
Dipartimento di Informatica e
Scienze dell’Informazione

•
••
•• ••

From irregular meshes to structured models

by

Daniele Panozzo

Theses Series DISI-TH-2012-03

DISI, Università di Genova

v. Dodecaneso 35, 16146 Genova, Italy http://www.disi.unige.it/

http://www.eg.org
http://diglib.eg.org

Università degli Studi di Genova

Dipartimento di Informatica e

Scienze dell’Informazione

Dottorato di Ricerca in Informatica

Ph.D. Thesis in Computer Science

From irregular meshes to structured models

by

Daniele Panozzo

February, 2012

Dottorato di Ricerca in Informatica
Dipartimento di Informatica e Scienze dell’Informazione

Università degli Studi di Genova

DISI, Univ. di Genova
via Dodecaneso 35

I-16146 Genova, Italy
http://www.disi.unige.it/

Ph.D. Thesis in Computer Science (S.S.D. INF/01)

Submitted by Daniele Panozzo
DISI, Univ. di Genova

panozzo@disi.unige.it

Date of submission: February 2012

Title: From irregular meshes to structured models

Advisor: Enrico Puppo
Univ. of Genova

puppo@disi.unige.it

Ext. Reviewers:
Tamy Boubekeur
Telecom Paristech

tamy.boubekeur@telecom-paristech.fr

Olga Sorkine
ETH Zurich

sorkine@inf.ethz.ch

Abstract
Surface manipulation and representation is becoming increasingly important, with appli-
cations ranging from special effects for films and video-games to physical simulation on
the hulls of airplanes. Much research has been done to understand surfaces and to provide
practical and theoretical tools suitable for acquiring, designing, modeling and rendering
them.

This thesis contributes to fill the gap that exists between acquisition of surfaces from
3D scanners and their use in modeling. The problem has been studied from different
perspectives, and our contributions span the entire modeling pipeline, from decimation
and parametrization to interactive modeling. First and foremost, we propose an automatic
approach that converts a surface represented as a triangle mesh to a base domain for the
definition of a higher order surface. This allows us to have the advantages of a structured
base domain, without the need of defining it by hand. The algorithm performs a series
of local operations on the provided triangulation to transform it into a coarse quad mesh,
minimizing in a greedy way a functional that keeps the newly computed smooth surface
as close as possible to the original triangle mesh.

The same problem is also approached from a different angle, by proposing an algorithm
that computes a global parametrization of the surface, using an automatically costructed
abstract mesh as domain. The problems are related because whenever a global parametriza-
tion of a surface is known, it is possible to produce a quad mesh by imposing a regular grid
over the parametrization domain, which is usually a plane or a collection of planes, and
mapping it to the surface using the parametrization itself. It is then possible to use surface
fitting methods to convert the quad mesh to a base domain for a high-order surface. Our
contribution is an algorithm that is able to start from a cross-field defined on a surface,
simplify its topology and then use it to compute a global parametrization that is especially
suitable for re-meshing purposes. It is also possible to use it for other usual applications
of a parametrization, like texturing or non-photorealistic rendering.

Since most objects in the real-world are symmetric, we studied robust methods to extract
the symmetry map from acquired models. For extrinsic symmetries, we propose a simple
and fully automatic method based on invariants usually used for image analysis. For in-
trinsic symmetries, we introduce a novel topological definition of symmetry and a novel
algorithm that starting from a few correspondences is able to extract a high-quality sym-
metry map for the entire shape. The extracted symmetric map is then used to produce
symmetric remeshing of existing models, as well as symmetric non-photorealistic rendering
and parametrization.

We also introduce an innovative parametrization algorithm for the special case of mapping
a rectangular subset of the plane to another subset of different size. This case is of special
interest for the task of interactive image retargeting, where the aspect ratio of an image is
changed without distorting the content in interesting areas. Our algorithm searches for the
parametrization function in the restricted subset of axis-aligned deformations, by minimiz-
ing a convex functional. This allows us to achieve robustness and real-time performances
even on mobile devices with low processing power. A user-study with 305 participants
shows that our method produces high-quality results.

Starting from a structured model, we consider the problem of refining it in an adaptive
way. We present a way to encode an arbitrary subdivision hierarchy in an implicit way,
requiring an amount of additional space that is negligible with respect to the size of the
mesh. The core idea is general, and we present two different instantiations, one for triangle
and one for quad meshes. In both cases, we discuss how they can be implemented on top of
well-known data structures and we introduce the concept of topological angles, that allows
to efficiently navigate in the implicit hierarchy. Our adaptive framework can be used to
define adaptive subdivision surfaces and for generating semi-regular remeshing of a given
surface.

Finally, we extend common geometric modeling algorithms to prevent intersections. We
show that it is possible to extend them to produce interesting deformations, which depend
on the modeling algorithm used, to avoid self-intersections during interactive modeling.
Self-intersections are a common problem, since they usually represent unrealistic scenarios
and if a mesh contains intersections it is hard to run any kind of physical simulation on
it. It is thus impossible to realistically model clothes or hair on self-intersecting meshes,
and the manual cleaning of these models is time-consuming and error-prone. Our proposal
allows us to produce models with the guarantee that self-intersections cannot appear and
can be easily integrated into existing modeling software systems.

2

To my family

Do not worry about your difficulties in Mathematics. I can assure you mine
are still greater.

(Albert Einstein)

Acknowledgements
I want to thank my advisor for his guidance and for all the interesting discussions. He
always supported me on all my projects and ideas, and taught me how to do research and
how to have fun while doing it. Thanks to all the people I met during my visit at the
Courant Institute of Mathematical Science in New York, especially Olga Sorkine, Denis
Zorin, David Harmon, Alec Jacobson, Ofir Weber, Ashish Myles, Qingnan Zhou and Denis
Kovacs. This visit has been a very important step both in my life and in my career and
it has been a success thanks to them. I also want to thank my friends and colleagues
Paolo Gasti, Danilo Roascio, Maddalena Strumia, Yaron Lipman, Olga Diamanti, Chiara
Olivieri, Luigi Rocca, Marco Tarini, Nico Pietroni and Paolo Cignoni. Last but not least,
I thank my family for their patience and support.

Table of Contents

Chapter 1 Introduction 4
1.1 Publications . 7

Chapter 2 Reverse Catmull-Clark Subdivision 9
2.1 Reverse Subdivision . 9

2.1.1 Adaptivity vs regularity . 10
2.1.2 Objectives . 11
2.1.3 Contribution . 12

2.2 Related work . 13
2.3 Simplification of dense quadrilateral meshes 18

2.3.1 Overview of the method . 19
2.3.2 Conceptual algorithm . 20
2.3.3 Extending the method . 27
2.3.4 Implementation details . 29
2.3.5 Results and discussion . 33

2.4 Automatic Construction of Catmull-Clark Subdivision Surfaces 34
2.4.1 Algorithm . 35
2.4.2 Experimental results . 42

2.5 Concluding remarks . 46

Chapter 3 Mesh Parametrization 51
3.1 Related work . 53
3.2 Simple Quad Domains for Field Aligned Mesh Parametrization 55

3.2.1 Cross-field topology simplification 58
3.2.2 Implementation on semi-regular quad meshes 65
3.2.3 Parametrizations over abstract quad-mesh domain 66
3.2.4 Results . 70

3.3 Symmetric N-symmetry Fields . 74
3.3.1 Related work on symmetry detection 76
3.3.2 Symmetric fields . 78

1

3.3.3 Field symmetrization . 84
3.3.4 Symmetry detection algorithms . 89
3.3.5 Results . 96

3.4 Axis-aligned, planar parametrization for content-aware image retargeting . 103
3.4.1 Related work on image retargeting 105
3.4.2 Algorithm . 107
3.4.3 Laplacian regularization . 111
3.4.4 Cubic B-spline interpolation . 111
3.4.5 Results . 112

3.5 Concluding remarks . 117

Chapter 4 Implicit Hierarchical Meshes 120
4.1 Related work . 125
4.2 Adaptive quad subdivision . 128

4.2.1 Topological operators . 128
4.2.2 Transition space and implicit hierarchy 133
4.2.3 Topological angles and lengths . 134
4.2.4 Alignment with surface flows . 136
4.2.5 Implementations details . 138

4.3 Adaptive triangular subdivision . 138
4.3.1 Local subdivision operators . 139
4.3.2 Reverse subdivision operators . 141
4.3.3 Neutral operator . 142
4.3.4 The transition space of RGB triangulations 142
4.3.5 Implementation details . 149

4.4 Adaptive Catmull-Clark subdivision . 150
4.4.1 Catmull-Clark subdivision . 151
4.4.2 Computing control points . 152
4.4.3 Results . 157

4.5 Semi-regular remeshing via adaptive subdivision 158
4.5.1 Generation and fitting of a base mesh 158
4.5.2 Editing operations and tangent space smoothing 159
4.5.3 Error-driven remeshing . 160

4.6 Concluding remarks . 161

Chapter 5 Interference-Aware Geometric Modeling 163
5.1 Related work . 165
5.2 Space-time interference volumes . 169

5.2.1 Defining interference . 169
5.2.2 Resolving interference . 171
5.2.3 Multiple STIVs . 173

2

5.3 Geometric Deformation Algorithms . 174
5.3.1 Subdivision Surfaces . 174
5.3.2 Laplacian Modeling . 175
5.3.3 Free-Form Deformation . 176

5.4 Computing interference volumes . 177
5.4.1 Detecting interference . 178

5.5 Editing . 181
5.5.1 Modeling subspace . 181
5.5.2 Controlling the behavior of response 182

5.6 Results . 185
5.7 Concluding remarks . 190

Chapter 6 Concluding remarks 192
6.1 Future work . 194

6.1.1 Interactive quad mesh painting . 194
6.1.2 Interactive cross-parametrization 195
6.1.3 Interactive volumetric parametrization and hex-meshing 196
6.1.4 Interactive surface reconstruction 196
6.1.5 Interactive form finding for self-supporting surfaces 197
6.1.6 Hyperbolic tessellation for symmetry detection in high genus surfaces 197

Appendix A Tri-to-Quad mesh conversion 198

Appendix B Image Retargeting User Study 201

Appendix C Discrete Laplacian Operator 205

Appendix D STIV and subspace gradients 207

Bibliography 209

3

Chapter 1

Introduction

Surface manipulation and representation is becoming increasingly important, with appli-
cations ranging from special effects for films and video-games to physical simulation on
the hulls of air and space-crafts. Much research has been done to understand surfaces and
to provide practical and theoretical tools suitable for acquiring, designing, modeling and
rendering them. This thesis contributes to fill the gap that exists between acquisition of
surfaces from 3d scanners and their use in modeling.

A surface, that for the subsequent discussion has to be considered a two-dimensional man-
ifold embedded in R3, is usually represented using two different families of representations.
It can be represented as a large collection of simple objects, or as a small collection of
high-order surface patches. In the former case, the surface is most often represented by a
large collection of triangles, every triangle locally approximating the surface with a plane.
In the latter, every part of the surface is represented using higher-order approximations;
since the high-order patches are more expressive than planes, the same surface can be
encoded with the same “approximation quality” with less patches than in the former case.

Triangular meshes are commonly produced by a mesh scanner and they are the standard
de facto for interactive rendering. Their advantages are their simplicity and lack of any
global structure. Every triangle directly represents a part of the surface approximated by
a plane. They are a good linear discretization of continuous surfaces, and the continuous
differential operators can be discretized and defined on them [BKP+10]. Unfortunately,
they are not always suitable for modeling purposes, since they have a lot of degrees of
freedom and modeling a simple deformation like the bending of an arm involves moving
hundreds or thousands of vertices at the same time.

Approximating surfaces with high-order patches [Far88], provides advantages in term of
quality and in ease and speed of control during modeling. The surface is represented by
a coarse control mesh that is used as domain for defining parametric surfaces that form

4

the final shape when stitched together. In this representation, the base domain is usually
a mesh with quadrilateral faces, i.e. every face is a quadrilateral defined by the positions
of four 3D points, since this domain is better suited for the definition of spline surfaces.
The base domains are usually designed from scratch using geometric modeling systems,
and their definition usually requires long editing sessions.

In Chapter 2, an automatic approach that converts a surface — represented as a triangle
mesh — into a base domain for the definition of a high-order surface representation is
presented. This allows to have the advantages of a structured base domain, without the
need of defining it by hand. Starting from a mesh of a real 3D object, we compute a
coarse base domain whose limit surface approximates the real object arbitrarily well. The
algorithm performs a series of local operations on the provided triangulation to transform
it into a coarse quad mesh, minimizing in a greedy way a functional that keeps the newly
computed smooth surface as close as possible to the original triangle mesh. The local
operations are divided in two groups: simplification operations, that reduce the complexity,
and optimization operators, that increase the quality of the quad mesh. The application of
these two operators is guided by two automatically computed scalar fields called Fitmaps,
which guide the simplification and provide a stopping criterion that depends on a single
parameter. The first part of the algorithm can also be used to build simple quad meshes,
where every face represents a bi-linear patch. We show results computed on scanned and
synthetic models.

In Chapter 3, we approach the same problem from a different perspective. We present
two novel global parametrization algorithms for surfaces. Global parametrization is clearly
related with the problem tackled in Chapter 2: whenever a global parametrization of a
surface is known, it is possible to produce a quad mesh by imposing a regular grid over
the parametrization domain, which is usually a subset of the plane, and mapping it to the
surface using the parametrization itself. It is then possible to use surface fitting methods
to convert the quad mesh into a base domain for an high-order surface. Our contribution
is an algorithm that is able to start from a cross-field defined on a surface, simplify its
topology and then use it to compute a global parametrization that is especially suitable
for re-meshing purposes. An interesting property of our parametrization is that instead of
continuously mapping a subset of R2 onto the surface, it uses an abstract cell complex as
its domain. Advantages and disadvantages of this approach are thoroughly discussed, and
results are shown.

The second parametrization algorithm aims at producing symmetric fields and meshes that
adhere with the symmetry already present in shapes. This is a very natural requirement,
and in fact most of the models manually designed by artists exhibit clear symmetries that
are exploited by them to speedup the modeling and to increase the quality of the results.
The detection of symmetries on shapes has been studied extensively in the last years, but
it has never been applied to the generation of symmetric fields on surfaces. All existing

5

intrinsic symmetry detection methods rely on the assumption that the symmetry map
should be an isometry on the surface. We show that this definition is not suitable for most
real shapes, and we propose a new topological definition that is more general. We present an
efficient algorithm that is able to extract the intrinsic symmetry map starting from a sparse
set of landmarks. For the extrinsic case, we extend the concept of symmetric invariants
usually used in image processing to 3D meshes, and we present a trivial algorithm that is
able to find bilateral extrinsic symmetries without user input and without parameters. We
use the symmetry map to produce symmetric parametrizations, quadrangulations and non-
photorealistic renderings on a wide array of models. The method fixes as hard constraints
in a global optimization all the parts of the surface that are symmetric with themselves,
i.e. the part of the surface that lies on the stationary set of the symmetry map. It then
uses the symmetry map to average the directions of an arbitrary cross-field defined on the
surface, producing a new cross-field that respects the symmetry and that is then used to
compute the global parametrization. The method is general and can be used to symmetrize
any scalar, vector, line, cross or tensor field defined on a surface.

We also present an innovative parametrization algorithm for the very special case of
parametrization from a rectangular subset of R2 to another. This case is of special in-
terest for the task of interactive image retargeting, where the aspect ratio of an image is
changed without distorting the content in interesting areas. Our algorithm searches for
a parametrization function in the restricted subset of axis-aligned deformations, by min-
imizing a convex functional. Our method is fast and robust and we provide comparisons
with 8 methods in the state of the art. A user study with 305 participants shows that
our method produces high-quality results. The efficiency of our method allows real-time
retargeting of images even on mobile devices, thus opening a lot of possible applications in
mobile computing where retargeting is particularly relevant since the devices screens are
usually small.

In Chapter 4, we assume to have obtained a coarse base domain (either made of triangles
or quads) and we consider the problem of refining it in an adaptive way. We present a
way to encode an arbitrary subdivision hierarchy in an implicit way, requiring an amount
of additional space that is negligible with respect to the size of the mesh. The core idea
is general, and we present two different instantiations, one for triangle and one for quad
meshes. In both cases, we discuss how they can be implemented on top of well-known
data structures and we introduce topological angles, that allow us to efficiently navigate
in the implicit hierarchy. We present benchmarks of the implementation for both of them,
showing that the method is efficient and robust. Our adaptive framework can be used for
adaptive subdivision surfaces, when proper subdivision rules are used, or for producing an
adaptive re-meshing of a surface.

Finally, in Chapter 5, we extend common geometric modeling algorithms to handle inter-
sections. We show that it is possible to extend them to produce interesting deformations,

6

that depend on the modeling algorithm used, to avoid self-intersections during modeling.
Self-intersections are a common problem during modeling, since they usually represent
unrealistic scenarios and it is usually impossible to run any kind of physical simulation on
them. It is thus impossible to realistically model cloth or hairs on meshes that contains
intersections, and this usually requires manual cleaning of the overlapping parts. Our pro-
posal allows us to produce models with the guarantee that self-intersections cannot appear
and can be easily integrated in existing modeling software system.

1.1 Publications

All the scientific contributions of this thesis have been published on international journals
or presented at international conferences.

The quad mesh simplification algorithm presented in Chapter 2 has been presented at
EUROGRAPHICS 2010 and published in Computer Graphics Forum [TPC+10]. The
second part of Chapter 2, which extend the algorithm to produce Catmull-Clark control
grids, has been published in IEEE Transaction on Visualization and Computer Graphics
[PPT+11]. Both works are the result of an ongoing collaboration between our group in
Genova and Marco Tarini, Nico Pietroni and Paolo Cignoni from the ISTI-CNR of Pisa.

The first section of Chapter 3 has been presented at ACM SIGGRAPH ASIA 2011 and
published in ACM Transaction on Graphics [TPP+11]. The core idea was the natural
continuation of Chapter 2 and the work is another product of the collaboration with the
ISTI-CNR of Pisa. Section 3.3 contains a novel symmetry-aware parametrization algorithm
invented during my visit at New York University. I worked with Denis Zorin (New York
University), Yaron Lipman (Princeton University) and my advisor on this project. The
contribution will be presented at ACM SIGGRAPH 2012 and has been accepted for publi-
cation in ACM Transaction on Graphics [PLPZ12]. Section 3.4 has been presented at EU-
ROGRAPHICS 2012 in May 2012 and published in Computer Graphics Forum [PWS12].
The work has been realized in collaboration with Ofir Weber (New York University) and
Olga Sorkine (ETH Zurich).

Chapter 4 contains a framework for adaptive subdivision of meshes, which was invented
during the first two years of my PhD in collaboration with my advisor. A first version,
which is specialized for triangular meshes, has been published in IEEE Transaction on
Visualization and Computer Graphics [PP09b]. The concept of topological angles has
been presented later in the same year at GRAPP 09 [PP09a], together with the extension
of the framework to support the butterfly subdivision scheme. The natural extension of
the framework to quadrilateral meshes has been presented at Afrigraph 2010 [PP10] and
published in Computer Graphics Forum [PP11].

7

During my visit at New York University, I collaborated with David Harmon (NYU), Denis
Zorin (NYU) and Olga Sorkine(ETH Zurich) on extending common geometric modeling
algorithms to handle intersections. The results of our research (Chapter 5) have been
presented at SIGGRAPH ASIA 2011 and published in ACM Transactions on Graphics
[HPSZ11].

8

Chapter 2

Reverse Catmull-Clark Subdivision

We present an automatic method to produce a Catmull-Clark subdivision surface that fits a
given input mesh. Its control mesh is coarse and adaptive, and it is obtained by simplifying
an initial high resolution mesh. Simplification occurs progressively via local operators and
addresses both the quality of the surface and its faithfulness to the input shape throughout
the whole process. The process is based on a novel set of strictly local operations which
preserve quad structure, it is robust and performs well on rather complex shapes. The
decimation process is interleaved with smoothing in tangent space. The latter strongly
contributes to identify a suitable sequence of local modification operations, leading to a
tessellation that adapts well to geometric features. The method is naturally extended to
manage preservation of feature lines (e.g. creases) and varying (e.g. adaptive) tessellation
densities. Displacement mapping or normal mapping can be applied to approximate the
input shape arbitrarily well.

2.1 Reverse Subdivision

Subdivision surfaces have become of central interest during the last few years, because of
their high potential in shape design and rendering. A major breakthrough in this context
comes from methods for fast evaluation of subdivision surfaces [LS08] that, combined with
recent advances in GPUs [Gee08], may support rendering with unprecedented quality and
speed [EML09]. Fine detail can be added via displacement mapping [Cas08]. With these
methods, high resolution meshes are produced directly in the graphics card, bypassing
the limit of throughput from main memory to GPU. Expectations are that subdivision-
based modeling will soon replace polygonal modeling even for real-time applications such
as videogames.

9

Mixed Integer [BZK09] PGP [RLL+06] VSA [CSAD04] OUR approach
2184 patches 1600 patches 534 patches 476 patches

Figure 2.1: Subdivision surfaces approximating the Armadillo (original mesh 345k tri-
angles) obtained from control meshes produced with different methods. Our approach gives
a much better approximation by using fewer patches, thanks to adaptivity.

This approach is relatively straightforward as long as shapes are created directly as subdivi-
sion surfaces [Cas08]. However, many shapes come as polygonal meshes at high resolution,
e.g., built by range-scanning real-world objects, or as iso-value surfaces, or by tessellating
implicit surfaces, etc. Range scanning is customary in cultural heritage applications; and
during production of animation movies and videogames, plaster mock-ups are created by
artists prior to being modeled through CAD.

Hence, the problem of converting an input mesh at high resolution into a subdivision
surface with a coarse control mesh, possibly enriched with a displacement map or normal
map. In this chapter we tackle two subproblems, which have been studied independently in
the literature: creating a coarse mesh to approximate a given shape; and fitting a surface
to a shape, for a given connectivity of its control mesh. Displacement or normal mapping
also require that the output surface can be projected to the input shape. In this work we
show that tackling the original problem as a whole leads to better results than combining
techniques aimed at resolving each of the sub-problems.

2.1.1 Adaptivity vs regularity

The primary application we address here is fast GPU rendering of displaced subdivision
surfaces. To this aim, it is important that the control grid of the subdivision surface is made
of as few patches as possible, while preserving the overall shape, and that displacement
mapping is used just to add fine detail. For natural objects with details at different scales,
such as the Armadillo shown in Figure 2.1, the contrasting objectives of having a good fit
and a coarse control mesh can be achieved only if the mesh is adaptive. While techniques

10

for adaptive triangle-based meshing can be considered a consolidated subject, producing
an adaptive quad-only mesh for a given shape is still a challenging task: not only the mesh
(in fact, its limit surface in our case) should fit the input shape, but also its connectivity,
as well as the shape of its patches, should be as regular as possible. Adaptivity and
regularity are highly contrasting objectives: transition from coarse to fine patches requires
introducing some irregular vertices, or warping the shape of some quads, or both. Several
works have been proposed in the literature recently that address the problem of producing
a quad mesh that approximates a given input shape well while being made of regular faces,
which are possibly aligned either with lineal features, or with a cross field defined on the
surface [BZK09, DBG+06, KNP07, RLL+06]. Such methods achieve very good results in
terms of regularity of the mesh (see, e.g., the first two examples on the left in Figure
2.1), but they are intrinsically not adaptive, thus requiring many more faces to achieve the
same quality of approximation. This is especially true for objects with intricate geometries
that are difficult to represent via displacement mapping (see, e.g., hair curls in the David
head in Figures 2.18, 2.20): lack of adaptivity leads either to artifacts, or to meshes with
many tiny faces even on smooth regular areas. For these reason, in this work we trade some
regularity for adaptiveness. Our method combines tools for progressive mesh simplification
based on local operations, together with tangential smoothing to keep a regular shape of
patches, and subdivision surface fitting to keep the limit surface close to the input shape.
Such ingredients are not used independently in separate stages, but they are combined in
the context of an integrated framework, in order to take into account all aspects of the
problem throughout the whole process.

2.1.2 Objectives

Given a triangular input mesh M , we strive to build a quad-based control mesh K with
a limit surface SK through the Catmull-Clark (CC) subdivision scheme [CC78], such that
surface SK approximates surface M , with the following requirements:

(I) Conciseness : the number of faces of K is small;

(II) Regularity : most vertices have valence four, and patches have nearly right angles;

(III) Accuracy : the difference between SK and M is small;

(IV) High projectability : The great majority of points of M can be reached from SK by
projection along the surface normal.

Conciseness relates to rendering efficiency, ease of editing, minimization of memory con-
sumption, etc. Regularity relates to the quality of the meshing that can be obtained with a
regular sampling of SK (e.g., performed at rendering times). Accuracy relates to the qual-
ity of generated geometrical approximation: it implies not only that positions of vertices

11

of K are carefully chosen, but also that K is tessellated adaptively. Finally projectability
is very important for several techniques in computer graphics: in practice it means that
any attribute of M (e.g., per vertex color or normal) can be stored as texture maps associ-
ated to faces of K. Moreover it also means that M can be faithfully reproduced from SK
via displacement mapping in the normal direction, which requires storing just a texture
of scalar offsets for each patch. Ideally, one wish to have perfect projectability, i.e., the
projection along surface normal defining a bijection between SK and M . However, since
the input can be affected by noise and/or contain detail at arbitrarily high frequency, such
a strict requirement may prevent building coarse control meshes. For this reason, we allow
for some loss of projectability, which can be controlled by the unique parameter used in
our method, as a trade-off for improving adaptivity and coarseness of the output mesh.

2.1.3 Contribution

Our contribution can be summarized as follows:

• We present an integrated approach that incorporates both the automatic construction
of a pure-quad, concise and semi-regular control mesh, and the optimization of its
related CC subdivision surface, in terms of both projectability and accuracy with
respect to the input shape. To the best of our knowledge, this is the first method to
produce a pure-quad control mesh while addressing quality of subdivision fit during
mesh construction. The only other attempts in this direction have been proposed in
[LMH00] for triangle meshes and Loop surfaces and in [MPKZ10] for T-meshes and
T-splines.

• Our method is fully automatic and ”one-click”: it takes in input a geometric mesh
and it builds a coarse CC subdivision surface through progressive simplification of
its control mesh.

• Mesh simplification is driven from an innovative and effective heuristic, which is
based on an static analysis of the input made during preprocessing: a pair of scalar
fields, called a Fitmap, are computed on the input mesh, which roughly estimate for
each vertex of the surface, how well the mesh can be locally modeled with patches, in
terms of both geometric error and projectability. This allows us to avoid performing
cumbersome geometric tests during the simplification process. This approach is fairly
general and probably it can be adapted to any other form of parametric surfaces, as
well as to the simpler case of polygonal mesh simplification.

• We experiment our method on several meshes, representing objects with various
topologies and details at different scales. We compare our results to CC subdivision
surfaces obtained by first building a quad mesh with other state-of-the-art methods,
and then using such meshes for subdivision surface fitting and displacement mapping.

12

Our results clearly outperform those obtained with the other methods.

• Our control meshes contain about two orders of magnitude less faces than the in-
put meshes, thus our method works also as a shape compressor. In fact, displaced
subdivision surfaces can be efficiently encoded as a control mesh plus single channel,
highly compressible, displacement textures.

This chapter is divided in three sections. We will first review the state of the art in
mesh simplification, remeshing and reverse subdivision. In Section 2.3, we will tackle the
problem of simplifying a dense quad-mesh, that is a sub-problem of our reverse subdivision
algorithm that is interesting by itself. The simplification algorithm will be extended in
Section 2.4 to produce control meshes for a catmull-clark surface. Even if the energy
minimized is different, both algorithms are based on a common set of local operations and
they tackle the two problems in similar ways.

2.2 Related work

Triangle mesh simplification. Simplification of triangle meshes has been studied in
depth during the Nineties and can now be considered a mature technology. Good algo-
rithms for simplifying triangle meshes are available in common modeling packages like
Maya, Blender or MeshLab [CCR08].

Most triangle mesh simplification algorithms focus on adaptive meshing, with the primary
goal of obtaining a good approximation of the original shape with a small number of
triangles [CMS97, LRC+02]. Many such algorithms work by means of local modifications,
which are iterated until the required LOD is obtained. This approach lends itself naturally
to the construction of Continuous LOD (CLOD) models. Local operators can also be useful
in a variety of contexts (e.g., mesh editing). Hoppe et al. [HDD+93] introduced the use
of additional local operators, such as edge flips, which improve the quality of tessellation
rather then reducing mesh complexity. They also introduced the idea to drive the choice of
local operations aimed at minimizing of an objective function. We reformulate these ideas
for the case of quad meshes.

Quad mesh simplification. Simplification algorithms targeting quad meshes have been
developed only recently, and they pose extra difficulties. Collapse of a quad diagonal (a.k.a.
quad-close [Kin97], quad-collapse [DSSC08], quad-vertex merge [DSC09a]) is recognized as
a valid local operation that preserves quad structure, but a simplification algorithm cannot
be based just on it. The standard approach is to use also operations affecting larger areas,
so that the quad structure and the overall quality of the mesh are preserved.

Following this direction, the poly-chord collapse has been adopted in [DSSC08], adapt-

13

ing it from the ring collapse introduced in [BBS02]. In a poly-chord collapse, an entire
line of side-to-side quads is removed, so that quad regularity is maintained. Poly-chords
are alternated to diagonal collapses, striving to maximize the number of regular vertices.
Global operations are inherently unpractical: not only they make the change in resolution
less continuous, but also their all-or-nothing nature makes them a clumsy tool to maximize
any sought objective: an operation with a large footprint (like poly-chord collapse) is likely
to have opposite effects on quality in different subparts of the affected area, and still it
must be either performed or discarded as a whole. Moreover, the lack of locality makes
it difficult, for example, to selectively decimate only an area of the mesh, leaving the rest
unaffected, or to be used in a quad-only region of a mixed mesh. Finally, local operations
lends themselves better to out-of-core adaptations of the simplification algorithm, being
possible to be performed in a small region even if the mesh is constrained elsewhere.

To alleviate the problem linked to global operations, in [SDW+09], rings to be collapsed
are “steered” to constrain the affected area inside a user defined subregion. In [DSC09a]
poly-chord collapses are split into smaller independent sub-steps, resulting in the first
local-only framework for quad meshes. Our scheme is also local-only, but it uses finer
grade operations, see Sec. 2.3.2.1. Exclusive use of local operations tends to produce lower
quality meshes, though. To improve them, tangent space smoothing is applied to the final
result in [DSC09a]. This however has no effect on connectivity. In our proposal, tangent
space smoothing is interleaved to local operations at each iteration, and it helps selecting
the next operation to be performed.

Local operations have been proposed for improving the quality of 2D quad meshes in
[Kin97] and they have been used also to produce quad meshes from 2D triangle meshes in
[OSCS99]. However, the problem of optimizing meshes in 3D is quite different from the
2D case.

In the context of an unrelated application, the problem of obtaining a triangle mesh with
edges of constant length, similarly to what we propose, was addressed in [IGG01].

Quad-remeshing. A related yet different topic is remeshing. The aim of remeshing is
to obtain a completely new mesh, not necessarily at lower complexity, which represents
the input shape well and has a superior quality. Again, the focus here is on quality of the
mesh, but remeshing is inherently not progressive: the output is built from scratch, using
the input mesh just as the reference shape.

A few algorithms for remeshing of quad meshes have been proposed in the literature.
Methods proposed in [ACSD+03, LKH08] use alignment to principal curvatures to drive
remeshing, while those proposed in [DBG+06, DKG05, HZM+08a, TACSD06] resort to
mesh parametrization and uniform sampling in parameter space. Either strategy imposes
to solve difficult problems. The methods proposed in [BZK09, RLL+06] belong to both

14

groups, because they use the principal curvatures within a parametrization approach.

Since the objectives of the two tasks (simplification and remeshing) are similar, it is worth
to underline when one should be preferred to the other. Most considerations that makes,
in some context, local-operation based simplification more attractive than global-operation
based one, discussed above, are stronger when applied to remeshing, which is inherently
a global operation performed on the entire mesh (for example, it does not lend itself
either to the construction of CLOD models, or to local editing). Another issue relates to
robustness: in general, remeshing requires solving more complex sub-problems compared to
mesh simplification (like parametrization, or identification of principal curvature direction)
which are difficult to tackle robustly; remeshing is often less robust to noise, or requires
clear, well distanced cone singularities. Also it is hard to produce extremely low resolutions
meshes (which can also serve as base domains or control meshes). On the other hand,
remeshing can benefit from a global, analyze-then-process, top-down approach, and thus
produces output meshes with superior quality. For example, it is possible identify cone
singularities [BZK09] and to explicitly enforce a correspondence between vertex valencies
of output mesh and gaussian curvature of original mesh [LKH08], which is ideal with
man-made objects and CAD models. Notwithstanding that, the proposed local, greedy
simplification approach performs almost comparably with [BZK09] even in these cases
(Tab. 2.1).

Remeshing algorithms, such as those proposed in [BZK09, RLL+06, DBG+06, KNP07],
replace an input mesh with a semi-regular quad (or quad-dominant) mesh, which can
represent the same shape with arbitrarily good accuracy. Since all these methods are
aimed at achieving face uniformity, they are inherently not adaptive, thus it is hard to
apply them with the purpose of drastic simplification. For instance, in the Mixed Integer
method [BZK09] grid step is set by the smallest distance between cone singularities of a
smooth guidance field computed on the input. Such a distance is likely to be quite small
on complex natural shapes. In these cases, drastic simplification can be achieved only if
cone singularities are placed manually (see also Section 2.4.2). Myles et al. [MPKZ10] use
T-meshes to obtain a small number of adaptive patches while preserving regularity and
alignment, but the representation scheme (T-splines) is much more complex.

Algorithms for progressive simplification of quad meshes [DSC09a, DSC09b, TPC+10] are
based on sequences of small operations combined with tangent space smoothing. Such
algorithms usually aim at obtaining a mesh with good quality, in terms of shape of faces
and vertex valencies, while quality of approximation and adaptiveness are usually addressed
only indirectly.

We would like to remark that all the above methods are designed to produce general
coarse polygonal meshes, rather than control meshes meant to be subdivided. As such,
they provide direct control neither on the quality of the subdivision surface, nor on normal
projectability to the input data.

15

Fitting subdivision surfaces: The literature on surface fitting is immense and its re-
view is beyond the scope of this chapter. Dozens of algorithms tackle exclusively the task of
geometric fitting a subdivision surface starting with a control mesh with known connectiv-
ity. See, e.g., literature reviews in [CWQ+04, LD09, MK04]. We adopt a rather standard
approach for solving this problem [HL93], which is orthogonal to our contribution. In this
review we rather focus on methods that address the problem of automatically building a
suitable control mesh.

Simplification and fitting The problem of finding a coarse subdivision surface that fits
an input mesh has been studied in the past for the case of triangle-based subdivision sur-
faces. Hoppe et al. [HDD+94] first simplify a triangle mesh, then they build a control mesh
for Loop subdivision by optimizing vertex positions; further simplification is performed by
alternating local operators for mesh simplification and geometric optimization. Later on,
Lee et al. [LMH00] combine this approach with displacement mapping. To this aim, they
address approximated projectability during simplification.

Similar simplify-then-fit approaches have been proposed in [CWQ+04, MMTP04, MK04].
Beside simplification, some of these methods consider refining the control mesh via local
operations, such as edge split and edge swap, to improve portions of surface affected by
large error. Conversely, Suzuki et al. [STKK99] adopt a semi-automatic approach based
on refinement of a given, manually built, coarse mesh. Kanai [Kan01] modifies the QEM
method [GH97] to perform mesh simplification by taking into account the position of points
sampled from the limit surface of a Loop subdivision.

It is not clear how such algorithms could be extended to work on quad-based subdivision
schemes. However, following the same simplify-then-fit approach, other known techniques
could be adopted to produce a coarse control mesh of quads.

Boier-Martin et al. [BMRJ04] and Cohen-Steiner et al. [CSAD04] propose clustering al-
gorithms that generate coarse and adaptive polygonal meshes. Such algorithms take into
account projectability to some extent, as clustering is driven from alignment of face nor-
mals. Resulting meshes can be quite coarse, but also irregular, containing faces with
concave boundaries and many edges. Such faces can be decomposed further to obtain
semi-regular quad meshes, but this process usually increases their number for about one
order of magnitude (see also Section 2.4.2).

Similarly Marinov and Kobbelt [MK05] use a face-merge method to compute a coarse
polygonal mesh, by also taking into account normal projectability to the input. Again,
they diagonalize each polygonal face at the end of the process, to obtain a quad-dominant
control mesh for Catmull-Clark subdivision, and they compute a normal displacement
map from it. Lavoué and Dupont [LD09] use Variational Shape Approximation (VSA)
[CSAD04] to build a polygonal control mesh of hybrid tri-quad subdivision surfaces for

16

mechanical objects. Their algorithm is tailored for piecewise-smooth mechanical objects
made of a relatively small set of patches joining at sharp edges.

Evaluation of subdivision surfaces: Although subdivision surfaces are defined as the
limit of an infinite process of recursive subdivision of a mesh, methods have been developed
in the literature that allow one to evaluate them at any point as parametric surfaces.
Seminal works by Stam [Sta98a, Sta98b] provide rather complicated methods to evaluate
the Catmull Clark and the Loop surfaces at arbitrary points. More recently, Schaefer and
Warren [SW07] have proposed a fast and exact method to evaluate subdivision schemes
at rational parameters. Later on, Loop and Schaefer [LS08] have proposed an even faster
approximated method to evaluate Catmull-Clark surfaces at any parameter value. Their
method has been used recently for real-time rendering of subdivision surfaces on the GPU
[EML09] and it has also be extended to represent surfaces with sharp creases [KMDZ09].
We make use of this method to evaluate subdivision surfaces during simplification, as well
as to compute displacement maps and to use them during rendering.

Mesh analysis: The issue of statically analyzing a mesh to get synthetic information
is a vast subject beyond the scope of this chapter. We just discuss some of the topics
that are more closely related to our approach. Discrete curvature measures for triangular
meshes (see [GG06] for a recent survey) have long been used for feature identification,
segmentation into regions, and many other purposes. many purposes in geometry process-
ing. Curvature-based measures have been used to drive simplification of triangle meshes
in [KKL02, WB01a]. Curvature analysis is also at the basis of mesh saliency [LVJ05], is
defined by computing for mesh vertices the difference between mean curvatures filtered
with a narrow and a broad Gaussian kernel; they use this scale dependent measure a scale-
independent measure that has been used to weight the relevance of geometric error during
triangle mesh simplification.

Gal et al. [GSCO07] define the Shape Diameter Function for watertight meshes, which
measures how far each point of the mesh is with respect to its antipodal point on the
surface. This function is used to define statistical descriptors for shape retrieval. The
way it is practically computed (i.e., by shooting rays from each point towards the interior)
could be related to our issue of estimating how well a portion of the mesh can be safely
projected onto patches.

Principal curvature directions have been used by several authors to produce surface parametriza-
tion. In [LRL06], a curvature-based parametrization method is used to produce a control
mesh for T-splines, addressing a problem that is closely related to the subject of this
chapter.

We make minor use of curvature estimation in the computation of our Fitmaps.

17

2.3 Simplification of dense quadrilateral meshes

Quad meshes, i.e. meshes composed entirely of quadrilaterals, are important data struc-
tures in computer graphics. Several applications in modeling, simulation, rendering, etc.
are better suited for quad meshes than for triangle meshes. In spite of this, much litera-
ture in geometry processing in the past has addressed more the case of triangle meshes,
while similar problems for quad meshes are either relatively unexplored, or they have been
addressed only very recently. This is the case of mesh simplification, i.e., the task of
producing a low complexity mesh M ′ out of a high complexity one M .

Compared to the case of triangle meshes, simplification of quad meshes poses extra chal-
lenges, because quads are less adaptive and more delicate structures than triangles. The
main goal here is to obtain a mesh with good quality, i.e., having almost flat and square
faces, and most vertices with regular valence four. Quality of approximation and adaptive-
ness are usually addressed only indirectly.

In this Section, we present a novel approach to the problem of quad mesh simplification,
striving to use practical local operations, while maintaining the same goal to maximize
tessellation quality. We aim to progressively generate a mesh made of convex, right-
angled, flat, equally sided quads, with a uniform distribution of vertices (or, depending
on the application, a controlled/adaptive sample density) having regular valency wherever
appropriate. The orthogonal objective of maximizing shape similarity between input and
output surfaces can be achieved indirectly by enforcing line features and adaptive sampling.

The presented novel approach to quad mesh simplification is incremental, greedy, and
based on local operations only. It includes a novel set of local operators preserving the
quad structure, prioritized by a simple yet effective criteria, and interleaved with vertex
smoothing in tangent space. We show that this approach is effective to solve the otherwise
difficult problem of producing quad meshes with a good quality.

The system lends itself well to efficient implementation, and it is easily extended to recon-
struct feature lines, or to progressively produce variable tessellation densities.

As a minor contribution we offer a short analysis of coherence preservation for local op-
erations in quad meshes. We also discuss in which context configurations traditionally
regarded as degenerate (doublets) are useful and can be kept.

The approach is completed with an original Triangle-to-Quad conversion algorithm that
behaves well in terms of tessellation quality and, given a closed mesh with n triangles,
always generates n/2 quads.

18

Figure 2.2: Left: an example of surface allowing for a fully homeometric quad meshing
(a polycube surface). The diag-collapse in the inset affects 4 irregular vertices and would
make then all regular. However (right) such diag-collapse is beneficial in this case only.

2.3.1 Overview of the method

Our proposal is to approach the problem of maximizing the quality of a quad mesh during
simplification from a new, straightforward perspective. Consider an ideal two-manifold
quad mesh composed entirely of flat, equally sided, regular squares. The surface of a
regular poly-cube constitutes an example of surface that allows for this ideal tessellation
(see Fig. 2.2). Note that this ideal condition can be enforced just by measuring lengths,
i.e.: all edges of the mesh have the exact same length l, and all diagonals of faces have
exactly length l

√
2. We call this condition on edges and diagonals homeometry.

Homeometry indirectly implies that vertex valencies depend on local surface shape: vertices
in regions of zero Gaussian curvature have valence 4; vertices in regions of (high) positive
Gaussian curvature have valence < 4; and vertices in regions of (high) negative Gaussian
curvature (i.e., saddles) have valence > 4. This relation between valence and Gaussian
curvature may be brought to an extreme by considering as profitable to have valence 2 in
regions of extremely high positive curvature (Sec. 2.3.2.2). Also, a homeometric quad mesh
is optimal in the sense that all the angles are right, all the faces flat, and the distribution
of vertices is uniform.

Clearly, it is hardly possible that a general surface allows for a fully homeometric quad
tessellation. However, homeometry gives us an easier objective to pursue, i.e., one that
is only length based, works at all scales, and substitutes well, in practice, more complex
criteria like the ones involving Gaussian curvature or vertex valencies.

We measure how far a given mesh M is from being homeometric by means of the variance
of lengths of edges and diagonals:∑

e∈ME

(|e| − µ)2 +
∑
d∈MD

(|d| −
√

2µ)2 (2.1)

19

where e and d span over the sets of edges ME and diagonals MD of M , respectively, and
µ represents the ideal edge length, computed as the side of an ideal square quad of M :

µ =
√
Area(M)/|M |, (2.2)

where |M | denotes the number of faces of M .

Our simplification method modifies the input mesh to reduce its complexity, while trying to
minimize the objective function (2.1). Homeometry-driven simplification blends naturally
the need for regular vertices (or, rather, valence matching curvature) with other desiderata,
such as uniform vertex spacing. In fact, we believe this approach to be superior than trying
to impose regular valence at all vertices, as, e.g., in [DSSC08, DSC09a]. As a clarifying,
intuitive example, consider the situation in Fig. 2.2, left. A criterion trying to maximize
regular vertices would see as beneficial the collapse of the marked quad diagonal. On the
other hand, the initial situation containing irregular vertices is obviously optimal, due to
the local discrete curvature, and such a collapse should be considered harmful. Note that
this situation can happen at any scale and with unbounded frequency. On the right side
of Fig. 2.2, the same connectivity configuration is present on an underlying geometry with
zero Gaussian curvature, where valence four is always appropriate: here, the same diagonal
collapse would be beneficial. This collapse would be favored in our method because that
diagonal is shorter than the prescribed one, against the homeometry criterion, and not
by identifying the curvature (which is a relatively complex task involving computation of
discrete curvature at varying scale during the simplification process).

2.3.2 Conceptual algorithm

An input mesh M0 is progressively coarsened by a sequence of either complexity-reducing
or local optimizing operations, thus producing a sequence of meshes Mi until a user defined
criterion is met (e.g. on the number of quads). One strength of our approach is the use of
local operations only, which preserve the quad structure at all steps.

The proposed method is based on three mutually interacting ingredients: a novel set of
local operations for quad-only meshes, which constitute the atomic steps of the framework;
a heuristic, practical criterion to select the most promising (or less threatening) operation,
which tends to maximize homeometry; a tangent smoothing operator, which displaces
vertices over the surface of the mesh, without leaving it. The method can be summarized
as follows:

0. [Convert input triangle mesh into quad mesh M0] (Appendix A)

1. Initial global smoothing of mesh M0 (Sec. 2.3.2.3)

2. Iteratively process mesh Mi to produce mesh Mi+1 until user-defined criterion is met.
In each loop:

20

(a) for a fixed number of times:

i. perform any profitable local optimizing-operation, until none is available
(Secs. 2.3.2.1 and 2.3.2.2)

ii. select and perform a local coarsening-operation (Secs. 2.3.2.1 and 2.3.2.2)

(b) local smoothing (Sec. 2.3.2.3)

3. Final global smoothing of mesh Mn (Sec. 2.3.2.3)

Step 0 is applied only in case the input comes in the form of a triangle mesh. Only collapse
operations applied during Step ii simplify the mesh, while the other operations are aimed
on one hand at improving mesh quality in terms of both connectivity (Step i) and sample
distribution (Step b), and on the other hand, at driving the selection of best coarsening
operations to be performed next. In particular, during the final Step 3 the main purpose
of smoothing is to improve the quality of the mesh, while elsewhere (in Step 1 and Step
2) it has a more crucial role: by modifying lengths of linear elements over the mesh, it
effectively drives the selection of local operations to be performed at the next cycle.

This schema lends itself well to an efficient implementation. The resulting method is fully
automatic and it depends only on a small number of parameters that are used mainly to
control the tradeoff between accuracy and speed and do not need to be adjusted depending
on specific input.

2.3.2.1 Local Operations

We define three kinds of local operations (see Fig. 2.3): coarsening operations, which reduce
complexity; optimizing operations, which change local connectivity without affecting the
number of elements; and cleaning operations, which resolve local configurations considered
degenerate.

Optimizing operations (or rotations) Edge rotate: consider a non-border edge, shared
by two quads, and dissolve it, leaving a hexagonal face. There are two other ways to split
that face into a pair of quads. We substitute the deleted edge with either one of the two
possibilities, calling the two alternatives a clockwise and a counterclockwise edge rotation,
respectively. Thus, for each non-border edge in the current mesh, there are two potential
edge-rotate operations.

Vertex rotate: consider a non-border vertex v. Each of the k quads sharing v can be split
in 2 triangles along the diagonal emanating from v. The 2k triangles can be merged next
along the former quad edges. Diagonals used to split the quads thus become the new edges.
We call this operation a rotation because it can be seen as a rotation of edges around the

21

Figure 2.3: The set of local operations.

vertex, in either direction (like sails in a windmill). For each non-border vertex of the
current mesh, there is one potential vertex-rotate operation.

Coarsening operators (or collapses) Diagonal collapse: a quad q can be collapsed
on either diagonal, removing q from the mesh, and merging the two vertices at the end of
the collapsing diagonal into one new vertex. The structure of the quad mesh is preserved,
and its complexity is reduced by one quad, two edges and one vertex. For each quad in
the current mesh, there are two potential diagonal collapse operations, one along each
diagonal. This is the most widely used operation for quad-meshes. The position of the
new vertex resulting from collapse is set so that the objective function (2.1) is minimized
in its star.

22

Figure 2.4: The “singlet” degenerate configuration. Edges are shown as curved lines for
illustration purposes.

Figure 2.5: Two border edges are removed by collapsing a quad on the border.

Edge collapse: given a non-border edge e, we can perform a vertex rotation around either
endpoint, turning e into a quad diagonal, and then collapse it. There are two alternatives,
corresponding to which endpoint is rotated, producing two distinct potential edge-collapse
operations for e (non border edges connecting two border vertices cannot be collapsed).

Cleaning operations (or removals) Doublet removal: a doublet is a well-known con-
figuration where two adjacent quads share two consecutive edges. The situation can also
be described, and it is best detected, as having a valency 2 non-border vertex. A doublet
can be eliminated by dissolving the two shared edges, removing the vertex in the middle,
merging the two quads into a single one.

Singlet removal: a singlet is a degenerate configuration where a quad is folded such that
two consecutive edges become coincident (see Fig. 2.4). Singlets arise, for example, if two
quads initially share three edges and then either one of the two consequential doublets is
removed. A singlet is healed by removing the degenerate quad and substituting it with an
edge. The valence 1 vertex is also removed, but everything else is kept unmodified.

Discussion on the operation set At first, it may seem that border edges cannot be
subject to any decimation operation. In fact, a border edge cannot be removed through
edge-collapse, otherwise a single triangle would be produced and there would be no local
operation to bring a pure quad configuration back. A mesh decimation process that keeps
all the original border edges untouched would be clearly unusable. This problem is not
a real one, because eventually quads will be generated having two consecutive edges on
the border. Collapsing the corresponding diagonal of one such quad removes both border

23

edges and the dangling vertex as a side effect. (see figure Fig. 2.5).

Redundancy: It is easy to check that vertex-rotations and edge-rotations are indepen-
dent operations, meaning that neither one can be replaced by a sequence of the other.
Moreover an edge-collapse could be seen as a combination of a vertex-rotation and a diag-
collapse. However, it is convenient to consider it as an atomic operation, because it is often
the case that its effect on mesh quality (homeometry) is very different from the effect of
the first sub-operation alone.

Note that the edge operation described as a “qeMerge” (quad-edge merge) in [DSC09a]
can be considered as the combination of two vertex rotations and four diagonal collapses.
Using the latter represents a finer granularity (in this case, we can think of no apparent
advantage in considering the sequence of all six operations to be atomic).

Doublet-removal can be seen as a special case of diagonal collapse, the only difference being
how they affect geometry: in doublet removal the position of the new vertex is set as one
of the two extremes of the collapsing diagonal.

Consistency: All the above operations preserve topology. There are only two potential
inconsistencies arising from their application. Any operation creating a quad edge connect-
ing a vertex to itself must be prevented. The only other problem is that of singlets (and
possibly doublets, if they are to be considered degenerate: see discussion later). Detecting
and removing them right after creation suffices to ensure consistency.

This approach to consistency preservation is an advancement
over the practice to reduce the problem to the triangular case,
i.e., splitting quads into triangles and then checking the con-
sistency of the resulting triangle mesh, using [DEGN98], as for
example in [DSSC08]. By explicitly considering the problem in
terms of quads, one allows for legal operations that would be
barred by using triangle mesh criteria. For instance, the poten-
tial diagonal collapse in the inset would be forbidden since it
produces degenerate configurations in the triangle mesh includ-
ing dotted edges, while it is legal in the quad mesh.

2.3.2.2 Prioritizing operations

Consider a typical closed mesh with n quads and, thus, with about n vertices and 2n edges.
There is a total of 11n potential operations (2n diagonal-collapses, 4n edge-collapses, and
4n edge-rotations, and n vertex-rotations), plus doublet and singlet removals that can be

24

performed on such a mesh. Clearly, many operations would invalidate other potential
operations and create the preconditions for other operations yet. For practical purposes,
it is important that the choice of which operation to perform at every iteration is taken
very efficiently.

We have seen how we reduced the problem of mesh quality in terms of homeometry. How-
ever, equation (2.1) is still a complex objective function, with multiple local minima, awk-
ward to minimize explicitly (using the above or any other set of discrete operations).
Finding the global optimum solution for a target number of quads is not practical. In-
stead, length based heuristics can be adopted that reach a good solution in a much shorter
time. Good performance of this approach has been empirically demonstrated, measuring
the objective function (2.1) (Sec. 2.3.5).

