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Prüfer - Examiners

Prof. Dr. Hans-Peter Seidel,
MPI Informatik, Saarbrücken, Germany

Dr. Michael Wand,
Universität des Saarlandes & MPI Informatik, Saarbrücken, Germany

Dr. Ivo Ihrke,
Universität des Saarlandes, Saarbrücken, Germany

Protokoll - Reporter

Dr. Kiran Varanasi,

MPI Informatik, Saarbrücken, Germany



Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
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Abstract

Deformable shape matching has become an important building block in academia

as well as in industry. Given two three dimensional shapes A and B the defor-

mation function f aligning A with B has to be found. The function is discretized

by a set of corresponding point pairs. Unfortunately, the computation cost of a

brute-force search of correspondences is exponential. Additionally, to be of any

practical use the algorithm has to be able to deal with data coming directly from

3D scanner devices which suffers from acquisition problems like noise, holes as

well as missing any information about topology.

This dissertation presents novel solutions for solving shape matching: First,

an algorithm estimating correspondences using a randomized search strategy is

shown. Additionally, a planning step dramatically reducing the matching costs

is incorporated. Using ideas of these both contributions, a method for matching

multiple shapes at once is shown. The method facilitates the reconstruction of

shape and motion from noisy data acquired with dynamic 3D scanners. Consid-

ering shape matching from another perspective a solution is shown using Markov

Random Fields (MRF). Formulated as MRF, partial as well as full matches of a

shape can be found. Here, belief propagation is utilized for inference computation

in the MRF. Finally, an approach significantly reducing the space-time complexity

of belief propagation for a wide spectrum of computer vision tasks is presented.
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Kurzfassung

Anpassung deformierbarer Formen ist zu einem wichtigen Baustein in der

akademischen Welt sowie in der Industrie geworden. Gegeben zwei dreidimen-

sionale Formen A und B, suchen wir nach einer Verformungsfunktion f , die die

Deformation von A auf B abbildet. Die Funktion f wird durch eine Menge von

korrespondierenden Punktepaaren diskretisiert. Leider sind die Berech-

nungskosten für eine Brute-Force-Suche dieser Korrespondenzen exponentiell.

Um zusätzlich von einem praktischen Nutzen zu sein, muss der Suchalgorithmus

in der Lage sein, mit Daten, die direkt aus 3D-Scanner kommen, umzugehen. Be-

dauerlicherweise leiden diese Daten unter Akquisitionsproblemen wie Rauschen,

Löcher sowie fehlender Topologieinformation.

In dieser Dissertation werden neue Lösungen für das Problem der Forman-

passung präsentiert. Als erstes wird ein Algorithmus gezeigt, der die Korrespon-

denzen mittels einer randomisierten Suchstrategie schätzt. Zusätzlich wird anhand

eines automatisch berechneten Schätzplanes die Geschwindigkeit der Suchstrate-

gie verbessert. Danach wird ein Verfahren gezeigt, dass die Anpassung mehrerer

Formen gleichzeitig bewerkstelligen kann. Diese Methode ermöglicht es, die Be-

wegung, sowie die eigentliche Struktur des Objektes aus verrauschten Daten, die

mittels dynamischer 3D-Scanner aufgenommen wurden, zu rekonstruieren. Da-

rauffolgend wird das Problem der Formanpassung aus einer anderen Perspektive

betrachtet und als Markov-Netzwerk (MRF) reformuliert. Dieses ermöglicht es,

die Formen auch stückweise aufeinander abzubilden. Die eigentliche Lösung wird

mittels Belief Propagation berechnet. Schließlich wird ein Ansatz gezeigt, der die

Speicher-Zeit-Komplexität von Belief Propagation für ein breites Spektrum von

Computer-Vision Problemen erheblich reduziert.

6



I have not failed. I’ve just

found 10,000 ways that won’t

work.

Thomas A. Edison (1847-1931)
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INTRODUCTION

Shape matching and in particular deformable shape matching is an important

building block for a lot of research fields like computer vision, computer graphics,

biology as well as an indispensable tool in industry like movies, games, robotic,

quality assessment, etc. Given two three dimensional shapes A and B a defor-

mation function, which applied to the source shape A aligns it with target shape

B, has to be found. A simple example of this deformation function would be a

rigid body transformation to align the same shape in different poses. However, this

thesis deals with a more complex problem where the shape is allowed to deform.

This thesis presents several solutions for the isometric shape matching prob-

lem. Isometric shape matching is based on the assumption that on-surface dis-

tances, also known as intrinsic distances, between any pair of points remain con-
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stant regardless of the deformation. For example the distance between two fingers

measured along the shortest path over the hand remains the same even if the hand

is bent. In general, the deformation function is represented by a set of correspon-

dences between the points on the source shape and the target shape. Hence the

problem of deformable shape matching boils down to the problem of estimating

these correspondences.

There are two main challenges when trying to estimate the correspondences:

The first one is complexity: For two shapesA andB consisting ofN andM points

respectively, there are O(N ·M) corresponding point pairs. However, only small

subset of them make sense, as for example it does not make sense to put a forefin-

ger into the correspondence to the ring finger. To find a meaningful correspondence

subset of the size k one need O(
(
N ·M
k

)
) trials, which is not efficiently solvable us-

ing a naı̈ve brute-force search. The second challenge is data representation. To

be of any practical use the correspondence estimation algorithm must be able to

deal with data coming from 3D scanner devices. Such data suffer from noise,

acquisition holes and missing geometric topology information, i.e., points are un-

structured and unconnected. This thesis makes several contributions to overcome

the shortcomings, as summarized in the next paragraphs.

RANSAC: randomized correspondence estimation
In Chapter 3 a correspondence estimation algorithm is shown which is capable of

solving the deformable shape matching problem on data sets coming directly from

the three dimensional acquisition devices. In order to deal with the typical data

acquired by a scanning device, the method uses a RANSAC-like search for correct

correspondences. RANSAC [43] is an approach to estimate a model given a set of

measuring points including large amount of outliers. In case of the approach pre-

sented in the chapter, the correspondence matching model is a set of meaningful

correspondences which respects the isometry criterion. Since the model is self-

consistent,i.e., there is no pair of points which violates the isometry criterion, it is

enough to find a small set of meaningful correspondences which restrict the further

search to a tiny subspace. Furthermore a method which is able to compute cor-

respondences using a robust importance sampling routine to bias the randomized

search towards a suitable solution is shown. The presented technique might be also

applied to other graph matching related problems.
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The corresponding paper: “Isometric Registration of Ambiguous and Partial

Data” has been published in the proceedings of Computer Vision and Pattern

Recognition, CVPR’09 [141].

PLANSAC: towards simplification of the matching problem
In Chapter 4 the matching problem will be investigated deeply and a method which

computes a plan, i.e., a set of surface points to be used by the randomized corre-

spondence estimation, as shown in Chapter 3, is presented. This plan minimizes

the effort, i.e., the number of random trials required to estimate the right correspon-

dence model and hence to compute the deformation function. A plan is represented

by a set of landmarks - points distributed over the shape’s surface. These landmarks

are automatically placed in such a way, that the complexity of the shape matching

process is reduced. Currently, no definition for the complexity of matching two

shapes exists. Experiments with different types of shapes reveal that the number of

landmark points distributed over the shape hints of a possible characterization for

the shape complexity. PLANSAC results suggest that it is worthwhile to analyze

the actual problem first in order to reduce its complexity.

This contribution titled “Intrinsic Shape Matching by Planned Landmark Sam-

pling” has been published in the proceedings of Eurographics 2011 [140].

AnimRec: matching multiple shapes at once
Using the definition of landmarks and the RANSAC-like correspondence estima-

tion algorithm a solution for animation reconstruction is presented in Chapter 5.

Here, the thesis provides a method to reconstruct the motion and the shape of a

moving and isometrically deforming object from a set of partially observed data

as provided, e.g., by dynamic 3D scanning devices. The main challenge here, is

the missing data in the spatial and temporal domain. It is common that when per-

forming a dynamic scan of a human face it can be acquired only partially, e.g.,

when scanning a face both ears are not visible by the scanning device at the same

time. It is assumed that there is no a priori information about the given scanned

object. This is known as template-free matching and although it reflects the real-

world scanning scenario very well it creates additional challenges, since there is

no guidance path in the form of a template the algorithm can follow. In Chapter 5

a solution to this problem is presented, which will be applied to several data sets

23



acquired with dynamic 3D scanners.

The corresponding publication: “Animation Cartography - Intrinsic Recon-

struction of Shape and Motion” has been submitted and is subject to minor re-

visions in the ACM Transactions on Graphics, 2012 [139].

Selfmatching for symmetry detection
Chapter 7 takes a look on the problem of shape matching from another perspective.

The problem of shape matching is redefined as a Markov random field (MRF)

where each node models a point on the source shape. Here, the goal is to find

the best solution over the label set, which is described by the target points. The

alternative formulation of the shape matching problem has the advantage of being

able to find partial matches as well as multiple matches at once. This is also known

as symmetry detection, where the goal is to find parts of an object which are similar.

Several experiments will be shown where isometrically deformed parts would be

identified in the object itself as well as on another object. Additional advantage of

the MRF formulation, as shown in this thesis, is its ability to vary one parameter

to guide the algorithm to find either more local or more global similarities. The

inference computation of the MRF graph is performed with a message passing

algorithm: loopy belief propagation [105].

This approach titled “A Probabilistic Framework for Partial Intrinsic Symme-

tries in Geometric Data” has been published in the conference proceedings of In-

ternational Conference on Computer Vision, ICCV’09 [71].

Wavelet space for speeding up belief propagation
Chapter 7 also shows that the number of states each node in the MRF graph can

take is very large. A big disadvantage of belief propagation when handling a very

large state space is that one need to “manage” a huge state vector for every node

in the MRF graph. Hence one iteration step of belief propagation is not only space

but also very time consuming. In case of grids with a clique of size 2, the number

of operations for one iteration step is O(nk2), where k is the number of states and

n the number of nodes. In Chapter 8 a method for making this complexity data-

dependent is shown. This is achieved by moving the whole inference computation

into the wavelet domain and hence compressing the state vector. The computation

is performed solely in the wavelet domain, dramatically reducing not only the space
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but also the time-complexity of loopy belief propagation. The benefit of wavelet

belief propagation is presented on several computer vision tasks, such as image

matching and optical flow. The use of wavelet based belief propagation offers

not only theoretical but also a practical performance advantages over the existing

methods. The results achieved in this chapter might be of wide applicability for

research fields beyond the scope of computer graphics or computer vision.

The corresponding paper “Wavelet Belief Propagation for Large Scale Infer-

ence Problems” has been published in the proceedings of Conference on Computer

Vision and Pattern Recognition, CVPR’11 [72].
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Problem Statement and

Background

In the last thirty years personal and industrial computers evolved to machines

able to perform precise computations with tremendous speed. This progress

moved the research towards new fields and provided the opportunity to pursue

algorithms which were not possible before. Computer vision, for example, has its

roots back to late 1970s when researches began to learn about human’s percep-

tion by emulating this process on the computer.

In general, computer vision works on images which are used for different com-

puter vision tasks, such as stereo reconstruction, image analysis, image registration,

image matching etc. Generally, computer vision and computer graphics has a lot

of common problems. Computer graphics is mainly used as a term describing any-

thing which is produced on the screen by soft- or hardware. The problem solution

presented in this thesis is related to both, computer vision and computer graphics,

namely: deformable shape matching: Given a pair or a set of three dimensional

shapes, a deformation required to align one shape to another has to be found. Var-

ious applications exists in the industry handling with this type of problem. An

overview of possible applications is given later in this chapter.

Three dimensional shapes can be represented in several ways. Typical rep-

resentations are triangle meshes, i.e., sets of triangles describing the surface of

the shape, and point clouds. A shape representation by a triangle mesh is widely

used in research as well as computer graphics related industries, such as in games,

the movie industry, visualization software and so on. Due to their nature triangle

meshes approximate the shape’s surface continuously, since the surface is repre-

sented by small local triangular patches, whereas a point cloud is a set of unstruc-

tured, unconnected three dimensional points distributed over the shape’s surface.

Hence, compared with triangular meshes or any other polygon-like representation,

point clouds just approximate the surface by a set of points instead of a locally flat
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Figure 1.1: (Top) Typical 3D scanners based on the time-of-flight principle. Left:

a Leica HDS-3000 scanner [73] usually used to scan architectural environment.

Right: Swiss Ranger 4000 [85] used for real-time in-door scanning. (Bottom) Point

clouds acquired with the presented devices. Left: Church as a static object scanned

from different positions. Color information acquired with a simple optical camera

was overlayed within actual 3D point set. Right: Woman performing movements

scanned by the 2D time-of-flight principle. The quality is rather low but more or

less typical for todays available hardware.

surface patches. A point cloud can be obtained, for example, by sampling a given

shape with a 3D scanner device.

3D scanner devices sample an object point by point with different techniques.

Time of flight, for example, measures the time required for a light pulse to reflect

from the scanned surface, whereas stripe pattern scanners measure the deformation

of a pattern projected on the object. Bernardini and Rushmeier [11] give a small

overview over existing 3D scanning techniques in their report. Figure 1.1 shows

two typical representatives of these types of scanner devices and their output.

This thesis deals with both representations of geometry: triangle meshes as

well as point clouds. A lot of research work can be found in the literature concern-
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Figure 1.2: (left): An object is scanned from different views, I and II. The sur-

face seen from view I and II is marked blue and green respectively. The surface

seen from both views is marked cyan. (right): real-world example of different

parts acquired by the scanner of the Stanford bunny object and the final result after

registration, courtesy of Bokeloh [15].

ing the reconstruction of a triangulated surface from a point cloud [1, 17, 52, 142].

In general, processing in one or the other domain has its own benefits and pitfalls.

Most of the results and algorithms presented in this thesis are applicable in both

domains. However, since point clouds best reflects the reality of today’s avail-

able scanning hardware, the algorithms presented here are mostly focused on this

representation.

1.1 Shape matching

In order to understand intuitively the “deformation” of shape, imagine you are

wearing a shirt. A shirt has in most cases a flat shape. However, as soon as you

don the shirt, it undergoes strong deformation. The deformation bends the shirt’s

surface so that it aligns with your body. This deformation is exactly the piece of

lacking knowledge this thesis tries to eliminate.

There are a lot of applications in computer graphics, computer vision, chem-

istry and further research fields which utilize shape matching approaches. One

such application is the registration of multiple scans. Here, several scans of one

object are combined into one large scan covering the entire object’s surface. This

is a very common three dimensional acquisition process in order to acquire the full

surface of an object.

Figure. 1.2 illustrates the purpose of shape matching for registration. As one

can see, the view of the scanner I, covers the object one would like to acquire only
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Figure 1.3: Illustration of the ICP algorithm. First, closest points for every point

on the source (blue) are identified on the target (red). Next, the estimated transfor-

mation is applied and the whole process is repeated if desired.

partially. If one places an additional scanner II the object can be acquired from

another side; however, the object can still not be covered fully at once. Hence a

technique is required which is capable of reconstructing the whole object after sev-

eral scans. Approaches from the set of rigid shape matching techniques could be

used in order to align each part accordingly. Rigid matching is a process of com-

puting the transformation matrix which aligns one piece of geometry to another.

Coming back to the example with the shirt, rigid matching just computes the trans-

formation, as rotation or translation, of the shirt to align it to the body. The actual

surface deformation is not estimated, hence the shirt will keep its original flat form.

A very common approach to align two pieces of geometry in a rigid fashion

is ICP, iterative closest point [12]: First for every point on the surface the clos-

est point on the target surface is found. Next the transformation parameters such

as rotation and translation are estimated using a cost function, which is based on

the distance between the closest points. Finally the transformation is applied and

the whole process is repeated until a certain convergence criterion is fulfilled, e.g.,

the residual transformation becomes negligible. Figure 1.3 illustrates the ICP ap-

proach. ICP can only be applied when enough overlay is available in the different

pieces of geometry. It is one of the rigid shape matching approaches and is suc-

cessfully used nowadays even in industrial applications because of its simplicity,

robustness and efficiency. One main drawback of ICP is the requirement for an

initial alignment. The initial alignment is often achieved by setting initial corre-

spondences manually and (unfortunately) became quasi standard1 in the industry.

“Unfortunately”, because in the registration process there is still a manual inter-

vention step, which prevents fast and highly automated processes to be executed.

Although the techniques presented in this thesis are developed for non-rigid de-

1This statement has been confirmed to me personally by several companies while I was visiting

Euromold’10.
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formations, they could also be used for an automatic correspondence estimation

making the manual intervention obsolete.

Object detection is another useful application for shape matching. This prob-

lem has its roots in the two dimensional optical character recognition (OCR): An

image without any semantics is analyzed in order to identify characters or full text

phrases [9]. Similar to this, three dimensional shape matching can be used to iden-

tify objects in a scan by comparing a scan to a set of predefined shapes from some

database and hence providing semantics to the scanned geometry. Indeed, to teach

a computer to understand the environment is still an impossible task. One of the

important steps in this direction is the ability to determine and to differentiate the

objects “seen” by the machine.

In the last years the computer vision community developed a lot of algorithms

and methods to learn and to understand the environment seen by a computer. This

dissertation contributes to this development with the shown approaches. In partic-

ular the thesis concentrates on deformable shape matching. The difference to the

rigid shape matching approaches is the ability to register two pieces of geometry

even if they both undergone non-rigid deformation.

1.1.1 Shape definitions

Given this short introduction, let me first provide some definitions of the terms

used further in this thesis. These terms build the basis for the algorithms presented

in this dissertation and hence they are important for further understanding.

Manifold: A manifold M ⊂ R3 is defined as an embedded 2D surface in 3D

space, also known as 2-manifold. In the following it is assumed thatM is at least

C1 differentiable in every point.

Geodesic: A geodesic is a shortest differentiable curve γ : [0, t0] → M which

connects two points γ(0) = a ∈M and γ(t0) = b ∈M along the shortest path of

a manifold. The length of the curve is defined as:

L(γ) =

∫ t0

0
‖γ̇(t)‖dt,

where γ̇(t) = ∂γ
∂t (t). In other words, the length of a curve on a manifold is defined

as an integral of the lengths of infinitesimal tangents, i.e., first order derivative

vectors of the curve.
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Intrinsic distance and distance metric: A distance metric is a function dM :

(M×M)→ R which defines the distance between any two points on a manifold.

In case of three-dimensional Euclidian space the distance function is a simple vec-

tor norm, i.e., dR3(x,y) = ‖x−y‖, where x ∈ R3 and y ∈ R3. The distance is the

length of the shortest path connecting two points. The over-the-surface distance,

i.e., intrinsic distance, in a manifold is defined as an infimum over all possible

paths connecting two points on a manifold. Let Ωpq be a set of all differentiable

curves on a manifold connecting points p ∈ M and q ∈ M. Thus the distance

dM(p, q) = ‖p− q‖M is defined as:

dM(p, q) = inf
γ∈Ωpq

L(γ).

For two points p and q which are not connected by any path in the manifold, the

distance is set to dM(p, q) =∞.

Discrete manifolds A discrete manifold M is a sampled manifold M with a

finite εs-resolution. This means that for every point of the originalM, one point in

the discrete manifold exists at geodesic distance of at most εs. The distance metric

for a discrete manifold is denoted as dM . In order to approximate the distance

metric over a discrete manifold a graphG = (M,E) encodes the manifold surface.

An edge e ∈ E between points p, q ∈ M is included whenever p is among the k-

nearest neighbors or lies at the Euclidian distance l · ε of q or vice versa. This

thesis deals with a k-neighborhood where k = 20. In the following, a triangle

mesh, if exists, is used directly as G, whereas for point clouds, G is computed by

a k-neighborhood.

1.1.2 Allow deformations

Equipped with these definitions, let me formalize the concept of deformable shape

matching. In general, deformable shape matching means, that given two manifolds,

MS and MT , one would like to find the deformation function f : MS → MT

which maps every point ofMS to the corresponding point ofMT . In other words,

one would like to find the deformation required to align both pieces of geometry.

In general, the deformation function is described by a set of corresponding point

pairs

C = {(xs, xt)|xs ∈MS , f (xs) = xt ∈MT }
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Figure 1.4: Isometric deformations preserve intrinsic distances for every point of

the shape. The intrinsic distance between the two marked points is equal.

of both source and target shapes.

A number of variants of this problem exists, such as finding rigid, isomet-

ric (i.e., distance preserving), conformal (i.e., angle preserving), or more general

mappings between two surfaces. In particular this thesis deals with the isomet-

ric mapping, which means that the intrinsic distance between any pair of points is

preserved regardless of the applied deformation. Formally, given the deformation

function f :MS →MT and a distance metric dMS
and dMT

of a manifoldMS

andMT respectively the isometry criterion is defined as:

∀p ∈MS and ∀q ∈MS : dMS
(p, q) = dMT

(f (p), f (q)).

In other words, the isometry preserves the intrinsic distances of a shape regardless

of its deformation. Figure 1.4 illustrates this situation.

An attentive reader would ask himself: Why the isometry assumption? Iso-

metric mapping is a common assumption made in the field of shape match-

ing [6, 22, 55, 84, 113, 114]. Indeed, in the daily life one can see a lot of validation

of this criterion. The shirt you wear does not stretch much or do not shear along

tangential direction; however, its surface area stays, in most cases, the same. An-

other example is the skin, which reacts painful if applying strong non-isometric

deformation to it2. In general, isometric mapping models the deformation in our

environment very well.

