
Quadrilateral Surface Mesh Generation

for Animation and Simulation

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von Diplom-Informatiker

David Bommes

aus Korschenbroich, Deutschland

Berichter: Prof. Dr. Leif Kobbelt

Prof. Dr. Pierre Alliez

Tag der mündlichen Prüfung: 11.10.2012

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

http://www.eg.org
http://diglib.eg.org

Acknowledgments

There are numerous people and institutions that deserve deep gratitude for supporting

my work during the last years.

First of all, I would like to thank my advisor Leif Kobbelt, not only for his excellent

scientific education and support, but also for letting me grow in a fruitful environment

of motivated colleagues and friends.

Additionally for being my co-examiner I want to thank Pierre Alliez in particular for

always willing to share his enormous expertise during interesting and insightful discus-

sions about various geometry processing topics.

Furthermore, I would like to thank Mario Botsch for supporting me right from the

beginning by giving me, a young 2nd semester student without experience, the oppor-

tunity to explore the fascinating area of computer graphics.

It was always a pleasure to work within the Computer Graphics group at RWTH

Aachen and I want to express my gratitude to all current and former members. Special

thanks go to Jan Möbius for outstanding technical administration and development of

OpenFlipper, to Marcel Campen, Henrik Zimmer, Michael Kremer, Timm Lempfer, To-

bias Vossemer and Christoph Vogel for being co-authors and to Dominik Sibbing, Ellen

Dekkers, Darko Pavic, Martin Habbecke, Lars Krecklau Hans-Christian Ebke and many

others for having inspiring discussions at our weekly ”Geometry-Stammtisch”.

Without my former teacher Heiner Platzbecker, who arouse my curiosity about the

beauty of math and natural sciences by communicating his wonderful and extremely

helpful intuition, I would have most likely never done this work.

Finally, I want to thank my family and close friends for their never-ending support

and patience. In particular I’m thankful to my parents Manfred and Gertrud and my

siblings Jarah, Micka, Christoph, Elisabeth, Marian and Martin and my goddaughter

Siri for never letting me forget about what is important in life.

ii

Contents

1. Introduction 1

2. Quadrilateral Surface Meshes 7

2.1. Foundations . 7

2.2. Applications . 15

2.2.1. Animation . 17

2.2.2. Simulation . 19

2.3. Quality Criteria . 20

2.4. Related Work . 22

I. Mixed-Integer Optimization in Geometry Processing 29

3. Mixed-Integer Nonlinear Programming 33

4. General Optimization Approaches 39

4.1. Branch-and-Bound . 41

4.2. Cutting-Plane method . 46

4.3. Branch-and-Cut . 49

5. Efficient Approximation of Quadratic MI-Problems 53

5.1. Linear Constraints . 56

5.1.1. Lagrangian Multipliers . 56

5.1.2. Elimination Approach . 57

5.2. Integer Constraints . 60

5.2.1. Direct Rounding . 60

5.2.2. Iterative Greedy Rounding . 61

5.3. Evaluation . 64

iii

Contents

II. Parametrization based Quadrilateral Mesh Generation 71

6. Integer-Grid Mappings 77

6.1. MINLP Formulation . 79

7. Layout guided Approach 81

7.1. Layout Parametrization . 85

7.2. Domain Optimization . 88

7.3. Evaluation . 94

8. Orientation-field guided Approach 99

8.1. Filtering of Salient Orientations . 102

8.2. Orientation-field Generation . 103

8.3. Sizing field computation . 108

8.4. Orientation-field Parametrization . 108

8.5. Evaluation . 115

8.6. Flexibility . 124

9. Geodesic Distance Fields 127

III. Quadmesh Optimization 145

10.Structure Optimization 149

10.1. Grid-Preserving Operators . 151

10.2. Helices . 158

10.3. Greedy Algorithm . 162

10.4. Evaluation . 164

11.Conclusion 167

Bibliography 171

iv

1. Introduction

Accurately describing the geometry of objects in a digital environment, i.e. computers, is

an essential ingredient in many of nowadays applications. Often it is desired to forecast

the behavior of real phenomena which depend on the geometry of objects by performing

a simulation of, e.g. , a car crash, the flow around the wing of a plane, the stability of a

building or the quality of the mobile phone network in a city to name just a few. Such

simulations are indispensable in situations where an experiment cannot be performed as

for instance the task of inspecting the stability of a building in case of an earthquake.

However, even in cases where an experiment could potentially be performed, e.g. in the

development of a new product, it often makes sense to run a simulation instead of the

real-world experiment in order to reduce development cost and/or time.

Another ongoing trend is the virtualization of environments as can be seen for example

in the area of navigation or internet shopping. A digital geometry representation enables

the user to thoroughly explore a possibly faraway object not only from pre-chosen views

but in its full variety. Moreover a digitalized environment offers the powerful possibility

of interactively visualizing additional data which is designed to support the desired ap-

plication as for instance overblended signs in a navigation software.

One step further, instead of replicating and enriching the real world in a digital en-

vironment, designers, artists or engineers are able to utilize the enormous potential of

today’s 3D modeling environments to create new complex objects or sometimes even

completely artificial worlds as for example in animation movies.

Motivated by the huge amount of applications there is a long history of different dig-

ital geometry representations which were used in the past. Some applications require a

solid (volumetric) representation of the object while for others it is sufficient to solely

represent its boundary, i.e. the surface of the object. In this thesis we will focus on

surface representations while an outlook on the analog volumetric problem will be given

1

1. Introduction

Figure 1.1.: A mechanical object (left) represented as a triangle mesh (middle) and a

quadmesh (right). While the triangle mesh easily enables adaptive element sizes, the

quadmesh exhibits a superior (mostly regular) structure.

in Chapter 11.

Surfaces in R3

Surface representations are often divided into three major classes, namely implicit, ex-

plicit and parametric representations. The main idea of implicit representations is based

on the observation that a 2-manifold surface in R3 is of co-dimension 1 and consequently

can be described as the kernel K = {p ∈ R3 : f(p) = 0} of a single scalar function

f : R3 7→ R. Such an implicit representation is convenient in applications where topo-

logical changes occur like in Constructive Solid Geometry (CSG). However, explicitly

evaluating points on the surface, for example to render the surface, is equivalent to a

root finding process and thus typically very inefficient. In such situations explicit surface

representations which are given as a (possibly infinite) set of geometric primitives like

points or triangles are more advantageous. In Computer Graphics the probably most

prominent explicit representation is the triangle mesh, i.e. the object surface is given

as a set of triangles where each triangle is a three-tuple of points (a,b, c) (see Figure

1.1 for an example). One reason is that a triangle (or 2-simplex) is in some sense the

simplest 2-dimensional entity. A triangle is uniquely defined to be equal to the planar

point set of the convex hull of its three (not collinear) corner points and conversely can

be efficiently represented by them. In the past strong results like the theory of Delaunay

2

triangulations in the plane have been developed for triangle meshes.

u

v

Ω f (Ω)

f

x

y

z

Figure 1.2.: Parametric Surface representation based on a continuous mapping between

a 2D domain Ω and its 3D embedding f(Ω).

The main concept of parametric surface representations is to describe a surface through

a mapping f(u, v) : Ω 7→ R3 between a 2-dimensional base domain Ω ⊂ R2 and the

embedding space R3 (see Figure 1.2). In this setting the properties of the function (con-

tinuity, differentiability, etc.) are strongly connected to the shape of the surface and

consequently the choice of an adequate function space is essential. Even more general

is the concept of manifolds which enable the representation of topologically non-trivial

objects by “stitching” several parametric representations with the help of transition

functions which guarantee compatibility in overlapping areas. It is important to notice

that a triangle mesh is not only an explicit surface representation but also possesses an

intrinsic parametrization. Each triangle (a,b, c) can be parametrized by the barycentric

linear mapping f(u, v) = u · a + v · b + (1 − u − v) · c with u, v > 0 and u + v ≤ 1.

In practice all these individual triangle mappings are often combined into one piece-

wise linear mapping, where maybe the most prominent example is texture mapping. In

Computer Aided Design (CAD) parametric representations often appear in the form of

tensor product NURBS (Non-Uniform Rational B-Spline) surfaces. The reason is that

these piecewise polynomial surfaces are on the one hand equipped with a guaranteed

smoothness but on the other hand still intuitively controllable by means of a net of

control points.

3

1. Introduction

Quadrilateral Surface Meshes

Besides triangle meshes, today quadrilateral meshes, also referred to as quadmeshes,

enjoy a steadily increasing popularity. Especially in animation and simulation they are

often preferred over triangle meshes. One reason is that their tensor-product nature eas-

ily generalizes to higher-order representations which are able to satisfy the C2 continuity

requirements that arise in many practical applications. Figure 1.1 depicts a mechanical

object represented as a triangle as well as a quadrilateral mesh. A deeper exploration

of the advantages of quadrilateral meshes over triangle meshes will be given in Section

2.2. However, it is important to notice from the beginning that a general quadmesh,

i.e. a set of four-tuples of points, is not an explicit geometry representation comparable

to a triangle mesh. In contrast to a triangle, a quadrangle might be non-planar and/or

non-convex such that the specification of the intended surface is more delicate than just

taking the convex hull of the corner points. Consequently apart from specialized appli-

cations which are restricted to the subset of convex and planar quadmeshes, a quadmesh

is usually used as the control mesh of a parametric surface like tensor-product NURBS

or generalizations to arbitrary topologies like Catmull-Clark subdivision surfaces.

The main topic of this thesis is the generation of quadrilateral surface meshes. To be

useful in practice, a quadrilateral mesh typically has to fulfill strong quality requirements

as we will see in Section 2.2. Besides local properties like regularity, element orientation

and element shape, also global properties like the patch structure usually play an impor-

tant role. Consequently instead of local optimization strategies, as typically applied in

the generation and optimization of triangle meshes, here global optimization techniques

are inevitable. This fact is reflected in the parametrization based quadrilateral mesh

generation as presented in Part II as well as in the quadmesh optimization which is the

topic of Part III. It turns out that the parametrization based quadmesh generation can

be formulated as a mixed-integer problem (MIP) since it requires continuous optimiza-

tion in order to compute a distortion minimizing parametrization as well as discrete

optimization to determine the discrete connectivity in the quadmesh. Unfortunately

traditional optimization approaches for mixed-integer problems are far too slow for the

dimensional complexity that we encounter in quadmesh generation. Therefore in Part

I we will develop an algorithm to rapidly approximate huge (quadratic) mixed-integer

problems within a, in practice surprisingly, good tolerance.

4

In particular the contributions presented in this thesis are the following:

� Efficient approximation of quadratic mixed-integer problems, [BZK12]:

We present a novel approximation algorithm for mixed-integer problems which is

carefully designed for the requirements in geometry processing. It is applicable to

the class of quadratic mixed-integer energy functionals which are subject to linear

constraints. The efficiency, which in our examples is much higher than those

of standard mixed-integer optimization methods, is achieved due to its adaptive

solution strategy in combination with an elimination approach.

� Domain optimization for user-guided quadmeshing, [BVK10]:

In layout based quadmeshing the user typically provides a coarse segmentation

of the surface into quadrilateral patches. We present an algorithm which opti-

mizes the parametrization domains as well as the quad-sampling for each of those

patches. In contrast to other methods we allow a more general class of C0 transi-

tion functions and T-junctions within the patch-layout in order to enable a higher

mesh quality.

� A general and flexible quadmeshing algorithm, [BZK09]:

Fully automatic quadmeshing algorithms are desired in order to achieve an efficient

workflow. However, often not all design decisions are of geometric nature and thus

a purely geometrical optimized mesh might lack some properties of the intended

application. We present a parametrization based quadmeshing algorithm which is

applicable in many scenarios, since on the one hand it is fully automatic but on the

other hand the user still has the possibility to provide various high-level guidance

constraints, if required.

� Geodesic distance fields w.r.t. piecewise linear curves on surfaces, [BK07]:

Within our quadmeshing pipeline it is sometimes desirable to compute the geodesic

distance w.r.t. feature curves or boundaries of the input geometry. We present a

novel approach which generalizes the exact computation of the geodesic distance

field from point sources to polygonal line sources.

� Patch Coarsening of quadrilateral meshes, [BLK11]:

In many applications quadrilateral meshes with a coarse patch structure are pre-

ferred. We present a novel class of global operators, so called GP-Operators, which

are able to influence the patch structure without introducing new irregular vertices.

5

1. Introduction

Furthermore we propose a novel greedy algorithm which repairs helical structures

within quadmeshes in order to optimize their patch structure.

6

2. Quadrilateral Surface Meshes

The introduction already gave a rough idea, why quadrilateral surface meshes are highly

relevant in practice. This chapter is devoted to the task of extending this rough idea

to a more complete picture. In Section 2.1 we will start with some basic notions and

properties of quadrilateral surface meshes while in Sections 2.2 and 2.3 we will work

out important quality criteria which stem from two practically relevant application ar-

eas, namely animation and simulation. Finally Section 2.4 discusses the related work,

i.e. different classes of approaches which were used for quadrilateral mesh generation in

the past.

2.1. Foundations

A pure quadrilateral surface mesh (or quadmesh) Q = (V,E, F) is formally a tuple of

three sets, namely the vertices V , the edges E and the faces F . An example is given in

Figure 2.1. Each topological vertex vi ∈ V is equipped with the position of its embedding

in space p(vi) = pi ∈ R3. Each edge ei ∈ E is a pair ei = (vj, vk) of two vertices. If

an edge connects a vertex to itself it is called a loop. Each face fi ∈ F is a quadruple

fi = (vi, vj, vk, vl) of diverse vertices which are cyclically connected to form a topological

quadrangle. Note that in contrast to the here defined “pure quad” structure, the class of

quad-dominant meshes allow for a small number of non-quadrangle faces like triangles

or pentagons.

Surface Topology

Neighborhood relations between vertices, edges and faces are defined in the usual graph

theoretical sense. Two elements are said to be incident iff the vertices of one are a

subset of the vertices of the other, e.g. the edge e2 = (v9, v10) is incident to the face

f5 = (v10, v4, v3, v9) in Figure 2.1. While incidence describes the neighborhood relation

between elements of different dimension, adjacency is a similar concept for entities of

7

2. Quadrilateral Surface Meshes

v0

v1

v2

v3

v4
v5

v6

v7

v8

v9

v10

v11

v12

f0

f1f2

f3

f4

f5f6

f7

f8

f3 = (v7, v8, v2, v1)

e2 = (v9, v10)e3

v∗3

f ∗6

e∗2

(a) (b)

⇐⇒∗

Figure 2.1.: (a) A quadmesh Q is described by vertices vi, edges ei and faces fi. In a

pure quadmesh each face is four-sided while irregular vertices like v0 are allowed to de-

viate from the regular valence-4 case. (b) The dual Q∗ of a quadmesh is an arrangement

of curves where the face regularity translates into a vertex regularity.

equal dimension. Two vertices are adjacent iff they are incident to a common edge, two

edges are adjacent iff they are incident to a common vertex and two faces are adjacent

iff they overlap at a common edge. Examples for adjacency between vertices, edges and

faces are v7 ∼a v8, e2 ∼a e3 and f1 ∼a f4 in Figure 2.1 respectively. An edge is called

boundary edge if it is incident to a single face only, otherwise it is called interior edge.

Vertices inherit the boundary property from edges, i.e. a vertex is called boundary vertex

if it is adjacent to at least one boundary edge, otherwise it is an interior vertex. Examples

of a boundary edge and a boundary vertex are e2 and v8 in Figure 2.1 respectively. For

a surface mesh we require the so called unique-neighbor property which means that

a face has a unique neighboring face when traversing an incident non-boundary edge.

Consequently the maximal number of faces which can be incident to a single edge is 2

and we deduce that the surface which is represented by such a quadmesh is essentially

a 2-manifold with boundaries.

Irregular Vertices

The valence val(vi) of a vertex vi ∈ V is defined to be the number of edges incident

to the vertex, with loops counted twice. If the valence is 4 an interior vertex is called

regular and otherwise it is called irregular or singular or extraordinary. Analogously, on

8

2.1. Foundations

the boundary a regular vertex is characterized by a valence of 3. As we will see later on,

regular vertices are usually preferred over irregular ones. However, the following simple

proof shows that for closed surfaces a quadmesh where all vertices are regular can be

found only if the genus of the surface is 1.

Proof: In a regular quadmesh without boundary we know that the relation

between the number of edges and faces is |E| = 4/2|F | = 2|F | since each

face is adjacent to exactly 4 edges and each edge is shared by exactly 2 faces

due to the unique-neighbor property. Furthermore with an analog argument

we know that |E| = 2|V | because each vertex has valence 4 and each edge is

adjacent to exactly 2 vertices and consequently |F | = |V | = 1/2|E|. The Eu-

ler characteristic χ relates the entities of a closed polyhedron in the following

way to its genus g:

|V | − |E|+ |F | = 2(1− g)

⇔ 0 = 2(1− g)

⇔ g = 1

As a consequence of the above observation irregular vertices play an important role in

the generation of quadmeshes. Even for genus 1 surfaces it is often desirable to introduce

irregular vertices if the surface is more complex than a torus, like e.g. a coffee cup. The

above statement can be further generalized to obtain a relation between the valences of

the quadmesh vertices and the genus of a closed object:

|V |−1∑
i=0

(4− val(vi)) = 8(1− g) (2.1)

Proof: By observing that summation of all valences is equal to counting each

edge twice, we deduce that
∑|V |−1

i=0 val(vi) = 2|E|. Now using Euler’s formula

together with the above observation that |F | = 1/2|E| results in Equation

(2.1).

The above formula is a necessary condition on the sum of vertex valences in a quadmesh

which represents a surface with genus g. For example a genus 0 object will require a

9

2. Quadrilateral Surface Meshes

total valence defect of 8. Therefore a valid set of irregular vertices would be 8 irregu-

lar vertices with valence 3, i.e. each having a valence defect of 1. However, there are

infinitely many different possibilities, since positive and negative valence defects cancel

out like e.g. a valence 3 and a valence 5 irregular vertex together have a valence defect

of 0. Similar to Euler’s formula the above condition is necessary but not sufficient for

the existence of a mesh.

It is well known that a simple polygon, i.e. planar and non-intersecting, can always be

triangulated [FM84, Cha91]. In contrast to that, we will see in the next section that it

is not always possible to quadrangulate a polygon. This observation indicates that the

generation of quadrilateral meshes involves some global aspects which are not present in

the generation of triangle meshes. In particular marching front or divide-and-conquer

algorithms for the generation of quadmeshes always need to make sure that they do not

run into a deadlock, i.e. a configuration for which no quadrangulation exists. In order

to intuitively understand the intrinsic consistency constraint of quadrilateral meshes it

is helpful to examine the problem from a dual point of view.

Dual Representation

The dual of a quadmesh Q∗ = (V ∗, E∗, F ∗) is given by an isomorphism (
∗⇔) which

uniquely maps k-dimensional entities of the primal to 2−k dimensional ones in the dual

and vice versa. More precisely each vertex vi ∈ V is identified with a dual face f ∗i ∈ F ∗,
each edge ej ∈ E is identified with a dual edge e∗j ∈ E∗ and each face fk ∈ F is identified

with a dual vertex v∗k ∈ V ∗. For convenience we choose a mapping which preserves the

indices, e.g. v6
∗⇔ f ∗6 in Figure 2.1. The connectivity of the dual is uniquely inherited

by the primal. If for example two vertices are neighbored in the primal mesh, so will be

the corresponding faces in the dual.

The 4-regularity of the faces in the primal translates into a valence-4 regularity of the

dual. Consequently we can interpret each vertex of the dual mesh as the crossing of

two dual curves (see Figure 2.1 (b) for an example). These dual curves, often called

poly-chords, uniquely traverse bands of neighboring primal quads and induce the global

connectivity of the quadmesh. While simple dual curves are usually preferred, even

quadmeshes which seem to be well structured often exhibit long and complicated dual

curves with many self-intersections (see Figure 2.2 (b)). However, since all vertices in

the dual have a valence of 4 such a dual curve cannot end in the interior, i.e. each curve is

10

2.1. Foundations

(a) (b)

Figure 2.2.: Two different dual curves of the same quadmesh are marked in red. While

the first is short and simple (a), the second takes a long path over the mesh, crossing

itself several times.

either closed or crosses the boundary twice. Hence, from this point of view the following

theorem is strikingly clear:

Quadrangulation Theorem: A polygon in the plane can be quadrangulated

if and only if the number of boundary edges is even.

This theorem has important consequences for the design of quadmeshing algorithms,

which we will illustrate by means of an example. Imagine that we want to perform a

divide-and-conquer quadmeshing algorithm on a closed cylinder mesh. We would intu-

itively first segment the mesh into three parts, i.e. the curved body and the two flat caps.

If we now generate a quadmesh for the curved body first, which is naturally induced by

the cylindrical coordinates, we have essentially a probability of 50% that the boundary

curves of the caps are formed by an odd number of edges which admit no quadrangu-

lation at all. Obviously, achieving topological consistency becomes non-trivial for more

complex objects.

To better understand the global structure of quadrilateral meshes, the complete set of

11

2. Quadrilateral Surface Meshes

(a) (b)

Figure 2.3.: Visualization of the base complex. Different patches are depicted with

different colors and the discrete separatrices are shown in red. With the same irregular

vertices, the base complex can be finer (left) or coarser (right), depending on the variety

of topologically different dual curves.

d1 d2

dual curves can be partitioned by a topological equivalence

relation ∼p which clusters topologically parallel curves into

equivalence classes. Two dual curves d1 and d2 are said to

be neighboring if one is a transversal offset of the other,

i.e. each curve segment of d1 forms a topological quad with

both transversally intersecting dual curves and a curve seg-

ment of d2. Intuitively this corresponds to a “ladder” config-

uration (see embedded Figure). Now the transitive closure

of the above (symmetric) neighborhood relation defines ∼p and classifies topologically

parallel curves.

Interestingly, the number of equivalence classes, i.e. the number of topologically differ-

ent dual curves, is invariant under regular refinement of the quadmesh and thus encodes

important structural properties as shown next.

12

2.1. Foundations

Base Complex

The base complex BC(Q) is a unique partitioning of a given quadmesh Q into rect-

angular patches Pi, each consisting of ni × mi quads of Q. Thus BC(Q) = (V , E ,F)

is itself a topological quadmesh where |F| = |{Pi}| denotes a measure of how many

regular patches are required to generate Q by regular refinement. Figure 2.3 depicts

two example base complexes. The base complex can be constructed in different ways,

each uncovering interesting properties. In the primal setting, BC(Q) is constructed by

connecting irregular vertices through straight chains of edges which can be seen as a

discrete analogon of separatrices in vector fields. Accordingly, the connection between

irregular vertices strongly influences how many patches are required, an observation

which is very helpful when optimizing the topology of quadmeshes. From the primal

point of view it is not directly clear why BC(Q) is guaranteed to be a quadmesh. This

property becomes obvious when looking at the dual construction. Here the dual of the

base complex BC(Q)∗ is given by choosing exactly one representative of all topologically

parallel curves classified through ∼p and each intersection of two such representatives

generates one patch Pi in the primal. Since this reduced set of curves is still the dual of

a quadmesh, we immediately see that BC(Q) is always a quadmesh as well.

Topological Quadmesh Classification

With the by now introduced notions we are ready to measure the topological quality of a

quadmesh. In practical applications one often highly desired criterion is regularity as we

will see in Section 2.2. The first measure of regularity is given as the number of irregular

vertices s of the quadmesh. However, not all structural regularity is contained in this

measure. The reason is, that among all quadmeshes with a constant number of irregular

vertices (local regularity) there are arbitrarily large differences in the complexity of the

base complex (global regularity). Figure 2.3 shows two example meshes with the same

irregular vertices, but different base complexes. To overcome this ambiguity the second

regularity measure consists in the size of the base complex, measured as the number

of its faces |F|. Note that the second measure is not independent of the first one due

to the Euler characteristic. Remembering that the base complex is a quadmesh that

contains all irregular vertices by construction, we immediately see that the number of

base complex faces is bounded from below by

|F| ≥= s− 2(1− g) (2.2)

13

2. Quadrilateral Surface Meshes

On the contrary, since the base complex might contain an arbitrary large number of

additional regular vertices, there is no upper bound for F .

Which of both different measures is more important cannot be answered in general and

strongly depends on the application in mind. Figure 2.4 depicts a linearized classifica-

tion of quadmeshes, where the regularity is measured w.r.t. the lexicographical ordering

of τ = (s, |F|), i.e. the number of singularities is chosen as the dominant measure. It is

important to mention that we choose an absolute regularity measure instead of a relative

one in order to be independent w.r.t. regular refinement.

Within a practical application a typical task consists in finding “the best” quadmesh

with a specified target complexity |F |. Of course the overall quality metric is not purely

topological and a good compromise between topological and geometrical quality, as dis-

cussed in Section 2.3, has to be found. Although the regularity measure τ is continuous

there is a loose classification of different mesh types which play an important role in

practice. In contrast to the previously introduced absolute measures, this classification

is based on the relative regularity measures s/|V | and |F|/|F | which are both between

0 and 1.

� A non-regular or unstructured mesh exhibits a large fraction of irregular vertices

and consequently the ratio s/|V | is large. Since the number of base complex faces

is bounded from below, |F|/|F | is also large for such meshes.

s/|V | → 1, |F|/|F | → 1

� A quadmesh is valence semi-regular if only a small number of vertices is irregular

and thus s/|V | is small. However, as discussed above the number of base complex

faces and thus |F|/|F | can still be arbitrarily large.

s/|V | → 0, |F|/|F | → 1

� A semi-regular quadmesh is a regular refinement of a coarse base complex and

consequently is small in both relative measures s/|V | and |F|/|F |.

s/|V | → 0, |F|/|F | → 0

� A regular quadmesh either contains no irregular vertices at all or 4 corner vertices

at a single boundary. While the first configuration only exists on a genus 1 object,

14

2.2. Applications

the second one is applicable for objects with disk topology and simply consists in

a geometrically distorted version of a rectangle of n×m quads.

s = 0 or s = 4, |F| = 1

The classification based on the introduced relative measures is reasonable only in case

of a fixed target complexity. The reason is that without fixing the target complexity, on

the one hand the reduction to the base complex would easily turn a semi-regular mesh

into a non-regular one, while on the other hand each non-regular mesh can be regularly

refined to a semi-regular mesh.

Examples for a typical mesh of each class are shown in Figure 2.4. There is a clear

trade-off between regularity on the one hand and flexibility to represent different ge-

ometric configurations on the other hand. In practice it turns out that meshes that

are valence semi-regular or semi-regular are mostly flexible enough and thus the best

compromise. Interestingly, from an algorithmic point of view quite different techniques

are necessary to generate semi-regular meshes instead of valence semi-regular ones as we

will see in Chapters 8 and 10 respectively.

2.2. Applications

In many practical applications quadrilateral meshes are preferred over triangle meshes,

two prominent areas being animation and simulation. However, the quality requirements

are typically very strict such that fully automatic quadmesh generation remains a hard

task. Therefore even today many quadmeshes, especially those in cutting edge applica-

tions, are designed manually by experts equipped with the indispensable knowledge and

experience. Studies uncovered that in many of todays workflows the costs of meshing

are extremely high, ranging up to 80% of the total costs [MTTT98].

In the following two sections we will review two of those workflows in order to identify

their quality requirements. The overall goal is the design of either fully automatic or

alternatively semi-automatic quadmesh generation algorithms which are on the one hand

able to meet the strict quality requirements and on the other hand greatly speedup the

design process and thus reduce the mesh generation costs.

15

2. Quadrilateral Surface Meshes

τ = (80, 1473)

non-regular

τ = (16, 267)

valence
semi-regular

τ = (16, 50)

semi-regular

τ = (4, 1)

regular

R
eg

u
la

ri
ty

F
le

xi
b

ili
ty

Figure 2.4.: Topological Quadmesh Classification
16

2.2. Applications

2.2.1. Animation

Today quadrilateral meshes are the state-of-the-art geometry representation in anima-

tion. One reason is that most animation and rendering systems are based on subdivision

surfaces (see [ZS00] for details) where the quadmesh is used as the so called control mesh,

which represents the discrete DOF’s of the smooth surface in a geometrically reason-

able way. The typically applied Catmull-Clark subdivision scheme generalizes bi-cubic

uniform B-spline surfaces to arbitrary topology and is very well suited as a high-quality

representation for smooth surfaces. By restricting the control mesh to regular quadmesh

topology, bi-cubic uniform B-spline surfaces are automatically reproduced. In this spe-

cial case of a regular control grid, the surface quality is optimal and consequently from

a topological point of view, even though the handling of arbitrary topology is possible,

the quadmesh should be as regular as possible.

The topological simplicity is often in conflict with geometric requirements. Maybe the

most important one is that the quad elements have to be oriented carefully in order to

well capture the local curvature. More precisely, in parabolic regions where the surface

is bent in a single direction, a nice curvature distribution can be achieved only if the

quad grid is aligned to the principal curvature directions (cf. [D’A00]) . A special case

with infinite curvature in one direction are sharp creases which can be handled by an

extended set of subdivision rules but again only if the edges of the quadmesh are well

aligned, i.e. the sharp crease is explicitly represented by edges in the quadmesh.

In the animation community it is well known that irregular vertices (similarly non-

quad faces) and badly oriented or heavily distorted quad elements are the main sources

of artifacts that pop up in the rendering. Obviously, dynamic geometries like, e.g. ,

the face of a talking person are even more critical than their static counterparts since

artifacts have to be prevented for many different configurations. Accordingly designers

spend lots of work for puzzling out highly optimized so called “edge flows” that facilitate

artifact-free animations.

Moreover, animation systems heavily exploit mapping techniques to decouple the

rough geometric description from high frequency details. Most prominent examples

are texture and displacement mapping techniques which are applied in order to rep-

resent high frequencies in material as well as in geometry. A well chosen quadmesh

17

2. Quadrilateral Surface Meshes

is perfectly adapted to such mapping tasks, since a quad can be naturally mapped to

a two-dimensional array which perfectly fits into todays memory architectures. Thus,

from this point of view it is highly desirable to work with quadmeshes which are semi-

regular, i.e. meshes that can be partitioned into a few regular patches of rectangular

shape, acting as mapping domains.

Altogether, to be useful in animation, a quadmesh has to be a good compromise of

topological simplicity (semi-regular) and geometric approximation (element distortion,

curvature orientation, feature preservation, ...). Unfortunately the violation of a single

criterion makes the mesh useless, which explains the manual design pipelines still often

chosen in practice.

Today a typical mesh generation process consists of three steps. In the first step an

artist designs a new object, e.g. a character, and builds a prototype out of clay. In

the second step, a digital model is captured by a 3D laser scanner in form of an un-

structured and noisy triangle mesh. Once such a digital representation is available, a

designer manually works out a coarse quadrilateral patch layout which on the one hand

has to be well aligned to the structure and on the other hand leads to a semi-regular

mesh. In this step the designer incorporates her expert knowledge by placing irregular

vertices away from qualitatively critical areas that will undergo large deformations in

the planned animation sequences. Finally the coarse patch layout is refined regularly to

a semi-regular mesh of adequate sampling density.

The task we are facing in this thesis consists in the simplification of the third step,

i.e. the conversion from a low-quality triangle mesh to a high-quality quadrilateral mesh

suitable for animation. It is questionable whether or not this step can be ever fully

automatized, since a well chosen mesh contains many fuzzy aspects that are hard to

formalize or to “correctly” weight against each other. Therefore the holy grail of mesh

generation will be an algorithm which on the one hand is able to generate optimal results

w.r.t. to a specifically chosen quality metric but on the other hand still allows for simple

and time efficient high-level user control in cases where this quality metric does not lead

to the structure that a human designer prefers due to whatever reason.

18

2.2. Applications

2.2.2. Simulation

As discussed in the introduction, in simulation the main goal is to accurately predict the

physical behavior of digitally represented objects. In this context the task of meshing

is two-fold, since on the one hand it is essential to accurately represent the geometry

of the object itself, while on the other hand the result of the simulation has usually to

be accurately represented by the same mesh. To illuminate the importance of the first

aspect imagine a thin-shell simulation of e.g. a car body. The mathematical formulation

of such a physical system contains second derivatives of the surface geometry itself and

thus might be strongly influenced by a naive non-smooth discretization. The second as-

pect can be understood by investigating a simulation with a simple geometry like e.g. a

cube. Here the geometry itself does not require a finely tessellated mesh, however, the

simulation might necessitate a (locally) denser mesh to stay within an acceptable error

tolerance. One example for such a setting would be heat propagation on a simple object

but with complicated boundary conditions.