Prioritizing collapses: The proposed solution is to collapse the shortest element of the
mesh. Since a collapse typically causes neighbor elements to expand, systematical removal
of the shortest element (either edge, or diagonal) causes the population of survivors to have
a similar length. We expect diagonals to be

√
2 times as long as the edges, so we divide

their measured length by
√

2 for the purpose of identifying the shortest element.

This evaluation process is simple yet effective, depending only on lengths (which change
locally), not on the value of µ (which changes globally) in (2.1); this allows for a practical
and efficient implementation (Sec. 2.3.4).

Prioritizing optimizations: Contrary to collapses, rotations do not reduce complexity
and are performed just to improve tessellation quality. Their role in our framework is
similar to the one edge flips play in triangle mesh optimization [HDD+93]. It can be
seen as dual to that of collapses: rotations shorten linear elements that are too long,
whereas collapses remove elements that are too short, both contributing to achieve length
uniformity.

Each potential rotation is assessed by its profitability, a value which is, in first approxima-
tion, correlated with the related change of function (2.1). We perform only rotations with
a positive effect, starting from the most profitable. This criterion is stated only in terms
of length changes, and again it does not depend on the value of µ.

A vertex rotation around v turns edges emanating from v into diagonals, and viceversa. We
consider a vertex rotation to be profitable if, in the current star of v, the sum of the edge
lengths overcomes the sum of the diagonals. The difference between the two quantities is
the corresponding amount of profitability.

The purpose of edge rotations is to eliminate overlong elements (while short ones are
collapsed). An edge rotation affects only one edge and two diagonals, each in a different

25

Figure 2.6: The doublet in each corner of the “pillow” dataset (two views shown) can be
considered a good meshing solution, because of local extreme Gaussian curvature.

quad (the other diagonal is unaffected). We consider an edge rotation to be profitable
if it shortens the rotated edge and both such diagonals. Profitability is the amount of
shortening.

Prioritizing cleaning operations: Cleaning operations are not scheduled, but they
are performed during both steps i and ii of the simplification algorithm as soon as any
degenerate configuration is detected.

In the literature, doublets are considered degenerate configurations. In fact, in a fully
homeometric mesh, a doublet necessarily corresponds to a pair of geometrically coincident
faces with opposite orientations. However, a doublet can represent an optimal configuration
in regions with extremely high positive Gaussian curvature, as depicted in Fig 2.6.

If application dependent considerations dictate that doublets are to be considered degen-
erate, then they are removed. This is also the best route in case the original mesh does
not present regions with extreme positive Gaussian curvature. However, we have also the
alternative of keeping “good” doublets, by inhibiting this cleaning operation. “Bad” dou-
blets are neither detected explicitly (e.g., by measuring curvature), nor treated as a special
cases: they are just removed with a diagonal collapse when their geometric shape makes
that collapse to become the next operation.

Singlets instead are always degenerated configurations and, as such, they are removed as
soon as they appear.

2.3.2.3 Tangent space smoothing

This operation consists in moving vertices so that they never leave the surface of the mesh
and, at the same time, the overall homeometry (2.1) is increased. For a better match
between the simplified model and the original mesh M0, vertices are kept on M0, rather
than on current mesh Mi. Factor µ of equation (2.1) is computed for the current mesh Mi,
to account for the minor area deformations occurring during coarsening.

Smoothing is performed through a relaxation process and it has two main purposes: first, by

26

maximizing homeometry, it directly improves mesh quality; second, and more importantly,
it helps selecting the best candidate operation to perform next. The rationale is that the
elements that cannot be made homeometric by smoothing are good candidates for the next
collapse/rotate operation. For example, when the number of quads incident at a vertex is
too high with respect to what is required by the local Gaussian curvature, then, even after
smoothing, one diagonal of each such quad will be shorter than the prescribed one (

√
2µ).

As such, that quad may be selected for collapse.

Depending on the initial data, mesh M0 can be very far from being homeometric. Thus,
global tangent smoothing is applied to mesh M0 during Step 1 of the algorithm until
convergence. Global tangent smoothing is also applied to improve the final mesh Mn

during step 3, similarly to [DSC09a, DSSC08, SDW+09].

Conversely, smoothing operations performed during Step b are localized to a small area,
just around the regions of influence of the local operations preceding it. Vertices affected
by local operations during Steps i and ii are initially scheduled for smoothing during Step
b. In case any such vertex is moved during smoothing for an amount larger than a given
threshold, then also its neighbors are scheduled for smoothing.

2.3.3 Extending the method

The method described in the previous section lends naturally to two useful extensions:
creating meshes with varying, customizable tessellation densities (Sec. 2.3.3.1); and creating
meshes that preserve feature lines (Sec. 2.3.3.2).

2.3.3.1 Customizable tessellation at variable density

Since both the smoothing phase and the selection phase are length based, it is easy to
make the system produce tessellation densities that vary over the surface, according to a
given importance function taken in input. This function λ(p) is defined over the surface
M0 and determines the required tessellation density around each point p of the surface.

Since the average edge length is already implicitly defined by the number of elements
|Mi| and the total area of Mi, we make λ(p) define the prescribed ratio between the edge
lengths around p over average edge length (and similarly for the diagonals). This function
is normalized so that the area-weighted average of 1/λ2 over all M0 is 1.

During the smoothing phase, the objective function (2.1) is minimized using µλ(p) instead
of µ, p being the center of the given element. During the selection phase, length of edges
and diagonals are divided by λ(p) for the purpose of identifying the next element to be
collapsed.

27

Figure 2.7: Preservation of a feature line (red line). Vertices are moved on the feature
line (left, middle). This causes some quads to fall across the line: moving a third vertex
on the line solves the issue (right).

Figure 2.8: Feature lines preserved though the simplification process (TableCloth dataset,
simplified from 3.25K to 40 quads).

Depending on the application, importance functions can be either defined by the user
(for example, in order to devote more vertices to regions of interest of a model), or pre-
computed by geometry processing performed over M0 and/or its attributes, so to achieve
an adaptive simplification. Since the resulting mesh has no T-junctions, spatial changes in
the resolution cannot be sudden, so λ is supposed to vary smoothly over the mesh.

2.3.3.2 Preservation of feature lines

In many contexts it can be useful to preserve feature lines in the quad mesh. Feature
lines can be either prescribed by the user, or automatically identified, e.g., as: attribute
discontinuity lines; creases extracted from the original geometry in CAD models; or high
curvature lines extracted by analyzing the geometry of range scanned models. In open
meshes, borders should also be preserved.

Our objective is to make feature lines emerge as collections of edges in most levels of detail
produced by the simplification process. This is achieved by acting just in the tangent
smoothing phase, adding a term in the cost function, which penalizes vertices that are
close but not over such lines. In other words, feature lines are made to attract nearby
vertices toward them. The radius R at which this happens is computed as a fixed fraction
k of the average edge length in that zone. In our experiments we used k = 3/4.

28

For each vertex vi we find the closest point fi on a feature line with the help of a spatial
index, and we compute an attraction factor ai, which is equal to 1 if vi is on fi and decreases
linearly to vanish at distance R.

Uncontrolled snapping of vertices to nearby features may cause some quads to fall across
them, i.e., to have their diagonal aligned with the feature line. This happens when two
opposite vertices va and vc of the diagonal of a quad (va, vb, vc, vd) are attracted to the
same line, while vertices vb and vd are not. This situation is healed by making one of vc
and vd also move toward the same line, regardless of their distance from it (see Fig. 2.7).

Use of a scaling factor k < 1 for the radius of influence R ensures that both endpoints of an
edge are attracted to a feature line only if that edge is sufficiently close to the feature itself.
In this way, we try to avoid compressing quads around features, which would be against
our objective of homeometry. Even when that undesirable situation occurs, compressed
quads soon disappear because their elements (either diagonals or edges) are selected for
collapse.

Figure 2.8 shows a how this method performs on a simple example containing a circular
feature: even in that challenging case (for quad meshing) both the feature and homeometry
are maintained to some degree during the simplification.

An advantage of this approach is that feature lines are enforced, rather than just preserved,
meaning that they need not be present as edges in the input mesh. For example, CAD
models often contain explicit sharp crease lines that are prescribed during design, while
scanned models rarely contain exact sharp creases.

2.3.4 Implementation details

Prioritizing operations. Finding the top priority operation can hinder performance in
a naive implementation, because of the linear search it involves. As in standard iterative
simplification approaches [LRC+02], a good solution is to build a heap of potential opera-
tions sorted by prerecorded priorities. Every time a local operation is performed, only the
potential operations related to neighboring elements are affected and must be updated in
the heap.

This is possible because the priority criterion does not depend on the average edge length
µ as defined in Eq. (2.2), i.e., priorities do not change when the global number of faces
changes (otherwise, the entire heap would be invalidated at each simplification step). This
is one reason to use a heuristic criterion (Sec. 2.3.2.2), rather than trying to explicitly find
the operation that minimizes (2.1).

29

Figure 2.9: Examples of models simplified at decreasing number of quads (including ex-
tremely low ones, useful for base mesh or as a base for a refinement). Above, Muai dataset:
8.2K (original), 3.3K, 1.4K, 600, and 40 quads. Below, David dataset: 100K (original,
detail), 10K, 5K, 1.2K and 150 quads.

Figure 2.10: Simplified mesh pairs (5K and 3K) obtained from Igea dataset with [DSC09a]
(left) and our approach (right). For a quantitative assessment, refer to table 2.1.

Tangent space smoothing. There are several possible ways to perform smoothing.
One would be to minimize objective function (2.1) iteratively in 3D space and, after each
iteration, re-project every vertex to the surface of M0 via some spatial indexing structure
[THM+03]. Otherwise, if an almost isometric parametrization of M0 is available, smoothing
can be solved in parametric space. In this case, gradient descending vectors are computed
in 3D, then converted to 2D vectors via the mapping defined by parametrization. In our
experiments, we adopted the latter approach, making use of a parametrization produced
by the method described in [PTC09], which provides a reasonably isometric, seamless,
globally smooth parametrization of M0. Any other technique for smoothing in tangent

30

Figure 2.11: Examples of models simplified following a user defined importance map
(shown in small: darker regions correspond to higher density).

Figure 2.12: Examples showing robustness to unevenly sized or poorly shaped initial
triangles. Left: original. Right: output (close-ups of Bunny and Gargoyle datasets).

space could be used instead.

We perform tangent space smoothing with an iterative, explicit solver that lets the mesh
relax as in a mass and spring system [MHHR07], where the rest position of each spring
coincides with the ideal length of its associated edge or diagonal, i.e., either µ or

√
2µ,

respectively.

In Step b of the algorithm, smoothing is stopped relatively early, i.e., after a fixed number
of iterations (we used 20), because a coarse minimization of function (2.1) is sufficient
in practice to guide the selection of the next operation. Smoothing is performed until
convergence in Steps 1 and 3.

In Setp 1, a global smoothing would change the geometry of the entire mesh and, thus,
it would invalidate the precomputed priority of all potential operations. To avoid that,
smoothing is done with the incremental scheme described in Sec. 2.4.1.5.

31

Figure 2.13: Different datasets shown at various simplification steps. Refer to table 2.1
for numerical data. Original models are not shown (see also attached video). Top right, in
blue: two semi-regular models obtained by regularly subdividing extremely simplified models
(see text).

Feature line extraction. Any feature line, whether it is present or not in the original
mesh as a collection of edges, can be enforced during the simplification process. Thresh-

32

Figure 2.14: Left: input of the simplification algorithm (top: input mesh M0; bottom:
feature lines extracted from M0). Center: models simplified with basic algorithm. Right:
models simplified with feature preservation. See also tab. 2.1.

olding dihedral angles is sufficient to extract sharp creases from CAD models, such as
the fandisk or the tableCloth datasets. For range scanned models, such as the Mohai
dataset, creases are extracted with a modification of the method proposed in [HPW05]
(see Fig. 2.14).

2.3.5 Results and discussion

We tested our quad simplification method on quad meshes converted from triangle meshes
(Appendix A) coming from either range scanning, or CAD. Examples of results are illus-
trated in Fig. 2.8, 2.14, 2.9, 2.10, 2.11, 2.12, and 2.13. A numerical assessment is given in
Table 2.1.

Discussion: In spite of using only local connectivity operators, the simplified models
show a very good quality, throughout all steps of simplification. Regular results are ob-
tained independently from regularity of the input. Tangent space smoothing has proven
to be very effective not only to improve the final result, but also – and more importantly
– to drive the selection of the operator to be performed at the next cycle. This concept
makes the process robust and general, so quad mesh simplification can be easily addressed
in spite of the intrinsically harder challenges it poses with respect to the case of triangle
meshes. Our length based approach is also efficient, scalable, robust with the initial tessel-

33

Figure 2.15: The reference mesh M , the control mesh K and the subdivision surface
SK; a vertex v of K has its limit position at s(v) and NS is the normal at the limit point.
Projection φ of SK to M is a normal displacement.

lation quality (see Fig. 2.12) and easily extended to allow for feature line preservation and
varying controlled tessellation densities. The system is capable of reducing an initial quad
mesh to extremely low number of faces (see Fig. 2.9, right). Semi-regular meshes can be
obtained from such a simplified model, by a regular subdivision and re-projection onto the
original surface. Examples of results obtained this way are shown in Fig. 2.13 (top-right).

We compared our approach, which strives to maximize homeometry, with [DSC09a], which
strives to maximize regularity (and, to a lower extent, geometrical faithfulness). Models
maximizing the sought objective are always obtained (Table 2.1). In terms of Hausdorff
distance, however, the presented strategy is around twofold better, suggesting that our
objective is more suited for that. This is probably also due to the better sampling distri-
butions that is implied by homeometry. The same approach presented here can probably be
applied to triangle mesh simplification in contexts where quality of meshing is a concern
as much as geometric similarity. Our method naturally lends itself to the construction
of progressive and CLOD models; however, further investigation is needed to efficiently
incorporate the changes occurring through simplification in the data structure.

Our current method has some limitations. Geometric fidelity is not measured and it is
addressed only indirectly; the general objective to place extraordinary vertices at points
that concentrate strong Gaussian curvature is achieved, but only partially; vertex snapping,
used to enforce features, can produce nearly triangular elements that would be harmful for,
e.g., numerical analysis; alignment of edges to curvature directions has not been addressed.
These issues might be addressed by suitable modifications of the objective function in the
context of the same framework.

2.4 Automatic Construction of Catmull-Clark Subdi-

vision Surfaces

In the previous Section, we started from an irregular triangle mesh and we produced a
coarse quad mesh, where every quadrilateral approximates a part of the surface with a

34

bilinear patch. In this section, we extend the algorithm to produce a quad mesh that is the
control grid of a Catmull-Clark surface that approximates the input surface. The problem
is more challenging and requires further analysis of the original mesh, but the core idea of
the algorithm is similar.

We take in input a mesh M and we want to build a CC subdivision surface SK , with
control mesh K, that fits M according to requirements stated in Section 2.1.2.

We start with a subdivision surface interpolating M at all its vertices, and we progressively
simplify K through local operations. Let v be a vertex of K: s(v) denotes its limit position
on SK ; NS(v) denotes the surface normal at s(v); φ(s(v)) denotes the projection of s(v) to
M along direction NS(v). Symbols are summarized in Figure 2.15.

2.4.1 Algorithm

The algorithm has the following outline:

1. Analyze input mesh M and compute its Fitmap, which is made of a pair of scalar
fields that will be used to drive simplification during Step 3 (Sec. 2.4.1.1);

2. Compute initial control mesh K, having the same connectivity of M , and such that
SK interpolates the vertices of M (Sec. 2.4.1.2);

3. Iteratively process control mesh K. At each step:

(a) Perform a diagonal collapse, followed by edge swaps and/or cleaning operations,
if appropriate (Sec. 2.4.1.3);

(b) Fit and smooth positions of vertices in the area affected by the previous opera-
tion(s) (Sec. 2.4.1.4);

4. Globally fit SK to M (Sec. 2.4.1.5).

We describe our method to work on a watertight model, its extension to models with
boundary being just straightforward. We assume M to be a discrete representation of
a smooth manifold. Smoothness is intended in a relaxed sense here: meshes with sharp
edges can also be taken in input, but they will be treated as discrete approximations of
smooth manifolds containing zones with very high curvature. Since we model our output
with smooth CC surfaces in output, some smoothing of sharp creases is unavoidable, and
this represents a limit of our current method. See Section 2.5 for a possible extension to
explicitly represent sharp creases.

Throughout the algorithm, we adopt the method proposed by Loop and Schaefer [LS08] to
evaluate the limit point s(p) and its surface normal NS(p) for an arbitrary point p sampled
on control mesh K. A spatial index on M is used to support ray-casting to evaluate

35

Figure 2.16: The two channels of the Fitmap (S-fitmap upper; M-fitmap lower), together
with subdivision surfaces built by our method, with patches outlined: adaptive distribution
of patches follows the Fitmap. Color coding is depicted at the bottom left (d is 1% of the
bounding box diagonal): color of the S-fitmap (left) represents the coefficient a of the model
of RMS residual; color of the M-fitmap (right) corresponds to size limit for the patch.

function φ.

2.4.1.1 Mesh analysis

During Step 3 of the algorithm, we need a mechanism to select local operations, as well as
a halting criterion. The general idea is that conciseness is achieved through simplification,
which should proceed as long as the surface maintains acceptable regularity, accuracy and
projectability. Therefore, we wish to select, at each iteration, the local operation that
best preserves such criteria. Regularity is somehow easy to test on a local basis, and it is
addressed explicitly by the edge swap operations performed in Step 3a and by smoothing
performed in Step 3b. On the contrary, variations in accuracy and projectability are very
expensive to test, involving surface fitting and normal projection of the portion of mesh
affected by an operation. For this reason, we rely on an analysis of the input mesh, both
to drive the selection of collapse operations and to halt simplification.

The general idea is to estimate, for each point p of the input mesh, how well neighborhoods
of p can be modeled, in terms of accuracy and projectability, by using a single patch. This
analysis provides a rough estimate of how patches generated during simplification should
behave.

36

Fitmaps A Fitmap consists of a pair of values for each point p of a surface M : the S-
fitmap (“Scale” fitmap) estimates how the RMS error of fitting a patch P to a neighborhood
B of p increases with radius of B; the M-fitmap (“Maximal radius” fitmap) estimates how
much a patch P can extend around p before correct projection of P to M through normal
displacement becomes impossible. The Fitmap is computed at vertices of M and extended
by linear interpolation to its faces (See Figure 2.16).

The Fitmap of mesh M can be interpreted as a prescription on the patches of an ideal
approximation S:

• The local radius of each patch of S should be inversely proportional to the value of
the S-fitmap computed at its central point;

• No patch of S should have a radius larger than the value of the M-fitmap computed
at its central point.

The first condition aims at distributing error evenly, while the second condition aims at
preserving projectability.

Building the S-fitmap In order to estimate the S-fitmap FS, we proceed as follows. For
each vertex p of M , we consider neighborhoods Bp,i of p of increasing radii ri, for i = 0 . . . h.
For each i, we collect all vertices of the input mesh in Bp,i: vertices are gathered with a
breadth-first traversal of M starting at p; for simplicity, we use Euclidean distance instead
of geodesic distance to stop the search. In all our experiments, we set h = 8, r0 equal to the
average length of edges of M , rh equal to 1/4 the length of the diagonal of the bounding
box, and we distribute the other radii on an exponential scale.

Next, we express Bp,i as the graph of a bivariate function, on a local frame defined with
tangent plane at p, and we fit a cubic polynomial to its vertices. Cubic polynomials serve
as an easy and conservative surrogate to the more general bicubic patches that constitute
our output surface S, as they are easy to fit and they are independent of the orientation
of the local frame. Roughly speaking, we are assuming that bicubic patches of S will do
at least as well as we can do with cubic polynomials. Vertices of Bp,i are expressed in the
tangent frame (u,v,n) at p, u and v being mutually orthogonal tangent directions at p
and n its normal. Surface Bp,i is then expressed as the graph of function gp,i : R2 → R in
the tangent frame, and a linear least squares problem is resolved to fit a cubic polynomial
g̃p,i(u, v) to vertices of Bp,i. We measure the RMS residual as

E(ri) =
1

np,i

√√√√np,i∑
j=1

(g̃p,i(uj, vj)− nj)2,

where summation is run over all vertices (uj, vj, nj) of Bp,i, and np,i is their number.

37

The sequence of E(ri) values for i = 0 . . . h provides a sampling of how the RMS error
grows in the neighborhood of p. Now, we need to compress information into a single scalar
value. To this aim, we model error increase as a function of radius r. Without loss of
generality, assume function gp (i.e., the surface M expressed in the tangent frame of p)
admits a Taylor expansion. Let T3 be the cubic Taylor polynomial of gp centered at p.
Then the error of approximating gp with T3 at a single point at distance r from p belongs
to O(r4). Now the RMS error ET3 of T3 is computed by integrating the square error
over the circle of radius r, computing its square root and normalizing this by the area of
the circle. It readily follows from integration and normalization that also ET3 belongs to
O(r4). Let E(r) be the RMS error of the best fitting cubic polynomial g̃p,r, then we will
have E(r) ≤ ET3(r) ∈ O(r4), i.e., E(r) ≤ ar4 for some a > 0. Thus, we model error with
a simple function E(r) = ar4. Having collected h measurements of errors at different radii
ri, we fit (in the least squares sense) such function to these values to estimate parameter
a. We have also validated this error model with empirical tests: we have fitted functions
of the type ark for various values of k to sampled error measures; the best average fit to
actual errors was consistently obtained for k = 4 on all datasets.

We set the value for the S-fitmap FS(p) to a1/4, so that we obtain a function that increases
linearly with the radius. In this way, if two patches centered in p0, p1 have radii r0 and
r1, respectively, they contribute approximatively the same error if the values of r0 · FS(p0)
and r1 · FS(p1) are equal.

Building the M-fitmap The M-fitmap FM is built together with the S-fitmap. For a
given neighborhood Bp,i of radius ri, we sample g̃p,i and we use a spatial index to cast a
ray from each sample point along its surface normal (computed analytically from g̃p,i) to

M . Samples are distributed randomly on the neighborhood and their number is 4nM
|Bp,i|
|M | ,

where nM is the number of vertices of M , |M | is its total area and |Bp,i| is the area of the
neighborhood. In this way, the density of samples is roughly twice the density of vertices
of M . We flag each triangle hit by a ray and we count the percentage of triangles in the
spanned neighborhood that are not hit by any ray, which are (conservatively) classified as
flipped faces. The value of FM(p) is set to the largest tested radius at which the portion of
neighborhood covered by flipping faces is smaller than a “tolerance” threshold τ . Parameter
τ can be user-defined, depending on the amount of high frequency noise expected in the
input mesh, or on the amount of 3D high frequency detail that could be ignored, to avoid
an excessive fragmentation of patches. Parameter τ is the only parameter used by our
simplification method, and it can be used to trade-off between projectability and size of
the simplified surface.

38

Figure 2.17: The set of local operators. See details in Sec. 2.4.1.3.

2.4.1.2 Building the initial control mesh

We first apply a tri-to-quad conversion algorithm [TPC+10] to transform the reference
mesh M into a quad mesh Mq having the same set of vertices. We set initial control mesh
K to the same connectivity of Mq, while placing its vertices to have the limit surface SK
interpolate the vertices of M . This is done by resolving a sparse linear system

LVK = VM , (2.3)

where VM is the vector of positions of vertices of M , VK is the vector of (unknown) posi-
tions of vertices of K, and L is the limit subdivision matrix, which is determined by the
connectivity of K and by the subdivision masks. Because of its sparsity, this system can
be solved easily and efficiently with any sparse solver, even for meshes of large size [eig].
We rather adopted a simple natural fixed point iterative method, which displaces each
control point towards its limit position until convergence. This is perhaps not the fastest
available method, but it is very simple as it does not require to manipulate L directly, and
it is sufficiently fast for our purposes. In fact, this phase takes just about one second for
the largest mesh we have processed. Besides, it has the advantage to be also applicable
locally: we will exploit this feature during vertex optimization (see Section 2.4.1.4).

Next, we define a mapping φ from the subdivision surface SK to M for every point p ∈ SK
by taking the closest point of M intersected by a ray cast from p along its normal NS(p).

2.4.1.3 Local operations

We use a subset of local operators that have been introduced in Section 2.3.2.1 to modify
control mesh K throughout simplification (see Fig. 2.17). We have found this subset to
be sufficient and effective for our purposes, the quality of results being not different from
those obtained with the complete set of operators, while implementation is simpler and
more robust. The criteria for applying operators during simplification, which are different
from those in 2.3.2.1, are discussed in the following.

39

Diagonal collapse This is the main operator used to reduce mesh complexity. It elimi-
nates a quad q, two edges and a vertex, by collapsing one diagonal of q.

We maintain a heap of potential collapses, which is kept up-to-date throughout the simpli-
fication process. Cost of collapsing a diagonal d is given by |d| ·FS(φ(c)), where |d| denotes
the length of d, c is the center of the patch containing d, and φ(c) is its projection to M .
Collapses are prioritized according to least cost.

Collapsing an element causes its neighbors to expand. Systematically executing the least
expensive collapse causes survivors to have a size proportional to the inverse of the S-fitmap,
thus producing patches of variable sizes, yet yielding a roughly uniform distribution of the
approximation error, as depicted in Figure 2.16. At the same time, where S-fitmap is
nearly uniform, equality of diagonal lengths tend to favor rectangular patches. Note that
the contrasting objectives of tessellation adaptivity and of patch regularity are sought
together, with a natural trade-off, by operating a single criterion on lengths.

The M-fitmap is used to try avoiding collapses that hinder projectability. Given a potential
collapse, we evaluate the M-fitmap at the center of surrounding patches that the collapse
would extend. We perform the collapse only if, at each such patch, the M-fitmap is smaller
than its diameter, measured as the maximal distance between its center and one of its
corners. Simplification is halted when no feasible collapses remain.

The vertex generated from a collapsed diagonal is set to its midpoint, prior to optimization
(see Section 2.4.1.4).

Edge swap This operator is used to improve the quality of the mesh. It substitutes
an existing edge e with one of the other two diagonals of the hexagon formed by the two
quads incident at e. Edge swaps have also the side effect of modifying lengths of diagonals,
effectively driving the selection of local operations to be performed next.

After performing a diagonal collapse, we consider all faces in the 1-ring of the collapsed
element and we test all their edges for potential swap. A swap operation is performed if it
improves the valencies of vertices. Given an edge e, let v1, . . . , v6 be the vertices bounding
the pair of faces incident at e. We measure the valence D(vi) of each such vertex and we
set an energy

∑6
i=1 |D(vi)− 4|. We swap e if and only if such a swap decreases this energy.

In this way, we tend to increase the number of regular vertices of K.

Doublet removal Collapse and swap operations may generate doublets, i.e., configura-
tions where two adjacent quads share two consecutive edges, which join at a vertex with
valence two. Doublet-removal is applied to eliminate a doublet as soon as it appears, by
simply merging the two quads.

40

2.4.1.4 Local optimization of vertex positions

We wish to maintain surface SK close to M throughout the simplification process. We do
not need to warrant accurate fit, though, since this is done just on the final mesh, during
Step 4 of the algorithm (see Section 2.4.1.5).

After each diagonal-collapse (and edge-swap and doublet-removal operations potentially
triggered by it), positions of all affected vertices of K must be updated to re-fit SK to
M . Let W ⊆ K be the portion of mesh directly affected by the last local operation(s),
plus all the mesh spanned by its 1-ring. We resolve system (2.3) with only the vertices in
W as unknowns, while freezing the remaining vertices of K. As W usually contains few
dozens vertices, this operation is very fast. This is just an approximation: limit points of
vertices in W interpolate M , but vertices in the 2-ring of W may be perturbed and leave
M . However such perturbation is generally irrelevant to subsequent processing.

A better approximation to fit could be computed by using the least squares fitting algorithm
described in the following subsection, by sampling just faces of W and using just vertices
of W as unknowns. However, this solution is more time-consuming and we did not notice
any relevant benefit in terms of final result.

In order to obtain more regularly shaped patches, we interleave local fit with Laplacian
smoothing: each vertex w ∈ W is moved midway between its current position and the
average of centroids of its incident faces, before being displaced to interpolate M . We
empirically found that alternating smoothing and fitting twice is sufficient.

The combined effect of Laplacian smoothing and local fit is equivalent to smooth the
vertices of SK in tangent space, without leaving the surface of M (similarly to [TPC+10],
but without the need for a parametrization). This greatly improves the shape of patches.

2.4.1.5 Final fitting

After the connectivity of control grid K has been obtained through simplification, a more
accurate and global fitting process is run over the entire K. In this phase quality is crucial,
therefore, following [HL93], we add extra equations to the system (2.3) to enforce that not
only vertices of SK but also points sampled inside its patches are close to M . Each patch
of the limit surface is sampled with a number of points proportional to its area. Let |P | be
the area of patch P , |M | be the total area of M and n be the number of its vertices. We

sample P on a k× k regular grid in its parametric domain, where k = b
√
n |P ||M |c. The limit

surface corresponding of each face f of K is evaluated as a Bézier patch, whose coefficients
are a linear combination of vertices in the 1-ring of f [LS08]. Let p be a point sampled on
f , with parametric coordinates (u, v). The position of s(p) on the limit surface is defined
in terms of (u, v) and of the coefficient of the Bézier patch s(f). This allows us filling the

41

PGP [RLL+06] MI (w/ manual cones) [BZK09] OUR approach Original mesh
616 patches 542 patches 774 patches 98K triangles

Figure 2.18: Comparison of displaced subdivision surfaces of the David’s hair. Because
of higher projectability, we produce a more accurate approximation of the original mesh
using a similar number of patches. In this example patches are sampled uniformly 10× 10.

corresponding row of matrix L in system (2.3). Projection φ(s(p)) of s(p) on M is used as
a target position for s(p), which is plugged into the corresponding position of column VM
in system (2.3). The resulting overdetermined sparse linear system is solved in the least
squares sense using a sparse solver from the Eigen library [eig].

A better fit could be probably obtained by using a more advanced technique, e.g., based on
the square distance minimization (SDM) introduced in [PLH02]. However, control mesh
simplification is independent on the technique used for final fitting, thus we did not explore
this possibility so far.

2.4.2 Experimental results

The proposed method was tested on several datasets coming from range scanning. Some
results are shown in Figure 2.21. In Table 2.2, we provide statistics in terms of the four
requirements outlined in Section 2.1.2:

1. Conciseness is reported as the number of patches of surface SK (faces of K) with
respect to the number of faces of M ;

2. Accuracy is reported as the RMS error of approximating M with either SK , or its
normal displaced surface;

3. Regularity is reported as the number of irregular vertices in the control mesh K;

4. Projectability is reported as the percentage of surface M that is not reached correctly
by normal projection from SK (0.0% means perfect projectability).

42

Figure 2.19: Comparison of error distribution of the Limit surface for the meshes built
with MI and our approach as reported in table 2.2 with a and b.

Parameter τ of the M-fitmap, as defined in 2.4.1.1, is used to obtain more or less simplified
meshes, depending of the tolerance on the loss of projectability: higher tolerances allow for
more drastic simplifications. The set values turned out to be very conservative in practice.
As shown in table 2.2, we used tolerances of 1% and 10%, but the projectability of results
is always larger than 99%, except for the David dataset which shows 4% of non-projectable
surface if the tolerance is set at 10%. Overall, our meshes achieve better projectability than
those produced with other methods, for a comparable, and sometimes even much smaller,
number of patches.

Subdivision surfaces with a relatively large number of patches, which can be obtained
by setting a small tolerance for the M-fitmap, or by stopping simplification before its
completion, approximate the input shape well even without displacement. In such cases,
normal mapping is sufficient to achieve a reasonably good quality of rendering. Conversely,
even drastically simplified surfaces made of few patches can achieve almost perfect quality
through displacement mapping.

In order to test the effectiveness of the M-fitmap to prevent losing projectability, we have
run some experiments by inhibiting tests on the M-fitmap, thus allowing all collapses to be
performed. The process is stopped manually after very drastic simplification. As shown in
Figure 2.20, an extremely simple subdivision surface made of just 20 patches is still able
to give a reasonable reconstruction through displacement mapping, but relevant artifacts
appear.

The proposed method works with real world objects of medium resolution. In case a
subdivision surface, with a reasonably small number of patches, is to be extracted from
a large high resolution mesh M , it is possible to compute the Fitmap (and the spatial

43

Figure 2.20: A subdivision surface made of just 20 patches obtained from the original
mesh of 50,446 triangles by deactivating tests on the M-fitmap. The overall shape is still
preserved but relevant artifacts appear due do severe loss of projectability. Surface without
(left) and with displacement mapping (right) - see artifacts on hair and ear.

index necessary for ray casting) on the original mesh M , while starting simplification
from a simplified mesh M ′ with a smaller size, which can be computed with any standard
program for triangle mesh simplification. The control mesh K is initialized on the basis
of M ′, but all computation, including fitting and mapping, is referred to the original mesh
M . We followed this approach for running experiments on the Armadillo dataset, starting
with a mesh M ′ with about 100K triangles.

The technique is somehow time consuming, partly because the code was not optimized for
fast prototyping. However, timings reported in Table 2.3 are reasonable considering that
this is a pre-processing computation. See Section 2.5 about possible optimizations.

2.4.2.1 Comparison with literature

We compare our results against the ones obtained by first computing a control mesh with
alternative methods, then fitting a Catmull-Clark surface with the algorithm described in
Section 2.4.1.5. We tested two remeshing algorithms, Mixed Integer (MI) [BZK09] and
Periodic Global Parametrization (PGP) [RLL+06], and one clustering method, Variational
Shape Approximation (VSA) [CSAD04].

PGP meshes have been computed with the publicly available Graphite software, extracting
the coarsest possible mesh with standard parameters. Since produced meshes containts
triangles, one step of Catmull-Clark subdivision was needed to remove them.

MI meshes (provided by the authors of [BZK09]) are available only for some datasets. In
the David dataset MI places a large number of cone singularities in areas containing small
features (hair curls), so that model cannot be coarsened below 39K quads. A much coarser
version has been produced by manually placing just 8 cone singularities.

VSA meshes were produced with a software provided by the authors of [RLL+06]. The

44

Figure 2.21: Examples of meshes computed with our system. From the left: original
mesh M in white; subdivision surface SK; and displaced subdivision surface.

process is semi-automatic: the user chooses the number of seeds and when to stop opti-
mization. We have tried to roughly match the coarseness of meshes extracted with our
method, or the coarsest which could be obtained before results differed too much from

45

the input mesh for the fitting algorithm to work. Again, one step of Catmull-Clark was
necessary to get rid of triangles in the in resulting models.

Results show that our method is consistently able to obtain much coarser meshes than
competitors. In most cases the number of quads is lower by about one order of magnitude
with respect to other methods, yet perfect or almost perfect projectability is maintained.

To assess accuracy, in Table 2.2, the RMS error of limit and displaced surface is measured in
1000th’s of the bounding-box diagonal of the object (in each experiment, the displacement
maps are obtained by sampling each patch with a fixed resolution chosen so that the total
number of samples roughly matches the number of vertices of the original mesh). For sake
of comparison, in a few experiments we forced our Fitmap based approach to produce base
meshes with a face-count similar to the best competitors (rows marked with a ∗ in tab.
2.2). The results show a comparable, often better, RMS error obtained with our method.
Moreover, visual comparisons (e.g. Fig. 2.1) and error distributions (Fig. 2.19) reveal that
our method better preserves local small scale features, something that the RMS error fails
to clearly detect, being averaged over the entire surface. Again, we stress that one strength
of our method consists in the ability to reduce the face-count of base mesh drastically more
than other methods can, while preserving good accuracy and projectability.

In terms of regularity, comparison yields mixed results. Note that, with our method,
presence of a few extra irregular vertices is implied by the adaptiveness of the tessellation,
as irregular vertices are unavoidable in zones of transition among different levels of detail
(e.g. from the back to the arm to the fingers in the Armadillo, or from the cheek area to
the hair area of the David). The MI gives fewest irregular vertices with some datasets
(Gargoyle, Fertility and Armadillo), and a comparable number with the David (unless,
predictably, singularities are placed manually). Our method performed comparably with
PGP and VSA, resulting in more regular or less regular results depending on the dataset
and the used parameters. Highly irregular vertices (valency > 5) are very rare with our
method (unlike, for example, with VSA). VSA and MI in some cases also generated doublets
(valency 2 vertices), whereas our method is bound to never output them.

2.5 Concluding remarks

We have presented a fully automatic method for building a coarse control mesh for approx-
imating an input shape with a Catmull Clark surface. Our method produces surfaces with
low complexity, good quality and accuracy, and almost perfect projectability. In contrast
with standard quad-simplification and quad-remeshing approaches, our method explicitly
works on a control mesh for subdivision, and the limit surface is targeted throughout the
process. To our knowledge, this is the first method to address the problem in this integrated
way, in the context of quad-based subdivision surfaces.

46

A key issue here is adaptiveness of patch density to geometrical complexity. To this aim,
we have introduced Fitmaps, which provide an a-priori estimation for the ideal localized
patch densities. Fitmaps demonstrate to be very effective at driving the local simplification
process to build better control meshes that adapt locally and concisely to fine details. The
concept of Fitmaps can probably be adapted to any other form of parametric surfaces, as
well as to the simpler case of adaptive mesh simplification.

Surfaces produced with our method are suitable for GPU-assisted rendering via displace-
ment mapping. The method may also support reverse engineering, by providing initial
control grids that may be adjusted and refined with modeling tools.

Our current method has some limitations, though. Compared to global remeshing meth-
ods (like [BZK09]), it produces meshes containing more irregular vertices. Some such
vertices are necessary to warrant transitions through different levels of resolution inherent
to adaptive tessellation. However, we believe that irregular vertices could be further re-
duced by more careful tessellation. The definition of a good balance between adaptivity
and regularity demands further investigation.

Another problem is the lack of alignment of patch boundaries to either curvature directions,
or other line features. Alignment to features could be enforced with a snapping mechanism,
similarly to [TPC+10]. The same mechanism can be also used to model surfaces with sharp
creases, by combining it with the extension of subdivision surface evaluation presented in
[KMDZ09]. Also this issue requires further investigation.

The time performance of the method can be certainly improved, possibly of orders of
magnitude. The main bottlenecks come from subdivision surface evaluation, which is
performed many times at many samples during simplification, and by the extraction of
large neighborhoods during the construction of fitmaps. Surface evaluation could be easily
delegated to the GPU. The extraction of large neighborhoods could be made faster by using
an ad-hoc data structure, such as a hierarchical spatial index supporting range queries
according to geodesic distance [RGPP11].

47

val reg Homeometry Dist
|M | max (%) min max var 10−3

ideal values: — — 1 1 0 0

Moai 8.2K 9 44 0.18 3.8 0.49 0
(11sec) 3.3K 6 64 0.60 1.82 0.16 0.5

0.6K 6 62 0.70 1.73 0.17 1.7

Pensatore 15K 8 48 0.12 3.4 0.44 0
(28sec) 10K 7 61 0.58 2.01 0.19 0.3

5K 7 57 0.68 2.17 0.19 0.7
2K 6 68 0.59 1.76 0.18 1.4
1K 7 64 0.6 2.01 0.19 2.0

Gargoyle 25K 8 46 0.15 12.22 0.53 0
(63sec) 11K 7 61 0.2 2.8 0.17 0.5

4K 7 57 0.5 2.28 0.19 1.2
2K 7 54 0.58 2.31 0.20 2.0

Igea 25K 8 48 0.12 4.09 0.48 0
(66sec) 12K 7 65 0.64 2.05 0.16 0.24

3K 6 67 0.69 2.11 0.16 0.7
3K[DSC09a] 6 80 0.22 3.74 0.41 1.7

Bunny 35K 12 88 0.1 14.53 0.34 0
(85sec) 11K 7 69 0.66 3.3 0.19 0.3

5K 7 68 0.65 2.8 0.18 0.5
5K[DSC09a] 6 93 0.24 4.87 0.41 1.1

3K 6 61 0.47 2.45 0.17 0.7

Fertility 40K 8 47 0.09 9.56 0.48 0
(115sec) 22K 6 63 0.59 3.95 0.18 0.12

5K 6 67 0.65 2.94 0.17 0.4
5K[DSC09a] 7 65 0.23 6.4 0.48 0.8

2K 6 67 0.61 2.22 0.19 1
2K[DSC09a] 7 81 0.23 4.20 0.46 2.5

3.3K 7 71 0.60 1.81 0.15 0.56
3.3K[BZK09] 5 98 0.59 3.20 0.22 0.61

Rampart 50K 9 48 0.08 7.58 0.50 0
(174sec) 20K 7 75 0.29 3.19 0.21 0.2

10K 7 62 0.34 2.66 0.21 0.35

Table 2.1: Simplification results on various datasets. The computation times required
for simplifying the initial dataset into the coarsest model (on a Intel Core2 2.4Ghz 2.00
GB). For each quad-mesh (input and simplified), we report: vertex valency (max and %
of regular vertices); homeometry (min, max and variance of edge or diagonal length, all
normalized with ideal length µ); and Hausdorff distance (computed with [CCR08]), with
respect to bounding box diagonal. When possible, results from [DSC09a] and [BZK09] are
reported too (the latter is a quad-remeshing approach).

48

Mesh Alg. �K Irreg. Unp. RMS Error
(M) vert. (%) L D

Garg. PGP 742 127 0.3 4.05 0.23
(49k) MI 2904 83 0.0 1.00 0.02

VSA 2946 816 0.1 1.46 0.06
1% 1096 345 0.0 2.36 0.07
10% 493 182 0.4 4.50 0.15

* 2897 821 0.0 1.32 0.03

Moai PGP 830 61 0.0 1.30 0.20
(52k) VSA 240 61 0.0 2.62 0.13

1% 92 30 0.0 5.00 0.12
10% 41 16 0.0 8.22 0.18

Bunny PGP 1042 114 0.0 1.98 0.13
(69k) VSA 450 104 0.0 3.03 0.11

1% 506 216 0.0 3.41 0.08
10% 218 72 0.0 8.48 0.14

Fert. PGP 3784 176 0.0 0.34 0.04
(80k) MI 3357 48 0.0 0.28 0.10

VSA 2772 739 0.2 2.16 0.03
1% 489 194 0.0 2.35 0.04
10% 323 130 0.6 5.10 0.40

* 3352 956 0.0 0.13 0.005

David PGP 616 108 4.9 5.70 1.08
(98k) MI 39K 261 0.0 0.24 0.08

(MI) 542 8 3.9 4.96 0.45
VSA 1348 349 0.8 3.80 0.16
1% 1603 496 0.2 3.29 0.07
10% 375 145 3.0 9.09 0.43

Arm. PGP 1600 231 13.2 11.03 5.86
(345k) MI 2184 74 0.8 a 3.32 0.19

VSA 534 143 2.3 8.24 1.29
1% 1402 466 0.1 2.46 0.07
10% 476 258 0.3 4.48 0.12

* 2170 773 0.1 b 2.35 0.08

Table 2.2: From the left: name of input mesh (number of triangles); method used to pro-
duce the control mesh (percentages refer to our method with different values of parameter
τ of the M-fitmap; (MI) refers to the MI method with manual placement of cone singular-
ities); number of patches �K in the final control mesh; total number of irregular vertices;
portion of the input mesh that is not reached correctly by normal projection from the limit
surface; RMS error (in 1000th of the diagonal of the bounding box) by using either the
limit (L), or the displaced (D) subdivision surface. The line denoted with the (*) refers to
a model built with our approach and with a number of patches similar to the MI output.

49

Dataset name and size

Gargo Moai Bunny Fert. David Arm.

Times (secs.): 40K 53K 70K 80K 99K 98K
Fitmap 69 149 293 332 454 442
simplif./fit 486 592 780 722 1320 1360

Table 2.3: Running times in seconds for computing Fitmaps, and for simplification and
subdivision surface fitting.

50

Chapter 3

Mesh Parametrization

Mesh parameterization is a geometry processing tool with numerous computer graphics
applications, including texture and normal mapping, detail transfer, remeshing, morphing
and surface fitting.

In general, a parametrization is a map from a surface to another. If one of the two
surfaces is a discrete representation of a continuous surface (i.e. a mesh) then the problem
of computing such map is referred as mesh parametrization. Parametrizations are usually
computed between a subset of R2 (the parametrization domain) to a 2D manifold embedded
in R3. This is not possible for general surfaces, so they are cutted until they become
homeomorphic to a disk. For a detailed description of the possible applications and of the
classical parametrization algorithms, we refer the interested reader to the course notes of
the Siggraph 2008 course on mesh parametrization by Hormann et all [HPS08].

In this chapter, we present two novel algorithms that compute a global parametrization of a
triangle mesh. A global parametrization is a single, continuous map from an arbitrary base
domain to the mesh, without any assumption on the genus of the target mesh. Furthermore,
we are interested in computing parametrizations that are aligned to local features of the
mesh.

The first algorithm produces a parametric domain made of few coarse axis-aligned rect-
angular patches, which form an abstract base complex without T-junctions. The method
is based on the topological simplification of the cross field in input, followed by global
smoothing. We provide different constraints on the relative sizes of quadrangular domains
of parametrization, which allow us to trade-off between quality of parametrization and flex-
ibility of use. Our method does not need to cut the original mesh in regions topologically
equivalent to disks, thus providing a powerful parametrization that is much simpler to use
than other similar methods. The core of the algorithm is a method that is able to perform
a purely topological simplification of the separatrix graph, that is a graph that describes

51

uniquely the topology of a cross-field. The simplification is performed using a greedy al-
gorithm that executes chains of simple, local operations to produce a new simpler graph
and the corresponding cross-field. We provide comparisons with state-of-the-art methods
and show examples of coarse quad re-meshing computed using our algorithm.

The second parametrization algorithm computes a cross-field that adhere with the sym-
metry already present in the object itself. Before the description of the algorithm, we
review the literature on symmetry detection and we propose two novels algorithms that
are specifically designed for the task at hand and specialized to compute bilateral symme-
tries. To compute the symmetry map in the extrinsic case, we build an high dimensional
embedding for the entire model, where two vertices are ”close” only if they symmetric. We
extend techniques based on invariants that have been developed for 2D images to work on
meshes, obtaining a very simple, completely automatic algorithm. For the intrinsic case,
we provide a new, purely topological definition of intrinsic symmetry and a customized
algorithm to compute it. The new definition is very general and it is also able to repre-
sent symmetric maps that are not isometries. Our proposed algorithm starts from a small
number of landmarks specified by the user, and we show that the quality of our map is
higher than existing automatic and semi-automatic methods. Once the symmetry map
has been computed, we use it to produce symmetric fields, that are then processed to
produce symmetric meshes and non-photorealistic renderings. Our method is based on the
Mixed-Integer framework [BZK09], and it is also able to properly handle models that are
not perfectly symmetric. We compare with recent parametrization algorithms and we show
results on a variety of models, showing that by exploiting symmetry we are able to greatly
improve the final quality of the results. All our results are shown on cross-fields, but the
algorithm can be trivially extended to work on vector, line, and tensor fields defined on a
surface.

Finally, we focus on a very specific type of parametrization: the computation of bijective
mappings between two axis-aligned rectangular regions of R2. This task is important, since
it models the deformation of a 2D image into another with a different aspect ratio. Con-
trolling the deformation map, we are able to produce a rescaled image, with no distortion
in the important parts, that looks natural even after notable changes in its aspect ratio.
Clearly, the iterative application of such a technique might allow to resize a sequence of
images and thus to resize a video clip. To obtain robustness and efficiency, we propose the
space of axis-aligned deformations as the meaningful space for this task. Such deforma-
tions exclude local rotations that may lead to harmful visual distortions, and they can be
parameterized in 1D. We show that standard warping energies for image retargeting can
be minimized in the space of axis-aligned deformations while guaranteeing that bijectivity
constraints are satisfied, leading to high-quality, smooth and robust retargeting results.
Our method only requires solving a small quadratic program, which can be done within
few milliseconds on the CPU without precomputation overhead. The image size and the
saliency map can be changed in real time, giving immediate feedback to the user. We

52

Figure 3.1: (Left) An input mesh of quads induces a cross field with an entangled graph
of separatrices; (center) the graph is disentangled with small distortion from the input field
to obtain few parametrization domains; (right) parametrization is smoothed to make it
conformal; an example of remeshing from the parametrization.

present results on various input images, including the RetargetMe benchmark, and the
summary of an user-study with 305 participants that confirms the quality of our results.

3.1 Related work

Mesh parametrization has been studied thoroughly in the literature [HPS08] . Here we
consider just those works related to global parametrization and issues concerning domain
simplicity.

Geometry Images [GGH02] map a whole triangular mesh onto a square parametric domain.
Geometry images may be considered as the 2D flattening or development of an octahedron,
which edges are mapped onto the borders of the parametric image. However, this mapping
is possible just for surfaces of genus zero, their use is limited to the subclass of meshes that
are homomorphic to a sphere. and mapping can be affected by a large amount of distor-
tion. Distortion can be reduced with Multichart Geometry images [SWG+03] where the
domain is decomposed into a set of irregularly shaped flat patches. Because of their irreg-
ular borders, multi-chart geometry images have a complicate handling of discontinuities.
Polycube-maps [THCM04] produce a seamless parametrization by projecting the geometry
onto the faces of a polycube embedded in 3D space. Polycube mapping provides a very
compact yet simple representation, , which is implicitly empty of discontinuities. As a con-
sequence, and interpolating parametric positions involves just a simple 3D re-projection
operation. Although techniques for the automatic generation of Polycube-maps have been
proposed [LJFW08], generation of high quality embeddings still remains a manual task.
but their quality still does not match hand designed Polycube-maps.

Methods based on mesh simplification [LSS+98, KLS03, PTC10] automatically produce a
parametrization domain composed of a set of equilateral triangles, This domain is obtained
by a sequence of local simplification operations, keeping track of the mapping of the original

53

shape onto its simplified version. producing very coarse domains. However they do not take
into account alignment of parametrization to shape features. Moreover, they cannot be
used to produce a quadrilateral remeshing. Other recent methods [DBG+06, DSC09b] can
produce simple parametric domains composed of a set of adjacent quads. The domains can
be very simple, and they can be used to directly produce an isometric quadrilateral remesh-
ing or for texture mapping, but However, these techniques do not allow control over the
quad alignment. Spectral surface quadrangulation has been extended in [HZM+08b] to take
into account alignment to geometric features. However, methods based on Morse-Smale
complexes force the size of quad patches to be uniformly determined by the underlying
field. For this reason, according to the authors of [HZM+08a], it is hard to align edges of
a Morse-Smale complex with all feature lines if the distance between them is small.

Most recent approaches use a precomputed quadrilateral feature aligned quadrilateral
mesh, either directly modeled by a human, or computed with methods such as Quad-
cover [KNP07], PGP [RLL+06], Mixed Integer [BZK09], or Standing Wave [ZHLB10] as
a base to gather a simplified parametric domain. Meshes generated automatically have
a high quality, but they usually contain far too many quads to be used as parametriza-
tion domains for practical applications. Such meshes may in fact provide an input for our
method.

Line fields and cross-fields have been used to compute mesh parametrization and surface
quandrangulation. Field-alignment techniques adapt a parameterization to a shape by
fitting the parametrization gradient to smoothed principal curvature directions, or more
generally, to a smooth cross-field capturing surface features. The topological structure
of the field (singularities and separating lines) indirectly determines how fine the domain
mesh can be. A variety of methods were proposed for cross-field and more generally N -
symmetry field (N -RoSy) construction. A number of methods rely on manually placed
singularities and other user-specified information [RVLL08, CDS10, LJX+10]. Manual
placement of singularities is difficult even for shapes with moderate complexity, and only
recently automatic methods able to produce high-quality, automatic results have been
proposed [BZK09]. In this method, extending [RVLL08], fields are represented by per-
triangle angles in fixed frames, and matchings on edges, indicating the additional kπ/N
rotation of the field to transition between adjacent faces, which determine singularity
placement. MI [BZK09] uses a greedy strategy to make the field as smooth as possible,
with both angles and integers k as variables. Other methods include nonlinear optimization
[HZ00, RLL+06, RVAL09] also using angles to represent fields, and a linear optimization
of a tensor field representation [PZ07]. As far as we know, no construction takes symmetry
of the domain into account.

