but now it is using
postmultiplication by filtered irradiance). We have adapted atrous for pro-
gressive rendering using the bandwidth selection from Chapter 3. To limit the
ringing/stippling artifacts of atrous and improve the overall quality, we used
three iterations instead of five (which costs some performance). An option
to reduce these artifacts without performance loss is jittering, but since this
brings back some noise, we did not use it for our tests. We have also extended
atrous with the range buffer used by headlight (the “virtual flash image”) and
modified it to work with filtered irradiance even for glossy surfaces (similar
to Bauszat et al. [7]). (In practice it is actually not really the irradiance,
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scene total pt filter
“Sponza diffuse” 3.906 2.232 1.674 (43%)
“Sponza glossy” 3.915 2.088 1.827 (47%)
“Cornell specular” 5.036 3.346 1.689 (34%)

Figure 4.10: Timings (in seconds) for radiance filtering with 8 spp applied to the
scenes in Figure 4.9. With only 8 spp the filtering overhead is relatively high, but
it decreases with more spp because the kernels shrink.

but only the irradiance from a small cone, due to BRDF importance sam-
pling – which is why the approach works surprisingly well in many cases.)
This hybrid (atrous2) combines properties of the original atrous (fast filter,
good preservation of geometric edges) with those of headlight (good preser-
vation of specular reflections) and Bauszat et al. [7] (postmultiplication for
glossy materials). For diffuse surfaces, the classic edge-aware filtering meth-
ods (atrous, headlight, atrous2) use postmultiplication by filtered irradiance.
headlight uses the progressive filtering scheme described in Chapter 3, but
not the blending operator. The other techniques filter every frame in order to
avoid the aliasing problems with storing geometry information for multiple
spp. Geometry-aware look-ups as used by Bauszat et al. [7] could help with
this, but we did not implement these.

All images are 768� 768 and were rendered with a custom GPU path tracer
based on Optix [99]. The system was a Core i7 with 3.33GHz (6 cores, each
with Hyperthreading) and a GeForce GTX580. Figure 4.10 shows timings
for the three scenes in Figure 4.9.

As metrics we used the peak signal to noise ratio (PSNR) and the HDR
Visual Difference Predictor 2 (HDR-VDP2) by Mantuik et al. [84]. For
HDR-VDP2 we used the default viewing conditions and set the display to a
1080p CCFL-LCD viewed from 50 cm distance. Since the metrics give only
a relatively rough indication of the perceived difference, we recommend that
readers compare the original images in the supplementary material them-
selves.
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pt
14 spp

17.026 dB
QMOS � 36.997

atrous
12 spp

32.434 dB
QMOS � 72.163

headlight
11 spp

32.786 dB
QMOS � 76.191

atrous2
12 spp

32.507 dB
QMOS � 73.803

radfilter
8 spp

32.9692 dB
QMOS � 78.364

reference
16K spp

Figure 4.11: Blow-ups of the “Sponza diffuse” scene. This is a 4 seconds equal-time comparison.
We give the PSNR in dB and the QMOS (image quality mean-opinion-score) prediction of HDR-VDP2
(0–100). Higher is better in both cases. The last row shows the Pmap visualization of HDR-VDP2
(probability of detection per pixel).
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4.5.2.1 Diffuse

For the diffuse scene (Fig. 4.11), all methods perform very well. Edge-aware
filtering has slightly more problems with normal maps (pillar in green blow-
up), while radiance filtering has more problems with light leaks (shadow in
blue blow-up). One region where radiance filtering leaks less light than the
other approaches is the pillar under the leaves in the red blow-up. Here, the
projection into world-space prevents radiance filtering from collecting (too
bright) samples on the leaves. Edge-aware filtering guards against this with
a positional sigma – but if this is decreased splotches will appear on sloped
surfaces (e.g. the ground plane). Apart from that all methods handle the
geometric complexity of the leaves very well.

While quality-wise there is no significant advantage for diffuse scenes (if post-
multiplication by irradiance is used), we would argue that radiance filtering
is easier to use. First, there is no need to tune several sigmas specifically for
a scene (or a view of a scene). Second, radiance filtering treats diffuse and
glossy surfaces in the same way, so there is no need to implement a separate
code path for glossy surfaces, where postmultiplication by irradiance cannot
be used.

4.5.2.2 Glossy

In the glossy test scene (Fig. 4.12), we have a metallic sphere that demon-
strates how glossy reflections are preserved and can be used to judge the
overall glossiness of the objects (all use the same exponent). We also have a
golden Buddha to demonstrate performance with high curvature normal vari-
ations, a copper sphere with a gloss and a normal map, and a wooden plate
with a simple layered material (Ashikhmin-Shirley).

headlight blurs the reflections on the golden Buddha relatively strongly (red
blow-up). This is because is relies only on the headlight to encode normal in-
formation. atrous and atrous2 can preserve this feature better. On the other
hand they have problems with sharp edges, where noise is not reduced enough.
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pt
15 spp

16.677 dB
QMOS � 33.006

atrous
12 spp

28.528 dB
QMOS � 65.454

headlight
11 spp

27.376 dB
QMOS � 69.825

atrous2
12 spp

18.341 dB
QMOS � 33.528

radfilter
8 spp

29.566 dB
QMOS � 75.313

reference
16K spp

Figure 4.12: Blow-ups of the “Sponza glossy” scene with PSNR, QMOS, and Pmap. This is a 4 seconds
equal-time comparison.

radfilter offers a good compromise between smoothing and preservation of the
reflections, although the difference is relatively subtle.

The copper sphere (green blow-up) offers a similar picture. However, atrous
and headlight leave a higher noise level here. This is because they have to
work with one global sigma for normals (and textures in the case of head-
light) and thus have to compromise globally between preserving features and
reducing noise. A way to automatically adapt these sigmas locally, similar
to what Kalantari and Sen recently proposed [69], would greatly improve
these approaches. radfilter produces the best results here, atrous2 is very
close.
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On the wooden plate, atrous loses the texture details, because it respects
features in textures only via the “rt” buffer, which is too noisy in this test
case. Despite that, atrous scores surprisingly high in the metrics. headlight
preserves the texture relatively well, but fine details are lost, too. atrous2
is the worst method here, because the strategy of filtering irradiance breaks
down. The glossy layer “sees” the irradiance from above (sampled by the
diffuse layer), which leads to an overestimation of glossy reflections. radfil-
ter is the only method that preserves the texture and the glossy reflection
well.

4.5.2.3 Specular

First of all, it has to be mentioned that the specular scene (Fig. 4.13) contains
light paths that cannot be sampled by path tracing because they have zero
probability (paths hitting the point light from inside the specular cone). But
since these paths are not available to any method in the test, the comparison
is still valid.

On the chrome Buddha, atrous loses the texture pattern in the reflection
(red blow-up). atrous could preserve this to some extent via the “rt” buffer,
but it was not possible to find a sigma that preserves the texture and still
allows enough smoothing in the rest of the image (specifically for the caus-
tics). headlight and atrous2 can preserve the texture. radfilter preserves
the texture too, and also copes a little better with the variation in the nor-
mals.

The yellow sphere (green blow-up) is a simple layered material (diffuse un-
der specular coating). atrous loses the texture and the reflection. headlight
and atrous2 can preserve the texture, but lose the reflection. In theory they
could also preserve the reflection, but once again the sharper sigma needed
to do that would degrade image quality in other regions (in this case on the
glass surfaces). radfilter preserves the texture best, but the reflection remains
noisy. Unlike the layered material in the glossy scene, this material has a per-
fect specular component. So, the radiance samples for neighboring pixels can
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pt
12 spp

15.854 dB
QMOS � 38.162

atrous
11 spp

25.253 dB
QMOS � 56.764

headlight
9 spp

27.386 dB
QMOS � 74.257

atrous2
10 spp

27.04 dB
QMOS � 73.959

radfilter
8 spp

26.114 dB
QMOS � 57.464

reference
32K spp

Figure 4.13: Blow-ups of the “Cornell specular” scene with PSNR, QMOS, and Pmap. This is a 5
seconds equal-time comparison.

end up in completely different world-space locations, which prevents radiance
filtering from being effective.

The problem is worse for the glass Buddha (blue blow-up), where neighboring
paths take diverging routes recursively. (But even there there is at least some
noise reduction). headlight and atrous2 handle the glass very well. atrous
loses the texture pattern in the reflection/refraction. All approaches blur the
caustic under the Buddha.
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6 min equal time comparison 12 min equal time comparison 23 min equal time comparison
path tracing rad. filtering path tracing rad. filtering path tracing rad. filtering

Figure 4.14: Blow-ups from a modified “Cornell specular” scene after longer rendering times to
illustrate the convergence behavior for difficult scene features. Note how the caustic under the glass
Buddha gradually becomes sharper while the algorithm maintains a low noise level throughout the
rendering process.

4.5.3 Additional Results

Figure 4.14 shows that radiance filtering can also be used to get final ren-
derings quickly, although the focus is on fast previews. We demonstrate this
with “Cornell specular”, which is the most difficult scene for radiance filtering
in the test set. The green blow-up shows how the caustic starts to form over
time while the noise-level is constantly low. After 23 min the image rendered
with radiance filtering is very close to the reference, although some bias still
remains.

Figure 4.16 analyzes the variance and bias for two pixels. The blue pixel is
under almost uniform incident radiance, and we expect radiance filtering to
introduce little bias in this case. The green pixel is in a penumbra region,
and therefore should receive a relatively high bias during radiance filtering.
The graphs confirm this: The blue pixel has little bias and the algorithm
succeeds in keeping the variance constant and low. The green pixel starts
with a high bias, which quickly drops, as stated in the theoretical analysis. It
is also near a geometric discontinuity, which means that the filter cannot find
enough valid neighboring samples to reach the threshold on variance (but the
variance is still much lower than with path tracing).
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reference
reference
(4K spp)

Tu � 0.0003
(32 spp)

Tu � 0.003
(32 spp)

Tu � 0.03
(32 spp)

Figure 4.15: Renderings with three different thresholds on variance. A higher threshold allows more
variance and means less bias. However, the remaining variance manifests itself as low-frequency noise.