A successful trend in engineering, called Isogeometric Analysis [HCB05], consists in

integrating Computer-Aided Design (CAD) and Finite Element Analysis (FEA) into a

single process based on Non-Uniform Rational B-Splines (NURBS). One advantage of

NURBS is that they can easily handle different kinds of refinements that are impor-

tant in practice. The first option to achieve a more accurate function space consists

in refining the control mesh itself, a so called h-refinement. Such a mesh refinement

can be done either globally with B-Splines or locally by using a T-Spline generaliza-

tion [SZBN03]. The second way to achieve a more expressive function space, which is

called p-refinement, consists in increasing the degree of the polynomial basis functions.

Due to its tensor-product nature such a p-refinement is an easy task within a structured

quadrilateral mesh, while it is extremely complicated in an arbitrary unstructured mesh.

Indeed, in our case of surfaces, a single NURBS-patch is represented by a regular

control quadmesh. Although the overall task in simulation is quite different from the

one in animation, interestingly the quality requirements turn out to be quite similar.

As before, a well chosen orientation of the quads is extremely important to on the one

hand accurately capture the geometry itself and on the other hand capture the charac-

teristics of the underlying partial differential equations (PDEs). The same holds for the

preservation of sharp creases. In animation a “good shape” of the individual quads is

19

2. Quadrilateral Surface Meshes

important to avoid visual artifacts, while in simulation a good shape is essential for the

accuracy of the solution as well as for the conditioning of the discretized operators.

Today’s most powerful solution approaches are adaptive in the sense that they start

with a very coarse representation and then locally refine the mesh where it is required

until a given target accuracy is reached. Such adaptive approaches strongly benefits

from a semi-regular mesh that consists of a small number of well aligned patches and

consequently a small number of initial NURBS patches.

2.3. Quality Criteria

The above discussion showed that measuring the quality of a quadrilateral mesh as a

single number is not feasible in practice. Instead, a better way is to identify several,

often conflicting, quality criteria whose individual importance strongly depends on the

desired application. Nevertheless, a competitive and flexible quadmesh generation algo-

rithm has to consider all of them and should offer the user a mechanism to influence the

relative importance of each aspect.

As we have seen, many quality criteria are related to the approximation quality, either

of the geometry itself or the solution of a physical simulation. Some of them are locally

measurable while others require global considerations.

Element quality. Usually an individual quadrilateral element should be close to a

square. This implies several aspects, namely 90 degree inner angles, equal edge length

and planarity (cf. [Knu01]). On a curved surface it is typically not possible to find a

quadrilateral mesh that consists of perfect squares only and the individual deviations

are used as a (local) quality measure. Often histograms are plotted in order to compare

the quality of different algorithms. In many applications the worst element limits the

usability, e.g. in terms of accuracy, and therefore is chosen as quality measure instead

of the average. Depending on the application sometimes rectangles are favored instead

of squares due to their better approximation quality in case of anisotropic curvatures or

anisotropic behavior in PDEs like the boundary layer in fluid simulation. It is worth to

mention that apart from all their advantages quads are intrinsically more complicated

than triangles. While a triangle is always planar and convex this is not true for a quad.

20

2.3. Quality Criteria

Element orientation. The orientation of elements is strongly connected to the ap-

proximation quality (cf. [D’A00]). For instance, a bad element orientation leads to noisy

curvature distributions in the corresponding subdivision surface. Apart from this purely

geometric aspect, many applications require the quadmesh to closely follow a prescribed

orientation field. Examples are Langer’s lines in animation, which correspond to the fiber

directions of the human skin, or the characteristic lines of a PDE, which enable high

accuracy in upwind schemes. To measure the orientation quality of a given quadmesh it

is possible to compute the deviation from a prescribed reference orientation field, e.g. the

principal curvature directions. However, finding a good metric to measure the overall

orientation quality is non-trivial and therefore often a purely visual inspection is used

instead.

Feature preservation. Sharp features in the input geometry should be preserved in

the quadmesh by explicitly representing them by sequences of edges. Typically this is a

binary quality criterion since a quadmesh generation algorithm either is or is not able

to handle feature curves. One problem which arises in practice stems from the fact

that feature recognition in noisy input data itself is a non-trivial task. Therefore, often

a user has to specify or adjust the desired feature curves manually to achieve robust

preservation.

Irregular vertices. A key property of a quadmesh is a well chosen and distributed set

of irregular vertices. While a small number is favored to keep the mesh topology simple,

a careful choice is inevitable in order to enable well behaved element quality and element

orientation. Irregular vertices are required to (1) compensate the Gaussian curvature

of the surface, (2) handle tangential curvature of the desired element orientations and

(3) enable adaptive element sizing. Consequently, depending on the complexity of the

input geometry, a number of irregular vertices are indispensable to achieve an overall

good mesh quality. Intuitively an irregular vertex can be seen as an absorber of present

non-regularity in its vicinity. However, since irregular vertices are only available in a

discrete graduation, related to their integer-valued valence, they typically cannot absorb

the locally optimal amount of non-regularity. As a consequence, the global positioning

of irregular vertices is a very hard task, strongly related to the complexity of finding

optimal solutions in discrete optimization.

21

2. Quadrilateral Surface Meshes

Patch structure. While a globally good distribution of irregular vertices usually leads

to valence semi-regular meshes, more effort has to be taken in order to construct a real

semi-regular mesh. There are infinitely many different base complexes for the same set

of irregular vertices and the chosen discrete separatrices, connecting irregular vertices,

decide on the number of patches. Usually a small number of patches is preferred due

to its increased regularity. However, there is again a trade-off between the number of

patches and the element quality and orientation. In general, the mesh with the “best”

element quality and orientation consists of a large number of patches and some distor-

tions have to be made in order to reduce their number. Often the number of patches

can indeed be greatly reduced by tolerating a small change in element-wise orientation

and quality. However, a very aggressive reduction to the smallest possible number of

patches typically results in heavy distortions.

In the subsequent parts of this thesis we will develop different approaches which are

designed to explicitly address the above quality criteria. Obviously it would be desirable

to optimize all criteria at once. However, it turns out that a simultaneous optimization is

very hard and impractical in terms of runtime. One solution that we will investigate here

is the splitting of the overall optimization in carefully chosen sub-steps that subsequently

optimize different criteria, while staying reasonably close to previously optimized criteria.

Before presenting the main contributions of this thesis, we provide next a short

overview of related work in the area of quadmesh generation and quadmesh process-

ing.

2.4. Related Work

In the last years quadmesh generation attracted a lot of attention and it is out of the

scope of this dissertation to exhaustively review all of the developed techniques. Here,

only a short summary and classification of the most important approaches is given, based

on our state-of-the-art report [BLP∗12]. Additionally we will relate our main contribu-

tions to these other work. Most of the approaches that are presented in this thesis are

based on articles that we already published individually. To avoid confusion, we mention

all these articles and their relation to this thesis within this section. For more details

on the individual topics we refer the interested reader to excellent surveys about mesh

22

2.4. Related Work

generation and processing [AUGA05, BLP∗12].

The developed techniques can be classified into quadmesh generation and quadmesh

processing algorithms. While the former class consists of algorithms that convert geo-

metric data given in a different representation like e.g. a point cloud, triangle mesh or

polynomial surface into a quadmesh, the latter class of algorithms starts with an input

quadmesh and outputs a somehow improved quadmesh. Of course algorithms of both

classes can be combined into quadmeshing systems like for instance a simple conversion

algorithm followed by a quality optimization algorithm.

Quadmesh generation

Tri-to-quad conversion. The most simple quadmesh generation algorithms perform

a tri-to-quad conversion [VZ01, LKH08, TPC∗10, GLLR11, RLS∗11]. The main idea

of these algorithms is to pair neighboring triangles into quads by gluing them along

their common edge. In general these algorithms strongly depend on the sampling of

the input triangle mesh. Consequently it is inevitable to either pre-process the triangle

mesh [LKH08] or to further optimize the resulting quadmesh [TPC∗10]. However, even

then the resulting quadmeshes are typically unstructured, i.e. of non-regular type, and

thus not well suited for applications like animation or simulation.

Explicit curve tracing. A second approach to quadmesh generation is the explicit trac-

ing of group-wise orthogonal curves which induce a curvilinear grid on the surface. From

an approximation point of view (c.p. Section 2.3) it is beneficial to choose curves along

the principal curvature directions [ACSD∗03, MK04]. The difficult part in these algo-

rithms is the achievement of well-behaved curve distributions. Although powerful tech-

niques known from streamline placement in flow visualization were adapted, a globally

smooth distribution of distortions cannot be expected from those methods. Additionally

to the afore-mentioned drawback, in general the traced curves form a quad-dominant

mesh which requires one step of Catmull-Clark subdivision in order to generate a pure

quadmesh.

Parametrization based. In order to achieve a smoother distribution of distortions,

the largest class of quadmesh generation algorithms is based on global parametrization.

Here the main idea consists in the construction of a mapping from the surface embedded

23

2. Quadrilateral Surface Meshes

in 3D to a 2D domain such that the quadrangulation in the domain becomes trivial.

Usually the domain is tessellated by a regular tiling like the canonical quadmesh formed

by the Cartesian grid of integer isolines, as explained in more detail in Chapter 6. The

tricky part in this setting is the design of consistency conditions that ensure a correct

stitching of isolines along the cutgraph which is essential to cut open surfaces of non-disk

topologies. However, after fixing stitching as well as other desired boundary conditions,

the “optimal” mapping function is typically found implicitly by minimizing an energy

functional and thus the distortion is distributed smoothly. Depending on the function

space, which is chosen for finding the optimal mapping, there are two different categories

of approaches, namely layout based and triangle-chart based.

Algorithms from the first category decompose the overall problem into a segmentation

phase, where a layout is generated by partitioning the surface into quadrilateral patches,

and a parametrization phase, where the best mapping w.r.t. the previously fixed layout

is found. Note that such a layout is identical to the base complex of the resulting mesh.

While such approaches usually lead to nice semi-regular meshes, unfortunately, automat-

ically finding a high-quality patch layout is still an unsolved problem. Therefore some

approaches rely on a manually designed patch layouts [THCM04, TACSD06, BVK10].

As an alternative some algorithms construct the layout by means of the Morse-Smale

complex of a scalar function [DBG∗06, TACSD06, ZHLB10]. Chapter 7, which is based

on our work [BVK10], describes layout based approaches in more depth in order to de-

velop a powerful user-guided reverse engineering algorithm.

Triangle-chart based approaches are more flexible in the sense that the base complex

is not fixed from the beginning. The only constraint is that the individual mappings of

neighboring triangles have to be compatible to each other, typically enabling many differ-

ent layouts within the optimization. Often such approaches are guided by 4-symmetric

orientation fields [HZ00, PZ07, RLL∗06, RVLL08, RVAL09, BZK09, LJX∗10] which stem

from the extrapolation of confident principal curvature directions as estimated by a dis-

crete shape operator [CSM03] or jet fitting [CP05]. While in contrast to the layout based

approaches triangle-chart based algorithms like [RLL∗06, KNP07, BZK09] are able to

generate high-quality quadmeshes in a fully automatic manner, a clear drawback consists

in the fact that the resulting meshes usually lack a nice patch structure and thus are

only valence semi-regular. Chapter 8, which is based on our work [BZK09], is devoted

to the task of developing the mathematical details of a flexible orientation field guided

24

2.4. Related Work

quadmesh generation approach.

Due to their good performance in the case of triangle meshes, parametrization based

approaches were also generalized to inputs consisting of point clouds [LLZ∗11] or range

image sets [PTSZ11] in order to circumvent the process of generating a triangle mesh

first.

Voronoi based. A well known class of triangular remeshing algorithms is based on the

Voronoi diagram [AGK], i.e. the partitioning of surface points into regions containing the

closest surface points w.r.t. a set of seed points. Starting with a set of random seeds and

performing Lloyd’s relaxation [Llo82], which iteratively generates the Voronoi diagram

and moves each seed point into the barycenter of its corresponding Voronoi cell, results

in the so called Centroidal Voronoi Tessellation algorithm [DFG99] which optimizes

the distribution of seeds. In [LL10] this concept is generalized to Voronoi diagrams of

Lp norms, well suited to generate samplings that after tri-to-quad conversion lead to

high-quality quad-dominant meshes.

Quadmesh processing

Algorithms from this class work completely in the space of quadmeshes. In practice

desired optimizations can be grouped into geometry optimization, simplification and

connectivity optimization methods as discussed below in more detail. Approaches that

solely optimize the geometry, i.e. the 3D position of vertices, are very similar to their

counterparts known from triangle mesh processing as e.g. described in [BKP∗10]. How-

ever, due to the global topological restrictions within a quadmesh, approaches which

alter the connectivity usually require fundamentally different methodologies.

Geometry optimization. A building block of many of today’s algorithms consists in

tangential mesh smoothing. Such a smoothing operation is typically applied to distribute

large local distortions within the neighborhood. In the case of triangle meshes, often

Laplacian smoothing [DMSB99] is performed which can be easily adapted to quadri-

lateral meshes [ZBX05] or even polygonal meshes [AW11] as well. Typically after a

smoothing step all vertices are projected onto the input surface. This can lead to insta-

bilities or bad approximation quality of the resulting mesh, especially if it is coarse. To

overcome these problems, parametrization based smoothing algorithms were developed

25

2. Quadrilateral Surface Meshes

[DBG∗06, PTC10] which perform quite good if the input mesh exhibits a coarse base-

complex.

One very important step within a subdivision surface framework consists in fitting the

surface generated by subdivision to a reference geometry mostly given as a dense trian-

gular mesh. A general approach to subdivision surface fitting was developed in [LLS01].

In case of Catmull-Clark subdivision this step updates the 3D vertex positions of a given

control quadmesh until the distance between subdivision- and reference surface cannot

be reduced further by local movements. Obviously this process is highly non-linear and

requires a good initial configuration.

For several applications planar quad elements are desirable, e.g. the design of buildings

covered by glass panels in architecture. Starting from an initial configuration, planariza-

tion algorithms like [PW08, GSC∗04] typically optimize non-linear energies composed

of planarity, smoothness and fitting terms. This concept was extended to more gen-

eral constraints in [YYPM11]. Another trend in architecture consists in finding meshes

where the number of different tiles is minimized [EKS∗10, FLHCO10, ZCBK12] in order

to reduce the production cost. To do so, typically clustering techniques are interleaved

with geometric optimization.

Within Finite-Element Methods (FEM), a single element of bad quality can possibly

screw up the whole simulation. Therefore clean-up methods were developed in order to

locally fix such configurations [Kin97]. In contrast to the previously discussed optimiza-

tions here also connectivity changes are performed.

Simplification. The aim of mesh simplification, also called decimation, consists in re-

ducing the number of mesh elements. This topic is well understood for triangle meshes,

see e.g. surveys [CMS97, GGK98, Lue01]. A typical simplification algorithm is build

from a set of operators together with a quality metric, such that greedily the “best”

operation can be performed until a desired target mesh complexity is reached. While

in the case of a triangle mesh very simple local operators are sufficient, for a quadmesh

the situation is more difficult. Recently, different simplification operators which preserve

the quadmesh topology were proposed in [DISSC08, DSC09a, SDW∗10, TPC∗10]. Un-

fortunately all local operators in a quadmesh require the change of local valencies and

thus often generate additional irregular vertices in each step. Global operators like the

26

2.4. Related Work

poly-chord collapse (cf. Section 2.1) do not require additional irregularities, however,

they are strongly dependent on the dual structure of the input mesh and thus typically

not flexible enough. As a consequence, the performed greedy algorithms tend to get

stuck in local minima with sub-optimally distributed irregular vertices.

One strength of quadmesh simplification algorithms is their robustness. Accordingly it

is possible to aggressively decimate the mesh in order to generate a coarse base complex

for a semi-regular mesh as done in [DSC09b]. But again the greedy strategy is usually

not able to generate structure aligned patches with well distributed irregular vertices.

As a result the quality of the base complex is typically far away from manually designed

ones.

Connectivity optimization. As discussed above, parametrization based quadmesh gen-

eration algorithms are able to automatically generate high-quality valence semi-regular

meshes, i.e. meshes with a small number of globally well distributed irregular vertices

but without a coarse patch structure. Since many practical applications require a semi-

regular mesh instead, recently algorithms were developed that convert a valence semi-

regular mesh into a semi-regular one [BLK11, TPP∗11]. The main idea of these algo-

rithms consists in changing the global connectivity, i.e. the discrete separatrices which

connect irregular vertices, without altering the set of irregular vertices itself or deviating

too much from the initial structure alignment. It turns out that such a connectivity

change requires global operators that can be generated by a graph search [BLK11] or

explored by a backtracking algorithm [TPP∗11]. In Chapter 10, based on our work

[BLK11], we explain the concept of so called grid-preserving operators that can be ap-

plied to optimize the base complex by iteratively removing helical structures within the

quadmesh.

Another possibility to optimize the connectivity consists in the manual movement of

pairs of irregular vertices [PZKW11]. Note that due to the topological restrictions it is

not possible to move a single irregular vertex alone.

Most recently, we proposed an approach which, instead of optimizing the global con-

nectivity, is able to directly construct a coarse base-complex [CBK12]. It exploits the

dual point of view, where the topological restrictions are easier to handle. The main

idea consists in finding a minimal number of dual loops, that roughly follow a given

27

2. Quadrilateral Surface Meshes

orientation field and reproduce its singularities.

All these (topological) connectivity optimization algorithms are usually combined with

a geometric optimization step as explained above.

28

Part I.

Mixed-Integer Optimization in

Geometry Processing

29

Part I. Mixed-Integer Optimization in Geometry Processing

The first part of this thesis is devoted to the topic of mixed-integer optimization within

geometry processing applications. This combination is a delicate issue due to the follow-

ing reason: On the one hand mixed-integer programming belongs to the most difficult

problems in optimization and can be very hard even for small instances. On the other

hand geometry processing applications are very likely to deal with large instances like

thousands or even millions of points or triangles and the optimization criteria are often

nonlinear. Therefore, although powerful general mixed-integer optimization strategies

exist, in geometry processing it is inevitable to specifically adapt them to a given class

of problems to be able to find adequate solutions in reasonable time. The main idea

for doing so is to exploit the geometric intuition of the underlying problem in order to

find more efficient formulations of the given problem. It turns out that many of the

general optimization strategies, developed in the past, are as well based on geometric

considerations stemming from polyhedral theory. Nevertheless, for many problems there

is still no hope of finding the optimal solution and often the best one can hope for is

a good approximation algorithm that is able to find feasible solutions that are at least

close to the optimal one.

Part I is structured in the following way. Chapter 3 starts with the definition and

description of general mixed-integer problems. Then in Chapter 4 some widely applied

general solution strategies are described on an intuitive level. These approaches, espe-

cially the branch-and-cut method, represent the state-of-the-art in the area of mixed-

integer optimization and will be our reference for comparison. Finally, based on [BZK09,

BZK12], Chapter 5 presents our method to rapidly approximate large (quadratic) mixed-

integer problems, which is specially designed for the requirements of quadmesh genera-

tion algorithms as presented in Part II.

31

32

3. Mixed-Integer Nonlinear

Programming

The class of mixed-integer nonlinear programs (MINLP) consists of all optimization

problems, where some of the unknowns are continuous while others are discrete. Such

problems naturally arise whenever discrete decisions are optimized simultaneously with

continuous one. For example, when designing a gearbox, the radius of individual gears

can be varied continuously while the number of gears is clearly a discrete quantity.

For clarity, in the following description the continuous variables are always chosen to

be x ∈ Rn and analogously the discrete ones are y ∈ Zm. The objective function

of the optimization problem is an arbitrary, scalar valued, nonlinear function E(x,y).

Additional constraints of the form C(x,y) ≤ 0 can be specified in order to restrict the

set of valid solutions to F ⊂ Rn × Zm which is called feasible region. These scalar

valued constraint functions might be arbitrary nonlinear functions as well. In summary

a MINLP can be written shortly as

minimize E(x,y)

subject to Ci(x,y) ≤ 0 i = 1 . . . l

x ∈ Rn

y ∈ Zm

(MINLP)

In such a MINLP there are several aspects, which potentially induce a very hard opti-

mization problem. First of all, finding the optimal assignment for the discrete variables

is a very complicated task. In contrast to continuous optimization it is not possible

to improve the solution values of discrete variables by performing small steps into the

negative gradient until the solution is locally optimal. Such an approach would violate

the integrability constraint of discrete variables and in fact the continuous optimum can

potentially be far away from the best discrete one. An illustration of a mixed-integer

33

3. Mixed-Integer Nonlinear Programming

Figure 3.1.: (left) a continuous optimization problem where each point in the plane R×
R is a feasible solution, i.e., a point which fulfills all constraints of the problem. (right)

a mixed-integer problem where the set of feasible solutions is R × Z. For minimizing

such problems typically all discrete possibilities have to be tested explicitly.

objective with one continuous and one discrete variable is depicted in Figure 3.1. It turns

out that for discrete optimization methods completely different techniques are required

compared to their continuous counterparts. The main principles of discrete optimization

will be discussed in more detail in Chapter 4 while here only one intuitive example is given

in order to illustrate the enormous complexity which is connected to discrete optimiza-

tion. For simplicity assume that all variables are discrete and restricted to {0, 1}, such

a problem is called a binary problem. The most straightforward way to optimize such

a problem consists in enumerating all 2n many different assignments, computing their

objective and selecting the best one. The time complexity for doing so is exponential

and even a small problem with 100 binary variables will consist of 2100 ≈ 1.2 · 1030 many

sub-problems. In practice branch-and-bound algorithms, as explained in Section 4.1, are

often applied. These algorithms aim at reducing the number of examined sub-problems

in the complete tree of all discrete variable assignments by pruning away sub-trees where

it can be proven that they do not contain the optimal solution. But still the worst case

complexity of discrete optimization is exponential and it can be shown to be NP-hard.

34

global min

local min

x

E(x)

min x

F

(a) (b)

Figure 3.2.: The behavior of nonconvex objective functions and nonconvex constraints

is very similar. (a) Several local minima of a nonconvex function are shown as green

dots while the global minimum is colored in red. (b) The feasible region F is nonconvex.

When searching for the point with minimal x-coordinate, the green point is locally

optimal and cannot easily be optimized continuously to the global optimum shown in

red.

Accordingly, the first issue which makes MINLP hard consists in the discrete variables.

However, there are some other pitfalls which are not related to the discrete variables.

If the integer constraints are neglected, the resulting problem is typically called the re-

laxed problem which is a sub-problem of several optimization strategies and given by the

following description

minimize E(x,y)

subject to Ci(x,y) ≤ 0 i = 1 . . . l

x ∈ Rn

y ∈ Rm

(R-MINLP)

In this relaxed problem, which is an instance of Nonlinear Programming (NLP), there

35

3. Mixed-Integer Nonlinear Programming

are two aspects that might give rise to intractability. The first one is due to the nonlin-

earity of the objective function. It is well known that finding the global optimum of an

arbitrary nonlinear function can be very hard since there might exist arbitrarily many

local minima (cf. Figure 3.2a) where an optimization strategy could potentially get stuck

in. Although there are methods like simulated annealing that are able to escape local

minima, such algorithms are typically too expensive in the context of high-dimensional

geometry processing problems we are targeting at. Depending on the problem there are

different ways to overcome the issue of poor local minima. The maybe most elegant one

consists in designing a convex objective function that possesses the same, or at least a

similar, global optimum as the original one. For convex objective functions there are

many approaches, as for instance trust-region or interior-point methods [NW06] that

can easily find the global optimum. If no convex formulation can be found, the sec-

ond option consists in designing a heuristic that provides a good initial solution such

that the closest local minimum is at least of adequate quality. The hardness of compli-

cated nonlinear objective functions is a well understood topic, however, in the context

of mixed-integer optimization it is important to notice that the time complexity of one

instance is even more critical since typically a very large number of such instances with

different assignments of discrete variables have to be solved.

The third aspect which has to be taken care of is related to the constraints Ci. Sim-

ilarly to the objective function it is strongly desirable that all constraint functions are

convex. Otherwise, optimization strategies often result in locally optimal solutions that

are far away from the global optimum, as illustrated in Figure 3.2b. Moreover, in the

case of complicated constraint functions it can be hard to even find any feasible solu-

tion, i.e. a point that satisfies all constraints simultaneously. Imagine e.g. the case of

several complicated equality constraints. Finding a feasible solution then is equivalent

to the non-trivial task of finding a solution to the induced nonlinear equation system.

For some powerful optimization approaches it is required to start with a feasible initial

point. Such a point is often generated by solving the following feasibility problem:

36

minimize z ∈ R

subject to Ci(x,y) ≤ z i = 1 . . . l

x ∈ Rn

y ∈ Rm

(FEASIBILITY)

If a solution with z ≤ 0 can be found, clearly the corresponding point is feasible and

thus can be used as a starting point for the optimization w.r.t. the original objective

function. If no such point can be found, the problem seems to be infeasible.

Altogether, it turns out that finding optimal solutions to MINLP is feasible only if

the objective function as well as the constraint functions are convex [Gro02]. In this

case, the optimal solution of the relaxed problem can always be found efficiently by per-

forming local improvements. We will call such instances convex Mixed-Integer Nonlinear

Programming (cMINLP). Highly optimized algorithms like those of [GRB11] or [IBM12]

exist for special cases of this convex setting, namely Mixed-Integer Linear Programming

(MILP) and Mixed-Integer Quadratic Programming (MIQP). The first class is character-

ized by linear objective functions in combination with linear constraints, while problems

from the second class can be quadratic, but solely in the objective function.

37

3. Mixed-Integer Nonlinear Programming

38

4. General Optimization Approaches

The topic of this chapter consists in general optimization strategies for MINLP. The pre-

sented methods, namely branch-and-bound, cutting-plane approach and branch-and-cut,

are able to find the global optimum of cMINLPs, i.e. convex MINLPs. They are also

applicable to nonconvex problems, however, in such cases without any quality guaran-

tees. All three approaches are based on the successive refinement of continuously relaxed

problems. The main idea is to replace the discrete integrability constraint, which cannot

be tackled with continuous optimization, by well-chosen sets of (continuous) inequality

constraints. In this way, all powerful techniques known from continuous optimization

can indeed be applied. Essentially there are two aspects that are important when design-

ing a solution strategy for MINLPs based on the improvement of continuous relaxations

with inequality constraints.

The first requirement can be stated as convergence to an integral solution, i.e. the

series of continuous relaxations should converge to a solution in which all discrete vari-

ables receive valid (integer) values. This requirement is very natural since, obviously, if

the series of continuous relaxations does not converge to a feasible point (if one exists),

the overall approach would be incapable of solving the original MINLP. The second

requirement ensures that the continuous relaxations do not overlook the best feasible

solution and can be stated as preservation of feasible solutions. More precisely this

requirement restricts the candidate set of addable inequality constraints to those that

do not cut away feasible solutions of the original MINLP. Again this is a very intuitive

requirement, since naively adding arbitrary inequality constraints will clearly change the

feasible region in an arbitrary manner and thus in the end generate a solution which is

not optimal w.r.t. the original MINLP. We will see that all general solution approaches,

described below, are designed to respect these fundamental requirements.

In order to handle the continuous relaxations, an algorithm to solve NLPs is required.

Since a detailed discussion of continuous optimization is out of the scope of this thesis,

39

4. General Optimization Approaches

max y
F

max y
F

(a) (b)

Figure 4.1.: Conceptual comparison of the optimization trajectories (shown in red) of

active set and interior point methods for maximizing the y coordinate within the feasible

region F . While active set methods, like e.g. the simplex method, traverse the boundary

until a locally optimal point is found (a), interior point methods traverse the inner part

of F until they eventually converge to a locally optimal point at the boundary (b).

here we will introduce only some basic ideas while referring the interested reader to

the excellent book [NW06]. In general there are two different classes of algorithms

which were developed to solve NLPs, namely active set and interior point (also know

as barrier) methods.

Active set methods: Roughly speaking, the main idea of active set approaches consists

in iteratively refining the set of active constraints, i.e. the set of constraints that describe

the boundary part of the feasible region where the optimal solution lies on. Typically

the process is iterated until a locally optimal point is found. Notice that the well known

simplex algorithm for solving Linear Programs (LP) belongs to the class of active set

methods. The simplex algorithm traverses the corners of a polyhedron until the optimal

solution is found. In this approach, the set of active constraints is given by those

hyperplanes that define the current corner. Moving along an edge of the polyhedron from

one corner to another one consequently is equivalent to the exchange of one hyperplane

in the active set. A typical optimization trajectory of this approach is visualized in

Figure 4.1a. Apart from the simplex algorithm several generalizations of this basic idea

to handle arbitrary NLPs were developed.

40

4.1. Branch-and-Bound

Interior point methods: The main idea of interior point methods is completely dif-

ferent compared to that of active set methods. While active set methods traverse the

boundary of the feasible region, interior point methods search a path through the interior

of the feasible region (cf. Figure 4.1b). This is done by constructing an artificial, strictly

convex objective function with an additional parameter, usually called µ, which con-

trols a penalty function related to the boundary of the feasible region F . This penalty

function is constructed in such a way that for large µ the optimum will be close to the

centroid of F while for decreasing µ it will converge to a point on the boundary that is

locally optimal w.r.t. the original objective function. This simple basic idea is typically

complemented with many sophisticated heuristics for determining good individual up-

date steps in order to achieve fast convergence. A detailed description of a very efficient

general interior point method is given in [WB06].

4.1. Branch-and-Bound

Branch-and-bound is a very general concept to tackle many different problems. The

main idea of these methods is twofold. On the one hand a divide-and-conquer strategy

is performed in order to iteratively partition the feasible region until the solution of the

induced sub-problems can be found easily. This part is called branching. On the other

hand, simultaneously to branching, conservative upper and lower bounds for the optimal

solution are estimated such that hopefully many sub-problems can be neglected. This

bounding part tries to reduce the exponential complexity of the branching part as much

as possible by pruning away complete sub-trees. Clearly, the success of a branch-and-

bound method strongly depends on the characteristics of a given problem and can be

heavily influenced by adapting the branching as well as the bounding strategy. For dif-

ferent problem classes it turns out that completely different strategies lead to the most

efficient technique. Here we will focus on branch-and-bound strategies for MINLPs only.

Given an MINLP P , a lower bound of the objective function at the optimum can be

estimated by neglecting the integer conditions, i.e. by solving the corresponding relaxed

R-MINLP Q. Now there are two different cases that might arise. Either the optimal

solution of Q is integral such that ỹ ∈ Zm, or it is not which implies that at least one

integer constraint ỹi /∈ Z. In the first case, the algorithm trivially terminates, since there

cannot be a better solution. Otherwise, the feasible region of the integer-constrained

41

4. General Optimization Approaches

1 2 ỹ = 2.3 3 4

1 ỹ = 2 ỹ = 3 4

Q

ỹ = 2.3← relaxed solution(Q)

integral : no

lb = 0.2← EQ(ỹ)

Q1 := Q ∧ y ≤ bỹc = 2

ỹ := 2← relaxed solution(Q1)

integral : yes

incumbent := 0.3← EQ(ỹ)

Q2 := Q ∧ y ≥ dỹe = 3

ỹ = 3← relaxed solution(Q2)

integral : yes

incumbent = 0.25← EQ(ỹ)

EQ(y)

Figure 4.2.: Branch-and-bound on a one-dimensional integer program Q: The optimum

of the relaxed problem is non-integral and thus triggers a branching step, which induces

sub-problems Q1 (red) and Q2 (green). The relaxed solutions of both sub-problems are

integral where Q2 leads to the optimal solution (3, 0.25) due to its lower objective value.

problem P is partitioned in such a way that the current continuous ỹi is no longer a

valid solution. This can be achieved by replacing Q through two new problems Q1 and

Q2, where in Q1 we search for a solution with yi ≤ bỹic and analogously in Q2 add the

constraint yi ≥ dỹie. Clearly no valid integer solution is lost, while the relaxed optimum

of Q is excluded as desired. A simple example of this branching procedure is shown in

Figure 4.2. Similarly to other divide-and-conquer algorithms this process is iterated for

Q1 and Q2 until the best solution is found. All generated sub-problems are added into

the set of yet unsolved problems P . Every time an integral solution with y ∈ Zm is

observed, the branching stops, which is called fathoming and the current solution is a

candidate for the optimal solution (x∗,y∗). The minimal objective value of all so far

found valid solutions is called incumbent. All sub-problems that exhibit a lower bound

(objective of the relaxed solution) that is larger than the incumbent cannot lead to an

optimal solution and can thus be safely neglected. This bounding operation is sometimes

42

4.1. Branch-and-Bound

called pruning.