2Of course there are skin areas on human’s body which react non-isometrically, i.e., face; however

due to the limited scanner resolution the non-isometry, in most cases, can be well approximated with

isometry criterion
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Figure 1.5: Shapes are matched by computing correspondence pairs between

source and target shape. Simple descriptor comparison might fail (left) due to

strong self-similarity of the object. Hence additional regularization prior is used,

i.e., isometry constraint (right).

Matching

Let me first introduce a concept of descriptors. A descriptor is a function or a vec-

tor D :M→ Rn which locally and in the best case uniquely describes any point

of a manifold. Given two descriptors for a point p ∈ M and q ∈ M they are said

to be identical with respect to the descriptor if ‖D(p)−D(q)‖ ≤ τD, where τD is

a descriptor similarity threshold. In general, a descriptor can encode any informa-

tion about the local neighborhood around a point, e.g., differences in multi-scale

representations of the data [79], local curvature maps [44] or spin images [60].

Thus, given that concept of descriptors, a naı̈ve shape matching approach could

be executed as following: Compute first the descriptor vectors D(p) and D(q) for

every point p ∈MS and q ∈MT . Then for every two points with a low descriptor

distance ∆ = ‖D(p) −D(q)‖ considers them as matched. If there exists a match

between a large set of points, then the full object is registered to the other.

However, this simple matching approach might fail with a high probability,

as shown in Figure 1.5. Although simple descriptor matching is capable of find-

ing corresponding points between source and the target shape, aligning the source

shape with the target shape based on the matching, as shown in Figure 1.5, results

in a strong misalignment between both shapes. Instead an additional term, a regu-

larization term, is required, to constrain the solution. In case of algorithms shown

in this thesis, the regularization term preserves the isometry constraint.

Given the isometry constraint, a matching function f is a suitable one if it

satisfies the isometry criterion dMS
(p, q) = dMT

(f (p), f (q)) for any point pair

(p, q) ∈ MS ×MS . Hence a function f : MS → MT which minimizes the
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energy functional:

E(f ) :=

∫
MS

∫
MS

|dMS
(p, q)− dMT

(f (p), f (q))| dpdq, (1.1)

has to be found. In case of a discrete representation of the manifoldsMS andMT

the estimated deformation function f̂ : MS →MT has to minimize:

E(f̂ ) :=
∑

p,q∈MS

|dMS
(p, q)− dMT

(f̂ (p), f̂ (q))|. (1.2)

A discrete deformation function f̂ , which is represented by a set of correspond-

ing point pairs of MS and MT can be computed naı̈vely by trying out all possible

correspondence combinations. This results in exponential cost since each corre-

spondence subset need to be checked. Hence more appropriate algorithms are re-

quired for fast and robust correspondence estimation which will be presented in

this thesis.

1.1.3 Topological noise

One of the big problem which often occurs in the real-world scans are acquisition

holes. In general, missing data yields a corrupted surface distance metric d. The

invariant that a geodesic distance is the shortest path between two points became

invalid and need to be treated properly. This problem is called topological noise

and occurs very often in practice when dealing with data coming out of acquisition

device such as 3D scanner. The main reason for this type of problem are occlu-

sions and highly reflective surfaces. In figure 1.6(a) one can see that the geodesic

distance between two points changes in presence of acquisition holes.

Another type of topological noise occurs when approximating the manifold by

a discrete set of points: In the data produced by scanner devices every point is

treated independently, i.e., there is no information about the neighbor structure,

topology, between the points. In this case, one has to approximate the connectivity

of the sampled manifold. As stated in Section 1.1.1, the connectivity is approx-

imated by a k-nearest graph structure. Unfortunately, this introduces two main

problems:

First, the discretization disturbs the distance metric and any smooth geodesic

is approximated by zig-zag paths, which introduces systematic deviations. Fig-

ure 1.6(b) shows a simple example of a manifold (yellow) being discretized by a

finite set of points (red). There exists methods to perform a better approximation
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(a) Acquisition hole (b) Discrete geodesic (c) False connections

Figure 1.6: (a) The geodesic distance between two points changes dramatically

on presence of acquisition holes. (b) Discretization of the manifold disturbs the

geodesics. (c) Bad sampling resolution introduces false connections, also known

as contacts.

of geodesics on point clouds [82] as well as on triangle meshes [67] rather than

a simple Dijsktra [36] shortest path computation. However, these methods often

assume certain characteristics of the input data. In order to be more general the

Dijsktra shortest-path is preferred in all approaches presented in this dissertation.

Additionally, using this representation consistently the systematic errors affect all

geodesic paths in the same way so that they remain directly comparable, which is

sufficient for the approaches shown in this thesis.

Second, in case of approximating the connectivity with a k-nearest graph, false

connections or contacts, might be introduced. This effect appears when due to the

sampling resolution εs a neighbor point can not be distinguished from a point on

a larger intrinsic distance. Formally, two points p ∈ M and q ∈ M build a false

connection if dR3(p, q) < εs and dM (p, q) > dR3(p, q). Figure 1.6(c) illustrates

the effect of false connections.

1.2 Deformable matching and inference problems

Part III of this thesis introduces a formulation of deformable shape matching be-

sides the point-to-point correspondence formalization utilizing Markov random

fields (MRF). A Markov random field [68], which is very similar to Bayesian net-

work as introduced next, is a graph representation of a random experiment. Let

me first provide necessary definitions for a proper formulation of the matching

problem as MRF.

LetXi, i = 1, .., n be random variables taking values xi in a state spaceX . The
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Figure 1.7: Example of a Bayesian network describing the progress of US econ-

omy, i.e., the ability of citizens to consume, with respect to China’s currency

(CNY) appreciation, CNG (compressed natural gas) price raising by Russia and

German’s car export pricing. In general, as one can see US economy suffers if

China’s currency is appreciated, since German cars will raise in price too.

conditional dependency between these variables can be modeled by a directed and

acyclic (i.e., contains no cycles) graph G = (V,E), where V is a set of nodes (or

vertices) and E is a set of directed edges E ⊆ {(i, j)|i, j ∈ V, i 6= j}. This graph

is called a Bayesian network and models the conditional dependency between a set

of random variables (Xi)i∈V which takes a value xi from a label set X . A con-

trived illustration, shown in Figure 1.7, describes a dependency graph of a fictive

economy3.

The joint probability distribution in a Bayesian network is defined as [116]:

P (X1 = x1, ..., Xn = xn) =
∏
v∈V

p(Xv = xv|parents(Xv)), (1.3)

where parents(Xv) is a set of the states of the parent nodes of a node Xv.

The joint probability of the model shown in Figure 1.7 is hence computed as:

P (U,G,C,R) = P (U |G,C)P (G|R,C)P (C)P (R|C), where for the sake of sim-

plicity the events “US citizen consume more”, “CNG price raises”, “China cur-

rency appreciates” and “German cars get cheap” are denoted as U , R, C and G

respectively. Given this example and the condition probability rule P (A|B) =
P (A,B)
P (B) an answer to the question: “What is the probability that US citizens will

3Please note that this network is only for illustration purpose and does neither reflect any actual

state of economy of involved countries, nor it models the rather complex global economy depen-

dency.
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consume more (U = T ) if the price for CNG grows (R = T ) ?” can be computed

as following:

P (U = T |R = T ) =
P (U = T,R = T )

P (R = T )
=

∑
C,G∈{T,F} P (U = T,G,C,R = T )∑
U,G,C∈{T,F} P (U,G,C,R = T )

.

The answer results in ∼ 36% in this example.

For an undirected graph G, i.e., edges are not directed, the set of random

variables (Xi)i∈V is said to form a Markov random field (MRF) if the following

Markov properties are hold:

P (X = x1, ..., Xn = xn) > 0

and

P (Xi = xi|Xj = xj , i 6= j) = P (Xi = xi|Xj = xj , j ∈ N (i)),

where N (i) defines a neighborhood of i, i.e., a set of all adjacent vertices N (i) =

{j|(i, j) ∈ E, i 6= j}. In other words a full condition distribution of Xi depends

only on its neighborhood.

In Chapter 7 a MRF will be used to formalize the shape matching and in partic-

ular deformable shape matching problem. In this case random variables describe

points on the shape’s surface. Their state is represented by potential matches on the

reference shape. In general, matching problems, such as shape or image matching,

are described by a Hidden Markov Model (HMM) [110]. This is different to the

introduced model: the actual state of the variable is not visible, it is hidden; how-

ever, the output of the model is directly observable. Thus every node in such MRF

has a probability distribution over the states. In case of shape matching, each point

has a probability distribution of being matched to a point on the reference shape.

A computation of the inference, or the exact “solution”, which infers the most

probable values of the random variables, is NP-hard and hence can not be solved ef-

ficiently nowadays. However, there exists approximate solutions such as loopy be-

lief propagation [105]. By passing messages that encode beliefs about the marginal

distributions of random variables in a graphical model, the algorithm computes a

self-consistent solution for the marginal distributions at each node of the graph.

1.2.1 Belief Propagation

Assume a MRF consisting of n random variables xi, with i = 1..n and conditional

independence encoded in a graph G = (V,E) as described before, is given. Each
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variable is assumed to have a continuous, d-dimensional state space Ω = [0, 1]d ⊆
Rd. The layout of G can be arbitrary. Furthermore, assume that the probability

distribution factors into singleton node potentials Φi (“data terms”) and pairwise

edge potentials Ψij (“compatibility terms”):

P (x1, ..,xn) =
1

Z

∏
i=1..n

Φi(xi)
∏
i,j∈E

Ψij(xi,xj), (1.4)

where Z is a normalization constant. The goal is to approximate the marginal

distributions

p(xi) =

∫
· · ·
∫

x1···xn∈Ω
j 6=i

P (x1, ..,xn)dx1...dxn. (1.5)

Loopy belief propagation approximates the marginal distributions p(xi) for each
random variable by assigning a message mij to each edge in the graph and updates
these iteratively by the following rule [156]:

mij (xj) =

∫
xi∈Ω

Ψij (xi,xj) Φi (xi)
∏

k∈Ni\j

mki (xi)

 dxi (1.6)

where Ni denotes the set of neighbors of node i in G. Intuitively: the message

passing encodes the belief of what node i “thinks” should be the marginal distribu-

tion at node j. The belief function bi of node i is given by:

bi (xi) =
1

Z
Φi (xi)

∏
k∈Ni\j

mki (xi) (1.7)

Belief propagation initialize all believes by the singleton potentials Φi and then

iteratively passes messages in the graph until convergence. The final approxima-

tions to the marginals p(xi) are the beliefs at each node. Figure 1.8 illustrates the

message passing in a graph.

One of the big disadvantages of loopy belief propagation is its relatively high

running time complexity, which is, in general, in the order of Θ(nk2) for a MRF

of 2-clique size as for example used in this thesis. Here, n is the number of nodes

and k the number of possible states, i.e., k = |Ω|.
One of the main contributions in this thesis is a method of reducing the space-

time complexity of loopy belief propagation in a given MRF model. The complex-

ity reduction, shown in Chapter 8, reduces the approximate inference computation

from quadratic to sub-linear costs. One can also show easily that in worst case
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Figure 1.8: An example of the message passing algorithm [156], i.e., belief propa-

gation. Messages representing the belief of a node which state its neighbor should

have are passed along the graph.[Image taken from [156]]

the complexity of optimized belief propagation is equal to the computation costs

without any improvements.

MRFs are used in different fields beyond computer vision, e.g., computational

biology [39] to analyze the sequence of genes or speech recognition [110] to match

an acoustic spectrum of a spoken word to a certain dictionary. These and many

other research fields might benefit of the inference computation presented in this

thesis.

1.3 Applications for deformation matching

One of the important applications of deformable shape matching is in improv-

ing the registration of 3D scans [26]: Even expensive 3D scanners suffer from

minor calibration problems that lead to alignment problems if large models are

acquired at a high spatial resolution. This can be compensated by allowing for

small global deformations. An application area that requires handling much larger

deformations is the acquisition of deformable objects. For example, scanning of

humans, animals or other living beings usually requires multiple scanning passes

from different perspectives during which the scanned subject will inevitably move

in a non-rigid fashion. Hence assembling complete, high-resolution scans requires

deformable shape matching. Of course one could argue that scanning by several

scanner devices in parallel makes this issue obsolete. Besides the fact that mul-

tiple devices might be expensive a software solution is preferable. Additionally

to achieve good scanning quality, either the scanning device need to sweep very

slowly over the object (because of poor lightning conditions often existing during
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Figure 1.9: Matching of a protein experiencing folding. The correspondence es-

timation and hence the deformation can be used by biologists to derive additional

knowledge of the reaction of proteins to different types of drugs. [Courtesy of

Michael Wand]

the scanning process) or multiple scans are required in order to statistically cancel

out the noise. Hence deformable shape matching could help even in the case when

multiple scanner devices are available.

Although the thesis deals with geometrical structures, the solutions derived

here could also be applied to usual graph matching problems. Biology is one of

the further fields which could benefit from the outcomes of this work. For example

a folding process of a protein can be analyzed by establishing correspondences

between different temporal samples as shown in Figure 1.9. Given the ability to

exactly match the protein structure over multiple time samples one can observe the

folding process and hence analyze the reaction of a protein to different drugs or

other external occasions.

Given the possibility of computing the deformation function for a pair of

geometry pieces, it is very obvious to ask if the same technique can be ap-

plied for multiple geometry pieces at once. This already shows another appli-

cation area for deformable shape matching: animation scanning and reconstruc-

tion [87, 123, 137, 153, 159]. The goal here is to capture the dynamics of a moving

object in real-time. It is necessary to construct a composite object from several,

probably strongly deformed poses with significant deformation. The available data

in each frame of an acquired animation is usually incomplete, as typically being

measured from a sparse set of views only. Therefore, the matching algorithm needs

to be able to deal with partial data, as well as to be able to match portions of the

surface with several large holes.
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The main application field for this type of algorithms is in the film production

industry. Different actions or facial expressions performed by an actor could be

recorded and reconstructed applying the techniques presented in this dissertation.

The reconstruction provides the artists with the actual deformation of the actor’s

geometry over time. This deformation can then be applied to different geometry,

for example a three-dimensional representation of another actor or just any other

alien-like shape.

Similarly, this also applies to reconstructing a free-viewpoint video for 3DTV.

For example a soccer game or actors performing an action are captured by multi-

ple video cameras. Using multi-stereo reconstruction approaches combined with

multi-frame matching one can reconstruct the full motion of the performing enti-

ties from the data stream. The reconstruction could then be used in order to take

a look at the scene from a new point of view or to apply the reconstructed motion

to another virtual character. A soccer game captured with multiple cameras and

translated to full 3D can for example be viewed by the viewers from any virtual

point of view.

1.4 Thesis outline

The thesis is grouped into two main contributions. In the first part the reader will

take a look at a possible solution for the deformable shape matching problem. A

solution, which is able to handle data with acquisition holes and non-rigid defor-

mation will be shown in Chapter 3. Additionally an iterative optimization approach

allowing for faster correspondence estimation compared to the previous work will

be shown in Chapter 4. And finally all the ideas shown so far are combined to

provide the reader with a method capable of estimating the deformation and the

geometry from a sequence of strongly deformed point clouds acquired with a real-

time 3D scanner, see Chapter 5.

In Chapter 7 of the thesis a small side step will be made and an alternative

approach for deformation function estimation will be presented. The problem of

shape matching will be defined as a Markov random field and belief propagation

will be employed for the inference estimation of the MRF. And finally, in Chap-

ter 8, a method of improving the space and time complexity of belief propagation

will be shown. The improvement will make the inference estimation of the MRF

with belief propagation practically resolution independent. The content of the dis-

sertation will then be summarized in the last part of the thesis, part IV.
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In the following research work related to the approaches presented in this thesis

will be shown. It will be characterized and classified into several groups and will

be explained how it relates to this work.

Shape matching:

In general, deformable shape matching can be classified in local and global match-

ing strategies. The algorithms presented in this thesis fall into the category of

global registration methods, however for the sake of completeness local registra-

tion methods are also presented. Most of the local registration techniques are suc-

cessors of the ICP (iterative closest point) [12, 88, 115] algorithm. ICP is based on

a simple iterative optimization technique which is guaranteed to converge to a local

minimum of some distance metric. In case of shape matching it is used in order to

find the six-degree-of-freedom, i.e. rigid transformation to align one shape to each

other, see Section 1.1.

There also exists deformable variants of ICP [5, 77, 117, 153], where point-to-

surface distances are minimized under the regularizing assumption of elasticity.

Another class of local matching techniques are piecewise ICP [26,57]. Hereby it is

assumed that the range scan is a set of several piecewise rigid parts. In general, the

number of parts is small and hence not sufficient for general deformable motion.

However, sparse feature points are still used for initial registration to find rough

correspondences.

Sagawa et al. [117] propose a method for non-rigid registration using dense

local features within the ICP framework. They define a window over every ver-

tex of the surface and compute a convolution of an error metric in this window

which has to be minimized by the particular vertex transformation. In general,

they are trying to optimize the transformation of ICP with a smoothness constraint
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Figure 2.1: Results of the deformation ICP approach of [77]. From left to right:

deformation graph, source, target, initial alignment and the final deformation. The

initial alignment corresponds to the result achievable with rigid ICP. The final de-

formation maximizes the region of overlap and the spatial coherency of deforma-

tion while minimizing the registration error. [Image taken from [77]]

over the neighborhood of a vertex. Other deformable matching techniques include

optimization with deterministic annealing [32] and Chang et al.’s technique [30]

based on graph cuts. Chang and Zwicker [30, 31] provide global and robust local

matching strategies for articulated, piecewise rigid models.

Matching with sparse features is another widely used concept for shape reg-

istration. Between two sets of sparse points distributed over the source and tar-

get surface correspondences are computed. Gelfand et al. [46] computes a set of

unique descriptors on source and target shape and using a branch-and-bound al-

gorithm pick an optimal set of correspondence between the descriptors to drive

a consecutive ICP registration. Memoli and Sapiro [83] compare two manifolds

represented by point clouds using an iterative Farthest Point Sampling (FPS) [91]

algorithm which computes an optimized covering by minimizing an approximate

Gromov-Hausdorff-Distance between source and target. Sagawa et al. [118] pro-

pose a method of matching sets of feature points based on a color histogram de-

scribing the textural neighborhood around the feature point.

Sahillioğlu and Yemez [119] search for correspondences between two shapes

by detecting coarse correspondence of local patches. Finally they optimize the

mapping in two steps: first transforming the mapping into the spectral domain and

minimizing the error by bipartite graph matching and second, an iterative greedy

algorithm in Euclidean space is used to minimize the isometric error.

Bronstein et al. [22] examine the problem of embedding surfaces into each

other isometrically using a numerical optimization scheme (generalized multi-

dimensional scaling). Li et al. [77] propose a semi-global matching technique that

is more robust in convergence by numerically optimizing matching weights. The
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Figure 2.2: (Left): Matching results between two different images of an elephant

achieved with the spectral matching algorithm [74], original image take from the

paper. (Middle), (Right): Spectral matching algorithm applied on a 3D shape of

seahorse and centaur data set [23].

technique of Li et al. is based on local matching but increases its robustness by

modeling correspondences explicitly as latent variables and optimizing over them.

A simple and very effective global matching algorithm for pairwise constraints

has been proposed by Leordeanu and Hebert [74]. It relaxes the quadratic as-

signment of pairwise matches to an eigenvalue problem. This algorithm can be

applied to deformable matching using feature detection to define keypoints and

the preservation of geodesic distances between pairs of features as pairwise vali-

dation criterion. The approach is used for example in [2, 16, 55] for global shape

matching and is currently probably because of its simplicity the most frequently

used state-of-the-art technique. The main drawback of this algorithm is that the

pairwise validation criterion (sets of geodesic distances) have to be specified up-

front. Therefore, a small number of topological problems that reroute some of the

geodesics can drastically impact the matching results. In Chapter 3 the method of

Leordeanu and Hebert will be compared to our method on real-world data which

suffers from topological noise.

Huang et al. [55] examine the propagating of dense correspondences by

geodesic landmark coordinates, and Ahmed et al. [2] employ Laplacian diffusion of

the landmarks for dense correspondence estimation. Alternative formulations that

have been proposed include optical-flow-like correspondence propagation [87,147]

for densely sampled time sequences and for sequence merging in [146], where

Varanasi and colleagues compute a dense deformation field by a Laplacian diffu-

sion from a sparse set of matched points.

These two papers [55] and [2] introduce landmark coordinates for deriving

dense matches from the coarse matches returned by spectral matching [74]. Tung

and Matsuyama [144] as well as Zhang et al. [158] use a set of automatically se-

47



Chapter 2. Related Work

lected landmarks which are coarsely sampled to estimate dense matches. Their

method of detecting landmarks is based on extremal points of a geodesic integral

function [51]. Landmarks are placed on such extrema to decrease the error in-

troduced by approximate geodesic distances. In typical situations landmarks are

placed on the shape’s extremities. In general, however, these points are not suf-

ficient to uniquely determine the mapping. Hence in case of [144] the authors

propose to increase the subset of landmarks slightly by randomly sampling addi-

tional points on the surface. In general, this can not guarantee a sufficient subset of

landmarks.

A related proposal has been made by Bronstein et al. [24], who trade-off Eu-

clidean and intrinsic distances for validating matches. They show significant im-

provements over intrinsic-only matching criteria but the technique is not able to

handle general cases of strong deformations, where Euclidean matching becomes

very unreliable. Colaborating with Mahmoudi and Sapiro same authors [25] pro-

pose diffusion distances, which are more robust to a certain amount of topological

noise, as this distance measure is sensitive to the cross section of interconnections

rather than just the reachability in the case of geodesic distances. However, large

scale artifacts such as big acquisition holes or false connections in a large area

also change diffusion distances significantly. Unfortunately, these problems are

common in the application area of this thesis dealing with real-world data.