Motorcycle Graphs [EGKT08] partition a quadrilateral mesh into a set of quadrilateral
patches by allowing T-junctions. A similar idea has been further exploited in [MPKZ10] to
improve simplicity of the domain where T-junctions are reduced and optimized to produce

54

a patch layout suitable for hi-order surface fitting. This method exhibits a great degree of
adaptivity, i.e patches can vary noticeably their size over the surface to conform to details
at different scale. However the presence of T-junctions complicates the structure of the
parametric domain and may hinder its use for several applications.

Very recently, a method has been presented in [BLK11], to simplify the structure of a
quadrilateral mesh while preserving its alignment. The optimization method is based
on an extension of the polycord collapse operations [DSSC08] and consists of a greedy
application of grid preserving operators directly on the quad mesh, directed at removing
helical configurations. Similarly to what we propose here, this method has also the effect
of simplifying the graph of separatrices induced by the quad mesh.

The quality of the feature-aligned quadrangulation depends on the quality of feature detec-
tion, a difficult problem for many classes of meshes. A number of techniques for defining
and detecting feature lines were proposed: [OBS04, HPW05, WG09]. In our work, we use
ridges and valleys computed from smoothed curvature values obtained using the robust
estimation of [KSNS07].

Finally, it is worth mentioning that the topology of vector and tensor fields has been studied
in the context of flow visualization techniques [DH94]. In order to avoid visualization
cluttering, many approaches for simplifying the topology of fields have been proposed, like
for example [TSH01, CMLZ08].

3.2 Simple Quad Domains for Field Aligned Mesh

Parametrization

Finding a high-quality parameterization f : D → M for a given 3d polygonal mesh M
is a prerequisite in a number of applications, such as quad-based semiregular remeshing,
texture mapping, compression, fitting high order surfaces, physical simulations, tangent
space geometry processing, and even tasks outside CG like physical modeling with metal
sheets.

The definition of quality for f depends on the application, but usually encompasses criteria
like injectivity, isometry (implying angle preservation and area preservation), smoothness
(continuity of gradient vectors), and alignment of gradient vectors with geometric features
of M . This problem has been addressed with a wide arsenal of tools [HPS08] and good
automatic results are becoming increasingly common.

A recent trend is to first define a cross field C over M , and then to find f such that its
gradient vectors match C as much as possible. Interestingly, each of the criteria above can
be redefined in terms of desired properties of C. Thus the task is shifted from the definition

55

of a good parameterization to the definition of a good cross field C (for a given M). High
quality parametrization can be obtained following this approach [RLL+06, BZK09]. It is
now apparent that the definition of a good cross field C implies, among other things, the
good placing of a few irregular points (a.k.a. cone singularities). Irregular points tend to
be needed, for example, in places where M exhibits high Gaussian curvature.

An important, additional criterion for the quality of f is what we term here the simplicity
of domain D (see below for an informal definition). Simplicity determines how much
a parametrization f will be effectively useful in most applications, just as much as the
other criteria listed above. As we will show, a cross field C designed to satisfy all the
above conventional criteria, but simplicity, will usually fail producing an acceptably simple
domain. Still, it is often the case that a slightly modified cross field C ′ exists, which is able
to generate a parametrization f with a dramatically simpler domain, while preserving to a
large extent the other qualities of C. This Section presents a way to obtain the cross field
C ′, given C.

Objective: Domain Simplicity For topologies of M other than the disk, the domain
D must necessarily include discontinuities (a.k.a. cuts, or seams): two infinitesimally close
points m0 and m1 of M lying of different sides of the cut are mapped by f−1 to arbitrar-
ily distant positions d0 and d1 of D. The values d0 and d1 are often constrained to be
reciprocally associated with a “transition function” associated to that cut.

Simplicity of domain D is a concept encapsulating: how many discontinuities are needed
(the fewer, the simpler); how simple the discontinuity lines are in D (e.g., straight axis-
aligned lines are simpler than jagged lines); and also how constrained and straightforward
the transition functions are (the more constrained, the simpler). For example, a domain D
consisting in a single flat unit square, with no seams, would exhibit the maximal possible
domain simplicity (possible only for disk-like M). On the other extremum, a 2d packing of
all single faces of M , each one laid separately on a plane, would give a domain so complex
to the point of making parametrization useless for any practical purpose.

When, like in our case, D is defined as a collection of patches separated by cuts (also known
as an atlas), domain simplicity means to have fewer and more regularly shaped patches,
properly aligned and with simple transitions.

In our work, we consider the use of a domain D consisting of a collection of integer sized,
axis-aligned rectangular patches D0, D1, · · · , Dn (see Sec. 3.2.3). Rectangles have a side-
to-side adjacency relationship defined over them, mapping the entire side of a rectangle
Dj with the entire side of another rectangle Di, (i.e., there are no “T-junctions”), thus
making the transition between them straightforward. For small n, this type of domains
can be considered extremely simple, allowing, for example, straightforward applications to
tasks like regular quad-remeshing at arbitrary resolutions, texture mapping, and so on.

56

It is easy to see that, For a parametrization f generated from a cross field C, the simplest
domain of this kind which can be adopted is determined by cuttingM along the separatrices
connecting the singularities of C. Such separatrices define a graphG embedded onM , which
may contain crossing nodes.

Even when C has relatively few singularities and separatrices connecting them, graph G
can contain many crossing nodes and, thus, it can induce a very high number of patches.

It happens because separatrices can make long tours, possibly spiraling around the object
many times, and crossing other separatrices (or even themselves) a very large number of
times during their way. See the left side image of Fig. 3.29 for an example.

Main contributions The main contributions of this Section are:

1. A new general algorithm for simplification of the graph of separatrices G, which is
generated by a cross field C. A modified cross-field C ′ is trivially induced from the
simplified graph of separatrices. Notwithstanding the dramatically simpler graph
that it generates, C ′ is similar to C (see Sec 3.2.1).

2. A practical way to implement the above algorithm on a pure-quad semi-regular mesh-
ing Q, which is taken in input as a way to represent C: edges of Q are aligned with
directions of C, and irregular points of Q correspond to singularities of C . All the
basic operations and the measurements of the algorithm can be easily stated in this
scenario (see Sec 3.2.2).

3. A new kind of parametrization domain D, consisting of a collection of axis-aligned 2D
rectangles with predefined side-to-side manifold connectivity. This type of domain
arises naturally from a graph G induced by C, and it exhibits an high degree of
simplicity by construction. Global smoothing of an existing parametrization defined
over D, and quad remeshing (see Sec. 3.2.3).

Contributions 1 and 3 could be adopted independently in different scenarios. In the follow-
ing, we integrate all three contributions in a pipeline, ultimately aimed at parameterizing
a semi-regular quad mesh over a simple domain.

Overview Our pipeline consists of the following phases:

1. Input: an initial semi-regular quad-based domain Q;

2. A graph of separatrices G is trivially extracted from Q (Fig. 3.1, left);

3. Graph simplification: a new “disentangled” graph of separatrices G′, defined over Q,
is constructed from G (Fig. 3.29, center);

4. A “simple” abstract domainD is constructed fromG′, as well as an initial parametriza-

57

tion f : D → Q (see Sec. 3.2.3.3);

5. Global smoothing: parameterization f is globally smoothed (see Sec. 3.2.3.3).

A new semi-regular remeshing (or embedded domain) Q′ can be found by applying f to
a regular sampling of D. Mesh Q′ is naturally partitioned into few rectangular regions
corresponding to the various faces of D. See the image on the right side of Fig. 3.1.

Final quad-mesh Q′ looks at first similar to the original quad-mesh Q, in terms of density,
alignment to geometric features, regularity and so on. In particular, Q′ and Q always share
the same number of irregular points. However, the merit of Q′ over Q becomes evident if,
for example, one tries to partition their quads into regular rectangular regions of n × m
quads (see fig. 3.1). Thanks to a better alignment of irregular points, quads can be grouped
in far fewer regions in Q′ than in Q.

3.2.1 Cross-field topology simplification

In this Section, we describe an algorithm to “disentangle” the graph G of the separatrices
induced by an input cross field C, producing a simpler but still consistent graph G′. by
reducing its number of crossing nodes, hence of arcs and faces, while maintaining the
same set of singularities, each with its own index and corresponding number of incident
separatrices.

This implicitly produces a modified cross field C ′ that has G′ as separatrix graph. We strive
to keep the differences between C ′ and C small, even if G′ is dramatically simpler than G.
Specifically, C ′ and C share identical irregular points (of the same order).

In terms of parametrization, as discussed, this means that we trade some alignment for
a simpler domain topology. The algorithm aims at maximizing graph reduction, while
minimizing deviation from the original cross field. A unique parameter sets the relative
importance of topology simplification and faithfulness to the cross field.

3.2.1.1 Preliminaries

Let C be a smooth cross field defined on a 2-manifold M . Field C associates to a point
p ∈M four orthogonal directions on the tangent plane T (p) of M at p. One unary vector on
T (p) is sufficient to describe C at p, the other three directions being obtained by rotations
of such vector by multiples of π

2
. For all general definitions and properties about cross fields,

we refer to [RVLL08]. We assume that C has only a finite set S of isolated singularities.
For the sake of simplicity, we assume that such singularities may just have indices +1

4
, −1

4
,

+1
2
, or −1

2
, corresponding to the most common cases. Our method can be easily extended

to work also with singularities of higher order, though. Each point of M , which is not a

58

singularity of S, will be said to be regular.

A streamline of C is a line on M that is tangent/orthogonal to the directions defined by C
at each point.

A streamline with endpoints at singularities is called a separatrix. Field C is regular within
each patch, i.e., patches are actually “gridded” by the streamlines of C.

For a singularity of index +1
2
, +1

4
, −1

4
, or −1

2
, there are exactly 2, 3, 5, and 6 incident

separatrices, respectively. The network of separatrices is a graph embedded on M , describ-
ing the topology of C. Separatrices cross at a finite set X of regular points of M , called
the crossing nodes. Only two (possibly not distinct) separatrices can cross at each node.
Crossing nodes subdivide separatrices into arcs of a set E. The planar graph G = (V,E),
where V = S ∪X subdivides M into quadrangular patches.

For each singularity v ∈ S, let s1, . . . , sk be the separatrices incident at v, and let tv,si be
the unit tangent vector of separatrix si at v, pointing outwards v in the direction of s.
Each vector tv,si is called a port of v.

By design, the simplified graph G′ = (S ∪ X ′, E ′) will have the same set of irregular
points, ports, and separatrices of the original graph G = (S ∪X,E). The objective of the
simplification is the reduction of the number of crossings |X ′| (and thus of edges |E ′|).

3.2.1.2 Graph energy

Given the graph G of separatrices, we aim at obtaining another graph G′ = (V ′, E ′) such
that V ′ = S ∪ X ′, with |X ′| < |X| and having the same features of G: nodes of S
maintain the same ports; nodes of X ′ are regular; patches induced on M are quadrangular;
separatrices are smooth lines defined by chains of arcs.

We introduce a measure of “drift” and “extension” for a line l on M . Drift δ(l) measures
the misalignment of l with respect to C. Extension η(l) measures the length covered of l
following C.

Assume l is parametrized by arc-length: l : (0;λ(l)) → M , where λ(l) is its total length.
The δ(l) and η(l) are defined as

δ(l) =
∫
l
| sin(θ(t))|dt, η(l) =

∫
l
cos(θ(t))dt,

where θ(t) is the angle between∇l(t) and the closest unit vector (one out of four) at C(l(t)).

The energy of a graph is the sum of the energies associated to all its separatrices. The
energy of a separatrix s is given by the weighted sum of its extension and its drift:

kδ(s) + η(s)

59

with a parameter k setting the relative importance of the two terms. The first term
forces the graph to follow the original field C. The second term is minimized when shorter
separatrices are used, which implies a simpler graph with less crossings. We could penalize
directly the (discrete) number of crossings, instead of the separatrix estensions. However,
the two terms of energy as defined above use the same unit of measure (metric length),
thus making k independent of rescaling. Parameter k is the only one in our framework,
and balances the need to preserve the initial field C with the amount of simplification.

Empirically, we found a good value of k to be 5, which was used in all our experiments.

3.2.1.3 Graph reduction algorithm

In the initial graph G, which follows C exactly, there is no drift, and the total energy is
given by the sum of the extensions of the separatrices, which for each separatrix amounts
to its (geodesic) length.

Our algorithm follows a greedy strategy, trying to reduce the energy of the graph by
substituting some of its separatrices with different lines, while maintaining its topological
structure consistent.

Hard constraints may be set, e.g., by “freezing” those lines lying on sharp creases. On
the other hand, soft constraints given by the drift component of energy are aimed at
maintaining the output close enough to cross field C, wherever small modifications are
allowed, like in smooth areas or at smooth creases.

The algorithm performs a sequence of simplification cycles, each consisting in a sequence of
moves : an opening move; a sequence of (zero or more) continuation moves; and a closing
move.

Each move is composed of at most two sub-operations: an opening move consists of a dele-
tion sub-operation; a continuation move consists of a deletion sub-operation, immediately
followed by a creation sub-operation; a closing move consists of a creation sub-operation.

The deletion sub-operation is simply the removal of a separatrix. One open port is
created at each end, i.e., two ports remain with no associated separatrix. A graph is
consistent only if it has no open ports.

The creation sub-operation connects two open ports with a new separatrix, thus closing
them. The new separatrix is plotted over the surface: it starts from from an open port,
it may cross other separatrices, and it ends at the targeted open port (never crossing any
other singularity). At both ends, the new separatrix matches the tangent directions of the
open ports it connects to.

Some constraints must be fulfilled when the new separatrix l is traced. We impose the

60

Figure 3.2: Two open ports (left) can be connected with several different separatrices
traveling in the same corridor: the separatrix minimizing the energy is selected (depending
on the field, not necessarily the shortest one).

drift to be monotonic, i.e., such that θ(t) is either positive (right drift) or negative (left
drift) along the whole line. We also impose |θ(t)| < π/4, posing a limit on the accepted
discrepancy. This means that the cross field direction (one out of four) more closely
matching ∇l can only change with continuity over l. In other words, l is not allowed to
switch the direction of the field it is aligned to.

There can be several ways at which the new separatrix can be drawn, even very different
from each other: the one with the least associated energy is selected (see an example in
Fig. 3.2).

3.2.1.4 Selecting moves

A cycle starts with a consistent graph without open ports. The opening move creates two
open ports; a continuation move creates two more open ports (separatrix deletion), and
immediately closes other two (separatrix creation), so that a total of two ports remain open
during the entire cycle; the closing move closes the two open ports, bringing the graph back
to a consistent state.

Note that a deletion sub-operation necessarily decreases the total energy of the graph
(removing the contribution of the deleted separatrix), whereas a creation sub-operation
necessarily increases it (adding the contribution of the new separatrix). Therefore an
opening move always decreases energy, and a closing move always increases energy (but it
is necessary to close the cycle). A continuation move changes the energy of the difference
between the deleted and the created separatrix energies, which can be positive or negative.

We employ a greedy strategy to pick moves. When the cycle is started, there is one possible

61

w

v'

v''

t'1
t1

t''1

s''

s'

v
t

Figure 3.3: The corridor of an open port t at v: singular nodes v′ and v′′ on the walls can
be connected to t with a continuation move, which would respectively first delete separatrix
s′ or s′′, then connect t with v′ or v′′. In case the other open port at w is reached along the
corridor, then a closing move is possible, which connects t with w.

opening move for each separatrix (which deletes it); we simply pick the one that deletes
the most energetic separatrix.

When two open ports are present, all possible continuations and/or closing moves are found,
as explained in the following subsection. The effect of each move on energy is evaluated
(see sec. 3.2.1.5). A potential move is considered valid only if, after performing it, the
total change of energy of the current cycle remains strictly negative. This guarantees that
overall energy is decreased by the cycle.

If a valid closing move is available, it is always preferred over any continuation moves. This
move closes the cycle, and a new cycle can be started by selecting the opening move again.
If no valid closing move is available, we choose the move, among valid continuation moves,
that decreases the energy the most (which sometimes can be an energy increasing move).
If no valid move is available, a backtracking mechanism is triggered (see Sec. 3.2.1.6).

3.2.1.5 Enumerating continuation and closing moves

Let t be an open port (see Fig. 3.3). In order to maintain a consistent structure of graph
G′, any new separatix starting at t must necessarily be contained in a corridor bounded
by two chains of edges, called the walls. The left wall of the corridor is defined as follows
(refer to Fig. 3.3). Let tl be the port next to t by rotating counterclockwise about its
node, let t′l be the port opposite to tl on the same arc, and let t′′l be the port next to t′l by
rotating counterclockwise about its node. The left wall starts at t′′l ; it continues at each
next node by skipping one port in counterclockwise order, and taking the next port; and it

62

Figure 3.4: A simple example of the graph simplification algorithm in action. The surface is
shown reflected in the floor to make its lower face visible. The algorithm starts from a cross-field
with eight 1/4 valencies, for a total of 24 ports, connected by 12 separatrices, which cross 10 times,
dividing the surface in 16 rectangular patches. Valid configurations are pointed by gray arrows.
The algorithm performs two cycles: each cycle starts with a opening move (“op”), a single (in
this case) continuation move (“co”), and finishes with a closing move (“cl”). In this specific case,
the algorithm removes all the crossings, producing a graph where only 6 rectangular patches are
needed to cover the object. A third cycle is then attempted (not shown), in which a total of 54
moves are performed and eventually rolled back. The algorithm then returns the rightmost shown
configuration. See attached movies (and result images) for more complex examples.

stops when reaching either the node of t or the node of t′′l . The right wall of the corridor is
defined analogously. Ports skipped at intermediate nodes along the walls connect opposite
walls through transversal arcs.

If the other open port p lies along one of these arcs, and it is directed towards the beginning
of the corridor, then a closing move which connects t to p is reported as possible. In this
case, the end wall of the corridor is made of the two transverse arcs emanating from p.
Otherwise, the corridor is circular and it ends at one of the two transverse arcs emanating
from t itself. In the latter case, the corridor bounds the search space for the new separatrix
in a continuation move. For each port p stemming from singular nodes that lie on walls
and point towards the beginning of the corridor, there is a possible continuation moves that
connects t to p. This move consists in the deletion of the separatrix currently starting
from p, followed by the creation of a separatrix connecting port t to p.

3.2.1.6 Exploring the space of solutions

If no valid move is available, i.e. when even the best one would result in a negative overall
score for the current cycle, then the last performed move is rolled back. The cycle continues
by picking the next valid move at that configuration, if it is available. Else, another rollback

63

Figure 3.5: Preservation of creases. From the left: initial graph; graph simplified by
hard constraints on creases; graph can be simplified more without constraints, but some
creases are lost; related domains just after simplification; final domain of parametrization:
creases lost during unconstrained simplification can be recovered through snapping during
the smoothing phase.

is performed, and so on.

Iterating this simple strategy is equivalent to a depth-first visit of the tree of possible states
reachable by valid moves: the root is the consistent graph at the beginning of the cycle,
intermediate nodes are inconsistent graphs, and links are valid moves.

This search for a closing move can be either successful or not. If a valid closing move
is found, then it is performed and the current cycle is over. The reached valid graph is
necessarily different and it has a strictly minor energy than before. After that, a new cycle
can be started.

Conversely, if the search fails (this happens when there are no opening moves left at the
root of the tree) the algorithm is over, and the current graph (which is consistent) is
returned as the final result.

The non-negative energy reduction constraint serves as a pruning of the tree during the
search. In theory, the number of reachable nodes of the tree is still gigantic, but the
number of possible states is not, so a dynamic programming approach makes an exhaustive
search feasible. A graph with n ports can be connect them (pairwise) in only n!

(n/2)!2n/2

different ways, the vast majority of which is not reachable by allowable moves. We hash
each such configuration, and reject any move that would produce a configuration that
has already been seen, during the simplification process, with a lower or equal associated
energy. The algorithm is greedy and it does not give any guarantee of always returning
the best configuration, but in practice it dramatically improves any input configuration.

3.2.1.7 Crease preservation

For surfaces with crease angles, like mechanical objects, it can be important that separa-
trices pass though creases.

64

In this algorithm, it is easy to prevent losing separatrices which are aligned to creases,
simply by tagging them and disallowing any opening or continuation move which would
remove them (see for example Fig. 3.5). This is a very safe option, but reduces the degree
of freedom of the algorithm, and produces a less simplified graph.

Another viable strategy which is sometime available is to let crease separatrices be first
deleted and replaced in this phase, and let other close separatrices snap into their place in
the smoothing phase, which is described in Sec. 3.2.3.

3.2.2 Implementation on semi-regular quad meshes

We show a practical implementation of the graph reduction algorithm which takes as input
a semi-regular quad mesh M , which implicitly provides a discretized cross field C. Edges of
M represent directions of C. Irregular vertices of M represent singularities of C, and edges
stemming from them are their ports. We further assume that, as it commonly results from
remeshing algorithms, all edges of M have approximately the same length. We approximate
this edge length as the unit length. In this setting, the algorithm described above can be
implemented in a simple and efficient manner.

Each separatrix s is composed of a sequence of edges of M . The initial graph of separatrices
G can be extracted trivially from M by tracing all chains of edges stemming from irregular
vertices. Any drifting separatrix generated during graph reduction is stored as a jagged
sequence of edges (see Fig. 3.6).

This strategy can be seen as problematic, since the separatrices that are drawn are not
smooth lines. However, exploiting the merits of the global parametrization which will result
from the simplified graph, it will be easy to remove these local defect in a subsequent phase
(see Sec. 3.2.3).

Its length and drift can be easily computed by a simple count of how many edges agree/disagree
with the reference direction of the starting port.

A corridor is traversed by following the chain of edges stemming from the open port t.
Whenever a transverse separatrix s of G′ is met along the corridor, then the two walls of
the corridor at the intersections with s are tested for potential candidates to connect t;
the possible presence of the other open port along the segment of s within the corridor is
also tested. If a wall is hit during traversal of the corridor, the direction of traversal is just
drifted opposite to such wall.

65

Figure 3.6: On a quad mesh, a drifting separatrix s′ of G′ consists of a chain of either
field-aligned or trasverse edges of M . The one depicted here has a value of extension of 24
units, and a value of drift of 8 units.

3.2.3 Parametrizations over abstract quad-mesh domain

A graph of separatrices G over mesh Q partitions the surface of Q into rectangular patches.
Each patch can be easily parameterized over a flat, axis aligned rectangle Di. Let D be the
collection of all D1, D2, · · ·Dn, let f : D → Q be the global parameterization, and φ = f−1

be its inverse.

As we will discuss, D is very appealing in terms of simplicity; moreover, f is aligned by
construction to the cross field C ′ associated with G. These two facts constitute our main
motivation for the graph-simplification algorithm of the previous section.

This Section discusses the properties of a parametrization domain of this kind, and shows
the operations that can be performed over it, including global smoothing. The operations
discussed in this section have the following aim: remove jagged artifacts introduced by the
algorithm in 3.2.2; compute a smooth cross field over M (whereas tracing separatrices only
defines it along these lines); optimize the placement of singularities and cross points (to
comply with the new graph); optionally, recover of lost feature lines.

Even if Q is a quad mesh, in this section it is easier to consider the triangle mesh M
obtained from Q by means of diagonal splits. This is no limitation however, because the
connectivity of Q is unaffected: edges of M which are quad diagonals of Q can be tagged
as such and the quad connectivity of Q can be recovered at any time.

3.2.3.1 Construction of initial parameterization

As commonplace, a parametrization over M is defined by discretely sampling its inverse,
e.g., by assigning an explicit parametric position pi = φ(vi), pi ∈ D to each vertex vi of
M . This per-vertex assignment can be propagated, by linear interpolation, over the entire

66

M , because D allows for interpolations, even for triangles whose vertices are scattered
in different patches. The only necessary assumption is that, for a triangle t in M , φ(t)
is not so large to span a set of several different domains of D not sharing a vertex (see
Sec. 3.2.3.2).

Vertices of M are separated in disjoint groups surrounded by four arcs of the graph G.
Within each group, all vertices are assigned to a different rectangular domain Di, and each
arc surrounding the group is assigned to a corresponding edge of Di.

A vertex vi is considered a “border” vertex if it shares an edge with any vertex vj, such
that pi and pj belong to different domains. When this happens, the edge separating pi and
pj is identified, as well as a parametric position within that edge. Positions pi and pj are
determined inside their respective domain Dk and Dh, at the corresponding position of the
appropriate border of Dk and Dh, respectively.

When parametric positions of all border vertices are set, they are fixed and the positions of
non-border vertices are found by applying a single-patch energy-minimization parametriza-
tion technique inside every patch. We use [JSW05], but many other methods could be used
in its place. This method tends to produce conformal mapping but, due to the shape and
size similarities between the Di and φ(Di), it also delivers a certain degree of isometry.

The dimensions of Di in parametric space are determined using a separate procedure,
described in Sec. 3.2.3.5.

3.2.3.2 Transition functions and interpolation domains

A transition function is associated to each edge j of each domain Di, consisting of a rotation
by a multiple of π/2 and a translation. We call the domain D abstract in the sense that,
even if it is endowed with a manifold connectivity (including face-face connectivity and
shared vertices), it is not embedded in Euclidean space. Similarly to what is done in
[PTC10] for triangular domains, interpolation-domains can be easily defined over D, and
they can be employed to allow interpolation between points in D lying in different patches.

An interpolation domain Ei is a 2D region where a set of k contiguous patchesDa1 , Da2 , · · ·Dak

are mapped by into one bigger patch, and it is associated with an invertible function
gEi

: ∪j∈(1..k)Daj → Ea. Functions g are expressed in closed forms and are easy to evaluate
in both ways, mapping each domain Dai into Ea.

“Edge” interpolation domains Ee
i unify two adjacent patches of D over the shared border;

“Vertex” interpolation domains Ev
i , unify n patches around a vertex (see Fig. 3.8 left). For

domains around edges and regular vertices, the associated function gi is simply an appro-
priate rigid roto-translation. For irregular vertices of valency k, g includes an exponential
map (with exponent k/4), which is conformal (see Fig. 3.8 right). For completeness, we

67

Figure 3.7: Leftmost image: mesh M is partitioned into f(D1), (D2), · · · , (Dn) (each
vertex v is coded according to domain φ(v), but triangles connecting fixed vertices are
darkened). Other images: the same is repeated using four different set of domains
E1, E2 · · · , (Em), partitioning of D. Note that each vertex of M is not a fixed vertices
in at least one of the four partitions.

also define a trivial “Face” interpolation domains Ef
i which is identical to a single patch

Di; the associated function gi is the identity. There is exactly one Edge domain for each
shared edge of D, one Face domain for each patch of D, and one Vertex domain for each
shared vertex of D.

An interpolation domain allows to interpolate, in parameter space, between a pair of points
p0, p1 ∈ D, as long as they belong to two domains D0 and D1 which share at least one
vertex. The interpolation can be computed as g−1

a (I(ga(p0), ga(p1))), where I is the common
interpolation operator (see Fig. 3.8 top).

3.2.3.3 Global smoothing of the parametrization

Another natural use of interpolation domains is the global smoothing of a given parameter-
ization. This is done in a sequence of passes. The idea is that, at each pass, some vertices
are kept fixed and their positions will not be optimized, but these will be necessarily
optimized in subsequent passes.

At each pass, we adopt a different set S = {E0, E1..Ei} of interpolation domains such that
each patch Di belongs to exactly one interpolation domain. A simple heuristic is adopted
to determine set S. Starting from an empty set S, vertex domains EV

0 are inserted into
S, only if they are composed by patches not already included in any Ek ∈ S. The process
is repeated for Edge domains, and finally the isolated domains Di still not included in an
Ek ∈ S are inserted as Face domains. Before each pass, we keep a count, for each edge and
each vertex of D, of the number of consecutive passes that element lies on the boundary
of the interpolation domain embedding it. Such count is used as a priority to select the
vertex and face domains.

68

D

E1
v

E2
e

B

A

C
D

A

B C

E

F E3
f

F

D

gE1

gE1

g-1E1

A
gE2

gE3

g-1E2

g-1E3

gE1

g-1E1

gE1

g-1E1
G

H

H

E

N
G

N
F

M
G

E1
v

E1
v

H

N
M

 H

Figure 3.8: Middle: a domains D composed of patches D1 · · ·Dn, marked by calligraphic
uppercase letters. Left, from top: an example of a Vertex, Edge and Face interpolation
domain, and associated functions g. Right, from top: other examples of Vertex domain for
vertices of D with valency 3 and 5 respectively. Top right: an interpolation domain used
to define the interpolation between the two red dots ∈ D. The result of the interpolation is
the green dot in D.

Figure 3.9: Two semi-regular meshes obtained by resampling the parametric domain
Left: parametric domain resulting from the simplification of Fig. 3.4: patches are separated
by visibly jagged lines. Right, after multiple session of global smoothing (see Sec. 3.2.3.3),
the jagged lines are gone, and irregular points moved to aligned, optimized positions.

69

For a vertex vi with associated parametric position pi inside Dj, a position p′i into one Ek is
found by p′i = gk(pi). Again, vertices of M connected by edges of M to vertices in different
interpolation domain are fixed, and the other are smoothed locally inside the respective
interpolation domain. After the smoothing, vertices are remapped into D by the functions
gEi

of respective domain, and a new pass is started.

A formal demonstration is omitted for space reasons. A trace is that, at each pass, functions
g and their inverse preserve conformal energy, and the smoothing operation monotonically
decreases it. Results of this smoothing process is depicted in Fig. 3.10 and 3.9.

3.2.3.4 Recovering lost feature lines

As mentioned in Section 3.2.1, we can choose not to preserve creases in Q (and therefore
in M) during the graph simplification. When this is the case, we can demand to the
smoothing phase the task of realigning patch borders to the geometric feature of M .

Specifically, this can be done when the parametrization is being optimized over a interpo-
lation domain. Edges of M tagged as feature edges can be snapped, and then constrained
to lie on a 2d straight internal line l = g(e), e being the set of points in D which lie on the
border of the appropriate patch Di.

3.2.3.5 Isometry

Each 2d rectangle in the domain D is assigned to an extension in each dimension. The
dimensions can be chosen to maximize the isometry of mapping f , by solving a system
with just two variables. For better results, this process is interleaved to the smoothing
passes (Sec. 3.2.3.3), because, during the smoothing, the portion of M mapped inside each
patch of D can vary.

3.2.4 Results

In this section, we show a gallery of results obtained on several datasets commonly used as
benchmarks. Our input fields come from quad meshes either kindly provided by the authors
of [BZK09] (drill-hole, fandisk, fertility, joint, rockerarm), or produced with an independent
implementation of the same method (bimba, bunny, cube-blob, fertility-sym, holes3, kitten)
and cover a spectrum of mechanical and natural objects, simple and complicated shapes.
Table 3.1 provides statistics on the datasets and results. For each input mesh we provide:
its number of facets; the number of irregular and crossing nodes of the graph of separatrices
and the number of domains induced by such a graph; the number of crossing nodes and
domains for the simplified graph.

70

Figure 3.10: Smoothing: an initial parametrization is computed by assigning vertices
of the input mesh to domains induced from the simplified graph (left); parametrization is
smoothed to make it conforming (right).

Models Singular Original Graph Domain Simplified Graph Domain
Facets nodes Crossing nodes patches Crossing nodes patches

holes3 (Fig.1) 36487 16 7729 7749 0 20
cubeblob (Fig.14 top left) 9146 56 5546 5600 24 78
fertility (Fig.13 left) 3357 48 2217 2271 199 253
fertility symm. (Fig.13 right) 5785 46 4546 4598 79 131
kitten (Fig.14 mid left) 31198 30 31168 31198 49 79
bimba (Fig.7,11) 31618 26 31594 31618 58 82
bunny (Fig.14 bottom left) 35862 43 33938 33979 83 124
drill hole (Fig.14 middle) 3077 26 1344 1368 58 82
joint (Fig.12) 8804 23 473 498 87 112
fandisk (Fig.5) 764 30 380 408 60 88
rockerarm (Fig.14 top right) 9413 36 4488 4524 62 98

Table 3.1: Statistics on datasets and graph simplification.

In Fig. 3.14 we show results of the simplification phase from two datasets also used in
[BLK11], for comparison. In the drill-hole dataset, exactly the same input mesh has been
used, and our result provides a simpler domain. In the rockerarm dataset, a finer mesh has
been used, which provides a more entangled input field. In spite of that, our result also
provides a simpler domain. In both cases, alignment is preserved. Note that we just depict
the graph of separatrices: some lines are jagged because they are traced in a discrete way
on the underlying mesh. Jags are eliminated with the subsequent phase of smoothing, as
shown in results from the same datasets in Fig. 3.13.

In Fig. 3.10 we show the effect of smoothing on the bimba dataset. Fig. 3.13 shows results
from the two phases of the algorithm on several other datasets. In Fig. 3.11 we show
how sharp creases can be preserved by freezing them during simplification. Note that
also sharp creases that were not captured by separatrices, like the border of the big hole
in the left image, can be recovered during the smoothing phase thanks to the snapping.
Finally, in Fig. 3.12 we show how results can be improved by providing a better placement

71

Figure 3.11: Sharp features are preserved either by hard constraints during simplification,
or by snapping during smoothing.

Figure 3.12: A better layout of singularities helps obtaining a simpler domain and a better
remeshing.

72

Figure 3.13: Results of our algorithm on several datasets. For each dataset, the input
graph of separatrices and a remeshing colored with faces of the resulting base domain are
shown (input graphs are depicted in previous figures for some datasets).

73

Figure 3.14: Graph simplification: input the graph of separatrices may be more or less
entangled, in all cases our graph reduction algorithm manages to dramatically reduce the
complexity of the domain while preserving alignment to the input field.

of singularities of the cross field. Results on the left side are taken from an input mesh
obtained with the original Mixed Integer algorithm (dataset fertMI); results on the left
side are obtained from another dataset which has been computed by placing singularities
of the cross field more symmetrically with respect to the shape (dataset fert-sym). In both
cases, the initial graphs are extremely entangled (most edges belong to separatrices). It is
evident, especially from the top view, how a better placement of singularities allow us to
obtain a smaller number of simpler domains, and a better remeshing (see also statistics in
Table 3.1).

3.3 Symmetric N-symmetry Fields

Many geometry processing applications require the construction of N-symmetry fields on
surfaces, i.e., fields that associate to every point a set of N unary vectors forming equal
angles between radially consecutive directions. For example, a direction (2-symmetry)
field can be used to guide texture placement or texture synthesis, as well as for anisotropic
smoothing or text placement; a cross (4-symmetry, 4-Rosy or 4-tensor field) field is useful
for constructing quadrangulations and for anisotropic remeshing, as well as for supporting
non-photorealistic rendering.

In most cases, it is desirable for the fields to respect the symmetries of surfaces: meshes
respecting surface symmetries are visually preferable and reduce deformation/animation

74

artifacts related to asymmetric meshing; patterns and small-scale geometry (for example,
fish scales or fur) are often required to follow the shape’s symmetries. Figure 3.15 shows
field-aligned parametrization using cross-field constructed with our method, side by side
with the Mixed-Integer quadrangulation (MI) field of Bommes et. al.[BZK09]. We highlight
two integral lines to emphasize the symmetry aspect of the fields.

The goal of this section is to provide an algorithm for the construction of quasi-symmetric
cross-fields on surfaces, which strikes a balance between three important properties of fields:
symmetry, smoothness, and alignment with local geometry; we found this combination to
be an essential requirement for successful field construction: while coarse global symmetry
is highly desirable, alignment with local, possibly non-symmetric features is essential as-
well, and smoothness must be always guaranteed.

To construct symmetric fields, we need to choose a class of surface symmetries, that is,
mappings of the surface to itself identifying symmetric points. Most previous works con-
sider isometric maps (intrinsic or extrinsic, possibly with additional uniform scale) as the
central model for symmetries, and make the assumption that the relevant symmetries are
close to isometric. We formulate our algorithm for a broader class of generalized symmetries
without making explicit assumptions about isometry.

There are three-fold advantages to this approach: (1) our method for symmetric field
construction is less dependent on specific assumptions about the symmetry maps; (2) we
can handle significant local deviations from isometry gracefully; and (3) in the case of
genus zero surfaces, the concept of generalized symmetries and their properties lead to
a robust and efficient algorithm for computing symmetry maps. While our symmetric
field construction algorithm can use symmetry maps produced by different algorithms, we
demonstrate that the new algorithm yields substantially better quality.

To summarize, the main contributions of this Section are:

1. the introduction of generalized symmetries, with focus on generalized reflections, and
invariant N -symmetry fields;

2. an algorithm for the construction of quasi-symmetric N -symmetry fields, which main-
tains alignment to local (possibly asymmetric) features - the single tunable parameter
is used to adjust the relative importance of symmetry vs smoothness in the output
(see Figure 3.16);

3. an algorithm for computing generalized intrinsic reflection maps of surfaces of genus
zero, providing robust input for the symmetric field computation algorithm.

75

3.3.1 Related work on symmetry detection

Several techniques based on voting have been proposed in the literature to detect either
global or partial extrinsic symmetries. In [PSG+06, CDPB08], symmetry planes are de-
tected, while symmetric patches are found in [MGP06]. PIRS [XZT+09] extends the voting
approach to find stationary lines of partial intrinsic symmetries. However, PIRS does not
provide a dense map of correspondences, and the detection of the stationary line for ap-
proximate (non-isometric) symmetries is not stable enough to support our algorithm.

Other techniques reduce intrinsic symmetry to extrinsic by “straightening” objects through
deformation. [Mit07] proposed a fully automatic method, which works for symmetric

Mixed Integer Our Result

Figure 3.15: Field-aligned parametrization of the Bimba model using the symmetry field
construction method developed in this section, and using the MI technique of Bommes
et. al.[BZK09]

76

Figure 3.16: Global symmetry vs local alignment on a synthetic model: (left) non-
symmetric field obtained with plain MI [BZK09]; (center) global symmetric field transfers
singularities also to the smooth side; (right) local alignment allows to better trade symmetry
for smoothness.

objects with multiple extrinsic symmetries, based on [MGP06]. A similar, approach is
proposed in [KAG+09, GAK10], requiring manual input for the starting phase. These
approaches do not provide a dense map of correspondences.

In [GPF09, PGR07] some of the above methods are combined with mesh simplification
techniques to produce symmetric triangle meshes.

A few other works address intrinsic symmetry through embedding methods that either
reduce intrinsic to extrinsic symmetry [OSG08], or factor out symmetry by mapping sets
of symmetric points to a single point in an embedding space [OMMG10, LCDF10]. These
techniques are fully automatic; they may provide a dense (in a vertex-to-vertex sense)
mapping of symmetries; and they may be easily generalized to find the stationary line.
However, they are not robust to surface deformations that break isometry.

Embedding techniques, as well as voting techniques, do not exploit spatial coherence: point-
to-point symmetry is estimated without taking into account what happens at nearby points.
For this reason, they may be prone to errors such as false matchings and discontinuous
mapping, which may severely hinder the application of extracted maps for our purposes.

Most recent approaches exploit spatial coherence by using surface parametrization: [KLCF10,
KLF11] present fully automatic methods that first find sparse matchings of symmetric
points, and then apply a Möbius transform that realizes extrinsic symmetry in parameter
space, assuming a topologically restricted, conforming parametrization. These methods

77

can provide continuous mappings of symmetries, but they are prone to severe errors in the
presence of false matchings during the coarse phase.

To the best of our knowledge, approximate intrinsic symmetries in the non-isometric case
have been addressed only in [RBBK07, RBBK10] by using an alternative definition to the
one we present in Section 3.3.2. However, their definition (even in the continuous case)
does not imply a smooth diffeomorphism, and the derived algorithms are combinatorial in
nature and are meant more to assess the degree of non-isometry than to detect an explicit
map of symmetry.

Given a set of few symmetric landmark pairs, one can think of using inter-surface map-
ping methods for building the symmetry map. A common approach is to find a common
parametrization domain for the two surfaces [PSS01]. Later work [KS04, SAPH04] de-
veloped automatic algorithms to find a suitable base parameter meshes. However, these
methods are general and do not exploit the fact that the final map should be a symme-
try. For example, in case of bilateral reflective symmetry these methods will not force the
existence of a stationary closed curve, as we require for our field construction.

3.3.2 Symmetric fields

Symmetries on a surface are usually defined as isometric automorphisms: extrinsic sym-
metries preserve Euclidean distance, while intrinsic symmetries preserve geodesic distance.
The class of intrinsic symmetries trivially includes the class of extrinsic ones.

In practice, few surfaces have perfectly isometric symmetries, and deviations, sometimes
quite large, need to be allowed. A symmetry map may not be isometric but it may be
reduced to an isometry by a smooth deformation of the surface.

Since the symmetry map may not be isometric, looking for a map that is as isometric as
possible will certainly lead to errors spread over the entire surface. These errors may be
small but for our purposes even a minor error like mapping the tip of a finger to some part
in the middle of the symmetric finger cannot be tolerated.

To be able to handle such maps, we regard any smooth automorphism of a surface as a
symmetry, and focus on topological properties, as it is common in mathematical study of
symmetries of surfaces (cf. [FM11]).

We consider N -symmetry fields defined on 2-manifolds, as defined in [RVLL08], and we
study the properties that one such field must have to comply with a given symmetry on
its domain. In Section 3.3.4.3, we discuss the generalization to sets of symmetries.

78

3.3.2.1 Generalized reflections

We focus on reflections, which account for most global symmetries observed in real objects.
A reflection g and identity form a finite group of transformations, and each point has an
orbit with respect to this group consisting of two points. In the extrinsic isometric case, all
global symmetries for compact objects can be composed of reflections, as any 3D rotation
can be decomposed into three reflections. While objects with rotational but no reflectional
symmetries do exist, these are relatively rare.

Figure 3.17: A mode with non-isometric symmetry: color map represent symmetry and
stationary line is depicted in magenta; our algorithm computes a field that respects this
generalized symmetry.

A diffeomorphism g : M →M is a smooth and invertible map (which is also smooth) from
the surface to itself. M(g) denotes the stationary set of g, i.e., the set of points p of M for
which g(p) = p. For a point p on M , TpM is the tangent plane at p. The differential of g
at p, Dg : TpM → Tg(p)M maps tangent vectors at p to tangent vectors at g(p).

Generalized reflections. We adopt the following definition of a generalized reflection
(cf. Koszul [Kos65]):

79

Definition 1 A reflection on M is a diffeomorphism g, such that g(g(p)) = p for all
p ∈M , and the set of non-stationary points of g is nonempty and disconnected.

Stationary points of symmetry mappings g play a particularly important role in our con-
struction. For a generalized reflection g, it turns out that the local behavior near stationary
points is similar (although not identical) to the behavior of isometric reflections.

Lemma 1 Let g be a reflection. If p is a stationary point of g, then:

1. the differential Dgp has a stationary direction v;

2. for a choice of an orthonormal coordinate system on Tp the differential Dgp has the
form [

1 c
0 −1

]
.

3. [MZ55] There is a neighborhood U(p), and a choice of smooth coordinates h : U → R2

system on U such that g in these coordinates is a linear transformation Ag, i.e.

g = h−1 ◦ Ag ◦ h (3.1)

Proof. By Proposition 2, the differential Dgp at a stationary point p has two eigenvalues
−1 and 1 (see proof above). Let e1 be the eigenvector corresponding to eigenvalue 1: e1 is
a stationary direction of Dgp. Now let us assume a change of coordinate system on Tp that
aligns the first coordinate axis to e1. If we express Dgp with respect to the new frame, it
must necessarily have the form: [

1 c
0 d

]
.

Since p is stationary, we must have Dg2
p = Id, hence c + cd = 0 and d2 = 1. And since

detDgp = −1 we necessarily have d = −1.

In the proximity of the stationary line, Dg behaves as a linear reflection combined with a
shear, and the value of factor c determines the amount of shear. If a map is conformal it
follows that c = 0 and g is isometric at stationary points.

Global properties of generalized reflections are also similar to the familiar reflections about
a symmetry plane of an object [Kos65]. More specifically, the following proposition holds.

Proposition 2 If g is a reflection on M , then:

1. g is orientation-reversing;

2. the stationary set of g is a set of closed smooth curves on M (generalizes intersection
with the symmetry plane);

3. M ′ = M \M(g) consists of two connected components M1 and M2

80

4. g maps M1 and M2 to each other.

An important consequence of 2 is the following.

Corollary 3 For surfaces of genus zero (3.1) holds globally, i.e. for a generalized reflection
g there is a diffeomorphism onto the plane h : M → R2, such that g = h−1 ◦ A ◦ h, where
A is a reflection.

Proof. First, consider a stationary point p of g. As shown [MZ55], there is a neighbor-
hood U of p and a choice of smooth coordinates h : U → R2 system on U such that g in
these coordinates is a linear transformation Ag. It follows that Dg has the form V AgV

−1

where V is the differential of the transformation h. As Dg(p)2 = I at stationary point,
it follows that A2

g = I. All such matrices have two eigenvalues, and both its eigenvalues
satisfy λ2 = 1. If g is orientation preserving, then both eigenvalues are either 1 or -1. In
the former case, g is identity on U , i.e. any stationary point has an open neighborhood of
stationary points. On the other hand, the set of stationary points is clearly closed, as the
limit of any sequence of stationary points is stationary by continuity of g. We conclude
that an orientation preserving g is identity, which contradicts existence of non-stationary
set. If g is orientation-reversing, at every stationary point, its differential Dg and linear
form A has eigenvalues 1 and −1, and in h(U) the stationary set of A is a line `, corre-
sponding to the stationary curve h−1(`) of g. As this holds for any stationary point, the
stationary curve can be extended indefinitely to an embedding of the real line or a circle in
M , forming a connected component of the stationary set. As the stationary set is closed,
its connected components are also closed. But an embedding of a real line in a compact
manifold cannot be closed; we conclude that the stationary set consists of embeddings of
circles.

Consider a point p in one of the connected components M1 of the non-stationary set M ′

of M , mapped to a component M2. Consider the set of all points in M1 mapped to M2,
i.e. M1 ∩ g−1(M2). As M2 is both open and closed in M ′, so is g−1(M2) by continuity of
g. Thus, M1 ∩ g−1(M2) is also open and closed, so it has to coincide with all of M1 as M1

is connected, i.e. g(M1) ∈M2. As g(g(p)) is p, by a similar argument, g(M2) ∈M1, so M2

and M1 are mapped to each other, and g(M1) = M2. Consider a point p on the boundary
of M1. As locally g acts as a linear reflection, mapping one part of the neighborhood U
of p to the other, U has to consist of two disconnected parts from M1 and M2, i.e., any
point on the boundary of M1 separates it from M2. Then the union of M1, M2 and their
boundary is closed in M and has no boundary, i.e., it has to coincide with M .

We construct this type of global parametrization for genus zero surfaces in Section 3.3.4.

81

3.3.2.2 N-symmetry fields

A N-symmetry field v on the surface is an assignment to every point p ∈ M (excluding
a set isolated singularities) of N unit vectors v1, . . . , vN lying on the tangent plane TpM
and forming equal angles of 2π/N between adjacent vectors. The most common and useful
examples are direction fields, line fields and cross-fields (i.e., 1-symmetry, 2-symmetry and
4-symmetry fields, respectively), with 3-fields and 6-fields occasionally considered. We
primarily focus on cross-fields, but the algorithm described in Section 3.3.3 applies to any
value of N , and would be easily adapted to non-unit fields.

Transport of N-symmetry fields. To define N -symmetry fields that respect a sym-
metry map g, we need a way to compare the values of the field at different points. In
order to do this, we must be able to transport the symmetry field at a given point p to the
tangent plane at g(p). The differential Dg defines a natural map TpM → Tg(p)M for vector
fields. If Dg is orthogonal, then it can be trivially extended to transport any N -symmetry
field: the N vectors Dg vi(p) form a N -symmetry value (a set of N unit-length vectors
separated by equal angles). In a more general case of N -symmetry fields, Dg applied to
the component vectors of the field does not yield a new N -symmetry value unless Dg is an
isometry. Broadening the class of fields we consider is possible, but undesirable, as many
target algorithms expect orthogonal directions. Instead, we define an orthogonal transport
TpM → Tg(p)M associated with g, as the closest orthogonal transform to Dg. As g is
orientation-reversing, this transform is a refelection.

g

p�

M(g)M

u
v

Dgp(u)Dgp(v)

Rg
p(v) Rg

p(u)

p

TpM

Tp�M

Figure 3.18: Summary of notation for surface M with non-isometric reflection g. Or-
thonormal vectors u and v are transported to non-orthonormal orange vectors by differential
Dg and to orthonormal red vectors by its closest orthogonal transform Rg.

We map v using the closest orthogonal transform Rg to Dg, which can be obtained from
the unique decomposition

Dg = RgSg, (3.2)

where Rg is orthonormal and Sg is symmetric positive definite1.Note that, if g is an isom-
etry, we trivially have Dg = Rg.

1These decompositions can be computed, e.g., either via SVD: A = UΣV T , hence R = UV T and

82

Lemma 4 Rg(p) : TpM → Tg(p)M continuously depends on Dg, and if g is a reflection,
then for every p ∈M , and for any N-symmetry field v, we have v(p) = Rg(g(p))Rg(p)v(p).

Proof. Using the expression for Rg, we observe that it defines an analytic dependence of
Rg on Dg, unless det(Dg+DgT−Tr(Dg)I) = 0, which, as can be seen by direct calculation,
only happens if Dg is a similarity transformation. However, as Dg is orientation-reversing,
this is not possible. Since g2 = Id then Dgg(p)Dgp = I. Since at a point p, Dg = RgSg,

then Dg−1 = Sg
−1

(Rg)T = (Rg)TS ′ with S ′ = RgSg(Rg)T symmetric positive definite, so
the closest orthogonal transform to Dgg(p) is Rg(p)T , which implies the second statement
of the lemma.

We are now at a position to define the symmetric N -symmetry fields:

Definition 2 A N-symmetry field v is symmetric with respect to a symmetry map g if
either p and g(p) are both singularities of v, or

Rg
p(p)v(p) = v(g(p)), (3.3)

where Rg
p is the closest orthonormal transform to the differential Dgp at a point p, as

defined above.

N-symmetry fields on stationary lines. Symmetric N -symmetry fields have a very
particular behavior at stationary points as we describe next. The next corollary follows
from Lemma 1 and definition of Rg by observing that Dg at stationary points is a combi-
nation of linear reflection and shear and so Rg at that point is just a linear reflection:

Corollary 5 If p is a stationary point of g, then Rg : TpM → TpM is a linear reflection.

By definition, if v is a symmetric N -symmetry field, and p is a stationary point, then we
must have Rgv(p) = v(p). The above corollary also indicates that Rg is a linear reflection.
This imposes stringent requirements on field v.

Proposition 6 If v is symmetric with respect to a symmetry transform g and p is a
stationary point of g, then one of the following holds: (1) v has a singularity at p, (2) one
of the directions of v is the stationary direction t of Rg; (3) one of the bisectors of angles
formed by consecutive vectors of v is aligned with t.

Proof. Let us assume v is not singular at p, and let w be one of the N vectors of
v(p). Since v is stationary (as a N -symmetry field) for Rg, then Rgw must also be one

S = V ΣV T ; or through an explicit formula, Rg = B/sqrt|det(B)|, B = (1/2)(Dg+DgT −Tr(Dg)I), with
Dg expressed as a 2× 2 matrix in an orthonormal basis.

83

Figure 3.19: A field can have just two possible orientations at the stationary line: results
for a cross field either aligned with the stationary line, or rotated by π/4. Field singularities
are depicted by blue/red bullets.

of the vectors of v(p), i.e., w and Rgw must form an angle of 2kπ/N for some integer
k = 0, . . . , N − 1. Since Rg is a pure reflection about an axis t, this may happen only if w
and t form an angle of kπ/N .

The proposition implies that only two possible orientations at each point of the stationary
line for a symmetric field v. Moreover, by continuity of v, the same choice must hold at all
points along a connected component of the stationary line, unless it contains a singularity.
We will use this fact as a basis of our algorithm for computing a symmetric field. Figure
3.19 shows the two possible choices for cross-field at stationary curve.

3.3.3 Field symmetrization

Given a mesh M , a generalized reflection g, and a set of orientation constraints, our
algorithm computes an N -symmetry field v on M that is smooth, symmetric with respect
to g, and aligned with the orientation constraints. The objectives of symmetry and smooth
alignment to local shape features may be in conflict. Our algorithm provides a trade-off
between the two, with a smoothness parameter chosen by the user. In fact, symmetry
depends just on map g, while smoothness is highly influenced by the shape (more precisely,
by Gaussian curvature) of M , which may be arbitrary, also at symmetric points, if g is non-
isometric. The foundation of our algorithm is the algorithm [BZK09] for field optimization.