A high-level description of the above branch-and-bound algorithm for the optimization

of convex MINLPs is given below:

Algorithm: Branch-and-Bound

Input: P ∈MINLP

Output: optimal feasible solution (x,y) ∈ Rn × Zm

or INFEASIBLE

01: incumbent←∞
02: P ← {relaxed(P)}
03: while P 6= ∅ // unsolved sub-problems left?

04: select Q ∈ P
05: P ← P \ {Q}
06: if is feasible(Q) then

07: (x̃, ỹ)← relaxed solution(Q)

08: if EQ(x̃, ỹ) ≤ incumbent then // improvement w.r.t. current best solution?

09: if ỹ ∈ Zm then

10: incumbent← EQ(x̃, ỹ) // tighten upper bound

11: (x∗,y∗)← (x̃, ỹ) // update current best solution

12: else

13: select i with yi /∈ Z // select branching variable

14: P ← P ∪ {{Q ∧ yi ≤ bỹic}, {Q ∧ yi ≥ dỹie}} // partition feasible region

15: end if

16: end if

17: end if

18: end while

19: if incumbent ≤ ∞ then

20: return (x∗,y∗) // optimal solution found

21: else

22: return INFEASIBLE // no solution found

23: end if

This algorithm still exhibits some degrees of freedom that will be discussed in more

detail below. More precisely, there are typically several candidates for the sub-problem

43

4. General Optimization Approaches

selection in line 04 as well as the branching-variable selection in line 13. However, before

presenting the details of these decision steps, we first discuss an extension of the above

algorithm which is designed to find approximate solutions in reduced time.

Approximate solutions: Instead of proceeding until the optimal solution is found, the

algorithm could be stopped as soon as any feasible solution is found. One advantage of

branch-and-bound methods consists in being able to provide a bound on the maximal

deviation from the optimal solution. The minimum of lower bounds of all remaining

sub-problems defines the current lower bound lb of the given instance. Note that the

optimal objective function can never be below this value, since all lower bounds are

estimated conservatively. Accordingly, the relative deviation is typically measured as

dr = |incumbent− lb|/(|incumbent|+ ε) ∈ [0, 1]

Typically it is desirable to stop the computation if dr falls below a small relative tolerance

of, let’s say, 5%. Even if the current solution is already optimal, it often takes many

additional iterations and thus a very long time to “prove” that there exists no better

solution. To get an idea of the impact of this aspect, note that it frequently happens that

a very good solution can be found within seconds, while actually proving the optimality

takes several hours.

Sub-problem selection strategies: The sub-problem selection strategy usually has a

strong influence on the overall runtime. A straightforward greedy strategy consists in

always selecting the sub-problem with the smallest lower bound which is called best

bound strategy. While the overall runtime for proving optimality is typically quite good,

the required time to find any feasible solution is often very high. The reason is that sub-

problems with a less restricted feasible region usually enable a small objective function

by violating many integrability constraints. Therefore, especially when searching for an

approximate solution, a depth-first strategy might be favorable. In this strategy always

the sub-problem which is deepest in the branching-tree, and thus typically is closest to

a feasible integer solution, is selected. Sometimes it is worth spending even more time

in the sub-problem selection to determine an estimate of the best feasible solution in

a sub-problem. This strategy, called best estimate, can be very powerful if the given

problem class offers a precise estimate.

44

4.1. Branch-and-Bound

Branching strategies: In each branching step one non-integral variable yi /∈ Z is se-

lected for partitioning of the feasible region. Similarly to sub-problem selection, variable

selection has a strong influence on the characteristics of the solution process. Here

typical choices include minimum infeasibility, maximum infeasibility and pseudo-costs

strategies. Minimum infeasibility selects the variable which is already closest to an in-

teger, i.e. , it minimizes min(|yi − byIc|, |yi − dyIe|). With this strategy typically good

feasible solutions are found in an early stage of the algorithm. On the contrary it turns

out that choosing the variable which is farthest from an integer, and thus maximizes

the former expression, often reduces the runtime to find solutions close to the global

optimum. The reason is that the most critical decisions are unrolled first, before getting

lost in a sub-optimal sub-tree. Both former strategies can also be combined by first

performing some steps with maximum infeasibility strategy, followed by decisions based

on minimum infeasibility. Finally, the branching strategy can be based on pseudo-costs,

i.e. , on estimating the cost (change in objective function) for rounding the variable to a

feasible solution. Again all three possibilities, namely minimal costs, maximal costs or

a mix of both, can be advantageous, depending on the problem characteristics.

y

x

max y

integer infeasible

integer feasible

optimal solution

y + x ≤ 5
2y − 5x ≤ 0

y − x ≤ 1

(a) (b)

Figure 4.3.: Cutting-plane approach: (a) The optimum of the relaxed linear program

(red star) is typically not integer feasible. (b) By adding a new hyperplane (green line),

that cuts off the continuous optimum while maintaining all integer feasible points (black

dots) the solution of the relaxed problem converges to the integer feasible optimum.

45

4. General Optimization Approaches

4.2. Cutting-Plane method

The second very prominent solution strategy for mixed-integer problems is the so called

cutting-plane approach. It shares the idea of solving a series of continuously relaxed

problems with the previously discussed branch-and-bound approach. However, instead

of generating a tree of sub-problems which partition the feasible region, the cutting-plane

approach refines a single so called master problem until an integral feasible solution is

found. The solution process starts with the relaxation of the original problem, i.e.

Q0 ← relaxed(P), and iteratively adds inequality constraints, Qi+1 ← Qi ∧ Cutnew ≤ 0,

until an integral feasible solution is found as shown below:

Algorithm: Cutting-Plane approach

Input: P ∈MILP

Output: optimal feasible solution (x,y) ∈ Rn × Zm

or INFEASIBLE

01: i← 0 // iteration counter

02: Q0 ← relaxed(P) // initialization

03: repeat

04: if NOT is feasible(Qi) then

05: return INFEASIBLE

06: else

07: (x̃, ỹ)← relaxed solution(Qi)

08: if ỹ /∈ Zm then

09: Qi+1 ← Qi ∧ Cutnew ≤ 0 // add cutting plane

10: i← i+ 1 // increase iteration counter

11: end if

12: end if

13: until ỹ ∈ Zm // optimal solution found

The name of the method stems from the fact that the inequality constraints are called

cuts. For the sake of simplicity in this chapter we will restrict to the case of linear integer

and mixed-integer programs and postpone the discussion of extensions to the nonlinear

case to later on.

46

4.2. Cutting-Plane method

Originally this approach was indeed developed for Integer-Linear Programs (ILPs),

where the feasible region of the relaxed problem is a polyhedron. From this linear point

of view, adding a new valid cut is equivalent to cutting away a part of the feasible region

which does not contain any integer-feasible point (cf. Figure 4.3). If this process con-

verges to an integer-feasible point this is obviously the global optimum, since valid cuts

always preserve the feasible region of the ILP. The cuts are typically constructed in such

a way that especially the current non-integral optimal solution of the relaxed problem Qi

is cut off in Qi+1. Consequently, the optimal solution of the relaxed problem changes in

each step and progress of the algorithm is guaranteed. Since the relaxed problem is more

and more restricted, the objective function, i.e. the current lower bound, monotonically

increases. However, it should be mentioned that the number of required iterations till

convergence can get enormous.

The most important ingredient of a cutting-plane approach is the generation of “strong”

valid cuts, i.e. inequalities that push the solution of the relaxed problem as much as

possible towards the optimal integer-feasible solution without removing it from the fea-

sible set. Again there is no general approach which is optimal for all problem instances.

Accordingly, many different cut generation heuristics, leading to different classes of cuts,

were developed in the past. State-of-the-art algorithms often apply a greedy strategy to

select from all available cuts. Additionally, the cut selection strategy can typically be

tuned by means of several parameters, in order to optimize the performance w.r.t. the

intended class of problems. In the following, we will discuss the very general class of

Gomory cuts (GC), which is the basis for many other classes of cuts.

Gomory cuts: The main idea of Gomory cuts is straightforward and builds on the idea

of integer rounding. We start with the following ILP, given in normal form:

minimize cTy

subject to Ay ≤ b

y ∈ Zm+
c ∈ Rm

A ∈ Rn×m

b ∈ Rn

(ILP)

First notice that each linear combination of the above inequalities with positive coef-

ficients, i.e. αTAy ≤ αTb with α ∈ Rn
+, is a valid inequality for the ILP as well. For

47

4. General Optimization Approaches

example, if y1 − y2 ≤ 2 and y3 ≤ 4, then of course y1 − y2 + y3 ≤ 6. Now, since yi ≥ 0,

the value of the left-hand side of the equation can be further reduced by rounding down

the coefficients leading to
∑m

i=1bαTAicyi ≤ αTb. After this operation the left-hand side

is always an integer such that the fractional part of the right-hand side is meaningless

and can be rounded off as well. Altogether we end up with the following Gomory cut:∑m
i=1bαTAicyi ≤ bαTbc. It can be shown that this simple procedure is powerful enough

to generate all valid inequalities for an ILP [Chv73]. Since this class of Gomory cuts is

huge - every linear combination with positive coefficients generates a Gomory cut - the

next question consists in, how can a “good” cut from this class be found efficiently? In

practice, Gomory cuts are mostly applied in combination with the Simplex algorithm. It

turns out that in this setting the generation of well behaved Gomory cuts is very cheap,

since adequate linear combinations of the constraints can be taken from the usual Sim-

plex tableau without any modification. These linear combinations are guaranteed to cut

off the current non-integral solution.

The presented form of Gomory cuts is only applicable in case of pure integer prob-

lems, however, the described concept can be generalized to mixed-integer Gomory cuts

(MIGC). More details on Gomory cuts, as well as mixed-integer Gomory cuts and many

other cuts can be found in [MMWW02, Rus06].

Extension to nonlinear problems: The above cutting-plane approach is applicable in

the case of linear programs only. However, exploiting the insight that every convex

function can be approximated arbitrarily accurate by local linearizations, i.e. , a set of

tangential hyperplanes, the above algorithm can be easily generalized to nonlinear convex

programming. The idea of iteratively refined linearizations works for the nonlinear

convex objective as well as for the convex feasible region described by the nonlinear

convex constraints as illustrated in Figure 4.4. The resulting algorithms building on top

of this idea, known as Extended Cutting-Plane Method [WP94] and Outer-Approximation

[DG86], alternatingly solve the linearized mixed-integer problem (the approximation

resulting from the current set of cuts) and refine the linearization (add further cuts to

improve the approximation) until an approximate solution within a given tolerance to

the optimal one is found. Solutions to the linearized problem could e.g. be found by the

above cutting-plane method for mixed-integer linear programs.

48

4.3. Branch-and-Cut

f(x)

x

P1

P2

P3

P4

x2 + x2 ≤ 1

(a) (b)

Figure 4.4.: Linear approximation of convex nonlinear objective functions and feasi-

ble regions: (a) A convex nonlinear objective function can be arbitrarily accurate ap-

proximated by a set of tangential hyperplanes Pi. Thus the minimization of f(x) can

be replaced by the minimization of the linear function y subject to linear constraints

dist(Pi, (x, y)) ≥ 0 ∀i which induce the green contour. (b) The same is possible for

nonlinear convex feasible regions. The difference between the unit circle and its lin-

earization is shown in green. This deviation can be arbitrarily reduced by adding more

hyperplanes.

4.3. Branch-and-Cut

As we have seen, both approaches, namely branch-and-bound and cutting-plane, can

be used to solve mixed-integer problems. However, practical experiments have shown

that the runtime of both approaches can be unsatisfactorily high. The reason seems to

be that both algorithms are driven by heuristics that might fail in their assumptions.

On the one hand, the branch-and-bound method suffers from an exponential growth

in sub-problems and especially in cases where the branching and sub-problem selection

heuristics do not perform well, many of these sub-problems have to be explored until an

adequate solution is found. On the other hand, the performance of the cutting-plane

approach is very dependent on the heuristic that generates new cuts. If in each step

only a small piece of the polyhedron is cut off, then the overall approach might take very

49

4. General Optimization Approaches

long until convergence to an integer-feasible point.

The branch-and-cut approach is based on the idea of combining branch-and-bound

and the cutting-plane method into one algorithm that dynamically switches between

both optimization strategies. This is done by embedding a slightly modified cutting-

plane method into the branch-and-bound algorithm. More precisely, after each sub-

problem selection of the branch-and-bound algorithm, cutting-planes are added as long

as the relaxed solution can be improved significantly. Due to this stop criterion, the

cutting-plane phase switches back to branching as soon as adding more cutting planes

becomes inefficient. The resulting branch-and-cut approach is given below, where the

modifications (lines 06-08) are highlighted in red.

Algorithm: Branch-and-Cut

Input: P ∈MINLP

Output: optimal feasible solution (x,y) ∈ Rn × Zm

or INFEASIBLE

01: incumbent←∞
02: P ← {relaxed(P)}
03: while P 6= ∅ // unsolved sub-problems left?

04: select Q ∈ P
05: P ← P \ {Q}
06: while relaxed solution(Q) can be significantly improved

07: Q← Q ∧ Cutnew ≤ 0 // add cutting plane

08: end while

09: if is feasible(Q) then

10: (x̃, ỹ)← relaxed solution(Q)

11: if EQ(x̃, ỹ) ≤ incumbent then // improvement w.r.t. current best solution?

12: if ỹ ∈ Zm then

13: incumbent← EQ(x̃, ỹ) // tighten upper bound

14: (x∗,y∗)← (x̃, ỹ) // update current best solution

15: else

16: select i with yi /∈ Z // select branching variable

17: P ← P ∪ {{Q ∧ yi ≤ bỹic}, {Q ∧ yi ≥ dỹie}} // partition feasible region

18: end if

50

4.3. Branch-and-Cut

19: end if

20: end if

21: end while

22: if incumbent ≤ ∞ then

23: return (x∗,y∗) // optimal solution found

24: else

25: return INFEASIBLE // no solution found

26: end if

Today branch-and-cut algorithms belong to the most powerful general MI optimiza-

tion strategies. Especially for the case of MILP and MIQP very powerful commercial

solvers, as for instance [GRB11, IBM12], are available that complement the above base-

algorithm by several other heuristics which increase the efficiency in practice. However,

it is very important to notice that the solution of mixed-integer problems is inherently

more complicated then its continuous counterparts. As a consequence, it cannot be

expected that these libraries, although highly optimized, always perform good when

applied with default parameters. It is indispensable to keep in mind that the efficient

solution of mixed-integer problems usually requires some knowledge of the user in order

to tune the parameters for the desired class of problems. A behavior, like in the case

of sparse linear system solvers, where default parameters always perform well and the

solution time is roughly a function of the number of non-zeros, can never be expected

for mixed-integer solvers.

51

4. General Optimization Approaches

52

5. Efficient Approximation of

Quadratic MI-Problems

In the previous chapters about mixed-integer problems, the general problem setting and

some general solution strategies were discussed. It turns out, that although highly op-

timized, these solution strategies are still too time consuming for our overall goal of

quadmesh generation due to problem sizes typically consisting of thousands or even mil-

lions of (unbounded) discrete as well as continuous variables. The general parametriza-

tion based quadmesh generation problem, as it will be introduced in Chapter 6, induces

a non-convex MINLP. Direct solution of this formulation seems to be intractable, even

for very small problems. Therefore, in Chapters 7 and 8 we will develop two simpli-

fied formulations, which under some reasonable assumptions convert the non-convex

MINLP into a convex MIQP. Furthermore, the derived formulations are free of inequal-

ity constraints and solely contain linear equality constraints. However, in case of typical

problem sizes, these strongly simplified formulations still cannot be solved efficiently

with available commercial solvers. Experiments showing the performance of commercial

solvers in comparison with our method can be found in Section 5.3. The reason of the

bad performance of general solution approaches is that these solvers do not fully exploit

the specific characteristics inherent to our class of problems. Furthermore, instead of

spending much time in searching for the optimal solution, we design an algorithm which

greedily searches for a good approximate solution and thus is often orders of magnitude

faster.

In this chapter, which is based on [BZK12], we present an algorithm for efficiently and

accurately approximating quadratic MIPs represented by quadratic energy functions

E(x) =
1

2
xtAx− xtb→ min, x ∈ Rn (5.1)

53

5. Efficient Approximation of Quadratic MI-Problems

with A symmetric and positive definite, subject to nI integer constraints

xi∈I ∈ Z, I ⊆ {1, . . . , n}. (5.2)

Notice that in order to achieve a simpler presentation, the notation convention is slightly

changed compared to the previous chapters. Additionally the feasibility of the solution

x is restricted by nC linear equality constraints of the form

Ci · x = di with Ci ∈ Rn, di ∈ R (5.3)

which can be assembled into a single matrix Cx = d with dimension C ∈ RnC×n. Here

n, nI and nC denote the number of variables, integer constraints and linear constraints

respectively. Note also that the above formulation differs slightly from the most general

setting of mixed-integer problems where additionally in-equality constraints are given

(cf. Chapters 3 and 4).

Our algorithm successively determines the values of the discrete variables xi∈I ∈ Z
in a greedy fashion. Fixing the value of a discrete variable is equivalent to adding one

explicit linear constraint xi = k with k ∈ Z to our optimization problem. Therefore our

algorithm successively transforms integer constraints into explicit linear constraints until

all of them are fulfilled. More precisely we start by neglecting the nI integer constraints

and compute the minimizer of the relaxed problem by setting the partial derivatives
∂E
∂xi

= 0 and solving the resulting linear system

Ax0 = b. (5.4)

In this simple example we assume nC = 0 to increase clarity. The values of the

solution vector x0 can be seen as continuous estimates of the desired discrete integer

variables. However, we found that estimating all integer constraints at once, i.e., requir-

ing ∀i ∈ I : x1i = round(x0i) , leads to poor results since the individual estimates cannot

influence each other. Motivated by this observation we instead successively determine

single integer constraints xk+1
j = round(xkj) which are henceforth used to solve subse-

quent relaxed problems until a feasible solution of our initial optimization problem is

found, meaning that all xi∈I are integers.

By greedily choosing the continuous estimate which has the smallest deviation from

an integer, i.e. |round(xkj)− xkj |, in each step, these subsequent relaxed problems can be

54

solved very efficiently by a carefully designed three-level solver as presented in Section

5.2.2. The performance can further be improved by identifying sets of relaxed variables

which do not interfere too much and hence can be safely estimated simultaneously within

the same iteration.

In order to facilitate an efficient handling of arbitrary linear constraints Ci we propose

to eliminate one variable for each constraint (Section 5.1) and support this approach

by a fill-in reducing constraint reordering (Section 5.1.2) which in practice significantly

reduces the runtime.

In Section 5.3 the capabilities of the presented solver are illustrated exemplary by

applying it to the surface quadmesh generation problem. We illustrate the immense

performance benefit due to the novel extensions of the previously applied variant from

[BZK09], i.e., the rounding of sets of variables and the fill-in reducing reordering of

constraints.

Previous Work To the best of our knowledge the idea of approximating MIPs by a

series of real-valued problems started with [Rin88], set in the field of Structural Engi-

neering. Ringertz’ idea of rounding variables iteratively and re-solving the problem has

been cited several times and depending on the problem setting small variations appear

in the proposed solutions. While some researchers argue for the use of post-processing

methods as, depending on the problem and the type of variables, always rounding up

(or down) might not be meaningful [YZJ03], others suggest rounding both up and down

and keeping the solution with lower cost [GSS96].

Regardless of the rounding strategy, what these approaches all have in common is that

the full-sized system of linear equations needs to be re-solved in each iteration, making

the iterative strategy infeasible for many practical applications.

In the field of Geometry Processing the idea of approximating quadratic MIPs by

rounding variables of a real-valued linear system has been successfully adapted by sev-

eral authors (see e.g.,[KNP07, RVLL08]). Here direct-rounding strategies were used,

where the system had to be solved only twice, once initially and once after all integer

constraints have been estimated (all at once). This approach is usually only applicable

for MIPs with a small number of integer variables that do not interfere too much and

55

5. Efficient Approximation of Quadratic MI-Problems

otherwise leads to a poor approximation of the optimal solution.

This chapter is structured as follows: Section 5.1 describes the proper handling of

linear constraints within the optimization of a quadratic energy, which is central also for

the integer constraints discussed in Section 5.2. In Section 5.2.2 we describe an efficient

update strategy which enables the iterative addition of integer constraints. Finally in

Section 5.3 we discuss some experiments performed within the context of quadrilateral

surface remeshing.

5.1. Linear Constraints

The ability to properly handle constraints is vital for the wide applicability of an opti-

mization method. For a problem to be solvable, usually some boundary constraints are

needed to restrict the solution space, or often additional user-defined design constraints

might be incorporated to shape the resulting solution. In our setting we also have to

deal with integer constraints which translate into simple linear conditions as soon as the

specific integer is known. A common way to handle linear constraints are Lagrangian

Multipliers as discussed next.

5.1.1. Lagrangian Multipliers

The method of Lagrangian Multipliers turns a constrained problem into an uncon-

strained one by adding one additional term per constraint to the energy. Updating

energy (5.1) with the constraints (5.3) we end up with the following new energy:

EL(x) = E(x) +

nC∑
i=1

λi(Ci · x− di) (5.5)

where the optimum is characterized by the following system of linear equations

∂EL
∂x

= 0

[
A CT

C 0

][
x

λ

]
=

[
b

d

]
(5.6)

describing the stationary point of the adapted energy. Note that the approach of La-

grangian Multipliers is not restricted to quadratic energies nor linear constraints but can

be applied to non-linear problems as well, for more details see e.g., [NW99]. Unfortu-

nately the approach of Lagrangian Multipliers comes with certain disadvantages making

56

5.1. Linear Constraints

them impractical for our purpose. Instead of decreasing the number of degrees of free-

dom, as more constraints are added, the opposite is the case since for each constraint a

Lagrangian Multiplier λi is introduced. Furthermore the symmetric positive definiteness

(s.p.d.), inherent in linear systems arising from convex quadratic energies is destroyed

by the diagonal block of zeros 0, effectively disabling the use of highly efficient solvers

such as CHOLMOD [CDHR06] and necessitating the use of slower more general solvers

such as SuperLU [DEG∗99]. Moreover, as will be seen in Section 5.2 the s.p.d. property

is crucial for the efficient local updates of the adaptive three-level solver in Section 5.2.2.

Therefore next we describe a proper handling of linear constraints which maintains the

s.p.d. property.

5.1.2. Elimination Approach

Assume we want to minimize a quadratic energy E(x) with x ∈ Rn subject to a single

linear constraint DTx−d = 0. Geometrically this means restricting the solution space to

a n−1 dimensional hyperplane. Consequently, it is possible to convert the above problem

into a new unconstrained one with n − 1 degrees of freedom. Assume w.l.o.g. that

Dn 6= 0 such that we can solve the linear constraint for xn expressing it as a function of

(x1, . . . , xn−1)

xn(x1, . . . , xn−1︸ ︷︷ ︸
x̃

) = (d/Dn)−
n−1∑
j=1

(Dj/Dn)xj =: f − FTx (5.7)

and transforming the above constrained problem into the desired unconstrained form

Ẽ(x̃) := E

(
x̃

xn(x̃)

)
︸ ︷︷ ︸

y

(5.8)

with equivalent minima where xn can be computed from x̃ by equation (5.7).

To compute the minimizer x̃ we now have to solve a (n − 1) dimensional system of

linear equations Ãx̃ = b̃ which can be derived by partitioning the matrix A of equation

57

5. Efficient Approximation of Quadratic MI-Problems

(5.1) into four blocks (with A ∈ R(n−1)×(n−1), v ∈ Rn−1 and w ∈ R) and re-factorizing

the result:

Ẽ(x̃) =
1

2
yTAy − yTb =

1

2
yT

(
A v

vT w

)
y − yT

(
b

bn

)
(5.9)

=
1

2
x̃T
(
A− vFT − FvT + wFFT

)︸ ︷︷ ︸
Ã ∈ R(n−1)×(n−1)

x̃− x̃T
(
b + F(fw − bn)− vf

)︸ ︷︷ ︸
b̃ ∈ Rn−1

+const

Note that since A is s.p.d. Ã is also s.p.d. enabling highly efficient solution methods

used in our three-level solver described in Section 5.2.2. Of course instead of eliminating

the last variable each other variable can be chosen by re-indexing.

Multiple Constraints: In general we want to handle an arbitrary number of linear

constraints which can be achieved by iteratively eliminating one variable for each con-

straint from {C1, . . . , CnC}. One very important aspect of multiple constraints is that in

each step it is necessary to eliminate the chosen variable from all subsequent constraints

since obviously once a variable is constrained and eliminated from the optimization

problem it should not be reintroduced by a subsequent constraint. More precisely, after

constraining a variable xk through a constraint Cj we have to do Gaussian elimination

in the constraint matrix C in order to bring all Ci,k with i > j to zero. Clearly the

constraints in the updated matrix are equivalent to the original problem.

Choosing elimination variables: For each linear constraint we have to pick a variable

which is subsequently constrained by the induced linear function and eliminated from

the problem. All non-zero coefficients of the linear constraint induce a valid possibility.

To increase numerical stability we select the variable whose coefficient has the largest

absolute value. However, there is one important aspect to consider whenever a variable

xk with k ∈ I, i.e., which has to satisfy an integer constraint, is selected for elimination.

In general it can get very problematic to guarantee that the values of the induced

linear function are chosen in such a way that xk becomes an integer. Consequently

for the elimination we always prefer non-integer variables with k /∈ I. For constraints

where all non-zero coefficients belong to integer variables we currently support only those

cases where all coefficients are integer and their greatest common divisor (gdc) is one of

these coefficients. In such a case we can safely divide all coefficients by their gdc and

eliminate a variable with coefficient ±1 since a linear combination of integers multiplied

58

5.1. Linear Constraints

by integers is always an integer as well and consequently the integer constraint is fulfilled

by construction. For many practical problems (like quadrilateral surface remeshing) the

above assumptions are always fulfilled and therefore we leave the more complicated

general case for future work. Whenever the above assumption is violated it may happen

that in the result some of the integer constraints will not be satisfied in the end.

Linear dependent or conflicting constraints: Since we iteratively process the individ-

ual constraints it is easy to identify linear dependent or conflicting constraints. This is a

big advantage compared to the method of Lagrangian Multipliers which would construct

an underdetermined system of linear equations not suitable for efficient standard solvers.

In our implementation linear dependent or conflicting constraints are simply neglected.

This behavior is very convenient since the user does not have to spend additional effort

identifying the subset of linear independent constraints e.g., in the case of user provided

side conditions. Due to numerical inaccuracies of floating point numbers linear depen-

dency is checked against a tolerance with a default value of 10−6.

Fill-in reducing constraint reordering: Although mathematically equivalent, the lin-

ear system belonging to the unconstrained optimization problem after processing all

constraints can take many different patterns, strongly depending on the processing se-

quence of the constraints. In spirit of sparse Cholesky methods like [CDHR06] we are

interested in finding an ordering of the constraints which minimizes the fill-in (nonzero

elements) and hence increases performance. Unfortunately there is no known algorithm

to achieve the best ordering apart from the naive one which explicitly checks all or-

derings. Obviously such an approach is far too slow such that a good compromise in

form of a cheap heuristic is more desirable. Our experiments show that processing the

constraints sorted by their number of non-zero coefficients leads to much higher perfor-

mance than just using a random ordering (see Section 5.3 for timings). Please note that

this ordering is dynamic since while processing the constraints, their number of non-zero

coefficients is altered by the Gaussian elimination steps.

After eliminating one variable per linear constraint we obtain a new (unconstrained)

equivalent optimization problem, i.e., a quadratic energy minimization subject to a set

of integer constraints. Next, we describe how a good approximate solution can be found

efficiently.

59

5. Efficient Approximation of Quadratic MI-Problems

5.2. Integer Constraints

The integer constraints of our initial problem dictate that for each feasible solution a

subset of the variables have to be integers, i.e., xi∈I ∈ Z. Finding a feasible solution

is simple in this formulation, since there are no dependencies between the individual

variables. Therefore just setting up a set of additional linear constraints which fix the

xi∈I variables to arbitrary integers like e.g., xi∈I = 0 and enforcing them with the

method from the previous section would indeed result in a feasible solution. However

the problem of finding the best one of all these possible assignments, i.e., the one which

minimizes the energy, is very hard. In contrast to continuous convex optimization it

is not sufficient to simply walk into the direction of the negative gradient (see Figure

3.1). As we have seen in Chapters 3 and 4, typically much more expensive optimization

strategies like branch-and-cut have to be applied in order to find the optimal solution.

5.2.1. Direct Rounding

Instead of achieving optimality, for practical problems we aim at finding an approximate

solution which is close enough to the optimum but can be computed in a fraction of

time. The most efficient way to determine adequate assignments for the integer variables

is to estimate them from a relaxed solution, i.e., computing the minimizer xc where

all variables are allowed to be continuous leading to the estimates xi∈I = round(xci).

Following (5.9) the elimination approach results in a very simple update for such explicit

constraints:

Ã = A and b̃ = b− v · round(xci) (5.10)

Estimating all integer assignments at once which is called direct rounding is very efficient

since it requires the solution of only two linear systems. However the drawback is that

the interrelation between the discrete variables is completely ignored which often leads

to poor results (cf. Figure 5.2). This suggests to successively add one integer constraint

at a time and immediately compute the altered relaxed problem to update the estimates

of the yet unconstrained discrete variables. This strategy is denoted iterative rounding

and is discussed in more detail next.

60

5.2. Integer Constraints

5.2.2. Iterative Greedy Rounding

The key to an efficient implementation of the iterative rounding is the observation that,

for problems with sparse variable dependencies (few non-zeros per row), changing the

value of one variable usually has little influence on “far-away” variables. This is a prop-

erty inherent in many Geometry Processing problems formulated over, e.g., simplicial

complexes or spline bases with local support.

The problem inherent to iterative rounding is that it requires the solution of |I| + 1

many linear systems which can get very slow when implemented in a näıve way. Fortu-

nately in many steps of this iterative process the solution changes only slightly which

can be exploited by carefully designed iterative solvers.

Suppose that we have computed the solution of the relaxed problem Ax = b and that

we want to add a single integer constraint. Following (5.10) the residual e = Ãx̃−b̃ after

adding the new constraint has the same nonzero pattern as v. Consequently, for a sparse

v the relaxed solution from the previous step x̃ violates only a few equations of the linear

system. Due to this observation we first try to iteratively update the solution only where

it is necessary, i.e., for all variables x̃i with |ei| > ε. This so called Local Gauss-Seidel

method executes single Gauss-Seidel updates for variables with a local residual above

the allowed tolerance. All these candidates are stored in a queue and convergence is

reached when the queue gets empty meaning that all residuals are below the prescribed

tolerance. Notice that due to the elimination approach the system matrix remains

s.p.d. guaranteeing convergence of the Gauss-Seidel method. The complete algorithm is

depicted below:

Algorithm: Local Gauss-Seidel

Input: Linear system Ax = b (which is not fulfilled)

Index set of variables with non-zero residual N ,

End conditions ε and maxitersGS

Output: Updated x with residuals |ek| < ε or NOT converged.

01: push N onto queue

02: iter = 0

03: while queue not empty and iter < maxitersGS

04: iter = iter +1

61

5. Efficient Approximation of Quadratic MI-Problems

05: xk = pop(queue)

06: ek = bk −
∑n

j=1Akjxj

07: if |ek| > ε then

08: xk ← xk + ek/Akk

09: push nonzero(Ak∗) onto queue

07: end if

10: end while

The parameters ε and maxitersGS are specified by the user. In cases where the above

method does not converge within the prescribed number of iterations, a more global

conjugate gradient method is used and in rare cases where this is still not sufficient after

a few iterations a sparse Cholesky method is executed. This adaptive solution strategy

is very fast if the previous solution is close to the new one and only spends more time

if a novel integer constraint has global impact. In our implementation the conjugate

gradient solver is taken from the GMM++ library [Ren03] and the Sparse Cholesky

solver is the CHOLMOD solver [CDHR06].