Ruggeri et al. [113] compute a set of anchor-points of a shape by threshold-

ing critical points of the Laplace-Beltrami [112] operator. These anchor points are

located on geometrically meaningful regions of the shape and are invariant with

respect to isometrics. Additionally, they sample reference points by farthest point

sampling [40]. Although the idea of using the Laplace-Beltrami operator for plac-

ing anchor points is different to curvature-based approaches, i.e., feature detection,

the authors are still comparing two shapes by the intrinsic distances between these

reference points.

Bradley et al. [19] propose a technique specifically designed for garment cap-

ture that uses specific properties of such data sets to control the boundary con-

ditions of a cross parameterization algorithm, thus establishing valid correspon-

dences.

Kim et al. [66] show an algorithm capable of computing dense correspondences

between two non-isometrically deformed shapes. Their method computes an opti-

mal blend between several intrinsic maps such as Heat-Kernel maps [10, 62], con-
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Figure 2.3: (Left): Two images matched with PROSAC [33], original image from

the paper. (Middle), (Right): Seahorse and centaur 3D datasets [23] matched with

RANSAC-like method as shown in Chapter 3.

formal maps [65, 80] etc., hence allowing to find correspondences even between

two shapes that underwent strong non-isometric deformations.

And very recently, Sharma et al. [125] present a method of computing dense

correspondences. The authors assume that a set of sparse correspondences is al-

ready given. This can either be computed by spectral matching or with approaches

as presented in this thesis. Given sparse correspondences, a heat kernel is evaluated

on already matched points providing information over the matching on a small, lo-

cal space around the sparse correspondences. The information from the heat-kernel

is then used in order to iteratively add new, dense correspondences by performing

a seed-growing which propagates the seed correspondences to nearby vertices.

Kaick et al. [145] provides a good overview over the state-of-the-art shape

matching techniques.

Robustness by randomness:

The techniques presented in this thesis are based on randomized correspondence

estimation. Hence I would like to provide an overview over the work done in this

area.

Fischler and Bolles [43] describe a hypothesis-and-check concept called

RANSAC (random sample consensus) which robustly fits a model to observed

data. Several correspondence matching algorithms based on RANSAC have since

been published in the literature. Chum and Matas [33] show a progressive random

consensus, PROSAC, in order to find correspondences between two images (which

is very similar to shape matching). The idea is to use linear order on the correspon-

dence set defined by a similarity function of correspondences. The solution sam-

ples are drawn from a top-ranked set of correspondences. The convergence time

improves over RANSAC, since the probability of choosing bad correspondences
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is low. Torr and Zisserman [143] introduced MLESAC, which is very similar to

RANSAC. A solution which maximizes a likelihood rather than the number of in-

liers is computed. The scoring function used by the authors is a truncated estimator

which penalizes outliers in the same way as RANSAC, but scores inliers according

to how well they fit the data.

A technique from the xSAC family presented in Chapter 3 will be applied to

solve the intrinsic shape matching problem. It is motivated by the forward search

algorithm of Huang et al. for rigid shape matching [56]. The technique is also

related to the randomized matching algorithm by Memoli et al. [83]. In general:

first an initial set of correspondences is randomly sampled. Starting at random

source points, corresponding target points are chosen with probability proportional

to the likelihood that the match is correct. Then additional correspondences are

added if they do not violate the isometric matching criterion.

Minimal sets of correspondences:

A related group of research handles a more theoretical view on the shape matching

problem. Here, the authors are interested in an optimal, minimal set of correspon-

dences to fully constrain the matching results.

Mémoli and Sapiro [84] observe from a theoretical point of view how to com-

pare isometrically two manifolds represented by point clouds without any surface

reconstruction. They use the concept of Gromov-Hausdorff distance [48] based on

geodesic distances. The authors assume that a minimal subset of corresponding

points is known.

Lipman and Funkhouser [80] observe that isometry is a subset of a Möbius

group which has a low dimensionality: For isometrically deformed shapes with

spherical topology only three point-to-point correspondences are required to fully

determine the matching. Although this observation made a large impact on the

understanding of the complexity of the intrinsic matching problem, it is unclear

how many degrees of freedom are present under noise, imperfect isometries, or

shapes of general topology. For this reason, they use a voting scheme to accumulate

evidence from multiple solutions.

Ovsjanikov et al. [96] show that a single corresponding point between source

and target shape is sufficient if heat-kernel signatures are taken into account for

determining the matching. Again, this result holds in the numerically exact case

and voting among several matches is necessary for stable results with practical
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data. Their work depends on an efficient compute-and-compare method of heat

kernels for manifolds [10] and is based on the results of Jones et al. [63] which

describe parametrization of manifolds via heat kernels and eigenfunctions of the

Laplacian.

Given this line of work a question arises: Is it possible to compute a minimal

set of isometry invariant correspondences between two shapes?

A possible answer to this question is presented in Chapter 4. Here the idea

of shape matching introduced in Chapter 3 is extended by not just performing im-

portance sampling on the target point of the match but also carefully planning for

which source points matches should be guessed. As will be shown in the experi-

ments, this usually leads to a reduction in the number of random guesses that are

necessary to find the correct solution as well as to an improvement of the quality

of a match.

The idea is based on the work of Schmid et al. [121] who introduce entropy

for feature detection. They compare different feature point detectors by their dis-

tinctiveness. Entropy has since then been used frequently in follow up work to

estimate feature saliency. The approach shown in this thesis is different from this

line of work in that it not only looks at the entropy of the feature descriptors but on

the remaining entropy of the full matching problem.

Related to this, Bronstein et al. [20] use a statistical measurement of the

frequency-inverse document frequency known from the field of document retrieval

in the area of shape matching. They measure the statistical significance of a fea-

ture point by checking how often it can be found in other shapes. Unique features

describe a shape better than those found often in other shapes. The shape matching

approach shown in Chapter 4 is different in that it examines features within one

shape. Again, the most important difference is that the approach shown in this the-

sis captures the interdependence of many interrelated feature matches rather than

just the statistics of a single match.

Animation reconstruction:

Given a small overview over the work done in the area of matching a pair of shapes,

I would like to provide an overview over research articles published about matching

a whole set of shapes at once, also known as Animation reconstruction. Animation

reconstruction is the process of recovering the motion of a deformable object from

time-varying three-dimensional scanner data, typically point clouds. There exist
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multiple three-dimensional scanning techniques for acquiring moving objects in

real-time [18, 34, 70, 151, 154, 155, 159, 162]. The output of such an acquisition

process is a time-sequence of unstructured point clouds. The measurement process

does not provide any correspondence information and usually only shows a limited

part of the object at a time, due to occlusions.

The reconstruction of many-frame correspondences is a non-trivial general-

ization: Just repeatedly performing pairwise matches, as for example shown in

Chapter 3, exponentially increases the failure probability of randomized matching.

In Chapter 5 this pitfall is avoided by on the one hand using a continuous track-

ing algorithm and, on the other hand, by explicitly assessing the matching quality,

avoiding the incorporation of ambiguous information in the result.

There are number of previous methods that require the user to provide a tem-

plate model that is subsequently deformed in order to match the acquired data

[7, 18, 29, 35, 75, 102, 120, 159].

Several algorithms tries to solve the deformable matching problem in a time-

sequence manner, where only temporally adjacent frames are combined under the

assumption of spatial coherence, using deformable variants of the ICP algorithm,

such as [5, 49, 137, 153]. These techniques yield good results for small inter-frame

deformations. However, they are rather unstable under fast movements of the

scanned object that lead to substantial differences in pose. Matching objects with

strong deformations is easy if a set of guiding markers is available that specify the

rough pose of the object. Using this information (often provided by manual label-

ing [4,5,103]), the shapes are roughly prealigned and afterwards a fine-scale align-

ment is performed by deformable ICP. A number of fully automatic techniques

have been proposed for global, pose independent deformable matching by comput-

ing such marker sets automatically [2, 6, 22, 30, 55, 76, 80, 113, 114, 127, 135, 139].

Mitra et al. [87] perform rigid alignment between frames, assuming rather slow

motion with little local deformation. The technique is elegant and very fast but

cannot handle general sequences with missing data and substantial inter-frame de-

formation. Wand et al. [153] use deformable matching and a statistically motivated

optimization scheme. The considerable computation costs have been addressed

in [152], Figure 2.4, by employing a subspace deformation technique. The tech-

nique is able to compute complete template models from partial input data but, as a

local optimization technique, it is sensitive to issues such as large time steps, tem-

porarily disappearing objects, and fragmented frames. Popa et al. [108] propose
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Figure 2.4: (Left): Template based animation reconstruction, see [75]. (Right):

Template-free reconstruction of the shape and its deformation as shown in [152]

(here images show input scans, reconstruction and applied texture on the recon-

struction to indicate correspondences). [Images were taken from [75] and [152]]

an improved template-free reconstruction method based on optical flow and cross-

parametrization. However, their technique cannot handle fast motion and requires

additional video input for 2D feature tracking (such as provided by passive stereo

acquisition systems).

Li et al. [75], Figure 2.4, use a more efficient subspace deformation technique

in combination with detail transfer, which was previously examined by Bickel et

al. [13] for the case of wrinkles, to obtain very good results, however, requiring

a template model as input. A combination of deformable matching with Mitra et

al.’s algorithm is examined in Süßmuth et al. [138]. Their work relies on having a

complete shape in the first frame, again not improving on the issue of assembling

the template model from partial data.

Comparable approaches have also been examined with different regularizing

assumptions: Pekelny and Gotsman [107] use an articulated piecewise rigid model,

segmented by the user, Sharf et al. [124] examine volume and momentum preser-

vation as an alternative. Both are still local optimization techniques, subject to the

according limitations.

A recent approach by Zheng et al. [161] aims at reconstructing the temporal

correspondences of a skeleton rather than complete geometry, which can then sub-

sequently be used as guidance information for shape alignment. The drawback

is that although skeletonization improves robustness, it does not represent the full

correspondence information, which cannot always be recovered reliably.

Very recently, Huang et al. [54] propose a method of reconstructing the global

movement of a shape. This is performed by introducing a so called alignment graph

which adds an edge to the graph if two frames of different animation sequences are

53



Chapter 2. Related Work

similar. The similarity is measured by computing a per-frame descriptor and com-

paring two frames by this descriptor. A shortest path through this alignment graph

describes the global motion and alignment of every frame. The method makes

strong use of deformable shape matching in order to align two frames together.

Unfortunately manual user intervention is still required in order to define an opti-

mal reference frame containing fewest topological problems. This reference frame

is used in the alignment graph as a starting node to reconstruct the complete anima-

tion. The approach presented in this thesis 5 is capable of automatically generating

the reference frame out of the given animation without any specific user interaction.

Symmetry detection by shape matching:

In general, the problem of shape matching is strongly related to the detection of

similar parts in a shape. In Chapter 7 the problem of shape matching will be de-

fined as a Markov random field and applied to the problem of symmetry detection.

Here the work is inspired by Anguelov et al. [6], who formulate the deformable

shape matching as a Markov random field using the geodesic distance as a pair-

wise consistency condition. However, their technique aims at computing a single

global maximum a posteriori solution, which actually leads to ambiguity problems

for matching approximately symmetric shapes, thus requiring multiple random ini-

tializations of the inference algorithm. A similar approach is employed by [127]

for deformable shape matching with resilience to topological noise.

Symmetry detection using extrinsic information has been addressed by several

authors. The most successful class of techniques is voting for transformations in a

Hough space based on candidate correspondence pairs [89,90,104]. In the context

of rotation and reflection symmetry detection in 2D images, the work of Park et.

al [101] presents an evaluation of the state-of-the-art algorithms. An algorithm for

deformed lattice detection for 2D images is proposed in [100]. Extrinsic symmetry

detection is taking into account extrinsic information like for example point-to-

point arrangement within an object. In contrast, intrinsic symmetry detection is

based on intrinsic information only, hence working with manifold properties di-

rectly. This has the strong advantage of being independent of deformation which

preserve intrinsic properties.

The detection of intrinsic symmetries has received only little attention up to

now: [97] present an elegant algorithm that uses eigenvectors of the Laplace-

Beltrami operator on manifolds that are invariant under isometric deformations.
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However, their technique is restricted to global (rather than partial) symmetries

due to the global nature of their spectral approach. Intrinsic symmetry detection

is also addressed by Raviv et al. [111]. The authors propose an algorithm to com-

pute an isometric correspondence map of the shape onto itself to extract a set of

symmetries using the computational framework for isometry-invariant comparison

presented in [21]. Again, only global symmetries are considered. More recently

Kim et al. [65] propose a method of detecting symmetric parts of an object by

examining the group of Möbius transformations found in the shape, which are de-

scribed in the work of Lippman and Funkhouser [80].

Efficient belief propagation:

Using belief propagation for computing inference in a MRF one easily rams against

space-time-complexity of this approach. As we will see in Chapter 7 belief prop-

agation can be used to solve shape matching problem; however, its computation

performance is not optimal. Belief propagation was first introduced by Pearl in

1982 [105] for tree-formed graph structures and was later shown to be a useful

approximate algorithm for general graphs [106], see also Figure 1.8 for a small

illustration. Since then, belief propagation has gained a lot of interest in the com-

puter vision community. One of the main application areas for belief propagation

is stereo- or multistereo-reconstruction as for example shown in [129].

Belief propagation, however, is currently pretty much infeasible for large state

data [156]. There has been an effort by the research community to improve on

that, e.g. by using compression or space transformations: Yu et al. [157] inves-

tigate PCA and an envelope transform for the compression in a 1D domain. The

technique achieves good results but cannot be applied directly in the compression

domain. Zhao et al. [160] compress the messages in the wavelet domain however

each time the message is uncompressed when arriving at the node and compressed

when going out. This is effective in a sensor network setting but does not speed up

a non-distributed algorithm.

Minka [86] describe expectation propagation, a variant of LBP for potential

functions belonging to exponential families allowing for continuous state spaces

in this case. Felzenszwalb et al. [42] describe linear and near-linear time mes-

sage passing algorithms for restricted types of pairwise potentials. Additionally

the authors show a speed up of message update computation by FFT-based fast

convolution for shift invariant potentials. Komodakis et al. [69] propose dynamic
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pruning of states of low probability. However, this approach cannot handle smeared

out uncertainties, but would distort such distributions by removing the uncertainty

information altogether. Potetz et al. [109] approximate the solution of the MRF

using a factorization approach to efficiently handle higher order potentials (c > 2).

Sudderth et al. [133] introduce nonparametric belief propagation (NBP) that

represents messages by samples. Fitting of Gaussian mixture models and Gibbs

sampling is used for message propagation. This reconstruction from sampling

leads to numerical smoothing, adding artificial uncertainty in each propagation

step. For large graphs, this impacts precision. A restricted NBP for Gaussian po-

tential functions is presented in [58]. Han et al. [50] employ mean-shift to estimate

the mode and weight for the outgoing message, but this neglects uncertainty infor-

mation. Following this line, Parks et. al [99] discretize the continuous state space

into a grid and use only local samples to perform mean-shift on the marginals.

In Chapter 8 an improvement of the space-time complexity of belief propaga-

tion by moving all the computation to the wavelet domain will be presented. The

wavelet representation is more restrictive with respect to the domain of the state

space (restriction to hypercubes in low dimensions). Good results are obtained

even for large graphical models with many random variables and very high PSNR

as a reader will be able to investigate. The presented approach is aiming at repre-

senting the full probability distribution, not just the main modes as it is done with

NBP.
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SHAPE MATCHING

In this part of the thesis we will present two approaches for deformable shape

matching (Chapter 3 and 4) and their application in multi-frame matching, Chap-

ter 5. Both approaches compute correspondences for shapes that undergone (ap-

proximately) isometric deformations.

In the first chapter of this part we propose a solution for solving the isometric

matching problem that makes two main contributions: First, the algorithm is ro-

bust to topological noise such as large holes or false connections, which are both

observed frequently in real-world scanner data. Second, the algorithm samples the

space of feasible solutions such that uncertainty in matching can be detected ex-

plicitly. A novel randomized feature matching algorithm is employed in order to

find robust subsets of geodesics to verify isometric consistency.

In the second approach we look at a shape matching algorithm that uses an

a-priori planning step to compute a well-distributed set of landmark points. These

points are matched first in order to maximize the information gained and thus min-

imize the randomized sampling costs. We incorporate techniques we developed in

the first approach in order to find correspondences between these landmark points.

Here we make three main contributions: First, the new technique leads to a signif-

icant improvement in performance, which we demonstrate on a number of bench-
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mark scenarios. Second, the technique does not require any feature point detection.

This is often a significant limitation for models that do not show sufficient sur-

face features. Third, we examine the actual numerical degrees of freedom of the

matching problem for a given piece of geometry. Similar to the first approach our

estimates take into account unprecise geodesics and potentially numerically unfa-

vorable geometry of general topology, giving a more realistic complexity estimate.

In the last chapter of this part we incorporate the previous two approaches into

a global technique in order to reconstruct the shape and motion of a deformable

object from dynamic 3D scanner data, without using user provided template mod-

els. We present a system that can handle fast motion, temporally disrupted input,

and can correctly match objects that disappear for extended time periods in acqui-

sition holes due to occlusion. Our approach is motivated by cartography: We first

estimate a few landmark correspondences, which are extended to a dense matching

and then used to reconstruct geometry and motion. We propose a number of algo-

rithmic building blocks: a scheme for tracking landmarks in temporally coherent

and incoherent data, an algorithm for robust estimation of dense correspondences

under topological noise, and the integration of local matching techniques to re-

fine the result. We describe and evaluate the individual components and propose

a complete animation reconstruction pipeline based on these ideas. We evaluate

our method on a number of standard benchmark data sets and show that we can

obtain correct reconstructions in situations where other techniques fail completely

or require additional user guidance such as a template model.

Introduction and Overview

The most common approach to compute correspondences between two shapes is

to first compute a set of discriminative feature points on both shapes along with a

local, isometry invariant descriptor and then try to find a matching of these features

such that the pairwise geodesic distances between all corresponding pairs of feature

points are preserved. Posed naively, this leads to a NP-hard quadratic assignment

problem for which no sub-exponential solution strategy is known.

In this part of the thesis we utilize a randomized approach capable of determin-

ing the correspondences more efficiently than a naive approach. In particular we

would like to find a suitable set of markers that could be used to guide a locally con-

vergent deformable ICP algorithm. This is done fully automatically, without user
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intervention and without assumptions on pose or deformation. Our only require-

ment is that the unknown deformation is approximately isometric, i.e., roughly

preserves distances on the surface. One of the main advantages of our work is that

the registration also works under topological noise, e.g., holes, badly disconnected

parts, etc.

In Chapter 3, refering to the paper [141], we present an algorithm which com-

putes the matching between automatically determined marker points, i.e. “feature”

points by a randomized sampling strategy RANSAC. Here we make three main

contributions:

• We propose a randomized, forward-search matching strategy that, unlike

previous techniques, simultaneously estimates the correspondences and val-

idates geodesics in an outlier-robust way.

• We employ a new tangent-space optimization algorithm to optimize the

placement of feature points for maximum isometric matching, yielding bet-

ter results for noisy feature positions.

• We sample the space of plausible matches, which gives us the ability to

explicitly examine matching alternatives. We consider this an important

building block for fully automatic matching of complex models from sev-

eral pieces.

We apply our matching algorithm to a number of data sets and show reliable match-

ing results for general pose and topologically distorted data with holes and false

connections.

In the second chapter of this part, Chapter 4, refering to the paper [140], we

improve the work by examining the problem of isometric matching from more

generic point of view. Here we address the following two questions:

• What is the practical complexity of matching two isometrically deformed

shapes, assuming a certain amount of uncertainty in intrinsic distance esti-

mates?

• Can we find an algorithm that systematically collects the most relevant cor-

respondence information to find a global shape match as quickly as possible?

To address these problems we are proposing a shape matching algorithm to

which we refer as planned random sampling (PLANSAC): This means that instead
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of using a randomized sampling of correspondences as demonstrated in Chapter 3,

we are building a plan on how to choose optimized sample points, i.e. landmarks,

on the source shape that maximize the information gained and therefore minimize

the costs for guessing correspondences. Our key idea is to look at the entropy of

the posterior distribution of possible matches to assess what are good plan points.

Finally, in Chapter 5, refering to [139], we will investigate a solution for solv-

ing the deformable matching problem for a complete time-sequence. We will uti-

lize the concept of randomized correspondence estimation and the landmark con-

cept in order to compute the actual shape and motion of a deformable object ac-

quired with a scanning device. For this, we will introduce a number of algorithmic

concepts which enables a solution of the problem. Every one of these components

is a novel contribution on its own. We would like to emphasize the following main

contributions of this work:

• We propose matching model that is robust to topological noise and that can

quantify a matching uncertainty.

• We show a landmark tracking algorithm that establishes sparse correspon-

dences fully automatically under both temporally coherent as well as under

arbitrary, abrupt motion.

• We propose a final reconstruction pipeline which is capable of finding a

global solution even on temporarly and spatially sparse data

The reconstruction pipeline is then applied to a large set of data acquired with

different 3D scanners.
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Pairwise Shape Matching by

Randomized Sampling

Let us first consider the pairwise matching problem. The algorithm proposed in this

chapter starts out by computing correspondence candidates through feature match-

ing. This results in a superset of correspondences from which we have to extract

a correct subset. We also compute geodesic distances between all feature points,

on both the source and the target shape, which gives us a superset of geodesics

where some of those might actually be incorrect and give false cues for validating

the correctness of the correspondences. We are looking for a subgraph of con-

sistent correspondences and geodesics that is maximal in the sense that no edges

can be added without exceeding an error threshold. Out of the many different so-

lutions that may exist, we will prefer large solutions with many correspondences,

each validated by many pairs of geodesic distances, as these are less likely to be

spurious matches. In order to compute such solution, we use a RANSAC-like al-

gorithm that randomly samples the solution space. For efficiency reasons, we bias

the random search towards promising matching candidates by employing a suit-

able importance function. In order to perform this algorithm reliably, we need a

criterion for the reliability of verifying geodesics, which we develop subsequently.