84

Algorithm outline. We assume that for the symmetry map g it is possible to: evaluate
the stationary set M(g) (realized as a set of segments on a subset of triangles); evaluate
the field transport Rg (as rigid linear transform between triangles t, t′); and evaluate the
orbit O(p) at any point p (for p ∈ t, we calculate g(p) ∈ t′, for some possibly other triangle
t′). The evaluation of such data in specific cases will be addressed in Section 3.3.4. Our
algorithm is not specific to a single reflection; we make no assumptions about the size of
the orbit, or the specific origin of the transport map. This allows us to apply it in the case
of sets of symmetries (Section 3.3.4.3).

Our method consists of the following steps:

1. Set hard orientation constraints at selected feature points.

2. Set additional hard constraints at the stationary curve of g, M(g) (excluding con-
flicts with constraints from 1), by fixing one of the two possible orientations of v at
stationary points (see Prop. 6), then extend field v to the rest of M by running the
MI smoothing algorithm. We found that constraining the field on stationary lines is
crucial for high-quality results.

3. Use field transport Rg (Equation (3.2)) to symmetrize field v, by averaging over orbits
(excluding orientation feature points and stationary points). Denote the output field
of this stage v̄.

4. Repeat Steps 2, to obtain the final field v using v̄ as soft constraint (this is where
the parameter controlling smoothness vs. symmetry comes in).

Next, we describe the discrete representations of the field, symmetry map orbits and trans-
port maps Rg.

Steps 1,2 - Constrained field optimization. Similarly to [RVLL08, BZK09], a dis-
crete field v is represented at triangle ti by an angle θi with respect to a local frame. With
each eij separating triangles ti and tj, we associate a constant angle κij and an integer
variable pij (period jump or matching). The angle κij is the rotation of the reference frame
from ti to tj. The period jump pij, determines the additional rotation 2πpij/N of the N -
symmetry field between values on triangles ti and tj. This rotation maps an N -symmetry
value to itself, so it needs to be encoded separately (cf. [RVLL08])2.

The smoothness energy of the MI algorithm is

Esmooth =
∑
eij∈E

(θi + κij +
2π

N
pij − θj)2. (3.4)

2We note that one can consider discrete principal connections instead of fields [CDS10], replacing
matchings with a more geometrically natural notion of holonomy angles; we prefer [RVLL08] formulation
as it allows for more natural handling of constraints.

85

Figure 3.20: Algorithm steps. From the left: input mesh with symmetry; after constrained
field optimization algorithm follows stationary line but it is not symmetric everywhere; after
symmetrization and final optimization field is fully symmetric. Red lines sow field flow;
circles highlight non-symmetric singularities that become symmetric after optimization.

Since variables θi and θj are real, while the pij’s are integer, optimization of the field v with
respect to Energy (3.4) is a mixed-integer problem. This problem has a space of equivalent
solutions: to make the minimizer unique, the value of pij is fixed at a subset of edges.

Feature constraints are given as a set of angles {θ̂i1 , . . . , θ̂ik} on a subset of triangles which
remain fixed during optimization; we add stationary lines constraints described below to
this set. A greedy mixed-integer optimzation algorithm is used for optimization. (see
[BZK09] for details).

Stationary set constraints. For all g ∈ G, the stationary set M(g) is given by a set of line
segments li on a subset of triangles of M . The direction of li is the stationary direction
of Rg at ti. We add a hard constraint by expressing the direction of li as an angle θ̂i
with respect to local coordinate frame at ti. Alternatively, the angle θ̂i + π/N can be
used, according to Prop. 6. This choice is left to the user and it must be consistent for all
triangles intersecting a given connected component of M(g). In our experiments, we always
constrained v to be aligned with the stationary line. Figure 3.19 shows results obtained
by using the alternative direction. Theoretically, it is also possible to have singularities
on the stationary line. In this case, the field on the stationary line might have both
orientations and the change between the two will happen on singularities only. It is not
easy to automatically decide where singularities should be placed on the stationary line
and in our experiments we always used a single orientation over the entire line.

86

Energy (3.4) is minimized by freezing all variables corresponding to hard constraints (see
[BZK09] for details). The result of this phase already improves over the standard MI in
terms of field symmetry in the proximity of the stationary line, while it does not warrant
symmetry far from it (see Figure 3.20 center).

Step 3 - Symmetrization by field transport. Field v is symmetrized by averaging it
over orbits of symmetry. We set the convention that field values are attached to triangles’
centroids ci ∈ ti.

Fuzzy orbits. Since discrete symmetry maps do not map triangles exactly to triangles,
we use the notion of fuzzy orbits (similarly to [LCDF10]) in order to define a symmetry
averaging operator. In particular, given a non-stationary triangle t, we define its fuzzy orbit
O(t) as the union of all triangles in its 1-ring and and the 1-ring of triangle containing
g(c). We assign a weight si(t) to every ti ∈ O(t) inversely proportional to its distance from
O(c) = {c, g(c)}, namely we set

s̃i(t) = Φ(min
c′∈O(c)

‖ci − c′‖),

where we picked Φ(r) to be a Gaussian with standard deviation equals the maximum of
the triangles’ 1-ring diameter. To define averaging, s̃i(t) is normalized to have a unit sum:

si(t) = s̃i(t)/
∑
i

s̃i(t).

Averaging over orbits. For every triangle t, we average the field values over the orbit O(t)
using the weights si(t) and the field transport Rg as follows.

For every t′ ∈ O(t) we transport the field value at t′ to t using Rt′,t. Rt′,t is defined as
Rt′,t = (Rg

t)
−1Rloc, where Rg

t is the field transport from t to the triangle t̃ containing g(c)
(c centroid of t), and Rloc is the closest rotation in 3D taking t′ to t̃. Following [PZ07],
we observe that the N -symmetry field can be represented in a given frame by a vector
w = [cos(Nθ), sin(Nθ)], eliminating the 2π/N ambiguity. Then, instead of transporting
the N -symmetry field vectors by (Rg

t)
−1 and then converting to the N -th power vectors w

can be transported directly by R−Nt′,t . The symmetrized value of the vector field is defined
explicitly by normalizing

wsym(t) =
∑
i

si(t)R
−N
ti,t
w(ti).

Step 4 - Optimization with soft symmetry constrains. Field v̄ obtained from the
previous step will be mostly smooth, but smoothness can be broken in some parts of M ,
namely:

87

• in the proximity of hard constraints, since the field is fixed at such triangles, while
it is possibly deviated by symmetrization at neighboring triangles;

• in the proximity of singularities and of their symmetric mates, since directions of the
field are arbitrary at singularities, thus symmetrization may produce invalid results.

Discontinuities may also introduce many undesirable singularities in the field. Therefore,
we smooth v̄ further by minimizing a modified energy, using values θ̄i as soft constraints.
Following [BZK09], we measure the local roughness of v̄ at each triangle ti as the constant-
weight discrete Laplacian of the field at ti:

δi = min
p̄ij

∑
tj∈Ni

(θ̄i + κij +
2π

N
p̄ij − θ̄j)/3,

where Ni contains the three neighbors of ti and the p̄ij can take values in 0, . . . , N − 1.
We note that this method is justified only for uniform triangulations, but we did not see
a significant difference in practice, and using dual-mesh discrete Laplacian results in less
stable behavior for badly shaped triangles.

Since there are just N3 possible combinations and N is a small number, the minimum is
computed in a brute force (combinatorial) way.

We define the symmetry constraint weight:

w(δi) = max(0, δ0 − δi)/maxi(δ0 − δ),

which is zero if roughness exceeds a threshold δ0. Again, assuming a uniform triangulation,
δ0 is the maximal rate of field rotation for the average triangle size.

Finally, we define the modified energy as follows:

Esymm = (1− α)Esmooth + α
∑
ti∈M

wi(δi)(θi − θ̄i)2, (3.5)

with the second term constraining the field values to be close to symmetric values. The
final result is thus obtained by minimizing Energy (3.5) with the same hard constraints
and the same mixed integer solver used in Step 2.

Parameter α is the main parameter of our method, and it is used explicitly to allow the user
selecting either a smoother or a more symmetric result. In Figure 3.26, we report results
obtained with different values of α. Note that α = 0 necessarily yields the same result that
we obtain after Step 1; while, as α approaches value 1, field smoothing is progressively
restricted just to areas where roughness exceeds threshold δ0.

88

Figure 3.21: Symmetry detection methods on a human with non-isometric deformation
of the neck. On right we show automatic methods: Blended intrinsic maps [KLF11], and
Partial Intrinsic Reflectional Symmetry (PIRS) [XZT+09]; note that these erroneously
extrapolate the dominant body symmetry to the head. On left, we use a set of coarse
correspondences (shown as black and red dots on the leftmost figure); we show GH-type
interpolation [MS04, BBK06], side by side with our generalized reflection map. Our map
is smooth and have analytic representation of the symmetry stationary curve.

3.3.4 Symmetry detection algorithms

Our construction of symmetric N -symmetry fields requires a generalized reflection mapping
g, as well as ways to evaluate its stationary set M(g), and its transport Rg, as described
in Section 3.3.2. The quality and precision of this transform, its stationary curve, and its
transport are crucial, because they guide the field construction directly.

In this section, we first show that existing symmetry detection methods do not meet
the needs of our algorithm. Then, we present a simple novel semi-automatic method for
detection of generalized bilateral intrinsic symmetries in genus zero surfaces; and a simple
embedding method to detect extrinsic symmetries on surfaces of arbitrary genus.

3.3.4.1 Intrinsic symmetry by fixed-point circle

In this section, we assume our surface M is of genus zero.

We have tested several existing automatic algorithms for intrinsic symmetry detection.
While on a number of models sufficiently close to extrinsically symmetric or perfect isome-
try these provide good quality symmetry maps, we found that for many shapes with clear
intrinsic symmetry, we could not get orbits and/or stationary lines and and/or transport
maps with sufficiently high quality suitable for our algorithm. For this reason, we decided
to require a small number of user defined correspondences. Even then, testings with dif-
ferent manifold interpolation methods was unsuccessful, and therefore we have developed
a novel method for intrinsic symmetry interpolation from a coarse set of given symmetric

89

points. The maps we compute are smooth and provide a stable set of inputs for our algo-
rithm: reliable orbits, smooth stationary lines and robust transport maps. At the end of
this subsection we describe in more detail relation to previous work.

Representing generalized reflection as linear reflection Motivated by Corollary 3,
we next describe a simple novel method to compute a generalized reflection g : M →M,
given as input several pairs of symmetric landmarks (correspondences) (pi, qi) ⊂ M ×M ,
i = 1, .., n. Since in addition to be able to evaluate g at every surface point of M we would
need an easy way extract the stationary set M(g) and the transport Rg, we will follow

Corollary 3 and compute a map φ : M → Ĉ (Ĉ is the extended complex plane3) that

transforms g to a simple global linear reflection in the extended complex plane Ĉ. That is,
if we denote σ(x + iy) = x − iy (the reflection w.r.t. the real axis) then, σ = φ ◦ g ◦ φ−1,
and equivalently,

g = φ−1 ◦ σ ◦ φ. (3.6)

This point of view has several advantages: 1) it provides a (global) linear representation
of the generalized reflection as a simple linear reflection σ; 2) it provides an analytic
representation of the stationary curve Im(z) = 0; and 3) it allows defining the operator
Dg (from which we extract the transport Rg) in the discrete case in a natural way (as we
explain below).

Note that using a per-vertex definition of a map g : M →M , mapping vertices to points on
triangles, it is not trivial to define Dg or extract the stationary curve M(g) = {g(p) = p}
in a robust way numerically.

From the purely topological point of view, there is much freedom in choosing g, φ that
satisfies eq. (3.6), even when given a set of landmarks {pi, qi}. To restrict the space of
possible maps, we add a natural constraint that if there is an isometric reflection that
interpolates the given landmarks, our map will reproduce it. [KLCF10] observe that if the

surface is mapped conformally to the extended plane ϕ : M → Ĉ, then perfect intrinsic
symmetries g : M →M has to be an anti-Möbius map over Ĉ, i.e., ϕ ◦ g ◦ϕ−1 = m̃, where
m̃(z) = az + b/cz + d, for some a, b, c, d ∈ C with ad− bc 6= 0. To obtain a symmetry map

for a set of landmarks mapped to Ĉ, [KLCF10] fits an anti-Möbius transform and uses GH-
type (Gromov-Hausdorff) interpolation. However, as the surface deviates significantly from
being perfectly intrinsically symmetric this approach will suffer from three main drawbacks
in our context: 1) it will result in non-continuous (and definitely not smooth) symmetry
maps; 2) the least-squared fitted anti-Möbius m̃ will not necessarily satisfy m̃2 = Id, nor

3The extended complex plane is the complex plane C = {x+ iy | x, y ∈ R} with infinity added to it,

that is Ĉ = C ∪ {∞}.

90

will it generically have a curve stationary set; and 3) it will not get us to the desired
representation where we have a linear reflection describing the symmetry g, as we required
in (3.6).

We propose a new approach with two key ingredients. First, we use anti-involutions, rather
than general anti-Möbius transformations, a subset of the anti-Möbius transformations
that satisfy m̂2 = Id [Sch79] which is consistent with our definition of generalized reflection
(Definition 1). An important property of anti-involutions is that they represent an inversion
w.r.t. a circle which is their stationary set m̂(z) = z (consistent with Proposition 2 and
Corollary 3). This stationary circle is our initial guess of the stationary curve. Second, we
will define our diffeomorphism φ using a smooth perturbation of the anti-involution. In
particular our algorithm consists of the following steps:

1. Calculate the conformal map ϕ : M → Ĉ of the genus zero mesh to the plane;

2. Transform the landmarks to the extended complex plane zi = ϕ(pi), wi = ϕ(qi),
i = 1, .., n;

3. Fit (in the least-squares sense) an anti-involution m̂(zi) ≈ wi to the input landmarks;

4. Extract the stationary circle C of the anti-involution m̂(z) = z;

5. Map via a Möbius transformation m(z) the circle C to the real axis;

6. Extract optimal (in the least-squares sense) symmetric configuration of the landmarks
m(zi),m(wi) w.r.t. the real axis;

7. Use smooth deformation (thin-plate splines) ψ to move the landmarks to their optimal
symmetric configurations ψ(m(zi)) = ψ(m(wi));

8. The final map is φ = ψ ◦m ◦ ϕ.

The first and second stages are performed similarly to the algorithm of [KLCF10].

Step 3–4. To find the anti-involution Möbius m̂(z) so to satisfy as much as possible
wi = m̃(zi), i = 1..n we use the following lemma:

Lemma 7 An anti-Möbius transformation m̃(z) = az + b/cz + d is an anti-involution iff

the matrix of coefficients

(
c d
−a −b

)
is hermitian, that is d = −a, and c, b ∈ R

For a proof see [Sch79] (page 79). Therefore an anti-involution can be written as m̂(z) =
az + b/cz − a, where b, c ∈ R. We fit an anti-involution by multiplying both sides of the
equations m̂(zi) = wi by czi − a, and solve in the least-squares sense the resulting linear
equations:

cwizi − awi − azi − b = 0 , i = 1, .., n.

One delicate point is that the stationary circle of an anti-involution can be imaginary and

91

therefore will not form a “real” circle in C. This would happen if in solving the above
equations our solution gives |a/c|2 + b/c < 0. However, this means that the deviation from
isometry is extreme and we did not find this a problem in practice.

in original embedding

(a) (b)

Figure 3.22: Two stages in the intrinsic symmetry fit of the model from Figure 3.21: (a)
shows fitting the best circle to a set of symmetric landmarks (red and black). Note how the
landmarks in the head area (blow-up figure) are not conforming with the global symmetry.
(b) shows the points after a smooth map is applied to bring them to be perfect reflectional
symmetric w.r.t. the real axis; the head points are also symmetrized, as the blow-up figure
shows.

Step 5. Our next step is to find a Möbius transformation taking the circle stationary set of
the anti-involution m̂ to the real axis. The stationary circle of m̂ has the explicit equation
|z − z0| = r2, where z0 = a/c, and r2 = |a/c| + b/c. Figure 3.22 (a) shows the circle
C for the example in Figure 3.21 (the symmetric landmarks are shown in red and black,
consistently with the left image in Figure 3.21). Note how the landmarks on the head
(shown in blow-up figure) do not agree with the global intrinsic symmetry as revealed by
the circle.

For the Möbius transform mapping it to the real axis there are three degrees of freedom to
set. We simply take three equal distant points t1, t2, t3 on the circle C and find the Möbius
transform m by solving a system of equations of the type ati + b = (cti + d)xi, i = 1, 2, 3,
where xi ∈ R are three points on the real axis.

Step 6–7. Next, we map the landmarks zi, wi with m and extract L2 symmetric optimal
points si ∈ C, i = 1, .., n such that si = argminz [|si −m(zi)|2 + |si −m(wi)|2]. It is not
hard to see that the minimizer is si = (m(zi) + m(wi))/2. Finally, we find a Thin-Plate
Spline ψ : R2 → R2 such that ψ(m(zi)) = si, and ψ(m(wi)) = si. Our final map is

92

φ = ψ ◦m ◦ ϕ, the symmetry map in these new coordinates is z 7→ z and the stationary
curve is Im(z) = 0. Figure 3.22(b) shows the landmarks zi, wi (in red and black, resp.)
after applying ψ ◦m to it; note that they are now perfectly symmetric w.r.t. the real axis.
Figure 3.21 shows (in purple) the stationary curve Im(z) = 0 back-projected to the original
model.

Computational complexity. The algorithm for finding φ, and g = φ−1 ◦ σ ◦ φ requires
solving one sparse linear system in the size of the mesh for the discrete harmonic part
(standard cotangent Laplacian) of the uniformization, followed by linear time computation
of its conjugate. The next steps of the algorithm are negligible computationally and require
solving two linear systems in the order of number of landmarks (we typically used 5 to 10
landmarks).

Evaluation of orbits, stationary lines and transport. Function φ provides a parametriza-
tion for M , which can be evaluated in both directions. Therefore, given a point p ∈ M ,
its symmetric mate g(p) is evaluated through Equation 3.6. The stationary line M(g) is
simply the image of the real line Im(z) = 0 through function φ. More in detail, given a

triangle ti of M , let t̄i be its image through φ in Ĉ. Triangle ti intersects the stationary
line if and only if t̄i intersects the real axis; and the linear segment of stationary line cor-
responding to ti has endpoints at φ−1(a) and φ−1(b), where a and b are the intersections
of edges of t̄i with the real axis.

Evaluation of transport Rg. In principle, the differential Dg and, as a consequence Rg

can be obtained by computing the gradient of g numerically; while the maps we construct
in the intrinsic case are quite smooth, we found that following method to provide the most
robust results. (We use this method also in the extrinsic case, as described in the next
subsection.) Let ζ, ξ : M −→ R be two scalar functions such that ζ is symmetric and ξ is
antisymmetric, i.e., ζ(p) = ζ(g(p)) and ξ(p) = −ξ(g(p). By chain rule,

∇ζ(p) = ∇ζ(g(p))Dgp and
∇ξ(p) = −∇ξ(g(p))Dgp.

(3.7)

where Dgp is the differential of g computed at p. System (3.7) allows us to solve for Dg
at any point, if the surface gradients of ζ and ξ are computed everywhere. Rg is then
obtained from Dg as described in Section 3.3.2. In our case, we choose ζ(p) = Re(φ(p))
and ξ(p) = Im(φ(p)).

Comparison to previous methods for intrinsic symmetry detection. A simple
example is shown in Figure 3.21. This model of a human (SCAPE dataset [ASK+05]) has

93

a dominant extrinsic reflection symmetry (neck down) while the head is rotated to the
right. The deformation at the neck area involves a considerable metric distortion with
respect to the rest pose, which makes recognizing head symmetry difficult for a global
method. This problem is reinforced since the head has pretty good continuous rotational
symmetry excluding negligible (in terms of area) features like ears and nose. Figure 3.21
shows the result of two automatic state-of-the-art-methods: PIRS [XZT+09], and Blended
Intrinsic Maps [KLF11]. PIRS is a particularly suitable algorithm for extracting stationary
lines. However, as it is based on aggregating votes, the dominant extrinsic symmetry of the
surface in this case overrides the symmetry of the head. Blended Intrinsic Maps also use
a global deformation energy and therefore “extrapolate” the dominant extrinsic symmetry
to the head.

We also compare to a method in the spirit of Gromov-Hausdorff (GH) [BBK06, MS04],
where geodesic distances to the known landmark points are used to define feature vectors
and closest point in the corresponding feature space defines the correspondences. Using
five pairs of symmetric points (shown at the left of Figure 3.21) with GH-type interpo-
lation produces a reasonable result in certain areas (like the head and the lower torso)
where there are relatively many landmarks and/or geodesic distances reliably detect the
symmetry transform. However, in vicinity of intrinsically distorted areas, where geodesics
are not reliable, this method tends to produce worse results (e.g., the neck and left shoulder
area). Another drawback of this type of methods in our context is that the correspondence
mapping is not necessarily smooth or even continuous, and it hard to reliably extract the
field transport from it. Lastly, given the set of correspondences it is also not trivial to
extract the stationary line to be a closed curve, see for example the bottom and neck area
again where any such curve is likely to be cut.

3.3.4.2 Extrinsic symmetry through embedding.

In the extrinsic case, a reflection mapping g is a simple orthogonal reflection about a plane
Π in 3D space, its stationary set M(g) coincides with M ∩Π, and its differential Dg = Rg

is g itself.

For this simpler case, we have combined two existing algorithms to find the reflection g and
the stationary set M ∩ Π in a robust way. Inspired by [OFCD02] we have built extrinsic
symmetry invariants at every point and used it to define a symmetry correspondence
matrix, similar to [LCDF10]. The stationary plane was found by averaging the points’ 3D
coordinates over fuzzy orbits, and the final reflection g was set according to that plane.
Let us briefly elaborate on each step.

Symmetry extrinsic invariant histograms. For each triangle t of M , we compute
the Euclidean distances from its centroid ct to the centroids of all other triangles of M ,

94

and we build a histogram of these distances using b bins. (We have used b = 50 for all
our results.) We denote by Ψ(t) ∈ Rb the histogram vector for triangle t. Next, we fill a
symmetry correspondence matrix S, by setting Si,j = maxd−d(Ψ(cti),Ψ(ctj)), where d is
the Euclidean 2-norm, and maxd is the diameter of the set {Ψ(t)}t. We make sure S is
sparse by keeping only 50 biggest values at each row and zero everywhere else. Finally we
normalize each row of S to make it row-stochastic. The i-th row of S provides the fuzzy
orbit of triangle ti.

Calculating the symmetry plane, and stationary curve M(g). Let Ct ∈ Rn×3,
where n is the number of triangles, be the matrix of all centroids’ 3D coordinates. The
product SCt averages the 3D coordinates over the the orbit and therefore projects the
points onto the stationary set (in 3D) (see [LCDF10]). We fit a plane Π using Principal
Component Analysis (PCA). The stationary line is extracted simply by collecting the
triangles of M that intersect Π.

Evaluation of field transport Rg. We perform a change of coordinates that places the
origin in Π and aligns the z axis with the least significant direction yield by the PCA. Then
we estimate Dg = Rg by means of the same procedure explained in the previous section,
by setting ζ(p) = px and ξ(p) = pz, where p = (px, py, pz) is a generic point of M .

3.3.4.3 Fields symmetric with respect to sets of transforms

Next we explain how the theory and algorithms of the previous sections apply in the case
when a shape has multiple symmetries. It is natural to define a field to be symmetric with
respect to a set G of transforms, if it is symmetric with respect to all elements of G. For
example, G may consists of reflections about two or more planes of symmetries. The input
to our algorithm requires orbits, stationary lines, and transport maps.

The orbit for a point p with respect to a set G are simply the union of the orbits for
individual transforms in G (we want to symmetrize our field at a point p with field values
at all points g(p), g ∈ G).

Similarly, the stationary set of interest is the union of the stationary set of individual
elements of G. Note that if a point p is in two stationary sets M(g1) and M(g2), there are
two distinct alignment requirements for the field. If the stationary directions of Rg1(p) an
Rg2(p) are orthogonal, then both have to be satisfied at once, which many not always be
possible, in which case the best we can do is to minimize the deviation from symmetry.

Defining the transport map requires a consistency condition between symmetry maps:
there may be two maps f and h mapping a point p1 to the same point p2 = f(p1) = h(p2).

95

We want the transports defined by f and g to be the same, so we require

Rfv = Rhv, at p1, for any f and h with f(p1) = h(p1). (3.8)

Observe that in this case, h−1 ◦ f is a non-identity transform with p1 as a stationary point.
so the field at p1 and the map Rh−1

Rf has to satisfy Proposition 6. In the cases of primary
interest to us (sets of generalized reflections) the compositions of distinct reflections have, in
general, only isolated stationary points which have little effect on the overall field behavior.

For all other points p, for each q in the orbit of O(p), there is a unique g mapping p to q,
which defines the transport of the field from p to q unambiguously.

Rotations. So far, we have considered generalized reflections only. A rigid rotation can
be computed as a composition of two reflections, and in general it has only isolated sta-
tionary points on a surface. It is natural to generalize the rotations as compositions of two
reflections with isolated stationary points. This allows direct extension of all constructions
we need to the case of sets including such generalized rotations.

3.3.5 Results

We have tested our methods on a range of geometric objects with approximate intrinsic
and extrinsic symmetries (see Table 3.2). In this section, we describe our findings, discuss
alternative approaches and design choices we made.

Symmetry detection. The method for intrinsic symmetry detection required specifying
between 5 and 10 landmarks (as specified in Table 3.2, and typical running times were
between one and five minutes. Comparison with other methods have been discussed in
Section 3.3.4 and in particular Figure 3.21. The method for extrinsic symmetry detection
is about five times slower (as it requires creating histograms of all pair distances), but it
is fully automatic and it works for objects of any genus. On objects where both methods
apply, namely extrinsically symmetric, results are overall similar, possibly with a slightly
difference in cone placement, see Figure 3.23.

Reflecting cone singularities does not work. Once the symmetry map is available, a
naive approach would be to first compute a non-symmetric field (with MI); then reflecting
the cone singularities found on one side of the stationary line to their symmetric mates;
and finally computing a field constrained to such singularities. As shown in Figure 3.24,
while this may work in some cases (bunny), in general the field fails to follow the stationary
line (e.g. Bimba model) and it may also introduce very large distortions (e.g. the right leg
of the human model).

96

Figure 3.23: Comparison of extrinsic (left) and intrinsic (right) symmetry detection on
an extrinsically symmetric model. There are small differences in cone placements but the
global the field alignment is similar.

Stationary line constraints. We found that stationary line constraints plays an essen-
tial role in the quality of the results; Figure 3.25 compares the result of our algorithm with
the result we obtain with no stationary line constraints. Note that without this constraint,
although generally symmetric the field is not “parallel” along the stationary curve.

Multiple symmetries. Figure 3.28 shows experiments with multiple symmetry objects.
For multiple stationary lines, the field is fixed on their union. Note how cones tend to
respect symmetry relations in this case as well.

Effects of smoothness parameter. Our algorithm have three parameters: two param-
eters defining the features used in the mixed-integer field optimization, and the smoothness
parameter α. The feature-detection parameters are the same as in [BZK09], and their effect
is limited to changing the number of constrained faces.

Figure 3.26 shows dependence of the results on the choice of α: the higher α is, the sharper
the transition between features and symmetrized areas; as a result the field’s smoothness
decreases and additional cones may appear.

Comparison to state-of-the-art. As there are no direct analogs of our method, we
compare to the closest method, namely [BZK09]. Our claim that is that symmetry should

97

Figure 3.24: Imposing symmetric cones is not sufficient, generally, to produce symmetric
fields. It works in few cases (bunny), but it fails following the stationary line and it produces
large distortions for most other models.

be directly enforced, and “symmetry-unconstrained” mixed integer algorithm would not
produce symmetric results. One exception is when the feature constraints of the MI are
well distributed and symmetric, this drives the MI to construct a relatively symmetric field.

Figures 3.15 and 3.27 show our results compared with [BZK09]. In most cases, we observe
a substantial improvement in visual quality: in the standing human model, note how our
result manage to follow the line corresponding to sagittal plane even under a strong non-
isometric deformation of the neck and head, as well as to preserve a horizontal field on
the chest. The head symmetry is preserved equally well in the kneeling human model,
as-well as the sagittal line on the torso. Similar behavior can be seen in the Busto and
Igea models, where MI placed singularities asymmetrically at small details of the face,
thus pushing the field away from respecting symmetry. On objects with an extrinsic global
symmetry, like the lion and fertility models, plain MI yields satisfactory results, yet our
method still improves the symmetry awareness of the resulting field. Lastly, in the Igea
model, our algorithm preserves global symmetry while adapting to local non-symmetric
features like the asymmetric broken piece from one cheek.

98

Figure 3.25: A field symmetrized without (center) and with (right) stationary line con-
straints. The field in the middle/left image is overall symmetric but it fails following the
stationary line.

99

Figure 3.26: Effect of the smoothness parameter. From left to right: curvature and
symmetry constraints; smoothness of the symmetrized field and final results with α = 0.1
and α = 0.9.

Model: # faces α int/ext # lmks # cones
bimba 100,000 0.15 I 9 97
bumpy-cube 34,754 0.25 E - 56
busto 50,930 0.30 I 8 28
egea 30,000 0.35 E - 26
fertility 46,388 0.10 E - 38
fish 48,592 0.10 I 5 24
gargoyle 54,000 0.25 E - 94
holes3 28,800 0.15 E - 32
knelt human 40,000 0.10 I 5 56
lion 66,696 0.25 E - 66
Max Planck 54,000 0.20 E . 20
ogre 52,306 0.30 I 10 238
rolling 20,000 0.12 E - 27
stand. human 24,978 0.10 I 8 49
teddy 25,290 0.10 I 4 42

Table 3.2: Statistics of datasets and results. We report: number of faces in the input;
value of parameter α used; whether it has intrinsic or extrinsic symmetry; number of
landmarks used for detecting intrinsic symmetry; number of cone singularities in the output.

100

MI

symmetric

symmetric

MI symmetric

MI

symmetric

MI

symmetric

MI

symmetric

MI

symmetric

MI

MI

symmetric

Figure 3.27: Comparisons of our results with respect to plain MI.

101

Figure 3.28: Stationary lines and quadrangulations for a few objects with several bilateral
symmetries.

102

3.4 Axis-aligned, planar parametrization for content-

aware image retargeting

Image retargeting resizes an input image to a given target resolution, where the aspect
ratio changes. In order to avoid distorting the entire image by homogeneous scaling, or
discarding important image parts by cropping, content-aware retargeting techniques were
developed. These methods selectively deform the input image into the target dimensions
according to a saliency map, preserving the shape of important image components while
distorting unimportant background content. A few general methodologies for retargeting
were proposed in the recent years, such as discrete carving/shifting, continuous warping and
hybrid approaches [SS09]; some algorithms are even available in modern commercial image
editing software [Ado10]. To help assess and further improve content-aware retargeting, a
number of representative techniques were recently benchmarked and compared in a large-
scale user study [RGSS10].

When analyzing the plethora of recent image retargeting approaches and their results, three
prominent facts and challenges become apparent: (i) The quality of the resizing results
depends immensely on the saliency map. Nearly every approach proposes its own variant
of importance map computation, but it is disjoint from the content-aware resizing operator
itself and can be easily exchanged. It is evident that a “silver-bullet” automatic saliency
detection method does not exist, i.e., each saliency computation technique will fail on some
input images, and user-guided importance specification is desired in such cases [SS09]. (ii)
Fast or even realtime image resizing methods are extremely valuable, since they are more
easily amendable to video retargeting and allow interactive control of the resizing process
[KLHG09]. (iii) The robustness of the retargeting operator is another key factor that
affects the quality of the results, namely the smoothness, predictability and avoidance of
unwanted self-intersections (foldovers) in the resized image. Preventing foldovers appears
to be a difficult task [CFK+10], requiring complex, time consuming optimization that is
not always guaranteed to be feasible and hence may not be robust.

original saliency map retargeting to 200% width using axis-aligned deformations

Figure 3.29: Retargeting an image to wide format (200% the original width). The im-
portance map was generated using a gradient filter and refined with a few strokes. The
computation of the retargeted image took 4 milliseconds, and the overall process took 30
seconds of user time.

103

[KFG09] [CFK+10] our method

Figure 3.30: Excluding local rotations leads the retargeting deformation to be axis-aligned.
The Child dataset, retargeted to half the width using recent state-of-the-art techniques and
our method. Observe that although previous approaches do not explicitly enforce it, their
deformations are effectively almost axis-aligned.

This work focuses on continuous (warp-based) retargeting, which readily allows controlling
the smoothness of the retargeting operator. Discrete approaches such as [RSA08, SCSI08,
BSFG09, PKVP09] are excellent at resizing and general editing of images especially rich
in texture content, but they are known to have smoothness artifacts in some situations,
and are typically somewhat slower than warping approaches.

It may seem that a high-quality, robust and foldover-free image retargeting by warping
precludes realtime resizing and interactive adjustment of the saliency map due to the
computational costs involved (in particular because prevention of self-intersection is not
a linear constraint). The contribution of our work is to show that this does not have
to be the case, if an appropriate space of image deformations is taken for the retargeting
operator. Observing the behavior of the state-of-the-art warping methods, such as [KFG09,
KLHG09, CFK+10], we notice that they hardly introduce any local rotations in the image
deformation. This indeed makes sense, since if the resizing operator contains local, varying
rotations, they manifest themselves as “swirls”, which are highly noticeable distortion
artifacts. Lack of local rotation leads the retargeting deformation to be axis-aligned, i.e.,
the isoparametric lines remain straight and parallel after deformation, only changing the
spacing between themselves (see Fig. 3.30). Our key observation is therefore, that the space
of axis-aligned deformations is the appropriate space for content-aware image retargeting.

This observation has important consequences. First, the deformation space can be pa-
rameterized in 1D, since an axis-aligned deformation is determined solely by the intervals
between the vertical and horizontal isoparametric lines. Previous retargeting methods pa-
rameterize the deformations in 2D, leading to optimization problems in the order of M×N

104

unknowns, where M, N are the vertical and horizontal input image resolution, whereas a 1D
parameterization necessitates only O(M+N) unknowns. In addition, preventing foldovers,
and more generally, controlling the minimal and maximal stretching of axis-aligned defor-
mations is simple and robust, since this merely poses inequality constraints on the isopara-
metric line spacing. These constraints can always be posed in a feasible way, contrary to
2D constraints on lack of foldovers.

In this work, we show how to build a complete image retargeting system based on the axis-
aligned deformation space. We demonstrate that several deformation energies which are
meaningful for the content-aware retargeting application, such as the as-similar-as-possible
and the as-rigid-as-possible energies, can be effectively optimized in this space while re-
specting foldover-free constraints. The resulting optimization problems can be cast as small
quadratic programming (QP) problems thanks to the 1D parameterization, which allows
for extremely efficient CPU-based computation using off-the-shelf QP solvers. Our image
retargeting prototype runs in real time without requiring any precomputation, and enables
interactive realtime resizing and editing of the saliency map. Our solution is robust, since
we minimize convex energies under feasible constraints, guaranteeing the convergence of
the solver and quality of the results. We test our method on the RetargetMe bench-
mark [RGSS10], showing that comparable and better results can be obtained within few
milliseconds.

3.4.1 Related work on image retargeting

Warp-based content-aware retargeting methods define an energy functional that preserves
the shape of salient image parts, and then minimize this functional given the boundary
constraints of the target image size. The energy typically measures local deviation of the
warp from a shape-preserving deformation such as translation [GSCO06], rigid transforma-
tion [KFG09] or similarity [WTSL08, KFG09, ZCHM09, KLHG09], weighted by the impor-
tance map. Additional energy terms are introduced to mitigate artifacts such as bending
of straight lines [WTSL08, KLHG09, CFK+10, LJW10] or edge blurring [KLHG09]. The
energy is discretized over the 2D image domain, usually employing regular grids and fi-
nite differences (few works, e.g. [LJW10], use irregular triangle meshes). Earlier warping
methods worked with quadratic energies which are highly efficient (only a sparse linear
system needs to be solved, and its factorization can be precomputed and reused for ar-
bitrary target image dimensions), but regrettably lead to artifacts, self-intersections and
foldovers. Foldovers sometimes even result in “spills” of the retargeted grid outside of the
image boundary; the spills are cropped, but the discontinuity in the result remains visible
(see Fig. 3.31 and Figure 5 in [WTSL08]).

Later techniques moved away from the linear least-squares formulations and proposed
nonlinear energies and/or inequality constraints to improve the retargeting quality. They

105

Figure 3.31: Top: the image in Fig. 3.29 retargeted using [ZCHM09]. Bottom: the same
image scaled homogeneously. The top image clearly shows a “spill-over” foldover near the
child’s head.

prevent self-intersections by iteratively penalizing grid edge flipping [WTSL08], constrain-
ing the size of grid cells [KLHG09] or explicitly posing positive scaling constraints on grid
cells’ transformations [CFK+10]. The method of Chen et al. [CFK+10] offers formal guar-
antees on lack of self-intersections and vanishing grid cells, but their quadratic program is
not guaranteed to have a feasible solution. Nonlinear constrained optimization significantly
increases computation time, nearly excluding realtime usage; one notable exception is the
streaming method of [KLHG09] that performs all computation on the GPU, achieving im-
pressive framerates at pixel-level discretization. Heavy reliance on graphics hardware may
hinder applicability to computationally modest platforms such as mobile devices.

It is interesting to note that, although not obliged to it by the formulation, recent techniques
exhibit nearly axis-aligned deformations in practice, due to the inclusion of grid line bending
penalties (formulated in e.g. [WTSL08, KLHG09]); Chen et al. [CFK+10] even explicitly
mention this behavior as an advantage. In this Section, we directly encode this behavior in
the deformation space and demonstrate that it not only dramatically reduces the size of the
optimization problem but also provides high quality retargeting results with guaranteed
robustness.

For a detailed discussion of discrete retargeting approaches please refer to [RSA08, SCSI08,
BSFG09, PKVP09] and the references therein. Discrete methods operate by removing or
adding image pixels or patches to change the image’s size and in general reshuffle its
content (in a way they can be seen as generalizations of cropping or pasting). While these
techniques do not guarantee smoothness and sometimes have discontinuity artifacts, they

106

are very well suited for images with repetitive or stochastic content that should be removed
or duplicated rather than squeezed or stretched. Combining the advantages of discrete and
continuous retargeting methods is an exciting challenge; the MultiOp method [RSA09],
albeit computationally expensive, was a successful attempt in terms of the achieved quality
and user study ranking [RGSS10].

3.4.2 Algorithm

In this section, we show how to cast content-aware image resizing as a small quadratic
program, solving in the space of axis-aligned deformations. The number of variables in our
problem is linear in the size of the image boundary. The energy we minimize is convex,
and finding the global minimum typically takes less than 4 ms.

Denote the input image width and height by W and H, respectively. Like most warp-based
retargeting methods, we overlay a uniform grid over the image with N columns and M
rows; the width of each column (and each cell) in the initial grid is then W/N and the height
of each row is H/M . The task is to compute a new deformed grid for the resized image,
with the desired overall width W ′ and height H ′. In the continuous setting, an axis-aligned
deformation can be fully described by the vertical and horizontal deformation derivatives
along the boundary. In our discrete setting, we assume an axis-aligned deformation to be
piecewise-linear (linear on each grid cell), such that it is fully determined by the widths of
the deformed grid columns and the heights of the deformed grid rows.

Let srows = (srows
1 , srows

2 , . . . , srows
M) denote the unknown heights of the rows and scols =

(scols
1 , . . . , scols

N) the unknown widths of the columns. The axis-aligned deformation is there-
fore represented by the vector of unknowns s = (srows, scols)T ∈ RM+N . We now give the
general form of the optimization that computes the deformed retargeted image grid:

minimize sTQs + sTb (3.9)

subject to srows
i ≥ Lh, i = 1, . . . ,M, (3.10)

scols
j ≥ Lw, j = 1, . . . , N, (3.11)

srows
1 + . . .+ srows

M = H ′, (3.12)

scols
1 + . . .+ scols

N = W ′. (3.13)

The matrix Q ∈ R(M+N)×(M+N) and the vector b ∈ RM+N are determined based on the
energy we want to minimize (see Sec. 3.4.2.1), and Lh, Lw > 0 are the minimum sizes
allowed for rows and columns of the deformed grid, respectively. The inequalities (3.10)
and (3.11) guarantee that our deformation is free from foldovers, since every cell on the
grid cannot be smaller than the specified dimensions Lh-by-Lw and cannot invert (inside
each cell the deformation is linear and therefore foldover-free). Equations (3.12) and (3.13)
fix the total dimensions of the deformed grid to the desired target size.

107

For the above quadratic program (QP) to be feasible, we just need Lh ≤ H ′/M and
Lw ≤ W ′/N ; simple homogeneous scaling then provides a feasible solution. The feasible
domain is bounded, since ∀i, 0 ≤ si ≤ max{H ′,W ′}, such that the objective function in
(3.9) is finite in the feasible region. The energy should be defined in such a way that Q is
positive (semi)definite; our problem is then convex and can be solved with standard QP
solvers.

3.4.2.1 Energy functions

Image retargeting methods rely on a saliency map ω(x, y) that assigns an importance
value between 0 and 1 to every pixel of the image. Our goal is to compute a deformation
that preserves the image in the salient zones as much as possible and concentrates the
unavoidable distortion in less important areas. To integrate the saliency map ω in our
formulation, we average its values inside every cell of the grid on the original image and we
obtain the saliency matrix Ω ∈ RM×N . This per-cell integration of saliency is the proper
FEM discretization in our piecewise-linear setting.

We consider two energies in our framework, often employed by prior successful retargeting
methods: (1) the As-Similar-As-Possible (ASAP) energy [ZCHM09], which produces de-
formations that are locally close to similarities, and (2) the As-Rigid-As-Possible (ARAP)
energy [KFG09], which penalizes all local deformations except translation and rotation.
Fig. 3.32 shows an example result with these energies.

ASAP Energy. In the space of axis-aligned deformations, a similarity transformation
is a combination of uniform scaling and translation, since rotations are not present in the
deformation space. The ASAP energy thus minimizes non-uniform scaling:

original ASAP ARAP

Figure 3.32: The Fatem image resized with ASAP and ARAP energies.

108

original Lw = 10% Lw = 30%

Figure 3.33: The minimal column width Lw and row height Lh can be prescribed. In the
middle image, each column may not be compressed to more that 10% of the original width,
and on the right the minimal width is 30%, such that the deformation is less pronounced,
since extreme squeezing is disallowed.

EASAP =
M∑
i=1

N∑
j=1

(
Ωi,j

(
M
H
srows
i − N

W
scols
j

))2
. (3.14)

The two factors M/H and N/W compensate for the aspect ratio of the cells in the original
grid.

To minimize this energy using our QP framework, we define the following matrix K ∈
R(MN)×(M+N):

Kk,l =

Ωr(k),c(k)

M
H

if l = r(k),

−Ωr(k),c(k)
N
W

if l = M + c(k),

0 otherwise,

(3.15)

where r(k) = dk/Ne and c(k) = ((k− 1) mod N) + 1. From this equation, Ks gives us the
vector with energy terms per row, and EASAP = sTKTKs. Using the generic notation of
Eq. (3.9), Q = KTK and b = 0. Clearly, Q is a positive semidefinite matrix in this case,
such that the energy is convex.

ARAP Energy. In our axis-aligned deformation space, a rigid transformation is reduced
to a translation, since rotations are not allowed by definition. The ARAP energy thus
minimizes uniform and non-uniform scaling:

EARAP =
M∑
i=1

N∑
j=1

(
Ωi,j(

M
H
srows
i − 1)

)2
+ (3.16)

(
Ωi,j(

N
W
scols
j − 1)

)2
.

109

original image saliency map without regularization with regularization, wreg = 2.5

Figure 3.34: The effect of the Laplacian regularization. The image on the left is retargeted
to 50% width using a manually-painted saliency map. As seen in the middle, retargeting
using unregularized ASAP energy leads to strong variation in column width. This effect
can be mitigated by adding a weighted Laplacian regularization term, as shown on the right.

To minimize this energy using our QP framework, we define the following two matrices
Rtop, Rbtm ∈ R(MN)×(M+N):

Rtop
k,l =

{
Ωr(k),c(k)

M
H

if l = r(k)

0 otherwise,
(3.17)

Rbtm
k,l =

{
Ωr(k),c(k)

N
W

if l = M + c(k)

0 otherwise,
(3.18)

where r(k) = dk/Ne and c(k) = ((k− 1) mod N) + 1. We also define the vector v ∈ RMN ,
vk = Ωr(k),c(k).

We can now rewrite the ARAP energy using matrix notation:

EARAP =

([
Rtop

Rbtm

]
s−

[
v
v

])T ([
Rtop

Rbtm

]
s−

[
v
v

])
. (3.19)

In the generic notation of Eq. (3.9):

Q =

[
Rtop

Rbtm

]T [
Rtop

Rbtm

]
, b = −2

[
v
v

]T [
Rtop

Rbtm

]
. (3.20)

Again, the form of the Q matrix clearly indicates that it is positive semidefinite, such that
the ARAP energy is convex.

Note that even though the intermediate matrices K, Rtop, Rbtm have MN rows, they are
extremely sparse and fast to construct procedurally. The resulting Q matrices for the QP
are square with M + N rows/columns, meaning they are dense but small. Note also that
other energies can be similarly formulated in our space of axis-aligned deformations; we
have chosen to concentrate on the above two since they are commonly used and typically
provide good results. Below we show an additional energy that can be added to serve as a
regularizing (smoothing) term.

110

original saliency grid size 10×10 25×25 50×50 100×100

Figure 3.35: The grid resolution does not have a dramatic effect on the energy minimiza-
tion result (here, the ASAP energy was used).

3.4.3 Laplacian regularization

We can enrich the energies shown above with a regularization energy that allows to increase
the smoothness of the resulting deformation. Note that the deformation we compute is
always guaranteed to be free of collapsing artifacts. The Laplacian regularization allows
to distribute the deformation more evenly across the image, and is particularly useful for
manually painted saliency maps, since they tend to concentrate the saliency on distinct
parts of the image and fall off abruptly to zero elsewhere (i.e., such saliency maps are highly
non-smooth). See Fig. 3.34 for an example of the effect of the Laplacian regularization.

The Laplacian regularization term is defined as follows:

Ereg =
M−1∑
i=1

(M
H

(srows
i+1 − srows

i))2 +
N−1∑
j=1

(N
W

(scols
j+1 − scols

j))2. (3.21)

The regularization penalizes two adjacent rows or columns that have large differences in
size, that is, we wish to minimize the Laplacian of the parametrization. Note that the
deformation that minimizes the Laplacian is homogeneous scaling, such that this regular-
ization term can be seen as a way to blend between homogeneous resizing and the ASAP
or ARAP deformation, controlled by a weighting factor wreg ≥ 0.

To incorporate the regularization term into the QP framework (3.9), we simply add the
term sT (wregL) s to the energy, where L is the standard Laplacian matrix corresponding
to Eq. (3.21). In other words, we add the matrix wregL to Q in Eq. (3.9). As well-known,
the Laplacian matrix is positive semidefinite, such that this energy term does not hurt the
convexity of the problem.

3.4.4 Cubic B-spline interpolation

The formulations of the ASAP and the ARAP energies, as well as the Laplacian regulariza-
tion term, are proper linear FEM approximations of the continuous counterparts, such that
convergence is expected under uniform grid refinement. We have observed that the results
of the optimization are not greatly dependent on the grid resolution (see Fig. 3.35); this

111

original
(detail) bilinear interpolation B-spline interpolation

Figure 3.36: Images of high resolution may benefit from higher-order interpolation when
using coarse grids for the retargeting optimization. Here we show an example where the
input image resolution is 2800×1800 and the retargeting uses a 25×25 grid. Bilinear
interpolation on this grid leads to some smoothness artifacts (middle), while upsampling to
a 100×100 grid using the spline technique described in Sec. 3.4.4 results in visually smooth
interpolation.

makes sense also because our constrained deformation space, parameterized in 1D, does
not admit huge local variation. A coarse grid resolution of 25×25 (i.e, 50 optimization
variables) suffices in most cases to faithfully describe the deformation map. However, such
a coarse bilinear grid may be insufficient to provide high-quality results for images with
very high resolution, because the bilinear interpolation is not smooth across grid lines.

To improve the interpolation results for high-resolution images, we can optionally employ
B-spline interpolation to upsample the retargeted grid. We define a uniform cubic B-spline
using the deformed grid vertices as control points. Note that this can be performed in
1D, i.e., we use two 1D cubic B-splines (one for rows and one for columns). We sample
the splines for denser horizontal and vertical positions in order to produce a new grid of
arbitrary resolution. We create the final retargeted image by bilinear interpolation on this
finer grid. This more expensive bilinear interpolation can be performed using the GPU.

The deformation described by our deformed grid is guaranteed to always be a bijection and,
thanks to the variation diminishing property, also the finer grid obtained with the spline
is guaranteed to be foldover-free. An example of the improvement is given in Fig. 3.36.

3.4.5 Results

We implemented an interactive application for image retargeting that allows in realtime
to change the image size, adjust the saliency, and tweak the other two parameters of the

112

Original Ours QP MultiOp StreamingVideo SeamCarving

Figure 3.37: Comparisons with recent image retargeting methods: QP [CFK+10], Mul-
tiOp [RSA09], StreamingVideo [KLHG09] and SeamCarving [RSA08]. We provide
the complete comparison on the RetargetMe benchmark [RGSS10] in the supplemental ma-
terial.

optimization (the strength of Laplacian regularization and minimal grid cell size). We
provide a full comparison with the RetargetMe benchmark [RGSS10] in the supplemen-
tal material. The accompanying video shows various recordings of interactive retargeting
sessions. The binary of our prototype for Windows and MacOS 10.6 is provided in the
supplemental material as well.

We ran our experiments on a Core2Duo at 2.4 GHz, using a single core. OpenGL was used
to compute the bilinear interpolation; our test system is equipped with a low-end laptop
graphics card (the NVIDIA 320M). We employed the easy-to-use and fast QP solver called
CVXGen [MB10] to solve the QP in Eq. (3.9). We obtained interactive frame rates (always
above 60 fps) in all our experiments. The average computation time to retarget an image
using a 25×25 grid was 4 milliseconds.

As can be seen in Fig. 3.37 and in the supplemental material, our technique provides
high-quality results that are comparable, if not better than the state-of-the-art methods.
We observed that the ASAP energy usually produces slightly better results than ARAP,
probably because of the additional flexibility of uniform scaling. Contrary to some previous
approaches, our method always produces smooth, intersection-free images that preserve
the salient features well, and tend to respect the input image structure in general. The
experimental evidence supports the space of axis-aligned deformations as a useful and
sufficiently rich space for image retargeting.

Saliency maps. Our approach can be successfully applied in a fully-automatic mode.
We experimented with the automatic saliency detection method of [IKN98], although of

113

original auto-saliency result with saliency increased contrast, result
auto-saliency contrast increase manual marking (head)

Figure 3.38: The original image is retargeted to 150% width, first using an automatic
saliency map of [IKN98]. The result is not perfect since the head has not been detected as
a salient object. Increasing the saliency contrast improves the result (4th image), and a
single stroke on the head produces even further improvement (right).

course any other method can be used. The main advantages of our method, the lack of
local rotations and foldovers, are independent of the importance map choice. As discussed
earlier, automatic saliency may fail for certain images due to the subjectiveness and ill-
posedness of the problem. In such cases, a minimal amount of user intervention can improve
the results; fine-tuning by the user is readily enabled by the realtime speed of our approach.

Fig. 3.38 shows the results computed using the ASAP energy with three different saliency
maps. The first image uses an automatic saliency map; the person’s head is not detected
as salient and is distorted. Our application allows to interactively change the contrast of
the saliency map to improve the result (Fig. 3.38, middle), and to simply paint over it. A
single user stroke on the head is sufficient to greatly improve the outcome (Fig. 3.38, right).
This example took 15 seconds of user time. On average, in our experiments we spent 30
seconds per image to paint the saliency map and adjust the parameters. The process is
very intuitive, since the application allows to watch the result of any manipulation in real
time.