In this iterative rounding strategy we can choose |I|! many different orders in which

the integers are estimated. A natural greedy choice is the yet unconstrained integer

variable whose estimate has the smallest deviation |xi−round(xi)| from an integer since

it is most likely to be correct. A nice side effect of this strategy is that it increases

the efficiency of the above hierarchical solution strategy. The reason is that for small

deviations from an integer also the non-zero residuals usually get small. The complete

iterative greedy rounding algorithm is shown below:

Algorithm: Iterative Greedy Rounding

Input: Linear system of relaxed problem Axc = b with xc,b ∈ Rn and A ∈ Rn×n

index set of integer variables I ⊂ {1, . . . , n}
Output: Approximation of mixed-integer solution x ∈ Rn satisfying xi∈I ∈ Z

01: x = xc

02: while I 6= ∅
03: // greedy selection

04: j = arg min
i∈I

(|xi − round(xi)|)

62

5.2. Integer Constraints

05: I ← I \ j
06: // add new constraint and get nonzero residuals N

07: N = eliminateConstraint(xj = round(xj) , A , x , b)

08: // update solution

09: converged = localGaussSeidel(A, x, b, N) // level 1

10: if not converged then

11: converged = conjugateGradient(A, x, b) // level 2

14: if not converged then

15: sparseCholesky(A, x, b) // level 3

16: end if

17: end if

18: end while

To avoid the necessary re-indexing of the variables in the above algorithm the update

rule (5.10) was slightly modified by keeping an identity row and column for each elimi-

nated variable xk, i.e., Ãkj = Ãjk = δkj ∀j.

In our implementation the user is able to control the behavior of the adaptive three

level solver with several parameters. First of all the tolerance ε for checking convergence

of the iterative methods (level 1 and 2) and a maximum number of iterations maxitersGS

and maxitersCG can be adjusted. Furthermore it is possible to disable complete levels.

The reason is that for mixed-integer problems where it is known that the rounding of a

discrete variable always has global impact it is, e.g., not reasonable to execute the Local

Gauss-Seidel step since it would almost never converge. Therefore it is very important

to carefully adapt these parameters in order to optimize the performance for a specific

class of problems. In Section 5.3 we will provide two different useful settings for the

quadrangulation problem.

Simultaneous Rounding: The motivation for the iterative rounding strategy was mainly

the observation that the estimates of individual integer variables should influence each

other to achieve satisfactory accuracy. It would be possible to achieve the same ac-

curacy in fewer computation steps if some prior knowledge about the rate of influence

between variables is available. Clearly variables which do not influence each other could

be rounded simultaneously in one step without introducing an error. Unfortunately

63

5. Efficient Approximation of Quadratic MI-Problems

computing the influence between variables corresponds to the solution of a full-sized lin-

ear system which would be too expensive. What we need instead is a fast-to-compute a

priori estimate which never underestimates the interdependency. A very simple a priori

estimate which holds for many problems is the following one: If one variable is changed

by a value of ∆x due to a constraint, all other variables are changed by a value smaller

or equal than ∆x. Consequently in each step several variables can be rounded as long

as their estimated maximal deviation
∑

i ∆xi does not influence any of the rounding

decisions. Obviously this a priori estimate does not hold for all problems. However we

included the possibility to use it into our implementation since it is useful for many

practical applications and can speed up the computation significantly. Finding a cheap

way for estimating sharper bounds for the interdependency between discrete variables

is an interesting question for future work.

5.3. Evaluation

We evaluate our algorithm by applying it to the surface quadrangulation problem as

formulated in Chapter 8. In this method two mixed-integer problems have to be solved

where the first one is the computation of a smooth orientation field while the second

one is a seamless parametrization. Here, to compare different solvers, it is sufficient to

think of these quadratic mixed-integer problems in an abstract mathematical way by

specifying the number of discrete and continuous variables. For more details about the

problem formulation see Chapter 8. With the help of several experiments, we derived

two different parameter sets for the two diverse problems. For the computation of the

orientation field we used ε = 10−3, maxitersGS = 100000 and maxitersCG = 50 while

for the parametrization we chose maxitersGS = 0, maxitersCG = 20 and the use of

sparse Cholesky was disabled completely. The reason for two parameter settings is that

both problems have quite different characteristics. While the orientation field exhibits

a large number of integers with local influence, the parametrization problem induces

only few integers but with rather global influence. With the above settings we were able

to compute visually equivalent results compared to the original algorithm proposed in

[BZK09] within a fraction of time. The performance benefit is a result of the tuned

parameters as well as the novel extension which are the fill-in reducing reordering, the

simultaneously rounding and some changes within the internal data structures. All

examples were computed on a single CPU of an intel i7 quadcore 2.80GHz with 32GB of

64

5.3. Evaluation

Figure 5.1.: Testbed for the solver comparison. For the rockeram model with 200, 1k

and 20k triangles (from left to right), first an orientation field is generated, followed by

a global parametrization. Both steps induce quadratic mixed-integer problems.

RAM. The only exception is the commercial solver CPLEX [IBM12], used for comparison

and exploiting all four cores.

Comparison to other solvers: The first experiment evaluates the performance and so-

lution quality of our proposed solver, named constrained mixed-integer solver (CoMISo),

in comparison to (1) a direct rounding approach, where all integers are estimated from

the first continuous relaxation, (2) a naive greedy rounding, where in each step a sparse

Cholesky update is performed and (3) the commercial solver CPLEX [IBM12], based on

a branch-and-cut approach. The CPLEX solver was tried with different settings and the

empirically best ones were chosen for our experiments. In case of the CPLEX solver,

the tables show two different results. The first one gives the runtime which is required

to find an approximate solution which is comparable to the one found by CoMISo, while

the second one shows the best solution which was found after 900 seconds. It is worth

mentioning that even for the smallest problems, CPLEX could not prove within these

900s that the found solution is the globally optimal one.

The testbed of our solver comparison consists in four different resolutions of the rock-

erarm model, three of them are shown in Figure 5.1. Table 5.1 shows the results of

the first problem, namely the computation of an orientation field. In this problem, the

number of discrete and continuous variables both grow linearly with the input size. Each

65

5. Efficient Approximation of Quadratic MI-Problems

Figure 5.2.: Comparison of the orientation field quality of direct rounding (left) and

CoMISo (right). The direct rounding approach leads to a poor smoothness induced by

many undesired irregular vertices. In contrast, the CoMISo solver respects the interde-

pendencies between discrete variables and thus achieves a much smoother result.

entry of the table lists runtime/energy, where a smaller energy value is better.

Table 5.1.: Solver Comparison w.r.t. Orientation Field Time/Energy

#discr. #cont. CoMISo direct rnd naive rnd CPLEX CPLEX 900s

rocker200 111 153 6ms/8.6 2ms/10.4 10ms/8.6 500ms/8.6 900s/8.6

rocker1k 515 841 26ms/14.1 7ms/21.5 238ms/13.8 28s/14.0 900s/13.7

rocker2k 910 1414 36ms/21.9 14ms/30.9 640ms/21.6 57s/21.9 900s/21.3

rocker20k 10119 17759 480ms/33.9 160ms/58.7 124s/33.7 - 900s/40.5

While the fastest solver, i.e. , direct rounding, leads to solutions with an inadmissible

energy value, the CoMISo solver is able to get close to the CPLEX reference solution

in approximately three times the runtime of direct rounding. This is orders of magni-

tude faster than the naive rounding approach as well as CPLEX. Furthermore, in case

of CoMISo, the runtime seems to increase much slower with growing input complexity

compared to naive rounding and CPLEX. As a result, the runtime difference for the

largest test case with 20k triangles consisting in 0.5s, 124s and >900s for CoMISo, naive

rounding and CPLEX respectively, is enormous. It is worth mentioning that in this

example the CPLEX solver could not find a solution comparable to that of CoMISo

within 900s. Even worse, the gap between lower and upper bound is typically - also

for the smaller examples - so big that it would be difficult to specify a good termina-

tion criterion for the CPLEX solver. However, in practice, typical input complexities are

66

5.3. Evaluation

often much higher, such that naive rounding as well as CPLEX become infeasible anyway.

Obviously, the runtime of direct rounding is much faster (approximately three times)

and it seems to be tempting to use this algorithm. However, as can be seen in Figure

5.2, the resulting orientation field quality is too far away from the optimum and exhibits

many additional counterproductive irregular vertices. The overall number of irregular

vertices on the 20k rockerarm model is 28 for the CoMISo solution compared to 88

for the direct rounding approach.

The second mixed-integer problem, arising in quadmesh generation, computes a glob-

ally smooth seamless parametrization. The integer conditions are due to stitching con-

straints along a cutgraph that are indispensable for quadmesh generation. Compared to

the mixed-integer problem arising from orientation field computation, the parametriza-

tion problem shows different characteristics. The number of discrete variables is typically

smaller and does not increase with growing resolution. It is related to the geometric com-

plexity, i.e. , the number of irregular vertices of the orientation field. However, again

the CoMISo solver offers the best compromise of runtime and quality, as can be seen

in Table 5.2. Due to the comparatively small number of discrete variables, the runtime

differences are not as dramatic as in the orientation field computation. The runtime

factor between CoMISo and CPLEX is approximately 45 for the 20k example. Even

more important, the runtime complexity grows slower for the CoMISo solver, enabling

much larger input sizes.

Table 5.2.: Solver Comparison w.r.t. Parametrization Time/Energy

#discr. #cont. CoMISo direct rnd naive rnd CPLEX CPLEX 900s

rocker200 62 138 14ms/251 7ms/262 32ms/252 300ms/248 900s/245

rocker1k 60 940 41ms/164 13ms/173 127ms/163 500ms/163 900s/161

rocker2k 60 1940 68ms/232 21ms/254 258ms/232 4s/231 900s/230

rocker20k 56 19944 653ms/258 221ms/323 4.3s/256 30s/258 900s/255

Performance evaluation: We now want to investigate the general runtime behavior

w.r.t. different input characteristics. In contrast to linear equation systems, where the

runtime typically scales with the number of non-zero coefficients, the runtime of our

mixed-integer solver typically behaves non-linear, strongly influenced by the interde-

pendence between the continuous and discrete variables. First, we will compare the

67

5. Efficient Approximation of Quadratic MI-Problems

Figure 5.3.: (left) the smoothed cube model with low geometric complexity. (right)

the pinion model with many sharp features.

Table 5.3.: Orientation Field Timings in s

model 10k 50k 200k 800k

armadillo 0.3 1.2 6.3 33.9

cube 0.11 0.5 2.8 18.5

Table 5.4.: Parametrization Field Timings

model 10k 50k 200k 800k

armadillo 1.3 5.3 21.4 100.3

cube 0.15 0.9 6.7 55.1

runtime of the here presented optimized solver with a non-optimized variant used in

[BZK09]. To give one representative example the, orientation field computation on the

lever model of [BZK09] took 3.3s compared to 0.22s while the parametrization tim-

ing decreases from 19.9s to 2.8s. However, further experiments showed that the runtime

strongly depends on the geometric complexity of the object. In Table 5.3 we compare the

timing of the orientation field computation of the armadillo model (Figure 5.4) and a

simple smoothed cube (Figure 5.3). For the same number of triangles the geometric

more complex armadillo (121 singularities) model needs more computation time than

the smoothed cube (8 singularities). In the case of constant geometric complexity the

runtime depends almost linearly on the number of triangles, enabling very large inputs.

A similar behavior can be observed for the parametrization problem in Table 5.4. The

algorithm behaves sensitive to the geometric input complexity and nicely adapts to sit-

uations of different difficulty which is due to the simultaneous rounding approach.

68

5.3. Evaluation

Figure 5.4.: A quadrangulation of the armadillo model, used in our benchmarking.

Its organic structure leads to more complicated optimization problems compared to

designed mechanical objects.

To underline the importance of the fill-in reducing reordering we did a separate exper-

iment where the pinion model (Figure 5.3) with many sharp features was parametrized,

leading to a huge set of dependent integer constraints. By applying the reordering the

computation took 1.3s and the system matrix had 418k nonzero entries compared to a

much slower runtime of 7.4s and 581k nonzero entries without the reordering.

69

5. Efficient Approximation of Quadratic MI-Problems

70

Part II.

Parametrization based Quadrilateral

Mesh Generation

71

Part II. Parametrization based Quadrilateral Mesh Generation

The second part of this thesis is devoted to parametrization based quadmesh gener-

ation. The main concept of this class of approaches consists in mapping the canonical

quadmesh, induced by the Cartesian grid of integer-isolines, i.e. {(u, v) ∈ Z×R∪R×Z},
onto the surface. If this mapping fulfills some special conditions, that will be developed

and explained in detail in Chapter 6, the mapped grid induces a quadmesh on the

given surface. An illustration of this methodology can be found in Figure 5.5. Some

of the special conditions arise at the artificial boundary of the parametrization domain

Ω, where compatibility between the mapped grid-lines has to be ensured. Especially

these compatibility conditions introduce integer degrees of freedom which necessitate

the application of mixed-integer solvers as introduced in the first part.

f

f−1

Ω

Figure 5.5.: The main idea of parametrization based quadmesh generation methods

consists in mapping the canonical quadmesh formed by the 2D Cartesian grid onto the

surface. First the mesh is parametrized, i.e. cut and flattened by a function f onto a 2D

domain Ω. Then the intersection between the Cartesian Grid and the domain Ω ∩G is

inversely mapped onto the surface, where a quadmesh is achieved by contouring. Special

compatibility conditions are required along the colored cut-curves.

This part is structured as follows: First the mathematical framework of valid map-

pings, so called Integer-Grid Mappings (IGM), is specified and discussed in Chapter

6. Due to the enormous complexity of the induced mixed-integer problems, searching

directly for high-quality IGMs is infeasible. The reasons are a huge number of dis-

crete degrees of freedom in combination with complicated non-linearities. Therefore in

Chapters 7 and 8 we develop two indirect approaches that are build on simplifying as-

sumptions in order to enable efficient algorithms for the generation of high-quality IGMs

73

and thus high-quality quadmeshes.

The first approach, called layout guided approach, exploits a user-specified base-layout,

which dramatically reduces the dimension of the discrete search space and additionally

eliminates the non-linearities. This approach is well suited for reverse-engineering appli-

cations, since the user specifies the base structure of the resulting quadmesh. However,

a drawback of the layout guided approach consists in the experience that specification

of the complete base-layout can be very time consuming and necessitates expert knowl-

edge. To overcome these limitations, the second approach, which is called orientation-

field guided approach and presented in Chapter 8, is designed to perform fully automatic.

This orientation field guided approach is based on a splitting of the overall problem

into two sub-problems, namely orientation field computation and orientation preserving

parametrization, described in Sections 8.2 and 8.4 respectively. Intuitively the construc-

tion of the overall IGM is split into first estimating the rotational part of the mapping

followed by generating the best mapping under the assumption of the estimated rota-

tions. Due to the splitting, the non-linearities can be effectively removed. Additionally,

the huge number of integer degrees of freedom, which are estimated in the rotational

part, loose their global impact such that a good solution of the induced mixed-integer

problem can be found in reasonable time. Moreover, the second approach not only

enables a fully automatic method but in addition to it allows for a very flexible set

of optional user-provided guiding constraints as presented in Section 8.6. It turns out

that the layout based approach can be seen as a special case of the orientation field

guided approach, where the user provides all irregular vertices and a complete base-

layout. However, in the orientation field approach there is no need to specify everything

from scratch and a user can iteratively improve the automatic solution by additional

guidance constraints until she is satisfied. Often, even the first fully automatic solution

leads to a pleasing result and otherwise typically a few additional high-level constraints

are sufficient to achieve a quadmesh with the desired characteristics.

The main limitation of the orientation-field guided approach consists in the separa-

tion of rotation and metric estimation, which is necessary to achieve practical runtime.

Therefore it turns out that often exploiting information of geodesic distance relations in

the first rotation estimation step is beneficial. One example consists in preventing the

generation of irregular vertices that are closer to a feature line than the desired edge

74

length of the quadmesh. Therefore the final Chapter of this part, i.e. Chapter 9, is not

directly related to parametrization based quadmesh generation but instead develops an

algorithm to efficiently compute exact geodesic distance fields on triangle meshes. These

distance fields can be computed not only w.r.t. point sources but moreover w.r.t. polyg-

onal line sources.

75

76

6. Integer-Grid Mappings

The main principle of parametrization based quadmeshing algorithms is the mapping

of the canonical quadmesh formed by the 2D Cartesian grid of integer iso-lines onto a

surface embedded in 3D, see Figure 5.5 for an illustration. However, this mapping has

to fulfill several requirements such that the image of the 2D integer-grid stitches to a

valid quadmesh on the surface.

In the following we will restrict to piecewise linear mappings given per triangle. More

precisely given a triangle meshM = (V,E, T) composed of vertices, edges and triangles,

a mapping f is given as the union of all individual triangle mappings specified by the

images of their corresponding three vertices:

fi : (pi, qi, ri) ∈ R3×3 7→ (ui, vi, wi) ∈ R2×3

Note that following [KNP07] each triangle is an individual chart and consequently a

single vertex might have multiple different images.

The class of Integer-Grid Mappings is defined to be the subset of all these mappings,

which additionally correctly stitch the grid of integer iso-lines to a valid quadmesh. The

necessary and sufficient conditions are the following:

� Transition Functions: The transition function gi→j from the chart of triangle ti

into the chart of a neighboring triangle tj and identifying their common edge has

to be an integer grid automorphism [KNP07, BZK09] of the form

gi→j(a) = R
rij
90 a + tij (6.1)

consisting of a rij ∈ {0, 1, 2, 3} times π/2 rotation and an integer translation

tij ∈ Z2.

� Singular Points: With the above transition functions it is possible to represent

cone singularities with quarter-indices which are characterized by a nonzero angle

77

6. Integer-Grid Mappings

y

x

z

y

x

f f

Figure 6.1.: Integer-Grid Mapping: A local foldover where two adjacent triangles have

different orientations in the domain induces non quad elements like 2-gons and 6-gons

in the mapping (left), while a consistent orientation correctly maps the integer grid to

quad elements only (right).

defect1 in the domain. Let S be the set of all singular points, then in order to

guarantee a pure quadmesh all singular vertices have to be mapped to integer

locations in the domain, i.e.

f(si) ∈ Z2 ∀si ∈ S (6.2)

� Consistent Orientation: All mapped triangles (u,v,w) with u,v,w ∈ R2 should

have a positive orientation, meaning that

det [v − u,w − u] > 0 (6.3)

The consistent orientation condition is illustrated in Figure 6.1.

1The angle defect is defined in the usual way to be 2π−
∑

i αi for interior and π−
∑

i αi for boundary

vertices

78

6.1. MINLP Formulation

6.1. MINLP Formulation

In parametrization based quad-remeshing typically a variational quality metric Eq(f) is

chosen that penalizes undesired distortions of the resulting quad elements on the basis

of f . Often Eq(f) is designed to be a (convex) quadratic functional that on the one hand

prefers the alignment of quad elements along dominant principal curvature directions

and on the other hand tries to achieve a user specified element density. Usually the

unconstrained minimizer of Eq(f) is not an Integer-Grid Mapping and therefore in order

to achieve a quadmesh we would like to solve the following instance of MINLP:

minimize Eq(f) s. t. (6.1), (6.2), (6.3) (6.4)

The above naive problem formulation (6.4) consists of 6|V |+ 3|E| unknowns with at

least 3|E| discrete variables. Due to (6.1) there are 2|E| many equality constraints that

are nonlinear in rij and linear in tij. Furthermore (6.3) generates |T | many non-convex

quadratic inequality constraints. Although these degrees of freedom can be reduced

along a spanning tree without loosing the optimal solution (see [BZK09]) the resulting

number of unknowns is still in the order of O(|V |) in the continuous as well as in the

discrete variables.

Unfortunately, problems of the class MINLP are very hard to optimize since they im-

ply all difficulties from continuous as well as discrete optimization. Even by neglecting

all integer constraints there is little hope of finding good solutions since due to (6.3)

the continuous relaxation is within the very difficult class of non-convex Nonlinear Pro-

grams. Figure 6.2 gives an idea on how complicated the situation is. Optimizing the

unfolding of the one-ring neighborhood of a vertex w.r.t. a convex energy functional and

subject to triangle orientation constraints of Equation (6.3), the optimization typically

gets trapped in a poor local minimum when started from a random initial point. Conse-

quently, in case of a triangle mesh with thousands of vertices finding a global optimum

is extremely difficult.

Accordingly, in the next chapters we will investigate different simplification assump-

tions in order to find high-quality integer-grid mappings in reasonable time.

79

6. Integer-Grid Mappings

f f

Figure 6.2.: Given six planar triangles the global optimum of a convex parametrization

energy is the identity function (left). Optimizing the same energy with non-convex tri-

angle orientation constraints (6.3) from a random starting point, the solver gets trapped

in a poor local minimum (right). The result is indeed a valid solution since all triangles

have a positive orientation. However, from this local minimum there is no continuous

deformation which reaches the global minimum without violating at least one triangle

orientation constraint in between.

80

7. Layout guided Approach

The main idea of layout guided approaches consist in exploiting a known partitioning

of the surface into rectangular patches. Roughly speaking, each rectangular patch is

mapped to an integer-sized rectangle in the 2D domain which induces a quadrangula-

tion of the surface patch (cf. Chapter 6). There is no reason that the quadmeshes of

neighboring patches stitch together seamlessly. Accordingly, the mappings of neighbor-

ing patches have to be constructed subject to some transition functions which equate

the number of generated quads along the patch boundary. In this chapter, based on

[BVK10], we develop a consistent layout based quad meshing approach.

In the view of general integer-grid mappings, as introduced in Chapter 6, the space

of possible mappings is strongly reduced by respecting the given patch layout. It turns

out that all rotational degrees of freedom of the transition functions are removed, which

directly implies that all irregular vertices are determined by the given layout. As shown

next, the resulting mixed-integer problem, related to (1) the regular subdivision of every

rectangular patch into a quadmesh and (2) to a geometrically optimal embedding of the

induced quadmesh, is much simpler compared to the unguided general approach.

The only remaining difficulty consists in the consistent orientation of mapped trian-

gles. If the surface patches are far away from being rectangularly developable, large

distortions in the mapping might arise and sometimes induce some flipped triangles.

However, since the consistent orientation constraint is non-convex, including it directly

into the optimization is not an option. As a solution, we propose a richer set of transi-

tion functions, which act between the mappings of neighboring patches, that allow for

arbitrarily shaped quadrilateral domains. As a result, the generated mapping is typically

more isometric and free of foldovers in the vicinity of the constrained patch corners (see

for example Figure 7.2).

81

7. Layout guided Approach

(a) (b) (c)

Figure 7.1.: Reverse Engineering Pipeline: (a) The input is a dense, unstructured tri-

angle mesh. (b) The user provides a coarse layout controlling the quadrangulation.

Singularities can only occur at nodes of this layout. (c) A distortion minimizing param-

eterization is computed to extract a pure quadmesh.

Layout guided approaches are often applied in the context of reverse engineering,

i.e. the procedure of converting a given unstructured triangle mesh into such a structured

quadrangulation. Figure 7.1 depicts a typical reverse engineering pipeline.

Although, even in this setting a fully automatic algorithm would be preferable, some-

times design decisions depend on the intended usage and cannot be forecast by pure

geometric considerations. Therefore in reverse engineering full user-control, where the

user can easily provide the topology, i.e. the number and position of singularities, and

some alignment constraints for the resulting mesh, is typically preferred over time effi-

ciency. This can be achieved in a simple way by using coarse layouts which partition the

surface in quadrilateral patches as illustrated in Figure 7.1b. From this layout a glob-

ally smooth parameterization can be computed by assigning a two-dimensional chart to

each patch and connecting the parameterizations of neighboring charts with so called

transition functions (see Figure 7.1c).

The resulting mesh quality strongly depends on the metric distortion of the parameter-

ization and on the alignment to sharp features. Consequently we present a new method

to handle both tasks in a robust way, enabling the usage of global parameterization

techniques for reverse engineering. Our main contribution in this chapter consists in

a chart optimization technique which minimizes the distortion of the resulting global

parameterization. In contrast to other methods each chart is allowed to be an arbitrary

5 degree-of-freedom (DOF) quadrilateral with interior angles possibly differing from 90

degrees. As a result we need to specify generalized transition functions between these

82

(a)

(b)

(c)

Figure 7.2.: (a) A global parameterization using unit charts leads to large distortions

and foldovers for a simple car model. (b) Even with optimized rectangular domains the

distortions get large where the patches have a trapezoidal shape. (c) Our generalized,

quadrangular parameterization leads to low distortion. Notice that in this example no

alignment constraints were applied.

charts. Other important ingredients of our practical reverse engineering method are

alignment constraints and T-Vertices, enabling simplified layout design. Figure 7.2 il-

lustrates the gain in quality due to our chart optimization where chart corners are chosen

to form a unit square (a), an optimized rectangle (b) and an optimized general quadri-

lateral (c).

Comparison to previous work: A user designed coarse layout, here called singularity

graph, was also used in [TACSD06] to compute globally smooth harmonic parameteri-

zations. These layout-based techniques are closely related to our method. Therefore we

83

7. Layout guided Approach

will discuss them in more detail.

The method of Dong et al. [DBG∗06] uses simple unit squares as charts for a globally

smooth parameterization. This is justified because in their layout, neighboring surface

patches, originating from the Morse-Smale complex of the Laplacian eigenfunction, have

similar size. Furthermore the layout vertices, representing the mesh singularities, are

relaxed on the surface to prevent foldovers and large distortions. In reverse engineering

such a relaxation technique is not reasonable since it interferes with the desired user-

control. Figure 7.2a shows the result of a globally smooth parameterization onto unit

square shaped charts with a fixed user provided layout. The result contains large dis-

tortions and foldovers reflecting the fact that neighboring surface patches are far from

being equally sized. Thus, obviously unit square charts are not sufficient for our setting.

If one would restrict the layout to quadrilaterals and choose all free coefficients to

one the globally smooth parameterization technique of Tong et al. [TACSD06] is ex-

actly the same as the one discussed in the last paragraph. Notice that this equality is

non-trivial since both papers use a different formalism to derive the final global linear

system. Besides, the parameterization of Tong et al. is more general because it allows a

larger class of charts. Each chart is a polygon where the vertices lie on integer positions

and all edges are aligned to the coordinate axes, accordingly all interior angles of a chart

are multiples of 90 degree. In our car example this means moving from unit squares

to rectangular charts with two DOF’s, namely the two independent edge lengths. In

the original method this new DOF’s are chosen manually or by using a heuristic which

simply rounds the length of the corresponding layout edges to integer. Figure 7.2b shows

the result of the car example using rectangular charts. Here we already used our chart

optimization technique presented in Section 7.2, instead of their heuristic, to minimize

the length distortion. However, we still observe large distortions, for example near the

corner of the front window.

The problem is that the surface patches are far from being rectangular. Consequently,

we consider an even more general class of charts, i.e. we allow charts to be arbitrary

quadrilaterals with five DOF’s. We exploit these DOF’s to minimize the distortion of

the parameterization and the result can be seen in 7.2c. Even without alignment con-

straints, the quadmesh edges follow the user prescribed layout and the length distortions

are much lower. This introductory example motivates our design choices for a practical

84

7.1. Layout Parametrization

Figure 7.3.: The left part shows the layout of a multi-chart parameterization. Vertices

of the layout graph (red) lie at mesh vertices and edges of the layout graph (blue) cut

several mesh edges. Each inner vertex of a patch Pα stores its parameter coordinates w.r.t

the local frame of chart Cα. For all pairs of neighboring patches transition functions φαβ

exist which translate between their charts. Notice that the red quadrilateral, connecting

the four corners of Chart Cα, mapped to the surface is generally not identical to the

blue layout.

reverse engineering method.

In the subsequent paragraphs our method is explained in more detail. We start with

a mathematical description of chart based global parametrization in Section 7.1, where

our main contribution, i.e. , the domain optimization, is given in Section 7.2. Finally,

we conclude this chapter with an evaluation in form of some exemplaric meshing tasks

in Section 7.3.

7.1. Layout Parametrization

The input to our quadrangular multi-chart parameterization method is a triangle mesh

M = (V,E, F) of arbitrary genus, which is a set of vertices, edges and faces, and a

layout graph G = (V , E ,F). For each edge of the layout graph the user can additionally

85

7. Layout guided Approach

set a tag which enforces the alignment of the parameterization onto this layout edge, as

described in Section 7.2. The scenario of a multi-chart parameterization is depicted in

Figure 7.3. The vertices of the layout graph (red points) lie at triangle mesh vertices

and each edge of the layout graph intersects several mesh edges (blue points). In this

way all mesh vertices are partitioned into several surface patches, which are disjoint

except for the layout vertices that belong to all neighboring patches. Each such patch

Pα is equipped with a two-dimensional chart Cα. Assume for simplicity that each layout

graph face has exactly four vertices, we will discuss in Section 7.2 how to incorporate

more general settings. The task is now to compute a piecewise linear multi-chart param-

eterization, i.e. each vertex vi ∈ R3 belonging to Pα is mapped by the function φα to the

parameter coordinates uαi ∈ R2 expressed w.r.t the frame of chart Cα. Additionally for

triangles with vertices in different patches, for instance Pα and Pβ, we need a transition

function φαβ to translate between their charts in order to parameterize them. Obviously

both directions are possible and inverse to each other φβα = φ−1αβ and the transition from

one chart into itself is simply the identity φαα = Id2.

A discrete harmonic parameterization of a surface with disc topology mapping to a

single chart is a well studied topic where typically the boundary of the surface is mapped

to the boundary of a disc and each interior vertex has to fulfill the discrete harmonic

equations

∑
j∈Ni

w̄ij(uj − ui) =

(
0

0

)
(7.1)

where Ni are the one-ring neighbors of vertex vi and w̄ij are normalized edge weights

which sum to one
∑

j∈Ni w̄ij = 1. In all our examples we used the normalized discrete

harmonic weights

wij =
1

2
(cotαij + cotβij) with w̄ij = wij/

∑
j∈Ni

w̄ij (7.2)

where αij and βij are the two angles opposite to edge eij. There are many other good

choices like Floater’s Mean Value Coordinates, see [HLS07] for more details. The key

observation is that in our multi-chart parameterization setting we can compute a har-

monic parameterization in the same way. The only difference is that instead of fixing a

whole boundary we now only fix the corner vertices of the layout graph in each chart and

use the transition functions to compute the harmonic conditions in a common frame:

86

7.1. Layout Parametrization

∑
(j,β)∈Ni

w̄ij(φβα(uβj)− uαi) =

(
0

0

)
(7.3)

.

In this formulation a global relaxation is achieved. If the transition functions are affine

the combination of the above equations for all free vertices form a global linear system

of dimension 2(n− k)× 2(n− k) where n is the number of triangle mesh vertices and k

is the number of layout vertices. The translational part of the affine transition function

as well as known values of constrained layout corners are moved to the right-hand-side.

Remember that the coordinates of layout corners cannot be unique because they belong

to different charts with different frames. So we need to specify 4|F| many corner posi-

tions.

These parameter coordinates of the four patch corners can be in general position

(keeping the same orientation as on the surface). However, we choose the first one to be

the origin and the second one to lie on the first coordinate axis which makes the represen-

tation unique. So we end up with five DOF’s (a, b, c, d, e) for an arbitrary quadrilateral

(see Figure 7.2c). The transition function between neighboring charts, which share a

common edge (red), are simple affine functions, combinations of translations, rotations

and a scaling as depicted in Figure 7.4.

φαβ = T−1β R−1β SRαTα (7.4)

They can be precomputed as 3 × 3 matrices in extended coordinate representation

before accumulating the resulting values into the global system matrix.

The only question left is how to choose adequate corner parameter coordinates (a, b, c, d, e)

for a given patch. In [TACSD06] the average length of two opposing layout edges rounded

to an integer was used to fix width and height of the corresponding rectangle. In the case

of a five DOF chart we could do something similar by using all lengths of the patch’s

boundary. However, as explained in the next section the available DOF’s can be used to

optimize the resulting parameterization in a more founded but still efficient way, which

in general leads to better results.

87

7. Layout guided Approach

Figure 7.4.: A common coordinate frame of two charts Cα and Cβ can be constructed

by first translating a common point into the origin, then rotating the common edge to a

coordinate axis and finally scaling along this axis to end up with the same edge length.