0 50 100 150 200 250 300 350 400 450 500 550
0

1

2

3

4

5
x 10−3

number of samples

pi
xe

l v
ar

ia
nc

e

Variance Radiance Filtering

 

 
blue pixel
green pixel

0 50 100 150 200 250 300 350 400 450 500 550
0

0.2

0.4

0.6

0.8

number of samples

pi
xe

l v
ar

ia
nc

e

Variance Path Tracing

 

 
blue pixel
green pixel

0 50 100 150 200 250 300 350 400 450 500 550
0

0.2

0.4

0.6

0.8

number of samples

pi
xe

l b
ia

s

Bias Radiance Filtering

 

 
blue pixel
green pixel

0 50 100 150 200 250 300 350 400 450 500 550

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

number of samples

pi
xe

l b
ia

s

Bias Path Tracing

 

 

blue pixel
green pixel

Figure 4.16: Bias and variance for two pixels. For the blue pixel, radiance filtering introduces little
bias. For the green pixel, much bias is introduced in the early frames (but it vanishes rather quickly).
Bias and variance were estimated by rendering 128 sequences of images with different seeds and com-
paring them to the reference solution. Bias and variance are given relative to the reference solution
and are computed using the actual pixel values after tone mapping. This is why path tracing has bias in
the graphs, too. Note that the variance plots use different scales – the variances for radiance filtering
are actually two orders of magnitude lower.
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no MIS no ν-factor MIS + ν-factor reference

Figure 4.17: The effects of our MIS approximation and the ν-factor (with 4 spp).

Figure 4.17 illustrates how the approximate MIS weights and the ν-factor play
together for glossy objects. Without MIS, spike noise can result in splotches.
With our MIS approximation, the result is overly smooth and blurs the sharp
glossy reflection. The ν-factor has the effect of sharpening the result again
for highly glossy, curved surfaces while retaining the smoothness of the MIS
approximation. For planar surfaces, the reflections remain blurred, but get
sharper over time.

Figure 4.18 shows the Buddha from Fig. 4.17 with varying glossiness. For high
glossiness, the sharp ν-factor reduces smoothing on sharp edges, but overall,
radiance filtering achieves a reasonable compromise between smoothing and
preservation of sharp glossy reflections. With an exponent of approximately
4096 the Buddha clearly appears darker and artifacts at sharp normal tran-
sitions become quite objectionable (see blow-ups). Also, on planar surfaces,
the reflections tend to get blurred too much. Therefore we usually do not
apply the filter for exponents greater than 4096, but continue tracing the
rays (so the rightmost column in Figure 4.18 is there merely for illustration).
However, in principle the filter remains usable for very high exponents – just
not for very fast previews, because one has to invest more samples to get
good results.

Figure 4.19 shows how radiance filtering deals with distribution effects like
depth of field or motion blur. The method still works in the presence of these
effects. However, since radiance filtering only filters illumination, it cannot

112



4.5 Results

e � 256 e � 1024 e � 4096 e � 16384

rad (8 spp) pt (16 spp) rad (8 spp) pt (16 spp) rad (8 spp) pt (16 spp) rad (8 spp) pt (16 spp)

Figure 4.18: The scene from Fig. 4.17 with varying glossiness (Blinn-exponent from 256 to 16384).
The blow-ups show radiance filtering (rad) vs. path tracing (pt). This is not an equal-time comparison
(pt is actually favored), but conveys a rough idea of the noise reduction.

reduce noise that results from an increased variance in the hit points of pri-
mary rays. The effects can be seen in the blow-ups: there is a significant noise
reduction, but texture and geometry still have to be sampled at high rates
to get a high-quality image. Note that while the same is true for stochastic
supersampling of pixels, much lower sampling rates are needed in that case
and the problem usually is much less severe in practice.
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“Cornell buddha”
shallow DOF (aperture: .5)

reference
4K spp

path tracing
8 spp

radiance filtering
8 spp

“Cornell buddha”
very shallow DOF (aperture: 1.5)

reference
4K spp

path tracing
8 spp

radiance filtering
8 spp

Figure 4.19: Radiance filtering applied to renderings with depth of field. The blue region is completely
out of focus, while the green region is (at least partially) in focus. Note that this is a comparison with
equal sample counts, not equal rendering time.
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4.6 Optimizations

This section presents some optimizations for the original approach. The first
optimization improves performance with perfect specular reflecting/refracting
surfaces. The second optimization reduces blurring in the incident illumina-
tion. The third optimization adapts the blending operator introduced in
Chapter 3 to radiance filtering.

4.6.1 Hybrid Approach for Perfect Specular Surfaces

Probably the biggest weakness of the original radiance filtering algorithm
is the reduced efficiency with perfect specular surfaces that reflect and re-
fract light at the same time. Reflection and refraction lead to diverging rays
and the subsequent filtering step can have problems finding valid radiance
samples.

There are a number of brute-force solutions that immediately come to mind.
For example, one can force deterministic behavior at reflecting/refracting
surfaces and only trace one path at a time, effectively decomposing the scene
into layers. This solves the problem of diverging rays and leads to much better
noise reduction with radiance filtering, but we regard the resulting popping
artifacts as worse than the noise that would remain otherwise. Another
approach is to trace all possible paths at a time (at least to a certain depth)
and store multiple radiance samples. A third possibility is to (adaptively)
supersample reflecting/refracting surfaces.

We present a fourth option here: a hybrid filtering approach that combines
radiance filtering with the pixel filtering method described in Chapter 3. The
basic idea is to apply each algorithm where it is strong: pixel filtering to re-
flecting/refracting surfaces and radiance filtering to all remaining surfaces. To
do this, we mark all pixels with paths that hit a reflecting/refracting surface
before they can deposit a radiance sample in the path tracing pass (Fig. 4.20
middle). Note that this includes more than just directly visible surfaces, for
example it includes reflections of reflecting/refracting surfaces in a perfect
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Figure 4.20: Left: the “Cornell specular 2” scene contains many reflect-
ing/refracting surfaces. Middle: mask for the hybrid filter; pixels that are reflecting
and refracting at the same time are green, pixels that are either reflecting or re-
fracting are red. Pixel filtering is only applied to green pixels, radiance filtering to
the rest. Right: range buffer for pixel filtering.

mirror. Then a range buffer is computed for these pixels (Fig. 4.20 right)
and the filter is applied as described in Chapter 3. To all remaining pixels,
radiance filtering is applied as described in this chapter.

Figure 4.21 compares the hybrid approach to pixel filtering and radiance
filtering for a modified “Cornell specular” scene. The hybrid filter performs
better than each of the components alone. Note that it is also slightly faster
than radiance filtering (in that it can compute more samples in the same
time). This is because the relatively expensive radiance filter is not applied
to the masked pixels.

4.6.2 Bilateral Kernels

The original radiance filtering can blur sharp features in the illumination,
such as sharp (indirect) shadows and sharp caustics. This is because the
(linear) kernels do not depend on the radiance signal and therefore cannot
respect “edges” (sharp changes) in the illumination.

A simple way to remedy this is to include a range component into the kernel,
effectively turning it into a bilateral filter. However, using the incident radi-
ance in a range kernel is impractical, because of its high dimensionality (two
dimensions for the position on the scene’s surfaces plus two for the incident

116



4.6 Optimizations

“Cornell specular 2”
5 sec equal time comparison

reference
16K spp

hybrid filtering
9 spp

25.95 dB

pixel filtering
10 spp

24.53 dB

rad. filtering
8 spp

24.01 dB

“Cornell specular 2”
34 sec equal time comparison

reference
16K spp

hybrid filtering
67 spp

30.67 dB

pixel filtering
72 spp

30.10 dB

rad. filtering
64 spp

29.62 dB

Figure 4.21: Equal-time comparison of hybrid filtering, pixel filtering, and radiance filtering. The
hybrid approach is better than pixel filtering or radiance filtering alone.
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Figure 4.22: The per-pixel irradiance is not reliable with only a few samples per
pixel (left). Filtering it alongside the radiance values provides a smooth approxi-
mation (right).

direction). A better choice is the irradiance, which also captures illumina-
tion changes, but is only two-dimensional and can be saved as one additional
3-vector per pixel.

Unfortunately, the irradiance estimates are unreliable at the beginning of
rendering, with only a few samples per pixel. Therefore, we use the same
procedure as in Section 4.3.4 and filter the irradiance alongside the radiance
values. This produces a smooth irradiance estimate, see Figure 4.22. How-
ever, filtering also smoothes the sharp features in the illumination we want
to detect with the irradiance estimate. A consequence is that the approach
described here needs a short warm-up phase to work properly. Experience
shows that sharp features are detectable after 16-32 spp in typical scenes,
which is when the modified filter starts to pay off.

The modified weights to plug a bilateral kernel into Equation 4.10 are

wj � σpxj, xq νpnj, nq ρ
� ˜̂
Epxjq, ˜̂

Epxq
	
, (4.27)

where ρ is the range kernel that works on the filtered irradiance estimates
˜̂
Epxjq. We use a Gaussian with a standard deviation of 0.1 ˜̂

Epxq and mean
˜̂
Epxq. This relative standard deviation produces good results in HDR envi-
ronments. It also prevents an additional free parameter. Note that the fil-
tered irradiance is filtered with the unmodified kernel, not the bilateral kernel,
to prevent feedback effects (amplification of wrongly detected edges).

Figure 4.23 shows a comparison of the original approach and the extended
version with a bilateral kernel. The subtle shadow under the carpet is pre-
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reference
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Figure 4.23: Bilateral kernels can mitigate the light leaks from which the original approach suffers.
The original kernel removes the subtle shadow under the red carpet almost completely. The bilateral
kernel preserves the shadow much better.

reference
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85 spp
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Figure 4.24: Bilateral kernels can also reduce the blurring of caustics. Compared to the original
kernel, the bilateral kernel renders the boundary of the caustic more sharply.

served much better by the bilateral kernel. Figure 4.24 shows that caustics
are preserved better, too.

The overhead of this extension consists of the evaluation of ρ and the fil-
tering (and storage) of the irradiance estimate. This amounts to approx-
imately 10 percent of running time in our implementation and one addi-
tional buffer in rendering resolution (containing 3 floating point values per
pixel).

Note that the bilateral kernel is not equivalent to a smaller kernel radius. A
smaller kernel radius would reduce blurring, but would also introduce low-
frequency noise in the rest of the image. The bilateral kernel effectively only
reduces the kernel radius in high-gradient regions. This helps to preserve
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Figure 4.25: The original blending approach (left) vs. filtering with blending
(right). The blending operator leaves some high-frequency noise in the image,
which can hint at features the filter smoothed out, e.g. the subtle caustic under
the glass Buddha. This is a psychological effect, the numerical error is often higher
with blending. Rendered with 32 spp.

sharp changes in the illumination, while leaving the filtering performance
for (roughly) homogeneous regions untouched. Also note the difference to
the classic bilateral filter as used in Chapter 3: here, we filter incident ra-
diance with a world-space kernel, not pixel values with an image-space ker-
nel.