Next, we employ a tangent-space optimization technique to compute an optimal

placement of the features. After having obtained a good set of feature matches, we

extend the correspondences to so far unlabeled space by inserting new secondary

features derived from distances to matching correspondences. Finally, this dense

feature set is also fine tuned by again applying tangent-space optimization. In an

outer loop, we execute the whole matching algorithm repeatedly in order to find

matching alternatives which are ranked by how well they explain the input data. In

the following, we discuss all of these steps in more detail. Figure 3.1 illustrates the

mentioned pipeline.
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Chapter 3. Pairwise Shape Matching by Randomized Sampling

Figure 3.1: Pipeline overview of our algorithm. A pair of input point clouds is

first preprocessed Sect. 3.1. Afterwards a set of feature points and a superset

of all correspondences is computed, Sect. 3.2. Then a RANSAC-like search of

candidate solutions is performed, Sect. 3.3. And finally each solution is being

postprocessed, Sect. 3.5 and 3.7.

3.1 Input Data and Preprocessing

We directly work on the point-based representation as provided by a 3D scanning

device. We expect two sets of 3D points MS and MT as input. These two point

sets are discrete versions of two (unknown) smooth manifoldsMS andMT , where

S stands for source and T for target, however their meaning is completely inter-

changeable. Using the k-nearest graph, i.e., “connectivity graph”, as described in

Chapter 1, we first compute normals for each data point using PCA. Please note

that this graph does not need to form a valid triangle mesh.

3.2 Feature Points

In the next step, we compute a candidate set of surface feature points. In principle,

any surface feature detection technique can be employed at this point [46, 56, 79].

In our work, we use slippage features [16]. Slippage features detect keypoints

by maximizing the stability of the auto-alignment of local surface pieces in scale

space, which leads to a large number of stable feature points. In the following, we

will refer to the features on surface j ∈ {S, T} as xji ∈ Xj , i ∈ {1, ..., nj}. Given

a set of feature points, we next compute a local descriptor for small circular neigh-

borhoods of each feature. We use a rather simple descriptor that just computes a

histogram of mean curvature in this region. Mean curvature is computed from a

quadratic moving-least-squares surface approximation (see [16] for details). Hav-

ing computed feature points and descriptors, we build an initial matching graph:

We connect all features on MS and MT with correspondence edges for which the
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descriptors are similar up to at least a user defined threshold (we choose a conser-

vative threshold that leads to many false positives, as we will subsequently filter

the graph further). Additionally, we also connect all pairs of features xSi in shape

MS and all pairs of features xTi in shape MT with validation edges and compute

the approximate geodesic distance between these pairs. Each validation edge is

tagged with this distance.

3.3 RANSAC Subgraph Extraction

Given the input candidate graph, we extract a consistent subset using a RANSAC-

like randomized sampling algorithm. Naively, we could enumerate all possible

subgraphs of our candidate set and evaluate how well it explains the data. How-

ever, this would lead to costs ofO(2N ) whereN is the overall number of validation

and correspondence edges. By random sampling, we can examine the same search

space in expected time O(N · 2N ) [92], which is slightly worse. However, by aug-

menting the sampling density, we can obtain a more efficient solution. Obviously,

it is not reasonable to try matches that are very unlikely to be correct. Therefore,

we will employ importance sampling, which distorts our random sampling density

in a way to yield promising matching candidates with larger probability. This will

drastically reduce the expected time required to find a good match. We can fur-

ther motivate the efficiency of this scheme using a heuristic argument: For the first

match, we can only rely on the rather noisy descriptor matches as importance func-

tion. These matches typically have outlier rates of 80%, i.e. 4 out of 5 matches are

wrong. However, once we have found at least 2-3 correct matches, this establishes

a local coordinate frame in terms of geodesic distances, so that it becomes much

easier to judge whether new correspondence candidates are correct. From this per-

spective, we only need a small number of random guesses to find a candidate set

that bootstraps the matching process, rather than an exponential number in N .

In order to implement this strategy concretely, we employ the following al-

gorithm: Start by selecting a random correspondence mi,j = (xSi ,x
T
j ) according

to an importance sampling density p(mi,j). Initially, this density is chosen to be

proportional to the descriptor matching score. In our case we use a gaussian distri-

bution over the descriptor distances:

p(mi,j) =
1

Z
exp(−

(DxSi
−DxTj

)2

2σ2
d

), (3.1)
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where DxSi
and DxTj

are the descriptor vectors of points xSi and xTj respectively

and σd is a factor how strict we penalize descriptor differences. Z is a normaliza-

tion factor.

Then iteratively add more correspondences using an augmented sampling den-

sity that takes the geodesic distances to existing features into account. These dis-

tances will not be exact because of slightly non-isometric deformations, as well

as noise in the feature location and distance estimation process. For simplicity,

we assume that the aggregate of these errors, for a correct match, yields a Gaus-

sian distribution. The standard deviation of this distribution could be calibrated by

user-labeled example matches from the data source considered; we set this param-

eter manually. If we already have several correspondences in our candidate sets

for the correct subgraph, we have to check multiple geodesics. We assume that

the error affecting the geodesic lengths is independent for each geodesic. While

this is certainly not exactly the case, it is a reasonable approximation in prac-

tice. In this model, we can compute the probability of length distortion. Let

dTkj = dMT
(xTk ,x

T
j ) denote the actual geodesic distance observed on the target

shape between feature points xTk and xTj and analogous dSki = dMS
(xSk ,x

S
i ) is the

geodesic distance between feature points xSk and xSi on the source shape which

are already detected as being in correspondence to the feature points on the target

shape. The probability density for the match mi,j being correct is thus given by:

p (mi,j |C) =
1

Z

|C|∏
k=1

exp

−
(
dSki − dTkj

)
2

2σ2

 (3.2)

Here, C is a set of already matched feature points pairs between the shape MS and

MT . This formula is directly used to choose the next match to be added to our

current subgraph: We compute the matching likelihood, given by this formula, and

use the corresponding probability density for importance sampling. For the length

differences, we assume that the geodesic lengths are correct in the first shape and

randomly distorted in the second shape, with standard deviation increased by
√

21,

which is equivalent to having noise in both shapes. For importance sampling, we

generally exclude any matches that receive a very low matching probability (typi-

cally, below 1%). Therefore, the iteration terminates automatically when no more

reasonable matches are available. As an alternative to pure importance sampling,

1The increase in the variance of the distortion of the geodesics by 2 results in the
√

2 increase in

the standard deviation
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we can also use only the best (maximum a posteriori) match once a sufficient num-

ber (typically 3-5) of base correspondences have been sampled. In our experiments,

this leads to better results in comparison to the purely random algorithm.

This presented correspondence estimation algorithm is similar to

PROSAC [33] and the forward search of [56]: it changes the sampling dis-

tribution during the execution of a single draw in order to avoid sampling

non-useful matches as much as possible. This is a major key to efficiency, as

the algorithm automatically restricts the search space during the sampling. The

randomized algorithm will still need exponential time, in worst case, to find the

absolutely best discrete match with least intrinsic distortion. However, solutions

that are correct within a small factor of sampling and noise accuracy can be found

with only a small number of trials, and this is what we are looking for. In this case,

the randomized algorithm is usually exponentially faster when applied to densely

sampled surfaces.

3.4 Handling Topological Noise

The algorithm outlined above yields very good results, comparable to state-of-the-

art matching algorithms such as spectral geodesic matching [55, 74] (see Figure

3.9). However, this may fail once the geodesics become unreliable. As mentioned

in the conclusions of [55], one needs to be able to handle geodesics in an outlier

robust way, which is hard to incorporate in standard techniques such as pairwise

spectral validation. For our RANSAC-like matching algorithm, however, this is

rather easy to achieve: In a plane, two different points are sufficient to find unique

geodesic coordinates for all other points up to mirroring along the line defined by

the coordinate points, and three non-collinear points define a unique barycentric

coordinate system. On curved manifolds, the situation might be more complex.

We will take a look on this complexity in Chapter 4. In practical cases, it is highly

unlikely to have two different points with the same geodesic distances to a larger

number of feature points (say, to 10 different points). Therefore, we do not need to

guarantee full geodesic consistency but it is sufficient to have a large enough wit-

ness set that proves the correct match, while further geodesic inconsistencies can

be regarded as outliers due to topological noise. Now, we augment our RANSAC

matching loop as follows: In computing the matching probabilities (3.2), we do

not use all geodesics but determine the subset of geodesics that does not show
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too large deviations in the distances and use only this subset for validation, i.e.

|dSki − dTkj | < τ , where τ ≈ 3εs. In order to make this reliable, we demand to have

at least k such geodesics, with k typically in the range of 5-10. This means that out

of n geodesics, n − k are allowed to be outliers. We refer to this as outlier robust

matching, since we increase the robustness against outliers in the geodesic domain.

3.5 Tangent-space optimization

Feature positions are not exact as they rely on the ability of the feature detection

algorithm to find well-defined spots. We usually cannot afford to use a very firm

threshold on the well-constraintness of the feature position because this would re-

move too many features, limiting the scope of the matching. In addition, we may

have wrong matches to actually different but nearby features that still meet our

geodesic validation criterion. By moving these features slightly we can obtain a

much better matching. Assume we are given k reference points and one more

point y ∈ M with geodesic distances d = (d1, ..., dk). At y, we form a two-

dimensional tangent space coordinate system of orthogonal vectors (u,v) that are

orthogonal to the surface normal n(y). Let y(uv) be the coordinates of y in tangent

space. We consider the partial derivatives of the position of y(uv) by the length of

the geodesics. Up to first order, we obtain:

4y(uv)(d1, ..., dk)
.
=

(
∂y(uv)

∂d1
· · · ∂y(uv)

∂dk

)
︸ ︷︷ ︸

=:∇d

4d (3.3)

where 4d is the displacement in geodesic coordinates. We get a linear map

∇d, i.e. Jacobian matrix, that transforms small displacements in geodesic coor-

dinates into displacements in spatial coordinates. In order to compute the gradients

∂y(uv)/∂di we consider a spherical intrinsic neighborhood N(y) of points and

compute geodesic distances to the reference point for all points in the point cloud.

This comes at no additional cost, as this has to be done during the Dijkstra algo-

rithm anyway. Afterwards, we compute a least-squares fit of a linear model to the

resulting distance values (with Gaussian weighting window with standard devia-

tion proportional to the radius of N(y)). This means, we compute the coefficients

a0, a1, b of a linear model 〈a,4x〉 + b that fits the observed distances best in a

weighted-least-squares sense. The vector a then yields our gradient approximate
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Figure 3.2: Illustration of the proposed tangent space optimization technique.

Dashed arrows represent the correspondences, and the edges between the nodes the

validation edges. Red arrows represents the surface gradients g
(k)
i,j in the uv-plane

over the points. By a small movement of every point along its gradient directions

we can decrease the numerical matching error.

in tangent space. Using this first order approximation, we can setup a quadratic ob-

jective function that locally describes how well the length of matching geodesics

is balanced. We then optimize this function, move the points in tangent direction,

project them back on the manifold using an MLS surface approximation [3], and

recompute new estimates for geodesic distances and their gradients in every step,

leading to a fairly efficient Gauss-Newton-type iteration. Figure 3.2 illustrates the

proposed tangent space optimization method.

We obtain the quadratic objective function by expressing the change of length

of the geodesics in terms of gradients of the geodesics with respect to the point

position. In the following, we use d(k)
i,j to denote the intrinsic distance between

two feature points x
(k)
i and x

(k)
j on surface k ∈ {S, T}. Correspondingly, we use

g
(k)
i,j := ∂x

(k)
i /∂d

(k)
i,j to denote the gradient of the geodesic distance with respect

to the tangent space (uv-) coordinates of a feature point x
(k)
i . The notation means

that the gradient is measured at feature i on surface k for a geodesic that connects

feature i to feature j. Thus, the distance between two feature points can expressed

in terms of the distances on the reference shape2 as:

dTi,j = dSi,j + gSi,j · δSi + gSj,i · δSj

which yields the following objective function:

arg min
δSi ∈R2

n∑
i=1

n∑
j=1
j 6=i

(
dSi,j + gSi,j · δSi + gSj,i · δSj − dTi,j

)2
(3.4)

2In this case the reference shape is the source shape, however their meaning is interchangeable
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This is a quadratic objective function in the unknown tangential displacements

δSi and δSj . Formulating the objective function as energy minimization problem:

E(∆) =
n∑
i=1

n∑
j=1

(dSi,j + δSi gSi,j + δSj gSj,i − dTi,j)2,

we can find the minimum if we set the first derivative of the energy function to 0.

The first derivative of a complete energy functional is:

5E(∆) =

n∑
k=1

(5δSk
(E(∆)),

where5δSk
(E(∆) is a derivative of E(∆) in respect to the δSk variable.

After a simple algebraic reformulation the quadratic objective function, Equa-

tion 3.4, reduces to the following linear equation system:

∀k :

n∑
i=1,i 6=k

[
(gSk,ig

ST

i,k )δSi + (gSk,ig
ST

k,i )δ
S
k

]
= −

n∑
i=1,i 6=k

(dSi,k − dTi,k)gSk,i,

where gS
T

is a transposed gradient vector.

We solve the resulting linear system using SVD, which is robust to degener-

ate cases (numerically small absolute singular values are not inverted). We then

move the feature points tangentially according to the computed displacements in

three-dimensional space. Afterwards, we project each point back on a surface ap-

proximation obtained from a moving least square fit (with quadratic basis functions

and Gaussian weights). Then, geodesics are recomputed and the scheme is iterated

until it converges, i.e., only small changes in energy occur. We move the point by

at most the surface sample spacing εsampl in order to prevent missing the surface in

the projection step. In oder to make the scheme symmetric, we alternate between

optimizing the feature positions on surface MS and MT in each iteration. In prac-

tice, this symmetric approach shows to be significantly more robust and accurate

than a one-sided optimization, moving feature points only on one surface.

3.6 Approximation of Geodesics

Each iteration of the tangent-space optimization step as described in the previous

section requires a recomputation of intrinsic distances d(k)
i,j and corresponding gra-

dients g
(k)
i,j that involves running Dijkstra’s algorithm for each feature point, which
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Figure 3.3: Error of approximated intrinsic distances, blue = 0% and red = 100%.

The image shows the maximum error over all geodesics between each point and

all other points of the point cloud. The error is measured in respect to the non-

downsampled versions of the shapes. Horse: 8431 original points, 1355 sample

points - max error is 5% of the bounding box size. dragon: 20002 original points,

1598 sample-points - max error is 10%.

is quite costly. In order to solve this problem we use an algorithm to precompute an

approximation to the geodesic distance and the corresponding gradients between

any two points on the point cloud surface: First, we compute sampling points yn

from the original point cloud. We downsample the point cloud with respect to the

curvature by a Poisson-disc sampler with radius inversely proportional to the cur-

vature. For the downsampling factor we have a trade-off between the absolute error

and preprocessing time we are willing to tolerate. Figure 3.3 shows the absolute

error achieved with typical parameter settings.

Having the data points we compute graph distances between the sample points

using the original, full resolution graph for distance estimation. Next, we interpo-

late intrinsic distance di,j and gradient gi,j between any points xi and xj on the

surface. First we determine the k nearest data points y around both points xi and xj

respectively where k is usually 4. Next, we place Gaussian basis functions around

each sample point with radius (standard deviation) proportional to the point spac-

ing and obtain the interpolated distance by a partition-of-unity interpolation: For

each source point, we compute a partition-of-unity interpolation of all distances to

the destination and interpolate these again using a second partition-of-unity inter-

polation in the destination domain.

3.7 Inserting Dense Secondary Features

The robust criterion for geodesic validation can also be employed to insert new

secondary feature points with correspondences into our model. This is desirable
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Figure 3.4: Illustration of the secondary features insertion. A position of the point

from the source shape is interpolated on the target shape as described in 3.6. In

order to be able to interpolate, valid correspondences have to exists in a given

radius. Next in a small Euclidian area around the interpolated position we look for

a point which minimizes the matching score Equation 3.2.

as the feature detection stage often fails to yield a sufficient number of feature

points to cover the surface densely enough. Inserting new correspondences is easy:

We first pick a random surface point out of the sample points y as described in

the previous section. Then, we go through all points of the target surface and

pick the best matching one. We apply exactly the same matching criterion as for

regular features described previously: We require a minimum number of geodesic

distances to be correct within tolerance and that this subset is stable. We add the

best matching of those correspondences to our correspondence set. This is iterated

until all points are taken or no more reliable matches are found. In order to speed up

this brute force search algorithm, we try to reduce the search area: First, we find all

already matched features within a small neighborhood of r ·εsampl of the secondary

feature point (typically: r = 8). We compute the Euclidean distances and perform a

partition-of-unity interpolation of the corresponding points, interpolating the target

positions in Euclidean space, which we then project back on the target surface. We

now examine all target points within distance r · εsampl using a breadth-first search

on the connectivity graph. Only if this search yields no result, we fall back to

the expensive brute force search. In practice, this yields a substantial speed-up.

Figure 3.4 illustrates the described technique. 3

3We refer those readers who would like to know more effective approaches for dense correspon-

dence estimation from a set of sparse correspondences to Chapters 4 and 5. In the first case, the idea

of computing dense features from the set of sparse features is simplified to the case of just a vector

comparison. This can be achieved due to the theoretical fundament that we create in developing the

shape matching approach of Chapter 4. In Chapter 5 a more sophisticated method derives a set of

dense features by incorporating the bijectivity criterion, since any matched shape has to match in the
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3.8 Ranking of Matching Alternatives

The algorithm described so far will produce a single isometric match of the two

input surfaces. In case of multiple valid solutions, it is a matter of chance which

solution will be output. For equally plausible results (similarly isometric, same

amount of features and area covered), the algorithm will output all these results

with an equal probability. This randomization is actually useful to gain more in-

formation about the matching of the two shapes involved. We run the algorithm

several times in an outer loop: Instead of using only the best initial feature match

from the inner RANSAC loop, we keep the k-best matches (typically k = 10). We

run the whole pipeline for the first match. For the next best feature match, we then

determine whether it is contained in the previous solution. The problem here is that

feature positions might be different so that we cannot directly compare the results.

Therefore, we interpolate the matching results using a partition-of-unity Gaussian

interpolation with window radius 2εsampl and compare the obtained interpolated

correspondences with the feature correspondences. Points without feature corre-

spondences in their vicinity are treated as unmatched area and are ignored in the

comparison. Only if there is a substantial disagreement, we compute a new solu-

tion from the initial feature match. Otherwise, we dismiss the match and go on

examining the next best. This is repeated until all matches have been compared.

In the end, we rank the results by counting the number of overall features (initial

and secondary features) matched, which corresponds to matched area, multiplied

by the number of geodesics that support each of the validated features. If the num-

bers are equal, the error in the deviation of geodesic distances is used as secondary

sorting criterion. This output is a sampled description of the matching ambiguity

present for the two shapes, with the “most likely” reconstruction listed first.

3.9 Implementation and Evaluation

We tested our algorithm on an Intel Core2 CPU with 2GHz and 2GB RAM with

different synthetic and real world data sets. Table 3.1 summarizes the timings and

statistics. The most expensive step is the precomputation of geodesic distances,

which is necessary for feature optimization. If we restrict ourselves to matching

original features only (without optimization), we obtain running times in the range

other direction too.
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Figure 3.5: Matching results: (Top) guy data set 75 features (35 secondary fea-

tures) were registered. (Bottom) arm-dataset registered 84 feature (56 secondary

features).

Figure 3.6: Arm data set matched with (left) our algorithm (no secondary fea-

tures) and (right) spectral matching. Red colored points represents features for

which a correspondence was found. Green colored points are features with no

correspondence.
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Figure 3.7: Faces data set and its registration. The dataset represents a hard case

with different connectivity, i.e., topological noise, due to the misconnection in the

mouth region.

of about one minute, again dominated by computing geodesics.

Synthetic data: First, we apply our algorithm to two well known 3D mod-

els, horse and dragon, which we sample synthetically to simulate scanner data.

Figure 3.8 shows the matching results along with a comparison to ground truth.

The horse data set is particularly hard to match because of the skinny and mostly

featureless legs. In addition, the model is perfectly symmetric under left/right-

mirroring in its rest pose. Because of the larger similarity between the right and

left legs of the horse, our algorithm actually prefers the mirrored solution as best

match. Figure 3.9 shows a registration of an artificial data set. The two frames of

the data set are equal except for the holes added in the second frame. We were able

to match more features enabling the outlier robustness than with spectral match-

ing [74] or with a simple RANSAC matching. For a fair comparison, matching was

performed without tangent-space optimization and with no additional secondary

features.