The transition functions between the charts are constructed in the same way by using

the inverse of either α or β functions.

7.2. Domain Optimization

The idea of our chart optimization algorithm is to minimize the metric distortion of the

parameterization φ. The local distortion near a surface point p0 in direction v (in local

coordinates of the tangent plane) is described by the first order Taylor expansion

φ(p0 + v) ≈ φ(p0) + Jφ(p0)v ⇒ φ(p0 + v)− φ(p0) ≈ Jφ(p0)v (7.5)

where Jφ is the Jacobi matrix which can be written as two rotations and a scaling by

applying the singular value decomposition

88

7.2. Domain Optimization

Figure 7.5.: Mapping a small disc from the tangent plane around a point p0 the trans-

formation can be approximated by the Jacobi matrix Jφ of the mapping φ. This means

mapping circles into ellipses where the length of the principal axes are related to the

singular values of Jφ.

Jφ = U

[
σ1 0

0 σ2

]
V T (7.6)

Mapping a unit length vector ‖v‖ = 1, lying in the tangent plane of p0, into its chart

the resulting vector has length ‖Jφv‖ ∈ [σ1, σ2]. Consequently a circle on the surface

is mapped to an ellipse in the chart as illustrated in Figure 7.5. There are some well

known special cases [HLS07]:

1. σ1 = σ2 is a conformal mapping which maps circles to scaled circles

2. σ1 · σ2 = 1 is an equiareal mapping

3. σ1 = σ2 = 1 is an isometric mapping with no distortion

Clearly an isometric mapping is the best we can hope for. So we try to choose

our chart corners to get as isometric as possible. The desired isometry measure is

E = |σ1 − 1| + |σ2 − 1|. To approximate this measure we take the quadratic Frobenius

norm of the 2D strain tensor

E = ‖JTφ Jφ − I‖22 (7.7)

which is 0 in the case of isometry and (σ2
1 − 1)2 + (σ2

2 − 1)2 when the mapping is

conformal.

89

7. Layout guided Approach

Using a triangle mesh where the mapping is piecewise-linear, the Jacobi-matrix of a

triangle is constant and depends linearly on the parameter values u0, u1 and u2 of the

triangle,

Jφ = [u0u1u2]

[
p0 p1 p2

1 1 1

]−1  1 0

0 1

0 0

 (7.8)

In the above equation p0, p1 and p2 are the 3D triangle vertices in local 2D coordinates

and u0, u1 and u2 are the corresponding parameter values. Therefore JTφ Jφ is quadratic

and the isometry measure of a triangle t is a quartic polynomial in the parameter values,

Et(u0, u1, u2) = ‖JTφ Jφ − I‖22

The aim of this section is to optimize the isometry of the harmonic parameterization

by finding adequate parameter coordinates for the four corners of a chart. Consequently

we need to express the isometry measure of a triangle w.r.t. these values (a, b, c, d, e). To

approximate the relation between the global parameterization and the change of chart

corner positions we assume that the dependency is bilinear, which is a good approxima-

tion for all interior vertices of a chart:

ui = ui(a, b, c, d, e) = si(1− ti)

(
a

0

)
+ (1− si)ti

(
b

c

)
+ siti

(
d

e

)
(7.9)

.

Since we use these bilinear coordinates si and ti in the sense of freeform deformation,

the parameter coordinates ui are linear in the corner positions (a, b, c, d, e) and so the

measure Et(a, b, c, d, e), now expressed in dependency of the four chart corners, is still

a quartic polynomial. Finally we sum up the measures of all triangles lying completely

inside the polygon formed by the chart corners that we want to optimize and weight

them by the area of the corresponding surface triangle.

Eα =
∑
t∈Cα

Et(a, b, c, d, e) · Aφ−1(t) (7.10)

In this optimization phase all layout edges are always tagged for alignment which

ensures that all vertices of patch Pα are mapped into Cα. This energy only depends on

five variables and is very well conditioned because of its geometric nature. Therefore we

can use a simple and efficient Newton method to find a local minimum. Since the bilinear

90

7.2. Domain Optimization

dependency is only an approximation we have to recompute the parameterization after

each chart optimization. To initialize the charts we can simply use unit charts or the

heuristic of [TACSD06]. The complete algorithm works as follows:

1. tag all layout edges for alignment

2. compute an initial parameterization with unit charts

3. iterate k times

a) optimize all charts individually

b) update transition functions

c) recompute parameterization

4. restore user-provided alignment tags and compute final parameterization

The bilinear relation is close to the exact dependency, therefore in all our experi-

ments three iterations were sufficient to converge. Notice that our method is related to

[DBG∗06]. However, instead of relaxing the layout vertices on the surface, we relax them

within the charts. This is more suitable for reverse engineering where the user provided

layout is in general not allowed to be changed. In the next section we will discuss how

to incorporate layout alignment constraints into the computation.

Alignment Constraints The user can tag a subset of layout edges for alignment which

ensures that it will be explicitly represented in the meshing. For the parameteriza-

tion this means that the mapping of a tagged layout edge should be the straight line

connecting both corresponding corners in the chart. Or in other words the parameter

coordinates along the layout edge are not independent. The parameter coordinates at a

point pe = (1− λ)pi + λpj on the layout edge cannot be computed directly in the form

ue = (1− λ)ui + λuj because ui and uj are represented w.r.t different charts (see 7.6a).

However by employing the transition function, we can express the alignment constraint

in a simple form where the image of the layout edge is constrained to have the first

coordinate equal to zero. This is exactly the lower right setting in Figure 7.4:

uγe = (1− λ)SRαTαu
α
i + λRβTβu

β
j

!
=

(
0

∗

)
(7.11)

.

91

7. Layout guided Approach

(a) (b)

Figure 7.6.: (a) The parameter values at a layout edge can be computed at the intersec-

tion points of triangle mesh edges pe by incorporating the transition function between

both charts. (b) A local refinement of a quadrangular layout has global support (top).

By allowing T-Vertices, the refinement of the layout remains local (bottom).

The global linear system already has full rank, therefore after adding the alignment

constraints we have to relax some other equations to be optimized only in least squares

sense. A good choice are the harmonic constraints of all vertices which are involved in

alignment constraints. This means pulling the parameterization onto the layout edge

by allowing slight non-harmonicity near the constraint. Notice that our alignment con-

straints restrict only one coordinate of the parameterization and there is still a global

relaxation in orthogonal direction. Finally the parameterization is formulated as a mixed

least squares system of the form[
ATA BT

B 0

](
x

y

)
=

(
AT b

c

)
(7.12)

where the equations Bx = c are fulfilled exactly and the equations Ax = b are satisfied

in a least squares sense. In the next section we will describe how to simplify the layout

generation by allowing T-vertices.

92

7.2. Domain Optimization

(a) (b)

Figure 7.7.: (a) Allowing T-Vertices in the layout is possible in a simple way by com-

puting a transition function per layout edge. (b) To get a closed quadrangulation the

number of samples on opposite edges of a chart must be equal.

T-Vertices Restricting the layout graph to consist only of four sided polygons, as done

before, is too restrictive in practice. Performing a local refinement to keep more features,

a global refinement would result as illustrated in Figure 7.6b. Remember that in many

reverse engineering scenarios this layout is directly designed by a user and the effort

should be as low as possible. Therefore we allow an arbitrary number of T-vertices per

layout edge. This can be easily achieved by computing a separate transition function

for each part of a layout edge. The parameter coordinates of T-vertices in a chart are

defined by linear interpolation of the corners to keep the number of variables of a chart

constant and allow to extract a mesh consisting only of quadrilaterals as explained in

the next section.

Meshing The meshing proceeds as follows, first a consistent quadmesh is constructed

in the 2D charts of the parameterization which is then mapped to the surface. The

four corners of a chart form a four sided polygon in the plane whereas each edge can

be partitioned by T-vertices into several subintervals as depicted in Figure 7.7. By

backmapping the chart polygon edge it is possible to compute the desired number of

samples nd which is the quotient of the length of the backmapped curve and the target

edge-length for the meshing provided by the user. This value may be chosen differently

for each layout edge. However in the case of a consistent quadmesh the number of

samples cannot be chosen arbitrarily. There are the following consistency constraints:

93

7. Layout guided Approach

1. The number of segments (quadmesh edges) on opposite edges of the chart polygon

must be equal. In the example of Figure 7.7a this means n1 + n2 + n3 = n4 + n5

and m1 = m2.

2. Each T-vertex lies on a sampling position.

3. In each subinterval the samples are distributed linearly which guarantees that

neighboring charts stitch together compatibly.

With these restrictions a consistent quadmesh can be constructed by connecting op-

posite sample pairs. This is always possible since condition 1 states that the number of

samples is equal on opposing sides. We assemble the two equations per layout face in a

common linear system Bn = 0 and compute free variables via Gauss elimination as done

in [TACSD06]. Simply fixing the free variables by rounding the corresponding entries

from the local desired number of samples nd leads to poor results since the free variables

computed by the Gauss elimination strongly depend on the numbering of the variables

and can lead to strong deviations from the expected number of samples on other edges.

Therefore we first compute the best continuous solution nc which meets the constraint

Bnc = 0 and thus minimizes the deviation from the desired values nd in a least squares

sense. As a result we solve the linear system from equation 7.12 with A = Id, B = B,

b = nd and c = 0. Then rounding the free variables to the integer closest to the value

of the continuous solution nc leads to appealing results because the continuous solution

captures the global necessary edge-length distribution.

7.3. Evaluation

In this section we will discuss the properties of the presented method by exploring

some results. The first example is a sheared cube with unit edge length, depicted in

Figure 7.8a. This simple model illustrates the difference between the parameterization

of [TACSD06] and our method which are displayed in (b) and (c) respectively. In (b)

edge length distortions and S-shaped isolines are unavoidable because of the inherent

tangential continuity of this method. This can be seen by unfolding neighboring faces of

the cube where the isolines in the case of 7.8b are smooth since the necessary curvature

of the cone singularities is distributed over the whole geometry. In contrast to this result

our method 7.8c concentrates the tangential curvature at feature lines, i.e. regions of

high geometric curvature, where tangential continuity is not important. This example

94

7.3. Evaluation

(a) (b) (c)

Figure 7.8.: (a) A sheared cube with unit edge length is segmented along the geometric

edges. (b) Restricting to charts with 2 DOF’s, length distortions and S-shaped isolines

are unavoidable since the necessary curvature of the cone singularities is distributed

over the whole geometry. (c) Our method concentrates the tangential curvature at

geometric features where they don’t influence the mesh quality. This approach leads to

the expected result of uniformly shaped quadrilaterals.

is indeed a hint on how to use the presented method. Charts with five DOF’s are

advantageous for patches with a layout, lying on geometric features while charts with

two DOF’s are better suited within smooth or flat regions. Typical objects consist of both

types of regions, such that the user should select for each patch which optimization is

performed. This is possible in a straightforward way due to the fact that the optimization

of individual charts is independent.

The second example is the car model depicted in Figure 7.2 and already discussed

in the introduction. Figure 7.9 shows all chart polygons after 3 steps of optimization

with 2 DOF’s and 5 DOF’s in (a) and (b) respectively. The presented optimization

algorithm finds well shaped chart polygons robustly and produces almost symmetric

configurations since the user-provided layout is almost symmetric. Compared to the

time which is necessary for the solution of the global linear system, the optimization of

charts is neglectable. Altogether the computation timings are comparable to [DBG∗06]

while in practice we need fewer iterations to converge. In all our examples we used the

sparse direct solver SuperLU as proposed in [BBK05].

In Figure 7.10 we demonstrate the usage of alignment constraints. Between the front

window and the hood of the car there is a sharp edge which should be preserved in

the final mesh in order to prevent sampling artifacts. Therefore, the lower red layout

95

7. Layout guided Approach

(a)

(b)

Figure 7.9.: (a) The corner positions of the car model’s charts are optimized to lie

on a rectangle. The resulting parameterization maximizes the isometry. (b) In this

optimization the corners were allowed to lie in general position. Thus the resulting

polygons are planar approximations of the surface patches.

(a) (b)

Figure 7.10.: (a) The sharp corner between front window and hood is not represented

in the globally smooth parameterization without alignment constrains. This leads to

sampling artifacts, i.e. triangles that cut away the sharp corner. (b) The layout curve

is tagged for alignment and consequently the mesh edges are pulled onto it, leading to

a better approximation of the input geometry.

curve is tagged for alignment. As one can see the isoline of the quadmesh connecting

both endpoints of this layout curve in Figure 7.10a is pulled onto the layout curve in

Figure 7.10b without introducing unnecessary distortion. However by using alignment

constraints the computation time for solving the resulting mixed least-squares linear

96

7.3. Evaluation

(a) (b)

Figure 7.11.: (a) A rough layout (highlighted in blue) leads to large length distortions

near a geometric feature. (b) T-vertices can be used to locally refine the layout with

minimal effort. The new layout captures the geometric feature much better and avoids

the length distortions.

system is higher because of the doubled dimension.

The third example is the rockerarm model from Figure 7.1. For this mechanical

part first a coarse layout was designed to guide the meshing. Figure 7.11a shows a

close up from the backside where large distortions appear near a geometric feature, not

represented in the layout. In 7.11b the layout was locally refined by using T-vertices.

In this way the designer can control the reverse engineering procedure hierarchically

by starting with a rough layout which is refined until all features are captured up to

the desired accuracy. The overall effort to design a layout is strongly reduced by using

T-vertices.

97

7. Layout guided Approach

98

8. Orientation-field guided Approach

This class of methods is characterized by explicit control over local properties of quad el-

ements in the mesh by means of the guiding fields [BLP∗12]. Typically, the most interest-

ing local properties are the orientation and the size of quad elements which can be speci-

fied by a cross field, also called frame field, which smoothly varies over the entire surface.

A single cross can be seen as the representative of a parallelogram

which is formed by parallel translation of both intersecting lines, as

illustrated on the right. For each cross there are essentially four de-

grees of freedom that can be encoded in different ways. Often a cross

field is given in a polar representation where we split the cross into

its angular and length components which are then stored in two individual fields, namely

an orientation field and a sizing field. Important subclasses with a reduced number of

degrees of freedom (DOF’s) are 4-symmetric direction fields [RVLL08, LJX∗10] which

represent orthogonal crosses where both orientations are rigidly coupled and isotropic

sizing fields where both lengths are equal.

A cross field exhibits the same types of singularities that can be observed in quad

meshes and consequently the generation of a highly regular quad mesh is strongly re-

lated to the generation of a cross field with few singular points. Depending on the

application, a cross field can be either designed manually or generated automatically.

Automatic methods are typically driven by principal curvature information which can

be shown to optimize the approximation quality [D’A00].

Apart from the pure guidance point of view, note that field guided methods decompose

the difficult quad mesh generation problem into several simpler subproblems. This

advantage alone motivates their usage since in each sub-step different aspects of the quad

mesh can be optimized individually which turns out to be much more tractable than

optimizing all aspects simultaneously. A prototypical field guided method is depicted in

Figure 8.1 which consists of three steps:

99

8. Orientation-field guided Approach

(a) (b) (c) (d)

Figure 8.1.: Prototype of a field guided method: Given an input triangle mesh (a) in

the first step an orientation field (b) is computed which represents the local rotation

of quad elements. In the second step a sizing field (c) is determined which specifies

the sample density, which in this example is isotropic and close to uniform, with slight

deviations color coded from blue to red. In the third step, a consistent quadmesh (d) is

generated that closely reproduces both guiding fields.

1. Orientation field generation

2. Sizing field generation

3. Quad mesh synthesis exploiting the results of 1 and 2.

One advantage of field guided methods is that in each step the most suitable data

representation can be chosen independently of the other steps. For example, a polar

representation is often more powerful for steps 1 and 2 while a vector based representa-

tion may be preferred in step 3. The downside of this decomposition is that it is more

difficult to integrate direct optimization of quadrangulation quality measures into the

choice of cone locations which are determined at step 1. An iteration repeating the

steps, and using information from step 3 in step 1 and 2 offers one possible solution.

In the following we will present our orientation-field guided approach, which is based

on [BZK09]. In the first part we restrict to a constant sizing field, leading to almost

uniform quadmeshes. Other possibilities for the generation of reasonable sizing fields are

given in Section 8.3. Figure 8.2 illustrates the four steps of our orientation-field guided

quadmesh generation algorithm. First the salient orientations, where the orientation

of the quad elements is important to achieve a good approximation quality, are identi-

fied Figure 8.2a. In the second step, shown in Figure 8.2b, the salient orientations are

smoothly extrapolated over the surface to achieve a dense orientation field. This orien-

100

tation field is used to guide a parametrization, which induces an integer-grid mapping

(Figure 8.2c) reproducing the orientation-field singularities. Finally, the quadmesh can

be extracted by integer iso-line contouring as illustrated in Figure 8.2d. Each of these

steps will be explained in the subsequent sections.

(a)

(c)

(b)

(d)

Figure 8.2.: Quadrangulation example: (a) A sparse set of conservatively estimated

orientation and/or alignment constraints is selected on the input mesh by some simple

heuristic or by the user. (b) In a global optimization procedure a cross field is gener-

ated on the mesh which interpolates the given constraints and is as smooth as possible

elsewhere. The optimization includes the automatic generation and placement of sin-

gularities. (c) A globally smooth parametrization is computed on the surface whose

iso-parameter lines follow the cross field directions and singularities lie at integer loca-

tions. (d) Finally, a consistent, feature aligned quadmesh can be extracted.

101

8. Orientation-field guided Approach

8.1. Filtering of Salient Orientations

In the vicinity of flat or umbilic points, the principal curvature directions are ill de-

fined. Consequently, using the principal curvature directions as a dense guiding field for

quadrangulation leads to suboptimal results. Typical artifacts are noisy directions with

badly placed singularities or even clusters of unnecessary singularities. Generally, these

artifacts cannot be removed by cross field smoothing algorithms, since the configurations

often form local minima.

Therefore, in contrast to other methods, we aim at finding the smoothest cross field,

interpolating only sparse directional constraints that can be found in a reliable manner.

The directions we want to identify are in the spirit of feature lines, as computed in

[HPW05]. However in our case a simple heuristic which robustly identifies parabolic

regions is sufficient. Since parabolic regions are equipped with a well-defined orientation

they are the best candidates to guide a quadrangulation. Parabolic regions can be

identified by measuring the relative anisotropy of the principal curvatures

τ =
||κmax| − |κmin||

|κmax|
∈ [0, 1]

which is defined to be zero, if κmax is zero.

Computing meaningful curvatures on discrete triangle meshes is involved. A common

technique is evaluating the shape operator [CSM03] of a geodesic disk near a point p.

But depending on the radius r we will get different estimates. To achieve a more stable

result we compute for each point a set of shape operators Sr with different geodesic radii

r ∈ [r0, r1] and select the most promising one with a simple heuristic. A shape operator

Sr is said to be valid if all shape operators in the interval [r − w, r + w] have a relative

anisotropy larger than a prescribed threshold τmin and a mean curvature larger than K

to exclude almost flat regions. For all points which provide a valid shape operator, we

add a directional constraint. If there are multiple valid candidates for a single point

we choose the one with the most stable direction, i.e. the one with the minimal angle

deviation within its interval.

Fortunately all necessary coefficients of this heuristic have an intuitive meaning. Ap-

propriate directions should be stable within a range depending on the target edge length

h. Following this observation we choose w = h/4. Furthermore in our experiments we

chose r0 to be the average length of all triangle edges, r1 = h, τmin = 0.8 and K = 0.1/bs,

where bs is the radius of a bounding sphere. In general the quadrangulation result is not

102

8.2. Orientation-field Generation

d1


e

d 2

d3 d 4

(a) (b)

Figure 8.3.: (a) The four cross field directions in a triangle are parametrized by the

angle θ w.r.t. a local reference edge e. (b) Depicts a smooth cross field in the vicinity of

a cube corner, where the red arrows reflect the corresponding period jumps.

very sensitive w.r.t. these parameters, since similar cross fields can be generated with a

large range of different sparse constraints, generated with slightly different parameters.

8.2. Orientation-field Generation

In this section we will use the elegant formalism for N-Symmetry direction fields [RVLL08]

where a cross field (N = 4) on a triangle mesh M = (V,E, F) is defined by an angle-field

θ : F 7→ R assigning a real number to each face and a period-jump field p : E 7→ Z
assigning an integer to each edge. The main idea is to use the angles θ to determine a

single unit length vector-field which then extends to a symmetric cross field by applying

three rotations of π
2

as shown in Figure 8.3a. Because a cross consists of four vectors

between neighboring triangles it is necessary to specify which vector of the first cross is

associated with which vector of the second cross. All these topological issues are handled

by the period-jumps, as illustrated in Figure 8.3b for a smooth cross field near the corner

of a cube. In this section we will summarize only the discrete results about cross fields

that we need in this chapter. For more details see [RVLL08].

Measuring cross field smoothness After fixing the topology, measuring the smooth-

ness of a cross field reduces to measuring the smoothness of one of the four rotation

symmetric vector-fields.

103

8. Orientation-field guided Approach

The smoothness of a unit vector-field can be measured as the integrated squared

curvature of the direction field. Following [RVLL08], on a discrete triangle mesh it turns

out to be simply the sum of all squared angle differences between neighboring triangles:

Esmooth =
∑
eij∈E

(θi − θj)2

where θi is the angle of triangle i and neighboring angles are represented in a common

coordinate frame, which is always possible by flattening both triangles along their com-

mon edge. However, for a surface with non-zero Gaussian curvature it is not possible to

find a global coordinate frame. Therefore, a local coordinate frame is used for each tri-

angle, where the x axis is identical to the first edge e of the triangle (Figure 8.3a). Thus,

by incorporating the coordinate transformations between neighbors we can express the

smoothness energy of a cross field:

Esmooth =
∑
eij∈E

(θi + κij +
π

2
pij︸ ︷︷ ︸

θi w.r.t. frame j

−θj)2 (8.1)

where κij ∈ (−π, π] is the angle between both local frames and pij is the integer valued

period jump across edge eij. The cross field index of a vertex can be computed as

I(vi) = I0(vi) +
∑

eij∈N(vi)

pij
4

with the constant integer valued base index

I0(vi) =
1

2π

Ad(vi) +
∑

eij∈N(vi)

κij


and Ad(vi) is the angle defect of vertex vi. Only singularities of the cross field have a

nonzero index which is always a multiple of 1
4

[RVLL08], e.g. 1
4

and −1
4

for quadrangu-

lation configurations corresponding to valence 3 and 5 respectively.

Finding a smooth, interpolating cross field Equipped with these basic definitions we

are ready to formulate the optimization problem. Given a mesh M and a subset of faces

Fc ⊂ F with constrained directions θi = θ̂i, we search for the smoothest interpolating

cross field, i.e. we want to minimize (8.1). Accordingly we have to find an integer pij

104

8.2. Orientation-field Generation



uT
vT

[u0v0]

[u1v1] [u2v2]

(a) (b)

Figure 8.4.: (a) The three constrained faces (red) are the roots of dual spanning trees

(green) covering the respective Voronoi cells. Each cell contains only one constraint and

along all branches of the tree zero period jumps can be propagated without changing the

total smoothness energy. (b) With the angle θ w.r.t. the local reference direction (green)

the cross field directions uT , vT can be extracted and used for the parametrization. In

the computation two linear scalar functions (u, v) are sought whose gradients are oriented

consistently with the cross field directions.

per edge and a real valued angle θi per face.

Reducing the Search Space: Up to here there is a whole space of equivalent

minimizers to the energy (8.1). To understand this, assume we have already computed

a minimizer which for one triangle provides the angle θ0 and the three period jumps p01,

p02 and p03. If we now rotate the vector by a multiple of π
2
, i.e. set θ̃0 = θ0 + k · π

2

and compensate this change by updating the affected period jumps to p̃0i = p0i − k,

the smoothness energy is unchanged. We can repeat this procedure for all free triangles

f ∈ F \ Fc. Consequently the solution can be made unique by fixing one period jump

per free triangle to an arbitrary value, e.g. zero, without changing the energy of the

minimizer. Care should be taken not to fix edges whose dual path connects two con-

strained faces, as done in [RVLL08], or closes loops because in these cases the cross field

curvature along this path would be fixed to an arbitrary value and is not the intended

result of the minimizer.

A valid set of edges, whose period jumps are allowed to be set to zero, can be found

by constructing a forest of Dijkstra trees of the dual mesh as shown in Figure 8.4. Each

105

8. Orientation-field guided Approach

constrained face in Fc is the root of a separate tree such that no tree connects constrained

faces. The number of fixed edges is exactly |F \ Fc| since starting from the constrained

faces each other face of the mesh is conquered by adding a single edge. Notice that no

dual loop can be closed by a tree structure, such that we end up with a valid set of edges

which can be fixed to zero period jumps without changing the energy of the minimizer.

Obviously there are many other valid sets of edges which could be fixed. The reason

why we use trees living in the discrete Voronoi cells of the corresponding constrained

faces is that this choice minimizes the length of a path to its corresponding constraint

and so improves the accuracy of the greedy mixed-integer solver.

Additionally to the period jumps on tree edges each period jump between two adja-

cent constrained faces fi and fj can be fixed to pij = round(2/π(θ̂j − θ̂i−κij)), since pij

is only part of a single quadratic term in (8.1), which is independent from other variables.

In summary we end up with a mixed-integer problem consisting of |F \ Fc| ≈ 2|V |
real valued variables θi and |E| − |F \ Fc| ≈ |V | integer valued variables pij.

Mixed-Integer Formulation: To apply the greedy mixed-integer solver from

Chapter 5 it is sufficient to assemble the system of linear equations by setting the gra-

dient of the energy (8.1) to zero:

∂Esmooth
∂θk

=
∑

ekj∈N(fi)

2(θk + κkj +
π

2
pkj − θj)

!
= 0 (8.2)

∂Esmooth
∂pij

= π(θi + κij +
π

2
pij − θj)

!
= 0 (8.3)

Notice that the values on edges are antisymmetric, i.e. pij = −pji and κij = −κji,
which can lead to sign changes in equations (8.2) and (8.3). For all variables which are

not fixed, we set up a row and assemble all of them into a single matrix. After applying

our greedy mixed-integer solver, the result is a smooth cross field where the integer

valued period jumps define type and position of all singularities. Figure 8.5 compares

the result of our greedy solver with that of a direct rounding, where red and blue spheres

represent singularities with negative and positive index respectively.

106

8.2. Orientation-field Generation

Figure 8.5.: Greedy rounding yields a smaller smoothness energy and fewer singularities

(bottom), whereas the direct rounding produces unnecessary singularities and a higher

energy (top). Note that these are the singularities and the field as they emerge from the

solver, no singularity optimization has been carried out.

In practice we observed that some singularity positions, especially those in flat regions,

can sometimes be improved by a local search algorithm, as described in the next section.

Local Search Singularity Optimization: In a postprocess we optionally check

for each singularity, if the energy can be decreased by moving it to a neighboring ver-

tex. Moving a singularity along an edge eij means changing the corresponding period

jump pij. Notice, that by this operation only the right-hand-side of the linear sys-

tem is changed. Consequently we can pre-calculate the sparse Cholesky factorization

107

8. Orientation-field guided Approach

of this matrix once and then compute solutions for different right-hand-sides efficiently

[BBK05].

8.3. Sizing field computation

Depending on the application, the sizing field can be computed in different ways. The

shape of the elements in the quad mesh can be influenced by the type of the sizing

field which can be either isotropic or anisotropic. If squares are preferred, an isotropic

sizing function should be chosen, while an anisotropic one offers the possibility to create

rectangles by controlling two independent sizing values as was done in [ZHLB10].

The trivial constant sizing field is applied in the context of uniform remeshing where

only a constant target edge length is specified. A second possibility is to choose the

sizing w.r.t. the curvature in order to achieve a good approximation quality as proposed

in [ACSD∗03]. A variant of this strategy is to use lfs (local feature size), a more global

surface characteristic that corresponds to both curvature and local thickness of the sur-

face [AB99].

The third often-used strategy is to compute a sizing field which is compatible with the

desired orientation field. To understand the rationale behind this methodology, imagine

a cone with a smooth orientation field that diverges from the apex to the base. Clearly a

quad mesh which interpolates these orientations, like e.g. a polar parametrization w.r.t.

the apex, requires an increasing sizing function in the angular coordinate direction. As

observed in [RLL∗06], it is feasible to generate a quad mesh that exactly matches a cross

field only if the curl of the cross field is zero. Therefore, if precise orientation reproduc-

tion is required, it is desirable to compute a sizing field that compensates the directional

variations of the cross field by resizing the quads appropriately. Since no solution exists

in general, in practice a sizing field that minimizes the curl is computed [RLL∗06].

8.4. Orientation-field Parametrization

We now compute a global parametrization, i.e., a map from the given meshM to some

disk-shaped parameter domain Ω ∈ R2. Since the parametrization should be piecewise

108

8.4. Orientation-field Parametrization

linear, it is sufficient to assign a (u, v) parameter value to each vertex — more precisely

to each triangle corner — in the mesh.

The parametrization should be locally oriented according to the optimized cross field

from Section 8.2 which implies that the gradients of the piecewise linear scalar fields u

and v defined on the mesh M should minimize the local orientation energy

ET = ‖h∇u− uT‖2 + ‖h∇v − vT‖2

for each triangle T . Here h represents the sizing field which controls the edge length

of the resulting quad mesh. The vectors uT and vT are two orthogonal vectors in T

corresponding to the cross field directions θ and θ+ π/2. Since the cross field is defined

only up to rotations by π/2 we will have to specify which of the four possibilities we

are picking in each triangle such that the proper compatibility conditions are satisfied

across each edge in the mesh.

The global orientation energy is then defined as the integral of ET over the entire

mesh M

Eorient =

∫
M
ET dA =

∑
T∈M

ET area(T). (8.4)

The minimizer of this quadratic functional is obtained by solving the sparse linear sys-

tem which sets all the partial derivatives of Eorient to zero.

Cutting the mesh: In order to be able to compute a proper parametrization min-

imizing Eorient we have to cut open the mesh M, such that we obtain a patch that is

topologically equivalent to a disk. An additional requirement is that all singular vertices

must lie on the cut, i.e. , at the boundary of the parameter domain. The reason is

that the angle defect of a singularity cannot be represented by an inner vertex of the

parametrization as depicted in Figure 8.6. We compute an appropriate cut graph in two

steps.

First we start from a random triangle and grow a topological disk by constructing a

dual spanning tree. Thus the primal of all non spanning tree edges is already a cut graph

which transforms M into disk topology. The size of this cut graph can be significantly

reduced by iteratively removing all open paths.

109

8. Orientation-field guided Approach

p

(a) (b)

Figure 8.6.: (a) By placing a cut to a cone singularity p (here of index 1
4
) a distortion

free unfolding of the patch is possible. (b) The upper image shows two directions of the

cross field. In the lower image the mesh is cut into disk topology along the green edges,

such that these directions can be consistently oriented on each side of the cut.

In the second step paths connecting each singularity to the cut graph are added. This

can be done by successively applying Dijkstra’s shortest path algorithm.

At the end of the two cutting steps we have a triangle mesh patch where all the singu-

larities are located at the boundary. If a singularity is not a leaf node of the cut graph

then it appears several times along the boundary. In order to compute a parametrization

we have to find a planar embedding of this boundary polygon as well as all the interior

vertices. The location of the mesh vertices in the parameter domain is computed by

minimizing Eorient, however, there are a number of consistency constraints that have to

be taken into account.

Integer location of singularities: By allowing a singularity to be in general posi-

tion, it would cause an n-sided face instead of a valence-n vertex. Therefore to guarantee

a pure quadrangulation, we have to snap all singularities to integer locations in the pa-

rameter domain. This means that the overall parametrization task is now a mixed-integer

problem which we solve by our mixed-integer greedy solver from Chapter 5.

110

8.4. Orientation-field Parametrization

Cross boundary compatibility: In order to avoid visible seams across the cut

paths on the surface we have to make sure that the quad structure on both sides of a

cut edge is compatible. This is guaranteed by allowing only a grid automorphism as a

transition function. This requires that the (u, v) parameter values on both sides of a cut

edge are related by

(u′, v′) = Roti90 (u, v) + (j, k)

with integer coefficients (i, j, k).

The rotation coefficient in the transition functions can easily be computed by prop-

agating a globally consistent orientation in the cross field, as illustrated in Figure 8.6 .