Interactive, user-controllable parameters. Our method exposes a small numbers of
parameter to the user to allow a high degree of control over the final result. Please refer
to the video and the executable for demonstration of the realtime tuning effect. The size
of image can of course be changed interactively. The saliency map can be controlled by
adjusting its brightness and contrast, and by manual painting (Fig. 3.38). The deformation
can be controlled by changing the Laplacian regularization weight wreg (Fig. 3.34). Finally,
the minimal grid cell width and height can be selected (Fig. 3.33). We have found that
saliency adjustment is the most useful control mechanism; the other parameters were
usually left at their default values (wreg = 0.5, Lw = Lh = 20%).

114

Integration in a web browser. Optimizing website layouts for different screen reso-
lutions is a difficult task. To obtain good results in terms of usability and presentation,
it is often necessary to design customized views for every aspect ratio. Text can be easily
rearranged to fit a window of any size, but images are only scaled homogeneously, limiting
the layout optimization algorithm used in mobile web browsers and potentially leading
to sub-optimal results. Image retargeting allows to change the aspect ratio of a picture,
increasing the quality of the final layout and saving space.

Figure 3.39: The “Castle” page on wikipedia. On the left, the original version rendered
using a screen width of 480px. On the right, the same page with the images retargeted by
our algorithm.

To incorporate a retargeting system in a web browser, we should not only consider the
retargeting quality but also its efficiency and space overhead, due to energy consumption
and bandwidth limitations. Contrary to other methods, our algorithm can be easily inte-
grated in a web browser with negligible time and space overhead. We see two possible ways
of extending any image format to store the information needed to retarget it (assuming a
25×25 grid, which suffices for high quality retargeting results up to full HD resolution):

(i) Storing the integrated saliency map. Our optimization procedure only requires the
saliency matrix Ω that can be stored in 625 bytes if we quantize every matrix entry to one
byte. We can then retarget to arbitrary aspect ratio using the mobile CPU.

(ii) Storing precomputed aspect-ratios. An axis-aligned grid is parametrized by 50 floats,
since only the boundary has to be encoded. We can efficiently store multiple grids inside an
image with a very small space overhead. encoding a grid requires 200 bytes, so that a set of
10 retargeted grids uses less than 2 KB. In this setting there is no computational overhead

115

Figure 3.40: 10 resized grids are stored in an image to allow real-time retargeting without
any computation. Since our grids are axis-aligned, only 2kbytes are needed to store them
all. The preprocessing time required to produce the 10 grids is 38ms.

for the browser, as it only needs to select the desired grid for bilinear interpolation to map
the image onto the screen. An example of the same image retargeted using the proposed
10 aspect ratios is shown in Figure 3.40. It is also possible to linearly interpolate two grids
to obtain any intermediate aspect ratio; in our experiments this is very close to the exact
retargeting result.

User study. We conducted a user study with 305 participants, following the protocol
of [RGSS10]. Eight methods have been compared: manual crop (cr), nonhomogeneous
warping (warp) [WGCO07], Scale-and-Stretch (sns) [WTSL08], multiop [RSA09], shift-
maps (sm) [PKVP09], streaming video (sv) [KLHG09], energy-based deformation (lg)
[KFG09] and our algorithm (aa). All datasets in the study have been created by the
authors of the respective methods, manually tweaking parameter values and sometimes the
saliency to show the strengths of the retargeting algorithm and produce the best possible
result. We note that the study participants had no reason to prefer a retargeted image
over a (manually) cropped one since the study did not place the images in any semantic
context. This biases the study in favor of manual cropping as it does not introduce any
distortion. For this reason, cropping should be considered as a reference, not as a proper
retargeting algorithm (for more details see the original paper [RGSS10]).

The study statistics are provided in Appendix B. Fig. 3.41 provides a short summary
that shows that our deformation subspace is a good choice for content-aware retargeting.
Our results have been considered superior with respect to six state-of-the-art methods and
achieved a quality statistically indistinguishable to sv [KLHG09], while being simpler to
implement, faster and not requiring a GPU implementation to obtain interactive frame
rates. Our findings are in accordance with the original study [RGSS10], providing further
validation of the consistency in the users’ preferences.

116

Total Lines/
Edges

Faces/
People

Texture Foreground
Objects

Geometric
Structure

Symmetry

CR

SV

MULTIOP

AA

SCL

SM

SNS

WARP

2106 1376 973 308 1119 895 310

1926 1274 745 287 908 850 340

1826 1189 761 314 879 746 336

2000 1320 911 295 1055 790 350

1019 751 323 192 383 512 214

1429 985 569 250 698 650 185

1226 829 408 212 590 543 162

900 676 350 158 416 390 119

0

250

500

750

1000

1250

1500

1750

2000

2250

Total Lines / Faces / Texture Foreground Geometric Symmetry

CR AA SV MULTIOP SM SNS SCL WARP

 Edges People Objects Structure

Lines/Edges

Faces/People

Texture

Foreground Objects

Geometric Structures

Symmetry

Aggregate AACR SV MULTIOP SM SNS SCL WARP

AACR SV MULTIOP SM SNS SCL WARP

AACR SVMULTIOP SM SNS SCLWARP

AACR SVMULTIOP SM SNS SCL WARP

AACR SV MULTIOP SM SNS SCLWARP

AACR SV MULTIOP SM SNS SCLWARP

AA CRSV MULTIOP SM SNSSCL WARP

Figure 3.41: The number of votes for the 8 methods considered in our user-study for each
image attribute. In the bottom, the operators within a group are statistically indistinguish-
able in terms of user preference. Our method ranks higher than others and it is statistically
indistinguishable from CR.

3.5 Concluding remarks

We have proposed a method for producing quad-based domains for global mesh parametriza-
tion, which improves domain simplicity, while maintaining alignment to an input cross field.
The method has been implemented to take in input a cross field induced by a quad mesh -
which may be already the base domain of a parametrization - and it produces a parametriza-
tion having an abstract complex of axis-aligned rectangles as base domain. Our results
exhibit simpler domains than other proposals at the state-of-the-art and parametrizations
are directly suitable for most applications.

The method consists of two main ingredients: an algorithm for simplifying the topology
of the cross field, and an algorithm for smoothing parametrization across abstract quad
domains. Each such ingredient can be used independently in different contexts. The
algorithm for field topology simplification is rather general, it could be applied to any N-
symmetry field [RVLL08], provided that an initial graph representing the topology of the
field is given in input. However, finding such a graph in general, e.g., from a field defined
on a triangle mesh, is still an open problem : this is the reason why we have implemented
our algorithm to work just on a field induced by a quad mesh.

Our algorithm naturally preserves alignment with the input cross field, which is taken into
account during simplification. The unique parameter used in the whole method (value k in
the energy) allows us to trade off between topology simplification and faithfulness to the in-
put field. Our method also allows preserving sharp creases, either through hard constraints

117

during graph simplification, or through a snapping mechanism during smoothing.

The main limitation of the proposed approach is clearly its reliance on a pre-existing cross
field C. (for example discretized in the form of a semi-regular quad mesh). The simplified
version of a graph from a field with poorly placed, or too numerous singularities will be
far too complicated to be useful in most contexts. However, in our experience, practically
any graph is strongly improved, unless it is already optimal in terms of simplicity of the
domain.

Another limitation consists in the occasional need of a few mismatch-sized adjacent rect-
angles in the domain D, which adds a scaling to the transition function across the cor-
responding cut, against our objective of domain simplicity. This limitation is somehow
the natural drawback of having a domain made of only few patches to represent relatively
complex shapes. intrinsic to this kind of domain, but we believe that its other merits
compensates this minor shortcoming. The choice to preserve the irregular points, which is
crucial to preserve quality of good input field, backfires.

We introduced a new paradigm for symmetry-aware field design on surface. Our key idea
is to incorporate symmetry averaging of field values over symmetry orbits with existing
Mixed-Integer field generation techniques. This required few intermediate steps: 1) intro-
ducing general reflections, not restricted to isometric reflections, and developing theory for
field transport and symmetric averaging; 2) computational methods to compute symmetric
map, transport and stationary sets on shapes deviating from perfect isometry; and 3) in-
corporating the symmetric averaging operator into the Mixed-Integer framework. Based on
experiments on a variety of models, we believe the introduced algorithm can significantly
improve visual aesthetics and symmetry-awareness of N-fields on models.

A limitation of our method, is that we cannot deal with intrinsic symmetry for higher genus
objects. This is definitely one future research direction. Furthermore, we plan to explore
more applications of symmetric field design in geometry processing. Another interesting
research direction is to use the new transport operators on other tensors from geometry
processing such as the curvature tensor.

Finally, we presented an image retargeting method that is based on axis-aligned planar
parametrization. The space of axis-aligned maps appears to be suitable for the problem at
hand, and has multiple advantages, such as robustness and guaranteed lack of foldovers,
smoothness, and realtime performance. The general approach of controlling a deformation
energy by the domain boundary falls into the category of boundary element methods and
allows for very efficient solutions in cases like ours.

Axis-aligned deformations certainly have less freedom than general variational warps. We
argue that in most cases, localized rotations are bad for image retargeting, because they
lead to swirling or significant shearing. However, it is conceivable that in certain situations
extreme shearing is preferable to axis-aligned scaling (for instance when the image back-

118

ground has completely uniform color, so that its shearing will not be visible). Since we
completely exclude rotations from our warps, our method will not be capable of reproducing
such effects.

We are interested in extending our method to video retargeting in future work, as its speed
and absence of precomputation overhead would enable online (streaming) execution. Video
retargeting is very challenging due to the additional temporal coherence requirements. Our
technique can be potentially generalized to video by making the warps “track” salient
moving objects via deformations that are consistent with the optical flow. Similarly to the
Crop-and-Warp method of [WLSL10], we can incorporate cropping into the framework by
allowing the size of rows and columns near the boundary to vanish.

119

Chapter 4

Implicit Hierarchical Meshes

Subdivision surfaces are becoming more and more popular in computer graphics and CAD.
During the last decade, they found major applications in the entertainment industry, es-
pecially in the production of movies, videogames [DKT98] and in simulation [PAH06].
Several solid modelers, both commercial and open source, now support modeling based
on subdivision [Ble, May, Mod, Sil]. From the point of view of users, subdivision surfaces
come midway between polygonal meshes and NURBS, getting many advantages from both
worlds. Being based on the recursive refinement of the faces of a polygonal mesh, they
allow a designer to model a shape on the basis of a relatively simple control net, which
can be handled as freely as a polygonal mesh, while automatically generating either a finer
mesh at the desired level of detail, or a smooth limit surface.

The natural approach to modeling based on subdivision is coarse-to-fine. This can be a
disadvantage with respect to polygonal modeling, since, e.g., it prevents exploiting the
wealth of high resolution meshes that are generated through model acquisition. However,
advances in reverse subdivision suggest that subdivision modeling may also be used fine-to-
coarse [LMH00, Sab04, SB99, SMAB02, PPT+11]. See Chapter 2 for a complete discussion
and for a novel proposal for Catmull-Clark surfaces. Reverse subdivision is the process
of taking a high resolution mesh and generating a coarse one which, when refined by
subdivision, gives a good approximation to the original. Direct and reverse subdivision
may thus be used together, to take any mesh and automatically generate a whole hierarchy
of Levels Of Detail (LODs), both coarser and more refined than the base mesh. Such a
hierarchy, however, will contain just models at uniform resolution, i.e., the same LOD
is used throughout all parts of an object. In order to become really competitive with
polygonal modeling, subdivision modeling should also support selective refinement, i.e.,
the possibility to vary LOD smoothly across a mesh and dynamically through time. To
this aim, it is necessary to combine different levels of subdivision in the context of a mesh,
without losing consistency with an underlying subdivision scheme (see Figure 4.1). This

120

Figure 4.1: A polygonal model (left) is selectively refined through adaptive triangu-
lar subdivision, by increasing level of detail in the parts representing eyes, nose, mouth
and the top of the head (center). The limit surface of the adaptive subdivision is coin-
cident with that of the Loop subdivision (right). Model courtesy of Silent Bay Studios
http://www.silentbaystudios.com

is the central issue investigated in this chapter.

Motivation

Most often subdivision is applied up to a certain level and the resulting mesh is used
for further processing [ZS00]. Even when users are interested in processing/rendering the
limit surface, subdivided meshes can be useful in intermediate computations. For instance,
physical engines for animation, as well as system solvers for the finite element methods,
work on polygonal meshes with a limited budget of cells.

In many cases, it may be desirable to refine different parts of the mesh at different levels
of detail. For instance, the design of characters for videogames is constrained by a certain
budget of polygons. The skin of a character is a mesh that may need more polygons in
detailed areas and in the proximity of joints, while coarser and rigid parts are modeled
with a smaller number of polygons. Similar arguments apply for adaptive meshes that
discretize a domain to be analyzed by finite element methods. Manually adjusting the
level of detail of the different parts of a mesh may be a tedious task, unless sophisticated
tools to control LOD are made available. A designer or engineer would rather like to have
a tool that allows her/him to set the desired level of detail on selected parts of the mesh,
while letting the system automatically either refine or coarsen such parts and blend them
with the rest of the mesh in a seamless way. Depending on the context, automatic criteria
may also be applied, like refinement on the basis of morphological features (e.g., curvature),
or view-dependent refinement [PS07].

121

Figure 4.2: The one-to-four triangle split pattern.

This sort of mechanism is customary in Continuous Level Of Detail (CLOD) applied to
free-form mesh modeling [LRC+02]. The resulting mesh must always be conforming (i.e.,
free of cracks) and transition between different LODs should be as smooth as possible. In
order to support selective refinement dynamically and efficiently, it is crucial that a a mesh
at intermediate LOD can be modified on-line through selective refinement in either way,
by refining some parts of it while other parts may be coarsened. To this aim, refinement
and coarsening operations must be based on local operators and be easily reversible.

In subdivided meshes, there is an obvious relation between level of detail and level of
subdivision, thus adaptivity can be achieved only if cells at different levels of subdivision
are combined in the context of a single mesh. However, classical subdivision schemes are
based on the application of recursive patterns that act uniformly over the whole surface. For
instance, the popular Loop [Loo87] and butterfly [DLG90] schemes for triangle meshes are
based on recursive one-to-four triangle split (see Figure 4.2), which gives non-conforming
meshes when applied adaptively at different levels of subdivision (see the left side of Figure
4.5). Similar arguments hold for schemes based on one-to-four split of quad meshes.

Quad-based meshes

Polygonal modeling is the main modeling paradigm for applications that require computa-
tional intensive tasks other then rendering, such as video games and finite element methods.
In this context, quad-based meshes are often preferred to triangle-based ones, since they
provide a more stable and better controllable framework for texturing, modeling and ge-
ometric computations. One notable property of quads is the possibility to be naturally
aligned to anisotropic design features, as well as to line fields, or cross fields, such as those
corresponding to principal curvatures [BZK09, DBG+06, KNP07, RLL+06].

A standard approach to polygonal modeling consists of starting from a coarse base mesh,
which is then interactively edited and refined to model the features of the desired shape.
One main goal is to obtain a mesh having a controlled budget of polygons, while being

122

(a) (b)

Figure 4.3: Subdivision surface: (a) The control mesh of a smooth object, is adaptively
subdivided (b) and its vertices are moved to their limit position.

close to an ideal smooth surface. Mesh subdivision is often used to this purpose [MS01a].
Non-trivial shapes may require adaptive subdivision to model different parts: tiny but
relevant features will require a much finer mesh than large uniform areas. But subdivision
is generally meant as a global process, while adaptive refinement of quad meshes is non
trivial: local refinement of quads produces non-quad faces and this process, if performed
in an uncontrolled manner, can soon destroy the regular structure of a mesh.

On the other hand, several authors have remarked that quad-dominant meshes containing
a small amount of non-quad elements can be more flexible and more effective than purely
quad meshes in capturing surface features, and they may enrich the design space [MNP08,
SL03]. For instance, triangular and pentagonal elements can be used to collapse, split and
merge lineal features and line fields, as well as to model the surface in the proximity of
singularities.

Examples of results obtained with our adaptive quad subdivision scheme are shown in
Figures 4.22 and 4.3. Our method generates an implicit hierarchy of adaptively refined
quad-dominant meshes, each containing a small amount of triangular and pentagonal tran-
sition elements. The adaptive subdivision patterns preserve the surface flows and lineal
features, which are defined on the base mesh, at all meshes in the hierarchy.

123

(a) (b)

Figure 4.4: Remeshing: (a) A simple mesh used to impose the base topology; (b) an
adaptively remeshed model is obtained by selective refinement and projection of vertices to
the reference shape.

Contribution

We introduce two adaptive subdivision schemes, one for triangle meshes and the second
for quad meshes. Both shares similar properties, since they are based on the iterative ap-
plication of local refinement and coarsening operators. It is possible to extend the schemes
schemes to generate the same limit surface of the Loop or Catmull-Clark subdivision, re-
spectively. They produce the same limit surface independently on the order of application
of local operators, they support dynamic selective refinement and they generate conforming
meshes at all intermediate steps. Our hierarchy is implicit, meaning that only a mesh at
any intermediate level of refinement is encoded at each time, while all other meshes of the
hierarchy can be easily obtained from it, by means of local conforming operators, which
support both refinement and coarsening and work on a plain mesh without the need of
cumbersome hierarchical data structures.

The main contributions in this chapter are the following:

1. We define local operators for both refining and coarsening a subdivision mesh of
triangles/quads by inserting/deleting one vertex at a time;

2. On the basis of such operators, we define their transition space and we study them
as purely combinatorial structures. We show that they are highly adaptive;

3. We provide traversal operators that work on an adaptively refined mesh M , while
supporting navigation of any mesh coarser than M in the implicit hierarchy.

4. We describe a light data structure for adaptive subdivision, which does not need to
store any hierarchy;

124

5. We provide a variant of the well-know Catmull-Clark subdivision scheme for our
adaptive subdivision hierarchy;

6. We show that our adaptive scheme can be used as a flexible re-meshing tools

4.1 Related work

The work presented in this chapter has relations with work on subdivision surfaces and
work on CLOD models for meshes. We review the literature on these two topics in separate
subsections, by focusing just on results that have direct relation with our work.

Adaptive subdivision

The literature on subdivision surfaces is quite extended. The interest reader can refer to
[WW02] for a textbook, [ZS00] for a tutorial and [Sab04] for a survey. Here, we will review
only those works related to adaptive subdivision.

Red-green triangulations were introduced in the context of finite element methods [BSW83],
and have become popular in the common practice, as an empirical way to obtain conform-
ing adaptive meshes from hierarchies of triangle meshes generated from one-to-four triangle
split. Red-green triangulations are usually built through a two-step procedure: first by ap-
plying one-to-four triangle split adaptively, and then by subdividing some triangles further,
through predefined patterns, to fix non conforming situations (see Figure 4.5). Depending
on the underlying subdivision scheme, the geometry of vertices (control points), which lie
on the transition between different levels of subdivision, may not correspond to that of the
same vertices in a uniformly subdivided mesh. This fact, which is often overlooked, may
prevent the correctness of further subdivision or coarsening of a red-green triangulation,
unless the subdivision process is repeated from scratch. This latter option is unwieldy, it
prevents incremental editing of LOD, and it may be not sustainable for on-line processing.

A variant of red-green triangulations was used in [ZSS97] to support multi-resolution edit-
ing of meshes based on the Loop subdivision scheme. Adaptive meshes are computed by
reverse subdivision, starting at the finest level and pruning over-refined triangles. Also in
this case, a restricted non-conforming mesh is computed first, which is fixed next by further
bisection of some triangles. Correct relocation of vertices is treated by using a hierarchical
data structure that stores the positions of all control points in the uniform subdivision.
Recently, another variant of red-green triangulations, called incremental subdivision, was
presented in [PS07] for both the Loop and the butterfly schemes. In this case, a larger
support area for refinement is used, in order to correctly compute the geometry of control
points. The adaptive refinement algorithm seems to work level by level and coarse-to-fine

125

Figure 4.5: Red-green triangulation: a non-conforming mesh obtained from adaptive
one-to-four split (left) is made conforming by splitting some triangles further depending on
the level of their neighbors (right).

only. With respect to standard red-green triangulations, incremental subdivision requires
a larger number of triangles to achieve the same level of adaptivity.

The RGB subdivision proposed in [PP09a, PP09b] extends red-green triangulations with
the same subdivision schemes to a fully dynamic adaptive scheme supporting both local
refinement and coarsening.

The schemes proposed in [MJ98] and [XK99] apply to quadrilateral meshes and extend
the Catmull-Clark [CC78] and Doo-Sabin [DS78] subdivision methods, respectively, to
become adaptive. These methods are in spirit similar to subdivision based on red-green
triangulations, and suffer from the same drawbacks. In [Pup07], a scheme similar to the
RGB subdivision presented here is sketched, which can be applied to quad meshes to obtain
adaptive tri-quad meshes, while remaining consistent with the Catmull-Clark subdivision.

In [SHHG01], the one-to-four triangle refinement scheme is decomposed into atomic local
operations, called quarks, based on the popular vertex split operation that is at the basis of
Progressive Meshes [Hop96]. A red-green triangulation under the butterfly scheme [DLG90]
is obtained through a sequence of quarks. No explicit algorithm for selective refinement is
proposed in [SHHG01].

In [Vel03] the application of stellar theory to subdivision is investigated. The factorization
of one-to-four triangle split into a sequence of edge split and edge swap operations is
proposed: this is a subset of the local operators that we use in Section 4.3. A factorization
of the Loop subdivision rule is also proposed, which makes it possible to compute the
control points correctly through the sequence of local refinement operations. No operators
for inverse subdivision are proposed and selective refinement is not investigated in [Vel03].

The
√

3 subdivision [Kob00] and the 4-8 subdivision [VZ01] schemes are not based on the
classical one-to-four triangle split operator. They are naturally adaptive, being both based
on local conforming operators.

126

The
√

3 subdivision alternates one-to-three triangle split (insertion of a new vertex at the
center of each triangle) at one level, with edge swap at the next level. This scheme generates
triangles that can be regarded as being of green and blue types in the terminology that we
introduce in Section 4.3. In order to relocate vertices correctly, some over-refinement of
neighbors of even (green) triangles is imposed. A closed form solution of the subdivision
rule permits to compute control points for a vertex at any level on the basis of just its
initial position and its limit position. Adaptive refinement is supported, while adaptive
coarsening is not investigated explicitly in [Kob00].

The 4-8 subdivision is based on edge split, as in our case, applied to a special case of
triangle meshes, called tri-quad meshes. An initial tri-quad mesh can be obtained from
any triangle mesh by doubling its number of triangles and changing its topology [VZ01].
The correct position of control points is addressed and resolved also in this case with a
certain amount of over-refinement of the mesh. Only basic operations are investigated in
[VZ01], while no selective refinement algorithm is proposed.

CLOD models

Also the literature on Continuous Level of Detail models is very wide. The interested reader
may refer to [LRC+02] for a book on this subject. Here we review only some concepts and
contributions that are related to the rest of the Chapter. Generally speaking, a CLOD
model consists of a base mesh at coarse resolution, plus a set of local modifications that
can be applied to the base mesh to refine it. Such modifications are usually arranged in a
hierarchical structure, which consists of a directed acyclic graph (DAG) in the most general
case. Meshes at intermediate level of detail correspond to cuts in the DAG, and algorithms
for selective refinement work by moving a front through the DAG and doing/undoing
modifications that are traversed by this front. This general framework, as shown in [Pup98],
encompasses almost all CLOD models proposed in the literature and it can be applied to
the hierarchies generated by

√
3 subdivision and 4-8 subdivision as well.

In [KL03], a CLOD model is introduced, which achieves better adaptivity by using local
modifications more freely than in previous models. In this case, modifications cannot be
arranged in a partial order and encoded in a DAG. In Sections 4.2.2 and 4.3.4, we use
the idea of transitive mesh space proposed in [KL03] to study the expressive power of our
adaptive subdivision schemes.

CLOD models can provide meshes at intermediate LOD, where detail can vary across the
mesh and through time, at a virtually continuous scale and with fast procedures that work
on-line even for huge meshes. The scheme proposed in [DWS+97] is very popular and most
authors refer to it in order to implement their selective refinement algorithms. Refinement
modifications are dynamically done/undone on a current mesh at intermediate LOD, on

127

the basis of two priority queues and user-defined selection criteria, which drive the choice
of modifications needed to adapt the mesh to used needs.

There exist a few CLOD models based on recursive subdivision patterns. The model
proposed in [DWS+97] is based on the recursive bisection of right triangles. This rule is
also used by several other authors, and may be regarded as a subdivision scheme. It can be
applied just to meshes obtained from regular grids (typically representing terrains), while
its extension to more general triangle meshes is not straightforward. One generalization
is given by 4-k meshes [VG00], which have in fact a strong relation with 4-8 subdivision
[VZ01].

We are not aware of any CLOD model developed upon the one-to-four triangle split pattern.

4.2 Adaptive quad subdivision

We deal with manifold polygonal meshes containing triangles, quads and pentagons, adopt-
ing standard terminology. A quad mesh is a mesh where all faces are quads; a quad-
dominant mesh is a mesh where most faces are quads. A vertex v in a quad mesh (or in
a quad-dominant mesh containing just quads in the star of v) is regular if it has valence
four; otherwise it is said to be extraordinary. The edge neighbors of a vertex v in a quad[-
dominant] mesh are those vertices connected to v through edges; the face neighbors of v
are those vertices opposite to v on its incident quads.

We edit the mesh by local refinement operations that split one edge by inserting a vertex,
and local coarsening operations that merge a pair of edges by removing a vertex. A local
operation eliminates faces in the neighborhood of the vertex to be inserted/removed, and
re-tessellates the hole with new faces. This will be the subject of Section 4.2.1. The
iterative application of local operators define an implicit hierarchy, described in Section
4.2.2. In Section 4.2.3 the concept of topological angles and lengths are introduced and
used to define navigation algorithms that allows us to navigate through the subdivided
mesh and across the different levels of the implicit hierarchy.

4.2.1 Topological operators

The most common pattern for uniform subdivision of quad meshes is quadrisection: each
face is subdivided into four new faces by splitting each edge with a new vertex, and con-
necting each such vertex with another new vertex at the center of the face. In the following,
a vertex that splits an edge will be said to be of type E, while a vertex inserted in the
middle of a face will be said to be of type F.

128

Figure 4.6: The diagram of patterns for adaptive subdivision of a quad. Types of faces
and patterns are denoted by labels placed inside and beside them, respectively. Transitions
between adjacent patterns are labeled with the corresponding refinement and coarsening
operators.

Since quadrisection splits all edges of a face, it cannot be applied selectively while main-
taining the mesh conforming. In order to support transitions between different levels of
subdivision, we devise alternative patterns that split one edge at a time. Figure 4.6 illus-
trates such a set of patterns, and related operators. These patterns produce quad-dominant
meshes containing some triangular and pentagonal faces, which preserve the flow of lines
of the base mesh (see Section 4.2.4 for a discussion). Other patterns, e.g. containing just
quads and triangles could be also used with straightforward modifications of the method
described below.

A key idea is that local operators subdivide a mesh by splitting one edge at a time, they
always produce conforming triangulations, and they can be controlled just on the basis
of attributes of local entities, i.e., types and levels of vertices, edges and faces. All rules
that control operators are purely topological. Just for the sake of clarity, in the figures we

129

will use fixed shapes to depict the different types of faces that may appear in our adaptive
meshes: squares (type 0); rectangles(type 3); diamonds (type 4); right triangles (type
2); and pentagons with three collinear vertices, having the shape of either a square or a
rectangle (type 1 and 5, respectively).

Consider a quad mesh Γ0, called the base mesh. We assign level zero to all its vertices
and edges, and type standard to all its edges. A selectively refined mesh will also contain
vertices and edges labeled according to their level of subdivision; edges will be labeled with
either type standard or type extra. The only extra edges are those internal to patterns
P2a and P2b, which have the same level l of their parent face (i.e., face 0 in pattern P0);
the remaining edges are standard and they have level either l or l + 1, as in the standard
subdivision. The level of a face in a mesh Γ is defined to be the lowest among the levels
of its edges. Note that the type of a face is uniquely defined by the types and levels of its
edges, and the type of a pattern is also uniquely defined by levels of edges in its boundary,
as follows:

• Type 0 (also called standard) is a quad with all four edges at the same level (and of
standard type);

• Type 1 is a pentagon with three consecutive (standard) edges at level l and two
consecutive (standard) edges at level l + 1;

• Type 2 is a triangle (with one standard edge at level l, one standard edge at level
l + 1 and one extra edge at level l);

• Type 3 is a quad with two non-consecutive edges at level l (one of which is an extra
edge) and the other two (standard) edges at level l + 1;

• Type 4 is a quad with two consecutive (extra) edges at level l and the other two
(standard) edges at level l + 1;

• Type 5 is a pentagon with four (standard) edges at level l and one (standard) edge
at level l + 1.

4.2.1.1 Refinement operators

According to definitions above, all faces in the base mesh are standard at level zero. Local
subdivision operators can be applied iteratively to Γ0 to generate a conforming mesh Γ
composed of faces of the six types illustrated in Figure 4.6.

We say that an edge e at level l ≥ 0 is refinable (i.e., it can split) if and only if it is standard
and its two adjacent faces f0 and f1 are both at level l. In case of a boundary edge, only
one such face exists. We split an edge e at level l, by inserting at its midpoint a new vertex
v at level l + 1. The edges generated by the two halves of e are standard at level l + 1.

130

Note that levels of vertices and standard edges comply with the standard subdivision.

Splitting an edge e at level l may affect an area as large as that of the standard faces
incident at e at level l. Tessellations on the two sides of e can be treated independently
and each of them depends on the type of the face f incident at e and on its configuration,
as explained in the following, and depicted in Figure 4.6:

• 0-split: if f is of type 0, then it is changed into a face of type 1, having its edges of
level l + 1 at the two halves of e incident at the new vertex v.

• 1a-split: if f is of type 1 and both its edges adjacent to e are at level l, then two
faces of type 2 are generated by connecting v to the vertex of f opposite to e (which
is at level l + 1). The edge shared by the two new faces is extra and at level l.

• 1b-split: if f is of type 1 and one edge e′ adjacent to e is at level l+ 1, then another
vertex v′ is inserted inside the face and a tessellation composed of one face of type 4
at level l and two faces of type 3 at level l is created; for the sake of brevity, we refer
to the figure to describe how this tessellation is made; the new edges inserted inside
the face are extra at level l.

• 2a-split: if f is of type 2, then it is necessarily adjacent to another face f ′ of type
2 through an extra edge opposite to e. Another vertex v′ is inserted that splits the
extra edge between f and f ′; f is decomposed into two standard faces at level l + 1
by connecting v to v′; and f ′ is changed into a face of type 5. The new edges are all
standard at level l + 1.

• 2b-split: if f is of type 3, then it is necessarily part of a tessellation of a standard
face at level l, formed by f as well as of another face f ′ of type 3 and a face f ′′ of type
4 placed between f and f ′. Such three faces are removed and the hole is tessellated
with the same pattern described in the previous case;

• 3-split: if f is of type 5, then it is split into two standard faces at level l + 1 by
connecting v to the vertex opposite to e with a standard edge at level l + 1.

It is readily seen from Figure 4.6 that in all cases the type of face f incident at splitting
edge e and the levels and labels of edges of f are sufficient to characterize the type of
operator to be applied. This fact allows us to pre-compute and store in a lookup table the
local tessellations to be deleted from, and to be plugged into a mesh. Note that all split
operators affect the whole area covered by a pattern, except for 3-split, which affects just
the area covered by face of type 5 in pattern P3. In fact, the other two (standard) faces
at level l+ 1 may be actually refined independently at higher levels before this operator is
applied.

By simple combinatorial analysis, it is easy to verify that the set of refinement operators
is closed with respect to the meshes obtained, i.e.: if we start at a mesh Γ0 containing all

131

standard faces at level 0 and we proceed by applying any legal sequence composed of the
operators above, the resulting mesh will be composed of faces of the types defined above,
and all its refinable edges can be split through the same set of operators. In particular, all
vertices of a standard subdivision up to a given level l can be added without adding any
vertex of a level higher than l and the same uniform mesh generated from the standard
subdivision scheme will be obtained.

If an edge e at level l is of standard type, but it is not refinable, we trigger recursive
refinement of each face f incident at e and having a level < l. Recursive refinement is
performed by recognizing the type of f and forcing refinement of either two (for pattern
P1) or one (for all other patterns) of its edges at level < l.

4.2.1.2 Coarsening operators

Local merge operators invert edge split operators defined above, by removing one vertex v
at level l + 1 that splits an edge e at level l. As before, at most the area spanned by the
faces incident at e at level l may be affected, and the tessellations of such two areas are
treated independently.

A vertex v at level l+ 1 is potentially removable if the levels of its incident faces are: l+ 1
for standard faces (type 0), and l otherwise. A potentially removable vertex is removable
if it is of type E (i.e., it splits an edge of the previous level) and faces in its neighborhood
can be arranged to form two patterns of the diagram, sharing a pair of edges at level
l + 1 incident at v. Vertices of type F (i.e., splitting a face of the previous level) do not
trigger any merge operator, because they are removed together with vertices of type E from
operators 3a/b-merge. Such vertices are discarded easily because a potentially removable
vertex v at level l+ 1 is of type F if and only if either it has exactly four adjacent vertices
at level l + 1, or its star is formed by two standard faces and one face of type 5.

We divide the neighborhood of (internal) vertex v of type E in two halves as follows: there
are at most four (standard) edges at level l+ 1 incident at v; among them, only two edges
e′ and e′′ have the other end vertex at level ≤ l; thus the pair e′, e′′ cover the edge e that
was split by v and they divide the neighborhood. For each half neighborhood, we have the
following possible cases:

• 4-merge: both faces incident at e′ and e′′ are standard, and the faces adjacent to
each of them on the edges opposite to e′ and e′′, respectively, are different; then v
is removable and the two faces incident at e′ and e′′ are replaced with a single face
of type 5 (note that the region covered by the other two faces of pattern 4 is not
affected);

• 3a-merge: both faces incident at e′ and e′′ are standard, and they are both adjacent
to the same face (of type 5) along the edges opposite to e′ and e′′; then v is removable

132

and a pattern of type 3 is replaced with a pattern of type 2a;

• 3b-merge: one standard face and one face of type 5 are incident at e′ and e′′. Just
in this case, we must check that these two faces are both adjacent to another face f
of type 0 at level l+1 (which completes pattern 3). If this condition is not fulfilled, it
means that the third face of pattern 3 (which is not incident at v) has been subdivided
further, therefore v is not removable. Otherwise, v is removable and a pattern of type
3 is replaced with a pattern of type 2b.

• 2a-split: both faces incident at e′ and e′′ are of type 2; then v is removable and a
pattern of type 2a is replaced with a pattern of type 1;

• 2b-split: one face of type 3 and one face of type 4 are incident at e′ and e′′; then v
is removable and a pattern of type 2b is replaced with a pattern of type 1;

• 1-merge: both e′ and e′′ are incident at the same face of type 1; then v is removable
and a pattern of type 1 is replaced with a pattern of type 0.

For each half neighborhood, we recognize the pattern adjacent to the pair e′, e′′ and we
apply the corresponding merge operator, as depicted in Figure 4.6. Operators 1-merge and
2a/b-merge can be applied by checking just the types of faces f ′ and f ′′ incident at e′ and
e′′. In order to discriminate between operators 3a-merge and 4-merge it is also necessary
to check the type of face(s) adjacent to f ′ and f ′′ inside the pattern. Finally, operator
3b-merge needs checking also the other face of type 0 adjacent to the face of type 5 within
pattern P3: in fact, v is not removable if such a face has been refined further.

It is easy to verify that the merge operators are consistent with the split operators and
they have similar properties: all merge operators affect the whole area covered by a pat-
tern, except for 4-merge, which affects just half a pattern; local tessellations to implement
operators are precomputed and stored in a lookup table (in fact, the same lookup table
that is used for the split operators).

The set of refinement operators is also closed with respect to the meshes obtained. If we
start at a mesh Γ obtained from Γ0 through refinement, we can apply merge operators in
any legal order to go back to Γ0; moreover, any intermediate mesh could be refined through
split operators. So we can mix split and merge operators in any order while preserving
consistency.

4.2.2 Transition space and implicit hierarchy

Following the approach of [PP09b], it is possible to define a transition space for our adaptive
subdivision scheme. A transition space is a graph where each node corresponds to an
adaptive mesh, and each arc corresponds to the application of an atomic local operation,

133

as defined in Section 4.2.1. The arcs can be divided in two groups: the first contains
all refinement operations while the second contains the inverse operators that coarsen
the mesh. In the graph, a path from node a to node b corresponds to a set of atomic
operations that transform the mesh associated with a into the mesh associated with b.
Since all operators are invertible, it is always possible to execute also the inverse sequence
of operations. Note that multiple paths may exist between a pair of nodes.

Consequently, the application of the local operators to a base mesh defines a (virtually
unlimited) subdivision hierarchy. We do not need to store the hierarchy explicitly. Starting
from a single node n, we are able to determine what operations are valid and subsequently
what arcs of the graph are incident with n. In other words, we always know the subdivision
hierarchy locally, around our current mesh, and we are able to navigate the graph by
applying local operators, even if we do not store it explicitly.

4.2.3 Topological angles and lengths

Fetching stencils in an adaptively refined mesh requires navigating the mesh. In order to
support navigation efficiently, we assign a topological width to every angle defined by a pair
Face-Vertex (F, V) in a mesh. The values are assigned to faces of the various types by
using the following rules: (see Figure 4.7):

1. Types 0 and 3: each angle has a topological width of 3;

2. Type 1: the angle at the vertex with higher level has a topological width of 6, while
the other angles have a topological width of 3;

3. Type 2: the angle at the vertex with higher level has a topological width of 2; the
one at the vertex incident at both standard edges has a width of 3, and the third
angle has a width of 1;

4. Type 4: the angles at the two vertices with higher level have a topological width of
4; the one at the vertex incident at both extra edges has a width of 1, and the fourth
angle has a width of 3;

5. Type 5: each angle has a topological width of 3, except the one at the higher level
that is connected by its incident edges to other two vertices at the same level, which
has a width of 6;

An angle with topological width of 6 is said to be flat. Such values are not related to
geometrical values, we call them “angles” since they satisfy some properties of geometrical
angles, which we will show in the following. We do not need to store angle widths, since
they can be found efficiently from types of faces and edges, and levels of vertices.

We give next some invariants on angles that will be useful for mesh navigation.

134

Figure 4.7: Topological angles: a width is assigned to each vertex in each face.

Lemma 8 If an edge e is split into two edges e0 and e1 by adding a vertex v, both angles
formed by e0 and e1 are flat.

Proof. Figure 4.7 shows the only possible ways to split an edge. It is readily seen that
in all cases the sum of angles on each side of a pair e0e1 is 6. �

Lemma 9 The width of a topological angle between a pair of edges is invariant upon editing
operations on the mesh.

Proof. Consider a pair of edges e and e′ incident at v and one of the two angles they
form at v. It is sufficient to analyze editing operations that affect faces spanned by such
an angle. For each such face f , there are three possible cases, which are readily verified by
comparing transitions depicted in Figure 4.6 with angles depicted in Figure 4.7:

If the editing operation neither splits f with an edge incident at v, nor merges t with an
adjacent face around v, then the angle of f at v is unchanged;

If the angle of f at v is split into two angles, then the sum of widths of such angles is equal
to the width of the angle of f at v before split;

If f is merged with another face f ′ adjacent to it around v, by deleting their common edge,
then either e and e′ are merged into a single edge, or the width of angle at v of the new
face is equal to the sum of widths of angles of f and f ′ at v. �

Lemma 10 No matter how an edge e is subdivided into a chain of edges e0, . . . , ek, angles
between two consecutive edges ei−1 and ei, i = 1, . . . , k are flat.

Proof. The proof follows from the above two lemmas by noting that every split produces
flat angles and such angles are invariant upon subsequent editing operations. �

Topological lengths are assigned to standard edges inductively: an edge at level 0 has unit
length; an edge at level l + 1 has half the length of an edge at level l.

The previous definitions and lemmas allow us to define a set of operators for mesh naviga-
tion, which help us extracting from an adaptively refined mesh a view of the same mesh
at a lower level of subdivision. We define switch operators similar to those proposed in
[Bri93], plus two new operators, called rotate and move, that are specific for our meshes.
All operators use a unique identifier of position in a mesh, called a pos, which contains a
vertex v, an edge e incident at v, and a face f bounded by e. Given a pos p, we will denote
by p.v, p.e and p.f its related vertex, edge and face, respectively.

135

1. p.switchVertex(), p.switchEdge() and p.switchFace() move to the adjacent pos
which differs from p just for the vertex, the edge and the face, respectively. (switches
are equivalent to the operators defined in [Bri93]).

2. p.rotate(i): executes an alternate sequence of p.switchEdge() and p.switchFace()
operators until a topological angle of width i has been spanned.

3. p.move(l): executes an alternate sequence of p.switchVertex(), possibly followed
by p.rotate(6) and p.switchFace() operators until the length of an edge at level
≤ l has been traversed. If the first edge traversed has a level < l (i.e., its length is
larger than required) the operation has no effect.

The effect of operators is exemplified in Figure 4.21: single arrows correspond to switch
and rotate operators; the expanded view shows the decomposition of a rotate(6) operator
in terms of switches; sequences of vertical arrows correspond to move operators for the
length of one edge at the coarsest level.

Lemma 11 The rotate and move primitives are invariant during editing, every result that
we obtain on a level of the subdivision is invariant in any deeper level. For invariant
we mean that if we consider a uniformly refined mesh at level l and we apply one of the
previous operation on it, we obtain exactly the same result that we would get on another
mesh at any further subdivision level.

Proof. The rotate primitive is invariant since the angle it spans is invariant by Lemma
9. The move primitive is invariant since if we refine a mesh we can only add vertices at a
higher level, and any angle we add along the line traversed by the Move operation has a
width of 6, which is skipped by the Move operation; moreover, the topological length of
any chain of edges splitting an edge e is also invariant by definition. �

The invariance lemmas shown in the previous section guarantee that, starting at a splitting
edge p.e at level l, we can navigate the mesh by moving to adjacent faces of the stencil at
level l (through a p.rotate(3) operation) and we can follow chains of edges until we reach
the other end of an edge at level l (through a p.move(l) operation).

4.2.4 Alignment with surface flows

In many cases, the alignment of edges of a quad mesh are relevant to the modeled shape.
One example is when edges are aligned with shape features, another is when they are
aligned with a cross field defined on the surface [BZK09]. For instance, both in the finite
element methods and in shape approximation, good anisotropic meshes for a given budget
of elements can be obtained if elements are aligned to principal directions of curvature
[She02].

136

If quads are properly aligned with a line field defined on the surface, then edges can be
colored with two colors, say red and blue, depicting two orthogonal flows on the surface
(see Figure 4.10). These flows are obviously preserved through quadrisection of quads - see
Figures 4.8(a) and (b) - but they can be deviated by some adaptive patterns - see Figure
4.8(c).

Figure 4.8: Preserving flows in a quad mesh: (a) flows traverse a quad element in
orthogonal directions; (b) flows are preserved by uniform subdivision; (c) some adaptive
patterns break flows and do not allow for consistent labeling of edges; while others maintain
flows but introduce non-quad elements (d). Arrows denote flows traversing elements.

Triangular and pentagonal faces in a quad-dominant mesh collapse and split/merge flows,
respectively, as depicted in Figures 4.9(a) and (b). Note that the direct application of
Catmull-Clark patterns to non-quad meshes would not preserve flows. See Figures 4.9(c)
and (d). We have used the pattern depicted in Figure 4.8(d) instead of the more popular
Y pattern of Figure 4.8(c) for configuration P2b of our adaptive scheme, since it allows us
preserving the same flows of its parent quad. It is straightforward to see that also the other
patterns of our scheme preserve flows, therefore the flows defined by edges of elements in
an adaptively refined mesh will be consistent with those of the base mesh.

(c) (d)(b)(a)

Figure 4.9: Triangular and (a) pentagonal (b) transition elements collapse and
split/merge the flow in one direction, respectively. Catmull-Clark subdivision of triangles
(c) and pentagons (d) does not preserve the flows, though.

Figures 4.10 shows a base mesh representing a torus, with edges aligned with principal
directions of curvature, and an adaptively subdivided mesh obtained from it. Flows are
shown on edges and faces by means of textures.

137

Figure 4.10: A torus with edges aligned to principal curvature directions and an adaptive
subdivision of it.

4.2.5 Implementations details

The data structure to represent a mesh has been extended just with attributes to keep the
level and type of each edge, and the level of each vertex. Assuming a maximum of 16 levels
of subdivision, which is more than sufficient for practical purposes, such attributes can be
maintained with one byte per edge, and one byte per vertex. For adaptive subdivision
only, also summations and counters to compute control points are maintained, requiring
additional six floats per vertex.

In order to analyze space occupancy, we note that our scheme implicitly encodes the
subdivision hierarchy corresponding to a quad-tree representation, by representing just its
leaves. In the case of a complete tree, which encodes a uniform subdivision, we encode
about 67% of the total number of quad-tree nodes. Our scheme uses about 33% less space
than the multi-resolution half-edge data structure presented in [KCB09], and about 3%
more space than a full quad-tree, encoded as in [KCB09].

Our prototype running on a single core of a T9300 Intel Core Duo at 2.5 Ghz can in-
sert/remove about 40K vertices per second. The framework can thus easily support inter-
active LOD editing even with large meshes.

4.3 Adaptive triangular subdivision

RGB triangulations are defined as all those triangle meshes that can be built through
iterative application of given operators for local modification, starting at a base mesh Σ0.
In this section we introduce their combinatorial structure and the basic rules to manipulate
them in a consistent way. In Subsection 4.3.1 we define local subdivision operators. The
essential idea is that such operators subdivide a mesh by introducing one vertex at a time,
they always produce conforming triangulations, and they can be controlled just on the
basis of color and level codes. In Subsection 4.3.2 we introduce local coarsening operators,
which reverse refinement operators, while in Subsection 4.3.3 we add one neutral operator.

138

Figure 4.11: One-to-four triangle split of a green triangle is factorized into three edge
split operations plus an edge swap operation.

Subsection 4.3.4 has a more theoretical flavor: we define and study the transitive space of
RGB triangulations, in order to show their expressive power and adaptivity; we also prove
some results useful to warrant correctness of the selective refinement algorithm described
in the next section.

All rules defined in this section are purely topological. Just for the sake of clarity, in the
figures we will use meshes composed of equilateral triangles, right triangles and isosceles
triangles to depict the three different types of triangles that may appear in a RGB trian-
gulation. Actually, the shape of triangles is totally irrelevant in the subdivision process,
while just level and color codes matter.

4.3.1 Local subdivision operators

Consider a base mesh Σ0. We assign level zero to all its vertices, edges and triangles,
and color green to all its edges and triangles. In the following, we define local subdivision
operators that, when applied iteratively to Σ0, will generate a conforming mesh where
triangles will be colored of green, red and blue; edges will be colored of green and red; and
vertices, edges, and triangles will have different levels. Color and level codes allow us to
control the application of subdivision operators on a local basis.

Our aim is to factorize one-to-four triangle split by introducing one vertex at a time.
Following [Vel03], we can do that through a sequence of three edge split operations, plus
an edge swap operation, as depicted in Figure 4.11. Since the mesh must remain conforming
at each step, each edge split operation must affect both triangles incident at a splitting
edge.

We say that an edge e at level l ≥ 0 is refinable (i.e., it can split) if and only if it is green
and its two adjacent triangles t0 and t1 are both at level l (in case of a boundary edge, only
one such triangle exists). An edge e at level l is split by inserting a new vertex, at level
l + 1, at the midpoint of e. This induces the simultaneous bisection of triangles t0 and t1
incident at e. The edge split operator comes in the following variants (see Figure 4.12):

• GG-split: t0 and t1 are both green. The bisection of each triangle t0 and t1 at the
midpoint of e generates two red triangles at level l. Each such triangle will have: one

139

Figure 4.12: Edge split and edge merge operators. Labels denote the level of vertices and
edges.

green edge at level l (the one common with old triangle t), one green edge at level
l + 1 (one half of e) and one red edge at level l (the new edge inserted to split t).

• RG-split: t0 is green and t1 is red. Triangle t0 is bisected and edge e is split as above.
The bisection of t1 generates one blue triangle at level l and one green triangle at
level l+1. The green triangle is incident at the green edge at level l+1 of old triangle
t1 and also its other two edges are at level l + 1 (the edge inserted to subdivide t1,
and one half of e). The blue triangle is incident at the red edge of old triangle t1 and
has also two green edges at level l + 1 (the edge inserted to subdivide t1, and the
other half of e).

• RR-split: t0 and t1 are both red. Triangles t0 and t1 are both bisected as triangle
t1 in the previous case and each of them generates the same configuration made of
a blue triangle at level l and a green triangle at level l + 1. This case may come in
two variants: RR1-split and RR2-split. Each variant can be recognized by the cycle
of colors of edges on the boundary of the diamond formed by t0 and t1: this may be
either red-green-red-green for RR1-split, or red-red-green-green for RR2-split.

Edge split operations applied to boundary edges will affect just one triangle and can be
applied to any green edge. The resulting configuration depends only on the color of the
triangle incident at e.

BB-swap is another operator necessary to obtain all green triangles at the next level of
subdivision (see Figure 4.13). It can be applied to a pair of blue triangles at level l, which
are adjacent along their red edge at level l. In this case, such edge is eliminated and the
other diagonal of the quadrilateral formed by such two triangles is inserted. The result is a

140

Figure 4.13: Edge swap operators.

pair of green triangles at level l+ 1. Note that, by construction, one of the two new green
triangles will have all three vertices at level l + 1. Note also that just green edges can be
split, while red edges are only swapped.

By simple combinatorial analysis, it would be easy to verify that this set of operators is
closed with respect to the meshes obtained, i.e.: if we start at an “all green” mesh Σ0

at level 0 and we proceed by applying any legal sequence composed of the five operators
above, all refinable edges in the resulting mesh can be always split by one of the four
variants of edge split. Rather than proving this claim, in Section 4.3.4 we prove a more
general result that also implies this fact.

4.3.2 Reverse subdivision operators

We define also local operators that invert edge split and edge swap on a RGB subdivision.
Edge merge is the reverse operator of edge split and can be applied to triangles incident
at vertices of valence four. The same cases depicted in Figure 4.12 occur (modifications
apply right-to-left in this case):

• R4-merge inverts GGsplit;

• R2GB-merge inverts RG-split;

• GBGB-merge inverts RR1-split;

• G2B2-merge inverts RR2-split.

A little care must be taken in applying GBGB-merge in order to avoid inconsistencies.
Referring to Figure 4.12, note that the quadrilateral must have two vertices at the same
level l and two other vertices at a level lower than l. GBGB-merge must be performed by
removing edges incident at the vertices of level l.

Similar rules apply to pairs of triangles along the boundary.

GG-swap, which inverts BB-swap, can be applied to a pair of adjacent green triangles t0
and t1 at level l > 0 if one of them, say t0, has all three vertices at level l. This condition
is necessary and sufficient to guarantee that t0 and t1 have the same parent triangle t in
the subdivision and t0 is the central triangle obtained by subdividing t.

141

4.3.3 Neutral operator

We finally introduce RB-swap, a reflexive operator that is neutral with respect to subdi-
vision (i.e. it neither refines nor coarsens). RB-swap takes a pair formed by a red and a
blue triangle at the same level l of subdivision, which are adjacent along a red edge, and
swaps the diagonal of the trapezoid formed by such a pair, thus obtaining another red-blue
pair of triangles at level l (see Figure 4.13). This operator may seem redundant. On the
contrary, it is very important for both theoretical and practical reasons, as we will discuss
in the next section.

4.3.4 The transition space of RGB triangulations

We now have a set of eleven atomic operators: four split operators, four merge operators,
and three swap operators. The family RGBΣ0 of RGB triangulations subdividing base
mesh Σ0 is defined inductively as follows:

• Σ0 is a RGB triangulation (where all triangles and edges are green, and all entities
are at level zero);

• If Σ is a RGB triangulation and Σ′ is obtained from Σ by applying one of the eleven
atomic operators, then also Σ′ is a RGB triangulation.