We have also tried the trilateral filter [24], which includes the gradient into
the range kernel. It smoothes towards a piecewise linear solution, not a
piecewise constant solution. This can prevent the “shock waves” that the
bilateral filter tends to produce in high-gradient regions. However, we have
found that in general the improvement is not worth the additional overhead
and use the bilateral kernel as default.

4.6.3 Blending Operator

In the spirit of the hybrid filtering approach presented above, we can also
adapt the blending operator from Chapter 3 to radiance filtering. This is a
straightforward extension: in addition to the target variance, the user also
specifies what percentage of the variance should be “filled up” with the origi-
nal, unfiltered samples. This opens up another degree of freedom for reaching
the threshold on variance. We can adapt the bandwidth or the blend fac-
tor.

The filter effectively converts high-frequency noise to low-frequency noise by
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blurring the incident radiance. The blending operator blends in the origi-
nal, unblurred samples that are contaminated by high-frequency noise. With
the original approach, we could only reduce blurring by reducing the filter’s
bandwidth. The resulting low-frequency noise would produce a splotchy im-
age. With the blending operator, we can also reduce blurring by blending in
some high-frequency noise.

Figure 4.25 shows this extension in action. This particular example allowed
a relatively high amount of noise in the final image. The numerical error
is lower for the purely filtered image, but the image with blending hints at
the subtle caustic under the Buddha, which is almost completely lost in the
filtered image. Attenuating high-frequency noise in this way, instead of trying
to remove it by converting it into low-frequency noise can be beneficial for
some previews.

4.7 Additional Remarks and Future Work

The dominant artifacts of radiance filtering are light leaks and blurred caus-
tics. Whenever the assumption of smooth (indirect) illumination is violated,
filtering the illumination will introduce significant bias.

A possible approach to mitigate this problem is to incorporate an estimate of
bias into the algorithm. Currently, the only objective is to reduce variance.
If an estimate of bias was available at rendering time, we could try to limit
the overall rendering error and allow more variance in regions where the
filter introduces much bias. So far, we have not been able to develop a fast
and reliable method to estimate bias for radiance filtering. Bias depends
on second-order derivatives of Li, which are hard to estimate reliably in an
undersampled image, and fast approximations proved to be not accurate
enough. However, related work exists for photon density estimation [53], and
it should be possible to incorporate these results into radiance filtering with
future work.

Another artifact that can occur, especially during the early frames, is splotches

121



4 Filtering Incident Radiance

due to spike noise. If the radiance of a sample is much higher than the ex-
pected value, the energy is not distributed in a large enough area by the
filter and a bright splotch is visible (Fig. 4.26). A method to withhold such
“outliers” from the image, similar to the one proposed by DeCoro et al. [29],
could reduce these artifacts.

We would like to mention that the artifacts of radiance filtering are in gen-
eral visually less objectionable than the artifacts introduced by cross bilateral
filtering. Most viewers will regard fading or blurred shadows and blurred
caustics as less severe as remaining noise or blurred textures. Therefore,
radiance filtering often produces visually more pleasing results, even if ob-
jective metrics (like PSNR) are similar. We compare the typical artifacts in
Figure 4.26.

It is also worth mentioning that our method is compatible with many com-
monly used optimizations such as stratified, adaptive and importance sam-
pling. For adaptive sampling, the assumption that there is one sample per
pixel (per frame) may not be true anymore. This can lead to wrongly esti-
mated kernel sizes, but is usually not a problem in practice. Stratification
can lead to wrongly estimated kernel sizes, too, since combining well-stratified
samples may reduce the variance better than completely independent sam-
ples. Again, this is usually not a problem in practice as it can be counter-
balanced by raising the target variance. If no proper importance sampling is
performed, radiance filtering has to cope with the increased variance. This
too is usually not a big problem in practice, however, if the lack of importance
sampling leads to significantly more spike noise, the splotches described in
the preceding paragraph will occur.

Finally, it may make sense to use radiance filtering to quickly fill a per-pixel
radiance cache and use this for importance sampling. The result would be
similar to the recently presented importance caching algorithm [47].
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Figure 4.26: Comparison of artifacts. Top: reference solution; middle: radiance filtering; bottom:
pixel filtering. The undersampled insets show the path traced input to illustrate the noise reduction
achieved by the filtering algorithms.
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4.8 Conclusions

We have presented a novel approach for noise reduction that is especially
tailored to interactive progressive path tracing. Other than popular image
filtering techniques, radiance filtering does not simply filter pixel values or ir-
radiance, but the incident (indirect) radiance. This way, radiance filtering can
significantly reduce the variance of a rendered image without blurring details
in geometry or texture while still being applicable to non-diffuse surfaces. The
primary use case is to provide fast, reliable previews of global illumination.
It is also consistent, retains the conceptual simplicity of path tracing, is com-
patible with importance and stratified sampling, and is easy to integrate into
existing renderers. The method works best for smooth indirect illumination,
but smooth direct illumination can be handled, too.

The most pressing issues that have to be addressed by future work are the
performance of the method with reflecting/refracting objects and sharp fea-
tures in the indirect illumination that are currently blurred (sharp shadows
and caustics). The bilateral kernels we have proposed mitigate the problem,
but a more efficient solution is necessary. Another interesting avenue for fu-
ture work is to limit the overall error, not just the variance, by incorporating
an estimate of bias into the algorithm.

Appendix 4.A Bias in Preview Phase

In the following, we assume the radiance signal over the image plane is finite
and bounded everywhere. We assume M radiance samples have been dis-
tributed over the image plane (typically one per pixel). We also assume that
the weight of radiance samples outside the current image-space radius is zero,
that all weights are non-negative, and that the maximum weight assigned to
a single radiance sample is one.
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The bias introduced in frame k is

Erε̃ks � E
��Lok � Lo

�
� E

�
M̧

j�1
wkpXjqBpXjqLipXjq � Lo

�

�
M̧

j�1
E rwkpXjqBpXjqLipXjqs � Lo, (4.28)

where we have compactly written

BpXjq � frpx,Ωi,j, ωoqpn � Ωi,jq and (4.29)

LipXjq � qLipXj,Ωi,jq{pωpΩi,jq. (4.30)

We have interpreted the position of the j-th radiance sample as a random
variable Xj with some pdf pxj

; the associated Ωi,j are interpreted analo-
gously.

E rwkpXjqBpXjqLipXjqs is the expected value of the j-th radiance sample in
frame k when weighted relatively to the shading point at x. Let C be the most
biasing radiance sample on the image plane, weighed with 1 (the maximum
weight). This maximum exists, because the radiance over the image plane is
assumed to be bounded.

We can then estimate the worst case by substituting this maximum for all
radiance samples with wj ¡ 0. At the same time, we can discard all samples
with wj � 0 and reindex the remaining samples with l � 1, . . . ,Mk, which
then enumerates all samples that contribute in frame k. With this, we arrive
at

Erε̃ks ¤
Mķ

l�1
C � Lo

�MkC � Lo � p2rsk � 1q2C � Lo

� O
�
r2
sk

�
. (4.31)

By substituting Eq. 4.14 into Eq. 4.2, we obtain a formula for the image-space
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kernel radius in frame k:

rsk � 1
2

d
Varr pLis

p2k � 1qTu
4
π
� Θ

�
1?
k



. (4.32)

The world-space radius shrinks proportionally to that and with Eq. 4.31 we
can express the bias introduced in frame k directly in terms of the frame
number k:

Erε̃ks � O

�
1
k



. (4.33)

For the accumulated bias, we have

E
�¯̃εN� � 1

N

Ņ

k�1
Erε̃ks � 1

N

Ņ

k�1
O

�
1
k



� O

�
logN
N



. (4.34)

Because the asymptotic behavior of the harmonic series isOplogNq:
Ņ

k�1

1
k
� γ � logN �O

�
1
N



� O plogNq , (4.35)

where γ is the Euler-Mascheroni constant.

To gain some intuition, we can look at a fixed pixel grid without supersam-
pling and reflecting/refracting objects and an image-space box filter. With
radius one (one pixel) we have only one sample inside the kernel: the correct
one. Bias is zero. With radius two (3� 3 pixels) the influence of the correct
sample is 1{9, the influence of potentially biasing samples is 8{9. With radius
three (5�5 pixels) the influences are 1{25 and 24{25. The exact bias will vary
depending on the samples, but even if we assume each biasing sample has the
value of the sample in the image that throws the estimate off most, the in-
fluence of biasing samples will only grow quadratically.
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Appendix 4.B Bias in Correction Phase

We begin by observing that each pixel with finite variance (which means that
the pixel converges with pure path tracing) reaches the correction phase with
a probability of one. Let rVN � VarrLis be the variance estimate that drives
the algorithm. With a probability of one we have

lim
NÑ8

rVN P R, (4.36)

and therefore, because the target variance grows as TN � p2N�1qTu (Eq. 4.14),
there exists a N0 after which TN is greater than rVN :

DN0@N ¡ N0 : rVN   TN � p2N � 1qTu. (4.37)

In other words, after N0 frames the algorithm is and stays in correction phase
with a probability of one.

E
�¯̃εN0

�
is the bias accumulated up to this point (which is asymptotically

bounded by OplogN{Nq as shown in the previous Section). For N ¡ N0 we
have

E
�¯̃εN� � N0

N
E
�¯̃εN0

�� 1
N

Ņ

k�N0�1
E rε̃ksloooooooomoooooooon

0

� O

�
1
N



, (4.38)

because after entering correction phase, no additional bias is added (all Erε̃ks
are zero for k ¡ N0).
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This chapter presents a practical and non-intrusive approach to using
multiple, potentially very different rendering back-ends in a distributed
rendering system. The approach allows back-ends to be plugged into the
OpenSG infrastructure, without impairing their strengths and without
burdening the back-ends or the application with details of the cluster
environment.

5.1 Introduction

The problem we address in this chapter seems simple at first sight: how to
support different renderers for the same application layer. It also seems to
have been solved many times already. Many systems in computer graphics
have support for different rendering back-ends. In interactive graphics, it
is quite common to support different rasterization APIs (e.g. OpenGL and
Direct3D). In offline rendering, many systems support several rendering algo-
rithms, each with their individual advantages and disadvantages. One route
that is often taken, is to find a common abstract imperative interface and to
implement this interface for each renderer. Another approach, mainly used
in offline rendering systems, is to define a common scene representation and
let each back-end work on this representation. However, the problem we had
to solve for our system goes much deeper.