3D scanner data: We examine three real world 3D scan data sets (original raw

data up to downsampling): “guy”, “arm”, and “face”. All three suffer from both

geometrical and topological noise problems. Figure 3.5 shows the result for the

arm data set. Please note the big acquisition hole on the palm as well as the fingers

touching in only one scan. Our algorithm was able to register 84 features. Fig-

ure 3.6 shows a side-by-side comparison of our algorithm with spectral matching,

which does not capture features in regions of connectivity variation. To compare

both algorithms neither tangent space optimization was performed nor secondary

features were added. Results for the face data set are shown in Figure 3.7. Again,

in the mouth and eye regions, false connections occur. We were able to register

103 features (49 secondary features) in around 8 minutes. The example shows one
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data set |XS | · |XT | sample pts precomp. registr. |C| score

dragon 4760 3196 40m13s 7m2s 95 7.43
horse 7740 1233 9m20s 11m49s 100 6.95
guy 2646 868 9m4s 3m40s 75 5.01
arm 1440 1974 16m13s 4m38s 84 0.67
face 7238 1920 17m30s 8m10s 103 4.82

Table 3.1: Test data sets (name, number of candidate correspondences, number of

sample points for approximating geodesics, precomputation and registration time,

number of finally matched correspondences |C|, matching score, i.e. sum of log-

likelihoods in Equation 3.2.

Figure 3.8: Synthetic data set: horse and dragon. (Left) 100 correspondences while

matching the horse data set were found. (Right) dragon data set matched with 95

features (48 secondary) with a maximal error (red) of 11%.

limitation that our technique shares with all isometry-based matching techniques:

The portion of the face above the upper lip is not deforming isometrically (at least

not as portrait at scanner resolution), so that the upper lip matches a bit too low.

As this does not appear as a spurious outlier, but a consistent shift, the registration

does not yield the intuitively expected result. For the rest of the face, we obtain

reliable results. Figure 3.11 shows results for partial matching with ambiguities -

we match the forefinger of a scanned hand to the full hand model. Among the 8

best matches are matches to two different fingers.

3.10 Discussion

We have shown a global deformable matching approach based on a novel

RANSAC-like randomized sampling algorithm. The algorithm works for general

data sets solely assuming approximately isometric deformations. The algorithm is
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Figure 3.9: Synthetic dataset illustrating robustness against topological noise.

From left to right: spectral matching algorithm (6 matches), our algorithm without

outlier robustness (12 matches) and with outlier robustness enabled (33 matches)

respectively. No optimization step and no secondary features were added. |XS | ×
|XT | = 1400

Figure 3.10: 3 solutions of matching the synthetic Star data set to itself. Due to the

symmetry the matched solutions have low error with respect to geodesic distances.

robust to topological noise and unlike previously known techniques, our approach

is able to output matching alternatives by sampling the space of plausible solutions.

This might be an important tool in multi-part matching situations with ambiguous

pairwise matches, such as animation sequence reconstruction.

One of the limitations of the approach presented here is the limitation to feature

points only. Hence, the RANSAC matching times as well as the overall matching

quality depend highly on the ability to place feature points well. Here, a question

arises: “What if we were able to find an optimal feature point placement in order

to solve the isometric matching problem best ?”. In the next chapter we will study

the answer to this question.
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Figure 3.11: First 9 solutions of a finger-hand matching. Due to the symmetrical

structure there exist ambiguous solutions which were found with our algorithm.
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PLANSAC: Plan First

Before Execute

The method derived in the previous chapter helps to understand how to compute

correspondences between a pair of shapes. However, as already pointed out, the

problem of pairwise matching is not that well suited if limited to feature-based

approaches. The main disadvantage of feature-based approaches is the potential

lack of features on a shape, because keypoint detectors are designed for certain

data characteristics, such as local bumps in the surface [46,79]. These might not be

present in sufficient number on some models, thus preventing successful matching.

Additionally, feature point detectors depend in most cases on extrinsic information,

Chapter 3. These, however, are not invariant in respect to the isometry. Changes

in these properties reflect directly in the placement and detection quality of feature

points. Imagine two frames of a hand where in one frame the fingers are globed

into a fist whereas in the other frame they are separated. In this case a frame with a

flat hand is less wrinkled than a globed fist and hence has less prominent, extrinsic,

shape features.

In this chapter we will present a new method of pair-wise shape matching

which does not rely on feature points. In contrast, our technique fully automat-

ically detects a set of optimized reference points for matching, adapting automati-

cally to the characteristics of the input. In general, we are interested in the question

how many of these reference points we need for successful matching and how we

should distribute them on the surface in order to solve the isometric matching prob-

lem between two shapes in the numerically best way.

Similar problems have already gained some attraction from the research com-

munity. Lipman et al. [80] prove that three point correspondences are sufficient

to fix an isometry on topological discs and spheres, and, Ovsjanikov et al. [96]

strengthen the result: By analyzing global shape properties encoded in heat-kernel

functions, a single correspondence is sufficient to fix an isometry if the shape and
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Figure 4.1: Landmarks computed for a human face, with one landmark added at

each step. The first image shows the distribution of uniqueness (i.e. from blue:

most unique, to red: most similar to other) of the first landmark. Further points

build up a plan: Each further point is chosen to be of maximal utility for solving

the isometry matching problem.

the point meet certain conditions (implying in particular the absence of continuous

sets of self-isometries). These results establish that the intrinsic complexity of find-

ing isometric matches is rather low because the problem does not allow for a large

number of degrees of freedom. While these remarkable results solve much of the

problem in theory, the practical complexity is still unclear: In real-world scenarios,

we have to deal with input data that is undergoing only approximately isometric

deformations, there are numerical precision issues, and the intrinsic distances are

not reliable due to topological noise.

For example, if an input shape consists of two pieces connected with a narrow

tunnel of very small diameter, fixing intrinsic distances on one piece will in prac-

tice not fully constrain the matching on the second piece even if this was the case if

we had a perfectly isometric deformation and infinite numerical resolution. Conse-

quently, the practical implementations of [80,96] employ voting involving multiple

correspondence sets in order to obtain stable results in practice. For real-world sce-

narios, it remains unclear how much correspondence information is necessary to

fully constrain the matching problem.

Our contributions: Our key idea is to look at the entropy of the posterior distribu-

tion of possible matches to assess what are good points we need to distribute over

the surface. Starting from an empty set of prior knowledge, we incrementally add

points that minimize the entropy of the posterior distribution of potential matches

and thereby minimize the effort of finding a new piece of information in the next

round. A landmark coordinate scheme [55, 96] is then employed to immediately
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extend the solution to dense correspondences. The set of points computed in this

way is called a plan. The plan can be pre-computed given only the source shape.

It can then be reused for matching to a large number of target shapes. This leads

to almost real-time matching performance in situations where a template shape is

matched against a large collection of input data.

Our algorithm leads to significant savings in sampling costs compared to ran-

dom sampling (Chapter 3). It provides also an insight on the practical complexity

of near-isometric shape matching. Based on ideas in this chapter Ovsjanikov and

colleagues [98] developed a so called condition number of a shape which maps the

complexity or difficulty of matching different types of shapes to a single number

and hence makes the difficulty of shape matching comparable.

4.1 Isometry invariant matching

In the following, we assume that we are given two manifoldsMS andMT . Both

are equipped with a distance metric dM(·, ·) that measures the intrinsic distances,

see Chapter 1 for a more detailed definition. We assume that MS and MT are

isometric to each other, i.e., there exists a bijective function that maps the two

shapes onto each other that is an isometry with respect to the intrinsic metric. Our

task is to find such a mapping.

In order to solve this problem efficiently, we first resample the surfaces to a

ε-resolution and refer to the discrete version of M as M , where |M | = ns. For

resampling, we use a standard uniform Poisson disc sampler. Furthermore, we

assume that pointwise connectivity information is given which is for example the

case for triangle meshes. Hence we can compute intrinsic distances as shortest

paths along the mesh surface as shown in Chapter 1. For the distance computation,

we use the full resolution mesh. In general, geodesic distances are very sensitive

to topological changes. One could stabilize the distances by using heat kernel dis-

tances [62], which in particular are robust against slight topological noise, however

we relinquish this possibility.

We pose the approximate intrinsic matching problem as an optimization prob-

lem, finding a function f̂ : MS → MT that minimizes the Equation 1.2 presented

in Chapter 1. Finding the exact minimum of Equation 1.2 could lead to a hard

combinatorial problem. However, differences in correspondence at the level of

the sampling resolution do not matter to us as we use the discretization only as a
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Figure 4.2: Our descriptor measures the lengths of the isocurves of increasing

distance: the curves spread like a “wave” over the surface. The length of a given

isocurve is highly dependent on the local shape and encodes local properties nicely.

tool for representing the surface. Therefore, we usually set a fixed error bound of

c · ε with c ≈ 2..3 and consider a solution correct if it meets this precision bound.

The final optimum could then be computed by a locally convergent numerical op-

timization [55], as shown for example in Section 3.5. Thus, this precision limit is

no restriction in practice. Correspondingly, we focus in the following on finding

an approximate solution in this sense as quickly as possible.

4.2 Shape matching by random sampling

We can now formulate the global matching algorithm. The algorithm is oriented

on the RANSAC sampling strategy as presented in Chapter 3 and is reminded here

shortly: We start by picking a random match between points fromMS andMT . All

pairs (x,y) ∈ MS ×MT are considered as candidate matches with a probability

proportional to

Pdescr(x,y) =
1

Z
exp

(
−(Dx −Dy)2

2σ2
d

)
. (4.1)

σd is a user parameter that describes the standard deviation of matching descriptors

(thus depending on model noise) and Z is a normalization factor. We use the same

descriptor matching score as already shown in Equation 3.1.

As a descriptor we incorporate the intrinsic “wave” descriptor as described

in [140]. In general the idea is to measure the length of isocurves, i.e. points of the

same intrinsic distance ρ, marching from a start point. The length is normalized by

dividing by 2πρ, which is the value expected for a flat (i.e., developable) piece of

surface. The descriptor Dx(ρ) for each point x ∈ M is the function that maps ρ

to the normalized length of the corresponding isocurve. Figure 4.2 illustrates the
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isocurves and Figure 4.3 illustrates the descriptor signatures for an example model.

In our implementation, we sample 16 values at constant intervals of ρ.

The actual correspondence matching is performed by random draws of possible

correspondence candidates, taking the previous information into account: Points on

the source shapeMS are chosen randomly. The likelihood for picking target points

from MT is weighted by the likelihood that the intrinsic distances are preserved:

If one correspondence has been fixed, and a second source point has a distance d

on the source shape, only points with a distance of roughly d on the target shape

are accepted, again following a Gaussian error model. Given we already have k

correspondences {(x1,y1), .., (xk,yk)}, (xi,yi) ∈ MS ×MT , the likelihood for

one more correspondence (x,y) ∈MS×MT being correct is given by a Gaussian

error model:

Pdist(x,y|x1,y1, ..,xk,yk) =

1

Z

k∏
i=1

exp

(
(dMS

(x,xi)− dMT
(y,yi))

2

2σ2
g

)
.

(4.2)

The equation is equal to the Equation 3.2 from Chapter 3. Again, σg is a user pa-

rameter that describes the standard deviation of matching geodesic distances, thus

modeling how “non-isometric” the model can be, either due to numerical impreci-

sion or due to imperfections of the pieces of input geometry themselves. In order

to obtain the final sampling probability, this likelihood is multiplied with Pdescr to

account for local descriptor matches, giving the sampling distribution:

Psamp(x,y|x1,y1, ..,xk,yk) =

Pdescr(x,y) · Pdist(x,y|x1,y1, ..,xk,yk).
(4.3)

Sampling is continued until no more matching pairs are found that do not exceed

the maximum error threshold or until all points are matched. Differently to the

previous approach we will use plan points instead of feature points, as explained in

the next section, to limit the number of samples.

In the following, we refer to a set of matched points {(x1,y1), .., (xk,yk)}
as a solution set R. This set sparsely models an isometric deformation f̂R for the

complete shapeMS . In order to estimate dense correspondences, Equation 4.2 is

evaluated with the computed correspondences R as previous matches. For every

point x ∈ MS , we compute the probability distribution Pdist(x,y|R) on all y of

MT . Inspired by [2,41,55], the point y yielding the maximum likelihood is chosen

as a dense match to x.
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(a) (b) (c)

Figure 4.3: Top row: descriptor differences - blue is zero and red is the maxi-

mum observed difference. Bottom row: descriptor signature: intrinsic distance ρ is

mapped to the x-axis and the normed length of the resulting isocurve to the y-axis.

The curves corresponds to the points shown in the top row. The points at the two

fingertips have similar curves up to the radius of ρ = 10. The signature on the arm

is, however, entirely different.

To compare different solution sets in their ability to characterize the deforma-

tion, we evaluate the corresponding deformation function f̂R by computing E(f̂R),

Equation 1.2. We do this by using the dense correspondence estimates described

above. The solution score is then computed as:

E(f̂R) =
E(f̂ )

|R|
,

where E(f̂ ) is the deformation error, Equation 1.2.

Intuitively, the scoreE(f̂R) measures the average error introduced by the isom-

etry represented by the solution set. The whole sampling scheme is iterated until

either a solution set with a score below a given threshold c is found (typical value

1.5ε ≤ c ≤ 3.0ε) or the maximum number of trials (typically 100) is reached.

4.3 The planned sampling algorithm

So far the basic matching algorithm is equal to the approach described in Chapter 3

and now we can start to design a planning scheme that executes the algorithm more
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rapidly by avoiding uninformative samples. We call our strategy “PLANSAC”:

PLANned SAmple Consensus, referring to the fact that the algorithm plans ahead

in terms of what samples are best to test in order to gain information as quickly

as possible. The key idea is to look at Psamp (Equation 4.3) and try to make

the distribution as clearly determined as possible by using a semi-solution set

{(xp1, ·), .., (x
p
K , ·)} that we refer to as a plan for the matching step. The plan

points xpi are computed such as to maximize the information gained by matching

them against a target shape. In order to measure the information content, we look

at the entropy [122] of the final distribution.

Entropy is a scalar value that represents a statistical measure of the randomness

of a discrete random variable Y with possible values {y1, ..., yn} and probability

distribution p. It is defined as:

Hp(Y ) =

n∑
i=1

p(yi) log
1

p(yi)
, (4.4)

where p(yi) is the probability of yi and we define p log p := 0 for p = 0. In-

tuitively, entropy can be understood as the amount of information contained in a

random process described by the probability function. The entropy is maximal for

a uniformly distributed probability. In this case we cannot take any advantage of

the model described by the random process since every output of the process is

equally likely. For a probability function with very few peaks, on the other hand,

the entropy takes a low value. In this case the distribution carries a high amount

of information. In our case, this means that the correspondences are known more

precisely.

Our goal is now to find a set of points Xp = {xpi |x
p
i ∈MS , i = 1..K} that we

use as a plan for a matching step. We begin with an empty set Xp and first add a

most discriminative point xk ∈MS : This a point with a descriptor [140] that leads

to a minimal entropy when compared to all other points. We define a descriptor

entropy of a point xk ∈MS as Hpdk
(MS). The probability function pdk used for the

entropy computation we define as:

pdk(y) = Pdescr(xk,y). (4.5)

It computes the probability of a given point xk to be equal to any other point y ∈
MS . Obviously, a point xk that has a very dissimilar descriptor to other points has

a low entropy Hpdk
(MS). In other words, the chosen point is most discriminative

among all others, see Figure 4.4 for an example.
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(a) (b) (c) (d) (e)

Figure 4.4: Entropy distribution of the most descriptive points, see Section 4.3.

Regions with minimal entropy are marked blue, regions with maximal entropy are

shown in red. (a), (b) The most descriptive point for the men and dog data sets is

in the region of the corner of the mouth. (c) Zoomed view on human’s head with

most descriptive point shown in purple. (d), (e) Hand data set: the most descriptive

point is on the palm in the area of the middle finger.

Having selected the first point, we start to add points to Xp by searching for

points with most information content with respect to both descriptor matching as

well as distances to previous points. We model this by checking how well shape

MS matches onto itself. We do this by assuming a point xk ∈ MS is the one we

look for, i.e. Xp
k = Xp ∪ {xk} and computing the matching entropy Hpmk

(MS ×
MS) of all possible correspondence pairs (x,y) ∈ MS × MS . The probability

function pmk , describes how well a particular pair (x,y) is localized by the current

candidate plan set Xp
k and is set to:

pmk (x,y) = Pdist(x,y|Xp
k
′
), (4.6)

where Xp
k
′ is a set of trivial matching pairs, i.e. Xp

k
′

= {(xpi ,x
p
i )|x

p
i ∈ Xp

k}.
The trivial matching pairs model the self-matching of shapeMS . Given that, we

compute:

arg min
k

(
Hpmk

+ λdHpdk

)
, (4.7)

where λd is a factor modeling how much of the descriptor entropy should be con-

sidered when searching for optimal points. A typical value is λd = 0.1. The

additional descriptor entropy models the choice on the next more discriminative

xk if the choice is intrinsically ambiguous. The point xk which minimizes the sum

of entropies is added to our sampling set Xp.

The model of matching MS to itself is supported by the fact that we have

assumed that the source surface is isometric to any target surface. Therefore, and
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Figure 4.5: Blue regions schematically indicate the area of uncertainty given noisy

geodesic distances. Left: the subset of red points defines the parametrization of

the shape well. Right: A poorly chosen subset increases the uncertainty in the

parametrization.

since we are using a descriptor which is completely intrinsic, the plan developed

by our planning algorithm is not affected by isometric deformations.

Finally, we stop building the plan if all remaining points are fixed in their

position and can be located precisely by their intrinsic distance to all points of

Xp. Hence, for every remaining point xi ∈ MS we estimate the variance of

Pdist(xi,y|Xp) over all y ∈MS . The variance is computed using weighted princi-

pal component analysis (PCA) [61]: We assign a weight wi(y) = Pdist(xi,y|Xp)

to every point y and perform a PCA. The largest eigenvalue describes the maxi-

mum radius of the uncertainty in the localization, see Figure 4.5. If the maximal

uncertainty radius for all source points x is smaller than a specified threshold c · ε,
typically c = 2, we stop adding plan points. We can now guarantee that our plan

can find at least one isometric solution where every point is determined up to a

standard deviation of c · ε.

It should also be noted that this incremental algorithm is not optimal; the best

choices could be made by looking at all K-tuples simultaneously. However, com-

puting this requiresO(ns
K) time, which is very expensive even for moderate num-

bers of plan points K. Despite the lack of guaranteed optimality, our greedy ap-

proximation yields very good results in practice.

As we will see in our experiments, Section 4.4, our planning algorithm prefers

points widely spread over the surface. This behaviour is similar to the well known

Farthest Point Sampling (FPS) [91] which can be thought as a baseline method to

compare to. However, in contrast to FPS, our planning step guarantees, up to a

certain localization error, that the landmarks chosen by our algorithm are numer-
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(a) Entropy min. (b) FPS (c) Entropy min. (d) FPS

Figure 4.6: (a) and (b): Distribution of landmark points for entropy minimization

criterion (10 points) and FPS (13 points) for the cat dataset. (c) and (d): Distribu-

tion of 13 landmark points computed with our approach and 18 points with FPS

for the Victoria dataset. The sets of landmarks localize every point on the surface

up-to 2ε in each of the experiments.

ically optimal with respect to isometric matching. In other words our algorithm

spreads the landmarks over the surface in such a way that it minimzes the entropy

of the matching uncertainty, while FPS is distributing points evenly over the sur-

face. For simple shapes like a sphere both approaches yield similar results, however

for more complex shapes the entropy minimization approach computes a smaller

set of landmark points than FPS. Figure 4.6 shows a comparison of the landmark

point distribution generated by our approach and by farthest point sampling.

4.4 Results

We evaluate our algorithm by performing shape matches on a number of bench-

mark models. For the evaluation, we use the standard TOSCA [23] data set. The

data set consists of triangle meshes with approximately 50,000 vertices each. In

addition, we have constructed a few further synthetic benchmark scenes to examine

specific properties of our algorithm.

For efficiency reasons we down-sample the input meshes. Source shapes have

a minimum point spacing of 4-5% of the longest bounding box size. For the target

shapes, we use a higher resolution of around 1-2% of the bounding box size to

provide sufficient numerical degrees of freedom for the match. The intrinsic wave

descriptor is evaluated on the down-sampled source points however propagating
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data set |Xp| |MS | |MT | #it E(f̂R) tp tm

hand 5 164 797 15 1.25ε 175 0.658

dog 9 182

1341 2
1.5ε

432

0.088

1522 8 0.340

1394 12 2.0ε 0.572

cat 7 183

1221 8

2.5ε 282

0.298

1274 10 0.467

1355 15 0.765

centaur 10 211

1055 12

1.6ε 320

0.731

909 16 0.853

998 30 1.830

seahorse 9 126

572 1
1.0ε

19

0.060

550 1 0.045

549 2 1.25ε 0.110

Table 4.1: Results summarized for different data sets. |Xp| is the number of points

in the sampling plan, |MT | is the number of points on the target shape for different

poses (order as in Figure 4.12). #it is the number of iterations required to find

a matching solution with an error less than or equal to E(f̂R) averaged over 50

PLANSAC runs. tp is the time required to build a plan set Xp, tm is the average

overall matching time. Timings are given in seconds for an Intel Core-2 Xenon 2.8

GHz platform (plan-build step was parallelized over 3 cores).

waves over the full resolution model. This preserves the descriptiveness of the

down-sampled points. In the following, we refer to this target mesh sample spacing

as ε and specify all accuracy results with respect to this number.

Pairwise matching results: Table 4.1 summarizes the matching results and tim-

ings on the employed data sets, please refer to it for the following discussion. The

dog data set, Figures 4.12(a)-4.12(d), represents a case of very descriptive geom-

etry. Note that the average number of iterations required to find a solution is very

low, since here we benefit from well-matched descriptors. Figure 4.12(d) shows

a case where the deformation in the input data does not preserve isometric dis-

tances well. Our algorithm, however, is still able to find correct correspondences.