Following the approach of [KL03], we define the transition space of RGBΣ0 as a graph
where:

• RGBΣ0 is the set of nodes (where each mesh is taken as an atomic entity);

• There is an arc between two meshes Σ and Σ′ if and only if it is possible to transform
Σ into Σ′ by applying just one atomic operator.

In Figure 4.14, we show the initial fragment of transition space for a single triangle, which
shows all possible ways to subdivide such triangle at levels zero and one of subdivision,
and all possible transitions among such configurations.

Note that the transition space is not a strict partial order, because of RB-swap operators.
So, one may think that we would better define RGB triangulations without using such
operator. In fact, a transition space defined without RB-swap would be a strict partial
order, but it would also contain minimal elements different from Σ0. For instance, if we
do not use RB-swap, the “fan” configuration depicted in Figure 4.15 becomes a minimal
element in the transition space. There are also more practical reasons for using RB-swap.
Consider for instance the “strip” configuration shown in Figure 4.16. This configuration has
been obtained from an “all green” mesh by applying a sequence of edge split operators. The
only possible way to coarsen such a mesh without using RB-swap consists in reversing the

142

Figure 4.14: The first few nodes of the transition space for a mesh formed by a single
triangle. There we find all patterns that subdivide the triangle between level zero and level
one. Arcs in black correspond to transitions through refinement operators (upward) and
coarsening operators (downward); arcs in red correspond to RB-swap operators.

refinement sequence. In other words, it is not possible to remove any vertex v introduced
at an intermediate step, without removing also all vertices following it in the strip. On
the contrary, as we will show in the following, any intermediate vertex can be removed by
applying a single RB-swap followed by a merge, without affecting the other vertices of the
mesh. In summary, RB-swap allows us to obtain monotone and more flexible sequences of
refinement and coarsening operators.

For the sake of simplicity, in the rest of this section we will assume Σ0 to be watertight.
Generalization of the following results to meshes with boundary is straightforward.

Let ∆Σ0 be the set of all triangles that appear in some mesh ofRGBΣ0 , and let TΣ0 be the set
of all possible (conforming and watertight) triangle meshes that can be built by combining
elements of ∆Σ0 . Note that combination of triangles is arbitrary, provided that they match
at common edges. We now show that all elements of TΣ0 are RGB triangulations.

Lemma 12 The transition space of RGBΣ0 spans TΣ0.

Proof. Let us first analyze the nature of triangles in ∆Σ0 : since they come from meshes
of RGBΣ0 , each such triangle t is endowed with a color and a level l. For l > 0, t must
have been generated from one of the eleven local operators, and it must subdivide a parent
triangle t′ at level l − 1. Moreover, along the edge(s) internal to t′, triangle t can only

143

Figure 4.15: A fan configuration. Without RB-swap: the fan is obtained from an “all
green” mesh by a sequence of refinement operators followed by a GG-swap and a R2GB-
merge; it cannot be simplified without using refinement operators. With RB-swap: the fan
is obtained in a smaller number of steps by applying RB-swap right after the RR2-split; it
can be reversed without using refinement operators.

Figure 4.16: This strip has been obtained from an “all green” strip by applying a GG-split
(at its top end) followed by a sequence of RG-splits (proceeding downwards). Without RB-
swap, the only possible way to coarsen the strip is by reversing the refinement sequence.
With RB-swap, followed by a merge operation, we can remove any intermediate vertex
introduced during refinement, without affecting the other vertices.

144

be adjacent to other triangle(s) that also subdivide t′. In other words, no matter how we
combine triangles to form a mesh Σ of TΣ0 , if Σ contains t, then it must contain a group
of triangles that subdivide t′ exactly. Vertices of triangles in ∆Σ0 also have a level: if a
vertex v belongs to Σ0, then its level is zero; otherwise, v has been generated splitting an
edge at level l− 1, thus its level is l. It is straightforward to see that all triangles incident
at that vertex have a level greater than, or equal to l − 1.

Now let Σ be a mesh of TΣ0 . Let us define the level m of Σ to be the maximum level of its
vertices. Proof is by induction on m.

If m = 0, then Σ can be formed just from green triangles at level zero. Since Σ is watertight
and all its triangles come from Σ0, then we have necessarily that Σ ≡ Σ0, thus Σ is a RGB
triangulation.

Now let us assume all meshes of TΣ0 up to level m− 1 are RGB triangulations. Given Σ at
level m, we know that the level of its green triangles is at most m, while the level of its red
and blue triangles is at most m− 1. We build another mesh Σ′ at level m− 1 as follows:
we remove all green triangles at level m and all red and blue triangles at level m− 1 from
Σ; as a consequence, all vertices at level m have been also removed; this means that the
holes left after removing such triangles can be filled exactly with green triangles at level
m− 1. Let us call Φm−1 this set of triangles, which are in fact the parent triangles of those
we have removed. Now since also triangles of Φm−1 belong to ∆Σ0 then Σ′ must belong to
TΣ0 . Since we have removed all vertices at level m, Σ′ is at level m− 1, thus by inductive
hypotesis it is a RGB triangulation.

Now let us consider all vertices at level m that we have eliminated from Σ to obtain Σ′. By
construction, they all lie on green edges at level m− 1 that are shared by pairs of triangles
of Φm−1. Thus all such edges are refinable. Let us consider an arbitrary sequence of edge
splits that insert such vertices back into Σ′, generating another mesh Σ′′. Mesh Σ′′ has
the same set of vertices of Σ and it coincides with Σ at all green triangles of level smaller
than m, and on all red and blue triangles of level smaller than m − 1. In fact, the edge
splits we have performed affect only the triangles of Φm−1. Now each triangle of Φm−1 has
been split by one of the patterns depicted in the middle levels of Figure 4.14 (where we
now assume that the root triangle has level m − 1). Let t be one triangle of Φm−1, and
let us consider the two patterns decomposing t in Σ and in Σ′′. Since we have introduced
all and only those vertices that were removed, the two patterns may be different, but they
subdivide the edges of t in the same way. By referring to Figure 4.14, and comparing the
two patterns, we have the following cases:

• If they subdivide just an edge of t, then they must be equal;

• If they subdivide two edges of t and they are different, then it is possible to obtain
one from the other by applying an RB-swap;

145

Figure 4.17: Fast transition of LOD from the base to the apex of the big triangle with RGB
triangulations (left) and red-green triangulations (right). In both cases, the same patterns
can be nested for an arbitrary number of levels. About twice the number of triangles is
necessary in red-green triangulations.

• If they subdivide all three edges and they are different, then it is possible to obtain
one from the other by applying a BB-swap and/or a GG-swap.

All operators listed above only affect triangles that subdivide t, so they can be carried out
independently on all subdivisions of triangles of Φm−1. This means that we can obtain Σ
from Σ′′ through a sequence of local operators. Concatenating such a sequence with the
sequence that transforms Σ′ into Σ′′, we have a sequence of local operators that transforms
Σ′ into Σ. Therefore, also Σ is a RGB triangulation.

It is an open question whether or not the same set of triangulations can be generated by
using just combinations of the first ten operators, without using RB-swap. So the set of
operators we use is sufficient to generate the transition space but we do not claim it to be
minimal.

Concerning comparison with other known schemes, note that a uniform “all green” sub-
division at any level belongs to TΣ0 , therefore it is a RGB triangulation. Also red-green
triangulations belong to TΣ0 : these are in fact a subset of triangulations made just from
green and red triangles. Figure 4.17 presents an example, which shows how RGB triangu-
lations may manage fast transitions of LOD better than red-green triangulations.

Next we state some results useful to ensure that the selective refinement algorithm (de-
scribed in the next section) does not get stuck in configurations that cannot be either
refined or simplified further.

Corollary 13 Any RGB triangulation can be obtained from Σ0 by applying a sequence
of operators composed just of edge split and swap operators. Σ0 can be obtained from any
RGB triangulation by applying a sequence composed just of edge merge and swap operators.

146

Proof. The first statement follows from the proof of Lemma 12 by considering the
operators we have used to obtain Σ from Σ′. The second statement follows from the first
one by considering that each split operator it inverted by a merge operator and each swap
operator is inverted by a swap operator.

Sequences used in Corollary 13 are not always monotone in the span space. In fact,
refinement [coarsening] sequences to obtain meshes that contain configurations in the sec-
ond upper row of Figure 4.14 may require using GG-swap [BB-swap], which is actually a
coarsening [refinement] primitive. On the other hand, such configurations are not really
interesting: the decomposition of a parent triangle with a configuration that contains two
green and two blue triangles is usually better substituted with the standard decomposi-
tion made of four green triangles. A mesh containing no configuration made of two blue
triangles adjacent along a red edge will be called stable; otherwise it will be called un-
stable. In our implementation of selective refinement, we will use unstable configurations
just as transitions. We will perform refinement by using just subdivision operators, and
coarsening by using just reverse subdivision operators and RB-swap. During refinement, a
BB-swap will be forced every time an unstable configuration arises. During coarsening, on
the contrary, GG-swap and RB-swap will be used to locally modify the mesh in order to
allow a vertex to be removed from a merge operator. The mesh just before applying the
merge operator may be unstable, but it will become stable right after it.

We study next the local configurations corresponding to vertices that can be removed
during coarsening. Let v be a vertex at level l > 0 in a RGB mesh. We say that v is
removable if and only if all its adjacent vertices are at a level ≤ l. Since v was introduced
by splitting an edge at level l − 1, by combinatorial analysis we have that the star of
triangles surrounding it can have only 28 possible configurations, which are obtained by
mirroring from the 18 configurations depicted in Figure 4.18. For each such configuration,
the graph in the figure provides a sequence of operators to remove v. Notice that BB-swap
is necessary only if we start from one of the unstable configurations. Notice also that the
local configurations at the end of sequences (i.e., after vertex removal) are all stable.

Corollary 14 If a RGB mesh Σ is stable, then:

1. Σ can be obtained from Σ0 by a sequence made just of refinement operators and
RB-swaps;

2. Σ0 can be obtained from Σ by a sequence of just coarsening operators and RB-swaps.

Proof. We prove the second statement first. Let m be the level of Σ. We can obtain Σ0

from Σ by deleting all vertices of level > 0 level by level, starting at level m. As shown
above, if Σ is stable, a vertex can be removed without need to apply BB-swap and the
resulting mesh will again be stable. Thus the whole sequence will need just coarsening
operators and RB-swap. The first statement follows from the second by considering the
inverse operators.

147

Figure 4.18: Sequences of operators to remove a vertex. There exist 28 configurations of
triangles incident at a removable vertex, obtained by mirroring from the ones depicted in the
figure (except those in the last column, which correspond to the configurations after deleting
the vertex). Each configuration labeled with x2 has a mirror configuration. Triangles in
gray correspond to areas of the parent triangles that are not affected by transitions and may
be further refined. Except for the unstable configurations, a vertex can be removed without
using any refinement operator.

148

We now know refinement and coarsening sequences that are monotone in the transition
space. Once the star of either a refinable edge, or a removable vertex is known, the sequence
of operations necessary to perform the corresponding either refinement, or coarsening op-
eration, respectively, can be retrieved from a lookup table and performed on such a star
without affecting the rest of the mesh. These sequences will provide the basic ingredients
to implement the selective refinement algorithm described next.

4.3.5 Implementation details

A RGB triangulation can be maintained in a standard topological data structure for trian-
gle meshes. One possibility is using three dynamic arrays, for vertices, edges, and triangles,
respectively, with a garbage collection mechanism to manage reuse of locations freed be-
cause of coarsening operators. The following simplified version of the incidence graph
[Ede87] can be adopted: for each triangle, links to its three edges are maintained; for each
edge, links to its two vertices and its two adjacent triangles are maintained; for each vertex,
just a link to one of its incident edges is maintained (this is sufficient to compute the star
of a vertex in optimal time).

If the mesh contains n vertices, we can roughly estimate its number of triangles and edges
to be about 2n and 3n, respectively. By assuming unit cost to represent a pointer or a
number, the total cost for topological information in this base structure is about 19n, and
an additional 3n is necessary to maintain the coordinates of vertices.

This data structure is extended as follows. For each vertex, we maintain: its level of
insertion and the current level of its control point (one byte is sufficient for both); two
triples of coordinates rather than just one (position at time of insertion and limit position);
six flags to keep track of neighbors that have given their contribution for computing the
limit position (see Section 4.4.2).

For each edge and each triangle, we maintain its color and its level. Edges come in just
two colors. It is convenient to encode two different types of red triangles, and two different
types of blue triangles, depending on their orientation: a red triangle will be said to be
either RedRGG, or RedGGR, depending on the colors of its edges, traversed in counter-
clockwise starting at the vertex with the highest insertion level; a blue triangle will be
said to be either BlueRGG, or BlueGGR, depending on the colors of its edges, traversed
in counter-clockwise starting at the vertex with the lowest insertion level. We thus use
five different colors for triangles: two for red triangles RedRGG and RedGGR, two for blue
triangles BlueRGG and BlueGGR, and one for green triangles. Since three [one] bits are
sufficient for the color of triangles [edges], and levels in subdivision are usually not many,
one byte is sufficient to store both color and level.

Summing up, by assuming one unit of cost to be equal to four bytes, we have an additional

149

cost of 4.75n. This corresponds to a 25% overhead with respect to the base data structure.

Since selective refinement is meant to be used dynamically, a caching mechanism can be
used to save vertices and their related control points when edge merge operators remove
them from the mesh. In this case, each vertex must receive a unique label which can be
computed from location codes of triangles in the hierarchy [LS00]. An additional cost of
two units per vertex is necessary in the data structure to maintain the location code. A
LRU policy can be adopted to manage the cache. A vertex in cache is restored together
with its control points (insertion and limit), when an edge split operator reinserts it in
the mesh. The use of cache saves the cost of fetching the vertices in the stencil of an odd
vertex, and possibly the cost of computing the limit position.

4.4 Adaptive Catmull-Clark subdivision

In this Section, we will use our method to edit the LOD of a mesh through operations that
modify the mesh locally, while maintaining it compatible with the Catmull-Clark scheme
(henceforth called the standard subdivision). Compatibility is defined as follows. Given a
base mesh Γ0, then:

1. An adaptive mesh Γ built starting at Γ0 may contain all and only those vertices that
appear in the standard subdivision of Γ0;

2. If all vertices of a given face f appearing in a the standard subdivision of Γ0 belong
to Γ, then either f , or a subdivision of it also belongs to Γ;

3. If Γ contains a vertex v introduced at level l in the standard subdivision, then the
control point pl(v) will be the same both in Γ and in the standard subdivision. If
Γ contains also all vertices in the standard (even) stencil of v at level l, then for
any k ≥ l the control point pk(v) will be the same both in Γ and in the standard
subdivision.

Our mechanism provides a suitable topological basis to implement an adaptive scheme for
the quadrisection pattern. In particular, a uniform subdivision at a given level l computed
incrementally by adding all its vertices through our scheme will be both topologically
and geometrically coincident with the standard subdivision at level l, hence also the limit
surface will be the same.

Note that the meshes refined selectively as described in the previous section naturally fulfill
requirements 1 and 2. Thus in the following we will concentrate on requirement 3.

150

Figure 4.19: The stencils of the Catmull-Clark subdivision. Numbers are weights of
vertices in the linear combination: n is the valence of the even vertex; β = 3

2N
and γ = 1

4N
.

4.4.1 Catmull-Clark subdivision

The Catmull-Clark subdivision [CC78] is an approximating scheme for subdivision surfaces
that can be applied to any polygonal mesh and converges to a C2 surface. The subdivision
pattern is quadrisection. A new vertex v introduced at level l+1 of subdivision is called an
odd vertex, and the position of its control point pl(v) at level l+1 is computed as a weighted
average of control points of vertices surrounding it that belong to level l, according to the
stencils and weights depicted in Figure 4.19.

Vertices already present at level l, called the even vertices are relocated at level l+ 1, with
a weighted sum of their position and the positions of their edge and face neighbors at level
l, according to the stencils depicted in Figure 4.19. Therefore, for each vertex v introduced
at level l, there exist an infinite sequence of control points pl(v), pl+1(v), . . . , p∞(v), that
define the positions of v at level l and all successive levels, p∞(v) being the position of v
on the limit surface.

In principle, it is possible to adopt either exact methods [Sta98b], or fast approximated
methods [LS08] for the direct evaluation of the limit position of any point of a subdivided
mesh. However, evaluation requires that: the parametric coordinates of each point, with
respect to the face of the base mesh containing it, are known; and the geometry of all

151

Figure 4.20: The original mesh contains triangles of very different size. Selective re-
finement is run on the whole object until a mesh of 100,000 triangles is obtained, giving
higher priority to the refinement of longer edges. The triangles in the resulting mesh are
much more uniform.

control points of the base mesh in the neighborhood of such a face are retrieved. Since we
only encode the adaptively refined mesh, retrieving such information may be unpractical,
involving traversal of a large area.

We therefore develop an alternative method that makes use just of close neighbors of any
given vertex. Any control point pk(v) for a vertex v introduced at level l, with 0 ≤ l < k can
be computed directly just from the positions pl of v and of all its even and odd neighbors
at level l. In Section 4.4.2.1, we derive a multi-pass closed form for computing directly
control points at an arbitrary level k, which provides a basis for the effective and efficient
computation of correct control points in an adaptively subdivided mesh.

4.4.2 Computing control points

Since we work selectively, it is not trivial to find the right vertices to use for a stencil, and
to compute the control points at their proper levels. In this section, first we introduce
some tools for the computation of control points, and next we discuss how to use them
to maintain geometry up-to-date. In Subsection 4.4.2.1 we present a multi-pass formula
for the Catmull-Clark subdivision, which allows us to compute in closed form the control
point of any vertex at any level of subdivision. On this basis, in Subsection 4.4.2.2 we
introduce a mechanism for computing the control point of a given vertex incrementally,
as its neighbors are inserted into the mesh. Updates to control points must be made for
odd vertices during refinement, and for even vertices both during refinement and during
coarsening. We discuss such operations in detail in Subsections 4.4.2.3, 4.4.2.4 and 4.4.2.5,
respectively.

152

4.4.2.1 Multi-pass subdivision

Let us consider a vertex v inserted at level l. If l = 0 then v belongs to the base mesh and
its geometry p0(v) is known, otherwise its control point pl(v) is computed on the basis of
stencils for odd vertices (see Figure 4.19).

By applying the concept of multi-step subdivision rule [Kob00] to the analysis of the
Catmull Clark scheme developed in [Sta98b], we derive equations that compute the control
point of v and any level k on the basis of its initial position and on the positions of its
neighbors at level l.

Lemma 15 [PP10] The control point pk(v) of an internal vertex v, inserted at level l, for
k > l is given by

pk(v) = sk11v + sk12

N∑
i=1

v2i + sk13

N∑
i=1

v2i−1 (4.1)

where sk11, sk12 and sk13 are defined below, and vertices in the summations are the edge and
face neighbors of v at level l, respectively.

sk11 =

√
αn(11N − 35)(βn,k − γn,k) + 5αn(βn,k + γn,k)

2 · 8kλn
+

N

N + 5

sk12 =
−2
√
αn(4N − 16)(βn,k − γn,k)− 4αn(βn,k + γn,k)

2 · 8kλnN
+

4

N(N + 5)

sk13 =
−√αn(3N − 3)(βn,k − γn,k)− αn(βn,k + γn,k)

2 · 8kλnN
+

1

N(N + 5)

with a = 3N−7
N

, b =
√
αn

N
, βn,k = (a+ b)k, γn,k = (a− b)k, λn = 5N3 − 5N2 − 101N + 245

Similarly, if v is a boundary vertex we have

pk(v) = sbk11v + sbk12(v0 + v1). (4.2)

Note that, by computing the limits for k →∞ of equations 4.1 and 4.2 we obtain the well
known limit positions of internal and boundary vertices, respectively:

p∞(v) =
N

N + 5
v +

4

N(N + 5)

N∑
i=1

v2i +
1

N(N + 5)

N∑
i=1

v2i+1

and

p∞(v) =
2

3
v +

1

6
(v0 + v1).

153

4.4.2.2 Incremental summations

In a standard subdivision, if a vertex v is inserted at a level l > 0, two of its edge neighbors
already belong to the mesh, while the other two edge neighbors as well as its four face
neighbors are inserted at the same time and level as v, and the control points at level l of
all such vertices are computed. In an adaptive subdivision, some neighbors of v might be
inserted at a later time. Therefore, it is not always possible to apply Equation 4.1 right
after inserting v in the mesh.

We use an approximation of Equation 4.1 as long as not all neighbors of v are available.
In the data structure encoding the mesh, for each vertex v inserted at level l, we store its
control point pl(v) and we reserve two other fields to store the sums SUMe(v) and SUMf (v)
of control points at level l of its edge and face neighbors, respectively. We also store two
counters of contributions already stored in SUMe(v) and SUMf (v). At startup, we fill such
fields for all vertices of the base mesh.

For a generic vertex v inserted at level l > 0, its control point pl(v) is computed and stored
when creating v as an odd vertex (see Section 4.4.2.3), while SUMf (v) and SUMe(v) are
computed incrementally, as the control points of neighbors of v become available. Initially,
we set both SUMe(v) and SUMf (v) to 4 ∗ pl(v). Every time a control point pl(vi) for a
neighbor of v at level l becomes available, its value is accumulated by substituting it to
an instance of pl(v) in either SUMe(v) or SUMf (v), depending on the position of vi in the
stencil of v.

A vertex v is represented in the mesh with a control point at level k, where k is the smallest
level of its incident edges. As long as the correct value of the two sums is not known, v
will be represented with an approximation of its position computed by Equation 4.1 with
the values of sums currently stored at SUMe(v) and SUMf (v). Note that the quality of the
approximation progressively increases as new control points are inserted, and the formula
becomes exact as soon as all contributions from neighbors of v become available.

4.4.2.3 Control points for odd vertices during refinement

In the sequel, for the sake of brevity, we will address only internal vertices. Boundary
vertices are handled similarly.

Let v be a vertex of type E introduced at level l+ 1 of subdivision by splitting a refinable
edge e at level l. In order to compute control point pl+1(v), we need to fetch the vertices in
the stencil of v at level l.Referring to Figure 4.19, vertices v0 and v1 of the stencil of v are
the endpoints of edge e, so they are found immediately. The other vertices of the stencil are
not trivial to fetch since the faces defined by v0, v1, v2, v3 and v1, v0, v4, v5 may have been
refined further. This can be done with a combination of move and rotate operators. Since

154

Figure 4.21: An example of mesh traversal to fetch the stencil of an odd vertex v. A
spanning tree of the neighborhood of v is traversed through move and rotate operations.
Move operations are decomposed into sequences of switchVertex, rotate and switchFace;
rotate operations are decomposed into sequences of switchEdge and switchFace.

these operators are not influenced by editing operations, then the stencil will be fetched
correctly also if the mesh has been refined (see Figure 4.21).

Any odd vertex v of type F is inserted by operator 2a/b-split together with a vertex v′ of
type E, and the stencil of v is in fact a subset of the stencil of v′, so we do not need to
fetch it separately.

If the control point at level l is not available for some vertex vi in the stencil of v, then
recursive refinement must be triggered to insert in the mesh all neighbors of vi at its inser-
tion level li. To this aim, it is necessary to recursively split the edges in the neighborhood
of vi until all faces incident in it are of level greater or equal to li. This can be done with a
recursive split of all standard edges incident at vi and having a level lower than li, followed
by an analysis of the incident faces. If an incident face f is of type 4, then a recursive split
of the standard edge with lower level of one of the two triangles that share an extra edge
with f is necessary.

This can be done simply by traversing in counter-clockwise order the edges incident at vi.
Every time an edge at a level lower than li is found, we recursively split it. The algorithm
halts when a complete scan of the edges is performed without performing any split. The
additional splits required for faces of type 4 can be performed by traversing the faces and
splitting a single edge for every face of type 4 found. Note that a regular vertex may have
standard incident edges that differ for at most two levels, thus the number of new vertices
to be computed during this operation is usually quite small.

Computation of control points may trigger some over-refinement of the mesh, which might
be not necessary to fulfill LOD requirements. This is similar to what happens in other adap-

155

tive subdivision schemes [Kob00, SHHG01, VZ01]. Since we wish to avoid over-refinement
of the result, edge splits performed during computation of control points, which are unnec-
essary according to LOD requirements, are marked as temporary and inserted in a queue.
A temporary vertex becomes permanent in case one of its incident edges undergoes a stan-
dard edge split. At the end of selective refinement, this queue is scanned, and all vertices
that are still temporary are removed by performing corresponding edge merge operators.

After v has been inserted at level l, we must find all possible vertices that give contribution
to compute summations SUMe(v) and SUMf (v). This is done again with a navigation algo-
rithm based on topological angles. The stencil that we want to identify can be incomplete,
i.e. some vertices may not be present in the mesh, and we have no a priori information on
the level of refinement the portions of stencil currently available. We traverse the stencil
with a breath-first strategy, starting at v and navigating on subsets of all possible paths
that we can use to reach a vertex vi of the stencil. The algorithm starts by identifying the
standard edges at level li incident at v. For each edge ei, connecting v with another vertex
vi, the algorithm navigates the stencil using rotate and move operators until either vi−1

and vi+1 are found, or it is detected that they are not present in the mesh.

For each candidate vc found, we must check what kind of contribution is needed:

1. If the level of vc is l, we simply accumulate pl(vc) on SUMe(v) or SUMf (v), depending
if vc being an edge or a face neighbor of v, respectively;

2. If the level of vc is < l and all the neighbors in the even stencil of vc are present, we
compute the correct control point, and we accumulate it on SUMe(v) or SUMf (v),
exactly as before.

In both cases, we keep track of the fact that vc has given its contribution to v by keeping
a counter for each vertex. This is necessary both to understand when all neighbors have
given their contribution and to avoid accumulating a contribution twice, since a vertex
can be deleted from the mesh and introduced again at a later time. This operation is
performed also in the opposite direction, since every candidate can need the contribution
of v to compute its own summations.

As soon as a vertex v at level l receives the contribution from all the vertices in its stencil,
we cal it complete and its correct control point can be computed at every level ≥ l. In this
case, we immediately provide its contribution to all vertices of level ≥ l that are present
in its stencil.

4.4.2.4 Control points for even vertices during refinement

The case of even vertices is simpler. When a new vertex v is inserted to split an edge e, this
may affect the control points of the candidate vertices in its neighborhood. For each such

156

(a) (b) (c)

Figure 4.22: A base mesh (a) is adaptively refined to smooth three sharp edges and
round the hole (b); the same mesh uniformly refined by using the standard Catmull Clark
subdivision scheme (c).

vertex vi, if the minimum level of edges incident at vi has increased to level k, then the
current position of vi is updated to pk(vi). Otherwise no action is required. Note that value
pk(vi) will be approximated as long as vi is not complete. This approximation reduces the
popping effect during selective refinement and it converges to the correct position as more
points in the stencil of v are inserted.

4.4.2.5 Control points during coarsening

The removal of a vertex v must undo the updates to the contibution counter and to the
contribution accumulators SUMe and SUMf for every vertex in the stencil of v. This is
done by straightforward adaptations of the algorithms described above. We do not remove
contributions from complete vertices, which already have sufficient information to compute
their correct control points at all levels.

4.4.3 Results

We have developed an interactive application that allows us editing the LOD of a sub-
divided mesh by means of a brush tool. Figure 4.3(a) shows a rough polygonal model
designed in Blender by merging a cylindrical handle to a lathe object. In Figure 4.3(b)
the mesh has been edited by a few strokes of brush in order to refine the joints between
the handle and the bottle, as well as to improve its overall shape. A coarsening brush as
well as single local refinement operations have been used for adjusting over-refined parts
and fine-tuning. Note that the pot-bellied part has been refined anisotropically in order to

157

better approximate shape in the direction of higher curvature. Transitions across different
LODs involve pentagonal faces.

Figure 4.22 shows a simple L-shaped block with a hole. We have refined the hole anisotrop-
ically, we have smoothened two convex and one concave edge with two levels of subdivision,
and we have refined anisotropically a strip traversing the top faces of the object with one
level of subdivision. The different colors represent the different types of faces (see Figure
4.6): green, blue and dark red faces are quads; yellow and orange faces are pentagons;
and light red faces are triangles. As it can be seen by comparing Figures 4.22 (b) and
(c) the adaptively refined mesh contains a much smaller number of faces than the uniform
Catmull Clark subdivision at level two, while it approximates well the shape in the regions
of interest. In fact, it can be seen that in the adaptively refined mesh, the most refined
parts are identical to the corresponding parts in the uniformly refined mesh.

A similar construction can be applied to our adaptive triangular subdivision scheme pre-
sented in Section 4.3 to produce surfaces that are compliant with a loop subdivision scheme.
For the sake of brevity, we omit the description, that can be found in [PP09b]. Results
obtained with this construction are shown in Figures 4.1 and 4.20.

4.5 Semi-regular remeshing via adaptive subdivision

In this section we present a remeshing method, which can be either user-assisted, or fully
automatic, and it is able to produce a semi-regular adaptively refined mesh representing a
given shape. The method starts with a sketched base mesh, which is refined and fitted to
the input shape. Selective refinement can be either user-assisted or error-driven.

4.5.1 Generation and fitting of a base mesh

The target shape is given as a mesh T at high resolution. We start form a coarse quad
mesh M , providing a drastically simplified, yet consistent, version of the shape. Mesh M
can be generated either manually, or automatically by means of a simplification method,
such as the one in [TPC+10]. The overall assumption is that M is roughly projectable to
T along surface normals, i.e., the projections of points of M roughly subdivide the surface
of T into patches with the same connectivity of M . There is no need that M achieves
perfect projectability, since this will improve during subsequent refinement. For a shape
of genus zero without large protrusions or cavities, such as the head in Figure 4.4, a base
mesh as simple as a meshed cube can be used to the purpose; for more complex shapes
with non-zero genus and/or having important protrusions and cavities, such as the horse of
Figure 4.23, or the gargoyle of Figure 4.24a, a more elaborated base mesh may be necessary.

158

(a) (b) (c)

Figure 4.23: Remeshing the Rampart dataset: (a) target model; (b) base mesh manually
sketched; (c) remeshing of the dataset that highly refines the head and the saddle.

The connectivity of M affects final meshing, since the directions of edges will be preserved
during refinement.

Given M , we fit it to the target mesh T through spatial projection: for every vertex v of
M , we compute its normal nv; we shoot a ray in direction of nv and another ray in the
opposite direction; and we displace v to the closest point hit from a ray. Ray shooting is
supported by means of a spatial index that contains all faces of mesh T , which is created
once and for all at the beginning of computation. We use a simple regular grid, but more
complex and efficient data structures may be adopted for huge datasets [Sam05].

This fitting procedure works well in most cases, supporting interactive editing speed. We
have noticed stability problems only if the initial fitting of mesh M to T is very poor, i.e.,
M lacks entire features of the shape, or the shape contains very thin features. Better and
more stable results can be obtained if a parametrization of T is available, which is defined
on M . In this case, ray shooting is not necessary, and both surface mapping and smoothing
(see also next subsection) can be done via parametrization.

4.5.2 Editing operations and tangent space smoothing

Editing operations described in Section 4.2 are applied to selectively refine mesh M . For
every refining operation, a vertex of type E is created, which is initially placed at the
midpoint of the splitting edge; an additional vertex of type F is also created in pattern
P3, which is initially placed at the barycenter of the subdivided face. The normal of each
new vertex is estimated, and the vertex is displaced to its projection to the target mesh,
as before. Interactive refinement is supported through brush tools, similarly to the case of

159

adaptive subdivision. In this case, either refinement or coarsening operations are applied,
up to a prescribed level of subdivision, in the area spanned by the brush. Automatic
error-driven refinement is explained in the next section.

To increase the quality of meshing, smoothing is performed in tangent space, by displacing
the position of vertices tangentially on the surface of T . The aim of tangential smoothing
is to obtain quad faces with a better (i.e., more rectangular) shape. After each local
operation, we consider all vertices in the 2-ring of faces affected by the operation. For
each such vertex v, we execute a step of Laplacian smoothing - i.e., v is displaced to the
barycenter of its neighbors - followed by a re-projection to the target mesh. In case a
conformal parametrization of T has been defined on M , computation can be carried out
more easily and accurately in parametric space.

4.5.3 Error-driven remeshing

While a user-assisted approach may be useful in many contexts, some times a fully auto-
matic algorithm is to be preferred. We define the approximation error associated to every
face f of the current mesh M as the RMS difference between f and the patch spanned by
its projection on T :

1

Area(f)

√∫
f

(p− φT (p))2dp,

where function φT provides the normal projection of a given point of M to the target mesh
T . Computation is discretized on a set of samples selected uniformly on each face f :

1

k

k∑
i=0

|si − φT (si)|

where k is the number of samples, and si is a sample point inside f . To obtain a uniform
sampling, the number of samples per face f depends on its area:

k =
Area(f)

Area(M)
∗ vt

with Area(f) the area of f , Area(M) the total area of mesh M , and vt the number of
vertices of the target mesh T .

To sample triangles, we pick points on the unique plane that contains the triangle. For
quads, we pick samples in the bilinear patch that interpolates the four vertices. For pen-
tagons, we first triangulate and then sample each triangle separately.

Faces of M are maintained in a priority queue and refinement is perfomed iteratively. The
face with the largest error is extracted from the queue at each iteration, and it is refined

160

(a) (b)

Figure 4.24: Fully automatic remeshing of the Gargoyle dataset. (a) The base mesh
generated using [TPC+10]. (b) Remeshed model.

with a local operation. For a face f of type 0, 1, 3, or 5, at level l, its edge e at level l
yielding the largest error is selected for split. The error associated to an edge is computed
similarly by sampling along it. For a face of type 2 at level l, its standard edge at level l is
split. For a face f of type 4, its adjacent face of type 2 yielding the largest error is refined,
and a vertex of type F is inserted consequently inside f .

After each iteration, error is computed for the new faces resulting from refinement, and
they are inserted in the priority queue accordingly. Iteration may be carried out until either
a certain budget of faces has been reached, or when error gets below a given threshold,
depending on user’s needs. A result of this automatic remeshing procedure is shown in
Figure 4.24. The original target mesh has been simplified with [TPC+10] to obtain the
base mesh M , and then it has been remeshed with our algorithm.

4.6 Concluding remarks

Our schemes have several advantages over both classical and adaptive subdivision schemes,
as well as over CLOD models: they supports fully dynamic selective refinement; they are
better adaptive than previously known schemes based on the one-to-four triangle split
pattern; they does not require hierarchical data structures; selective refinement can be
implemented efficiently by plugging faces inside the mesh, according to rules encoded in
lookup tables, thus avoiding cumbersome procedural updates.

161

We believe that this approach to adaptive subdivision may give valid substitutes or com-
plements to standard subdivision for solid modelers and simulation systems. Combined
with reverse subdivision techniques, it may also offer a valid alternative to CLOD models
for free-form objects in computer graphics.

162

Chapter 5

Interference-Aware Geometric
Modeling

Many applications of geometric modeling require constructed shapes to be physically real-
izable. Shapes created using computer-aided design systems need to be manufactured; if
the model is used in a physical simulation—either for special effects, animation, or engi-
neering analysis—its geometric properties should be consistent with those of a real object.
One significant impediment to this consistency is intersections within or between modeled
objects. These (self-)intersections appear as glaring artifacts, and eliminate the ability to
use the final model further down many software pipelines.

Despite its importance, there has been little research on the modeling of surface interference
for geometric design. While a number of recent algorithms for collision detection are
sufficiently fast for interactive applications, collision response in the context of geometric
modeling has not received much attention. Once interference has been found through
detection, the response algorithm is responsible for modifying positions and trajectories to
remove it.

Most existing contact response algorithms are developed for physically-based simulations
and try to follow the logic of physical laws. A a result, these methods are either too
slow (due to strict physical requirements) or cannot be extended for application to general
modeling scenarios. Meanwhile, free-form shape design is primarily concerned with surface
quality, interactive control, and aesthetics, and typically is not governed by physical equa-
tions. The few works on interactive surface deformation that do handle collisions do so as
a side effect of their particular modeling paradigm, and are thus limited to those specific
tools to model intersection-free surfaces.

In this Chapter, we present a response algorithm for preventing interference between and
within meshed surfaces, formulated in a purely geometric setting. Objects do not have

163

Figure 5.1: Interference-aware modeling greatly simplifies many complicated modeling
tasks. We interactively fit the ogre with a shirt made for a human. We use our ability to
fix existing intersections in a mesh and then “shrink-wrap” the shirt on the ogre, ensuring
a perfect fit.

any physical attributes, and their deformation is not necessarily driven by forces. We
formulate non-interference constraints on space-time interference volumes (STIVs), defined
as volumes in space-time traced out by parts of the surface after interpenetration occurs.
The advantages of this formulation are two-fold: first, a trajectory-based method can
robustly handle problems with thin features, boundaries, and rapid large deformations,
without restrictions on the type of geometry. Second, by formulating the non-interference
constraint to be zero for each STIV, rather than at the geometric primitive level, the
dimension of the numerical problem to be solved is vastly reduced, improving response
speed and robustness. Surfaces, while usually deformed through the manipulation of a
low-dimensional modeling subspace, can deform and intersect in complex ways; a response
algorithm must interactively handle this type of interference in geometric modeling, while
reliably resolving and maintaining surfaces free of intersections. Our proposed method has
the following features:

• Independent of deformation model. Our algorithm is not tied to a specific
modeling paradigm; We demonstrate its applicability for several types of surface
deformation techniques, with the steps outlined to interface with any others required.
it can resolve intersections while keeping the surface in the same subspace (e.g., a
subdivision surface remains a subdivision surface with the same controls, or a mesh
modified using Laplacian editing still minimizes the same energy). The only input
the algorithm requires for a specific deformation technique is the gradient of the
function mapping control handles to surface point positions.

• Handles general geometric data. Our algorithm is able to robustly handle large
deformations, complex intersections, sharp features, as well as self-collisions within
a surface. It is capable of processing intersections between surfaces with boundary

164

and large numbers of disconnected components.

• Controllable. Different modes of response to collisions suitable for modeling appli-
cations fit into our framework. For example, we allow the user to specify whether
objects move rigidly and maintain their shape or deform due to interference.

• Fast. Interference detection typically dominates runtime costs. We treat detection as
a black-box, so our interference algorithm can freely leverage state-of-the-art research
in collision detection methods, which currently allow for interactive editing of large
models.

We demonstrate the applicability of our method on a variety of scenarios using a range of
modeling techniques, including subdivision surfaces, free-form deformation, and Laplacian
surface editing. We demonstrate that in many cases, STIVs can also resolve self-intersection
in existing meshes, making it easier to use our technique with existing geometry. We are
able to achieve interactive rates for a number of realistic geometric modeling scenarios
(Section 5.6 discusses performance in greater detail).

Extending existing modeling environments with our method allows artists to easily create
shapes that contain no intersections, so that they not only are free of unsightly artifacts,
but also can be used in a pipeline where this property is a requirement, such as in physical
simulation, mechanical engineering or manufacturing.

5.1 Related work

While in this Chapter we are concerned with the domain of geometric modeling, we would
be remiss to neglect the vast literature that exists for simulating contact. Below we give
background on intersection and contact handling in simulation and modeling literature.

Collision detection. Collision detection is usually treated separately from collision re-
sponse. This paper focuses on the response algorithm, so we refer the reader to a recent
survey ([TKZ+04]) and book ([Eri04]) which take a comprehensive look at collision de-
tection techniques. We note that the literature has long recognized the need for so-called
continuous time formulations in detecting interference, which we complement by presenting
an appropriately paired response algorithm that operates in the same space-time domain.
For example, Cameron [Cam90] formulated continuous time detection between rigid bod-
ies as a problem in space-time. Provot [Pro97] presented a general method for deformable
surfaces, where the roots of cubic polynomials (in time) are found to detect collisions.
However, these works focused on the 4-dimensional detection problem, without offering a
matched response model.

165

We base our interference detection on the hash grid approach of Teschner et. al. [THM+03],
but our algorithms are independent of the specific detection method used. Recent work has
shown significant speed in general collision detection, with Pabst et. al. [PKS10] achieving
speeds of fractions of a second for the detection of complex collisions in large materials.
Promising research by Tang et. al. [TMT10, TMLT11] shows continual development in
real-time interference detection as well.

Physical simulation. The study of contact mechanics began over a century ago with
the analytical description of forces between spherical elastic bodies [Her82]. The following
years were used to further develop and understand the nature of contact problems [Fic65].
With the arrival of computers came the numerical analysis of computational contact prob-
lems. However, over time the growing computational capabilities have been met with the
increasing complexity of applications. As a result, algorithms have become a three-way
tug-of-war between robustness against interpenetrations, algorithmic speed, and physical
accuracy. Much work in computer graphics has downplayed the latter for the sake of the
two former, and we eagerly explore this route. Most of the work on response to collisions
and intersections is done in the context of physical simulation, and we build on some of the
techniques from this domain. However, our problem is different: on the one hand, we do
not have stringent requirements on physical accuracy, especially in the context of dynamic
effects (we only need natural and intuitive behavior suitable for geometric modeling appli-
cations). On the other hand, physically-based response (e.g., penalty forces) does not fit
well into a pure geometric framework, and the requirements for robustness, generality and
efficiency are more restrictive, compared to a typical physical simulation. We can broadly
divide physically based response methods into three categories: penalty forces, impulses,
and constraints.

Penalty forces are additional forces acting to separate the surfaces, or maintain contact.
These forces are well-understood in the contact mechanics community [WL07] and were
introduced to computer graphics by the early work of Terzopoulos et. al. [TPBF87]. While
penalty forces are easy to implement, difficulties often arise in adjusting the stiffness of
these forces—too weak, and objects simply pass through one another, too strong, and
the system becomes poorly conditioned. Harmon et. al. [HVS+09] address this problem
through asynchronous timestepping, albeit at a significant computational cost. For our
application, even if we were to cast geometric modeling as a physical problem in order to
introduce forces, we cannot afford the high runtimes necessary to ensure robustness.

An alternative is to view collision response as an instantaneous reaction (an impulse) rep-
resenting an abrupt change in momentum. This means for physical accuracy the system
must be timestepped up to the time of contact, resolved, and then restarted with new
initial conditions [WB01b]. While using sequentially applied impulses for response is pos-
sible [MW88, MC95], impulses quickly becomes computationally challenging even with a

166

small number of collisions. Furthermore, impulses are known to not always converge, and
we need a method that reliably resolves intersections. Many circumvent these problems
either by using time integration schemes that handle such discontinuities ([ST96]), or ac-
cepting the error in treating all collisions during a single timestep as though they were
simultaneous, such as in Bridson et. al. [BFA02]. The latter approach is called a velocity
filter, as it passes over velocities, correcting motion in offending directions. It has proven
popular, not just for its original purpose of self-collisions in cloth simulation, but also in
a variety of collision scenarios, e.g., hair simulation [SLF08]. Despite the fact that their
three-pass algorithm robustly resolves intersections, we could not use it while keeping the
shape in the modeling subspace, which is necessary to preserve the features that drew the
user to choose a specific modeling algorithm in the first place (see Fig. 5.10).

Lastly, contacts can be viewed as hard, inviolable constraints within the system. This
alleviates many problems of sequential impulses, in particular the “bouncing” back and
forth between active collisions. Initial research formulated these constraints at the ac-
celeration level, and focused on rigid bodies [Löt84, Bar89]. Baraff [Bar94] noted that
these constraints do not always have a solution, and thus proposed constraining motion
at the velocity level. These constraint-maintaining impulses have enjoyed popularity, with
progress in custom-designed numerical methods [ST96] as well as a growing interest in fric-
tion [KEP05], a particularly challenging problem. Unfortunately, they only apply to rigid
and quasi-rigid objects, and do not scale well to general highly deformable surfaces. Our ap-
proach is most similar in spirit to the constraint-based approach of Allard et. al. [AFC+10];
we compare to this work in greater detail in Section 5.2.

Despite Anitescu and Potra [AP97] demonstrating insolvable configurations with this ap-
proach, it has remained visible in the literature, particularly for rigid and quasi-rigid bod-
ies [PPG04, KSJP08].

For the sake of graphics-specific applications, researchers have relaxed the strict physical
requirements to obtain an increase in performance. For example, Milenkovic and Schmi-
dle [MS01b] take a more geometric, rather than physical, approach to resolving contacts
between rigid bodies occasionally reaching unsolvable configurations.

There also exists a branch in collision handling literature dealing with interruptible al-
gorithms, those that may need to be halted in the middle of processing, usually due to
computational constraints. Gissler et. al. [GST09] distribute response across subsequent
frames, tracking the intermediate penetrations. O’Sullivan and Dingliana [OD99] descends
a sphere-tree hierarchy breadth-first, and then apply response as far down the depth as
they reached. Similarly, Mendoza and O’Sullivan [MO06] use a coarse mesh to guide the
sphere fitting and traversal. These responses can be quite coarse, and relies on a good
approximation of the surface with spheres or coarse meshes, which can be expensive to
obtain.

167

Haptics are concerned with fast interference detection and response, due to the demands
of interactive object manipulation. Barbič and James [BJ08], inspired by McNeely et.
al. [MPT99], use a hierarchy of point-shells to approximate objects and obtain extremely
stable collision response. Their method is limited to interactions between rigid objects or
a rigid and a deformable object, and requires pre-processing to obtain distance fields and
well-sampled surfaces.

In summary, while the contact literature is vast, and given a particular setup, good algo-
rithms can be found to meet its needs, there lacks any single approach that satisfies all our
desiderata set forth in Section 5.

Geometric modeling. Research in interference response for geometric modeling has
been quite limited. The work of von Funck et. al. [VFTS06] offers a modeling tool that
deforms surfaces via integration of a smooth vector field. As a by-product of this smooth-
ness property, the mesh is free of local self-intersections. A similar result is obtained
from the method of Swirling Sweepers [ACWK06]. In the context of preventing local
self-intersections, this behavior is a result of the deformation method under consideration,
limiting its applicability to other models.

Spatial deformations affect all geometry it overlaps, preventing interference as long as
it defines a bijective map. Gain and Dodgson [GD01] specifically discuss intersections
within free-form deformation (FFD), and the mathematical requirement to construct a
FFD scheme that does not introduce self-intersections. In particular, they prove that
injectivity of the FFD mapping is sufficient to guarantee no self-intersections, and offer a
modified FFD that performs such injective deformations. This work does not easily extend
to other modeling techniques. To the best of our knowledge, this Chapter is the first
work that specifically addresses the needs of contact response within a general modeling
framework.

Snyder [Sny95] presents a method for placing objects in a scene while avoiding intersections.
It only supports rigid bodies and works by applying pseudo-forces and various backtracking
methods to find a realistic configuration. In contrast, we desire for a more general modeling
environment not restricted to only those configurations that are realistically physical.

Aldrich et. al. [APH11] deforms volumes through the use of collisions. The basic response
model pushes vertices outside of the interfering object. The method we present could be
substituted for this step, offering far more robust collision handling in the context of their
volume-preserving model.

168

5.2 Space-time interference volumes

Let S denote a collection of meshed surfaces in space, described by a vertex position vector
q ∈ R3N ; qi is the i-th 3-dimensional vertex of the mesh. For the purposes of our algorithm,
we do not distinguish between different objects—they are all regarded as a single surface
(possibly with disconnected components). An arbitrary point r ∈ S can be written as
a weighted sum of vertices, r =

∑
iwiqi, where wi 6= 0 for the primitive vertices which

contain r.

During editing, the user modifies a low-dimensional control mesh with configuration p ∈
R3M , where M ≤ N . From the change in the low dimensional configuration p, we update
our high-dimensional configuration q = f(p), where f may be a linear or non-linear func-
tion given explicitly or as a solution of an optimization problem. Many methods for surface
representation and deformation can be easily cast in this form, including subdivision sur-
faces [CC78], free-form deformation [SP86], various linear surface editing schemes [BS07],
PriMo surface modeling [BPGK06], and as-rigid-as-possible surface modeling [SA07]. The
function f is a concatenation of possibly distinct deformation functions defined on different
subsets of geometry.

We organize the deformation of q into a sequence of edits, q(0),q(1), ...,q(n), where q(0)

is the initial mesh configuration. Interpolating the edits linearly, we define a continuous
deformation of the shape parametrized by t:

q(n)(t) = q(n−1) + t∆q(n), for 0 ≤ t ≤ 1,

where ∆q(n) = q(n)− q(n−1), This also defines a piecewise-linear trajectory for every point
on the surface r(n)(t) ∈ S(n)(t). We use this trajectory to detect and respond to mesh
interference.

5.2.1 Defining interference

Consider the case where a pair of deforming points, r and r′ coincide, r(tI) = r′(tI).
0 < tI ≤ 1 is the moment of intersection along the trajectory. We call the triplet (r, r′, tI)
an interference event. For a given point r in an interference event, we define r′ = I(r)
as the complementary point and tI(r) as the “time” parameter; the moment along the
trajectory where the two points coincide. Note that by requiring tI > 0 we require the
surface at the start of an edit, S(0), to be intersection free.

The set of all interfering points forms a subset of the surface which we call the interference
surface, SI ⊂ S. For a response algorithm to be considered robust, it must reliably reduce
SI to the empty set by appropriately modifying trajectories.

After an interference event, the trajectory r(t), along with a small area dS of the surface

169

x
y

x
y

x
y t

x
y

x
y

x
y t

x
y

x
y

x
y t

Figure 5.2: The variety of interference captured by STIVs. Left: start configuration. Mid-
dle: configuration after edit. Right: interpolated configurations, resulting in a space-time
surface. Top row shows a typical intersection between two surfaces. STIVs are always well-
defined, even for boundaries (middle), and never miss interference, even when completely
passing through a thin surface in a single edit (bottom).

around r, sweeps out a tube in space. We can use the volume of this tube to measure
the severity of interference. Informally, a space-time interference volume (STIV) can be
thought of as the sum of the volumes of these tubes for all points that passed through
another surface at some instance in time.

Observe that the tubes for different areas can overlap, so STIVs do not correspond to
volume swept out by the surface in space. Rather, it is a volume of a 3-dimensional
subset in space-time R3 ×R, consisting of points (r(t), t) for an interval of values of t (see
Figure 5.2).

More formally, for the geometry deformation from configuration q(n−1) to q(n) we define a
STIV as

V =

∫
r∈SI

[
(1− tI(r))∆r(n) · n̂(I(r))

]
dS, (5.1)

where n̂ is the normalized surface normal of the other point r′ at the time of intersection,
oriented so that each integrand is negative.

We have only modeled the surface interference. Before describing the process by which we
eliminate this interference, we emphasize the following important features of this definition:

• The continuous integral over an arbitrary surface has no concern for the underlying
object model, shape, or movement of the surface. It is completely general and can
describe interference between thin objects, surfaces with sharp features, and surfaces

170

User edits Geometric
modeling

Interference
modeling

Interference
resolution

Interference?Interff nce?nferen
YES

NO

Figure 5.3: Our workflow reacts to user edits, checking for interference and responding
when necessary.

with boundary.

• Considering continuous trajectories ensures that no intersection goes undetected,
compared to sampling the geometry at fixed-interval configurations, such as in Faure
et. al. [FBAF08], which can miss intersections between relatively fast-moving objects
or geometry with thin features.

• The dot product with n̂ takes into account the angle between the linear trajectory
of a point, and the normal of the surface it hits at the time of intersection: for near-
sliding motions of r, the volume is smaller, while for nearly orthogonal motion it is
larger. This ensures only the motion which contributes to interference is penalized
and allows surfaces to slide smoothly across one another.

• Our measure of nterference is captured by a single volume rather than a separate
measure for each interfering point, drastically decreasing the problem dimension. We
explore the effect of partitioning measures in Section 5.2.3.

This formulation has all the desired properties we set out in Section 5. Nevertheless, their
assurance depends on the exact manner we approximate the integral and choose to resolve
interference numerically.

5.2.2 Resolving interference

As discussed in Section 5.1, many choices exist for interference response in the context of
physically-based simulation. However, as addressed there, none of these apply to geometric
modeling without sacrificing speed, generality, controllability, or robustness.

With our STIV construction, we have two general methods for reducing the magnitude
to zero. The first is penalty forces formulated through an energy term (generally of the
form 1

2
kV 2) that penalizes STIVs, and thus interference, until resolved. Unfortunately,

such a force / energy pair has no place in our purely geometric setup where forces have
no meaning. Furthermore, penalty forces are well-known to be insufficient for robustly
resolving collisions due to the difficulty in tuning the parameter k [Bar89, HVS+09].