Our system, InstantReality [43], is a generic framework for interactive visu-
alization and VR/AR-applications. It has to support a wide range of ap-
plications (from visualization of large CAD models over game-like virtual
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environments to photorealistic rendering) on a wide range of platforms (from
CAVEs to Laptops, Fig 5.2). No single rendering architecture meets the
requirements of all our customers, so we decided to support specialized, po-
tentially quite different, rendering back-ends (from GPU-rasterization to pro-
gressive ray tracing). Yet, we still wanted to use the same scene description
and application layer for all scenarios, mainly in order to ease application
development with existing tool chains. This problem statement implies two
important issues that, in combination, are not sufficiently addressed by pre-
vious approaches.

The first issue is that the back-ends can be based on extremely different ar-
chitectures and paradigms. Furthermore, they often come packaged as closed
source, third party libraries that define their own API and scene description.
For example, a cloud-based ray tracer and a GPU-rasterizer may have very
different interfaces. This makes it difficult to abstract rendering back-ends
with a single imperative interface. From this issue we derived the first cen-
tral design decision: we should abstract the scene, not the renderer. On the
other hand, it does not make sense to include high-level, application-specific
features into the abstraction, so the scene abstraction should only consist of
a few low-level concepts.

The second issue is that we support features such as stereoscopic rendering
and rendering in a cluster (e.g. for multiprojector environments). We want to
use these features with different rendering back-ends, even if the back-ends
themselves do not support them. It seems reasonable to implement these
features in a layer on top of the rendering back-ends. On the other hand, the
application layer should be mostly agnostic to which hardware-configuration
the application runs on. This brought us to the second central design decision:
we should hide the computing environment (hardware configuration) from
both, the application layer and the rendering back-end.

In order to implement these two design decisions, we use a mediator layer
between application layer and rendering back-ends. The mediator translates
a common scene representation into the back-end’s specific representation,
keeps both of them in sync with incremental updates, and triggers the back-
end’s renderer whenever an image is needed. Our mediators are based on
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OpenSG [32], an open source scene graph library with sophisticated support
for clustering and multithreading.

Of course, the insights above and the idea of a mediator layer are not new
– but we are not aware of a system that has implemented them with such
consequence as ours. The contribution we make with this chapter is there-
fore the description of a pragmatic, practice-proven approach to use different
rendering back-ends with a common application layer in distributed systems.
In particular, we show an interesting way to propagate changes and how to
support clustering based on OpenSG’s multithreading concept. We regard
our work primarily as valuable addition to the OpenSG infrastructure, but we
also think that the ideas and design principles described here are applicable
to similar systems.

5.2 Related Work

Many approaches to using exchangeable rendering back-ends with a com-
mon application layer have been described. Also, a lot of literature exists on
rendering in clusters. But surprisingly few publications deal with the com-
bined problem of how to efficiently support different rendering back-ends for
distributed systems.

5.2.1 Rendering in a Cluster

Techniques for cluster-based rendering can be broadly categorized on the ba-
sis of where the distribution happens. We restrict ourselves to three popular
examples here, for more techniques and details we refer to the recent survey
by Staadt et al. [130].

Humphreys et al. [62] developed the Chromium library, a low-level approach
that streams commands of the underlying graphics API. This approach is very
generic (in theory any OpenGL application can be clustered), but typically
consumes a rather high bandwidth. Bierbaum et al. [13] implemented the
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other extreme in VR Juggler. There, clustering happens at the application
layer, which is very flexible, but requires manual adaption of each application
to its intended runtime environment. Reiners et al. [32] occupy a middle
ground with OpenSG. They distribute the scene, not the entire application,
and stream only scene updates, not the entire graphics command stream.
This is the architecture we based our work on.

In addition to these rendering-centric approaches, there are systems whose
primary concern is to distribute arbitrary computing tasks in a cluster. They
contain the problem we address in this chapter as a sub-problem, but the
top-level architecture usually just defers it to black-box rendering nodes. Pa-
TraCo [44], KoDaVis [37], and FlowVR [2] are recent examples.

5.2.2 Exchangeable Rendering Back-ends

Approaches for exchangeable rendering back-ends range from low-level ab-
stractions of imperative graphics APIs to high-level abstractions that work
with a common understanding of a “scene”.

OpenGL [147] is probably the most popular graphics API. In theory, anybody
can develop an OpenGL interface to their rendering back-ends, and it will
work with OpenGL-compatible applications. In practice, however, since the
API strongly reflects the underlying rasterization pipeline, it has only been
used for rasterization (as far as we know). Although Dietrich et al. [30]
developed OpenRT, an API similar to OpenGL for ray tracing, with the
intention to ease porting of OpenGL applications to ray tracing [31]. While
OpenGL is centered around feeding primitives to a rasterization pipeline,
OpenRT already offers a (very primitive) scene abstraction that is better
suited to ray tracing.

Some ray tracing frameworks take the scene abstraction to the extreme and
rely on scenes that basically just have to provide an “intersect” method. For
example Pharr et al. [103] do this with PBRT, and Georgiev et al. [50] follow
a similar approach with RTfact. While this works well for ray tracing, other
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back-ends may require scenes that expose more internal structure in order to
process them efficiently.

Many scene graphs allow custom renderers as plug-ins (e.g. [33, 131, 95,
108, 32], to list only a few). The typical mechanisms are custom traversals
and extensible nodes (via callbacks), usually a combination of both. If the
scene-graph is well-designed, one can come up with an adapter for most
rendering back-ends with acceptable time and effort. Even if the adapter has
to translate the whole scene graph into the back-end’s internal structures.
Döllner and Hinrichs’ [34] Virtual Rendering System, used for example by
Steinicke et al. [131], stands out because it was specifically designed to work
well with different back-ends and regards adapter components as part of the
core architecture. Döllner and Hinrichs [34] also contains a survey of previous
approaches, which we will not re-iterate here.

A recent approach that is very closely related to our work is Rubinstein et
al. [116] and their Real-time Scene Graph (RTSG). RTSG is a scene graph
whose core is based on a stripped-down version of X3D/VRML. It allows the
application to attach different rendering back-ends and provides an efficient
way of propagating changes via callbacks.

Berthelot et al. [12] introduced the Scene Graph Adapter, an architecture
for mixing different scene graphs in one application at runtime, without an
offline conversion step. The approach consists of two standardized interfaces,
Format Wrapper and Renderer Wrapper, that have to be implemented for
each 3D format and renderer, respectively. A central Scene Graph Adapter
instance then mediates between several Format and Renderer Wrapper in-
stances by mapping nodes and calls.

5.2.3 Comparison with Related Work

The most important aspect that sets our work apart from related approaches
is the “fat” mediator layer based on OpenSG. In fact, OpenSG can be re-
garded as the front-end towards the application layer, providing a common
interface for the mediator and the back-end.
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Compared to approaches based on imperative APIs [147, 30, 31] our approach
provides a higher abstraction of the rendering back-end behind a declarative
interface (a stripped-down scene graph). The loose coupling allows more
generic back-ends; the scene graph adaption allows each back-end to work
with a suitable scene representation for high performance.

Approaches that treat the scene as a black box (or at least a very, very opaque
box) [103, 50] have the complementary problem: they cannot query enough
information to efficiently map a scene. In contrast to them, our scene-graph-
based approach allows for querying relevant data and supports an efficient
mapping of the scene.

Approaches based on scene graphs that use custom callbacks during traversal
(e.g. [33, 95, 108, 32], but especially Döllner and Hinrichs [34]) are usually
quite close to a sweet spot as far as scene abstraction is concerned. How-
ever, purely relying on this approach leaves the concerns of multithreading
and clustering to the application layer or the rendering back-end. Another
issue not sufficiently addressed by the traversal approach is that the adapter
has no efficient way of detecting and propagating changes (without a full
traversal). RTSG [116] offers a solution to this problem that seems to be
extensible to clustering (RTSG was used in the URay framework [109] for
distributed rendering, but it is not explicitly mentioned how changes are
handled). Compared to RTSG, our approach provides a cleaner separation
of application layer, mediator layer, and back-end and uses another mecha-
nism to handle incremental updates. The Scene Graph Adapter by Berthelot
et al. [12] leaves the multithreading and clustering issues unattended and fo-
cuses solely on scene mapping. We use an adapter that is similar in spirit
in our mediators, but it is based on a low-level OpenSG scene. This results
in a cleaner interface than the bloated wrappers the Scene Graph Adapter
has to offer and takes the burden of multithreading and clustering off the
shoulders of the application and the back-end. The downside is that we
have to pay the memory overhead of the OpenSG scene as an intermediate
representation.
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5.3 Our Approach

In this section, we first lay down the most important requirements that
guided our design, then we give an overview of the architecture itself, and
finally we discuss two particularly interesting aspects of the system in more
depth: incremental changes and clustering support. Our approach is based
on OpenSG [32] and we assume a basic familiarity with concepts like Fields,
FieldContainers, Aspects, and ChangeLists [140].

5.3.1 Requirements

Our most important requirements were:

Extensibility and Generality. The system should be able to integrate new
rendering back-ends relatively painlessly. It should also be general
enough to handle back-ends coming from very different application ar-
eas and following different design paradigms.

Non-intrusiveness. Neither the application layer nor the rendering back-
end should need any changes or extensions in order to work together.
(Back-ends may extend the application layer to expose specialized func-
tionality, as described below, but basic functionality should be possible
without touching both.) This is important because we want to support
commercial libraries as back-ends that usually come as black boxes with
an unalterable interface.

Clustering and stereo. The system should provide (at least basic) support
for rendering in a computer-cluster (tile-based and cooperative) and
stereoscopic rendering, even if a back-end itself does not support it.

Rendering performance. Of course, the system should allow each renderer
to play out its strength. After all, that is why we want multiple, spe-
cialized rendering back-ends. Integrating a back-end into the system
should hamper the rendering performance as little as possible.
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Fast incremental updates. Not only the raw rendering performance is im-
portant, but also how updates are propagated from the application layer
to the rendering back-end (and sometimes the other way around). The
system should provide an efficient (in terms of runtime and usability)
solution to this problem.

Ability to extend application layer. While the system should rely as much
as possible on a common low-level abstraction of a scene, sometimes it
is practical to expose attributes that are specific to a certain back-end
in the application layer. An example are extended material attributes
for a ray tracer. The system should provide a mechanism to pass on
such data.