Figures 4.12(e)-4.12(h), cat data-set, show a case where the shape has a low de-

scriptive information. The number of iterations increases as does the localization

error of the solution. The centaur data set, Figures 4.12(i)-4.12(l), is the most com-

plex shape that we encountered in our tests. This also shows in the number of

iterations that are required to obtain a suitable match. The seahorse data set, Fig-
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(a) (b)

Figure 4.7: (a) Matching results of the hand data set. The most discriminative point

is colored blue. (b) Dense correspondences. The solution error threshold is 1.5ε.

ures 4.12(m)-4.12(p), on the other hand, has very well distributed and descriptive

features that explain most of the geometry very well. This, in conjunction with the

relatively low resolution, which is due to the low resolution of the initial model

from the data base, enables very fast matching results. Our algorithm is able to

find the solution in only a single iteration most of the time. In almost all shapes

the most discriminative point was found in the area of the mouth corner. This is

due to the fact that these shape models contain throat geometry which is itself very

descriptive. Another observation is that landmarks are placed preferably on the

shape’s extremeties.

Figure 4.8 shows our synthetic data-sets. Please note that all used shapes are

featureless, however since our technique neither relies on intrinsic nor extrinsic

features, we are still able to compute a valid plan set and can guarantee to find a

valid isometry.

Examining the Practical Matching Complexity: In the beginning of this chap-

ter we posed the question of matching complexity in the case of numerical ill-

conditioning, e.g. due to approximate geodesics. We would like to provide a par-

tial answer to this question from a practical point of view. Figure 4.8 shows a data

set consisting of one, two and three spheres connected through a narrow tube. In

theory the number of computed plan points required to isometrically parametrize

a sphere is three, which we also found numerically as shown in Figure 4.8(a). For

two connected spheres, however, not any 3-tuple of points is sufficient to fix an

isometry in practice even through the topology it is still equivalent to a sphere.

Fixing intrinsic distances on one piece does not constrain the matching on the sec-

ond piece in practice. It follows that for a numerically stable match more plan
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: A number of featureless objects which can be matched with our

method. (a) Match of a simple sphere against itself. Note that the compute plan

as numerically chosen by our algorithm consists of 3 points and is thus consistent

with theoretical results [80]. (b) Set of plan points Xp (marked blue) detected for

synthetic data sets consisting of two and three spheres connected by a thin tube.

The number of required plan points for stable matching is 5 and 7 respectively.

(c) shows the plan points for the torus (5, one invisible) and the double torus (6).

(d) EG-Logo as a meta-blob matched against a slightly deformed version of itself.

The matching error is 2ε or 8% of the bounding box size. (e) Synthetic peanut data

set consisting of slightly deformed meta-blobs. The solution error is 1.5ε or 3%

of the bounding box size. Although the solution appears incorrect, we have an in-

trinsically correct match. Extrinsically, the object was flipped along the horizontal

axis and mirrored along the vertical axis. (f) Extrinsically plausible match for the

peanut data set.
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points are needed. As seen in Figure 4.8(b) our algorithm automatically identifies

this instability and computes two additional points on every piece of geometry. Our

experiments show that numerical ill-conditioning can increase the practical match-

ing complexity towards the case of two unconnected objects, where 6 plan points

would be required, three for each sphere.

A similar observation can be made for surfaces of higher genus. We tested

our algorithm on a torus and double-torus shape as well. The required plan points

are 4-5 for the torus, where 5 points lead to more stable matching results. The

double-torus requires at least 6 plan points. In practice, we also observe differences

between shapes: For example, the centaur requires 10 landmark points to guarantee

a matching of reasonable accuracy while the cat requires only 7 to achieve the same

accuracy.

Comparison to previous work: We compare our method to the approach pre-

sented in the previous chapter as also to a state-of-the-art feature-based technique,

spectral matching [74]. For fair comparison, the RANSAC method, Chapter 3, is

used with the same maximum number of iterations (100) as the new plan-based

algorithm. We compare the performance on a subset of the models from Table 4.1

(seahorse and centaur). Figure 4.9 shows the correspondences computed on the

first pose of the seahorse and centaur data sets. Since both feature-based tech-

niques do not provide dense correspondences, we compute their matching scores

E(f̂R) on the sparse correspondence set only. As can be seen, RANSAC outper-

forms spectral matching in the number of computed correspondences, while it is

unclear which method provides a better matching accuracy. Note however, that our

proposed PLANSAC scheme has a significantly higher accuracy of up to 4 times

while computing a dense set as compared to only sparse matches in the competing

methods.

Additionally, if only the matching phase is considered, i.e. all pre-processing is

excluded, our technique is able to outperform both algorithms in computation time

as well. The computation time required by spectral matching is 1.2 seconds for

the seahorse and around 45 minutes for the centaur data set. For RANSAC, these

numbers are 2.5 seconds and around 22 minutes, respectively. In contrast, once the

plan is known, our method dramatically reduces computation cost to a fraction of

the time required by both techniques, i.e. 70ms for the seahorse data set and 740ms

for the centaur data set.

Application Scenarios: As our first scenario we consider a sequence matching
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(a) (b)

(c) (d)

Figure 4.9: (a) and (b) show the matching for the first pose of the seahorse and cen-

taur data sets computed with spectral matching [74]. The localization error E(f̂R)

is 6.5ε (7 correspondences) and 4.5ε (26 correspondences) respectively. (c) and (d)

shows the matching computed with RANSAC matching [141]. The localization

errors of the RANSAC results are 4.3ε (22 correspondences) and 5.6ε (121 corre-

spondences). In contrast, our algorithm achieves a localization error of only 1.0ε

(seahorse) and 1.6ε (centaur) while matching the shapes densely, see Table 4.1.

The corresponding plan matches are shown in Figure 4.12 (j) and (n).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10: (a)-(h) Dense correspondences shown for the galloping horse data

set [134]. The first 8 out of 50 frames of the data set are shown. The computation

time is 52 seconds for 50 frames, the average number of PLANSAC iterations

required to match the template against one frame is 4.

application. Figure 4.10 shows a running horse sequence [134] where the dense

correspondences are computed by matching the first frame against all other frames.

The matching of one frame against all 50 frames only takes about 52 seconds, i.e.

about 1 second per frame. Please note that we do not perform any extrinsic check if

a computed match is one of the symmetric solutions, therefore the solution set also

contains symmetrically equivalent correspondence matches. The median average

number of required PLANSAC iterations is one, their mean number is 4. There are

only four frames where more than 10 iterations are required.

As a second scenario we consider a database-like query application. For this

scenario we construct a small database consisting of all models in all poses shown

in Figure 4.12 normalized to exhibit a uniform mean intrinsic distance. Without

the latter, the task would be trivial since the models exhibit widely different scales

and are thus distinguishable by their mean intrinsic distance alone. Figure 4.11

shows the results of our initial experiments. To perform the query, we match the

query shape against all shapes in the database. The matches are then sorted by their

matching score E(f̂R). The probability of the best scored shape being the correct

one is greater than 95% (here we ignore the match of the given template to itself)

over 100 trials. We emphasize that these results are preliminary and only hint at

the potential use of our algorithm in database applications.
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Figure 4.11: Results of an exemplary database query. Results are sorted (from left

to right) by their matching score E(f̂R).

4.5 Discussion

In this chapter we developed a shape matching algorithm based on the novel con-

cept of entropy-based planned random sampling. It enables very fast and reliable

matching between similar or different shapes, while simultaneously removing the

need for explicit feature detection. Moreover, the algorithm automatically adapts to

the input characteristics and chooses an optimized sampling strategy for any given

object. Numerical experiments hint at the possibility of characterizing a shape’s

intrinsic complexity via the number of plan points necessary to parametrize its sur-

face in a stable way. In general, we believe that computing a most optimal matching

plan can answer the more general question of: ”What is the intrinsic complexity of

a shape?”

Although we based our approach on the algorithm developed in Chapter 3,

we have not taken into account data containing topology noise. Thus to apply

the entropy-based matching algorithm to real-world scanner data we still require

additional work. In the next chapter we will take a look of applying the knowledge

gathered in previous two chapters to use it for matching multiple frames of scanned

data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.12: Matching results for data sets in different poses. (a), (e), (i) and

(m) show the discretization of the data. Purple points mark the discretization of the

source shape, green points that of the target shape (in the pose of the source shape).

The order of the poses is arranged in order of increasing numerical matching com-

plexity, i.e. the average number of iterations required to find a solution.
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Animation Reconstruction

The two previous chapters investigated a randomized forward search algorithm

for matching two shapes. Additionally, we introduced the concept of landmark

coordinates. In this chapter we will combine these two ideas in order to propose a

solution for the problem of animation reconstruction.

Animation reconstruction is a reconstruction of the shape and motion of a de-

formable object from dynamic 3D scanner data, without using user provided tem-

plate models. Unlike previous work that addressed this problem, we do not rely

on locally convergent optimization but develop a system that can handle fast mo-

tion, temporally disrupted input, and can correctly match objects that disappear for

extended time periods in acquisition holes due to occlusion. To be able to do so,

we incorporate the algorithm developed in Chapter 3 which enables us to find a

matching between two shapes which underwent strong (isometric) deformation.

We first estimate a few landmark correspondences, which are extended to a

dense matching and then used to reconstruct geometry and motion. In order to

achieve our goal we propose a number of algorithmic building blocks: a scheme

for tracking landmarks in temporally coherent and incoherent data, an algorithm

for robust estimation of dense correspondences under topological noise, and the

integration of local matching techniques to refine the result. We describe and eval-

uate the individual components and propose a complete animation reconstruction

pipeline based on these ideas. We evaluate our method on a number of standard

benchmark data sets and show that we can obtain correct reconstructions in situ-

ations where other techniques fail completely or require additional user guidance

such as a template model.

Some techniques have been proposed already to solve the problem of anima-

tion reconstruction [87, 107, 138, 152, 153]. However, these approaches employ

local numerical optimization to align parts of the object incrementally: The final
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Figure 5.1: Animation reconstruction recovers template model (blue) as well as its

motion over time (yellow) from dynamic point cloud data containing topological

noise (gray).

shape is inferred by a deformable alignment of the geometry in time sequence or-

der. If some of the alignments yield an incorrect result, neither the shape of the

deformable object nor the correspondences are reconstructed correctly. In practice,

alignment problems are frequently observed. They are caused by fast object move-

ment or vanishing geometry that reappears in later frames in a different pose. Local

alignment is not able to handle these situations correctly. The problem obviously

becomes much easier if the user provides additional information, such as a tem-

plate model [7,29,35,75,102,120,159]. Nevertheless, numerical tracking can still

fail so that manual user intervention becomes necessary. Furthermore, the fixed

template restricts the expressiveness of the model, prohibits topology changes, and

makes an acquisition of general scenes tedious.

The approach presented in this chapter, however, is a template-free technique

that is able to assemble shapes from partial scans more robustly and under more

general motion than previous methods. The main idea is motivated by cartography,

where any point on a map is measured with respect to a relative distance to a land-

mark. We first track the location of a few landmark points, which we subsequently

use to compute dense correspondences, assuming that the deformation of the ob-

ject is approximately isometric. The output of the algorithm is a chart that covers

the complete original object. It encodes the intrinsic structure of the reconstructed

manifold and dense correspondences to the data points. This intrinsic reconstruc-

tion does not yet provide concrete geometry. Therefore, we combine the intrin-

sic manifold charting with a state-of-the-art extrinsic reconstruction scheme [152]

that computes actual geometry. By initializing this local numerical optimization
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scheme with charted correspondences, we obtain much more reliable results.

In order to perform the charting, a number of algorithmic building blocks are

necessary, each of which represents a novel contribution: First, we propose a

scheme to track salient landmark points. The algorithm automatically detects tem-

poral discontinuities and resorts to a global feature matching algorithm of Chap-

ter 3 to provide landmark correspondences also in general settings. The second

component is the intrinsic charting algorithm that extends the sparse landmark cor-

respondences to dense matches and stitches together partially overlapping charts.

Finally, we design a matching pipeline that iteratively performs tracking and chart

merging to chart complete animation sequences.

A key challenge in all three steps is that we have to deal with partial data, due

to occlusion artifacts. Therefore, intrinsic distances are not reliable. Similarly,

the apparent topology of the input data might change, for example if a person

temporarily rests his hands touching the body. We account for these problems

by employing a novel robust matching model, which can handle such topological

noise and furthermore quantify the uncertainty under noisy input.

We describe and evaluate the separate building blocks of the algorithm as well

as a complete animation reconstruction pipeline that is composed of these compo-

nents. In experiments with well known benchmark data sets, we show that the new

reconstruction pipeline can handle more general input data than previous work.

In summary, the main contributions made in this chapter, are:

• A matching model that is robust to topological noise and that can quantify

the matching uncertainty.

• A landmark tracking algorithm that establishes sparse correspondences fully

automatically under both temporally coherent as well as arbitrary, abrupt

motion.

• A charting algorithm that computes dense correspondences from sparse land-

mark tracks, thereby assembling multiple partial charts into one common

reconstruction.

• Finally, a complete animation reconstruction pipeline that is significantly

more robust than previous techniques. In particular, it can, for the first time,

handle abrupt motion and occluded objects that reappear in very different

pose without user input.
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5.1 Overview

5.1.1 Problem Statement

Let us first define the problem we are solving and describe the input data we are

expecting.

Input data assumptions: The goal of our method is to reconstruct a manifold

and its motion from partial observations. Formally, we assume that there has been

an originalM that underwent a time-variant motion ft : M → R3. t ∈ [1, T ] is

the time parameter. Each ft is assumed to be injective and differentiable, and each

ft(M) denotes a deformed versionMt of the original manifoldM.

As already stated in the previous chapters we equip manifolds with an intrin-

sic metric dM(·, ·) that measures the shortest geodesic distance between pairs of

points. We assume that the deformation ft is approximately isometric for each

fixed t. This means that

∀t ∈ {1..T} : dM(x,y)− dft(M) (ft(x), ft(y)) ≤ ησf , (5.1)

where ησf ∼ N(0, σf ) is an error that is normally distributed with standard devi-

ation σf and mean zero. In other words, we assume that the original deformation,

even before measurement, has not been perfectly isometric but that there might

have been errors that are in the range of σf .

A 3D scanner only yields a partial, sampled representation. We assume that

the scanner operates at regular time steps t ∈ {1, 2, ..., T} and for each time step,

yields a finite set of sample points Dt ⊂ R3. We denote the individual points by

x
(i)
t , i = 1, ..., nt and the collection of all input data by just D. To simplify further

processing, we assume that parts of objects that have actually been acquired have

been sampled with a sample spacing of at most εs. Areas with lower sampling

density are discarded during preprocessing. Furthermore, we assume that all ofM
at some point has been observed with sufficient sampling density (or equivalently,

we only try to reconstruct what we have observed).

Additionally, we build a k-neighborhood graph G = (M,E) to approximately

encode the metric of eachMt, see Chapter 1. The graph distance dMt(·, ·) (i.e., the

shortest path in the graph) between two arbitrary points serves as an approximation

of the original geodesic distance dMt(·, ·) and is computed by the shortest path

algorithm of Dijkstra [37].

Obviously, the discrete approximation will distort the distance measure.
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Smooth geodesics are approximated by zig-zag paths in graphs, which introduces

systematic deviations. However, we use this representation consistently for data

and all (partial) reconstructions. The systematic errors therefore affect all geodesic

paths in the same way so that they remain directly comparable, which is sufficient

for our application. Nevertheless, the discretization also causes additional quan-

tization noise in distance estimates. Accordingly, we adapt the expected error of

intrinsic distances σf to be at least in the range of εs (in practice, we use 3εs).

Hence, σf in the following describes the magnitude of both modeling as well as

representation noise.

Reconstruction Tasks: We consider two reconstruction tasks: A full geomet-

ric reconstruction and the reconstruction of a chart of the data. The full geometric

reconstruction is the ultimate goal: We want to reconstructM and f . Because of

acquisition holes, this involves an interpolation of f in areas of missing data. Wand

et al. [152, 153] propose a variational model that can find plausible interpolations

by employing physically motivated prior assumptions on shape and motion. How-

ever, their model is non-linear and non-convex and cannot be globally optimized.

In order to compute a suitable initialization for such methods, we propose to

perform a simpler reconstruction task first, the reconstruction of a chart of the data.

Here, we only reconstruct the shape M (up to isometries) and correspondences

between M and (most of) the data points D. This means, we either encode for

each data point x
(i)
t ∈ D its preimage f−1(x

(i)
t ) ∈ M, or mark it as unknown, in

case the reconstruction was not able to interpret the data point. We can then use

this shape and the correspondences to the data points as fixed boundary conditions

to stabilize a locally convergent reconstruction. For efficiency, our actual pipeline

will not compute explicit correspondences for each single data point but rather use

a coarse cloud of correspondence samples that covers the data points in order to

encode the correspondence information, as detailed in the next subsection.

5.1.2 Data Structures

Sampled manifolds, extrinsic view: Sometimes, we want to be able to give an

embedding of a sampled manifold M in R3. This is trivial to encode - we just

store for each graph node mi ∈ M an additional position vector x0(mi) ∈ R3.

Following [152], we call this embedding of the chart an urshape. We denote the

urshape of M by X0(M). Please note that urshapes are not unique but any isomet-

ric deformation f(X0(M)) is again a valid urshape.
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Charts: A chart combines a (partial) reconstruction of a manifold with corre-

spondences to data points. This means, a chart is a sampled manifold M , and for

each mi ∈ M we store a list of 3D positions of where node mi would be located

in each data frame. We denote these positions by xt(mi) ∈ R3, where t covers

a non-empty subset of time steps t ∈ 1, .., T . If the embedding is unknown at a

specific time t, we mark xt(mi) as unknown.

The definition of a chart has been chosen to account for a later technical prob-

lem: To limit computational costs, we will not be able to include every data point

into the chart. Therefore, we allow for using a coarse set of points to represent M

and store correspondences implicitly, by storing 3D positions for mi ∈ M . Each

mi will form (partial) tracks that move over time but, in general, will not exactly

coincide with data points but rather cover the data points. Please also note that a

chart does not necessarily have a full geometric embedding, as the temporal cover-

age might be sparse and different at every node. However, as we will see later, our

final pipeline will actually maintain a fully embedded urshape X0(M) for every

chart in order to interface with the extrinsic reconstruction.

Landmark coordinates: Some of the chart points are landmark points. These

points are special as they correspond to features of the input data that we were able

to recognize and track over time. As any other chart point, the spatial location of

landmarks might not be known for the full time sequence t = 1..T but only for a

(non-empty) subset. Given a set of landmarks L = {l1, .., ln} ⊆ M , we define

the landmark coordinates dL(m) of an arbitrary node m ∈ M as the vector of

intrinsic distances between m and the landmark points:

d
(L)
M (m) = [dM (l1,m), .., dM (ln,m)]T (5.2)

The intrinsic distances are approximated by graph distances in M.

The main idea of our algorithm is that if two charts share a number of land-

marks, we can compute dense correspondences for the remaining chart points by

comparing landmark coordinates. As we have shown in Chapter 4 points of the

same landmark coordinates are easily matchable. However, the main challenge

here is to do this in a way that is robust to topological noise, unlike a trivial imple-

mentation as in Chapter 4. For this, we introduce a robust probabilistic matching

model in the next subsection.
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5.1.3 Robust Intrinsic Matching

A central problem of our approach is to determine correspondences between points

from different charts. Let MA and MB be two charts that share a set L of land-

marks for which we know the correspondences. We now want to compute where a

point a ∈MA could correspond to in MB . For this, we compute a probability dis-

tribution over all points of MB that quantifies the likelihood of a ∈ MA matching

a point b ∈MB (denoted as a ∼ b):

Pr(a ∼ b|L) =
1

Z

|L|∏
j=1

(
λ · e

−

(
d

(L)
MA

(a)[j]−d
(L)
MB

(b)[j]

)2

2σ2
f + (1− λ)

)
, (5.3)

d
(L)
MA

(a)[j] and d
(L)
MB

(b)[j] are the jth component of the landmark coordinate vec-

tor of a and b, respectively, and the term 1/Z is just the normalization constant.

The equation is related to Equation 3.2, however, in this case we incorporate a

robustness component which ensures a non-zero probability distribution even in

case of very bad configuration, i.e., if the exponent vanishes. Equation 5.3 mod-

els the matching problem by considering the geodesic distance to each landmark

point independently. For each connection, we assume a normal-distributed error in

case that the geodesic is correct. However, it may happen that acquisition holes or

pseudo connections (“closing mouth”) distort the geodesics such that the distance

is arbitrarily wrong. In this case, we do not have any information about the correct

distance so that we resort to a uniform distribution. The parameter λ is the proba-

bility for geodesics being correct. We use a global constant failure probability of

10%, i.e., λ = 0.9.

In practice, we can make the model more robust by limiting the product to take

into account only nearby landmark points (in a geodesic sense) for each model

point. Limiting the influence helps because the likelihood of geodesic path being

distorted increases with distance to the point considered. In our implementation

we use the 5 nearest landmarks.

This model is similar to the robust RANSAC approach presented in Chapter 3,

where only the k-best geodesics are considered for matching. However, our new

model provides some important improvements: It provides a continuous probabil-

ity density that describes the likelihood of matching point a on MB . If landmark

points are chosen in a good configuration, the density is more sharply peaked than

for landmark points in a bad configuration (with geodesics almost parallel, see
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Figure 5.2: Overview of the animation cartography pipeline. Landmark tracks are

used to build initial charts (i-charts), which are recursively combined in a pairwise

chart merging loop. The final result is used to initialize a numerical bundle ad-

justment algorithm for post-processing. Dotted blocks indicate extrinsic matching

components based on previous work of [152].