Our alternative is constraint-based methods. Instead of relying on a force with arbitrary

171

stiffness k to resolve the interference over time, we can constrain V to be exactly 0 and
allow the numerical method to find the exact stiffness necessary. Constraints are well-
studied in optimization theory [BV04], thus making it simple to develop a purely geometric
formulation. STIV constraints can be resolved by a straight-forward application of methods
from numerical optimization. For completeness, we present the relevant material.

Constrained optimization. The general form of the constrained optimization problem
we are solving is

minimize E(p(n−1),p(n)) (5.2)

subject to V (q(n)) = 0,

where E is an energy measuring proximity to the desired trajectory. Many methods from
geometric modeling use an energy to define the deformation, which could be used as E.
However, even methods which do not explicitly formulate an energy (such as subdivision
surfaces) can be used if we imagine the function f(p) as a minimizer of some energy,
whether or not it is explicitly given.

We opt for a different choice for two reasons. First, as the number of active constraints
during any given edit varies, the Lagrange multiplier system for the problem will need
to be reconstructed, making it difficult to use any pre-computation or pre-factoring for
interactivity. Secondly, we want to keep our technique sufficiently general, with a minimal
dependence on the choice of the deformation technique.

We regard the interference response as a post-process, where we directly apply constraints
on the configuration of the mesh. The user performs an edit, followed by computation
of a candidate configuration q̃(n) = f(p(n)). We then perform interference detection on
the candidate trajectory ∆q̃(n), and apply response to p(n) to obtain the intersection-free,
final configuration q(n). Figure 5.3 shows the entire editing workflow. Our interference
resolution algorithm is summarized in the pseudocode of Algorithm 1, which gives the
analytic solution to Equation 5.2 subject to a single constraint.

Algorithm 1 Resolving interference through STIV constraints

1: ∆q(n) = f(p(n))− q(n−1)

2: while V = computeSTIV(q(n−1),∆q(n)) 6= 0 do
3: p(n) = p(n) +∇V (−V/∇V∇V T)
4: ∆q(n) = f(p(n))− q(n−1)

5: end while
6: q(n) = q(n−1) + ∆q(n)

The procedure computeSTIV is discussed in Section 5.4. Note that the function f in Line 1
is a black box operation representing the transformation from a geometric subspace p(n)

172

to the high-dimensional space q(n). Response is also performed on this modeling subspace
p(n), ensuring that generated surfaces retain the desired formulation (Section 5.5.1). The
gradient of the STIV, ∇V , is given in Appendix D.

This algorithm is iterative, continuing until all intersections are resolved. Due to the lin-
earization of a non-linear 4D volume, the STIV may not be completely removed in a single
iteration. However, it is guaranteed to continuously decrease in magnitude. Additionally,
by altering the trajectory, new intersections may be introduced that must be detected and
resolved (imagine a car applying brakes to prevent a frontal collision and being rear-ended).
By requiring that S(0) be free from intersections, a solution (albeit extreme) is guaranteed
by eliminating all deformation, in which case q(n) = q(n−1).

Comparison to related techniques. Our formulation is related to the work of Pauly
et. al. [PPG04], which also formulates constraints on regions of interference to resolve
contact between quasi-rigid bodies. on quasi-rigid bodies on contact surfaces. However,
they perform discrete interference detection, computing inside / outside tests of points on
objects. This works well for the purpose of quasi-rigid volumes, but can miss intersections
between surfaces or objects that move quickly or instantaneously, both common scenarios
in geometric modeling.

Allard et. al. [AFC+10] formulated a similar constraint on intersection volumes in three
dimensions, rather than in space-time, in the context of elastic object simulation. In
this case, they also perform interference detection on static configurations, using their
GPU-based technique of Layered Depth Images (LDI) [HTG04]. They constrain disjoint
intersection volumes, computed by summing intersecting pixel areas in the LDI, to be 0.
Unfortunately, LDIs only work for watertight volumes; boundaries violate the algorithm’s
assumptions. Furthermore, since intersection tests are static, i.e., performed at fixed mo-
ments in time, the motion of objects is limited to small deformations. For closed surfaces
and small motions, STIVs closely approximate intersection volumes.

5.2.3 Multiple STIVs

In Equation 5.1 the contribution of each interference point is nega-
tive, resulting in a negative integral. However, we resolve interference
by following gradient directions, which may move an individual point
into a state where its differential volume is positive. This is why the
algorithm is iterative; a “solution” may involve some separated ele-
ments (positive integrand) and some intersecting elements (negative
integrand), which average out to zero: a numerical solution that still
contains interference (see inset figure).

173

This does not present a problem because in the next iteration we again only include active
interference points, reducing the set over which we integrate. In physical simulation we
would form a single constraint per intersecting point and resolve as a Linear Complemen-
tary Problem (LCP) or a linear projection [HVTG08]. Line 3 in Algorithm 1 would be
replaced by a call to an LCP or a linear solver, respectively.

The motivation behind partitioning into multiple constraints is physical. In particular,
intersection response involving friction often requires handling such local constraints for
physically accurate solutions. We have no such requirements. In fact, the extent to which
we need a “physical” solution is only as much as required for intuitive editing of surfaces.
As such, we find our solution by resolving a single constraint; we have observed no adverse
effects in how the algorithm feels to a user, e.g., no artificial sticking or random “bumps”.

One practical concern is that by integrating over a single (potentially large) region we
slow down the overall algorithm by requiring additional iterations, each carrying expensive
collision detection. For comparison, in Section 5.6 we include results with a single STIV as
well as multiple STIVs, one per disjoint interference region of the mesh. Further refinement
of STIVs into additional constraints would improve physical accuracy of the solution, but
in our experience offers no practical advantage for geometric modeling. Between a single
constraint and one constraint per region, we find that the difference is negligible, both in
feel and in the total number of iterations; this data is presented in Table 5.1. Intuitively,
this can be explained since while the total integral may penalize some intersecting subsets,
it may help others by encouraging separation where otherwise exact contact would be
enforced.

5.3 Geometric Deformation Algorithms

For the sake of completeness, in this section we review a selection of the most impor-
tant geometric modeling algorithms that can be enriched with our algorithm to become
interference-aware. A common traits of all the reviewed methods is that the deformation is
a linear function. Even if it is not a strict requirement for the application of our algorithm,
linear deformation algorithms require less iterations of our response algorithm to reach
interference-free configurations.

5.3.1 Subdivision Surfaces

We already discussed editing with subdivision surfaces in Chapter 4. For the purpose of
this Chapter it is interesting to note that modeling with subdivision surfaces allows to
change the position of vertices of a small control grid to produce a more complex and

174

smooth surface using subdivision rules. Modeling with subdivision surfaces is linear. The
position of the final vertices q(n) can be expressed as a linear combination of the control
vertices:

q(n) = Sp(n).

The matrix S is called the subdivision matrix and is computed once before the user interacts
with the control mesh. Every time a control vertex is moved, q(n) is recomputed by a single
matrix-vector product. See [Far96] for additional informations.

5.3.2 Laplacian Modeling

The core idea in Laplacian modeling is to find a deformation that keeps the local details
of a surface by converting the surface in a different representation. In this Section, we will
present a simplified version of the Laplacian modeling described in [Sor06] that is not able
to handle rotation in the deformation. For the purpose of extending the method to handle
intersection, this simpler formulation suffice.

Usually the coordinates of vertices are represented as points in the euclidean space, but
the same information can be represented in a different ways that better captures the local
characteristics of a surface. In Laplacian modeling, the coordinates of the vertices are
transformed in a differential representation using the discrete Laplacian operator applied
to the Euclidean coordinates:

δi = ∇(pi)

Proper discretization of the Laplacian operator and the pseudocode for computing it ro-
bustly on triangle meshes are provided in Appendix C.

Intuitively, the differential coordinate δi can be seen as a displacement of the vertex pi
with respect to the barycenter of the vertices in its 1-ring. It is easy to visualize in 2D, as
shown in Figure 5.4. The discrete Laplacian operator is linear, thus the conversion between
Euclidean and differential coordinates is a single matrix product. The opposite conversion
requires to solve a linear system and care should be taken since the matrix that represent
the Laplacian is singular.

The differential coordinates can be used to define a powerful deformation scheme, by
minimizing the following energy:

E(p′) =
∑
i

‖∇p′i − δi‖2 +
∑
j

‖p′j − pj‖2

where the first sum runs over all mesh vertices, while the second only on the handles,
that are a subset of the mesh vertices. The first term of the energy tends to produce a

175

Differential coordinates

• We can represent each
point as the “offset”
between its position and
the average of its neighbors

• We still need 3 vectors, so
6 scalars in total

• Note that this
representation does not
uniquely represent our
curve anymore!

0,0 5,0

0,5

Monday, July 11, 2011Figure 5.4: Differential coordinates in 2D. The blue points represent the Euclidean coor-
dinates, the red points are the barycenter of the two neighbors and the green arrow are the
differential coordinates.

new surface, whose points have coordinates p′, such that its locally similar to the original
surface. The second term instead forces some vertices to move in a different position.
Minimizing this energy produces a new smooth surface that resembles the original one but
with a smooth deformation applied depending on the positions of the handles. An example
of deformation using Laplacian editing is shown in Figure 5.15.

5.3.3 Free-Form Deformation

Differently from the methods we discussed until now, it is possible to deform the space
where the surface is embedded instead of the deforming the surface itself. Clearly, a
deformation of the space will reflect in a deformation of the surface. This approach has
several advantages, since the number of degrees of freedom of the deformation applied to
the space is unrelated to the shape of the object we want to deform. This means that
topological inconsistencies, non-manifold singularities, degenerate triangles get deformed
without problems. A drawback is that the control is usually not as fine as working directly
with the surface. For an example of free-form deformation see Figures 5.11, 5.12 and 5.13.
Formally, a free-form deformation (FFD) is expressed as a trivariate function d : R3 → R3

that transforms R3, implicitly deforming any surface embedded into it. Different types of
space deformation are usually used, we will discuss in this section the Lattice-Based and
Cage-Based deformations.

176

Lattice-Based Freeform Deformation The classical FFD [SP86] represents the de-
formation as a trivariate tensor product spline:

d(x, y, z) =
∑
i

∑
j

∑
k

cijkNi(x)Nj(y)Nk(z)

If we consider a point p in R3 then we can rewrite its transformed position as a linear
combination of the control points c and we get:

d(p) =
∑
i

ciw
i
p

where the weights w are combinations of the basis N that depend on p. Note that since
the basis have local support, most weights will be 0. The smoothness of the deformation
can be controlled by using splines of different degree.

It is possible to precompute the weights wp for all the mesh vertices we want to deform
and then write a linear function that produces the coordinates of all vertices of the surface
starting from the position of the control points of the trivariate spline:

q(n) = Sp(n).

where the i-th row of S contains the weights wip, with i that varies 1 to n.

Cage-Based Freeform Deformation Cage based deformation algorithms are a gen-
eralization of lattice-based freeform deformation, where the control points are not forced
to be disposed in a grid. The control points form a cage that surrounds the object, and
the deformation on the cage is translated in a deformation of the contained space that
implicitly deforms the contained surface. Exactly as before, the position of the deformed
vertices can be expressed as a linear combinations of the control points:

d(p) =
∑
i

ciw
i
p

where the weights are generalized barycenter coordinates (see [LLCO08] for a recent pro-
posal). Also in this case, the function that deforms the surface can be written as a matrix
product, after the weights have been precomputed for all surface vertices.

5.4 Computing interference volumes

Equation 5.1 defines a STIV for a continuous surface; our algorithm works on a mesh
approximating the surface, which we assume consists of triangular faces. We do not make

177

assumptions about the number of connected components, or manifold property, but we do
require that the initial meshes have no self-intersections. At the same time, our technique,
in combination with a skeletonization process, can be used to eliminate pre-existing self-
intersections (Section 5.5.2), although without a guarantee of success.

We follow a natural discretization of Equation 5.1 where the summation is performed over
vertices. Our discrete approximation has the following form:

V ≈
∑
i∈S(n)

I

[
(1− ti)∆r

(n)
i · n̂i(ti)

] 1

3

∑
k∈N(i)

|Aik|. (5.3)

Aik, is the area of the k-th triangle connected to vertex i. Each entry in the summation
can be thought of not as a tube, but a prism surrounding each vertex, whose base is the
barycentric region around that vertex.

Triangle meshes can come into contact in one of two ways: either a vertex strikes a face,
or two edges meet. A vertex intersecting a vertex or an edge is considered a special case
of the former.

Interference prisms. S
(n)
I is the discrete surface subset composed of points qi involved

in surface interference. We include in S
(n)
I all vertices whose barycentric region Ai contains

some point r involved in interference during a deformation. Furthermore, we use the time,
trajectory, and normal corresponding to the earliest interference event in the region of qi
to correspond to ti, ri, and n̂i. Concretely, define the barycentric region corresponding to
area Ai as the set of points

Ri = {rj =
∑

wkqk, s.t. wi ≥ wk,∀ 1 ≤ k ≤ N}.

Note that Ai =
∫
Ri
dr. With this notation in hand, we use the pair

(ri, ti), s.t. ti = min(tj(rj)),∀ rj ∈ Ri,

for the trajectory and time to represent the i-th region.

5.4.1 Detecting interference

We have yet to compute each intersecting point r and its time of intersection. Triangle
meshes can come into contact in one of two ways: either a vertex strikes a face, or two
edges meet. A vertex intersecting a vertex or an edge is considered a special case of the
former. We must find all such events to construct the sets Ri.

Computing the discrete volumes, then, relies on our ability to quickly detect the points
along trajectories, ti, where intersection occurs. These tests are performed on the high-
dimensional surface whose shape is defined by qi. Fortunately, this sort of collision detec-
tion is standard, and we can use off-the-shelf algorithms with minimal modifications for

178

our purposes. We have tested our system with the Self-CCD library [UNC10] as well as
the hash grid approach of Teschner et. al. [THM+03], with complete interchangeability.
For low-level tests between vertex-triangle and edge-edge pairs we solve the cubic polyno-
mials presented in Provot [Pro97]. The roots of these polynomials provide our times of
intersection ti. Along with the point trajectories ri, we can compute the STIV of Eqn. 5.3.
Where multiple, disjoint STIVs are used, we partition the interference surface SI based on
the one-ring connectivity of interference points.

Following the usual conventions, we break the process of collision detection down into a
broad-phase and a narrow-phase.

Broad-phase. The purpose of broad-phase collision detection is to quickly eliminate
large batches of potentially colliding features. For this stage, we use a variation of a
spatial partitioning structure called a hash grid [THM+03]. We are detecting interference
of primitives in motion, so we build an axis-aligned bounding box (AABB) around the
entire trajectory, q(n−1) and q(n), in order to conservatively detect continuous interference.
This part of our algorithm can easily be treated as a black box, replaced with the fastest
method available at the time, or one optimal for a particular task.

Spatial partitioning methods work by dividing space up into regions of fixed size, called
cells. Based on their position, primitives are assigned to cells. Co-location in a cell is
a necessary condition for two primitives to be intersecting. Hence, any one feature only
needs to be checked for collision with the other features contained in its cell.

We use a variation of this called a hash grid. Storing grids of these cells can be memory-
intensive, especially for vast scenes. Alternatively, we can assign each cell a unique value
which is run through a hash function, then store a reference to this hash code. Primitives
inside cells which have identical hash codes are co-located and tagged for narrow-phase
interference detection. We are detecting interference of primitives in motion, so we build
an axis-aligned bounding box (AABB) around the entire trajectory, q(n−1) and q(n), which
we then store in the grid. See Teschner et. al. [THM+03] for full details.

Additionally, Pabst et. al. [PKS10] further optimize hash grids by parallelizing simple
blocks and utilizing the GPU, both for traversing the hash grid and for narrow-phase
processing. We borrow pieces of this process, parallelizing the AABB computation and the
hash code processing.

We do take advantage of a few unique points about geometric modeling applications. For
instance, only a subset of vertices in a scene are usually edited at any one time. Instead of
performing detection of the entire mesh, we only check the vertices that have moved against
all the rest of the mesh triangles, a conservative optimization. Furthermore, we build
AABBs around disjoint meshes. Only those which overlap the AABB of moving vertices
are inserted into the hash grid for the next stage of interference detection. For scenes

179

Figure 5.5: The modeling task is to pack these bodily organs tightly together. Doing so
without consideration for interference is likely to result in intersecting meshes.

consisting of a large number of disjoint meshes, like Figure 5.5, this culls a considerable
number of triangles from consideration.

Narrow-phase. The broad-phase pass returns a list of vertex-triangle candidate inter-
sections. We perform a more expensive, but exact test on these before continuing on to
interference modeling. Determining the intersection point and time (tI) between a vertex
and a triangle is a standard operation. For completeness, we reproduce the process here.

Parametrized vertex x3(t) and triangle (x0(t),x1(t),x2(t)) are coplanar at the value(s) of
t which solve the equation

((x3(t)− x0(t)) · [(x1(t)− x0(t))× (x2(t)− x0(t))] = 0.

This is a cubic polynomial function of the parameter t, on which we can use standard
root-finding methods. We use the Jenkins-Traub algorithm [JT70], well-known for its
reliability. This yield three candidate intersection times; the actual intersection time tr
satisfies ‖x3(tr) −

∑
i=0,1,2 αixi(tr)‖ < ε. Following Wong [Won05], we implement a series

of fast tests on the polynomial’s coefficients to quickly cull candidate intersections which
have no root in the interval [0, 1]. ε depends on the accuracy of the root-finding algorithm.
Assuming the root is accurate within δ, we use the following for ε:

ε = δ

(
∆x3(tr)−

∑
i=0,1,2

αi∆xi(tr)

)
· n̂.

The system attempts to exactly resolve each STIV, V (q(n)) = 0. However, due to numerical
imprecision, primitives may be left touching or slightly intersecting. To remedy this, we

180

return a value of tI sooner than the actual value, to account for error in the root finding
and response computation. In our examples we return the maximum of 0 and (ti − 1

100
).

5.5 Editing

User interfaces implementing interference-aware geometric modeling require little modifi-
cation from standard modeling software. We describe simple editing primitives and modes
that we use in our examples. Most of them are standard, but with their power significantly
enhanced by interference awareness.

Primitives. In our examples we use standard translation, rotation and scaling of control
points or groups of vertices acting as handles. However, in our system, a simple rigid
transform on the controls may result in a complex deformation due to interaction with
other objects.

Less standard tools we found essential both for object positioning and removal of self-
intersections are contraction towards its skeleton (Section 5.5.2), and expansion back to
its original configuration.

Modes. Editing modes define the effect primitive operations have on geometry, and are
specific to interference-aware modeling. We have three basic modes: we can enable /
disable interference processing, enforce rigid response or allow the mesh to deform, and
allow all surfaces to respond to interference or only the selected subset.

We utilize these primitives and modes extensively in our examples, and refer to them in
describing our results in Section 5.6.

5.5.1 Modeling subspace

Meshes representing complex shapes have many degrees of freedom and editing vertices
directly is often impractical. Most modeling techniques reduces this space in various ways:
the geometry is defined by a smaller number of degrees of freedom in a reduced subspace
(subdivision surface control points or handles for variational surface editing). Restricting
possible configurations of meshes often guarantees many useful properties (e.g., smoothness
or detail preservation). We do not wish our treatment of interference to disturb these
properties, and thus we perform response in the modeling subspace.

Note in Line 3 of Algorithm 1, response is applied by directly modifying p(n), the handle
or control of the mesh. Appendix D derives the gradients with respect to the fine degrees

181

Figure 5.6: This stone wall is constructed by moving each individual stone rigidly. As
the stones interact, they slide and rotate around each other, facilitating construction of a
plausible structure.

of freedom q(n). Using the chain rule, we can easily express these gradients as

∇V
∂p(n)

=
∇V
∂q(n)

∂q(n)

∂p(n)
.

As q(n) = f(p(n)), ∂q(n)/∂p(n) = ∂f/∂p(n). The gradients for several common modeling
techniques can be found in Appendix D.

5.5.2 Controlling the behavior of response

Due to the variety of needs in different modeling systems, it is impossible to present a
single solution that is “one size fits all.” However, we present a variety of options and
“add-ons” that increase the utility of interference-aware geometric modeling. Some are
purely geometric, other are motivated by physical intuition, but are always formulated in
purely geometric terms.

Weighted handles. The gradients ∇V describe how to modify the DOFs in p(n) to
avoid intersection. By appropriately weighing ∇V , we can capture various inertial effects.

Let W be the 3M × 3M identity matrix, and substitute W∇V T for ∇V T in Line 3.
By modifying the (i, i)-th entry of W, we can control the relative effect of response on
the i-th DOF. This is most useful by inserting a 0, which removes the DOF from the
system, ensuring that the corresponding vertex remains stationary. This allows us to

182

Egg:
Plane:

Rigid
Static

Deformable
Static

Rigid
Deformable

Deformable
Deformable

Figure 5.7: We weigh the response per handle vertex to achieve many different effects,
each useful under different circumstances.

restrict deformation due to response to only those vertices selected, only those not selected,
or allow all to deform.

Minimum separation. In Equation 5.3, ti is the parametric value at which an intersec-
tion occurs. We can modify the computation of ti to return the time when two surfaces
enter within some proximity, rather than exactly touching. This is useful for simulation
pipelines, where a minimum distance between all surfaces is needed.

We can express this with the following degree six polynomial:

(x3(t)− x0(t)) · [(x1(t)− x0(t))× (x2(t)− x0(t))]2−
h2‖ [(x1(t)− x0(t))× (x2(t)− x0(t))] ‖2.

Finding the roots of this polynomial gives the points along the trajectory
where the vertex is exactly a distance h apart from the plane spanned by
the triangle. By projecting onto the plane, we can confirm that it lies
within the region of the triangle. A similar polynomial is constructed for
edge-edge intersections.

We employ a series of optimizations, not unlike those in the cubic case,
that vastly reduce the number of polynomials that must actually be solved.
Nevertheless, the increased proximity increases the amount of primitives
that make it to low-level intersection tests. We are limited, however, by
the minimum separation distance supported. If set too high, two-ring
neighbors will be flagged as intersecting. Avoiding this requires checking for these special
cases.

Shape preservation. By default, deformations due to collisions in our algorithm are
plastic, that is, the surface does not attempt to reform its original shape after the interfer-

183

Figure 5.8: Implementing shape preservation in our algorithm allows surfaces deformed
by collisions to regain their original configuration.

Figure 5.9: With a simple extension, our algorithm is able to untangle complicated inter-
sections within meshes.

ence has desisted.

By contrast, we implemented a form of shape preservation in our algorithm, which allows
surfaces deformed by collisions to regain their original configuration (Figure 5.8). To do
this, we store an object’s undeformed configuration. During each iteration, we to restore
the object to this shape, modulo a rigid transformation. This is a naive approach intended
solely to demonstrate the flexibility of our algorithm.

Self-intersecting meshes. Utilizing Algorithm 1, we are able to resolve self-intersections
that already exist in many meshes. Our formulation requires q(n−1) for detection, and is
thus history dependent. In particular, our algorithm requires a previous configuration that
is intersection-free. This is fine for modeling from scratch or simple initial shapes, but

184

Figure 5.10: The most viable response candidate from physical simulation, Bridson
et. al. [BFA02] (top), has no consideration for the underlying geometric model, so while it
robustly resolves the interference, in the process it ruins the continuity of this subdivision
face colliding with a curvy plane. In contrast, our response (bottom) modifies the control
mesh, preserving the smoothness of the subdivided surface.

poses a challenge for meshes with pre-existing intersections.

Our algorithm for removing existing intersections is based on the observation that if we
have any non-self intersecting shape q0, as long as there is one-to-one correspondence to
the final shape, we can run our algorithm between q(0) and a desired configuration q̃(1),
with intersections repaired automatically.

While the task of constructing such shape in full generality is formidable, a natural candi-
date in many cases is a shape closer to the skeleton of the mesh. Intermediate steps of the
method of Au et. al. [ATC+08], based on constrained Laplacian smoothing, yield exactly
such meshes. Using this method, we contract the self-intersecting mesh until it is free of
intersections. When none are detected, we have found our intersection-free configuration
q(0). We then run an unmodified Algorithm 1 to obtain q(1), the mesh closest to the orig-
inal but free of intersections. Clearly, this method is not guaranteed to succeed, but for
many models we have tried (e.g., Figure 5.9), it resolves self-intersections successfully.

5.6 Results

We tested our algorithm on a variety of scenarios that stress different parts of the sys-
tem. The results demonstrate the robustness, speed, generality, and controllability of our

185

Model Vertices Triangles Collisions Regions Iterations Total Iterations Total (single)
(ms, per iter.) (single) (ms, per iter.)

Plant 13759 26782 36.2054 4.07143 1.55556 48.5476 2.19753 40.6433
Bunny 38045 75943 46.3333 1.41667 1.07692 630.2633 1.75000 523.9560
Tree 32937 18745 16.1604 2.49057 2.20833 56.5912 2.64286 56.8141
Knot 5808 11616 23.2549 1.83333 2.29213 65.4325 2.16129 57.3880
Ogre 13318 26060 50.1433 2.60000 8.58974 36.8397 11.8438 27.5214

Table 5.1: For five examples we give, from left to right, the number of mesh vertices, the
number of mesh triangles, the average number of collisions between primitives, the average
number of disjoint regions, the average number of iterations with one constraint per region,
the average time per iteration (ms) with one constraint per region, the average number
of iterations when using a single STIV, and the average time per iteration when using a
single STIV constraint. Contributions to the average are only taken when the number of
collisions is non-zero.

method, as seen here and in the accompanying video. All modeling sessions were performed
single-threaded on a 3.6GHz Intel Core i5.

The following examples range from a few thousand triangles to over 75K, with vertex
counts ranging from a few hundred to 38K. Table 5.1 contains full example data, including
various measures for evaluating performance, both for the case of a single STIV constraint
and one per disjoint region of the interference surface. The quantitative measures typically
used to evaluate performance of contact algorithms for physically-based simulation are
not entirely appropriate for our task (interactive modeling). For this task, the frame
rate profiles (see Figure 5.16) capture a more practically relevant performance measure.
During all operations, we maintain an interactive frame rate on average, with occasional
momentary dips only during the most stressful of operations.

Plant in vase. In this example we wish to place a tight bunch of grass-like shoots into a
vase (Figure 5.11). The vase is immovable, while the shoots are allowed to deform through
a simple tri-cubic FFD lattice. We translate the entire plant down into the vase. As it
first intersects, the bottom of the lattice pinches inward, allowing the shoots to slide freely
into the vase. Once we have reached the end of the vase, we scale the lattice to increase its
size, allowing the bunch to freely expand outwards, while the bottom remains constricted
inside the vase.

Intestines (85K faces). Frequently, modeling sessions begin with previously modeled
geometry that unfortunately may contain intersections. This is the case with the small
intestines of Figure 5.9. Because of the tight coiling of the long small intestines, inter-
sections are far too numerous to repair by hand (7, 672 intersections between pairs of
triangles). Instead, we contract the mesh towards its automatically computed centerline

186

Tr
an

sl
at
io
n

Sc
al
in
g

Figure 5.11: STIVs do not introduce any artificial friction, so these plant shoots freely
slide into the vase, without intersecting it.

skeleton until it is intersection-free. Then, we expand the mesh to its original configuration,
with interference-awareness enabled. This results in an intersection-free mesh as close as
possible to the original input mesh.

Stone wall (18K faces). Rigid bodies are common in simulations, yet their placement
into initial configurations is a modeling problem. We stack a large number of stone models
into a wall (Figure 5.6), moving them rigidly to preserve their shape. This allows us to
freely stack and manipulate the stones into the wall structure.

Bunny in teapot. This stress-test was designed to push our system to its limits. The
teapot is fixed, while the high-resolution bunny is enclosed in a tri-cubic FFD lattice. We
select the entire bunny and scale up, continuing even after intersections occur. Eventually
the bunny is tightly pressed against the teapot interior (Figure 5.12). The entire meshes,
both bunny and teapot, are in contact throughout. This stresses timings because there are
fewer false positive intersections, and thus fewer options for culling candidate intersections;
all low-levels tests must be done. Despite these set-backs, we maintain steady frame-rates
and the user receives consistent feedback, even when the frame-rate eventually drops to

187

Figure 5.12: We enlarge the bunny trapped in the teapot until it is tightly pressed against
the sides. Such large regions of consistent intersection are challenging for collision detec-
tion.

below 5 frames per second.

Tree in corner. Similar to the bunny, this example grows a tree mesh in a contained
region. It also uses a tri-cubic FFD lattice, however the mesh almost entirely consists of
“triangle soup”. As the tree grows, it pushes against the wall, eventually creeping over the
edges.

Face (12K faces). We take a subdivision surface of a face and press against a wavy
plane, with only the face deforming, then only the plane deforming. The opposite mesh
acts as a stamp tool, permanently branding its shape onto the intersecting mesh.

Knot. This tangled knot is deformed using Laplacian surface editing, with the bottom
region fixed, and the top arch manipulated as a handle. It requires little movement to
instigate intersections and tighten the knot configuration. By allowing the non-handle
mesh to move, the knot becomes further entangled.

Ogre. This examples combines many operations and editing modes into a single, practical
example (Figure 5.1). The task is to dress the ogre using off-the-shelf models. The shirt,
for example, is a woman’s shirt that clearly will not fit easily, and intersects the ogre in
many places. All meshes are Loop subdivision surfaces.

We begin by eliminating intersections with the shirt, by contracting the ogre until intersection-
free, then expanding her with interference enabled. This gives an intersection-free shirt,
but it clearly was not made for this model. We finish the shirt by scaling the entire mesh
down until it intersects the ogre, this “shrink-wrapping” removes the feminine cut of the
cloth and gives a more ogre-ish shape. We move the glasses rigidly against the ogre’s head

188

Figure 5.13: This tree “grows” in the corner, firmly pressed against the walls without
penetration.

St
at
ic

D
ef
or
m
ab

le

Figure 5.14: Intersecting objects can take the shape of the mesh they interact with, in-
spiring interesting uses for the algorithm.

189

Figure 5.15: This tangled knot has no hope of becoming untangled with interference-aware
geometric modeling preventing intersections, even for large deformations.

until they are properly positioned. We then enter deformable mode and press the glasses
on its head, allowing it to freely expand to the proper size. We repeat these operations
with the hat to conclude the dressing of the ogre. This is a non-trivial editing task that is
made painless, even for non-experts, by interference-aware geometric modeling.

Timings. We give the frames per second values over time for the ogre shirt-fitting and
the plant in vase examples. We experience dips in frame-rate during intersection, with more
severe intersections causing more significant dips. The important thing to note is these
dips are momentary, and quickly recover to a steady state. Overall time is spent in a few
operations. An average of 15% of runtime is spent processing UI events, 15% in geometric
modeling, 51% is spent in interference detection, and 16% in response. Integrating STIVs
and computing gradients takes a negligible amount of time. Table 5.1 gives more detailed
timing, with total costs per iteration of our algorithm.

5.7 Concluding remarks

We presented a method for responding to interference in geometric modeling sessions.
This method is fast, enabling interactive editing sessions, it is general, not limited by
geometry or surface representation, and it is controllable, equipping the user with a wide
array of expressive ability. Interference-aware geometric modeling can fit into practically

190

 0
 5

 10
 15
 20
 25
 30

Fr
am

e
Pe

r S
ec

on
d

Time

Ogre
Plant

Figure 5.16: The frames per second for two examples during an editing session. Dips are
momentary, and are little interruption to our algorithm’s responsive feedback.

any existing modeling system. It can easily be enabled and disabled, allowing artists to
guarantee absence of intersections during critical editing moments, while editing freely
during other times.

Implementing specialized methods to handle every case is tedious and increases chance of
error. Our aim was to build an algorithm that was general enough, yet had the performance
capabilities to work with any scenario encountered in the domain of geometric modeling.
Our resulting algorithm follows from physical principles, enough to guide intuitive behavior,
but is relaxed enough to edit in real-time.

Limitations. Unfortunately, our method still has strict requirements on the input ge-
ometry. In particular, it does not handle degeneracies well. Zero area triangles and zero
length edges disrupt the interference detection. Along these same lines, our algorithm also
requires input meshes be free of intersection. Using our skeleton-based approach we are
able to repair self-intersections in many meshes, but a few are impossible to repair in this
way.

Future work. Currently, interference detection is a major bottleneck during processing.
This is an active research area, and continued development in continuous detection methods
will directly improve our results. There is, in particular, opportunity for utilizing parallel
processing to improve interference-aware geometric modeling.

In addition, specialized interference detection algorithms show promise for geometric mod-
eling. There are specialized factors that could be taken advantage of in designing new
detection algorithms. For example, only subsets of meshes are usually edited at one time.
Contrast this with simulation, for which many detection algorithms are specifically de-
veloped, which moves everything per timestep. Furthermore, algorithms could leverage
specific knowledge of a modeling paradigm, e.g., subdivision surfaces, for faster processing.

While debugging we observed that the response was fairly insensitive to errors in the STIV
computation. This motivates inquiry in fast algorithms for approximating STIVs without
performing expensive low-level interference detection.

191

Chapter 6

Concluding remarks

We have presented novel contributions at the various stages of the geometry processing
pipeline, which all aim at providing structured and more manageable representations of
3D shapes, starting from unstructured meshes. Our objective is the generation of coarse
control meshes with a quality comparable to those manually produced by artists. A high
quality control mesh has a small number of quadrilateral patches that respect eventual
symmetries of the object, its edges are aligned with the object features and it contains a
small number of singularities.

In Section 2.1, we focused on generating coarse meshes. The decimation algorithm is based
on simple and efficient local operations. Since every operation only affects a small area
of the surface, it is impossible to optimize global requirements like cones placement or
features alignment. Section 3.2 has shown that it is possible to generate coarse meshes
with good alignment to features, but the graph simplification algorithm is unable to con-
trol the generated singularities. In this case, the optimization of the separatrices graph is
purely topological and it uses global operations to simplify the graph and the correspond-
ing cross-field. The singularities are moved to improve the quality of the quadrangulation,
but it is not possible to change their number. In Section 3.3, we generated symmetric
meshes, with good alignment and singularities placement. We proposed two novel symme-
try detection algorithms and used them to produce symmetric cross-fields, quad meshes
and non-photorealistic renderings. The quality of the results is superior to other automatic
or semi-automatic state-of-the-art methods and the process is also more robust, since our
formulation add coherent constraints to the optimization problem, making it simpler and
easier to solve numerically. The minimal size of a quad is directly related with the layout
of the singularities, and it is thus impossible to generate a coarse mesh for a model with a
complex geometry.

We are currently focusing our research on finding a way to combine all these ideas in an

192

algorithm that is able to robustly produce high quality structured meshes that are suitable
for the more demanding practical applications. The quality of the results heavily depends
on the choice of the number and position of singularities and the current automatic meth-
ods do not always produce satisfactory results. User input might be required to tackle the
problem in a robust way; for instance, in human faces, the quad edges must be aligned with
the underlying muscles of the character to increase the quality of animation. A description
of the muscle structure is not present in a 3D mesh and it is extremely hard to estimate
automatically. An interesting direction that we plan to explore is the automatic extrac-
tion of this information from an animation defined on the surface itself, generated using
motion-capture techniques. The analysis of motion will be the basis to a new family of
quadrangulation algorithms aimed at the generation of quad meshes specifically optimized
for animation purposes. Another possible approach is to incorporate minimal user inter-
action, in the form of two-dimensional sketches, to support the automatic process. While
this feature is already present in commercial tools, it requires a lot of user interaction and
it forces the user to manually paint quads on complex parts of the surface.

The symmetrization algorithm we used for producing symmetric parametrizations can also
be used for a variety of other applications. In particular, we plan to investigate its use
on the curvature tensor field, where we hope to be able to provide a robust curvature
estimation algorithm that takes symmetry into account.

At the later stages of the modeling pipeline, we consider the problem of adaptively sub-
dividing a coarse mesh computed with the previously presented algorithms. Our implicit
subdivision scheme provides a practical and theoretically sound way of subdividing meshes
adaptively. The subdivision process can be locally reverted, without the need to store any
explicit hierarchical data structure, since the hierarchy is implicitly encoded. Our proposal
extends the well-known half-edge data structure, adding a negligible space overhead. The
traversal of the hierarchy is also possible using topological angles, that allow an efficient
navigation on all levels. Applications of this new subdivision scheme include adaptive
subdivision surfaces and adaptive remeshing.

Finally, we extend interactive modeling algorithms to avoid intersections. With our algo-
rithm enabled, any modeling task is guaranteed to produce intersection-free meshes that
can be used without any further processing for simulations purposes. Applications like
cloth modeling greatly benefits from our contribution, since physical simulations are hard
or impossible to perform on self-intersecting pieces of cloth. With our algorithm, it is pos-
sible to directly model the cloth on the character, saving processing and artist’s time, since
the produced model will always be free from intersection and thus directly suitable for
further processing. Our formulation of space-time volumes is robust and greatly reduces
the number of variables in the expensive response computation, thus allowing interactive
response with meshes with over 75k faces.

By applying parametrization techniques in a simplified 2D setting, our contribution on

193

image resizing enables the design of real-time image and video retargeting algorithms,
capable of producing HD quality images in a fraction of the time required by previous
methods. Our contribution is the observation that the space of axis-aligned deformation
is powerful enough to express most of the deformation required in content-aware media
retargeting. As we have shown, this enables efficient and fast retargeting of images with a
clean and simple mathematical formulation that can be easily extended for other energies.
We are especially interested in taking into account the temporal coherence in our opti-
mization process, that would enable us to retarget videos. Specifically, the combination
of efficiency of our approach and an easy to use sketch-based user interface to draw the
importance map could lead to a commercial solution for retargeting web videos, mainly
aimed to mainstream websites like YouTube.

6.1 Future work

All algorithms presented in this thesis are fully automatic or require minimal user input.
Research in geometry processing is usually focused on fully automatic algorithms and user
input is used only if strictly required. Interestingly, in some practical applications, the
automatically generated result requires heavy manual tuning to satisfy requirements that
are hard or impossible to enforce automatically.

A classical example is the generation of a texture atlas for texture mapping, where the
automatic result is only a starting point that is then edited manually to generate a lay-
out where every patch has a semantic meaning. The layout is usually optimized to make
the painting in parameter space easy; this is clearly very hard to optimize automatically.
Other good examples are the generation of skeletons for deformation, and the definition
of skinning weights; while automatic methods exists [BP07] [JBPS11] [JS11], these tasks
are usually executed manually to achieve higher quality results. It would be interesting
to consider a different class of algorithms, that rely on moderate user-input to generate
directly results that do not require any additional manual tweaking. The requirements are
now different, since these algorithms must run at interactive rates and provide immediate
feedback. In this section, we outline possible venues for future research in this direction,
with applications in parametrization, cross-parametrization, symmetry detection, volumet-
ric remeshing, surface reconstruction and form finding.

6.1.1 Interactive quad mesh painting

The current state of art in the generation of coarse quadrilateral meshes in the movie
industry is represented by the commercial tool 3D Coat [3dc] and the Blender’s plugin B-
surfaces [bsu]. Both software package provide tools to paint points on surfaces and connect

194

them with edges to form a quad mesh. Surprisingly, the automatic algorithms presented
in the literature are not considered for these applications since they do not provide enough
direct control on the placement of singularities and on the shape of quads. An interesting
venue for future work is the design of an intermediate solution; it should not require to
manually place every single vertex of the quad mesh and also not be completely automatic.
Since the crucial parts of the generation of an high quality quad mesh is the placement
of singularities, it is reasonable to assume that the user will provide them manually, and
that the system will provide an initial guess of the topology of a cross-field with those
singularities and use it to lay out a quad mesh. Successive user sketches can then affect
both the cross-fields and the quad density, allowing complete control on the final mesh.

6.1.2 Interactive cross-parametrization

Another interesting problem that has never been studied in this interactive setting, is the
generation of a dense correspondence between surfaces. The problem can be stated as the
generation of a dense, possibly bijective, map between two different surfaces with the same
genus. This problem is usually called cross-parametrization and various fully automatic
methods have been proposed [SAPH04] [KS04]. As with the generation of quad meshes, the
automatic results are not controllable enough and these algorithms are never being used in
practical applications. In this case, speed is also an issue; the computation is expensive and
the user must waits for tens of seconds every time a parameter is tweaked to see its effect.
Recently, a partial solution to this problem has been proposed in [Rus10]. The author
proposes an algorithm to discretize the Fréchet mean on piecewise-linear surfaces. Given a
small subset of the vertices of a surface called anchors, [Rus10] is able to compute a set of
weights for every point of the surface such that average of the anchors with these weights
is the point itself. This algorithm, in combination with its inverse (given anchors and
weights, compute the point that is the weighted average of the anchors), allows to define
dense correspondences between two surfaces given corresponding anchors. To the best of
our knowledge, the inverse problem has never been studied before. The timings reported
in [Rus10] are in the order of milliseconds, and it is thus realistic to expect this approach
to compute dense correspondences in real-time as the user moves the anchors. Possible
applications of such an algorithm would be texture transfer, skinning weights transfer,
local parametrization and splines on surfaces. The major challenge is the definition of a
smooth and efficient inverse of [Rus10] or to provide an entirely different discretization of
the Fréchet mean that has a simple inverse.

195

6.1.3 Interactive volumetric parametrization and hex-meshing

Hexaedral remeshing, i.e. filling a volume with cubes of approximately the same size, is a
hard problem with various practical applications. Hex meshes are preferred with respect to
tetrahedral meshes as a way of discretizing volumes for FEM simulations since they enable
simpler and more stable computations. Hex meshing a volume induces a quad mesh on
its boundary; quad meshing can thus be considered as a subproblem of the more general
hexahedral meshing. Recently, the cross-field based field generation used in Section 3.3,
has been extended to the volumetric case and used to generate hex meshes in [NRP11]. No
automatic algorithm is known to automatically compute a volumetric cross-fields, and the
problem is much harder that constructing a cross-field on surfaces, since the singularities
are not just vertices but also 1D simplexes. The authors of [NRP11] generate the cross-
field manually and then use their algorithm to fill the volume with cubes. Another semi-
automatic algorithm [MCK08] computes a parametrization with a fixed topology starting
from minimal manual input. The design of a semi-automatic algorithm that generates the
topology of an arbitrary 3D cross-fields is a challenging and interesting problem that has
not been studied before. Since it is really hard to draw inside a volume, the user input
should be restricted to sketches on the boundary on the volume, or eventually sketches on
a small subset of 2D slices.

6.1.4 Interactive surface reconstruction

Surface reconstruction is a well-known problem with a plethora of efficient algorithms that
are able to deal even with noisy or missing data. They all focus on the generation of
triangular meshes, and at the best of our knowledge the only proposal that is able to
automatically generate structured quad-meshes is [PTSZ11].

A novel interesting problem is the copy of the topology of an existing mesh to the ge-
ometry of a point cloud, without knowing dense correspondences between the two. A
cross-parametrization approach could be attempted but it will be really challenging to
robustly handle the noise that is present in point-clouds acquired with 3D scanners.

Another possible approach is to press the template mesh on the point cloud, while keeping
enabled a variant of the algorithm proposed in Chapter 5. The user can have complete
control of the process and can tweak the deformation in real-time. While this paradigm is
not suitable for arbitrary meshes, it will be really useful for special cases like face recon-
struction.

Adapting interference-aware modeling to work with point clouds is not trivial, since a new
definition of STIV must be carefully designed and the system should be able to properly
handle point clouds with non-uniform density. Another challenging task is to increase the

196

efficiency of the entire system to handle in real-time point clouds with millions of vertices,
that are commonly acquired by recent 3D scanners.

6.1.5 Interactive form finding for self-supporting surfaces

Self-supporting surfaces represent shell structures that, in case of physical realization, are
able to stand without any support in the interior. All the internal forces are compression-
only. Usual examples are masonry vaults. The automatic design of these surfaces is a
challenging task that has only recently been addressed with computational approaches
([Blo09],[VHWP12]). The TNA framework [Blo09] decouples horizontal and vertical equi-
librium, enabling to compute self-supporting surfaces efficiently once the horizontal force
distribution is known. Designing an algorithm that allows to have full control on the
forces and on the 3D shape of the surface is a highly challenging task entirely unexplored.
Possible avenues for future research are the use of quad tessellation algorithm to generate
suitable force diagrams and the use of customized solver for the non-linear optimization
usually involved in the surface computation.

6.1.6 Hyperbolic tessellation for symmetry detection in high genus
surfaces

The algorithm presented in Section 3.3 relies on correspondences provided by the user
to extract a dense symmetry map of a genus 0 surface. The basic idea of the algorithm
is to conformally map the surface to the complex plane and then look for involutions
there where they have a simple closed form. The extension to higher genus is not trivial.
However, higher genus surfaces can be conformally mapped to the hyperbolic plane. By
defining appropriate conformal reflections in hyperbolic space, the entire Poincaré disk can
be tessellated with copies of the surface [Thu97]. Involutions still have a simple form in
this setting and it might be possible to compute a dense symmetry map extending the
algorithm of Section 3.3.

Another interesting avenue for research is the use of mesh uniformization to define cross-
parametrizations. While this has been already studied for genus 0 surfaces [LF09], it cannot
be trivially extended to higher genus meshes.

197

Appendix A

Tri-to-Quad mesh conversion

Many datasets, e.g., those from range scanning, come originally as triangle meshes. Such
datasets must be converted to quad meshes prior to applying our simplification method.
Note that any other polygonal meshes can be trivially reduced to triangle meshes first.
Solving this task will also covers the case of meshes featuring any other polygon, as it is
trivial to first break them up into triangles.

Some authors obtain the initial quad mesh by performing one step of Catmull-Clark sub-
division [DSSC08, DSC09a]. The obtained quad mesh has the desirable property of pre-
serving all original edges, but it has also several drawbacks: in terms of complexity, is has
three times more quads than triangles of the initial mesh; in terms of quality, no more than
50% of its vertices are regular.

In [VZ01], a hybrid tri-quad mesh is built first, similarly to what we do in Step 1 below,
which is converted next into a purely quad mesh. Each face of the tri-quad mesh is split
into triangles by barycentric subdivision; next, pairs of such triangles are merged to form
quads by deleting all edges that existed prior to subdivision. This is better than doing
a Catmull-Clark on the input triangle mesh, both in terms of quality and in terms of
complexity, but it still produces a non-negligible increase in the total number of quads.

Since our simplification method is able to enforce feature lines even if they are not present
as edges in the input mesh, we find it more convenient to develop another method, which
does not preserve original edges, but produces a smaller number of faces and a mesh of
better quality.

198

No complexity increase scheme

Our scheme always produces a quad quad mesh featuring half as many quads as triangles
in the starting mesh. It requires, as input, a (connected) mesh with an even number of
triangles. If the mesh is closed (and two-manifold), this condition is guaranteed; otherwise,
any border edge can be split in half, increasing the number of triangles by one unit.

Step 1: making a quad-dominant mesh. First, most triangles are merged pairwise
into quads, dissolving their shared edge. Edges of the triangle mesh can be flagged as
dissolved with any heuristics, with the constraint that no triangle is allowed to have more
than one flagged edge. The objectives are to maximize the number of flagged edges and to
prioritize creation of quads with (nearly) right angles. We adopted a simple, linear time
approach. First, for each triangle we select its best candidate edge to be dissolved, scoring
each edge by the “squareness” of the corresponding quad, measured as the sum of pairwise
dot products of the four normalized edges. Next, any selected edge is flagged only if this
does not invalidate the selection of edges with a better score.

Step 2: making a pure quad-mesh. A few triangles (still an even number) remain
after Step 1. These triangles are made to “crawl” over the mesh toward each other until
they can be merged into quads. Iteratively, a triangle ti is selected and quads in a region
around it are marked, with a breadth first visit, with cross-edge distance from ti until
another triangle tj is reached. The triangle tj is moved toward ti by means of a sequence
of edge flip operations: specifically an edge between tj and the neighboring quad on the
path to ti is dissolved, forming a pentagonal face, which is split back into a quad and a
triangle t′j (there are four other possible ways to do this), thus making the triangle “crawl”
over the surface. The split that moves tj faster toward ti is selected, breaking ties in favor
of the alternative maximizing squaredness.

Comparison to other conversion strategies

In terms of complexity of the resulting quad mesh, this method improves by a factor of 6
over direct use of Catmull-Clark subdivision. This is a significant gain, considering that
quad simplification is still a relatively time consuming process. Quality is also drastically
improved, as more regular vertices are produced (see Fig. A.1).

The most striking gain in term of quality occurs when the tri-mesh contains regions tessel-
lated with square isosceles triangles (Fig. A.1, bottom). Tri-meshes falling in this category
are not uncommon in practice. They occur, for example, with models obtained by March-

199

Figure A.1: Comparison of Tri-to-Quad conversion methods. Left: input triangle mesh.
Middle: quad mesh built with no complexity increase scheme. Right: quad mesh built with
one step of Catmull-Clark subdivision.

ing Cubes-like algorithms (in presence of flat regions with almost any orientation), with
models obtained by zippering together re-triangulated depth scans or height fields, with
procedural meshes, with CAD models, etc. For example, at least two among the most
common tri-meshes used as benchmarks, Stanford bunny and Fandisk, feature this kind of
structure.

200

Appendix B

Image Retargeting User Study

We conducted a user study with 305 participants, following the paired-comparisons protocol
of [RGSS10]. Eight methods have been compared: manual crop (cr), nonhomogeneous
warping (warp) [WGCO07], Scale-and- Stretch (sns) [WTSL08], multiop [RSA09], shift-
maps (sm) [PKVP09], streaming video (sv) [KLHG09], energy-based deformation (lg)
[KFG09] and our algorithm (aa). All datasets in the study have been created by the
authors of the respective methods, manually tweaking parameter values and sometimes
the saliency to show the strengths of their retargeting algorithm and produce the best
possible result.

The benchmark is made of 37 images and every image is tagged with one or more of the
following attributes: people and faces, lines and/or clear edges, evident foreground objects,
texture elements or repeating patterns, specific geometric structures, and symmetry. To
better understand the strength and weakness of every retargeting algorithm, all the statis-
tics of this study are grouped according to these attributes, and we also give the aggregate
results for the entire dataset.

We note that the study participants had no reason to prefer a retargeted image over a
(manually) cropped one since the study did not place the images in any semantic context.
This biases the study in favor of manual cropping as it does not introduce any distortion.
For this reason, cropping should be considered as a reference, not as a proper retargeting
algorithm (for more details see the original paper [RGSS10]).

The gathered data is attached to the submission in the form of a MySQL database that
uses the RetargetMe schema. Scripts to automatically analyze the data can be found
at the RetargetMe website.

201

Total Lines/
Edges

Faces/
People

Texture Foreground
Objects

Geometric
Structure

Symmetry

CR

SV

MULTIOP

AA

SCL

SM

SNS

WARP

2106 1376 973 308 1119 895 310

1926 1274 745 287 908 850 340

1826 1189 761 314 879 746 336

2000 1320 911 295 1055 790 350

1019 751 323 192 383 512 214

1429 985 569 250 698 650 185

1226 829 408 212 590 543 162

900 676 350 158 416 390 119

0

250

500

750

1000

1250

1500

1750

2000

2250

Total Lines / Faces / Texture Foreground Geometric Symmetry

CR AA SV MULTIOP SM SNS SCL WARP

 Edges People Objects Structure

Figure B.1: The number of votes for the eight methods considered in our user-study. A
method gets a vote if a user picked a result by that method in a single paired-comparison
question.

Votes and Ranking Figure B.1 provides the study statistics, showing that our defor-
mation subspace is a good choice for content-aware retargeting. Our results have ranked
higher than the other six state-of-the-art methods. In particular, they achieved a qual-
ity slightly superior to sv [KLHG09], while being simpler to implement, faster and not
requiring a GPU implementation to obtain interactive frame rates. Our study is in accor-
dance with the original [RGSS10], providing further validation of the consistency of users’
preferences.

Table B.1 shows the ranking according to the rank product method [RGSS10] (the smaller
the number, the better).

CR AA SV MULTIOP SM SNS SCL WARP

1.41 2.04 2.88 2.88 5.15 6.32 6.92 7.65

Table B.1: Rank product of all methods.

Our method consistently scores higher than the other retargeting methods with the excep-

202

tion of manual cropping.

Agreement and Statistical Significance We computed the Kendall coefficients of
agreement u [KB40] to study the similarity of choices between participants. All participants
would be in complete agreement if they voted the same way, and then u = 1. The minimum
value of u is attained by an even distribution of answers and is given by u = −1

8
in our

case.