Mixed (hybrid) rendering. The system should provide (at least basic) sup-
port for mixing different renderers during the generation of one image.
For example, it should be possible to render large static geometry with
a back-end optimized for that purpose and to render dynamic 3D GUI
elements in the same scene with another back-end.

5.3.2 Basic Design

Figure 5.1 shows a schematic overview of our design. The application layer
(in our case an X3D-browser [8]) manages the high-level application logic
and mirrors the state of its scene in a low-level OpenSG scene graph [32,
106]. The OpenSG-layer (and all layers below) are only concerned with
the current state of components (Transforms, Materials, Geometries, etc.)
and not with procedures that change this state (animation, physics, I/O,
etc.).

The mediator layer is the main subject of this chapter. It has to be imple-
mented for each rendering back-end (although parts can be reused as shown
in Section 5.4.1). It usually consists of a viewport, a scene adapter, and a
context. With the viewport, the mediator can hook itself into OpenSG’s
rendering infrastructure. It is the only part of a mediator that is manda-
tory. The scene adapter translates the OpenSG scene into the renderers
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Figure 5.1: Schematic overview of our architecture.

internal representation and keeps it up-to-date. The context manages in-
stances of the back-end and allows multiple viewports to share these in-
stances.

Note that there is no direct dependency from the application/OpenSG layer
into the mediator layer (only via the default OpenSG Viewport interface) and
no dependency from the mediator into the application layer (only into the
OpenSG layer, a mediator potentially works with all OpenSG applications).
Also, the mediator depends on the back-end, but not the other way around.
This takes care of our requirements of extensibility and generality and
non-intrusiveness. Since the back-end is fed with its own scene representa-
tion and simply asked to fill a viewport, it usually can maintain near-optimal
rendering performance. Relying on viewports also enables a simple (but
usually sufficient) way to do mixed (hybrid) rendering. Viewports can be
layered on top of each other in order to combine the images of different back-
ends using z-buffering and alpha-blending. The ability to extend the ap-
plication layer is provided by OpenSG’s attachment mechanism [32], which
allows to attach arbitrary data to nodes. The application layer only needs
to pack data for extensions into attachments, which are then interpreted by
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mediators that understand the extensions and ignored by others. How the
system meets the requirements fast incremental updates and clustering
and stereo is particularly interesting and described in Sections 5.3.3 and
5.3.4. For the remainder of this section, however, we focus on the viewport
and scene adapter mechanisms.

5.3.2.1 The OpenSG Scene

The OpenSG scene in the scheme in Figure 5.1 is usually a stripped down
scene graph with only a few node types. We intentionally did not strictly
define which nodes a mediator has to understand, unknown nodes can simply
be ignored by the scene adapter. Node types that are supported by all our
renderers are Transform, Geometry, two types of Materials, Lights, Camera,
and Background. This seems to be the minimal set a renderer needs to
produce meaningful pictures.

Transforms are simple 4 � 4 matrix transforms with n children (i.e. they
are also Group nodes). Geometry will usually be an indexed triangle mesh,
but since OpenSG provides the TriangleIterator interface it is almost always
possible to convert an arbitrary geometry into a triangle soup, which can be
handled by most renderers. This includes parametric surface patches. (Of
course, a back-end can also choose to interpret them directly, if they are sup-
ported.) As far as materials go, we take a pragmatic approach and provide
two pre-defined declarative materials, a simple one based on the OpenGL 1.1
material model and a more complex one (CommonSurfaceShader, see Ap-
pendix 5.A) based on a recent X3D extension proposal [123]. The Common-
SurfaceShader is quite powerful and supports features like perfect specular
reflection/refraction and bump mapping. However, it cannot describe every
appearance adequately, so a back-end can also interpret ShaderChunks that
may contain explicit shader code in addition to the declarative material nodes.
This mechanism offers greater flexibility, but will incur a loss of portability.
Every mediator we implemented so far supports at least point, spot, and di-
rectional lights. The ray tracers also support area lights and lightprobes, see
Section 5.4.1. Currently all back-ends use a simple pinhole camera, which can
be easily translated into a view/projection matrix (for rasterization) or a view
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frustum (for ray tracing). Furthermore, a simple mono-colored background
is supported, as well as a skydome.

5.3.2.2 Viewport

Each mediator exposes a specialized OpenSG-Viewport which internally maps
to the underlying renderer. So, every time OpenSG (on behalf of the applica-
tion) wants a viewport to be rendered, the back-end is invoked to render its
(sub-)scene. The target is usually the OpenGL back buffer, but it can also
be another render target. We could even implement a viewport that renders
an image to disk or streams a video to a website.

The back-ends are invoked exclusively through this specialized Viewport
class. If the application wants to use a certain back-end, it just creates
the corresponding viewport, assigns camera, root-node, and background to
this viewport and attaches it to an OpenSG-Window. The viewport then
creates the entire infrastructure necessary to convert the scene and instan-
tiates the underlying renderer. Usually this is done lazily upon the first
render-request, but other patterns are possible. The viewport also provides
the interface to set parameters of the back-end that are not tied to geom-
etry, materials, or other objects (e.g. antialiasing options or maximum ray
depth).

Using a viewport in such a way also allows us to elegantly use (some may
say: abuse) OpenSG’s stereo and clustering capabilities. Stereo rendering is
possible by simply using two viewports, one for each eye (layered on top of
each other, side-by-side, or even on different machines). In order to prevent
wasting resources in such a setup, the viewports usually share the underly-
ing converted scenes and other resources via ref-counted contexts. Arbitrary
clustering setups are described in Section 5.3.4. Since viewports can be deac-
tivated and activated on-the-fly, layered viewports can also be used to quickly
switch from one back-end to another. For example, one can use rasterization
for navigation and then seamlessly switch to ray tracing once an interest-
ing viewpoint has been reached. Also, common post processing effects can
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be attached to the viewport (the anaglyph encoding in Fig. 5.9 is a simple
example).

5.3.2.3 Scene Adapter

The scene adapter is responsible for mapping the OpenSG scene to a repre-
sentation the back-end can use. This is usually where the bulk of the work
has to be done when implementing a new mediator layer. In some cases, the
renderer may be able to use the OpenSG scene directly, or at least parts of it
(e.g. an OpenGL-based forward or deferred renderer), but often a conversion
of the scene will be necessary. In this case, the adapter will usually tra-
verse the whole OpenSG scene graph once in the first render call and build a
shadow scene by converting objects such as geometries, materials, and lights
into suitable representations. Note that this does not have to be (and usually
is not) a one-to-one mapping, the case studies in Section 5.4 show examples.
However, the handling of incremental updates (described in the following
subsection) requires to quickly identify representatives that need updating as
a result of a change. Therefore, usually several maps are build during the
initial conversion, which serve as a scene dictionary.

5.3.3 Handling Changes

Probably the most obvious choice to handle incremental changes is to use
callbacks that either the representatives themselves or some handlers register
at the objects of the OpenSG scene. However, OpenSG has already a sophis-
ticated system to handle incremental changes, which we can readily use (or,
again: abuse).

OpenSG automatically keeps track of all changes that are made to the at-
tributes of an object (the Fields of a FieldContainer) in so-called Change-
Lists [140, 112]. A ChangleList’s primary purpose is to allow synchronization
between threads and over the network in OpenSG’s multi-buffered threading
model. A side effect of this mechanism is that at each render-call on the
viewport, we have a ChangeList available that contains all changes made to
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the scene in this frame. Syncing the OpenSG scene with the back-end scene
is now almost trivial: In each call to render, the viewport invokes the scene
adapter’s sync-method, which parses through the current ChangeList and
updates the representatives for all relevant changes (Fig. 5.5). ChangeLists
also contain entries for newly created and deleted objects, so these events can
be handled as well.

This approach has several advantages over registered listeners. First of all, it
processes a changed field only once. If, for example, a transform is changed
three times in one frame, only one update propagates to the back-end, namely
the last. Second, the mechanism (in conjunction with OpenSG’s Aspect con-
cept) works well in multithreaded and clustered environments. The back-end
can access a consistent OpenSG-state for the current frame, while the appli-
cation already updates the OpenSG scene for the next frame. Similarly, it is
absolutely irrelevant for the mediator whether the ChangeList came from the
same machine or over the network. This way, the mediator is completely ag-
nostic towards the clustering setup it runs in. Finally, we believe the Change-
List concept is just simpler and less error-prone. For a reasonably complex
scene thousands of listeners may have to registered, and since there is not
always a one-to-one mapping, things can get out-of-hand quickly. However,
parsing the ChangeLists gives rise to one pathological case: if the ChangeList
contains a myriad of changes but most of these changes are irrelevant to the
back-end, the parsing may incur a performance penalty. But the number of
irrelevant entries would have to be very large in practice, since ChangeLists
can be parsed very efficiently. They are basically just a list of object ids and
associated bitmasks that mark the changed fields.

5.3.4 Multithreading and Clustering

Multithreading and clustering have been mentioned before, and the mediator
design allows us again to use large parts of what OpenSG has to offer here.
The details and inner workings of OpenSG’s multithreading and clustering
concept are described by Voß et al. [140], we will only describe how our
approach integrates into this framework.
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In our system, the application layer exists only once on a single host, but the
OpenSG scene may be mirrored on multiple machines. The copies of the scene
are kept in sync by ChangeLists sent over the network. As already mentioned,
the fact that the mediators only work on the OpenSG scene and ChangeLists
allows them to function properly in cluster/multithreading setups without
knowing anything about the application layer.

Rendering in a cluster is managed by the ClusterWindow class, which can
be envisioned as a virtual window that exists on a remote host; or, in the
case of tiled rendering and load balancing, multiple hosts. Since a mediator
only interacts with OpenSG via instances of its specialized Viewport class,
we just have to add the specialized viewports to a ClusterWindow like or-
dinary OpenSG Viewports to use them in any OpenSG-compatible cluster
setup. Cameras and viewports are automatically adapted by OpenSG and
each machine renders with its own instances of specialized renderers without
them even knowing that they are part of a clustering setup and cooperating.
Supporting classic setups such as tiled rendering for large display walls and
cooperative rendering with load-balancing is important, and our design does
this quite well. However, the possibility to selectively use different back-ends
on different machines opens up interesting new possibilities. For example, we
could use a fast, low quality GPU-based renderer on a touch-table or mobile
device to navigate through a scene, while a powerful cluster renders the same
scene on a large tiled display wall using load-balancing with a progressive,
photorealistic algorithm such as path tracing.