Since after the cutting, all interior vertices of the mesh are regular, we can start at a

random face and propagate its orientation in a breadth first manner to all the neighbor-

ing faces. This will establish a zero-rotation across all inner edges. The rotations Roti90
across the cut edges can be found by simply comparing the orientations in neighboring

faces.

After fixing the rotations, the cross boundary compatibility conditions can be incor-

porated into the optimization scheme as linear constraints. Therefore for each cut edge

e = pq we introduce two integer variables je, ke to formulate the four compatibility

conditions:

(u′p, v
′
p) = Rotie90 (up, vp) + (je, ke)

(u′q, v
′
q) = Rotie90 (uq, vq) + (je, ke)

Hence, in total we add two integer variables and eliminate four continuous variables per

cut edge.

Applying our mixed-integer greedy solver to this parametrization task can be under-

stood in an intuitive way. After computing an all-continuous solution, which corresponds

to the unconstrained parametrization, we iteratively snap the singularities to integer lo-

cations.

Anisotropic Norm In practice precise orientation is often more important than exact

edge length. The reason is that changing the orientation along a highly curved feature

111

8. Orientation-field guided Approach

(a) (b) (c)

Figure 8.7.: The parametrization in (a) is not aligned to the sharp edges of the object.

Using the anisotropic norm the quads are allowed to stretch in order to better align with

a given input field as shown in (b). In (c) alignment constraints have been imposed,

leading to perfectly preserved features.

line, the quadrangulation quality will drop off dramatically due to normal noise. The

orientation can be improved by less penalizing stretch which is in the direction of the

desired iso-lines. This can be achieved by an anisotropic norm

‖(u, v)‖2(α,β) = αu2 + βv2

which penalizes the deviation along the major directions with different weights. Notice,

such a diagonal metric is sufficient since we use (uT ,vT) as the local coordinate frame

in each triangle.

ET = ‖h∇u− uT‖2(γ,1) + ‖h∇v − vT‖2(1,γ)

with γ ≤ 1. Figure 8.7b shows an example, where the orientation of the parametrization

is improved by using the anisotropic norm.

Feature Line Alignment Sharp feature lines of the input mesh should be preserved in

the quadrangulation. Given a subset S ⊂ E of triangle mesh edges, the necessary align-

ment conditions can be incorporated in a straightforward way. First of all, alignment

requires correct orientation. Therefore, while computing the cross field, all edges in S

are used as orientational constraints in both adjacent triangles. Additionally to the cor-

rect orientation for alignment, a constant integer coordinate along the edge is necessary,

which guarantees that this edge is preserved in the quadrangulation. Each alignment

condition for an edge pq can be formulated independently. If the cross field direction

112

8.4. Orientation-field Parametrization

uT is already oriented along the alignment edge, we end up with a simple condition for

the v parameter values

vp = vq ∈ Z

which ensures that pq is mapped to an integer valued iso-line. The u = const case

is handled analogously. Consequently, for each alignment edge a single variable can be

eliminated and the remaining integer variables can be handled by the greedy mixed-

integer solver. Figure 8.7c shows an example, where all feature edges are aligned.

Notice that for meshes with boundaries we can exploit the presented alignment func-

tionality to guarantee that the boundaries are preserved in the quadrangulation and

thus prevent jagged boundary lines (see Figure 8.10).

Singularity Relocation By computing a parameterization with the given sizing field h,

new requirements have to be taken into account which cannot be anticipated by the cross

field computation, since it is independent from h. Examples are singularities which are

too close to each other, a boundary or a given alignment edge. Other aspects are symme-

tries which are irrelevant for a smooth cross field, but important for a quadrangulation.

Therefore, to achieve maximal quality it can be necessary to relocate the singularities

w.r.t. the requirements of the parameterization. This can be done with a local search al-

gorithm similar to Section 8.2. Depending on how much time is available we can restrict

the search to the best local candidate, i.e. , the closest neighbor in the parametrization,

or evaluate the quality of all neighbors. In each step it is necessary to recompute the

smooth cross field w.r.t. the relocated singularity as well as the parametrization. In the

cross field computation the cross field indices are now prescribed by linear constraints.

Movements are performed if the overall quality improves, i.e. , the energy (8.4) decreases.

The obvious drawback of this singularity relocation is its heavy computational cost.

Fortunately in all of our examples the initial singularity positions were already sufficient.

However, coarsely quadrangulating meshes with fine details will require singularity re-

location.

Local Stiffening The parametrization is the result of a quadratic energy minimization.

Thus, despite the global optimum, for a few triangles it might happen that the metric

113

8. Orientation-field guided Approach

(a) (b) (c)

Figure 8.8.: In (a) the minimized orientation energy produces flipped triangles, which

can be removed by local stiffening (b). The chosen weighting is shown in (c) and de-

creases from orange to blue.

distortion gets very high or even worse, that the orientation of a mapped triangle flips.

Figure 8.8 shows an example where such a problem occurs in the vicinity of a singularity.

The idea of local stiffening is to add an adapted triangle weighting w(T) into the energy

formulation to penalize high local distortions, yielding:

Eorient =
∑
T∈M

w(T)ET area(T)

This weighting, which is initialized to one, can be updated iteratively, as described in

the following, until the quality of the parametrization is sufficient.

The metric distortion is characterized by the singular values σ1 and σ2 of the Jacobi

matrix as described in [HLS07]. Furthermore to penalize flips we evaluate the orientation

of a triangle

τ = sign(det

[
u1 − u0, u2 − u0
v1 − v0, v2 − v0

]
)

where (ui, vi) are the vertex parameter coordinates in counter-clockwise ordering. We

measure the local distortion of each triangle by

λ = |τ σ1
h
− 1|+ |τ σ2

h
− 1|

which respects the edge length h. Finally, we update the weight of a triangle by evalu-

ating a uniform Laplacian defined on the dual mesh

w(T) ← w(T) +min{c · |4λ(T)|, d}

114

8.5. Evaluation

(a) (b) (c)

Figure 8.9.: The presented algorithm is robust w.r.t. bad triangles (a) and can produce

meaningful singularities in the presence of noise (b) and on smooth offset geometries (c).

with the proportionality constant c and a maximal allowed update of d, which we chose

as c = 1 and d = 5 in all our examples. Notice that directly using the distortion

instead of the Laplacian would not be a good idea. The reason is that the weighting

would reflect the global stretch distribution, which is necessary for a globally consistent

quadrangulation, instead of the desired local distortions. Subsequently, we increase the

smoothness of the weighting field w(T) by a few uniform smoothing steps, which in

general leads to nicer quadrangulations.

8.5. Evaluation

The backbone of our approach is the mixed-integer solver introduced in Chapter 5, which

is used for the computation of both the smooth cross field and the parametrization. Al-

though it is often necessary to round tens of thousands of variables for the cross field

computation, the timings in Table 8.1 show that this can be done efficiently using the

proposed solver.

The example in Figure 8.5 shows that the greedy rounding leads to a significantly

smoother cross field with less singularities compared to the direct rounding approach.

115

8. Orientation-field guided Approach

Figure 8.10.: Quadrangulation of the Beetle model having 11 boundaries. On the

right the parametrization is shown. Naturally, due to the occurrence of −1
4

singularities,

parts of the flattening are overlapping.

All our experiments confirmed this behavior.

A further comparison between our approach and direct rounding is carried out in Fig-

ure 8.11. In both examples the same input cross field and target edge length have been

used. The Fandisk comparison clearly shows the benefit of alignment on models with

sharp feature edges, while the limitations of direct rounding are especially noticeable

on the Botijo. On complex objects having many singularities or when remeshing with

very coarse target edge length the direct rounding generates many “twists” and non-

injectivities in the parametrization, such that the extraction of a hole-free quad mesh is

not always possible. However, the combination of greedy rounding and local stiffening

allow us to automatically generate consistent, hole-free quadrangulations at almost any

resolution and with significantly less “twists”.

The spectral approach [HZM∗08] also produces oriented and aligned parametrizations

with few singularities, however the Morse-Smale Complex sometimes fails to capture

the detailed structure of the surface. This can lead to an unfavorable stretch of the

quads affecting the angle as well as the edge length distribution. A comparison between

116

8.5. Evaluation

Figure 8.11.: A comparison between the our technique (left) and the direct rounding

(right) for a sharp object (Fandisk) and a smooth object (Botijo). In both compar-

isons the same target edge length and the same cross field generated by our mixed-integer

formulation were used.

117

8. Orientation-field guided Approach

Figure 8.12.: RockerArm comparison between the technique described in this paper

(top) and the spectral quadrangulation approach by [Huang et al. 2008] (bottom). The

upper mesh has 9413 faces and 36 singularities, the lower one has 9400 faces and 26

singularities.

[HZM∗08] and our approach is depicted by Figure 8.12.

Quadrangulations computed by our technique typically have angle distributions with

a sharp peak around 90◦ and an edge length distribution centered around the target edge

length. However, for aligned meshes, like the Fandisk in Figure 8.11, further peaks,

which reflect the unavoidable stretch may occur in the edge length histogram.

118

8.5. Evaluation

Fertility

Lever

Figure 8.13.: Results of our Mixed-Integer Quadrangulation approach I

119

8. Orientation-field guided Approach

Rocker arm

Botijo

Figure 8.14.: Results of our Mixed-Integer Quadrangulation approach II

The geometrically complex examples shown in Figure 8.13 and 8.14 underline the abil-

ity of our method to compute coarse, oriented quadrangulations with naturally placed

singularities.

All examples were computed on a 3.0GHz standard PC, the statistics are shown Ta-

ble 8.1. Interestingly the cross field computation is less demanding to compute than

120

8.5. Evaluation

Solver Statistics Quadmesh Statistics

Cross Field Parametrization

Model Dim #Int Time Dim #Int Time #Sing #Quad

Fertility 29342 10621 0.6s 27954 108 2.0s 48 3357

Lever 21113 8254 0.3s 19331 148 1.9s 83 7880

RockerArm 32843 12064 0.7s 41552 72 2.0s 36 1127

Botijo 25821 9611 0.6s 29994 164 2.7s 74 8395

Fandisk 17820 6447 0.2s 13776 19 0.3s 30 764

Beetle 46425 15827 0.7s 34705 82 1.5s 6 3778

Table 8.1.: Statistics of the Greedy Mixed-Integer Solver used for computing the cross

field (Section 8.2) and the parametrization (Section 8.4). Dim refers to the initial di-

mension of the linear system, #Int is the number of integer variables, #IS and #DS is

the number of calls to iterative and direct solvers respectively. Time is the total time

for the solution. Due to the global nature of the parametrization, the local and iterative

search seldom lead to a gain of efficiency and therefore Time refers solely to the direct

solver.

the parametrization, even though it requires practically two orders of magnitude more

roundings. This effect is due to the locality of the cross field energy (Equation (8.1)).

Rounding a period jump mainly affects a local neighborhood on the mesh and the so-

lution can be efficiently updated by local Gauss-Seidel iterations. Whereas, rounding a

corner point in the parametrization domain usually has global impact. Motivated by this

observation and the typically low number of integer variables for the parametrization,

we used two different parameter sets for the solver, as explained in Section 5.3.

Finally Figure 8.9 demonstrates the robustness of the mixed-integer quadrangulation

approach w.r.t. different (degenerate) representations of a given object. The mesh in

Figure 8.9a contains almost 1000 triangles with vanishing area (the close-up shows a part

of the mesh where about 8 triangles are nearly collinear), the model in Figure 8.9b has

been displaced by normal noise with a magnitude of 0.3% of the bounding box diagonal

and the right most model (Figure 8.9c) was offseted, yielding a mesh with smoothed

corners. These fandisks and most of the other triangle meshes used in this work (along

with the extracted quad meshes) can be found in the supplementary material of the

corresponding paper [BZK09].

121

8. Orientation-field guided Approach

(a) PGP [8s] (b) PGP+CC [10s] (c) QC [0.5s]

(d) MIQ [3s] (e) MIQ+ST5 [15s]

Figure 8.15.: Quad mesh synthesis comparison based on identical guiding fields: The

PGP method provides the best length distortion at the cost of additional singularities

(a). This effect can be reduced by a curl corrected sizing field (b). QC and MIQ are

based on the same function space construction and consequently behave similarly with

a clear trade-off between mapping distortion and runtime due to different heuristics for

the estimation of integer DOF’s (c) and (d). The mapping distortion can be further

reduced by the iterative stiffening approach (e).

122

8.5. Evaluation

Comparison of parametrization based methods. In order to investigate the behav-

ior of different parametrization based methods, Figure 8.15 compares the quad mesh

synthesis of Periodic Global Parameterization (PGP) [RLL∗06], QuadCover-Surface Pa-

rameterization using Branched Coverings (QC) [KNP07] and our Mixed-Integer Quad-

rangulation (MIQ) explained in this chapter against each other. For all methods the

same guidance fields are used which consist in an orientation field produced by the PGP

method and a constant sizing field. The only exception is Figure 8.15b where the siz-

ing field was adjusted by the curl correction method proposed together with the PGP

method in [RLL∗06].

Figure 8.15 shows that all synthesis methods behave quite similar in regular regions,

showing that the orientation and sizing fields have a strong influence on the result. As

mentioned before, a suitable distribution of singularities in the orientation field is crucial

for the success of the quad mesh synthesis step. In accordance to that, our experiment

shows that interesting differences mostly occur close to singularities which will be the

first aspect of our discussion. As expected, the PGP method generates additional sin-

gularities in order to capture the given constant sizing field, while QC and MIQ exactly

reproduce the orientation field singularities at the cost of some length distortion. Some

of the additional singularities can be compensated by a curl corrected sizing function

as shown in Figure 8.15b, however, the PGP method does not provide explicit control.

Clearly, the favored behavior strongly depends on the application. However, in most

practical applications regularity and explicit control over singularities is preferred over

moderate length distortion.

QC and MIQ search for an optimal mapping within the same function space and con-

sequently their results shown in (c) and (d) are closely related. While QC is extremely

fast since it requires only the solution of two sparse linear systems, MIQ is able to esti-

mate integers that induce less distortion at the cost of increased runtime. The impact

of the integer estimation technique strongly depends on how close singular vertices get

in the quadmesh. If the goal is the generation of a very coarse quad mesh, it is very

important to apply more expensive integer estimation schemes like those of MIQ, while

for the generation of finely tessellated quad meshes a simple and fast heuristic like the

one of QC is sufficient.

123

8. Orientation-field guided Approach

The last aspect we want to analyze here is the quality of the mapping. An often

neglected aspect of parametrization based approaches are degeneracies in the mapping

function (e.g. foldovers) which easily destroy the quad mesh consistency and necessitate

a repair step comparable to that of PGP. One reason for such defects is that singularities

in a parametrization behave similar to point constraints, which are well known to often

introduce heavy distortions and foldovers. Although there is currently no fundamen-

tal solution to this problem, the stiffening heuristic of MIQ in practice often leads to

sufficient results by iteratively updating a weighting function in order to minimize the

maximal distortion. Figure 8.15e depicts the solution of MIQ with 5 stiffening iterations

where especially the distortion around singularities is greatly reduced, again at the cost

of an increased runtime.

In summary, for the quadmesh synthesis algorithms analyzed here, there is clearly a

trade-off between speed and quality. While conceptually comparable, in practice the

MIQ approach is often preferred over QC since, on the one hand, it naturally handles

sharp features and boundaries and, on the other hand, the required greedy mixed-integer

solver is freely available [BZK12], enabling a cost-efficient implementation.

While all field guided approaches discussed here lead to valence semi-regular meshes,

one interesting direction for future research includes the design of methods that are

directly able to generate semi-regular meshes with a coarse patch structure. Additional

constraints described in [MPKZ10] offer a step in this direction. Another important

aspect which would deserve some attention is the improvement of robustness. While MIQ

with stiffening is able to generate valid mappings leading to quad meshes of moderate

coarseness, the construction of degeneracy-free mappings for arbitrarily coarse sizing

fields is still unsolved.

8.6. Flexibility

The orientation-field guided approach, as presented here, is designed to generate high-

quality quadmeshes in a fully automatic manner. However, depending on the application

scenario, it might be desirable to influence the meshing process in order to achieve a

mesh with additional, maybe non-geometric, properties. Such special requirements arise

for instance in animation and simulation, where the designer wants to optimize the mesh

124

8.6. Flexibility

for the intended deformations or simulation characteristics. In this section, we want to

point out that our method is perfectly prepared to be used in such a semi-automatic,

interactive quadmeshing environment. In the following, we list several practically im-

portant meshing criteria that can be influenced by the user. The idea consists in feeding

the mixed-integer solver with additional linear constraints that represent user-desired

mesh properties.

Element orientations: Instead of, or additionally to, the salient principal curvatures

the user can easily specify local element orientations. A convenient way consists in

drawing curves onto the surface that generate constrained orientations in each traversed

triangle. Apart from the extended user-interface the algorithm requires no further mod-

ification.

Irregular vertices: The irregular vertices of the quadmesh are automatically identified

while searching for the smoothest orientation field that interpolates the constrained

orientations. Following Section 8.2, the index I(vi), which defines irregular vertices, is

linear related to the unknowns and therefore can be specified as a linear constraint. As

a default, all indices are free and optimized by the mixed-integer solver. If the user

explicitly wants to position irregular vertices, this can be easily achieved by adding the

corresponding linear constraint. The same is true for regular regions, i.e. , vertices of

index 0, which can be prescribed to prevent the generation of irregular vertices, e.g. in

the vicinity of feature curves. If all indices are specified, the setting is identical to

the zipping algorithm of [RVLL08], which indeed is a special case of our optimization

approach. The idea of specifying a single irregular vertex directly generalizes to the

integral index of a complete region. Hence, in the same way it is possible to specify the

index-sum of several vertices.

Element sizing: Instead of the uniform (or otherwise generated) sizing field, the user

can prescribe the sizing. This is, e.g. , helpful in an animation environment, where an

increased sample density is typically desired in the vicinity of small details like the fingers

of a character. However, since the generation is split into two parts, i.e. , orientation field

and parametrization, the sizing cannot always be precisely reproduced (cf. [KMZ10]).

Feature lines: It is possible to prescribe complete chains of quadmesh-edges by drawing

curves on the surface, which are integrated into the mesh and handled as feature lines.

125

8. Orientation-field guided Approach

In this way, not only the element orientation is controlled, but also the placement of

samples.

Base-complex: The orientation-field guided approach typically leads to meshes of

semi-regular valency, i.e. , a small number of irregular vertices but possibly a large

number of base-complex faces. Directly incorporating the base-complex optimization

within the orientation-field guided approach is a non-trivial task. However, it is easily

possible to specify parts of the base-complex or even the complete base-complex man-

ually by means of additional constraints. This is done by setting up linear constraints

that ensure that two irregular vertices will be connected by a chain of quadmesh edges

(cf. [MPKZ10]). Again the user is within the convenient situation that no information

about the base-complex is required, but if available, it can be easily incorporated into

the computation. If the complete base-complex is specified, the resulting optimization

turns out to be closely related to the layout based quadmesh generation approach.

126

9. Geodesic Distance Fields

The computation of geodesic distances on a triangle mesh has many applications in

geometry processing, ranging from segmentation and low distortion parametrization to

motion planning and tool path optimization. Within the context of quadmesh genera-

tion, geodesic distance fields are useful to introduce metric aspects into the computation

of a smooth orientation field as for instance to separate irregular vertices from each other

or from feature curves. In most cases the true geodesic distance field is approximated

by some fast marching method [KS98, NK02] which leads to acceptable results on nicely

structured meshes and away from singularities of the distance function. However, such

simple propagation schemes tend to become numerically unstable on not-so-nice meshes

as they often occur in practical applications. Moreover, since they use the same mesh

as a representation for the input geometry as well as the distance field, the precision is

limited by the mesh resolution. Surazhsky et al. [SSK∗05] present a practical imple-

Figure 9.1.: The isolines of the geodesic distance field with respect to the boundaries

of the car model are visualized.

127

9. Geodesic Distance Fields

s

x

y

b1b0

d0 d1

p1p0

s

w

(a) (b)

Figure 9.2.: (a) Starting on the point source s a (shaded) pencil of rays is propagated

through three unfolded triangles along of straight lines. Each window is highlighted by

an arc which is always on the edge side pointing to the source. (b) An edge aligned two

dimensional coordinate system is used to compute new windows which are induced from

window w.

mentation of the geodesic distance algorithm of Mitchell et al. [MMP87]. This was the

first time that an exact geodesic distance computation has become applicable to arbi-

trary input meshes of practically relevant complexities. However, in this algorithm, the

distance computation is initialized by one or more isolated points on the mesh and the

distance is propagated from them - in the following, we present a summary of this algo-

rithm. Unfortunately, for many practical applications this is too restricted. In general

one would like to be able to compute the geodesic distance with respect to a curve on

the surface, i.e., a polygon on the mesh since this allows us to take arbitrary boundary

conditions into account. See Fig.9.1 for an example. In this chapter, based on [BK07],

we derive an algorithm for this generalization.

The exact geodesic algorithm

Since our algorithm is an extension of [SSK∗05] we briefly explain the basic principles

and the resulting base algorithm.

In the plane, the geodesic distance coincides with the Euclidean distance. Hence, with

respect to an isolated point, it is the square root of a quadratic function. On a triangle

mesh, i.e. , on a piecewise planar surface, the geodesic distance with respect to a point

128

pl pr

A Bq

C
w1 w2

v2’v1’

pl pr

w1 w2

v1 v2

pl pr

w1 w2

(a) (b) (c) (d)

Figure 9.3.: (a) The geodesic distance field w.r.t point p is computed on a cap consisting

of triangles A,B, and C. (b) Cutting along the edge pq unfolds the cap isometrically and

enables the distance propagation in the plane through windows w1 and w2. (c) The

temporarily propagated windows v′1 and v′2 overlap in the middle region. (d) The final

windows v1 and v2 are properly cut to represent the piecewise geodesic distance along

the edge.

turns out to be a piecewise function where in each segment the distance is given by the

square root of a quadratic function plus an optional constant offset. This offset has to

be introduced to properly handle saddle points on the surface.

The central idea of the algorithm [SSK∗05] is to propagate exact distance information

from one triangle to its neighbors with a Dijkstra-type algorithm. The key observation

is that it is sufficient to store the piecewise distance function on the edges of the trian-

gle mesh since this is sufficient for the propagation and also for the exact evaluation of

distances everywhere on the surface.

For each edge of the mesh the algorithm maintains a list of segments, so-called win-

dows. Each window defines the geodesic distance field within a pencil of rays covering

both neighboring triangles (see Figure 9.2). When distance information is propagated

across a triangle, the (incoming) windows have to be mapped to the opposite side. The

propagation includes the proper intersection of windows, because unlike the planar case,

on a surface propagated windows can overlap. Since the distance function is continuous,

the intersection requires to find the point where the distance function values in both

windows are identical.

129

9. Geodesic Distance Fields

We illustrate the procedure with a simple example. The cap of Figure 9.3a consists of

three isosceles triangles A,B and C. Now we want to compute the geodesic distance field

w.r.t the point p. Since p is coplanar with the triangles A and B they are covered with

a pencil of rays emanating from p through single windows w1 and w2. To propagate the

distance information through w1 and w2 we cut the cap along the edge connecting p and

q and unfold the triangles isometrically into the plane, i.e. all edge lengths and angles

of the triangles are preserved (see 9.3b). In this setting p is doubled into pl and pr.

Now we are ready to propagate the pencil of rays defined by w1 and w2 across triangle

C and create new temporarily overlapping windows v′1 and v′2 depicted in Figure 9.3c.

Evaluating the distances induced by both pencils of rays, the windows can be intersected

and properly cut to final windows v1 and v2 (see Figure 9.3d) which correctly represent

the continuous piecewise geodesic distance function along the edge.

A nice feature of this window formulation is that all computations can be formulated in

local two dimensional coordinates, i.e. only the mesh topology and scalar edge lengths

are required. The necessary condition for this edge based algorithm is that geodesic

paths can only pass through vertices with a total angle greater or equal than 2π, i.e.

saddles and flat points. This result was proven by Mitchell et al. in [MMP87]. Saddle

points and concave boundary points act as pseudo sources which generate additional

new windows covering the geometric shadow of the locally expanded surface.

Base algorithm At first all source windows in the immediate vicinity of source points

are created and pushed into a priority queue preferring shorter distances, because we

want to compute the minimal geodesic distance. Notice that in general the result is

independent of the propagation order but the priority queue ensures that windows are

propagated as a wavefront which gives a strong speedup and makes the algorithm prac-

tical. Processing the queue, the current window is always propagated into the next

unfolded triangle, where new windows are created (see Figure 9.2). When the front

reaches saddle or boundary vertices new source windows are added. All new windows

might overlap with already existing windows and must be intersected accordingly. The

algorithm terminates when all edges are partitioned by the minimal geodesic distance

windows, i.e. when the queue is empty. The pseudo code algorithm is presented below

and all necessary computations are explained in more detail in the next sections.

Circular window propagation In the next section we will define a second type of

windows, so from now on windows originating from point sources are called circular

130

sourceWs = createSourceWindows()

PQueue.add(sourceWs)

repeat

curW = PQueue.popFront()

newWs = propagate(curW)

newWs += saddleAndBoundaryWs(curW)

newWs = intersect(newWs, oldWs)

PQueue.add(newWs)

until queue.empty()
Algorithm 1: Exact Geodesic Field

windows. The starting point for a propagation is depicted in Figure 9.2b. Given a

window w the corresponding edge p0p1 is aligned to the x-axis of the local coordinate

system with the origin in p0. Each window is described by a six tuple (b0, b1, d0, d1, σ, τ)

with σ representing the optional constant offset between a pseudo source and a real

source. The binary flag τ determines on which side of the x-axis the unfolded pseudo

source s lies (symbolized in pictures by the arc). The window extents are encoded in b0

and b1 which are in the range [0..|p0p1|]. Due to the fact that the distances d0 and d1 of

the window endpoints from the pseudo source are known the unfolded position s can be

reconstructed via circle intersection.

sx =
1

2
(b0 + b1 +

d20 − d21
b1 − b0

)

sy = −1τ
√
d20 − (cx − b0)2

Using the local coordinates of p3 which are computed analogously to s the new win-

dows are found by 2D ray intersection. There are different constellations which can lead

to one, two or three (on saddle points) new windows.

Circular window intersection If two windows overlap and one provides a smaller dis-

tance everywhere the other is simply clipped against it. If both are minimal in part

of the overlapping interval, both ranges are clipped to the point where both distance

functions are equal. Notice that clipped windows have to be reinserted into the queue

because their priority can change. Using the unfolded pseudo source s from the previous

section, the distance function dc of an arbitrary point (px, 0) in the interval of a window

131

9. Geodesic Distance Fields

can easily be formulated. Due to the fact that s is not necessarily a real source (e.g.

saddles induce pseudo sources) the distance σ from all traversed pseudo sources to the

real source must be added.

dc(px) =
√

(px − sx)2 + s2y + σ (9.1)

Trying to find the intersection of two such distance functions, namely dc1(px) = dc2(px),

the computation ends up as the solution of a quadratic equation Ap2x +Bpx +C = 0. In

this case there is exactly one solution in the overlapping interval and the coefficients of

the polynomial are

A = α2 − β2

B = γα + 2s1xβ
2

C =
1

4
γ2 − |s1|2β2

α = s1x − s0x
β = σ1 − σ0
γ = |s0|2 − |s1|2 − β2

Generalization to arbitrary sources

Our goal is to generalize the original geodesic distance computation algorithm from iso-

lated points to polygonal curves on the surface. In a planar configuration the Euclidean

distance function to a polygonal curve can be partitioned into several segments. In some

segments the distance function is, again, the square root of a quadratic function. Those

segments correspond to the vertices of the polygon. In other segments, the distance

function is just linear. These segments correspond to the edges of the polygon. See

Figure 9.5 for an example.

Going from the plane to a piecewise planar triangle mesh, we can still propagate the

distance function from one triangle to its neighbors by storing windows of the piecewise

distance function on each edge. The only difference regarding the last section is that now

we need to handle two different types of windows: the ones where the distance function

is of the form (9.1) and the ones where the distance function is linear. The Dijkstra-type

propagation algorithm then has to handle all kinds of window intersections: circular-

circular, circular-linear, and linear-linear. In the following we will give the explicit

formulae for the corresponding intersection points where the two distance functions

132

p

p

(a) (b)

Figure 9.4.: (a) An arbitrary point source p on the surface induces three windows in

the corresponding triangle. (b) The six windows of a point source on an edge.

coincide. Additionally we need the ability to create circular source windows induced by

arbitrary points on the surface which will be discussed first.

Arbitrary points The original algorithm [SSK∗05] was proposed to allow point sources

only at vertex positions. However it is straightforward to overcome this limitation.

Given an arbitrary point p on the surface the three edges of its containing triangle are

initialized with windows emanating from this point as depicted in Figure 9.4. The new

created windows are intersected with all other windows on an edge to handle multiple

sources. Special care is needed for points lying exactly on an edge. In this case the edges

of both triangles must be initialized.

Polygons on the mesh As seen in Figure 9.5 straight line segments induce linear and

circular waves from its endpoints. Consequently we create linear and circular windows

for each segment of a piecewise linear polygon. Exploiting the window intersection algo-

rithms, already necessary for the window propagation, the overall initialization becomes

very simple, because overlaps are handled consistently.

As a preprocess we subdivide the piecewise linear input polygon such that every

segment lies entirely in one triangle. This can easily be done by inserting vertices on all

intersections between triangle and polygon edges. Using this decomposition it is possible

to handle each polygon segment independently. We illustrate the procedure with one line

segment in a single triangle as depicted in Figure 9.6a. At first we add linear windows

(green) whose extents are computed by intersecting orthogonal rays starting from the

133

9. Geodesic Distance Fields

Figure 9.5.: The geodesic distance field w.r.t the black polygon. Linear waves emanate

orthogonal to line segments and circular waves emanate from each endpoint of a line

segment.

endpoints of the line segment with all triangle edges. Additionally, both endpoints induce

circular windows (yellow) which are computed as described before. All new windows are

again intersected with windows already registered to an edge. Notice that due to the

exact equal distance intersection the result is still independent of the order in which the

windows are added.

To complete the algorithm, we next describe the propagation and intersection of linear

windows. Now each window is expressed as a seven tuple (id, b0, b1, d0, d1, σ, τ) in which

the added type id is either circular or linear. In the case of a circular window we

proceed exactly as described in Section 9. For linear windows the tuple components

have analogous meanings. The key difference is that the emanating boundary rays of a

window starting at (bi, 0) in local coordinates are computed in a different way. They do

not intersect at a pseudo source center but are always parallel (see Figure 9.6b). The

distance function over a linear window is a simple linear function fully determined by bi

and di.

Linear window propagation The starting point is depicted in Figure 9.6b. Similar

to section 9 the window w covers the segment between b0 and b1 on the edge e. The

x-axis is aligned to e and the y-axis lies in the plane of the triangle where the window

should be propagated through. Using elementary geometric calculations the propagation

134

xα
α

d0

d1

b1

d0−d1

y

b0 w

n

(a) (b)

Figure 9.6.: (a) A line source within a triangle induces a set of linear (green) and circular

(yellow) windows. (b) Computation of the propagation direction in local coordinates.

direction n = (nx, ny) can be computed in terms of the local coordinate system. The dif-

ferences |d1−d0| and b1−b0 define the angle between the linear front and the mesh edge:

sinα =
−nx
|d0 − d1|

=
|d0 − d1|
b1 − b0

Solving the previous equation for nx, ny can be computed by the theorem of Pythago-

ras:

nx = −(d0 − d1)2

b1 − b0
ny = −

√
(d0 − d1)2 − n2

x

Using these ray direction instead of the ray directions induced by the unfolded pseudo

source the remaining part of the window propagation is identical to that of circular

windows. Here overlaps of propagated windows can happen as well. For this reason

the next paragraph describes all possible cases, namely linear-linear and circular-linear

window intersections. Both reduce to the solution of a quadratic equation.

135

9. Geodesic Distance Fields

Linear window intersection Again there are two different cases for window intersec-

tions. The trivial one occurs when the distance function of one window is larger in the

whole overlapping interval. In this case it is easily clipped against the other window.

The more interesting case happens when the minimal distance function in the overlap-

ping interval is composed of both windows. In this case there must be a point (px, 0)

where both distance functions are equal.