Figure 4.5 for example).

The probability density does not only encode the maximum likelihood match,

but we have the complete distribution that quantifies the uncertainty. In particular,

we examine the variance of Pr(a ∼ b|L) w.r.t. to xt(b) in order to determine how

certain a match is. If the variance is high, the match is not reliable. Please note that

the variance automatically increases if the outlier probability 1−λ increases. In this

case, more correct landmark matches are required to reduce the variance again (the

the uniform density “floor” of the distribution converges to zero with (1 − λ)|L|).

Furthermore, if the error in the normal distribution is large, combining multiple

landmark correspondences reduces the variance because multiplying the Gaussians

will lead to a more peaked distribution. Another important improvement over the

previous model is that we do not need to fix a constant k of reliable geodesics

but we can use the more natural formulation that geodesics have a certain failure

probability; the resulting uncertainty is automatically taken into account, including

the case that even some of the k best matching geodesics could be wrong.

5.1.4 Pipeline Overview

The full animation reconstruction pipeline consists of a number of components.

We will discuss each individual component separately in the next Sections (5.2,

5.3 and 5.4) and the composition of the full pipeline afterwards, in Section 5.5.

Here, we give a brief overview for orientation (see also Figure 5.2).
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The reconstruction starts by landmark tracking. In this step, the input data

is examined for feature regions and a KLT-like tracking scheme [81], adapted to

3D geometry, is used to find landmark tracks. Out of these tracks, initial charts

are built, which we refer to in short as i-charts. Our algorithm usually extracts a

number of such i-charts that end when tracks discontinue due to abrupt motion or

occlusion. Therefore, the next step matches disconnected i-charts to general partial

charts of the animation, which we refer to in short as p-charts. The matching step

involves an additional topology check to remove incorrect edges from the sam-

pled manifolds and an extrinsic refinement step to improve the matching precision,

followed by a graph stitching step that connects the two manifold representations

(charts). This scheme is iterated in an outer loop until a full chart of the complete

animation is obtained. Finally, we input the full chart as boundary conditions in

a standard numerical optimization to obtain the final results; we use the method

of [152].

In the following three sections we opt for an isolated discussion of each in-

dividual pipeline component for two reasons: First, it makes it easier to structure

the rather complex reconstruction system. Second, several of the individual com-

ponents might be useful as algorithmic primitives in other geometry processing

contexts so that it is valuable to look at them separately.

5.2 Landmarks

Landmarks are the key concept for solving the reconstruction problem because

they allow us to characterize dense correspondences between surfaces by fixing

only a small number of landmark correspondences. This reduces the combinato-

rial complexity of the matching problem to a level that makes the reconstruction

feasible.

5.2.1 Continuous Landmark Tracking

The first component of our reconstruction pipeline is a tracker for continuous land-

mark tracks. It gets the temporal sequence of raw data D from the scanner as

input. The task is to (1) identify feature regions, (2) track features over time, and

(3) recognize when tracks end due to incoherent motion.

We solve the first problem (1) by running slippage analysis [45]. It looks at

every frame Dt of the data and determines for each point x
(i)
t whether a region
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Figure 5.3: We align small patches of points to successive frames via ICP to gen-

erate tracks. A track is stopped when ICP fails to compute a stable result.

of radius r around x
(i)
t can be stably aligned to itself under a rigid motion (in

practice, we use r = 10% of the bounding box size of the object). For flat areas,

for example, the alignment is unstable because the patch could just slip along the

plane. We keep only the unslippable regions and perform a coarse r-sampling to

distribute feature points uniformely. Again, we use a Poisson-disc algorithm to

obtain a good uniform distribution.

The main tracking step (2) is performed by simple rigid ICP (Figure 5.3): We

extract the r-neighborhood of each feature point and align it to the next frame us-

ing point-to-plane ICP, always initialized to the (known) position of the previous

frame. If the algorithm converges, we align the same geometry again to the next

frame, and iterate until the alignment diverges. The landmark track is given by the

trajectory of the center of the aligned region (the feature point) over time. Diver-

gence is determined (3) by not converging to a fixed point within 32 iterations or

by a translational motion by more than r within one frame (which is likely to be

wrong, because there was no initial overlap of the geometry with the new target).

We start new tracks automatically: For each new frame, we recompute the non-

slippable regions and insert a new point whenever it is not r-covered with feature

points that are being tracked.

This scheme could be considered a geometric variant of the well-known KLT

feature tracker for images [81]. It works quite effectively in our situation because

scanned data usually contains a lot of coherent motion (but not everywhere) with

small motion between frames. Locally, within a small spatial and temporal envi-

ronment, the motion is usually almost rigid. Our scheme does not lead to perfect

results but might create both false negatives and positives, which have to be han-

dled by the robust matching model.
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5.2.2 Connecting Broken Tracks

Usually, the tracking algorithm is not able to cover the whole animation sequence

but rapid motion or occlusion disrupt some or all of the tracks. Therefore, we need

an algorithm to reconnect broken tracks.

We consider two point clouds A,B ⊂ R3. They might already have a small

number of landmark tracks L in common, but the set L can be empty. If a few con-

tinuous tracks are present, we include these as initialization, so that the algorithm

finds the correct solution more quickly and more reliably. We now form candidate

landmark correspondences by connecting each landmark node of A to every other

node in B (here: landmarks and ordinary nodes). From this set, we have to find a

consistent subset.

In order to extend the tracks which might have been stopped for example due

to rapid motion, we employ the forward search algorithm as described in Chap-

ter 3. For this we create a set of all possbile candidates correspondences between

the tracks on frame A and all other ordinary points on frame B. As mentioned

before, the set of continouous tracks L acts as a initialization for the RANSAC-

like algorithm. The whole forward search/RANSAC loop is iterated multiple times

(typically, 100 trials), and the result with the largest number of established matches

is used as the final result.

Figure 5.4 shows an example of rapid motion. Here, a very large temporal gap

between two frames breaks the track continuation as described before. Employing

the RANSAC-like search algorithm to continue the tracks continues the broken

tracks to the other frames.

In principle, we could just always apply this algorithm to find landmark tracks,

omitting the continuous tracking phase altogether. However, RANSAC-based

matching might fail with a small probability. Therefore, several independent

matching operations have success probability that declines exponentially with the

number of matches. By making use of temporal coherence, we can make our algo-

rithm substantially more robust, or in other words, dramatically reduce the compu-

tational costs (because the number of RANSAC-rounds would have to be increased

exponentially to make up for this).
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Figure 5.4: Applying landmark tracking to the hand data set (synthetic). Upper

row: The blue tracks are obtained by continuous tracking; they end automatically

at the abrupt turn in the middle. Bottom row: The situation is recognized auto-

matically and the RANSAC algorithm establishes additional landmark correspon-

dences. The orange lines indicate the final dense correspondences.

5.3 Intrinsic Charting

We now assume that we know landmark correspondences and turn our attention

to the problem of establishing dense correspondences among charts, and subse-

quently merging these into compound reconstructions. We look at a number of

different algorithmic steps: Creating a single frame chart from scratch (as initial-

ization), merging two charts given landmarks, and checking the connectivity of

merged charts. Afterwards, we use these more elementary algorithms to formulate

higher level algorithms that build i-charts and p-charts.

5.3.1 Building Single-Frame Charts

We build initial charts (i.e. just sampled manifolds) for a single frame directly

from data Dt: In order to limit the computational costs, we resample Dt to an

(Euclidean) sample spacing of εs, using a Poisson-disc sampler. This yields the

vertices of a sampled manifoldMt. Afterwards, we form the graphGt by building a

k-nearest neighbor graph (k is typically set to 20) onMt, with respect to Euclidean

distances. We then also use the Euclidean distance of the points as edge length. For
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Figure 5.5: Matching probabilities (schematic drawing): For the green point (left)

the variance is low so that the match is accepted as reliable. The matching point for

the blue point would be located in the hole of chart B, leading to a high variance

that indicates an unreliable match (for large holes, a uniform distribution remains).

The red point finally, has a proper neighborhood, however, the landmark coordi-

nates do not constrain the match sufficiently. Again, this leads to a high variance

and the match is detected to be not reliable.

a smooth manifold, this is a first-order approximation of the true (but unknown)

distances, which is sufficiently accurate for the sampling resolution we employ.

Afterwards, we remove all vertices and edges in connected components with fewer

than 100 points in order to delete small outliers patches and undersampled data.

5.3.2 Merging Two Charts Given Landmarks

Let us assume that we have two charts MA and MB and a set of landmarks L that

the two charts have in common. Our goal is now to compute dense correspondences

and then stitch together the charts accordingly to form a single sampled manifold.

Probabilistic Correspondences: We go through all points of a ∈ MA and

compute a probability distribution Pr(a ∼ b|L) for all points b ∈MB according to

Equation 5.3. If the landmarks are placed well to constrain the matching point and

if redundant landmark coordinates are all consistent, a single narrow peak indicates

the expected position. If only a small number of inconsistent distances are present,

this scheme still leads to one pronounced maximum. In case of insufficient or

completely inconsistent information, we obtain a spread-out distribution with high
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variance, which can be detected (see Figure 5.5).

We use the variance of the distribution of the matching score as a reliability

measure for the correctness of a match. We assume that MB has an extrinsic em-

bedding X0(MB) and annotate each point xb ∈ X0(MB) with the probability

Pr(a ∼ b|L). Then, we compute the mean and covariance of this distribution in

3D by a PCA analysis. As uncertainty criterion, we look at the largest eigenvalue

of the PCA. In our implementation, we consider matches unreliable if this value is

larger than 3εs. Unreliable correspondences will be excluded from the output.

We can further reduce the risk of wrong correspondences if we perform a bi-

jective consistency check. Intuitively, we aim at establishing correspondences that

are valid either way, whether matching from A to B or vice versa. In our prob-

abilistic framework, this is realized by constructing a probability in graph A that

the matched point in B matches back to the region around the original point in A

with a high probability. Computationally, we importance sample the matching dis-

tribution inB to determine a set of potentially matching points. We then determine

their matching probability on A. Assuming statistical independence of the individ-

ual potential matches, we multiply their distributions in A to obtain a probability

density that the match is bijective. If the original point in A has a high probability

of being matched back, we accept the match, otherwise it is discarded.

Point-to-point correspondences: Finally, we need to convert the matching

densities to actual point-to-point correspondences. The simplest way to do so is

the nearest-neighbor approach. We just connect a ∈MA to the point b ∈MB that

maximizes Pr(a ∼ b|L). This is simple and robust but comes with an error of

O(εs). Another option is an extrinsic approach: we assume that MA and MB both

have an extrinsic urshapeX0(MA) andX0(MB). We then use the nearest neighbor

estimates to initialize an extrinsic optimization that aligns the two urshapes by

pairwise deformable matching (see Section 5.4). From the urshapes, we recompute

a new sampled manifold, as described below:

Graph merging: Having two aligned urshapes, we can easily recompute a new

sampled manifold. We just connect each point to its extrinsic k-nearest-neighbors

(in a Euclidean sense) in the overlaid urshapes.

We need to avoid connecting parts that accidentally have a similar Euclidean

position but are actually far away in an intrinsic sense. This can happen because

the extrinsic optimization does not perform any collision detection, Section 5.4.

We therefore do not consider all points as candidates for the k-nearest neighbors
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graph A

graph B

topologically incorrect
connection

Figure 5.6: Graph merging: The blue and the red graph are merged. Points within

the c · εs search range (light green) are potential neighbors of the center point. We

exclude points that are not reachable by walking on the joint red and blue graph

without leaving the search range. Nearest neighbor correspondences (green) can

be used as “bridges” to walk from blue to red and back.

but only those that can be reached by a short walk along the graph of the sampled

manifold: We allow only points within a Euclidean distance c · εs (for k = 20 we

use accordingly c = 3), walking on the graph edges of MB and MA and using

the nearest neighbor correspondences between MA and MB as “bridges” to switch

between the graphs (see Figure 5.6 for an illustration).

In summary, this allows us to merge two charts into a single one if we find

suitable landmark correspondences. It might fail to recognize corresponding parts

if the landmarks are unable to reliably identify the dense matches. However, as

part of the output, the algorithm will mark these regions and not provide corre-

spondence information. Furthermore, as described above, the algorithm needs an

extrinsic urshape for both charts in order to compute an accurate matching. Oth-

erwise, a nearest neighbors solution is possible but it introduces a small error in

each operation so that iterative merging would become inaccurate over time. A

purely intrinsic solution might be an interesting way to go, in order to reduce the

introduced error, however we have not implemented it for our pipeline.

5.3.3 Resampling a Chart

The next operation we need to provide is to reduce the complexity of a chart by

resampling. The motivation for this is that we will need to perform many chart
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Figure 5.7: Resampling merged charts: We first merge two charts A,B (upper

left) by nearest neighbor matching (lower left). The match is refined by extrinsic,

numerical alignment, which leads to partially represented correspondences (lower

right). When we resample the representation, we need to perform neighborhood-

based interpolation to retain this information (upper right).

merging operations that will constantly increase the sampling density in overlap-

ping parts, which at some point becomes a problem in terms of computational

costs.

Resampling itself is very easy: We just use the Poisson-disc sampler to remove

nodes from the graph that are still covered by nearby nodes within an extrinsic

distance of no more than εs/2. The remaining challenge is to maintain the cor-

respondence information between the chart and the actual data. At this point we

need to remember that charts encode correspondences by attaching sets of extrin-

sic positions of points to which they correspond. Therefore, removing chart points

deletes valuable correspondence information (see Figure 5.7 for an illustration of

this problem).

We propose again an extrinsic scheme to counter this problem by interpolation:

We keep the original chart M and chart M ′ resampled to a sample spacing of εs.

Eachm′ ∈M ′ is also a node in the originalM . We look at all neighborsNεs ⊆M
of m′ that are located within an (intrinsic) distance of εs. For each time step t that

is covered by the chart, we then retrieve their extrinsic embeddings. If we find at

least three such points, we compute a local tangent space by fitting a least squares-
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optimal rigid alignment T of the points at time t to the corresponding urshape

points [53]. We then estimate the correspondence of m′ at time t as T−1(x0(m′)),

i.e., by just transforming the urshape point back to the corresponding tangent space.

A special situation occurs for landmark nodes. Since landmarks carry global

matching information that is valid across different charts, these nodes cannot be

deleted, moved or interpolated to different positions in the graph. Hence we just

copy the landmark nodes into the resulting chart and their position does not need

to be interpolated over the temporal support.

This scheme performs a first order accurate interpolation which yields satisfy-

ing results for the dense sampling we are employing in our implementation. The

scheme could easily be implemented intrinsically, without having an extrinsic ur-

shape, using the intrinsic distances as weights for the tangent space approximation

but this is not necessary for our pipeline.

5.3.4 Detecting Apparent Topology Changes

If we use the chart merging algorithms described above to assemble a more com-

prehensive chart from simpler ones, we are still facing a major problem: It might

happen that the apparent topology of the chart changes, for example if the mouth

closes in a face scan. Charts build from closed mouth data have an incorrect metric

structure and incorrect topology: They do not show a hole in the mouth region and

the distance between the lips is too short. If we merge charts for the open and the

closed mouth, this will cause problems. We therefore need to detect this situation

and adapt the graph of the chart accordingly.

Given that scenario we have one invariant to detect such mistakes: the intrinsic

distance between corresponding points must always be larger or equal to the largest

extrinsic distance that has ever been observed, i.e. for any two points p and q,

∀t : dM(ft(p), ft(q)) ≥ dR3(ft(p), ft(q)). This criterion is used in [153] to build a

straightforward “edge-stretch” test: It just checks if extrinsic embeddings of points

connected by a common edge violate this invariant, and if so, delete the edge. This

works in practice but it is not very robust; it requires a delicate trade-off of elasticity

and edge-stretch tolerance. We adopt this basic idea and also propose an improved,

more robust algorithm.

We can implement the basic stretch test easily by just comparing the Euclidean

embedding (correspondences to data) of neighboring nodes at all time steps. Be-

cause the extrinsic correspondences are stored only sparsely, we also have to resort
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Figure 5.8: An illustration of our improved detection of topology change. Both

frames A (blue) and B (red) have correspondences established between the points.

The Euclidian distance between point p and q in frame B is in this example larger

then the geodesic distance in frameA. Hence we look for a sub-path which violates

this invariant. A vote is placed for every edge in each such sub-path. An edge which

contains the most number of votes is then removed. Greenish edges indicates the

subpath which collects the most votes in this example.

to interpolation from neighbors at both endpoints (as described in the previous

paragraph) to make this robust. However such a basic test requires that for ev-

ery two neighbour nodes their corresponding points in other frames are also direct

neighbours. If for example due to discretization noise the correspondences fluctu-

ate around several points, which are not direct neighbours, then we would never

find out that there must be a connectivity cut between these two nodes.

Hence we propose an improved version of connectivity cut which looks at the

problem from a more global perspective: The main idea is to look at shortest in-

trinsic paths and all of their known temporal correspondences in Euclidean space.

If we find a sub-path for which the endpoints are at a larger Euclidean distance

than the geodesic distance of the path, we know that a part of this path violates our

invariant, hence one or more edges on that path must be deleted. In order to search

for those paths, we compute the geodesic paths between all pairs of nodes in the

graph and compare the Euclidean and the intrinsic distance for all time steps. If we

find a violation (intrinsic distance being too small), we walk inwards along the path

until we find the smallest interval that still violates the distance criterion. We also

stop shrinking the interval if correspondences are not known. This usually does not

yet give us the desired result because the intervals in which the error occurs can be

quite large. We therefore perform a voting scheme in order to identify edges which

are responsible for the violation. Each edge gets a vote if it shows up in a path that
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violates the distance criterion. After that, we determine the set of all edges that

obtained a maximum number of votes and delete them from the graph. Then we

iterate this scheme until no more violating paths are found. Computing all pairs of

paths is obviously too slow. We therefore restrict the search to paths of a bounded

length and use only a subsample of starting points instead of all points. Figure 5.8

illustrates our approach on a simplified example.

This strategy is more robust in finding problematic connections than the edge-

stretch test. However, due to the greedy deletion algorithm, it might still delete

a larger set of edges than absolutely necessary. Due to subsampling, it is also

possible to miss smaller topological problems. Nevertheless, our experience is that

the improved strategy is significantly more robust than the previous technique. An

example of the topological consistency filter on the hand puppet data set [75] is

shown in Figure 5.9; the simple edge-stretch test fails here.

5.4 Extrinsic Matching

Finally we would like to take a small overview over the extrinsic matching algo-

rithm which is used in some parts of our reconstruction pipeline. This is only a

very short summary of the previous work of Wand et al. [152, 153]; we refer the

reader to the original papers for implementation details. We describe the previous

work first so that the difference of our new approach becomes clear. Furthermore,

we will use the numerical approach only for refinement. This approach is very

common in optimization: we first use a coarse global optimization algorithm to

estimate a good initialization for a more precise (but not globally optimal) local

optimization scheme.

5.4.1 Pairwise Local Matching

We use this extrinsic deformation routine in order to align the extrinsically matched

charts of frame A and B. The main idea of the extrinsic matching algorithm is to

compute a deformation field f : A→ R3, whereA is a point cloud, that minimizes

a matching energy:

Ematch(f) = Edist(f(A), B) + Eelastic(f) (5.4)

Ematch combines two energy functions: The first, Edist, measures the distance of

point cloud B from the deformed f(A). It sums up the point-to-plane distance
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Figure 5.9: A difficult case for chart merging: the two charts of the puppet data

set have a very different connectivity, i.e., different topology. In input data (top

row) on the left, the hand of the puppet is merged with the body. On the right,

the puppet is fully visible and hand and body are disconnected. The lower row

shows the chart connectivity graph before performing the topology consistency

check (left), after clean-up (middle) and for the second chart (right). Note how the

hand got disconnected from the body in the left chart while the connectivity of the

chart on the right is unaffected.
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between points from f(A) and points from B. In order to support partial matching

reliably, a number of heuristics are employed, such as checking the angle of the

correspondence vectors to the surface normals. The energy Eelastic penalizes the

elastic energy of the deformation field f , trying to keep it as-rigid-as possible. In

the optimum, minimal bending and stretching is introduced while still matching the

data well. The two terms are usually weighted to control the trade-off. We use the

elastic subspace matching model of [152], but several other choices are possible,

see for example the seminal work of [5, 49].

5.4.2 Animation Fitting

The pairwise matching model of Equation 5.4 is extended in Wand et al. [152,153]

to a global animation fitting approach that fits animation sequences with multiple

frames to data. For this, an augmented energy function is employed:

Eanim(f) = Edist(f(M), D) + Eelastic(f) + Etemp(f) (5.5)

It now operates on a whole animation sequence. It computes the distance to the

data at all frames (summation over time) and it also sums up the elastic energy in

all time steps. Furthermore, it adds a new term Etemp that takes into account the

temporal behavior of the time-dependent motion field f . It penalizes acceleration

such that smooth motion is preferred. This energy can be optimized using partially

initialized data, where some correspondences ft(m),m ∈ M are not known. The

method first fixes the known correspondences and fills in the missing data and

then performs a global energy minimization. This interpolates missing data in a

temporally coherent fashion and distributes the remaining error globally. Another

way to view this is as a numerical bundle adjustment to improve the reconstruction

accuracy.

Once again, it is very important to stress that this optimization is only reliable

if the model is suitably initialized. In particular, the data term is highly non-convex

so that model parts covered by data need to be prepositioned close to matching data

points. We use the existing technique because of its ability to interpolate missing

data and because the numerical optimization, as a continuous method, does not suf-

fer from precision limitations (unlike some of our intrinsic algorithms, as discussed

next). There is a small inconsistency, though: The extrinsic methods assume elas-

tic deformations (minimizing bending and stretching), while the intrinsic methods
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assume isometry (minimizing stretching only). For the target data, this is an ac-

ceptable restriction: The stricter assumption of elastic behavior is a reasonable

regularizer, as validated extensively in previous work [49, 75, 138, 152, 153].