The coefficients of agreement are shown in Table B.2, and they indicate that users have
more agreement when people or strong symmetries are present in a scene. It is interesting
to note that the participants reacted inconsistently to distortion in textures and geometric
structures.

Lines / Faces / Texture Foreground Geometric Symmetry Total

Edges People Objects Structures

0.113 0.261 0.090 0.216 0.113 0.220 0.148

Table B.2: Coefficients of agreement.

The statistical significance of the coefficients can be determined by testing the null hy-
pothesis that the comparisons are assigned randomly (no agreement amongst users). A χ2

test shows that the coefficients of agreement are statistically significant at the significance
level of 0.01 in all seven categories.

Grouping Following [RGSS10], we group the 8 methods in statistically equivalent groups.
Two methods in the same group are considered indistinguishable, since the difference in
the votes they received is not sufficient to elect a clear winner.

Figure B.2 shows the groups computed over the entire survey (marked as “Aggregate”)
and for each attribute.

Note that our method is considered indistinguishable from cr, showing that the partici-
pants’ preference towards it is strong. The grouping for the other methods is similar to the
previous study. The main competitor of our method is sv, that always ranks lower than
our method or is statistically indistinguishable from it.

Summary Our study shows that the space of axis-aligned deformations is a good can-
didate for content-aware image retargeting. Furthermore, our study validates the study of
[RGSS10], since our results are very similar to theirs. We release all the gathered data to
the public in the hope that it will be used by other researchers to validate their results.

203

Lines/Edges

Faces/People

Texture

Foreground Objects

Geometric Structures

Symmetry

Aggregate AACR SV MULTIOP SM SNS SCL WARP

AACR SV MULTIOP SM SNS SCL WARP

AACR SVMULTIOP SM SNS SCLWARP

AACR SVMULTIOP SM SNS SCL WARP

AACR SV MULTIOP SM SNS SCLWARP

AACR SV MULTIOP SM SNS SCLWARP

AA CRSV MULTIOP SM SNSSCL WARP

Figure B.2: Grouping of the methods in statistically indistinguishable groups.

204

Appendix C

Discrete Laplacian Operator

The continuos Laplace-Beltrami operator can be discretized at a mesh vertex vi by a linear
combination of the function values at the center vertex vi and its one-ring neighbors vj
(see [BKP+10]):

∇f(vi) = wi
∑

vj∈N1(vi)

wij(f(vj)− f(vi))

with wi = 1
2Ai

and wij = (cot αij + cot βij). αij and βij are the two angles opposite to the
edge incident on vertices i and j, as shown in Figure C.1. N1(vi) is the unordered set of
vertices in the 1-ring of vi, i.e. the vertices connected by an edge to vi. Ai is the voronoi
area (or an approximation of it) of the vertex vi.

αij

βij
vi

vj v1

v2

v3
α

β

γ

Friday, July 15, 2011

Figure C.1: The two angles opposed to the edge incident on vi and vj

In matrix notation, we can write the discrete laplacian operator as follows:∇f(v1)
...

∇f(vn)

 = DM

f(v1)
...

f(vn)

205

with D = diag(w1, . . . , wn) is a diagonal matrix with the weights wi, and M is a symmetric
matrix of the form:

mij =

−
∑

vk∈N1(vi)
wik, if i = j,

wij, if vj ∈ N1(vi),
0, otherwise.

The matrix L = DM is usually called Laplacian matrix or Cotangent matrix.

Since the computation of the cotangent of angles can introduce numerical errors, it is
better to avoid to explictly compute the cotan weights using trigonometric functions. The
following pseudo-code computes the cotangent of the three internal angles of a triangle in
a robust way, using only products and additions. The angles α, β and γ are the angles
incident on the vertices v1,v2 and v3, respectively (see Figure C.2).

αij

βij
vi

vj v1

v2

v3
α

β

γ

Friday, July 15, 2011

Figure C.2: The notation used in Algorithm 2

Algorithm 2 Compute cotangent of the angles of a triangle with vertices v1, v2 and v3

1: v12 = v2 − v1

2: v13 = v3 − v1

3: v23 = v3 − v2

4: A = ||v12 × v13||2
5: cot α = (v12 · v13)/A
6: cot β = (v23 · −v12)/A
7: cot γ = (−v23 · −v13)/A

206

Appendix D

STIV and subspace gradients

STIV gradients

We present the gradient of the inner operation of Equation 5.3 with respect to a single

vertex. Directly taking the derivative with respect to q
(n)
j gives

∂V

∂q
(n)
j

=
∂wj

∂q
(n)
j

(1− ti)∆r
(n)
i · n̂+

wi
−∂ti
∂q

(n)
j

∆r
(n)
i · n̂ + wi(1− ti)δijI3n̂ + wi(1− ti)∆r

(n)
i

∂n̂

q
(n)
j

,

with ∂ti/∂q
(n)
j = wjn. Note that n is the un-normalized cross product of the two edges

comprising the triangle.

∂n̂i

∂q
(n)
j

=
∑

k=0,1,2

(
ek(ti)× n̂

‖n‖
⊗ n̂

)(
∂ti

∂q
(n)
j

⊗∆q
(n)
j

)
,

where ek is the edge opposite vertex k, and ∂αi/∂q
(n)
j are derivatives for the barycentric

coordinates of a point in a triangle.

Subspace gradients

Subdivision surfaces. With subdivision surfaces, the control vertices p(n) are updated,
followed by re-computation using the subdivision matrix

q(n) = Sp(n).

207

In this case, the linear operator S is the function f , so ∂f/∂p(n) is simply S. Left multi-
plying by the original gradients gives the subspace gradients.

Laplacian editing. Laplacian surface editing intrinsically captures surface shape using
differential coordinates, δ(0) = Lq(0). Then, for a particular edit of the handle p(n), we
solve for the new positions using the formula

L̃q(n) =

(
δ(0)

p(n)

)
,

where L̃ is the augmented Laplacian matrix, as described in Sorkine et. al. [SCOL+04].
Ignoring numerical instability for a moment, we can re-write this as

q(n) = (L̃T L̃)−1L̃TSL

(
δ(0)

p(n)

)
. (D.1)

In this form, the derivative is (L̃T L̃)−1L̃TSL, where SL is a “selector” matrix containing
the identity matrix in the subset corresponding to p(n), and zeros elsewhere.

Rigid motion. We can write the gradients in terms of the six degrees of freedom rep-
resenting the center of mass of an object to obtain rigid motion, implementing the rigid
editing mode. Let p(n) = (xcm θcm)T , represent these six degrees of freedom.

Any point i on a rigid body has its location in body coordinates specified by ri = q
(0)
i −x

(0)
cm.

and the coordinates at any given point are given by q
(n)
i = xcm + Rcmri, where Rcm is the

3 DOF rigid body rotation coordinates expressed in matrix form.

The partial derivative of a vertex i with respect to the center of mass, is then given by the
3× 6 matrix

∂q(n)

∂p(n)
= (I3 −r∗) ,

where I3 is the 3×3 identity matrix, and −r∗ is the skew-symmetric cross product matrix.

Free-form deformations. Free-form deformations express every point of q(n) as a con-
vex combinations of the points in p(n), that is:

q(n) = Mp(n).

The linear operator M can be build using different basis functions, in our case we used tri-
cubic B-splines. The subspace gradients are computed in the same way as for subdivision
surfaces.

208

Bibliography

[3dc] 3D Coat. http://3d-coat.com/.

[ACSD+03] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun.
Anisotropic polygonal remeshing. ACM Trans. Graph., 22(3):485–493, July
2003.

[ACWK06] A. Angelidis, M.P. Cani, G. Wyvill, and S. King. Swirling-sweepers: Constant-
volume modeling. Graphical Models, 68(4):324–332, 2006.

[Ado10] Adobe Systems Inc. Photoshop CS5, July 2010.
http://www.adobe.com/photoshop/.

[AFC+10] Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Chris-
tian Duriez, and Paul G. Kry. Volume contact constraints at arbitrary reso-
lution. In ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, pages 82:1–82:10,
New York, NY, USA, 2010. ACM.

[AP97] M. Anitescu and F.A. Potra. Formulating dynamic multi-rigid-body contact
problems with friction as solvable linear complementarity problems. Nonlinear
Dynamics, 14(3):231–247, 1997.

[APH11] G. Aldrich, D. Pinskiy, and B. Hamann. Collision-driven volumetric deforma-
tion on the gpu. Eurographics 2011, 2011.

[ASK+05] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun,
Jim Rodgers, and James Davis. Scape: shape completion and animation of
people. ACM Trans. Graph., 24:408–416, July 2005.

[ATC+08] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and
Tong-Yee Lee. Skeleton extraction by mesh contraction. In ACM SIGGRAPH
2008 papers, SIGGRAPH ’08, pages 44:1–44:10, New York, NY, USA, 2008.
ACM.

[Bar89] D. Baraff. Analytical methods for dynamic simulation of non-penetrating rigid
bodies. In Proc. SIGGRAPH, pages 223–232, 1989.

209

[Bar94] David Baraff. Fast contact force computation for nonpenetrating rigid bodies.
In Proc. SIGGRAPH, pages 23–34, 1994.

[BBK06] Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Generalized
multidimensional scaling: a framework for isometry-invariant partial surface
matching. Proc. Natl. Acad. Sci. USA, 103(5):1168–1172, 2006.

[BBS02] M.J. Borden, S.E. Benzley, and J.F. Shepherd. Hexahedral sheet extraction.
In Proc. 11th Int. Meshing Roundt., pages 147–152, 2002.

[BFA02] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of
collisions, contact and friction for cloth animation. ACM Trans. Graph.,
21(3):594–603, 2002.

[BJ08] J. Barbič and D.L. James. Six-dof haptic rendering of contact between geomet-
rically complex reduced deformable models. IEEE Transactions on Haptics,
pages 39–52, 2008.

[BKP+10] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Levy. Poly-
gon Mesh Processing. AK Peters, 2010.

[Ble] Blender. http://www.blender.org/.

[BLK11] David Bommes, T. Lempfer, and Leif Kobbelt. Global structure optimization
of quadrilateral meshes. Computer Graphics Forum, 30(2):375?–384, 2011.

[Blo09] Philippe Block. Thrust Network Analysis: Exploring Three-dimensional Equi-
librium. Dissertation, Massachusetts Institute of Technology, 2009.

[BMRJ04] I. Boier-Martin, H. Rushmeier, and J Jin. Parametrization of triangle meshes
over quadrilateral domains. In Proceedings Symposium on Geometry Process-
ing, 2004.

[BP07] Ilya Baran and Jovan Popović. Automatic rigging and animation of 3d char-
acters. In ACM SIGGRAPH 2007 papers, SIGGRAPH ’07, New York, NY,
USA, 2007. ACM.

[BPGK06] M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. Primo: coupled prisms for in-
tuitive surface modeling. In Proceedings of the fourth Eurographics symposium
on Geometry processing, pages 11–20. Eurographics Association, 2006.

[Bri93] E. Brisson. Representing geometric structures in d dimensions: Topology and
order. Discrete and Computational Geometry, 9:387–426, 1993.

[BS07] M. Botsch and O. Sorkine. On linear variational surface deformation methods.
IEEE Transactions on Visualization and Computer Graphics, pages 213–230,
2007.

210

[BSFG09] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman.
PatchMatch: A randomized correspondence algorithm for structural image
editing. In Proc. SIGGRAPH, 2009.

[bsu] B Surfaces. http://www.bsurfaces.info/.

[BSW83] R.E. Bank, A.H. Sherman, and A. Weiser. Refinement algorithms and data
structures for regular local mesh refinement. In R. Stepleman, editor, Scientific
Computing, pages 3–17. IMACS/North Holland, 1983.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[BZK09] D. Bommes, H. Zimmer, and L. Kobbelt. Mixed-integer quadrangulation.
ACM Trans. Graph., 28(3):1–10, 2009.

[Cam90] Stephen Cameron. Collision detection by four-dimensional intersection testing.
IEEE Transactions on Robotics and Automation, 6:291–302, 1990.

[Cas08] I. Castaño. Next-generation hardware rendering of displaced subdivision sur-
faces. SIGGR2008 - Exhibitor Tech Ses., 2008.

[CC78] E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary
topological meshes. Computer Aided Design, 10:350–355, 1978.

[CCR08] P. Cignoni, M. Corsini, and G. Ranzuglia. Meshlab: an open-source 3d mesh
processing system. ERCIM News (73) - http: // meshlab. sourceforge.

net/ , pages 45–46, 2008.

[CDPB08] D. Cailliere, F. Denis, D. Pele, and A. Baskurt. 3d mirror symmetry detection
using hough transform. In Image Processing, 2008. ICIP 2008. 15th IEEE
International Conference on, pages 1772–1775. IEEE, 2008.

[CDS10] Keenan Crane, Mathieu Desbrun, and Peter Schröder. Trivial connections on
discrete surfaces. Computer Graphics Forum, 29(5):1525–1533, July 2010.

[CFK+10] Renjie Chen, Daniel Freedman, Zachi Karni, Craig Gotsman, and Ligang Liu.
Content-aware image resizing by quadratic programming. In Proc. NORDIA,
2010.

[CMLZ08] Guoning Chen, Konstantin Mischaikow, Robert S. Laramee, and Eugene
Zhang. Efficient morse decompositions of vector fields. IEEE Transactions
on Visualization and Computer Graphics, 14:848–862, 2008.

[CMS97] P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification
algorithms. Computers and Graphics, 22:37–54, 1997.

[CSAD04] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape

211

approximation. In ACM Trans. Graph. (SIGGRAPH), pages 905–914, New
York, NY, USA, 2004. ACM.

[CWQ+04] Kin-Shing D. Cheng, Wenping Wang, Hong Qin, Kwan-Yee K. Wong, Huaip-
ing Yang, and Yang Liu. Fitting subdivision surfaces to unorganized point
data using sdm. In PG ’04: Proc. of the Computer Graphics and Applica-
tions, 12th Pacific Conference, pages 16–24, Washington, DC, USA, 2004.
IEEE Computer Society.

[DBG+06] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J.C. Hart. Spectral
surface quadrangulation. ACM Trans. Graph., 25(3):1057–1066, 2006.

[DEGN98] T.K. Dey, H. Edelsbrunner, S. Guha, and D.V. Nekhayev. Topology preserving
edge contraction. Publ. Inst. Math. (Beograd) (N.S, 66:23–45, 1998.

[DH94] T. Delmarcelle and L. Hesselink. The topology of symmetric, second-order
tensor fields. In VIS ’94: Proceedings of the conference on Visualization ’94,
pages 140–147, 1994.

[DKG05] S. Dong, S. Kircher, and M. Garland. Harmonic functions for quadrilateral
remeshing of arbitrary manifolds. Comput. Aided Geom. Des., 22(5):392–423,
2005.

[DKT98] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in charac-
ter animation. In SIGGRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, pages 85–94, New York, NY,
USA, 1998. ACM.

[DLG90] N. Dyn, D. Levin, and J.A. Gregory. A butterfly subdivision scheme for
surface interpolation with tension control. ACM Transactions on Graphics,
9(2):160–169, April 1990.

[DS78] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraor-
dinary points. Computer Aided Design, 10:356–360, 1978.

[DSC09a] J. Daniels, C.T. Silva, and E. Cohen. Localized quadrilateral coarsening.
Comput. Graph. Forum, 28(5):1437–1444, 2009.

[DSC09b] Joel Daniels, Cláudio T. Silva, and Elaine Cohen. Semi-regular quadrilateral-
only remeshing from simplified base domains. Comput. Graph. Forum,
28(5):1427–1435, 2009.

[DSSC08] J. Daniels, C.T. Silva, J. Shepherd, and E. Cohen. Quadrilateral mesh sim-
plification. ACM Trans. Graph., 27(5):1–9, 2008.

[DWS+97] M.A. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and M.B.
Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes.

212

In Proceedings IEEE Visualization ’97, pages 81–88. IEEE, October 1997.

[Ede87] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag, Berlin, 1987.

[EGKT08] D. Eppstein, M.T. Goodrich, E. Kim, and R. Tamstorf. Motorcycle graphs:
Canonical quad mesh partitioning. Computer Graphics Forum, 27(5):1477–
1486, July 2008.

[eig] Eigen library - sparse direct solvers.

[EML09] Christian Eisenacher, Quirin Meyer, and Charles Loop. Real-time view-
dependent rendering of parametric surfaces. In I3D ’09: Symposium on Inter-
active 3D Graphics and Games, pages 137–143, New York, NY, USA, 2009.
ACM.

[Eri04] Christer Ericson. Real-Time Collision Detection (The Morgan Kaufmann Se-
ries in Interactive 3D Technology). Morgan Kaufmann, December 2004.

[Far88] Gerald Farin. Curves and surfaces for computer aided geometric design: a
practical guide. Academic Press Professional, Inc., San Diego, CA, USA, 1988.

[Far96] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide. Academic Press, Boston, 4. edition, 1996.

[FBAF08] François Faure, Sébastien Barbier, Jérémie Allard, and Florent Falipou.
Image-based collision detection and response between arbitrary volumetric ob-
jects. In ACM Siggraph/Eurographics Symposium on Computer Animation,
SCA 2008, July, 2008, Dublin, Irlande, July 2008.

[Fic65] G. Fichera. Elastostatics problems with unilateral constraints: the Signorini
problem with ambiguous boundary conditions. Seminari 1962-1963 di analisi,
algebra, geometria e topologia, page 613, 1965.

[FM11] B. Farb and D. Margalit. A primer on mapping class groups. Princeton Univ
Press, 2011.

[GAK10] D. Ghosh, N. Amenta, and M. Kazhdan. Closed-form blending of local sym-
metries. Computer Graphics Forum, 29(5):1681–1688, 2010.

[GD01] J.E. Gain and N.A. Dodgson. Preventing self-intersection under free-form
deformation. IEEE Transactions on Visualization and Computer Graphics,
pages 289–298, 2001.

[Gee08] K. Gee. Direct3d 11 tessellation. GameFest - Microsoft game technology
conference, 2008.

[GG06] T. D. Gatzke and C. M. Grimm. Estimating curvature on triangular meshes.

213

International Journal on shape Modeling, 12:1–29, 2006.

[GGH02] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. In
Tom Appolloni, editor, SIGGRAPH, pages 355–361. ACM, 2002.

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification using quadric
error metrics. In ACM Trans. Graph. (SIGGRAPH), pages 209–216, New
York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[GPF09] A. Golovinskiy, J. Podolak, and T. Funkhouser. Symmetry-aware mesh pro-
cessing. Mathematics of Surfaces XIII, pages 170–188, 2009.

[GSCO06] Ran Gal, Olga Sorkine, and Daniel Cohen-Or. Feature-aware texturing. In
Proc. EGSR, pages 297–303, 2006.

[GSCO07] R. Gal, A. Shamir, and D. Cohen-Or. Pose-oblivious shape signature. IEEE
Trans. on Visualization and Computer Graphics, 13(2):261–271, 2007.

[GST09] M. Gissler, R. Schmedding, and M. Teschner. Time-critical collision handling
for deformable modeling. Computer Animation and Virtual Worlds, 20(2-
3):355–364, 2009.

[HDD+93] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
optimization. In Proc. SIGGRAPH ’93, pages 19–26, New York, NY, USA,
1993. ACM.

[HDD+94] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin,
John McDonald, Jean Schweitzer, and Werner Stuetzle. Piecewise smooth
surface reconstruction. In ACM Trans. Graph. (SIGGRAPH), pages 295–302,
New York, NY, USA, 1994. ACM.

[Her82] H. Hertz. Ueber die Berührung fester elastischer Körper. Journal für die reine
und angewandte Mathematik (Crelle’s Journal), 1882(92):156–171, 1882.

[HL93] Josef Hoschek and Dieter Lasser. Fundamentals of computer aided geometric
design. A. K. Peters, Ltd., Natick, MA, USA, 1993. Translator-Schumaker,
Larry L.

[Hop96] H. Hoppe. Progressive meshes. In SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 99–108. ACM SIGGRAPH, Addison Wesley,
August 1996.

[HPS08] K. Hormann, K. Polthier, and A. Sheffer. Mesh parameterization: Theory and
practice. In SIGGRAPH Asia 2008 Course Notes, number 11, pages v+81,
Singapore, December 2008. ACM Press.

[HPSZ11] David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. Interference-

214

aware geometric modeling. In Proceedings of the 2011 SIGGRAPH Asia Con-
ference, SA ’11, pages 137:1–137:10, New York, NY, USA, 2011. ACM.

[HPW05] K. Hildebrandt, K. Polthier, and M. Wardetzky. Smooth feature lines on
surface meshes. In Proc. 3rd Eurographics Symp. on Geom. Proc., page 85,
2005.

[HTG04] B. Heidelberger, M. Teschner, and M. Gross. Detection of collisions and self-
collisions using image-space techniques. Journal of WSCG, 12(3):145–152,
2004.

[HVS+09] David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan
Grinspun. Asynchronous contact mechanics. ACM Trans. Graph., 28:87:1–
87:12, 2009.

[HVTG08] David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. Ro-
bust treatment of simultaneous collisions. ACM Trans. Graph., 27(3):23:1–
23:4, 2008.

[HZ00] A. Hertzmann and D. Zorin. Illustrating smooth surfaces. In Proceedings of
the 27th annual conference on Computer graphics and interactive techniques,
pages 517–526. ACM Press/Addison-Wesley Publishing Co., 2000.

[HZM+08a] J. Huang, M. Zhang, J. Ma, X. Liu, L. Kobbelt, and H. Bao. Spectral quad-
rangulation with orientation and alignment control. ACM Trans. Graph.,
27(5):1–9, 2008.

[HZM+08b] Jin Huang, Muyang Zhang, Jin Ma, Xinguo Liu, Leif Kobbelt, and Hujun
Bao. Spectral quadrangulation with orientation and alignment control. ACM
Trans. Graph., 27(5):147, 2008.

[IGG01] Martin Isenburg, Stefan Gumhold, and Craig Gotsman. Connectivity shapes.
In VIS ’01: Proceedings of the conference on Visualization ’01, pages 135–142,
Washington, DC, USA, 2001. IEEE Computer Society.

[IKN98] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based
visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.
Intell., 20:1254–1259, 1998.

[JBPS11] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. Bounded bi-
harmonic weights for real-time deformation. ACM Transactions on Graphics
(proceedings of ACM SIGGRAPH), 30(4):78:1–78:8, 2011.

[JS11] Alec Jacobson and Olga Sorkine. Stretchable and twistable bones for skele-
tal shape deformation. ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH ASIA), 30(6):165:1–165:8, 2011.

215

[JSW05] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed
triangular meshes. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages
561–566, New York, NY, USA, 2005. ACM.

[JT70] MA Jenkins and JF Traub. A three-stage algorithm for real polynomials using
quadratic iteration. SIAM Journal on Numerical Analysis, 7(4):545–566, 1970.

[KAG+09] M. Kazhdan, N. Amenta, S. Gu, D.F. Wiley, and B. Hamann. Symmetry
restoration by stretching. In Canadian Conference on Computational Geom-
etry. Citeseer, 2009.

[Kan01] Takashi Kanai. Meshtoss: Converting subdivision surfaces from dense meshes.
In Proc. of the Vision Modeling and Visualization Conference, pages 325–332.
Aka GmbH, 2001.

[KB40] M G Kendall and B Babington-Smith. On the method of paired comparisons.
Biometrica, 31:324–345, 1940.

[KCB09] Pierre Kraemer, David Cazier, and Dominique Bechmann. Extension of half-
edges for the representation of multiresolution subdivision surfaces. Vis. Com-
put., 25(2):149–163, 2009.

[KEP05] Danny M. Kaufman, Timothy Edmunds, and Dinesh K. Pai. Fast frictional
dynamics for rigid bodies. ACM Trans. Graph., 24:946–956, 2005.

[KFG09] Zachi Karni, D. Freedman, and Craig Gotsman. Energy-based image defor-
mation. Comput. Graph. Forum, 28(5), 2009.

[Kin97] P. Kinney. Cleanup: Improving quadrilateral finite element meshes. In 6th
Int. Meshing Roundt., pages 449–461, 1997.

[KKL02] S.J. Kim, C.H. Kim, and D. Levin. Surface simplification using a discrete
curvature norm. Computers & Graphics, 26(5):657–663, 2002.

[KL03] J. Kim and S. Lee. Transitive mesh space of a progressive mesh. IEEE
Transactions on Visualization and Computer Graphics, 9(4):463–480, 2003.

[KLCF10] Vladimir G. Kim, Yaron Lipman, Xiaobai Chen, and Thomas Funkhouser.
Mbius Transformations For Global Intrinsic Symmetry Analysis. Computer
Graphics Forum, 29(5):1689–1700, 2010.

[KLF11] Vladimir G. Kim, Yaron Lipman, and Thomas Funkhouser. Blended intrinsic
maps. ACM Trans. Graph., 30:79:1–79:12, August 2011.

[KLHG09] Philipp Krähenbühl, Manuel Lang, Alexander Hornung, and Markus Gross. A
system for retargeting of streaming video. ACM Trans. Graph., 28(5), 2009.

[KLS03] Andrei Khodakovsky, Nathan Litke, and Peter Schröder. Globally smooth

216

parameterizations with low distortion. ACM Trans. Graph., 22(3):350–357,
2003.

[KMDZ09] Denis Kovacs, Jason Mitchell, Shanon Drone, and Denis Zorin. Real-time
creased approximate subdivision surfaces. In I3D ’09: Proceedings of the 2009
symposium on Interactive 3D graphics and games, pages 155–160, New York,
NY, USA, 2009. ACM.

[KNP07] Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quadcover sur-
face parameterization using branched coverings. Computer Graphics Forum,
26(3):375–384, 2007.

[Kob00] L. Kobbelt.
√

3 subdivision. In Proceedings ACM SIGGRAPH 2000, pages
103–112, 2000.

[Kos65] J.L. Koszul. Lectures on groups of transformations, volume 32 of Lectures on
Mathematics. Tata Institute of Fundamental Research, Bombay, India, 1965.

[KS04] V. Kraevoy and A. Sheffer. Cross-parameterization and compatible remeshing
of 3d models. ACM Transactions on Graphics (Proc. SIGGRAPH 2004), 2004.

[KSJP08] Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. Stag-
gered projections for frictional contact in multibody systems. In SIGGRAPH
Asia ’08: ACM SIGGRAPH Asia 2008 papers, pages 1–11, New York, NY,
USA, 2008. ACM.

[KSNS07] E. Kalogerakis, P. Simari, D. Nowrouzezahrai, and K. Singh. Robust statistical
estimation of curvature on discretized surfaces. In Symposium on Geometry
Processing, pages 13–22, 2007.

[LCDF10] Y. Lipman, X. Chen, I. Daubechies, and T. Funkhouser. Symmetry factored
embedding and distance. In ACM SIGGRAPH 2010 papers, pages 1–12. ACM,
2010.

[LD09] Guillaume Lavoué and Florent Dupont. Technical section: Semi-sharp subdi-
vision surface fitting based on feature lines approximation. Comput. Graph.,
33(2):151–161, 2009.

[LF09] Yaron Lipman and Thomas Funkhouser. Mobius voting for surface correspon-
dence. ACM Transactions on Graphics (Proc. SIGGRAPH), 28(3), August
2009.

[LJFW08] J. Lin, X. Jin, Z. Fan, and C.C.L. Wang. Automatic polycube-maps. In Pro-
ceedings of the 5th international conference on Advances in geometric modeling
and processing, pages 3–16. Springer-Verlag, 2008.

[LJW10] Ligang Liu, Yong Jin, and Qingbiao Wu. Realtime aesthetic image retarget-

217

ing. In Proc. Eurographics Workshop on Computational Aesthetic in Graphics,
Visualization, and Imaging, pages 1–8, 2010.

[LJX+10] Y.K. Lai, M. Jin, X. Xie, Y. He, J. Palacios, E. Zhang, S.M. Hu, and X. Gu.
Metric-driven rosy field design and remeshing. Visualization and Computer
Graphics, IEEE Transactions on, 16(1):95–108, 2010.

[LKH08] Y.-K. Lai, L. Kobbelt, and S.-M. Hu. An incremental approach to feature
aligned quad dominant remeshing. In Proc. 2008 ACM Symp. on Sol. and
Phys. Mod., pages 137–145, New York, NY, USA, 2008. ACM.

[LLCO08] Yaron Lipman, David Levin, and Daniel Cohen-Or. Green coordinates. ACM
Trans. Graph., 27:78:1–78:10, August 2008.

[LMH00] Aaron Lee, Henry Moreton, and Hugues Hoppe. Displaced subdivision sur-
faces. In ACM Trans. Graph. (SIGGRAPH), pages 85–94, New York, NY,
USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[Loo87] C. Loop. Smooth subdivision surfaces based on triangles. Master thesis,
University of Utah, Dept. of Mathematics, 1987.

[Löt84] P. Lötstedt. Numerical simulation of time-dependent contact and friction
problems in rigid body mechanics. SIAM Journal on Scientific and Statistical
Computing, 5:370–384, 1984.

[LRC+02] D. Lübke, M. Reddy, J.D. Cohen, A. Varshney, B. Watson, and R. Hübner.
Level Of Detail for 3D Graphics. Morgan Kaufmann, 2002.

[LRL06] Wan-Chiu Li, Nicolas Ray, and Bruno Lévy. Automatic and interactive mesh
to t-spline conversion. In SGP ’06: Symposium on Geometry Processing, pages
191–200. EG Association, 2006.

[LS00] Michael Lee and Hanan Samet. Navigating through triangle meshes imple-
mented as linear quadtrees. ACM Transactions on Graphics, 19(2):79–121,
2000.

[LS08] Charles Loop and Scott Schaefer. Approximating catmull-clark subdivision
surfaces with bicubic patches. ACM Trans. Graph., 27(1):1–11, 2008.

[LSS+98] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. Maps:
Multiresolution adaptive parameterization of surfaces. Comp. Graph. Proc.,
pages 95–104, 1998.

[LVJ05] Chang Ha Lee, Amitabh Varshney, and David W. Jacobs. Mesh saliency.
In ACM Trans. Graph. (SIGGRAPH), pages 659–666, New York, NY, USA,
2005. ACM.

218

[May] Autodesk maya. http://usa.autodesk.com/.

[MB10] J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded convex
optimization, 2010. Manuscript.

[MC95] Brian Mirtich and John Canny. Impulse-based dynamic simulation. In WAFR:
Proceedings of the workshop on Algorithmic foundations of robotics, pages 407–
418, Natick, MA, USA, 1995. A. K. Peters, Ltd.

[MCK08] Tobias Martin, Elaine Cohen, and Mike Kirby. Volumetric parameterization
and trivariate b-spline fitting using harmonic functions. In Proceedings of
the 2008 ACM symposium on Solid and physical modeling, SPM ’08, pages
269–280, New York, NY, USA, 2008. ACM.

[MGP06] N.J. Mitra, L.J. Guibas, and M. Pauly. Partial and approximate symmetry
detection for 3d geometry. ACM Transactions on Graphics (TOG), 25(3):560–
568, 2006.

[MHHR07] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Po-
sition based dynamics. J. Vis. Comun. Image Represent., 18(2):109–118, 2007.

[Mit07] M. Pauly Mitra, N. L. Guibas L. Symmetrization. ACM Transactions on
Graphics, 26(3), 2007.

[MJ98] H. Müller and R. Jaeschke. Adaptive subdivision curves and surfaces. In
Proceedings of Computer Graphics International ’98, pages 48–58, 1998.

[MK04] M. Marinov and L. Kobbelt. Optimization techniques for approximation with
subdivision surfaces. In SM ’04: Proceedings of the ninth ACM symposium
on Solid modeling and applications, pages 113–122, Aire-la-Ville, Switzerland,
Switzerland, 2004. Eurographics Association.

[MK05] M. Marinov and L. Kobbelt. Automatic generation of structure-preserving
multi-resolution models. CG Forum, 24(3):479–486, 2005.

[MMTP04] W. Ma, X. Ma, S.-K. Tso, and Z. Pan. A direct approach for subdivision
surface fitting from a dense triangle mesh. Computer Aided Geometric Design,
36(16):525–536, 2004.

[MNP08] A. Myles, T. Ni, and J. Peters. Fast parallel construction of smooth sur-
faces from meshes with tri/quad/pent facets. Computer Graphics Forum,
27(5):1365–1372, July 2008.

[MO06] C. Mendoza and C. O’Sullivan. Interruptible collision detection for deformable
objects. Computers & Graphics, 30(3):432–438, 2006.

[Mod] Modo 301. http://www.luxology.com.

219

[MPKZ10] Ashish Myles, Nico Pietroni, Denis Kovacs, and Denis Zorin. Feature-aligned
t-meshes. ACM Trans. Graph., 29(4):1–11, 2010.

[MPT99] W.A. McNeely, K.D. Puterbaugh, and J.J. Troy. Six degree-of-freedom haptic
rendering using voxel sampling. In Proc. SIGGRAPH, pages 401–408, 1999.

[MS01a] Jérôme Maillot and Jos Stam. A unified subdivision scheme for polygonal
modeling. Computer Graphics Forum, 20(3):471–479, 2001.

[MS01b] Victor J. Milenkovic and Harald Schmidl. Optimization-based animation. In
Proc. SIGGRAPH, pages 37–46, 2001.

[MS04] Facundo Mémoli and Guillermo Sapiro. Comparing Point Clouds . In Pro-
ceedings Symposium on Geometry Processing 2004, pages 33–42. Eurographics,
2004.

[MW88] M. Moore and J. Wilhelms. Collision detection and response for computer
animation. In Proc. SIGGRAPH, pages 289–298, 1988.

[MZ55] D. Montgomery and L. Zippin. Topological transformation groups, volume 1.
Interscience Publishers New York, 1955.

[NRP11] M. Nieser, U. Reitebuch, and K. Polthier. CubeCover - parameterization of
3d volumes. Computer Graphics Forum, 30(5):1397–1406, 2011.

[OBS04] Y. Ohtake, A. Belyaev, and H.P. Seidel. Ridge-valley lines on meshes via
implicit surface fitting. In International Conference on Computer Graphics
and Interactive Techniques, pages 609–612. ACM New York, NY, USA, 2004.

[OD99] C. OSullivan and J. Dingliana. Real-time collision detection and response
using sphere-trees. In 15th Spring Conference on Computer Graphics, pages
83–92, 1999.

[OFCD02] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin.
Shape distributions. ACM Trans. Graph., 21:807–832, October 2002.

[OMMG10] Maks Ovsjanikov, Quentin Mérigot, Facundo Mémoli, and Leonidas Guibas.
One Point Isometric Matching with the Heat Kernel. Computer Graphics
Forum, 29(5):1555–1564, 2010.

[OSCS99] S.J. Owen, M.L. Staten, S.A. Canann, and S. Saigal. Q-morph: An indi-
rect approach to advancing front quad meshing. International Journal for
Numerical Methods in Engineering, 44(9):1317–1340, March 1999.

[OSG08] M. Ovsjanikov, J. Sun, and L. Guibas. Global intrinsic symmetries of shapes.
Computer graphics forum, 27(5):1341–1348, 2008.

[PAH06] P.-O. Persson, M.J. Aftosmis, and R. Haimes. On the use of loop subdivision

220

surfaces for surrogate geometry. In Proceedings 15th International Meshing
Roundtable, pages 375–392, Birmingham (AL), USA, September 17-20 2006.

[PGR07] J. Podolak, A. Golovinskiy, and S. Rusinkiewicz. Symmetry-enhanced remesh-
ing of surfaces. In Proceedings of the fifth Eurographics symposium on Geom-
etry processing, pages 235–242. Eurographics Association, 2007.

[PKS10] S. Pabst, A. Koch, and W. Straßer. Fast and scalable CPU/GPU collision
detection for rigid and deformable surfaces. In Proc. Symposium on Geometry
Processing, pages 1605–1612, 2010.

[PKVP09] Y. Pritch, E. Kav-Venaki, and S. Peleg. Shift-map image editing. In Proc.
ICCV, Sep-Oct 2009.

[PLH02] Helmut Pottmann, Stefan Leopoldseder, and Michael Hofer. Approximation
with active b-spline curves and surfaces. In PG ’02: Proceedings of the 10th
Pacific Conference on Computer Graphics and Applications, page 8, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[PLPZ12] Daniele Panozzo, Yaron Lipman, Enrico Puppo, and Denis Zorin. Fields on
symmetric surfaces. In Proceedings of the 2012 SIGGRAPH Conference, New
York, NY, USA, 2012. ACM.

[PP09a] D. Panozzo and E. Puppo. Interpolatory adaptive subdivision for mesh lod
editing. In Proceedings GRAPP 2009 - International Conference on Computer
Graphics Theory and Applications, pages 70–75, Lisboa, Portugal, February
5–8 2009.

[PP09b] E. Puppo and D. Panozzo. RGB subdivision. IEEE Transactions on Visual-
ization and Computer Graphics, 15(2):295–310, 2009.

[PP10] Daniele Panozzo and Enrico Puppo. Adaptive lod editing of quad meshes. In
Afrigraph, pages 7–16, 2010.

[PP11] Daniele Panozzo and Enrico Puppo. Implicit hierarchical quad-dominant
meshes. Comput. Graph. Forum, 30(6):1617–1629, 2011.

[PPG04] Mark Pauly, Dinesh K. Pai, and Leonidas J. Guibas. Quasi-rigid objects in
contact. In Proc. SCA, pages 109–119, 2004.

[PPT+11] Daniele Panozzo, Enrico Puppo, Marco Tarini, Nico Pietroni, and Paolo
Cignoni. Automatic construction of adaptive quad-based subdivision surfaces
using fitmaps. IEEE Transaction on Visualization and Computer Graphics,
2011. http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.28.

[Pro97] Xavier Provot. Collision and self-collision handling in cloth model dedicated
to design garments. In Proc. Computer Animation and Simulation, pages

221

177–189. Springer Verlag, 1997.

[PS07] H.R. Pakdel and F.F. Samavati. Incremental subdivision for triangle meshes.
International Journal of Computational Science and Engineering, 3(1):80–92,
2007.

[PSG+06] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. Funkhouser.
A planar-reflective symmetry transform for 3d shapes. ACM Transactions on
Graphics, 25(3):549–559, 2006.

[PSS01] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations.
Proc. of SIGGRAPH 2001, 2001.

[PTC09] N. Pietroni, M. Tarini, and P. Cignoni. Almost isometric mesh parameteri-
zation through abstract domains. IEEE Trans. on Vis. and Comp. Graph.,
2009.

[PTC10] Nico Pietroni, Marco Tarini, and Paolo Cignoni. Almost isometric mesh pa-
rameterization through abstract domains. IEEE Transaction on Visualization
and Computer Graphics, 16(4):621–635, July/August 2010.

[PTSZ11] Nico Pietroni, Marco Tarini, Olga Sorkine, and Denis Zorin. Global
parametrization of range image sets. ACM Transactions on Graphics, Pro-
ceedings of SIGGRAPH Asia 2011, 30(6), 2011.

[Pup98] E. Puppo. Variable resolution triangulations. Computational Geometry, 11(3-
4):219–238, 1998.

[Pup07] E. Puppo. Dynamic adaptive subdivision meshes. In 2007 Israel-Italy Bi-
National Conference on Shape Modeling and Reasoning for Industrial and
Biomedical Application, pages 60–64, Technion Haifa, Israel, May 2007.

[PWS12] Daniele Panozzo, Ofir Weber, and Olga Sorkine. Robust image retargeting
via axis-aligned deformation. Computer Graphics Forum (proceedings of EU-
ROGRAPHICS), 31(2), 2012.

[PZ07] J. Palacios and E. Zhang. Rotational symmetry field design on surfaces. ACM
Trans. Graph., 26(3):55, 2007.

[RBBK07] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Symmetries
of non-rigid shapes. In Proc. Non-rigid Registration and Tracking (NRTL)
workshop. See Proc. of International Conference on Computer Vision (ICCV),
October 2007.

[RBBK10] D. Raviv, A.M. Bronstein, M.M. Bronstein, and R. Kimmel. Full and partial
symmetries of non-rigid shapes. International journal of computer vision,
89(1):18–39, 2010.

222

[RGPP11] Luigi Rocca, Nikolas De Giorgis, Daniele Panozzo, and Enrico Puppo. Fast
neighborhood search on polygonal meshes. In Andrea F. Abate, Michele
Nappi, and Genny Tortora, editors, Eurographics Italian Chapter Conference,
pages 15–21, 2011.

[RGSS10] Michael Rubinstein, Diego Gutierrez, Olga Sorkine, and Ariel Shamir. A
comparative study of image retargeting. ACM Trans. Graph., 29(5), 2010.

[RLL+06] N. Ray, W.-C. Li, B. Lévy, P. Alliez, and A. Sheffer. Periodic global parame-
terization. ACM Trans. Graph., 2006.

[RSA08] Michael Rubinstein, Ariel Shamir, and Shai Avidan. Improved seam carving
for video retargeting. ACM Trans. Graph., 27(3), 2008.

[RSA09] Michael Rubinstein, Ariel Shamir, and Shai Avidan. Multi-operator media
retargeting. ACM Trans. Graph., 28(3):23, 2009.

[Rus10] R.M. Rustamov. Barycentric coordinates on surfaces. Comput. Graph. Forum,
29(5):1507–1516, 2010.

[RVAL09] Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. Geometry-aware
direction field processing. ACM Trans. Graph., 29(1):1–11, 2009.

[RVLL08] N. Ray, B. Vallet, W.C. Li, and B. Lévy. N-Symmetry Direction Field Design.
ACM Trans. Graph., 27:2, 2008.

[SA07] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In Proc.
Symposium on Geometry Processing, pages 109–116, 2007.

[Sab04] M. Sabin. Recent progress in subdivision: a survey. In N.A. Dogdson, M.S.
Floater, and M.A. Sabin, editors, Advances in Multiresolution for Geometric
Modelling, pages 203–230. Springer-Verlag, 2004.

[Sam05] Hanan Samet. Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric Model-
ing). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[SAPH04] John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. Inter-
surface mapping. ACM Transactions on Graphics (Proc. SIGGRAPH), 2004.

[SB99] F.F. Samavati and R.H. Bartels. Multiresolution curve and surface representa-
tion by reversing subdivision rules. Computer Graphics Forum, 18(2):97–120,
1999.

[Sch79] H. Schwerdtfeger. Geometry of complex numbers: circle geometry, Moebius
transformation, non-euclidean geometry. Dover Books on Mathematics Series.
Dover, 1979.

223

[SCOL+04] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.P. Seidel.
Laplacian surface editing. In Proc. Symposium on Geometry processing, pages
175–184, 2004.

[SCSI08] Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. Summarizing
visual data using bidirectional similarity. In Proc. CVPR, 2008.

[SDW+09] J.F. Shepherd, M.W. Dewey, A.C. Woodbury, S.E. Benzley, M.L. Staten, and
S.J. Owen. Adaptive mesh coarsening for quadrilateral and hexahedral meshes.
Finite Elements in Analysis and Design, 46(1-2):17 – 32, 2009.

[She02] Jonathan Richard Shewchuk. What is a good linear finite element? - in-
terpolation, conditioning, anisotropy, and quality measures. In Proc. of the
11th International Meshing Roundtable, 2002. Unpublished extended version
available at http://www.cs.berkeley.edu/ jrs/papers/elemj.pdf.

[SHHG01] S. Seeger, K. Hormann, G. Häusler, and G. Greiner. A sub-atomic subdivi-
sion approach. In B. Girod, H. Niemann, and H.-P. Seidel, editors, Proceed-
ings of Vision, Modeling and Visualization 2001, pages 77–85, Berlin, 2001.
Akademische Verlag.

[Sil] Silo 2. http://www.nevercenter.com/.

[SL03] J. Stam and C. Loop. Quad/triangle subdivision. Computer Graphics Forum,
22(1):79–85, 2003.

[SLF08] A. Selle, M. Lentine, and R. Fedkiw. A mass spring model for hair simulation.
ACM Trans. Graph., 27(3):64–64, 2008.

[SMAB02] F.F. Samavati, N. Mahdavi-Amiri, and R.H. Bartels. Multiresolution surfces
having arbitrary topologies by a reverse doo subdivision method. Computer
Graphics Forum, 21(2):121–136, 2002.

[Sny95] John M. Snyder. An interactive tool for placing curved surfaces without inter-
penetration. In Proceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’95, pages 209–218, New York, NY,
USA, 1995. ACM.

[Sor06] Olga Sorkine. Differential representations for mesh processing. Computer
Graphics Forum, 25(4):789–807, 2006.

[SP86] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric
models. In Proc. SIGGRAPH, pages 151–160, 1986.

[SS09] Ariel Shamir and Olga Sorkine. Visual media retargeting. In ACM SIG-
GRAPH Asia Courses, 2009.

224

[ST96] D. Stewart and J.C. Trinkle. An implicit time-stepping scheme for rigid body
dynamics with inelastic collisions and coulomb friction. Intl. Journal for Nu-
merical Methods in Engineering, 39:2673–2691, 1996.

[Sta98a] J. Stam. Evaluation of Loop subdivision surfaces. In ACM Trans. Graph.
(SIGGRAPH), 1998.

[Sta98b] J. Stam. Exact evaluation of catmull-clark subdivision surfaces at arbitrary
parameter values. In ACM Trans. Graph. (SIGGRAPH), pages 395–404, 1998.

[STKK99] Hiromasa Suzuki, Shingo Takeuchi, Fumihiko Kimura, and Takashi Kanai.
Subdivision surface fitting to a range of points. In PG ’99: Proceedings of
the 7th Pacific Conference on Computer Graphics and Applications, page 158,
Washington, DC, USA, 1999. IEEE Computer Society.

[SW07] Scott Schaefer and Joe Warren. Exact evaluation of non-polynomial subdivi-
sion schemes at rational parameter values. In Proc. 15th Pacific Conference
on Computer Graphics and Applications, pages 321–330, Los Alamitos, CA,
USA, 2007. IEEE Computer Society.

[SWG+03] Pedro V. Sander, Zoë J. Wood, Steven J. Gortler, John Snyder, and Hugues
Hoppe. Multi-chart geometry images. In Leif Kobbelt, Peter Schröder, and
Hugues Hoppe, editors, Symposium on Geometry Processing, volume 43 of
ACM International Conference Proceeding Series, pages 146–155. Eurograph-
ics Association, 2003.

[TACSD06] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Designing quadran-
gulations with discrete harmonic forms. In Proc. 4th Eurographics Symp. on
Geom. Proc., pages 201–210, 2006.

[THCM04] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-
maps. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 853–860,
New York, NY, USA, 2004. ACM.

[THM+03] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross. Op-
timized spatial hashing for collision detection of deformable objects. In Proc.
VMV, pages 47–54, 2003.

[Thu97] William P. Thurston. Three-dimensional geometry and topology. Vol. 1, vol-
ume 35 of Princeton Mathematical Series. Princeton University Press, Prince-
ton, NJ, USA, 1997. Edited by Silvio Levy.

[TKZ+04] Matthias Teschner, Stefan Kimmerle, Gabriel Zachmann, Bruno Heidelberger,
Laks Raghupathi, Arnulph Fuhrmann, Marie-Paule Cani, François Faure, Na-
dia Magnenat-Thalmann, and Wolfgang Strasser. State-of-the-art report: Col-
lision detection for deformable objects. In Proc. Eurographics, pages 119–139,

225

2004.

[TMLT11] Min Tang, Dinesh Manocha, Jiang Lin, and Ruofeng Tong. Collision-streams:
Fast GPU-based collision detection for deformable models. In I3D ’11: Pro-
ceedings of the 2011 ACM SIGGRAPH symposium on Interactive 3D Graphics
and Games, pages 63–70, 2011.

[TMT10] Min Tang, Dinesh Manocha, and Ruofeng Tong. Fast continuous collision
detection using deforming non-penetration filters. In I3D ’10: Proceedings
of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and
Games, pages 7–13, New York, NY, USA, 2010. ACM.

[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically
deformable models. In Proc. SIGGRAPH, pages 205–214, 1987.

[TPC+10] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and Puppo E. Practical quad
mesh simplification. CG Forum (Eurographics 2010), 29(2):407–418, 2010.

[TPP+11] Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo
Cignoni. Simple quad domains for field aligned mesh parametrization. In
Proceedings of the 2011 SIGGRAPH Asia Conference, SA ’11, pages 142:1–
142:12, New York, NY, USA, 2011. ACM.

[TSH01] Xavier Tricoche, Gerik Scheuermann, and Hans Hagen. Continuous topology
simplification of planar vector fields. In IEEE Visualization, 2001.

[UNC10] UNC. Self-ccd: Continuous collision detection for deforming objects, 2010.

[Vel03] L. Velho. Stellar subdivision grammars. In Proceedings Eurographics Sympo-
sium on Geometry Processing, 2003.

[VFTS06] W. Von Funck, H. Theisel, and H.P. Seidel. Vector field based shape defor-
mations. ACM Trans. Graph., 25(3):1118–1125, 2006.

[VG00] L. Velho and J. Gomes. Variable resolution 4-k meshes: Concepts and appli-
cations. Computer Graphics Forum, 19(4):195–214, 2000.

[VHWP12] Etienne Vouga, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann.
Design of self-supporting surfaces. ACM Trans. Graphics, 31, 2012. Proc.
SIGGRAPH.

[VZ01] L. Velho and D. Zorin. 4-8 subdivision. Computer-Aided Geometric Design,
18:397–427, 2001.

[WB01a] K. Watanabe and A.G. Belyaev. Detection of salient curvature features on
polygonal surfaces. In CG Forum, volume 20, pages 385–392. Citeseer, 2001.

[WB01b] Andrew Witkin and David Baraff. Physically based modeling: Course notes.

226

In SIGGRAPH Courses, 2001.

[WG09] T. Weinkauf and D. Günther. Separatrix Persistence: Extraction of Salient
Edges on Surfaces Using Topological Methods. In Computer Graphics Forum,
volume 28, pages 1519–1528. Blackwell Publishing Ltd, 2009.

[WGCO07] Lior Wolf, Moshe Guttmann, and Daniel Cohen-Or. Non-homogeneous
content-driven video-retargeting. In Proc. ICCV, 2007.

[WL07] P Wriggers and Tod A Laursen. Computational contact mechanics, volume
498 of CISM courses and lectures. Springer, 2007.

[WLSL10] Yu-Shuen Wang, Hui-Chih Lin, Olga Sorkine, and Tong-Yee Lee. Motion-
based video retargeting with optimized crop-and-warp. ACM Trans. Graph.,
29(4):article no. 90, 2010.

[Won05] S.K. Wong. High performance virtual clothing dynamics. PhD thesis, Hong
Kong University of Science and Technology (People’s Republic of China), 2005.

[WTSL08] Yu-Shuen Wang, Chiew-Lan Tai, Olga Sorkine, and Tong-Yee Lee. Optimized
scale-and-stretch for image resizing. ACM Trans. Graph., 27(5):118, 2008.

[WW02] J. Warren and H. Weimer. Subdivision Methods for Geometric Design. Morgan
Kaufmann, 2002.

[XK99] Z. Xu and K. Kondo. Adaptive refinements in subdivision surfaces. In Euro-
graphics ’99, Short papers and demos, pages 239–242, 1999.

[XZT+09] K. Xu, H. Zhang, A. Tagliasacchi, L. Liu, G. Li, M. Meng, and Y. Xiong.
Partial intrinsic reflectional symmetry of 3d shapes. ACM Transactions on
Graphics (TOG), 28(5):138, 2009.

[ZCHM09] Guo-Xin Zhang, Ming-Ming Cheng, Shi-Min Hu, and Ralph R. Martin.
A shape-preserving approach to image resizing. Comput. Graph. Forum,
28(7):1897–1906, 2009.

[ZHLB10] Muyang Zhang, Jin Huang, Xinguo Liu, and Hujun Bao. A wave-based
anisotropic quadrangulation method. In ACM SIGGRAPH 2010 papers, SIG-
GRAPH ’10, pages 118:1–118:8, New York, NY, USA, 2010. ACM.

[ZS00] D. Zorin and P. Schröder, editors. Subdivision for Modeling and Animation
(SIGGRAPH 2000 Tutorial N.23 - Course notes). ACM Press, 2000.

[ZSS97] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh
editing. In Comp. Graph. Proc., Annual Conf. Series (SIGGRAPH 97), ACM
Press, 1997. 259-268.

227