The distance function of a linear window along an edge is a simple linear function

(cp. Figure 9.6b) which can be formulated in terms of n or directly using the window

components. It fulfills the interpolation condition dl(bi) = di.

dl(px) = px
d1 − d0
b1 − b0︸ ︷︷ ︸

m

+
b1d0 − b0d1
b1 − b0

+ σ︸ ︷︷ ︸
n

Now we are ready to compute intersections of linear windows with linear and circular

windows to find the separation point px on the corresponding edge:

1. linear-linear intersection

dp1(px) = dp2(px)

⇔ pxm1 + n1 = pxm2 + n2

⇔ px = n2−n1

m1−m2

2. circular-linear intersection

dc(px) = dl(px)

⇔
√

(px − sx)2 + s2y + σ = pxm+ n

Squaring the previous equation leads to a quadratic equation Ap2x+Bpx+C = 0 with

coefficients

A = 1−m2

B = −2(sx +m(n− σ))

C = s2x + s2y − (n− σ)2

136

Notice that unlike the previous intersections here exist possibly two valid solutions

which can lead to a trisection of the overlapping interval. In this case the cut circular

window lies in the middle of two disconnected parts of the linear window.

Approximation algorithm

The propagation of distance information across many triangles leads to an increasing

number of windows per edge because windows split up at vertices. A large number of

windows increases the time as well as the space complexity of the algorithm. So the idea

for the ε-Approximation-Algorithm in [SSK∗05] is to merge neighboring windows on an

edge whenever the induced relative error is acceptable. Allowing for example a relative

error of ε = 0.1% leads to visually indistinguishable results but enables the processing

of huge models with several millions of faces which are far too complex for the exact

algorithm. Again the proposed linear windows fit naturally in the original framework

and share all properties necessary for window merging. Before we describe the merging

of linear windows we shortly review the basic principles and the case of circular windows.

For details see [SSK∗05].

To guarantee consistency of the geodesic field some conditions must be checked before

merging two neighboring windows.

1. Directionality: Both windows propagate into the same direction.

2. Visibility: The pencil of rays of the merged window must at least cover all rays

of the original windows so that no gaps arise.

3. Continuity: The distance at the endpoints bounding the merged window must

be preserved to conserve distance field continuity.

4. Type: Both windows must be of the same type, e.g. planar or circular.

Additionally the user can prescribe a relative error bound εU so that only those merges

are performed where the relative difference between the distance function of the new

window d′(px) and the original piecewise distance function dlr(px) = dl(px) ∪ dr(px) is

smaller than εU , i.e.
|dlr(px)− d′(px)|

dlr(px)
≤ εU

137

9. Geodesic Distance Fields

Merging of circular windows Taking two neighboring circular windows

wl = (id, b0l, b1l, d0l, d1l, σl, τl)

wr = (id, b0r, b1r, d0r, d1r, σr, τr)

which meet at the common point (b1l, 0) = (b0r, 0) the merged window w′ is already

determined up to σ′ due to the necessary conditions:

id′ = id

b′0 = b0l

b′1 = b1r

d′0 = d0l + σl − σ′

d′1 = d1r + σr − σ′

τ ′ = τl = τr

The continuity constrain restricts w′’s pseudo source s′ = (s′x, s
′
y) to lie on a conic

curve s2y(sx). Because of the positivity of the d′i and the visibility constraint the valid

domain of this conic curve is further restricted. If it is the empty set, the merge is

disallowed and in all other cases the smallest possible σ′ is chosen (see [SSK∗05] for

details and how to evaluate the approximation error).

Merging of linear windows The distance values di of a linear window can always be

transformed so that the corresponding pseudo source distance σ vanishes. So w.l.o.g.

two neighboring linear windows

wl = (id, b0l, b1l, d0l, d1l, 0, τl)

wr = (id, b0r, b1r, d0r, d1r, 0, τr)

which join at the common point (b1l, 0) = (b0r, 0) can be merged into a linear window

w′ = (id, b0l, b1r, d0l, d1r, 0, τl = τr)

which satisfies all necessary constraints and is fully determined by the original windows.

Notice that the visibility constraint is always fulfilled because diverging linear windows

can only occur in combination with an additional point source or a saddle. The maximum

approximation error is obtained at the joining point and can be computed as

ε = |1− d1r(b1l − b0l) + d0l(b1r − b1l))
d1l(b1r − b0l)

|

138

Adaptive refinement

The algorithm presented in the last section is able to compute the exact geodesic distance

field on a triangle mesh with respect to an arbitrary polygon embedded on the mesh.

However, the distance information is not given explicitly but rather through a set of

windows defined on the edges of the mesh. For most geometry processing algorithms

this implicit information has to be made explicit. The standard approach to do this

is to simply sample the distance function at the mesh vertices and then use a linear

interpolant on each face as an approximation of the original distance field. In order to

have some guarantee about the approximation tolerance, we have to refine the mesh

in regions where this tolerance is violated. Usually this happens in the vicinity of the

geodesic medial axis. To decide where to refine we compare the exact geodesic distance

on edges with the linear interpolant and check if a user-defined threshold is exceeded.

In this case we split the edge and insert a new sample point.

The geodesic distance field is smooth with constant gradient magnitude everywhere

except for the geodesic medial axis. By properly placing the newly inserted vertices

on the medial axis (i.e. at the maximum distance value on the cut locus) we can avoid

excessive local refinement. This feature sensitive placement leads to optimal convergence

and is in the spirit of [KBSS01].

Since edge splits in arbitrary order lead to poor triangles, we employ a strategy similar

to adaptive red-green triangulations. An important feature is that our refinement does

not change the underlying geometry and can be seen as a pure up-sampling of the

original geodesic distance field. Due to this fact no re-computation of the geodesic field

is necessary. The geodesic distance has to be updated only for those edges that are

newly inserted. The edge-based refinement and the evaluation procedure are described

in more detail in the next sections.

Edge-based refinement In each refinement step we evaluate for each edge the maxi-

mal deviation between the exact distance function given as a piecewise function along

the edge and the linear function interpolating the exact distance only at the edge end-

points. If this maximal deviation exceeds a user-defined threshold the edge is tagged for

refinement and the corresponding point pmax is cached as the optimal splitting position.

Simply splitting all tagged edges would result in poor triangle quality. We aim at ap-

plying a one-to-four split (see Figure 9.7) of triangles lying entirely in the refined region.

The one-to-four split operator can be composed of edge split and edge flip operations.

139

9. Geodesic Distance Fields

(a) (b)

Figure 9.7.: Implementation of a one-to-four split of a triangle using only edge split and

edge flip operators. (a) Each edge of the black triangle is first split in arbitrary order.

(b) The green edge, characterized by two adjacent triangles with only one original edge

segment, is flipped to complete the one-to-four refinement.

For one triangle this requires the splitting of all edges (in arbitrary order) and the flip-

ping of one specific edge (see Figure 9.7). To increase the number of regular one-to-four

splits we iteratively tag all edges which are adjacent to triangles with already two tagged

edges. This edges will be split on their midpoint. Subsequently all tagged edges are split

at their cached split positions and all necessary flips are done. Identifying which edges

should be flipped is easy if we mark all new created edges as red during the splitting

process. If both triangles of a red edge are bounded by exactly two (the edge itself plus

one additional) red edges the edge must be flipped.

Evaluation of interpolation error The Geodesic Distance Function along a mesh edge

e is defined piecewisely and consists of linear and circular segments corresponding to

linear and circular windows. To compute the maximum deviation between this exact

function and the linear interpolant defined by the exact distances on the edge vertices

it is possible to first evaluate the maximal deviation for each segment individually and

then take the overall maximum.

In the case of a linear segment the evaluation is simple. The difference between two linear

functions is again a linear function and so the maximum is always on the boundary of

the corresponding linear window.

In the case of a circular window the maximum can be computed analytically. The

difference of both distance functions along the edge

E(px) =
√

(px − sx)2 + s2y + σ − (ax+ b)

140

Table 9.1.: Timings

Model #Faces Time WPE Time WPE

exact exact 0.1% 0.1%

Plane 422 4ms 2.40 2ms 1.2

Fandisk 12k 1.90 s 9.06 0.12s 1.6

Car 34k 3.03 s 7.06 0.91s 3.4

David 8M - - 165s 1.3

has a single extremum at

qx = sx − a

√
s2y

a2 − 1

If qx is not in the valid interval [b0..b1] of the window the maximal deviation is on the

boundary of the window as in the linear case.

The optimal position for a new sample point is exactly the position pmax where the

deviation is maximal. Allowing split points to lie arbitrarily close to the edge endpoints

leads to degenerate triangles. In practice we clamp the splitting position to be in the

range of 25− 75% of the edge length. Additionally if the optimal position lies between

12.5−25% or 75−87.5% we adjust the new vertex so that the optimal position lies exactly

on the midpoint of the new created edge because this leads to better triangulations.

Given the optimal sample position t ∈ [0..1] the update is as follows:

t 7→



0.25 0 ≤ t < 0.125

2t 0.125 ≤ t < 0.25

t 0.25 ≤ t ≤ 0.75

2t− 1 0.75 < t < 0.875

0.75 0.875 ≤ t ≤ 1

Results

We demonstrate the results of our algorithm on models of different complexity. Table

9.1 shows the corresponding timings for the computation of the exact and approximated

geodesic fields which were generated on an AMD 64 3500+ system with 2GB of RAM.

Additionally the average number of windows per edge (WPE) is listed. On the David

and the Fandisk model we computed the geodesic field w.r.t. the red polygonal curves

on the surface (see figure 9.9). The visualization uses a 1D texture to transfer the linear

141

9. Geodesic Distance Fields

Figure 9.8.: plane (422 faces)

interpolant of the geodesic field into a color. For the car model depicted in Figure 9.1

we computed the geodesic field for the boundary and applied the adaptive refinement to

get an satisfactory visualization. The refined mesh is showed in Figure 9.9. Obviously

most of the mesh refinement occurs in a thin local neighborhood near the medial axis

of the geodesic field. The plane model in Figure 9.8 illustrates the quality gain of our

adaptive refinement in more detail. The upper row shows the original mesh with the

corresponding linear interpolant of the geodesic field. Even though the mesh structure

looks nice, the result is very noisy near the medial axis and shows large errors. Applying

the presented adaptive refinement we gain a high quality explicit representation of the

geodesic field shown in the lower row together with the generated mesh structure. The

approximation error reduced by a factor of 100 while the number of faces increased by

a factor of 4.

142

Figure 9.9.: Fandisk (12k faces), Car (34k faces) and David (8M faces)

143

9. Geodesic Distance Fields

144

Part III.

Quadmesh Optimization

145

Part III. Quadmesh Optimization

The third part of this thesis deals with quadmesh optimization. In contrast to the

previous part, not only the output consists in a quadmesh but the input is a quadmesh

as well. Such an optimization is appealing from the robustness point of view. Instead

of being confronted with the problems of global parametrization like foldovers, the op-

timization can be driven by a well designed set of robust operators like edge flip or edge

collapse. While such an approach based on local operators can be applied successfully

in the context of triangle meshes, the situation is more complicated in case of quadri-

lateral meshes. It can easily be shown that local operators always introduce additional

irregular vertices and thus usually long chains of well combined local operations would

be required to find a high-quality quadrangulation. Consequently, a greedy optimization

based on local operators typically gets stuck in a local minimum, where the distribution

of irregular vertices is far away from being optimal.

However, instead of optimizing the overall quadmesh quality, we build on top of the

previously presented parametrization based quadmesh generation results. While the re-

sulting meshes already exhibit a good structure in terms of semi-regular valency, they

typically lack a high-quality base-complex. In Chapter 10, which is based on [BLK11],

we present a novel class of global operators, called grid-preserving operators, that are

able to change the global connectivity within a quadmesh without altering its irregular

vertices. Based on this global operators, a greedy strategy is performed that iteratively

eliminates helical configurations which negatively affect the base-complex. Accordingly,

the combination of both of our approaches for quadmesh generation and structure op-

timization leads to a fully automatic pipeline that is able to generate, in practice often

desired semi-regular meshes.

147

148

10. Structure Optimization

(a) (b) (c)

Figure 10.1.: Comparing different structural quality: (a) A completely unstructured

mesh with bad quads and a dense base-complex (in red). (b) Appropriate singularities

and oriented quads improve the mesh, but due to a quad-loop winding down the cylinder

the base-complex is still dense. (c) While preserving singularities and orientations, the

base-complex is optimized and topologically equivalent to a cube

Providing a high-quality quadrilateral mesh with a coarse base complex is of great

interest, since a coarse base complex induces a simple patch layout which is desired for

e.g. fitting of NURBS-patches or as a base mesh for subdivision. In general, computing

quadrangulations which provide on the one hand a nice stretch distribution in terms of

angles and anisotropic edge lengths and on the other hand a coarse base complex is an

unsolved problem. Parametrization based techniques usually lead to nicer stretch distri-

butions due to well adapted singularities and edge orientations, but unfortunately they

often posses a rather fine base complex. On the contrary, decimation based algorithms

are able to generate coarse base complexes, however, this benefit usually comes at the

cost of inappropriate placed singularities or edge orientations, inducing high stretch dis-

149

10. Structure Optimization

tributions in a finer subdivision.

Our strategy is to start with a quadrangulation already equipped with appropriate

singularities and a nice stretch distribution and then try to improve the base complex

as much as possible while keeping the singularities fix. Notice that apart from the base

complex there is no other straightforward coarse quadrangulation with the same singu-

larities as in the input mesh. Due to the global topological restrictions we cannot define

a concept analogous to the Delaunay triangulation to achieve a coarse quadrangulation

of the singularities.

In the following we present an algorithm to improve the base complex B(Q) = (V , E ,Q)

of a given quadrilateral mesh Q as introduced in Section 2.1. As an example, Figure

10.1 shows three different quadrilateral meshes, where the base complex is highlighted

in red. Our algorithm is able to perform the optimization from Figure 10.1b to 10.1c.

Definitions To explain our approach we require the notion of a parametric line, as in-

troduced below. Remember that a vertex vi is called regular if it has valence 4, otherwise

it is a singular vertex. Topologically a regular vertex is the crossing of two coordinate

lines in a 2D Cartesian grid and therefore we can easily build a right-handed local

coordinate system at such a vertex by cyclically labeling the adjacent edges in counter-

clockwise order with u, v, −u and −v as depicted in Figure 10.2. However, notice that

such a labeling is only possible within a singularity-free local region since e.g. walking

counter-clockwise around a valence 3 singularity would mean that a formerly labeled u

edge becomes a v edge contradicting with the initial label.

A parametric line is generated by tracing a local coordinate direction through regular

vertices or more formally a connected sequence of edges, such that two subsequent edges

ei and ej are always connected through a regular vertex where both edges belong to

the same local parametric direction, i.e. they are either {u,−u} or {v,−v} (see Figure

10.2). Finally a regular parametric loop is a closed parametric line where all traversed

vertices are regular. Notice, that the base complex is the union of all parametric lines

which start and end at singular vertices.

The consideration of dual parametric lines instead of primal ones is advantageous. For

each primal parametric line we can always identify two parallel dual parametric lines,

150

10.1. Grid-Preserving Operators

Figure 10.2.: Each regular vertex induces a natural coordinate system by counter-

clockwise labeling the outgoing edges with u,v,−u,−v. Parametric lines, as shown in red

and green can be extended until they end in a singularity (red point).

while the contrary is not always true due to the fact that primal parametric lines end at

singularities. Consequently, using dual parametric lines or dual parametric loops, which

are quad-loops in the primal meshes and called poly-chords in [DSSC08], increase the set

of candidates for our grid preserving operator (see Section 10.1).

We next propose a novel operator which is fundamental for our base complex opti-

mization, since it offers a new class of global operations which preserve quadrilaterals

and are optionally able to preserve singularities.

10.1. Grid-Preserving Operators

Changing the local connectivity within a quadrilateral mesh without introducing non-

quadrilateral elements or new singularities is a delicate task. And even worse, no local

operation exists to perform such a modification. However, since such an operation is

151

10. Structure Optimization

Figure 10.3.: The three atomic operations of a dual half-edge: A shift left step (red

arrow) releases the vertex on the left side of the dual half-edge and shifts it towards the

next vertex, generating a triangle and a pentagon. In a collapse step (yellow) the edge

is collapsed into a single vertex. The shift right (green) is the counterpart of shift left,

releasing the right vertex. After applying one step we move to the next dual halfedge as

indicated by the arrows.

highly desirable, it is worth to examine the problem in more detail.

Assume that we have a closed quadrilateral mesh without

boundaries and that we want to change the connectivity within

a single quadrilateral with points a, b, c and d such that a is con-

nected to c instead of b, as depicted in the figure to the right.

The problem is that after executing this edge-flip, we end up

with a triangle and a pentagon. If the corresponding quad-loop

is self-intersection free, one solution would be to propagate the

edge-flip along the whole (always closed) quad-loop such that

in the end the triangle and the pentagon cancels out. Unfortu-

nately not all quad-loops are intersection free and even if they

are, this combined operation is completely determined by the quad-loop structure and

leaves no freedom to control which areas of the mesh should preferably be modified. This

property is in conflict with the requirement to protect parts of the mesh which contain

152

10.1. Grid-Preserving Operators

Figure 10.4.: The finite-automaton describes all valid possibilities to combine the

three atomic operations. Each closed dual path on the mesh, which is closed within

the finite-automaton preserves the all-quadrilateral structure without introducing new

singularities.

important features or regions of good quality.

To obtain more degrees of freedom we propose to combine the above edge-flip opera-

tion with a collapse operation in such a way, that we can create a much larger variety of

possible operators, but still can guarantee to preserve the quadrangular structure of the

input mesh. Figure 10.3 shows the three necessary atomic operations, namely shift left,

collapse and shift right which are visualized with a red, yellow and green arrow respec-

tively. All three operations can be associated with a dual halfedge and combined along

a dual path in the way shown in the finite automaton in Figure 10.4 in order to form a

valid grid-preserving operator (GP-operator). The most important property of such a

GP-operator is that it does not introduce new singularities or non-quadrilateral elements.

This means, if we start at one mesh edge in the step left state we can do as many shift

left steps as we want by following the dual path in the same direction where all crossed

edges are shifted. To leave the step left state, within a face we can turn right and change

the state to step straight. From here we can either move straight and collapse as many

edges as desired, or turn right and apply the shift right operator, or again turn left and

apply the shift left operator. Altogether, using this state machine, we can traverse a

153

10. Structure Optimization

dual path which is assembled of straight steps, sidesteps to the left and sidesteps to the

right, but we can never step back, i.e. turn twice into the same direction (cp. Figure

10.5).

Figure 10.5.: Example of a valid dual path combining the three atomic operations

according to the state machine. In the absence of singularities the resulting topology is

equivalent to the removal of a single column of quads (cp. last step).

While this might seem to be quite restrictive it fortunately is not. The reason is that

we can exploit the singularities within the mesh to change the walking direction, e.g.

walking around two valence three singularities is the same as turning by an angle of π

in a regular grid. Consequently, navigating between and around the singularities offers

a large variety of possible paths. Figure 10.6a gives an example of this behavior.

To guarantee that in the end all triangles and pentagons cancel out, it is necessary that

the dual path is closed within the state machine, meaning that there is a transition from

the state at the last dual half-edge to the state at the first dual half-edge. Notice that

this is exactly the case when the closed dual path circuits a group of singularities such

that the total rotation becomes an integer multiple of 2π. For illustration, Figure 10.6b

shows such a path and the resulting quadrangulation after applying the corresponding

operations.

154

10.1. Grid-Preserving Operators

(a) (b)

Figure 10.6.: (a) Side steps (dashed lines) can control the walking direction by navigat-

ing between singularities. (b) The dual path through the green quadrilaterals, consisting

of collapse steps (yellow) and shift right steps (green), is a valid GP-operator (left). Exe-

cuting the corresponding atomic operations results in a new quadrilateral mesh with the

same singularities (right). Notice that the GP-operator has closed the red quad-loop.

Going back to our introductory question, we are now able to give a more satisfying

answer. If we want to shift the edge between a and b to an edge between a and c while

maintaining a quadrangulation without additional singularities, we can start at the edge

between a and b with the state shift right and walk along any closed dual path com-

patible to the state machine and perform the induced atomic operations. Which one of

those candidate operations is the best strongly depends on the application in mind.

A natural choice is to minimize the overhead, i.e. , the number of additional atomic

operations which are necessary to close the path. This can be found by enumerating all

possible paths generated by the state-machine with increasing length until the shortest

cycle is found. Obviously this approach leads to an exponential complexity which is

useless for practical applications.

The state-machine graph: In order to efficiently find a cycle which is compatible to

the state machine, we first assemble a directed graph, as depicted in Figure 10.7a. In this

155

10. Structure Optimization

(a) (b)

Figure 10.7.: (a) Illustration of the state-machine graph: By creating three vertices for

each dual half edge we can encode the different states shift left (red), collapse (yellow)

and shift right (green). Adding directed edges corresponding to transitions within the

finite-state automaton we obtain a graph where all paths that belong to chains of opera-

tions are compatible with the finite-state automaton by construction. (b) The upper part

of the figure shows a valid while the lower one depicts an invalid crossing configuration.

graph all cycles are compatible with the state-machine by construction. The idea is that

the graph possesses three different vertices for each dual halfedge of the quadrilateral

mesh which encode the three different states. Adding directed edges which reproduce

the transitions of the state machine as illustrated in Figure 10.7a we achieve a directed

graph with the desired property. All cycles in this graph correspond to dual paths on

the quadrilateral mesh which are closed within the mesh as well as in the state machine.

In this graph a shortest cycle through a start vertex can be found by a simple and

efficient breadth-first search. However there is one drawback compared to the explicit

exponential algorithm of the state-machine. Since the graph is static, it does not capture

the changes made by previous operations of the same path. Clearly we cannot shift an

edge which was already collapsed, although such a path exists in the graph. Therefore

we have to do a post-evaluation of the cycle in order to check whether it belongs to a

realizable set of operations or not. If it is not realizable, we iteratively modify the graph

156

10.1. Grid-Preserving Operators

and perform new searches, until we have found a valid cycle or the algorithm terminates

without finding one. In contrast to the breadth-first search the iterative process cannot

guarantee to find a shortest path. However, as our practical experiments showed, it is

at least a good compromise between quality and performance.

Illegal configurations within a cycle are typically induced by a corresponding dual

path on the quadrilateral mesh that visits a face more than once, e.g. by performing

more than one operation on a single edge or first shifting an edge and then performing

any other operation while walking through the face. The only two exceptions where it

is allowed to visit a face twice are first collapsing through a face in two orthogonal di-

rections and second collapsing through a face in one direction and then shifting through

the face in the orthogonal direction. In both cases the static graph structure still leads

to valid paths.

If an illegal cycle is found, we first identify the first illegal configuration where a face

is visited twice, leading to a pair of graph vertices vi and vj, which are in conflict by

visiting vi first. To modify the graph, we remove all graph vertices and adjacent edges

which are incompatible for the path up to vertex vi and then restart the search from vi.

Feature and singularity preservation: A nice property of the graph representation

is that we can exclude all unwanted atomic operations by simply removing the corre-

sponding graph vertex and all its adjacent edges from the graph. This is for example

useful to disallow the merging of neighboring singularities or the shifting of feature edges.

Moreover it is possible to disallow the merging of singularities which are not directly

connected. Such a merging could possibly happen if the breadth-first search leads to a

cycle which collapses several edges connecting two singularities. Of course we do not

want to forbid the collapse of all edges between the singularities. Therefore such illegal

configurations are identified in the post-evaluation phase and as before we restart the

search with a modified graph, where the last collapse leading to the illegal merge was

removed. The same procedure can be used to prevent that two distinct feature lines

collapse into one.

157

10. Structure Optimization

Using GP-operators: In summary the concept of a GP-operator offers a variety of dif-

ferent structural modifications, which by construction do not introduce new singularities

or non-quadrilateral elements. Notice that the well-known poly-chord collapse used in

[DSSC08] is one special case of a GP-operator which only consists of edge collapses.

Here we suggested to extend a desired local operation to a full GP-operator by the

minimal number of additional operations. However, depending on the desired structural

optimization many other choices are conceivable, leading to other graph search algo-

rithms like e.g. a Dijkstra or Hamiltonian cycle.

A nice feature of the graph based construction is the flexibility to optionally guarantee

the preservation of singularities and/or (sharp) features of the input quadrangulation by

just removing some of the graph vertices.

In the following sections we will use GP-operators to improve the quality of the base

complex by identifying and repairing helical mesh configurations.

10.2. Helices

Topological Helices in Quadrilateral Meshes The most intuitive way to think of

topological helices in quadrilateral meshes, which we will call q-helices, is, to imagine

their construction out of a rectangular part of the Cartesian grid as illustrated in Fig-

ure 10.8b. First start creating a cylinder in the usual way, by keeping one side of the

rectangle fixed in space, wrapping the opposite side of the rectangle around the first one

and gluing together pairs of boundary vertices which belong to equal parametric lines.

If we instead connect vertices from different parametric lines of the rectangle, we are

able to create a single new parametric line, which winds upwards or downwards in the

grid with a constant orthogonal offset. Hence, we have constructed a discrete helical

structure. In this structure we can identify all the properties of a usual helix. The pitch

h of the helix is is the distance between two neighboring windings, while the turn length τ

is the arc length of a single turn. For a q-helix both values are integers, since all distances

are measured in the grid-metric of the quadrangular mesh, which means that all edges

(and dual edges) have a length of one. The winding number γ which counts the number

158

10.2. Helices

regular

helicalpitch 1

(a) (b)

Figure 10.8.: (a) A left-handed helix winds up the blue axis. (b) By wrapping a

rectangular quad-patch and and gluing two sides, we can create a cylinder. Shifting the

sides against each other before gluing, we end up with a topological q-helix equipped

with the same properties as in the continuous case.

of turns can be computed by dividing the total length l by the length of one turn γ = l/τ .

The orientation of a helix is reflected in the sign of the pitch. Following the right hand

grip rule, a right-handed helix has a positive pitch, while the pitch of a left-handed helix

is negative. Notice that the handedness of a helix is an intrinsic geometric property and

does not depend on the chosen coordinate system.

After describing the construction of q-helices, in the next paragraph we will derive a

criterion which can be used to identify q-helices in quadrangular meshes. Some example

helices are shown in Figure 10.9.

As discussed in the previous section, we want to work with helices of the dual mesh.

More precisely a q-helix Hd = [ed0, . . . , e
d
n] with pitch h ∈ Z, turn length τ ∈ Z and

winding number γ ∈ R is an ordered set of connected dual edges edi forming a dual

159

10. Structure Optimization

Figure 10.9.: Exemplarily some q-helices are shown as colored dual parametric lines.

Notice that q-helices with a pitch greater than 1 often form bundles of interleaved helices.

parametric line and fulfilling the following q-helix property:

Within a q-helix it is equivalent to either walk τ steps along the helix or alternatively

do h side-steps to the left. Here equivalent means that not only the position but also

the orientation coincides.

Mathematically the above statement implies that there is a regular region without

interior singularities around Hd, where it is possible to choose a consistent frame. Con-

sequently q-helices cannot have any self-intersections.

For our mesh optimization task not all helices which fulfill the above definition are of

interest. Therefore it is useful to define the interesting subset to be so called minimal

q-helices. They are characterized through two properties: For a minimal q-helix the

pitch h is always smaller or equal to the turn length τ and secondly there is no subset

of dual edges belonging to the q-helix, which form a separate q-helix with smaller pitch.

The first criterion excludes approximately half of all q-helices, because for each q-helix

there exists an orthogonal q-helix living in the same regular region, where the values

of pitch and turn length are exchanged. The second criterion excludes helices which

160

10.2. Helices

contain other helices with smaller pitch, not well suited for our optimization.

As illustrated in the introductory example in Figure 10.1, q-helices subdivide the base-

complex into narrow stripes. Therefore in the next section we will discuss how to remove

them from the quadrilateral mesh.

To remove a q-helix we can apply exactly the inverse operation of the construction

example of Figure 10.8b, which means cutting the mesh along the helix, shifting the

vertices of one side of the cut, and gluing them with their new partners. However,

on a closed mesh the situation is a little bit more complicated. In order to preserve

the quad-structure we have to compute a full GP-operator, as introduced in Section

10.1, where the desired shifting operations are a sub-part of the complete operation.

Furthermore we have to make sure that no other shifting of horizontal edges within

the cylindrical mesh area of picture Figure 10.8b are done by the GP-operator. Since

the graph construction of the GP-operator does not allow multiple operations on a sin-

gle edge, we repair helices with pitch > 1 iteratively by applying the following algorithm.

Removing a q-helix H with pitch 1 can be done in four steps.

1. Set up the graph G representing the state-machine for the input quadrilateral

mesh.

2. Identify an open dual path D = [d0, . . . , dm] consisting of shift steps which are

necessary to remove the helix.

3. Remove all vertices from G which correspond to shift operations which are in

conflict with the correction of D, i.e. all shifting steps of horizontal edges in the

cylindrical region which do not belong to D.

4. Execute the iterative path search described in Section 10.1 from vertex dm to vertex

d0 in G to extend D to a GP-operator. If such an operator exists, perform the

induced atomic operations. Otherwise it was not possible to remove H.

In general we have different possibilities to choose the correction path D. Each pos-

sibility is a column of quadrilaterals within the cylindrical region. We randomly choose

one of those candidates and only in cases where we do not find a path, we iteratively

test the other ones.

161

10. Structure Optimization

10.3. Greedy Algorithm

Given the above GP-operator to remove a single q-helix, it is straightforward to design

a greedy algorithm which removes as many q-helices as possible.

An important side condition within this algorithm is that we forbid all operations

which worsen mesh areas which have a nice topological structure. More precisely we

identify all dual edge-loops without self-intersections, i.e. all minimal q-helices with

pitch 0, and only search for GP-operators which do not destroy them by shifting a

neighboring parallel edge. Furthermore we disallow increasing the pitch of all present

q-helices with a winding number greater or equal 2. This somehow arbitrary choice is

justified by the observation that helices with at least two complete windings most likely

increase the base-complex quality and therefore it is often advantageous to protected

them from worsening. Both modifications can easily be done by removing graph vertices

as explained in section 10.1.

Altogether our base-complex optimizing greedy algorithm works in the following way

(cp. Figure 10.10):

1. Identify all minimal q-helices {Hi} within the input quadrilateral mesh.

2. Greedily remove the helix with the largest winding number with the algorithm

explained in Section 10.2.

3. Apply smoothing to reduce the geometric distortion introduced by shift steps.

4. Go back to step 1. until there is no removable q-helix left.

A naive search for q-helices would first check for all dual vertices whether their orthog-

onal dual parametric lines intersect each other. If this is the case, the first intersection

is a q-helix candidate and we can verify whether the necessary conditions of Section

10.2 are fulfilled and extend the q-helix in both directions as far as possible. By pre-

computing for each dual half-edge the corresponding parametric line, a local position

index on this line and the next self-intersection on this parametric line, the detection of

q-helices becomes much faster.

162

10.3. Greedy Algorithm

(a) (b) (c)

(d) (e) (f)

Figure 10.10.: Algorithm example: Figure (a) shows the input mesh with a fine base-

complex. Two q-helices (blue and yellow curve) are identified in (b) and the correction

path shown in (c) and belonging to the blue helix is extended to a GP-operator in

(d). Figure (e) shows the mesh after applying all induced atomic operations. This

single operation is sufficient to remove both helices leading to the desired (coarse) base

complex. Finally tangential smoothing improves the per element quality (f).

For the smoothing we apply a very simple explicit variant of [ZBX05] as done in

[DSSC08] which is able to handle features appropriately. In general it would be possi-

ble to leave this step out, however shift operations will locally create unaesthetic angles.

163

10. Structure Optimization

Therefore if not only the topological result is of interest, a tangential relaxation is prefer-

able.

10.4. Evaluation

For the evaluation of our base-complex optimization technique, we apply the method to

several quadrilateral meshes generated with the method presented in Chapter 8. As a

quantitative evaluation we compare the number of helices and the quality of the base-

complex of the input mesh against the optimized mesh as shown in Table 10.1. The

quality of the base-complex is measured by the number of its quadrilateral patches , i.e.

the number of quadrilaterals that remain after removing all regular parametric lines. All

results were computed within a few minutes on a standard PC.