5.4 Case Studies

In this section, we discuss two case studies: an Optix-based ray tracing back-
end and a visibility guided renderer for very large data sets. We also describe
a concrete example application.
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Figure 5.2: Some use cases. Left: an application running on a touch table and a large tiled display
wall (6� 4 tiles, 8640� 4200 pixels). Middle: stereoscopic rendering on the same display wall. Right:
video stream from desktop to web page, viewed in a browser on a tablet.

5.4.1 Optix Back-end

Optix [99] is a ray tracing engine based on CUDA [91]. Figure 5.3 shows
the static structure of our Optix mediator. One interesting aspect is that the
same mediator supports three renderers: a simple Whitted-style real-time ray
tracer, an interactive progressive path tracer, and a special coverage renderer
(described in Section 5.4.3). The renderers differ mainly in some CUDA
programs (e.g. camera and material programs), while most other parts (e.g.
intersection programs, most of the scene adapters) are identical. Therefore,
we implemented the key components of the mediator layer, OptixScene and
OptixViewport, as “fat” base classes that contain most of the functionality
and specialized them where needed.

The most interesting component of most mediators is the scene adapter, this
is also the case here (OptixScene). One important point is that the scene
adapter does not really mirror the OpenSG scene as an Optix scene. The
OpenSG scene graph is usually quite deep (as it mirrors the X3D/VRML-
graph of the application layer), and the Optix scene adapter collapses it into
a flat graph that has at most one transform above each geometry instance
(Fig. 5.4). A mapping from the original transforms to the collapsed ones is
established, so we can quickly find the representatives that need updating for
a given ChangeList entry (Fig. 5.5).
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osg::Window

osg::Viewport

osg::Node osg::Background

med::OptixScene

obe::OptixRenderer

med::OptixContext

osg::Camera

med::OptixViewport

obe::OptixRenderer

med::OptixScene

med::PathTracingScenemed::WhittedScene

obe::WhittedRenderer obe::PathTracingRenderer

med::OptixViewport

med::WhittedViewport med::PathTracingViewport

Some private helper classes
were omitted here.

OptixScene directly fills CUDA-buffers,
OptixRenderer uses them, so the back-
end scene does not appear explicitly.

Figure 5.3: Static structure of the Optix mediator. The namespace-tags refer to the layers in Fig. 5.1:
osg = OpenSG layer, med = mediator layer, obe = Optix back-end. Some small helper classes and the
coverage renderer (Sec. 5.4.3) were omitted.
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Figure 5.4: The scene adapter maps the OpenSG scene to an Optix scene. In order to optimize for
ray tracing, this is not a one-to-one mapping: GeometryGroups that provide Acceleration structures
are introduced, Transforms are collapsed, static geometry is placed under one common Acceleration.
The figure also illustrates sharing of Materials and Geometries (instancing).
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Figure 5.5: Snooping on ChangeLists is our way to propagate incremental changes. When the ap-
plication changes a Field, a corresponding entry is created (or updated) in the current ChangeList.
When the mediator syncs the back-end (usually before rendering), it parses through the ChangeList
and carries out the necessary updates for each entry in the back-end scene. Because of OpenSG’s
Aspect mechanism, this sync is thread-safe and works between cluster nodes.

Geometry instances below the same transform node are assumed not to move
independently and are combined into the same acceleration structure. Geom-
etry that has been explicitly flagged as static is also combined into one large
static geometry chunk. Geometry can also be flagged as animated, in which
case a special acceleration structure is used that can be quickly updated but
has slightly lower rendering performance.

These optimizations are necessary to retain good ray tracing performance
while still allowing fast updates for frequently occurring changes (changing
transforms, lights, animated meshes, etc.). Changes to the graph structure
become more expensive, though, but we assume these to occur relatively sel-
dom. As the build times for the acceleration structures can be quite high, they
can be cached on disk, so we do not have to pay the costs every time a scene
is loaded. Geometry data is directly written into CUDA-buffers, as are image
textures, in order to prevent duplication of large data. (Textures can also be
shared with an OpenGL context as texture objects.)

Area lights are another interesting aspect of this mediator. They are a simple
example of how a mediator can freely interpret the scene in order to play out
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Figure 5.6: The same scene rendered with three different renderers by switching through viewports.
Left to right: rasterization, whitted-style ray tracing, path tracing.

Figure 5.7: Participating media specified by CommonVolumeShaders.

the strengths of its back-end without exposing extensions in the application
layer. Instead of exposing a specialized node in the application layer, area
lights are simply geometries with a non-zero emission component in their
material. The mediator detects these geometries and converts them into area
lights for the ray tracers. This way, the mediator can easily support area
lights of arbitrary shape (an example is shown in Figure 5.9). For back-ends
that do not support them, they remain emissive objects but do not shine
light onto other geometry.

All ray tracing back-ends support the full feature set of CommonSurface-
Shader [123, 124], an effort by the InstantReality team to provide X3D with
a modern and portable material description. Figure 5.6 shows the same ma-
terials with three different rendering back-ends. Since the CommonSurface-
Shader material has an “emission texture” slot, it allows authors to specify
textured area lights.
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Figure 5.8: Cooperative path tracing with load balancing (localhost with two supporting machines).
The three images to the right show the workload of all servers.

Figure 5.9: Path tracing in a stereo setup (anaglyph with one client and two servers, one for each
eye).

The ray tracing back-ends also support the CommonVolumeShader [120], a
realistic material description for volumetric effects such as fog or plasma.
Figure 5.7 shows a simple single-scattering fog. This is an example of a
shading feature that is exposed via an extension of the application layer (in
this case a specialized ShaderChunk).

CommonSurfaceShader and CommonVolumeShader are reviewed in Appen-
dices 5.A and 5.B.

Figures 5.8 and 5.9 show the Optix path tracing back-end in cluster setups
(cooperative and stereo). It is important to note that the back-end is not
even aware it is running in a cluster or stereo setup, it just fills its view-
port.
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5.4.2 VGR Back-end

We have successfully integrated 3D Interactive’s Interviews3D platform [19]
into our system, a visibility guided renderer (VGR) for large datasets. Besides
the default renderer, the VGR mediator also supports a coverage renderer
(Sec. 5.4.3).

Optix is a relatively low-level API (often advertised as OpenGL for ray trac-
ing) and constitutes a framework on top of which users have to implement
their own rendering algorithms. In contrast to Optix, VGR is a closed pack-
age that gives users much less freedom. VGR has a very strictly defined
scene authoring interface centered on a scene database. This allows the li-
brary to play out its strengths when it comes to out-of-core rendering of huge
data. The scene adapter for this mediator converts the OpenSG scene into
such a database. Here we had to compromise and provide two options. The
first option converts the OpenSG scene and keeps it intact and in memory.
This is the default. This option is best for interactive use, since the appli-
cation layer is kept intact and everything that relies on the OpenSG scene
still works (navigation, picking, animation). It also works automatically in
clustered environments. The downside is that it hampers VGR’s out-of-core
abilities, because the whole OpenSG scene is kept in memory. Therefore, we
also provide the option to use a (possibly pre-converted) database that does
not need the OpenSG scene in memory. This is most useful for visualizing
very large static scenes without much interaction (the ChangeList mecha-
nism will only work on elements that are present in the OpenSG layer). For
some applications, however, this may not be a problem. An example is the
web-based visualization application described in the following section, where
all the interaction takes place on the client-side. If a pre-converted database
is to be used in a cluster setup, it currently has to be manually distributed
to all cluster nodes that need it.

Another problem we encountered is the fact that VGR relies even more on
static geometry than the ray tracers. In general, updates to geometry are
very slow, even changes to transforms. But geometry can be moved to special
“transform groups” that allow relatively efficient updates, as long as there
are few transform groups. We use the static flag again to classify geometry
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Figure 5.10: 10 powerplant models as anaglyph rendered with our VGR back-end (not instanced but
fully replicated, ca. 140 million triangles, left and right eye rendered on separate machines).

as strictly static. Each geometry flagged as animated is moved into its own
transform group until all available groups are used. Geometry not flagged
in any special way is treated as static, but is moved into a transform group
as soon as an update occurs. This way, we may have to live with a small
stutter on the first change, but subsequent changes are relatively painless,
unless the geometry is pushed out of its transform group slot by another
geometry.

With VGR mixed rendering became very important, because the VGR ren-
derer is quite limited when it comes to (3D-)GUI-elements. A lot of our ap-
plications need to display huge models efficiently, but also need the possibility
to combine them with dynamic annotations and markers. Here, the viewport
interface of the mediator and the thoughtful design of the VGR system help
a lot. Even though the system is closed (it even creates its own OpenGL con-
text internally), VGR’s output is basically a rendered frame buffer (color+z-
buffer), which can be combined with other frame buffers (rendered by other
viewports with other back-ends).

Figure 5.10 shows the VGR back-end in the same anaglyph setup as Fig-
ure 5.9. Again, the back-end knows nothing about stereo or the clustering
setup. Figure 5.11 shows a Boeing 777 CAD model rendered in real-time
with the VGR back-end.

149



5 System Architecture

Figure 5.11: Boeing 777 CAD model rendered with VGR back-end. The model consists of over 300
million polygons and is rendered at 30 Hz on a GeForce GTX 470.

5.4.3 Application: Large CAD-Models in Web Browser

In this subsection, we describe a concrete application built on our system ar-
chitecture and the mediators explained above. It is a distributed visualization
application for large models.

The front-end is simply a WebGL-enabled web browser, rendering a HTML5-
page with X3DOM [10]. However, current web-technology is not capable
of handling large models efficiently. (“Large models” here means large for
web applications, in the order of tens or hundreds of millions of polygons.)
Therefore, we use a novel out-of-core approach to minimize the workload
in the browser. The key idea is to use an asynchronous, remote culling
service. Figure 5.12 shows the basic data flow. The browser (actually the
X3DOM runtime) sends its current view frustum to the culling service, which
determines the objects with the largest screen coverage and sends back a list of
IDs for these objects. The browser then only fetches these “most important”
objects from the asset server. This keeps memory consumption and rendering
time manageable on weak devices, which would otherwise not be able to
render such complex models. On the other hand, the approach consumes
less bandwidth between culling-service and browser than pure server-side
rendering with video streaming. This allows us to maintain high quality
and interactivity even in weaker networks, where streaming does not work
well.