Input Output

Model #Hel #F #F in BC #Hel #F #F in BC

Fandisk 19 764 408 5 506 144

DrillHole 24 3077 1368 7 1948 216

RockerArm 17 3180 1226 3 1678 178

Fertility 46 3357 2271 1 2387 526

Botijo 42 8395 4957 7 5472 1034

Lever 49 7886 5578 10 5850 907

Jet 52 36472 23303 23 31296 1492

Table 10.1.: Statistics of the base-complex optimization: We compare the number of

helices # Hel, the number of quadrilaterals of the mesh # F and the number of quadri-

laterals of the base-complex # BC between the input and the optimized mesh of several

models.

For all meshes most of the q-helices could be removed leading to a significant reduction

of the base-complex size. On the Fandisk model the optimization method reduces the

size of the base-complex from 408 to 144 quadrilaterals. Furthermore we experimentally

collapsed all face-loops that did not lead to singularity merges or collapsing features. In

this experiment the base complex could be even reduced to 90 quadrilaterals, as shown in

the right most picture of the Fandisk in Figure 10.11. However, this reduction comes

at the cost of moving the valence five singularity onto the feature line on top of the

164

10.4. Evaluation

Fandisk which is not optimal and induces unwanted stretch.

Another additional experiment was performed on the Fertility model, where the

right most picture in Figure 10.11 shows the result of a base-complex optimization where

the merging of singularities was allowed. Here the size of the base-complex could be re-

duced from 526 to 222 but again the overall distortion of the patches increased as a

result of the merged singularities. Whether such aggressive reductions are useful de-

pends strongly on the desired application.

The Botijo and the Lever model both have a larger number of singularities leading

to rather many separating lines despite the removal of most of the helices. But still the

decoupling of quad-loops is advantageous for many applications enabling for example a

better control of anisotropic edge-lengths.

Limitations. The presented algorithm works in a greedy fashion and therefore it is no

surprise that we cannot guarantee optimality. Due to the iterative graph search it is even

not guaranteed to find a suitable GP-operator if one exists. Our experiments showed

that prioritizing the q-helices by their winding-number usually leads to good results, but

we also experienced counter examples where a different ordering performed better.

Furthermore the resulting base-complex is strongly dependent on the number and

placement of singularities in the input, since we do not change them. In particular for

unstructured quadrilateral meshes like the cylinder in Figure 10.1a it cannot be expected

to achieve a coarser base-complex without adequately adjusting the singularities.

While the topological optimization is completely robust and parameter free, the

mesh smoothing may occasionally lead to geometric instabilities. Replacing the ex-

plicit smoothing by a superior parametrization based method which e.g. exploits the

optimized base-complex could be an interesting research topic for the future.

165

10. Structure Optimization

Figure 10.11.: Comparison of various example meshes before and after our base-

complex optimization. The red lines indicate the base-complex, i.e. all parameter lines

emanating from the singular vertices. For the Fandisk model the third result is a max-

imal reduction of quadloops without merging singularities, while the third picture of

Fertility was created by allowing singularity merges within the helix removal step.

166

11. Conclusion

In this thesis we studied the generation of quadrilateral surface meshes and proposed

novel methods designed for the application in animation and simulation environments.

In the following we will summarize our main contributions and give an outlook on

interesting future research directions.

Summary

One of the key ingredients of parametrization based quadmesh generation consists in a

fast optimization strategy for mixed-integer problems. Consequently, in the first part of

this thesis we analyzed general solution strategies for mixed-integer problems and de-

veloped a novel highly efficient adaptive optimization algorithm, specially designed for

the requirements in geometry processing. Since state-of-the-art solution strategies are

far too time consuming, this optimization algorithm is crucial for the parametrization

based generation of quadrilateral meshes. One outcome of this thesis is a publicly avail-

able implementation of our optimization algorithm, which is able to rapidly approximate

huge quadratic mixed-integer problems.

The second part of this thesis dealt with the intended goal of our work, i.e. quadri-

lateral surface mesh generation. While our layout based approach generalizes previous

globally smooth parametrization approaches in order to increase robustness within a

reverse engineering environment, it is still limited by the requirement of a predefined

rectangular patch layout. Since the automatic generation of such high-quality patch

layouts is a very complicated and yet unsolved problem, our second approach, i.e. the

orientation-field guided method, tackles the quadmesh generation problem in a different

way. Although fully automatic parametrization based construction of a high-quality

quadmesh seems to be intractable at a first glance, it turns out that by splitting the

overall optimization in an orientation and a metric part, leads to very good results. Both

corresponding sub-problems can be solved efficiently by our mixed-integer optimization

167

11. Conclusion

algorithm and the resulting algorithm represents an important contribution to the state-

of-the-art. Several approaches build on top of our results [KMZ10, MPKZ10, LXW∗11],

extend it to different input data [LLZ∗11, PTSZ11] or other mesh types [NPPZ10]. The

most important aspect of our method consists in its flexibility - quadmeshes can either

be generated fully automatic or interactively designed by iteratively adding high-level

constraints. From this point of view, several other methods which always require guid-

ance, like e.g. the layout based approach, can indeed be seen as special cases of our

general strategy.

Quadrialteral meshes generated with our orientation-field guided approach exhibit a

well-behaved distribution of irregular vertices. However, their global connectivity often

does not lead to a coarse partitioning into rectangular patches. Since several practical

applications, as for instance texture and displacement mapping, benefit from a semi-

regular mesh, i.e. one with a coarse patch layout, the third part of this thesis was

devoted to a global structure optimization. We proposed a novel set of global operators

that can be applied to turn a mesh with semi-regular valency into a real semi-regular

mesh.

In summary, the combination of both of our proposed algorithms enables a complete

mesh generation pipeline, which leads to quadmeshes that fulfill the practical quality

requirements of animation and simulation environments.

Outlook

Compared to triangle mesh generation, quadrilateral mesh generation is still relatively

unexplored. Consequently, interesting directions for future research can be found in

almost all topics addressed in this thesis. While the orientation-field guided approach

based on splitting is tempting due to its performance, it implies the drawback of de-

coupling the orientation computation from the element sizing. For applications which

require a precise control over element size or a strongly graded mesh, a better integrated

approach which is able to optimize the rotational and metric part simultaneously would

be desirable. The same holds for the optimization of the base-complex, which currently

168

is done in a post-processing step.

Another important aspect for future research is robustness. The proposed stiffening

approach mostly prevents flipped triangles in the parametrization, however, without

providing any guarantees. While our greedy rounding strategy in combination with

stiffening is sufficient for the generation of moderately coarse meshes, in particular the

generation of very coarse quadmeshes is delicate. It might happen, that irregular vertices

are snapped to the same location in parameter space and thus lead to degeneracies in

the mapping function. Finding an efficient formulation that is guaranteed to find valid

integer-grid mappings in reasonable time belongs to the most important open questions.

We proposed the new class of GP-operators in order to eliminate helical configurations

within a quadmesh. However, we believe that these operators are much more general and

could be used for other optimization tasks as well. The combination of GP-operators

with other known quadmesh operators into an optimization framework like [TPC∗10]

seems to be straightforward, however, finding a good prioritization is non-trivial and

requires further investigations.

Maybe the most important research direction consists in generalizing the ideas of

quadrilateral surface mesh generation to the equivalent volumetric problem, i.e. hexa-

hedral volume meshing. Hexahedral meshes are broadly applied in simulation although

their generation is very time consuming due to the absence of a fully automatic approach.

The parametrization part of the orientation-field guided approach can be generalized to

the volumetric case [NRP11]. However, the automatic generation of 3D orientation-fields

is more complicated. Although promising ideas were developed recently [HTWB11], the

problem of finding topologically consistent 3D orientation-fields is still unsolved.

169

Bibliography

[AB99] Amenta N., Bern M. W.: Surface reconstruction by Voronoi filtering.

Discrete & Computational Geometry 22, 4, 1999, 481–504.

[ACSD∗03] Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun

M.: Anisotropic polygonal remeshing. In ACM SIGGRAPH 2003 Papers,

New York, NY, USA, 2003, SIGGRAPH ’03, ACM, pp. 485–493.

[AGK] Aurenhammer F., Graz T. U., Klein R.: Voronoi diagrams. In

Handbook of Computational Geometry, Elsevier Science Publishers B.V.

North-Holland, pp. 201–290.

[AUGA05] Alliez P., Ucelli G., Gotsman C., Attene M.: Recent Advances

in Remeshing of Surfaces. Research report, AIM@SHAPE Network of

Excellence, 2005.

[AW11] Alexa M., Wardetzky M.: Discrete laplacians on general polygonal

meshes. In ACM SIGGRAPH 2011 papers, New York, NY, USA, 2011,

SIGGRAPH ’11, ACM, pp. 102:1–102:10.

[BBK05] Botsch M., Bommes D., Kobbelt L.: Efficient linear system solvers

for mesh processing. In IMA Conference on the Mathematics of Surfaces,

2005, Martin R. R., Bez H. E., Sabin M. A., (Eds.), vol. 3604 of Lecture

Notes in Computer Science, Springer, pp. 62–83.

[BK07] Bommes D., Kobbelt L.: Accurate computation of geodesic distance

fields for polygonal curves on triangle meshes. In VMV, 2007, pp. 151–160.

[BKP∗10] Botsch M., Kobbelt L., Pauly M., Alliez P., Lévy B.: Polygon

Mesh Processing. AK Peters, 2010.

[BLK11] Bommes D., Lempfer T., Kobbelt L.: Global structure optimization

of quadrilateral meshes. Comput. Graph. Forum 30, 2, 2011, 375–384.

171

Bibliography

[BLP∗12] Bommes D., Lévy B., Pietroni N., Puppo E., Silva C., Tarini M.,

Zorin D.: State of the art in quad meshing. In Eurographics STARS,

2012.

[BVK10] Bommes D., Vossemer T., Kobbelt L.: Quadrangular parameter-

ization for reverse engineering. In Proceedings of the 7th international

conference on Mathematical Methods for Curves and Surfaces, Berlin, Hei-

delberg, 2010, MMCS’08, Springer-Verlag, pp. 55–69.

[BZK09] Bommes D., Zimmer H., Kobbelt L.: Mixed-integer quadrangulation.

In SIGGRAPH ’09: ACM SIGGRAPH 2009 papers, New York, NY, USA,

2009, ACM, pp. 1–10.

[BZK12] Bommes D., Zimmer H., Kobbelt L.: Practical mixed-integer opti-

mization for geometry processing. In Proceedings of the 7th international

conference on Curves and Surfaces, Berlin, Heidelberg, 2012, Springer-

Verlag, pp. 193–206.

[CBK12] Campen M., Bommes D., Kobbelt L.: Dual loops meshing: Quality

quad layouts on manifolds. ACM Trans. Graph. 31, 4, 2012.

[CDHR06] Chen Y., Davis T. A., Hager W. W., Rajamanickam S.: Algorithm

8xx: CHOLMOD, supernodal sparse Cholesky factorization and update/-

downdate. Technical Report TR-2006-005, University of Florida, 2006.

[Cha91] Chazelle B.: Triangulating a simple polygon in linear time. Discrete

Comput. Geom. 6, 5, Aug. 1991, 485–524.

[Chv73] Chvátal V.: Edmonds polytopes and a hierarchy of combinatorial prob-

lems. Discrete Mathematics 4, 4, Apr. 1973, 305–337.

[CMS97] Cignoni P., Montani C., Scopigno R.: A comparison of mesh sim-

plification algorithms. Computers & Graphics 22, 1997, 37–54.

[CP05] Cazals F., Pouget M.: Estimating Differential Quantities using Poly-

nomial fitting of Osculating Jets. Computer Aided Geometric Design 22,

2, 2005, 121–146.

172

Bibliography

[CSM03] Cohen-Steiner D., Morvan J.-M.: Restricted delaunay triangula-

tions and normal cycle. In SCG ’03: Proceedings of the nineteenth annual

symposium on Computational geometry, 2003, pp. 312–321.

[D’A00] D’Azevedo E. F.: Are bilinear quadrilaterals better than linear trian-

gles? SIAM Journal on Scientific Computing 22, 1, Jan. 2000, 198–217.

[DBG∗06] Dong S., Bremer P.-T., Garland M., Pascucci V., Hart J. C.:

Spectral surface quadrangulation. In SIGGRAPH ’06: ACM SIGGRAPH

2006 Papers, 2006, pp. 1057–1066.

[DEG∗99] Demmel J. W., Eisenstat S. C., Gilbert J. R., Li X. S., Liu J.

W. H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix

Analysis and Applications 20, 3, 1999, 720–755.

[DFG99] Du, Faber, Gunzburger: Centroidal voronoi tessellations: Applica-

tions and algorithms. SIREV: SIAM Review 41, 1999.

[DG86] Duran M. A., Grossmann I. E.: An outer-approximation algorithm

for a class of mixed-integer nonlinear programs. Math. Program. 36, 3,

Dec. 1986, 307–339.

[DISSC08] Daniels II J., Silva C. T., Shepherd J., Cohen E.: Quadrilateral

mesh simplification. ACM Trans. Graph. 27, December 2008, 148:1–148:9.

[DMSB99] Desbrun M., Meyer M., Schröder P., Barr A. H.: Implicit fairing

of irregular meshes using diffusion and curvature flow. In Proceedings of the

26th annual conference on Computer graphics and interactive techniques,

New York, NY, USA, 1999, SIGGRAPH ’99, ACM Press/Addison-Wesley

Publishing Co., pp. 317–324.

[DSC09a] Daniels II J., Silva C. T., Cohen E.: Localized quadrilateral coarsen-

ing. In SGP ’09: Proceedings of the Symposium on Geometry Processing,

Aire-la-Ville, Switzerland, Switzerland, 2009, Eurographics Association,

pp. 1437–1444.

[DSC09b] Daniels II J., Silva C. T., Cohen E.: Semi-regular quadrilateral-only

remeshing from simplified base domains. In SGP ’09: Proceedings of the

173

Bibliography

Symposium on Geometry Processing, Aire-la-Ville, Switzerland, Switzer-

land, 2009, Eurographics Association, pp. 1427–1435.

[DSSC08] Daniels J., Silva C. T., Shepherd J., Cohen E.: Quadrilateral

mesh simplification. In SIGGRAPH Asia ’08: ACM SIGGRAPH Asia

2008 papers, New York, NY, USA, 2008, ACM, pp. 1–9.

[EKS∗10] Eigensatz M., Kilian M., Schiftner A., Mitra N. J., Pottmann

H., Pauly M.: Paneling architectural freeform surfaces. ACM Trans.

Graph. 29, July 2010, 45:1–45:10.

[FLHCO10] Fu C.-W., Lai C.-F., He Y., Cohen-Or D.: K-set tilable surfaces.

ACM Trans. Graph. 29, July 2010, 44:1–44:6.

[FM84] Fournier A., Montuno D. Y.: Triangulating simple polygons and

equivalent problems. ACM Trans. Graph. 3, 2, Apr. 1984, 153–174.

[GGK98] Gotsman C., Gumhold S., Kobbelt L.: Simplification and com-

pression of 3d meshes. In In Proceedings of the European Summer School

on Principles of Multiresolution in Geometric Modelling (PRIMUS, 1998,

Springer, pp. 319–361.

[GLLR11] Gurung T., Laney D., Lindstrom P., Rossignac J.: Squad: Com-

pact representation for triangle meshes. Computer Graphics Forum 30, 2,

2011, 355–364.

[GRB11] Gu Z., Rothberg E., Bixby R.: Gurobi optimizer 4.5: http://www.

gurobi.com, 2011.

[Gro02] Grossmann I. E.: Review of nonlinear mixed-integer and disjunctive

programming techniques. Methods 3, 3, 2002, 227–252.

[GSC∗04] Glymph J., Shelden D., Ceccato C., Mussel J., Schober H.: A

parametric strategy for free-form glass structures using quadrilateral pla-

nar facets. Automation in Construction 13, 2, 2004, 187 – 202. Conference

of the Association for Computer Aided Design in Architecture.

[GSS96] Groenwold A. A., Stander N., Snyman J. A.: A pseudo-discrete

rounding method for structural optimization. Structural and Multidisci-

plinary Optimization 11, 3, 1996, 218–227.

174

http://www.gurobi.com
http://www.gurobi.com

Bibliography

[HCB05] Hughes T. J. R., Cottrell J. A., Bazilevs Y.: Isogeometric anal-

ysis: Cad, finite elements, nurbs, exact geometry and mesh refinement.

Computer Methods in Applied Mechanics and Engineering 194, 39-41,

2005, 4135–4195.

[HLS07] Hormann K., Lévy B., Sheffer A.: Mesh parameterization: theory

and practice. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, 2007,

p. 1.

[HPW05] Hildebrandt K., Polthier K., Wardetzky M.: Smooth feature

lines on surface meshes. In SGP ’05: Proceedings of the third Eurographics

symposium on Geometry processing, Aire-la-Ville, Switzerland, Switzer-

land, 2005, Eurographics Association, p. 85.

[HTWB11] Huang J., Tong Y., Wei H., Bao H.: Boundary aligned smooth 3d

cross-frame field. In Proceedings of the 2011 SIGGRAPH Asia Conference,

New York, NY, USA, 2011, SA ’11, ACM, pp. 143:1–143:8.

[HZ00] Hertzmann A., Zorin D.: Illustrating smooth surfaces. In SIGGRAPH

’00: Proceedings of the 27th annual conference on Computer graphics and

interactive techniques, New York, NY, USA, 2000, ACM Press/Addison-

Wesley Publishing Co., pp. 517–526.

[HZM∗08] Huang J., Zhang M., Ma J., Liu X., Kobbelt L., Bao H.: Spec-

tral quadrangulation with orientation and alignment control. ACM Trans.

Graph. 27, 5, 2008, 1–9.

[IBM12] IBM: Ilog cplex optimizer 12: http://www.ibm.com, 2012.

[KBSS01] Kobbelt L. P., Botsch M., Schwanecke U., Seidel H.-P.: Feature

sensitive surface extraction from volume data. In Proceedings of the 28th

annual conference on Computer graphics and interactive techniques, New

York, NY, USA, 2001, SIGGRAPH ’01, ACM, pp. 57–66.

[Kin97] Kinney P.: Cleanup: Improving quadrilateral finite element meshes. In

6th International Meshing Roundtable, 1997, pp. 437–447.

[KMZ10] Kovacs D., Myles A., Zorin D.: Anisotropic quadrangulation. In

Proceedings of the 14th ACM Symposium on Solid and Physical Modeling,

New York, NY, USA, 2010, SPM ’10, ACM, pp. 137–146.

175

http://www.ibm.com

Bibliography

[KNP07] Kälberer F., Nieser M., Polthier K.: Quadcover - surface param-

eterization using branched coverings. Computer Graphics Forum 26, 3,

Sept. 2007, 375–384.

[Knu01] Knupp P. M.: Algebraic mesh quality metrics. SIAM J. Sci. Comput.

23, 1, Jan. 2001, 193–218.

[KS98] Kimmel R., Sethian J. A.: Computing geodesic paths on manifolds.

In Proc. Natl. Acad. Sci. USA, 1998, pp. 8431–8435.

[LJX∗10] Lai Y.-K., Jin M., Xie X., He Y., Palacios J., Zhang E., Hu S.-

M., Gu X.: Metric-driven rosy field design and remeshing. IEEE Trans.

Vis. Comput. Graph., 2010, 95–108.

[LKH08] Lai Y.-K., Kobbelt L., Hu S.-M.: An incremental approach to feature

aligned quad dominant remeshing. In SPM ’08: Proceedings of the 2008

ACM symposium on Solid and physical modeling, 2008, pp. 137–145.

[LL10] Lévy B., Liu Y.: Lp Centroidal Voronoi Tesselation and its applications.

ACM Transactions on Graphics 29, 4, 2010.

[Llo82] Lloyd S. P.: Least squares quantization in PCM. IEEE Transactions

on Information Theory 28, 2, 1982, 129–137.

[LLS01] Litke N., Levin A., Schroeder P.: Fitting subdivision surfaces. In

IEEE Visualization 2001, October 2001, pp. 319–324.

[LLZ∗11] Li E., Lvy B., Zhang X., Che W., Dong W., Paul J.-C.: Meshless

quadrangulation by global parametrization. Computer and Graphics, 2011.

[Lue01] Luebke D. P.: A developer’s survey of polygonal simplification algo-

rithms. IEEE COMPUTER GRAPHICS AND APPLICATIONS 21, 2001,

24–35.

[LXW∗11] Liu Y., Xu W., Wang J., Zhu L., Guo B., Chen F., Wang G.:

General planar quadrilateral mesh design using conjugate direction field.

In Proceedings of the 2011 SIGGRAPH Asia Conference, New York, NY,

USA, 2011, SA ’11, ACM, pp. 140:1–140:10.

176

Bibliography

[MK04] Marinov M., Kobbelt L.: Direct anisotropic quad-dominant remesh-

ing. In PG ’04: Proceedings of the Computer Graphics and Applications,

12th Pacific Conference, Washington, DC, USA, 2004, IEEE Computer

Society, pp. 207–216.

[MMP87] Mitchell J. S. B., Mount D. M., Papadimitriou C. H.: The

discrete geodesic problem. SIAM J. Comput. 16, 4, Aug. 1987, 647–668.

[MMWW02] Marchand H., Martin A., Weismantel R., Wolsey L.: Cutting

planes in integer and mixed integer programming. Discrete Applied Math-

ematics 123, 1-3, 2002, 397–446.

[MPKZ10] Myles A., Pietroni N., Kovacs D., Zorin D.: Feature-aligned t-

meshes. ACM Trans. Graph. 29, 4, 2010, 1–11.

[MTTT98] Meyers R. J., Tautges T. J., Tuchinsky P. M., Tuchinsky D.

P. M.: The ”hex-tet” hex-dominant meshing algorithm as implemented in

cubit. In In Proceedings, 7th International Meshing Roundtable 98, 1998,

pp. 151–158.

[NK02] Novotni M., Klein R.: Computing geodesic distances on triangular

meshes. In The 10-th International Conference in Central Europe on Com-

puter Graphics, Visualization and Computer Vision’2002 (WSCG’2002),

Feb. 2002.

[NPPZ10] Nieser M., Palacios J., Polthier K., Zhang E.: Hexagonal global

parameterization of arbitrary surfaces. In ACM SIGGRAPH ASIA 2010

Sketches, New York, NY, USA, 2010, SA ’10, ACM, pp. 5:1–5:2.

[NRP11] Nieser M., Reitebuch U., Polthier K.: Cubecover- parameterization

of 3d volumes. Comput. Graph. Forum 30, 5, 2011, 1397–1406.

[NW99] Nocedal J., Wright S. J.: Numerical Optimization. Springer, August

1999.

[NW06] Nocedal J., Wright S. J.: Numerical Optimization, 2nd ed. Springer,

New York, 2006.

177

Bibliography

[PTC10] Pietroni N., Tarini M., Cignoni P.: Almost isometric mesh param-

eterization through abstract domains. IEEE Transaction on Visualization

and Computer Graphics 16, 4, July/August 2010, 621–635.

[PTSZ11] Pietroni N., Tarini M., Sorkine O., Zorin D.: Global parametriza-

tion of range image sets. ACM Transactions on Graphics, Proceedings of

SIGGRAPH Asia 2011 30, 6, 2011.

[PW08] Pottmann H., Wallner J.: The focal geometry of circular and conical

meshes. Adv. Comp. Math 29, 2008, 249–268.

[PZ07] Palacios J., Zhang E.: Rotational symmetry field design on surfaces.

ACM Trans. Graph. 26, 3, 2007, 55.

[PZKW11] Peng C.-H., Zhang E., Kobayashi Y., Wonka P.: Connectivity edit-

ing for quadrilateral meshes. ACM Transactions on Graphics (proceedings

of ACM SIGGRAPH ASIA) 30, 6, 2011.

[Ren03] Renard Y.: gmm++, Generic Matrix Methods. http://home.gna.

org/getfem/gmm_intro.html, 2003.

[Rin88] Ringertz U. T.: On methods for discrete structural optimization. En-

gineering Optimization 13, 1, 1988, 47 – 64.

[RLL∗06] Ray N., Li W. C., Lévy B., Sheffer A., Alliez P.: Periodic global

parameterization. ACM Trans. Graph. 25, October 2006, 1460–1485.

[RLS∗11] Remacle J.-F., Lambrechts J., Seny B., Marchandise E.,

Johnen A., Geuzaine C.: Blossom-quad: a non-uniform quadrilateral

mesh generator using a minimum cost perfect matching algorithm. Inter-

national Journal for Numerical Methods in Engineering, 2011. accepted.

[Rus06] Russell M.: Cutting planes for mixed integer programming. Optimiza-

tion, 2006.

[RVAL09] Ray N., Vallet B., Alonso L., Levy B.: Geometry-aware direction

field processing. ACM Trans. Graph. 29, December 2009, 1:1–1:11.

[RVLL08] Ray N., Vallet B., Li W. C., Lévy B.: N-symmetry direction field

design. ACM Trans. Graph. 27, 2, 2008, 1–13.

178

http://home.gna.org/getfem/gmm_intro.html
http://home.gna.org/getfem/gmm_intro.html

Bibliography

[SDW∗10] Shepherd J. F., Dewey M. W., Woodbury A. C., Benzley S. E.,

Staten M. L., Owen S. J.: Adaptive mesh coarsening for quadrilateral

and hexahedral meshes. Finite Elements in Analysis and Design 46, 1-2,

2010, 17 – 32. Mesh Generation - Applications and Adaptation.

[SSK∗05] Surazhsky V., Surazhsky T., Kirsanov D., Gortler S. J., Hoppe

H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph.

24, 3, July 2005, 553–560.

[SZBN03] Sederberg T. W., Zheng J., Bakenov A., Nasri A.: T-splines and

t-nurccs. ACM Trans. Graph. 22, 3, July 2003, 477–484.

[TACSD06] Tong Y., Alliez P., Cohen-Steiner D., Desbrun M.: De-

signing quadrangulations with discrete harmonic forms. In Proceedings

of the fourth Eurographics symposium on Geometry processing, Aire-la-

Ville, Switzerland, Switzerland, 2006, SGP ’06, Eurographics Association,

pp. 201–210.

[THCM04] Tarini M., Hormann K., Cignoni P., Montani C.: Polycube-maps.

ACM Trans. Graph. 23, Aug. 2004, 853–860.

[TPC∗10] Tarini M., Pietroni N., Cignoni P., Panozzo D., Puppo E.: Prac-

tical quad mesh simplification. Computer Graphics Forum (Special Issue

of Eurographics 2010 Conference) 29, 2, 2010, 407–418.

[TPP∗11] Tarini M., Puppo E., Panozzo D., Pietroni N., Cignoni P.: Sim-

ple quad domains for field aligned mesh parametrization. ACM Transac-

tions on Graphics, Proceedings of SIGGRAPH Asia 2011 30, 6, 2011.

[VZ01] Velho L., Zorin D.: 48 subdivision. Computer Aided Geometric Design

18, 5, 2001, 397 – 427. Subdivision Algorithms.

[WB06] Wächter A., Biegler L. T.: On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming.

Math. Program. 106, May 2006, 25–57.

[WP94] Westerlund T., Pettersson F.: A Cutting Plane Method for Solving

Convex MINLP Problems. Åbo Akademi, 1994.

179

Bibliography

[YYPM11] Yang Y.-L., Yang Y.-J., Pottmann H., Mitra N. J.: Shape space

exploration of constrained meshes. ACM Trans. Graph. 30, 6, Dec. 2011,

124:1–124:12.

[YZJ03] Yu X., Zhang S., Johnson E.: A discrete post-processing method for

structural optimization. Engineering with Computers 19, 2, 2003, 213–220.

[ZBX05] Zhang Y., Bajaj R., Xu G.: Surface smoothing and quality im-

provement of quadrilateral/hexahedral meshes with geometric flow. In

In Proceedings, 14th International Meshing Roundtable, 2005, John Wiley

& Sons, pp. 449–468.

[ZCBK12] Zimmer H., Campen M., Bommes D., Kobbelt L.: Rationalization

of triangle-based point-folding structures. Comp. Graph. Forum 31, 2pt3,

May 2012, 611–620.

[ZHLB10] Zhang M., Huang J., Liu X., Bao H.: A wave-based anisotropic

quadrangulation method. ACM Trans. Graph. 29, July 2010, 118:1–118:8.

[ZS00] Zorin D., Schröder P.: Subdivision for Modeling and Animation. Tech.

rep., SIGGRAPH 2000, 2000. Course Notes.

180

Curriculum Vitae

David Bommes

E-Mail David.Bommes@gmail.com

Date of Birth 31.12.1979

Place of Birth Korschenbroich, Germany

Citizenship German

Academic Education

Apr. 2006 – Oct. 2012 Doctoral Student at RWTH Aachen University, Com-

puter Graphics Group.

Degree: Dr. rer. nat.

Supervisor: Prof. Dr. Leif Kobbelt.

Oct. 2000 – Mar. 2006 Computer Science Studies at RWTH Aachen University.

Degree: Dipl. Inform.

Supervisor: Prof. Dr. Leif Kobbelt.

Publications

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,

Denis Zorin: State of the art in quad meshing, Eurographics STARS, 2012

Marcel Campen, David Bommes, Leif Kobbelt: Dual Loops Meshing: Quality Quad

Layouts on Manifolds, ACM Transactions on Graphics, Volume 31, Number 4, (Proc.

of SIGGRAPH), 2012

Henrik Zimmer, Marcel Campen, David Bommes, Leif Kobbelt: Rationalization of

Triangle-Based Point-Folding Structures, Computer Graphics Forum, Volume 31, Num-

ber 2, 611-620, (Proc. of EUROGRAPHICS), 2012

David Bommes, Timm Lempfer, Leif Kobbelt: Global Structure Optimization of Quadri-

lateral Meshes, Computer Graphics Forum, Volume 30, Number 2, 375-384, (Proc. of

EUROGRAPHICS), 2011

David Bommes, Henrik Zimmer, Leif Kobbelt: Practical Mixed-Integer Optimization for

Geometry Processing, Lecture Notes in Computer Science, (Proc. of MMCS’10), 2010

David Bommes, Henrik Zimmer, Leif Kobbelt: Mixed-Integer Quadrangulation, ACM

Transactions on Graphics, Volume 28, Number 3, (Proc. of SIGGRAPH), 2009

David Bommes, Tobias Vossemer, Leif Kobbelt: Quadrangular Parametrization for Re-

verse Engineering, Lecture Notes in Computer Science, (Proc. of MMCS’08), 2008

David Bommes, Leif Kobbelt: Accurate Computation of Geodesic Distance Fields for

Polygonal Curves on Triangle Meshes, Proc. of Vision Modeling, and Visualization,

151-160, 2007

David Bommes: Physically based Segmentation of 3D Objects, Diploma Thesis at RWTH

Aachen University supervised by Prof. Dr. Leif Kobbelt and Prof. Dr. Christian

Bischof, 2006

Mario Botsch, David Bommes, Leif Kobbelt: Efficient Linear System Solvers for Mesh

Processing, IMA Conference on the Mathematics of Surfaces, 62-83, 2005

Mario Botsch, David Bommes, Christoph Vogel, Leif Kobbelt: GPU-Based Tolerance

Volumes for Mesh Processing, Pacific Conference on Computer Graphics and Applica-

tions, 237-243, 2004

	Introduction
	Quadrilateral Surface Meshes
	Foundations
	Applications
	Animation
	Simulation

	Quality Criteria
	Related Work

	Mixed-Integer Optimization in Geometry Processing
	Mixed-Integer Nonlinear Programming
	General Optimization Approaches
	Branch-and-Bound
	Cutting-Plane method
	Branch-and-Cut

	Efficient Approximation of Quadratic MI-Problems
	Linear Constraints
	Lagrangian Multipliers
	Elimination Approach

	Integer Constraints
	Direct Rounding
	Iterative Greedy Rounding

	Evaluation

	Parametrization based Quadrilateral Mesh Generation
	Integer-Grid Mappings
	MINLP Formulation

	Layout guided Approach
	Layout Parametrization
	Domain Optimization
	Evaluation

	Orientation-field guided Approach
	Filtering of Salient Orientations
	Orientation-field Generation
	Sizing field computation
	Orientation-field Parametrization
	Evaluation
	Flexibility

	Geodesic Distance Fields

	Quadmesh Optimization
	Structure Optimization
	Grid-Preserving Operators
	Helices
	Greedy Algorithm
	Evaluation

	Conclusion
	Bibliography