The culling service is an InstantReality instance running a special rendering
back-end (CoverageRenderer). This back-end does not render a traditional
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Mesh Data

Mesh + Scene Data
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Frustum

Figure 5.12: Schematic data flow between browser, culling server, and asset
server.

image, but calculates which objects have which coverage in the final render-
ing (including occlusion). From this information the sorted list of object-IDs
is generated, which allows the browser to prioritize important objects. We
have implemented the culling service as an Optix-based back-end (as a ray
tracer) and as an VGR-based back-end (as a rasterizer). Both cases use a
minimalistic scene adapter that basically only converts geometry and estab-
lishes a mapping of IDs to objects. The geometry conversion is shared with
the other renderers in the Optix/VGR mediator. Material information (apart
from transparency) is not necessary.

Figure 5.13 shows both implementations, the Optix-based CoverageRenderer
and the one based on VGR. In both cases the navigation is smooth in the
browser.1 We believe this is a show case that demonstrates nicely how the
freedom obtained by our approach for flexible rendering back-ends can be
used to build innovative distributed applications.

1http://www.youtube.com/watch?v=zIHV3yC3IYo
http://www.youtube.com/watch?v=h0SUWqJfQsE
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Figure 5.13: The browser application with Optix back-end (left) and VGR back-end (right). The
culling service identifies large objects (in terms of screen coverage). The web application only loads
and renders the most important objects. The full Powerplant model has 14 million triangles, the web-
application only renders 1.8. Note that the left image is only a debug visualization, the culling service
does not have to generate an image. The full Boeing has over 300 million polygons, the web application
only renders 4.2 million.

5.5 Discussion

Apart from the points discussed in the case studies, we have made the fol-
lowing observations:

Scene adapter. Converting a stripped-down OpenSG scene into the back-
ends preferred representation works very well in general. The mediator
design allows us to easily extend OpenSG’s well-designed and practice-
proven support for incremental updates, multithreading, and clustering
to back-ends that never were designed to work with OpenSG or in
cluster setups. The fact that a scene adapter can (and usually will)
change the structure of the scene graph can make it hard to track which
changes imply updates to which representatives, but that is the price
one has to pay if one wants to feed the back-end with an optimized
representation.

Conversion speed. Another issue related to the scene adapter is that the
conversion of the scene can be slow if complex operations are necessary
(e.g. changing a texture format or converting surface patches into tri-
angles). Performing parts of the conversion only once and caching the
result can alleviate this problem. The cached acceleration structures
and pre-converted databases described in Section 5.4 are examples of
this approach.
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Viewport interface. The fact that a rendering back-end only shows a spe-
cialized viewport to OpenSG and the application layer is a mixed bless-
ing. On the one hand, it is a very slim interface that allows us to plug
in the back-ends at the most important places. On the other hand,
it can be limiting for advanced use cases, because it fails to separate
three concerns: what to render (scene, camera), how to render it (the
back-end), and where to render it to (render target). For example,
a viewport that streams to a website cannot be freely combined with
each back-end, but would have to be implemented multiple times. Of
course, there can still be code-reuse, but a design with clear separation
of concerns, as sketched in Section 5.6, would be preferable.

Memory consumption. Building the mediators on OpenSG scenes seems
like a waste of memory at first sight. In the worst case, the scene
can be represented three times: in the application layer, the OpenSG
layer, and in the mediator or back-end. While this can be a problem
sometimes (e.g. in the VGR-case), most of the time memory consump-
tion is not excessive and acceptable. The reason for this is that the
scene adapter usually does not duplicate large data (e.g. vertex buffers
and images) in main-memory, but translates them directly into the
back-ends representation (e.g. CUDA-buffers and OpenGL textures) –
an operation that has to occur anyway. Also, the application layer can
usually directly use OpenSG data structures, which removes the dupli-
cation between application layer and OpenSG layer. This leaves only
the OpenSG scene as the central scene representation. Even this copy
can be eliminated by feeding the mediator directly from the applica-
tion layer, an option we provide for the VGR back-end. But this should
be the exception, because it circumvents our original design and loses
two of its strong points: interactive, thread-safe updates and clustering
support provided by OpenSG’s ChangeList mechanism.
Another concern with regard to memory consumption are the maps
that link objects in the OpenSG scene to their representatives in the
back-end scene. In our tests, these never grew beyond a few kilobytes,
even for large scenes, and remained negligible compared to geometry
and texture data.
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5.6 Outlook

There is a project underway to build a general framework for visual comput-
ing [105], which will be partly based on an extended version of the approach
described in this chapter. The most important extensions are:

General clustering. The new system will be based on OpenSG 2.0 (our cur-
rent implementation uses 1.8). In the future, we want to use OpenSG
more as general data management layer, not only as a scene graph.
The goal is to be able to build more general clustered applications.
Currently, the whole scene graph (and a few associated things like
viewports) is simply mirrored on each cluster node in a client-server
cluster [130]. Moving away from the rendering-centric scene graph and
ClusterWindow concepts would allow a directed distribution of arbi-
trary data in a cluster with more specialized cluster nodes while keeping
the benefits of OpenSG’s sophisticated synchronization mechanism.

Not only rendering. OpenSG as a general data management layer would
also make it easier to extend our mediator approach to semantics other
than rendering. For example an application scene (interaction), a phy-
sics scene (simulation), and a graphics scene (rendering) could coexist
and could be kept in sync almost automatically. And these components
could even be moved on different cluster nodes without major changes
to the application.

Decouple viewport from back-end. To gain more flexibility, we plan to re-
move the tight coupling of a mediator with its specialized viewport.
We want to use OpenSG 2.0’s Stage concept [141] to plug in mediator
layers (at least for rendering). There will be only one specialized view-
port to which different stages (i.e. different back-ends) can be attached.
The viewport defines what is to be rendered, the stage how it should
be rendered.
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5.7 Conclusions

We have described a pragmatic, practice-proven approach to using exchange-
able rendering back-ends with a common application layer in heterogeneous
computing environments. The approach is based on a mediator layer that can
be plugged into the OpenSG infrastructure. The design allows the mediator
to easily use OpenSG’s multithreading and clustering capabilities while re-
taining the strengths of the specialized back-ends. It also allows the mediator
to sync incremental changes very elegantly and efficiently. The approach is
very flexible and supports a wide range of renderers. The mediator layer has
to comply with only two basic terms: it has to expose the back-end’s func-
tionality through a specialized viewport and it has to be able to understand
a basic OpenSG scene. Other than that, mediators are free in their decisions
what to support, how to map scene elements, and – most importantly – what
to ignore. We have demonstrated results and problems with two case studies
and a concrete application.

A weakness of the approach is the high memory consumption in some cases.
Another issue we want to address with future work is support for a more
general (less rendering-centric) clustering approach.

Appendix 5.A CommonSurfaceShader

In this appendix, we briefly sketch the CommonSurfaceShader node, our
proposal for a portable, physically-based material description for X3D. This
is a condensed version of two Web3D papers [123, 124].

5.A.1 Introduction

CommonSurfaceShader is a declarative surface shader for the X3D standard
that allows for a compact, expressive, and implementation-independent speci-
fication of surface appearance for physically-based rendering. X3D’s Material

155



5 System Architecture

node is portable, but its feature set has become inadequate over the last years.
Explicit shader programs, on the other hand, offer the expressive power to
specify advanced shading techniques, but are highly implementation-depen-
dent. The motivation for our proposal is to bridge the gap between these
two worlds: to provide X3D with renderer-independent support for mod-
ern materials and to increase interoperability with digital content creation
tools.

At the core of our proposal is the CommonSurfaceShader node. This node
provides no explicit shader code, only a slim declarative interface consisting
of a set of parameters with clearly defined semantics. Implementation details
are completely hidden and portability is maximized. It supports diffuse and
glossy surface reflection, bump mapping, and perfect specular reflection and
refraction. This feature set can capture the appearance of many common
materials accurately and is easily mappable to the material descriptions of
other software packages and file formats.

Since the original publication in 2010 [123], the CommonSurfaceShader node
has been in use in InstantReality [43], where it serves as an up-to-date sup-
plement for the Material node. In addition, it is used in the WebGL-based
X3DOM framework [9, 10]. A third implementation for the generic scene
graph library OpenSG [106] is currently in the works.

5.A.2 SurfaceShader Node

The goal of our proposal is to bridge the gap between the portability of the
Material node and the expressiveness that the Programmable Shaders compo-
nent offers. We do this by introducing a new class of declarative shader nodes
that do not use explicit and imperative shader programs, but a declarative
interface consisting of fields with defined semantics. An implementation is
then free to implement these semantics in an appropriate way. In order to
group all such declarative shader nodes in X3D’s inheritance hierarchy, we
propose the SurfaceShader node as a common base.
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5.A CommonSurfaceShader

SurfaceShader : X3DShaderNode {
[...]

}

5.A.3 CommonSurfaceShader Node

The fields of the CommonSurfaceShader node can be grouped into three log-
ical components, each of which is designed to capture a different aspect of
surface appearance. The core component captures diffuse and glossy reflec-
tion, the bump component can perturb shading normals to produce a richer
appearance, and the perfect specular component models perfect specular re-
flection and refraction. Below is an overview of the fields of the Common-
SurfaceShader node.

CommonSurfaceShader : SurfaceShader {
[...]

# core component
SFNode [in,out] emissionTexture NULL
SFNode [in,out] ambientTexture NULL
SFNode [in,out] diffuseTexture NULL
SFNode [in,out] specularTexture NULL
SFNode [in,out] shininessTexture NULL
SFNode [in,out] alphaTexture NULL
SFVec3f [in,out] emissionFactor 0.0 0.0 0.0
SFVec3f [in,out] ambientFactor 0.2 0.2 0.2
SFVec3f [in,out] diffuseFactor 0.8 0.8 0.8
SFVec3f [in,out] specularFactor 0.0 0.0 0.0
SFVec2f [in,out] shininessFactor 0.0 0.0
SFFloat [in,out] alphaFactor 1
SFBool [in,out] invertAlphaTexture FALSE

# bump mapping component
SFNode [in,out] normalTexture NULL
SFString [in,out] normalFormat "UNORM"
SFString [in,out] normalSpace "TANGENT"
SFVec3f [in,out] normalScale 2 2 2
SFVec3f [in,out] normalBias -1 -1 -1
SFNode [in,out] heightTexture NULL
SFFloat [in,out] heightScale 1
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Figure 5.14: Some examples of CommonSurfaceShaders.

# perfect specular component
SFNode [in,out] reflectionTexture NULL
SFNode [in,out] transmissionTexture NULL
SFVec3f [in,out] reflectionFactor 0 0 0
SFVec3f [in,out] transmissionFactor 0 0 0
SFVec3f [in,out] relativeIndexOfRefraction 1 1 1
SFFloat [in,out] fresnelBlend 1.0

# extensions
SFInt32 [in,out] tangentTextureCoordinatesId -1
SFInt32 [in,out] binormalTextureCoordinatesId -1
SFNode [in,out] environmentTexture NULL
SFVec3f [in,out] environmentFactor 0 0 0

}

Figure 5.14 shows some examples of CommonSurfaceShaders and illustrates
that a wide range of materials can be captured by combinations of the core,
bump, and specular components. Figure 5.15 shows a photorealistic rendering
of a car. All materials in these two figures were specified with CommonSur-
faceShader. For a more thorough evaluation and more details on the nodes,
see the original proposals [123, 124].
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5.B CommonVolumeShader

Figure 5.15: Path traced image of a car under environment map lighting. All materials were specified
using CommonSurfaceShader.

Appendix 5.B CommonVolumeShader

This appendix is a condensed version of the CommonVolumeShader pro-
posal [120], which was presented at Web3D 2011.

5.B.1 Introduction

Rendering volumetric phenomena with believable appearance can add tremen-
dous realism to virtual scenes. The CommonVolumeShader node is an exten-
sion of the X3D standard that has been specifically designed for physically-
based rendering of participating media. It is inspired by the CommonSur-
faceShader node and provides a declarative (i.e. highly portable) description
of volumetric optical properties for physically-based rendering. Surprisingly
few parameters are needed to accurately describe many volumetric phenom-
ena, resulting in a compact but still widely applicable node. As part of an
Appearance node, a CommonVolumeShader can be attached to arbitrary ge-
ometry and can be used in combination with other Appearance properties,
for example a CommonSurfaceShader node that describes surface appear-
ance.
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5.B.2 VolumeShader Node

Analogously to the CommonSurfaceShader, we have decided to group all
volume shaders under a common base node, the VolumeShader node. This
design allows us to combine a VolumeShader with a SurfaceShader in a sin-
gle Appearance instance. So, an implementation may shade the surface of
an object with a CommonSurfaceShader and the interior with a Common-
VolumeShader, or it may ignore one (or even both) if it does not support the
nodes.

VolumeShader : X3DShaderNode {
[...]

}

Refraction and reflection at boundaries are the responsibility of the corre-
sponding SurfaceShader nodes and are independent of the VolumeShader.

5.B.3 CommonVolumeShader Node

The CommonVolumeShader contains the following fields:

CommonVolumeShader : VolumeShader {
[...]
SFVec3f [in,out] emissionFactor 0.0 0.0 0.0
SFNode [in,out] emissionTexture NULL
SFVec3f [in,out] absorptionFactor 0.0 0.0 0.0
SFNode [in,out] absorptionTexture NULL
SFVec3f [in,out] scatteringFactor 0.0 0.0 0.0
SFNode [in,out] scatteringTexture NULL

SFNode [in,out] phaseFunction NULL
}

The semantics of most parameters should be intuitively clear. The phase-
Function field specifies the phase function to be used. If it is NULL, the
isotropic phase function should be used.
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5.B CommonVolumeShader

Figure 5.16: A CommonVolumeShader node can be used to specify volumetric light transport for back-
ends that support it (here the Whitted-style ray tracer). From left to right: emission only, absorption
only, (single) scattering only, reduced scattering viewed from behind.

Figure 5.17: Strongly scattering media in combination with a comparatively strong surface reflectance
result in a characteristic look that – without CommonVolumeShader – can only be achieved by explicit
(and unportable) subsurface scattering shaders in X3D.

Figure 5.16 shows the principal components of CommonVolumeShader: emis-
sion, absorption, and scattering. Figure 5.17 shows some examples where a
CommonVolumeShader was combined with a CommonSurfaceShader to sim-
ulate subsurface scattering. For more details on the nodes and a thorough
evaluation see the original proposal [120].
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6 Conclusions and Future Work

This chapter concludes the dissertation by summarizing contributions
and findings. It also gives some directions for future work.

In this dissertation, we have addressed two problems in the emerging field of
interactive stochastic ray tracing. The first problem is to provide interactive,
low-noise previews of high-quality global illumination renderings. To this
end, we have developed two filtering techniques to reduce noise in interactive
progressive rendering. The second problem is to extent interactive systems
with specialized rendering back-ends, including (but not limited to) interac-
tive ray tracers. For that purpose, we have presented a system architecture
that enables the use of flexibly exchangeable rendering back-ends under a
common application layer with focus on distributed and multithreaded sys-
tems.

In the following section, we summarize the results in more detail. After that,
we briefly discuss some directions for future work.

6.1 Summary

6.1.1 Filtering Pixel Radiance

In Chapter 3, we have presented a noise reduction method based on fil-
tering image pixels. The basic idea is to reduce the variance to a user-
defined threshold by biasing the estimator. The two key contributions are an
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adapted version of the cross bilateral filter and a per-pixel blending opera-
tor.

Variants of the cross bilateral filter have been used in rendering before, but the
specific range buffer used in this dissertation is novel. We have shown that the
resulting filter is more robust than similar approaches in difficult scenes with
perfect specular surfaces and high-frequency textures.

Rather than trying to completely remove noise, our primary goal was to
attenuate noise to a user-defined level for reliable previews. This is where
the perceptually-based blending operator comes into play. It can leave a con-
trolled amount of high-frequency noise in the image, which is often preferable
to an overfiltered image. The blending operator also guarantees the consis-
tency of the algorithm in a progressive setup. Overall, the method achieves a
strong noise reduction with very little blurring. We have demonstrated that
with various test scenes.

We have also presented some optimizations for the original method. The first
notable contribution here is the antialiasing recovery step, which improves
the performance on antialiased edges. A second contribution is the heuristic
for adaptive bandwidth selection of the bilateral filter, which can improve
runtime and reduce blurring. Finally, we have described a simple method
to attenuate spike noise, which can remove objectionable “fireflies” from the
rendered images.

However, some limitations remain. Blurring across unrecognized edges can
still be a problem, and for optimal results too many parameters have to be
tweaked manually.

6.1.2 Filtering Incident Radiance

An inherent weakness of the bilateral filter is that some blurring across details
in texture and geometry is inevitable, even with high-quality approaches such
as the one presented in Chapter 3. This led to the development of radiance
filtering, which we have presented in Chapter 4.
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6.1 Summary

Instead of filtering pixel values or irradiance, radiance filtering filters the
incident radiance at surface points. We have shown that this approach sig-
nificantly reduces noise without blurring details in geometry or textures. It
is also more general than irradiance filtering in that it can be applied to
non-diffuse surfaces. In addition, radiance filtering handles antialiased edges
and distribution effects such as depth of field better than image filtering. In
a theoretical analysis, we have shown that the algorithm is consistent and
derived asymptotic boundaries for bias and variance.

Pure radiance filtering has lower efficiency on reflecting/refracting surfaces.
We have shown how to alleviate this with a hybrid filter that combines tech-
niques from Chapters 3 and 4. As an additional optimization, the blending
operator from Chapter 3 can be adapted to radiance filtering.

The biggest limitation of radiance filtering is that it only works well when
applied to smooth illumination, since it essentially blurs the radiance sig-
nal. We have shown how to mitigate this problem with bilateral kernels,
but it remains an issue. Especially in the early stages of rendering, when
the kernels are large. The intended target for radiance filtering is indirect
illumination, which will usually be smooth enough. However, if there are
sharp features in the indirect illumination, such as caustics, they will be
blurred.

At this point, it makes sense to compare the two filtering approaches pre-
sented here against each other. In short, pixel filtering (Ch. 3) is faster and
performs better on reflecting/refracting surfaces. Radiance filtering (Ch. 4)
is more robust and produces higher quality on all other surfaces. We think
pixel filtering has more potential toward real-time rendering, but for high-
quality previews at interactive rates we believe sample-based approaches such
as radiance filtering are better suited.

6.1.3 System Architecture

In Chapter 5, we have described a novel approach to using multiple render-
ing back-ends with the same application layer in distributed systems. The
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primary intent was to extend OpenSG, but the ideas should be applicable to
similar systems.

Two principles guided the design. First, each back-end should be allowed
to manage its own specialized scene representation, to ensure near-optimal
rendering performance. Second, the design should work in a distributed,
multithreaded system, without burdening the application layer or the back-
ends with details of the cluster environment.

Key to the approach is a mediator layer that can be plugged into the OpenSG
infrastructure. We have demonstrated results and problems with two case
studies and an example application. In particular, we have shown how incre-
mental changes can be handled efficiently by a scene adapter that snoops on
ChangeLists, even in multithreaded cluster environments. Another strength
of the approach is that it can support a wide range of renderers, owing mostly
to the to the generic scene/viewport interface. The downside of this generic
design is that the scene adapter can become bloated if many different nodes
and events have to be handled with a complex scene-to-scene mapping. Mem-
ory consumption can be an issue, too.

6.2 Future Work

The focus of this dissertation is on low-noise previews and our primary ob-
jective was to reduce variance in the estimators. However, as stated in Sec-
tion 2.3.4 (Eq. 2.24), the expected error is composed of variance and bias.
Incorporating an estimate of bias into the algorithms would allow users to im-
pose a limit on the expected overall error, not just on the variance. This could
improve the performance with features that currently suffer from high bias
(e.g. caustics). On the other hand, it is important to notice that bias is not
completely ignored in this dissertation. The test cases clearly show a reduced
overall error, which indicates that (in general) the variance reduction is not
eaten up by bias. We also have discussed the types of bias that occur with our
algorithms and their manifestations in the image. For the radiance filtering
algorithm, we have even derived an asymptotic bound.
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6.2 Future Work

Another direction for future work is to adapt the filters presented here for
real-time rendering. Astonishing progress has been made in this field since
we started working on this dissertation and it would be interesting to see if
some of the concepts presented here can be applied.

Filtering approaches are typically only applied to indirect (or smooth direct)
illumination. Of course, direct illumination can suffer from high variance as
well. A few specialized approaches exist for direct illumination, but it would
be interesting to evaluate the potential of more general filtering methods for
direct illumination.

For the software engineering part of this dissertation (Ch. 5), the most
pressing matter is to remove the restriction to client-server clusters. In
fact, the first steps toward this are currently undertaken in the VCoRE
project [105].
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