5.5 Reconstruction Pipeline

We now use the building blocks developed in the previous section to setup a com-

plete animation reconstruction pipeline. We divide the algorithm into three con-

ceptual stages: i-chart building, p-chart merging, and final optimization.

5.5.1 Building i-Charts

As a first step of our algorithm, we run the continuous landmark tracking to de-

termine a set of landmark tracks L. Afterwards, we first build a separate single

frame chart for every frame of the input. From this correspondence information,

we build initial charts (i-charts). This is done by merging single frame charts using

the continuous landmarks tracks L.

We first select a subset of starting frames to build the initial charts (our current

implementation uses every tenth input time step as starting frame). For each start-

ing frame, we build one i-chart. We first fix the landmark set L to the landmark sets

that overlap the starting frame. We then walk both forward and backward in time

and use the chart merging algorithm to merge the data into a larger i-chart. For

this step, however, we ignore the stitching of the graphs and use only the reference

frame as chart’s urshape. This provides us with temporal correspondence informa-

tion of the chart and a suitable urshape (i.e. does not contain any “artificial” errors

which might be introduced with our stitching pipeline).

In each merging step, we exclude unreliable correspondences, and also exclude

newly starting tracks that were not continuously present from the starting frame.

Therefore, the amount of area covered will typically decrease with time distance

to the starting frame. When the ratio of matched nodes to the number of nodes in

the base frame falls below a threshold (we use 40% in all our results) we stop the

temporal extension of the i-charts. Finally, we equip the newly created chart Mt

with an urshape Xo(Mt); we just use the starting frame. Figure 5.10 summarizes

the process.

We have designed this procedure to make sure that an i-chart does not con-

tain the same piece of geometry twice at different positions in the chart: We never
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Figure 5.10: i-chart construction as space time diagram (x-axis: time, y-axis: spa-

tial location). We first build single frame charts and track landmarks (first row).

The second row shows a block of tracked landmark points. These are used to

perform robust matching of landmark coordinates to establish correspondence be-

tween ordinary points (third row). The resulting chart is represented as a time

independent graph that encodes the intrinsic structure (last row). Each node stores

correspondences to the raw data (not shown).
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include any area in an i-chart that could already have been represented elsewhere

within the same chart, but where we would not yet have been able to recognize this

fact. This is guaranteed by not introducing new landmarks and by only collect-

ing reliable correspondences. Therefore, the coverage of i-charts is typically still

fragmented. Patching these fragments together is the task of the next step, p-chart

merging.

5.5.2 Outer Loop: Building p-Charts

We now build p-charts by stitching together separate i-charts as well as p-charts

that have already been generated earlier during this process. The stitching is done

by using the global matching. It first tries to establish landmark correspondences.

If a sufficient number of matches is found, the two charts are assembled by chart

merging, followed by subsampling. The topology check is performed before graph

merging in order to reduce the error accumulation which might be introduced by

merging two urshapes with false connections.

Merging by global matching has a certain risk because the RANSAC, Chap-

ter 3, matching algorithm might fail to give good results with some small proba-

bility. We can minimize the risk by using good matching candidates first. Each

i-chart and newly generated p-chart is kept in a pool of matching candidates. In

order to decide on which pairs to match first, we use the following score:

wscore = λ1woverlap + λ2wmatch + λ3wcommon, (5.6)

woverlap is the temporal overlap of the charts, i.e. the number of overlapping frames

of the two charts normalized by their maximum length. wcommon is the normal-

ized number of common landmarks in both charts. wmatch is the average number

of matched nodes during all previous i-chart or p-chart merging operations, thus

quantifying how well the matching worked out in the history of this chart. The

weight parameters are set to λ1 = 3, λ2 = 2 and λ3 = 1, putting most emphasize

on overlap. This heuristic scoring encourages the merging of charts that actually

do overlap and are not likely to be bad matches. In addition, we also monitor the

outcome of a match. Chart merging is considered a failure if only a small num-

ber of correspondences have been established in relation to the overall number of

nodes (in practice, we use 30% as threshold). In case of failure, the p-chart is not

added to the pool and only one of the two participating charts is kept. We keep the
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(a) full model (b) small holes

(c) large holes (d) non-robust match

Figure 5.11: Effect of robust matching: Matching a (synthetic) hand model with

a simulated acquisition hole. The results (a)-(c) use robust matching so that still

large areas are covered with reliable correspondences (green). In the non-robust

result in the lower right (d), significantly more area outside the hole region cannot

be matched.

“better” one judging by Equation 5.6 (omitting the overlap which is not defined for

a single chart).

5.5.3 Final Optimization

The outer loop described above is run until only one chart is left in the pool, which

is the final reconstructed chart, and the primary output of our method.

We use this chart to drive a final numerical bundle adjustment according to

the animation fitting algorithm, Section 5.4.2. This yields a full motion sequence

where the urshape of the final chart is deformed to plausibly fit all of the data and

move smoothly over time for frames or parts where no data is available.
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Figure 5.12: Comparison of the algorithm of Wand et al. [152] (left) and our recon-

struction (right) for the “Face 2 shuffled” data set. In the case of Wand et al., large

deformations between individual frames prevent a proper alignment of the data.

5.6 Results

We evaluate our algorithm on a number of data sets. We use the “Saskia”, “Abhi-

jeet” and “Kicker” data sets of Vlasic et al. [151], which have been acquired using

a photometric stereo approach. We also include the “Face” and “Puppet” data sets

of Li et al. [75], which have been acquired with the motion-compensated structured

light acquisition method of [154]. Finally, we also include the “woman” a dataset

that we acquired ourselves using a Swissranger SR4000 [85] time-of-flight depth

camera. In addition to the original data sets we create a shuffled version of the

“Face” data set by deleting subsequences of frames and re-arranging the remain-

ing data blocks. This data set is specifically designed to test the performance of

our broken track continuation technique, Section 5.2.2. In addition, we also use a

synthetic data set of a gesticulating hand, created in Poser 7, to separately evaluate

the two main new pipeline stages, landmark tracking and robust charting. A brief

summary is shown in Figure 5.14.

5.6.1 Synthetic Tests

We first examine the two most important algorithmic components of our pipeline

separately before we test the complete pipeline. Figure 5.11 shows a hand model

in two different poses with an increasing amount of missing data. Green area indi-

cates that the variance of the matching distributions indicates a reliable match. The

robust matching model is able to find reliable matches for most of the non-hole
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area and does not create false-positives. If we turn off the robustness, the coverage

is substantially reduced.

Figure 5.4 shows a tracking result on a hand sequence that in the middle un-

dergoes an abrupt motion. The landmark tracks are correctly interrupted at this

point and the RANSAC matching is invoked to build new landmark correspon-

dences. Finally, the dense chart merging is used to obtain globally consistent dense

correspondences.

5.6.2 Real-world Scanner Data

The different real-world data sets (see Figure 5.14) present a number of challenges

to our reconstruction pipeline. For the “Saskia” data set, the legs of the person often

appear to be connected to the skirt, giving evidence for a different topology than

the correct interpretation of the legs being separately moving objects. In addition,

we have significant amounts of missing data in the leg region. Another difficulty is

presented by the arms moving upwards in the beginning of the sequence. Since the

scanner is not able to resolve the gap between the arms and the body the surface

seems to undergo elastic deformation. Even though this violates our model our

algorithm is able to process the data. Also note how the legs are reconstructed as

separate entities, see Figure 5.1 (left). This is only possible using the improved ver-

sion of the topology changes 5.3.4 detection approach. The basic variant proposed

in earlier work fails to recognize the individual parts.

The main challenge in the “Face” data set, which has previously been used for

template-based animation reconstruction, is presented by large amounts of miss-

ing data, due to the single camera scanner setup. Important features of the head,

such as both ears, are never present simultaneously in any of the input frames. The

nose is often visible from one side only. Nevertheless, our algorithm successfully

assembles a complete urshape of the person, including both ears and a closed nose

surface, See Figure 5.1 (right) and Figure 5.14. In addition, the neck region appears

to be disconnected for a large part of the sequence. Our algorithm is able to cor-

rectly connect the neck to the head. A small artifact remains: The data set contains

a few small disconnected outlier patches (collar of the shirt) that are attached to the

main figure in the reconstruction. Here, the available data is insufficient to handle

these pieces correctly.

The “Puppet” data set is an example for a strongly deformable object. It has

also previously been used for template-based reconstruction [75]. The data set
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Chapter 5. Animation Reconstruction

Figure 5.13: Original data (left) and reconstruction with parameterization of the

“Abhijeet”, “Kicker” and “Woman” data sets for different poses.
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Figure 5.14: Original data (left) and reconstruction with parameterization of the

“Saskia”, “Puppet” and “Face” data sets for different poses.
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is challenging due to its strongly changing apparent topology (hand connected to

body), see Figure 5.9. The incorrect topology even persists for as many as 40 out

of 100 frames. Even with large amounts of missing data in the folds and widely

varying apparent surface topology we recover the complete sequence. Again, using

the improved algorithm to resolve the topology is essential; the previous algorithm

leads to incorrect reconstructions.

The “Face shuffled” data set shows a test sequence for our landmark continu-

ation strategy. We cut the original “Face” sequence into 5 blocks of 10,29,29,10,

and 28 data frames each. In between these contiguous blocks of data we deleted

12,10,8, and 5 frames of the original data frames. They are present as empty frames

in the modified data set, disrupting landmark tracking altogether. As shown in Fig-

ure 5.12 (right), our algorithm is still able to reconstruct a complete template model

and its motion over the full sequence, even interpolating the missing frames with

plausible information. For comparison, we show a result computed with the se-

quential alignment algorithm of Wand et al. [152], Figure 5.12 (left), which, as

expected, is not able to perform a useful reconstruction for this type of incoherent

motion.

The “Abhijeet” data set is particularly challenging. The topology is ambigu-

ous and the geometry shows systematic low-frequency artifacts. Parts of the arm

are displaced by more than the diameter of the arm itself, and incorrect sheets of

surface show up, probably due to the photometric acquisition approach that cannot

estimate depth reliably in this highly occluded situation. The situation is particu-

larly bad for the first 20 frames, where the arms are merged into the body and drag

large sheets of phantom geometry with them when disconnecting. When we omit

these frames, we obtain qualitatively correct results for the remaining 94 frames,

with stable correspondences. The main artifact is that the arms in some frames

twist and squeeze. However, the data supporting this is rather weak and already

outside the scope covered by our matching model. We therefore believe that this

example shows quite well both the limitations of our matching model itself as well

as the robustness of the computational pipeline.

The “Woman” data set represents a stress test and partial failure case for our

approach. The time-of-flight data is extremely noisy, which is a major challenge

for the landmark tracking algorithm. In addition, the apparent topology is again

constantly changing, including a full connection of the arms with the upper body

in the beginning of the sequence. We obtain only sparse tracking information so
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data set Saskia Face Face shuffled Puppet

# frames in seq. 116/116 200/200 141/106 100/100

avg. # data points / frame 20500 10300 10300 9800

avg. # ord. points 1250 1300 1300 1250

avg. # landmarks 82 66 66 86

comp. time i-charts 5h 3h 2h 3h30min

comp. time outer loop 3h 1h20min 1h 1h40min

comp. time post-proc. 30min 1h 1h 25min

data set Abhijeet∗ Kicker∗ Woman∗

# frames in seq. 92/112 20/20 100/100

avg. # data points / frame 20000 16000 8300

avg. # ord. points 1800 2000 3000

avg. # landmarks 81 79 34

comp. time i-charts 4h30min 1h18min 21min

comp. time outer loop 1h 19min 2h

comp. time post-proc. 12min 8min 4min

Table 5.1: Statistics for processing the individual data sets.

that our algorithm was not able to reconstruct dense correspondences reliably over

the body for all frames but some data remains uncharted. Hence, the final opti-

mization produces a smooth interpolation that in some parts does not follow the

data. The quality of the reconstructed geometry is low; the correspondence noise

does not permit resolving high frequency details in the final reconstruction, but the

result is qualitatively correct. For such kind of very low-resolution data, additional

cues such as a simultaneously recorded video with color information is probably

necessary to permit better reconstructions.

In Table 5.1, we show statistics of algorithm run times and other characteristic

data for the different sequences. The first row shows the number of reconstructed

frames versus the available data frames. Note that for the “Face shuffled” data set

more frames are reconstructed than are present in the original data. The second row

shows the average number of data points per frame of the input sequence, while row

three shows the number of nodes in a typical chart. The average number of detected

landmarks per frame is shown in row four. Note that this number varies widely

over frames. Finally, the computation times for the different steps of our algorithm
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are given. The computations were run on a 2xQuadCore Intel Xeon X5550 with

2.67 GHz. Datasets marked with a “*” were computed on 2xHexaCore Intel Xeon

X5650 with 2.67 GHz.

5.7 Discussion and Limitations

As shown by the example scenes, our algorithm is able to handle more general

input data that could not be reconstructed automatically by previous techniques.

Not relying on temporal coherence is an important step for practical applications.

Although scanners are available that scan at very high frame rates, the fact that

geometry often vanishes in acquisition holes and reappears in a different pose is

a strongly limiting factor in practice to previous algorithms. We can also show

that the proposed algorithm is quite robust. Even for data sets with strong noise

or artifacts outside our modeling assumptions, we still obtain qualitatively correct

results.

As most complex reconstruction systems, our method has a number of parame-

ters. However, we were able to fix most of these parameters for all of the data sets,

as described in the text. We only adapted the sampling resolution εs to minimize

the computational costs. In addition, we have increased the number of minimal ev-

idence landmarks in the robust matching scores from 5 to 6 in the “Abhijeet” data

set as this lead to slightly better results. Finally, we have adapted the regularizer

weights for stiffness and acceleration penalty in the final numerical optimization

for best visual (aesthetic) impression.

Our method still has a number of limitations that require further research: A

problem is the handling of “unreliable” data. Our current pipeline dismisses this

data in the construction of initial i-charts but during p-chart merging, we currently

do not delete uncharted data because this could reintroduce large holes in the charts

but rather rely on extrinsic alignment to match these pieces. This problem can be

addresses by a good scheduling of the merging operations, which are commuta-

tive but not associative: the order in which pairs are merged matters. The current

heuristic tries to minimize the negative impact by aiming at large overlap, but bet-

ter orders (possibly including options for backtracking from bad matches) might

exist.

A second issue is the detection of topological changes. Although we can han-

dle more scenes than previous techniques, we still encounter problems in some
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situations. In particular, if large acquisition holes and topological changes coin-

cide, this can lead to incorrect results where the local connectivity is not resolved

correctly. An example is the face scan from [153]. Our technique cannot resolve

the opening of the mouth because of large acquisition holes opening up around the

lips simultaneuously with the opening of the mouth. The missing area is too large

to be handled by even robust intrinsic matching. In this case, a purely extrinsic

technique has an advantage over our approach.

Finally, the combination of elastic and isometric matching is sometimes a lim-

iting factor: for objects with very strong deformations, this introduces a bias to-

wards rigidity, leading to insufficient bending. A purely intrinsic formulation of

the charting could probably reduce these problems. However, this seems to be a

minor issue in practice that can usually be resolved by reducing the strength of the

elastic regularizer appropriately.

5.8 Conclusions

In this chapter we investigated a global optimization technique for animation re-

construction from dynamic point cloud sequences as produced by dynamic range

scanning devices. The method is based on the concept of cartography and uses an

intrinsic framework for a more reliable and robust matching of partial deformable

shapes in vastly different poses. Iteratively applying this technique automatically

yields a completed template model, its motion over the course of the acquired se-

quence and a consistent parameterization. Our technique uses a landmark tracking

scheme that uses temporal coherence if available but can fully automatically resort

to the efficient randomized global matching algorithm of Chapter 3 if required by

the data. We can thus recover from scanner shortcomings such as large scale occlu-

sion and we can handle fast motion in the scene. We also improve the robustness

in detecting topological changes. Overall, we are able to process sequences under

significantly more general conditions than previous work.
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Part Summary

In this part of the dissertation we have shown different approaches for solving the

shape matching problem for pairwise matching and for matching of complete ani-

mation sequences. In Chapter 3 we introduced a randomized search strategy which

is capable to identify a subset of correspondences between two shapes with respect

to isometric deformation. We also saw that applying a robust estimator score while

importance sampling the potential correspondences enables us to perform a fast

correspondence estimation between a pair of shapes. The main advantage of this

approach is the ability to do global registration without any a priori knowledge of

the initial pose of the object or any initial alignment.

Based on our knowledge obtained during the development of this algorithm,

we developed an intrinsic shape matching algorithm as presented in Chapter 4.

We investigated the problem of shape matching from a numerical point of view

only. We presented an approach which is capable of computing an optimal subset

of surface points, to which we refer as landmarks. These landmarks represent

reference points which are used in order to “address” every other point on the

surface. Since we are looking for correspondence estimation between two shapes

which underwent nearly isometric deformation, we concluded, that if we find a

matching between these landmarks, we can automatically find a match for every

other point on the surface. The previous work done in this area indicates that very

few landmarks are sufficient. However, this results are only valid in ideal cases.

Our approach shown in Chapter 4 shows the numerical way to find a number and

the placement of these landmark points, for practically robust matching of two

shapes.

Based on the concept of landmark coordinates and equiped with the possibility

of matching two point clouds acquired by a scanning device we introduced an

application, animation reconstruction, in Chapter 5. Animation reconstruction is
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a reconstruction of the shape and its motion from a set of a dynamic set of point

clouds. Using the knowledge of robust pairwise point cloud matching, Chapter 3,

we were able to find a global solution for the animation reconstruction problem

even if there are large temporal gaps in the set of point cloud frames. The concept

of landmark coordinates, Chapter 4, was extended in the Chapter 5 in order to find

dense correspondences, which allows for an intrinsic shape merging/charting. This

enables us to reconstruct the shape as a temporal “puzzle” where all the parts are

combined together to retrieve the final shape.

In general, we have shown that the problem of shape matching for three di-

mensional shapes has a valid algorithmic and also a theoretical solution. We were

able to reduce the problem of matching two shapes isometrically to the question

of how to place the important points on a surface, so that the matching problem

becomes efficiently solvable. Using the RANSAC approach for correspondence

estimation, we were able to find the right solution in a fraction of the time that

would be required by a brute force search.

In the next part of the thesis we will take a look at a correspondence estima-

tion approach through an optimization framework known as belief propagation.

Thus showing a different way of formulating the shape matching problem and its

solution.
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Inference Problems
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INFERENCE PROBLEMS

In the previous chapters we described several approaches to compute corre-

spondences between a pair (or a set) of shapes. The described algorithms estimate

a suitable matching between a set of points which are distributed over the surface

of the shapes. In general, we can classify these kind of algorithms as an interme-

diate representation shape matching algorithms. Thus, given a shape, we compute

first an intermediate representation of the shape, in our case a set of landmark or

feature points, and finally perform a matching between them.

In this part of the thesis, we take a step into the direction of matching shapes

without an intermediate representation. Hence we formulate the problem of shape

matching as a direct dense correspondence estimation process. We study this prob-

lem from the perspective of symmetry detection, i.e. finding parts on a single shape

which are symmetric to each other. This problem is related in its formulation to

the regular shape matching problem since it can be solved by computing all the

matches of the shape to itself.

In Chapter 7 we present a novel algorithm based on a conceptually simple and

straightforward probabilistic formulation of partial shape matching which is itself

represented by a Markov random field. This way, we obtain a probability distri-

bution over all possible intrinsic matches of a shape to itself, which reveals the
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symmetry structure of the object. Rather than examining this on an exponentially

sized distribution directly, which is infeasible, we approximate marginals of this

distribution using sum-product loopy belief propagation (LBP) and show how the

symmetry information can subsequently be extracted from this condensed repre-

sentation. We incorporate a parallel implementation on graphics hardware, which

enables us to extract symmetries of deformable shapes efficiently.

Finally, we leave the problem of shape matching and take a closer look at the

belief propagation algorithm itself, in particular at its performance. Loopy belief

propagation is a powerful tool for approximate inference in Markov random fields.

The generality of the algorithm is particularly appealing: Unlike other approximate

inference techniques, LBP is mostly independent of the structure of the Markov

random field and the probabilistic potentials used in the model. The algorithm

can be applied to graphs with general clique sizes, arbitrary potentials, and general

label sets.

However, for problems with large state spaces, the runtime costs are often pro-

hibitively high. In order to solve large state space problems with LBP we encode

all beliefs, marginals, and messages in a wavelet representation, which can repre-

sent the probabilistic information much more compactly. We operate solely in the

wavelet domain without leaving the space for any intermediate computations. This

yields an output-sensitive algorithm where the running time depends mostly on the

information content rather than discretization resolution. We apply the new tech-

nique to typical problems with large state spaces such as image matching and wide-

baseline optical flow where we observe a significantly improved scaling behavior

with discretization resolution. For large problems, the new generic technique is

significantly faster than even an optimized spatial domain implementation.

Introduction

Our model is inspired by the work of Anguelov et al. [6] who formulated the shape

matching problem as a Markov random field using geodesic distances as a pairwise

consistency condition. Intuitively, the model enforces two conditions: (1) a corre-

spondence should point to pieces of geometry that within a local neighborhood

match the source geometry, (2) neighboring correspondences should behave in a

consistent way. For isometric shape matching this means that pairs of correspon-

dences should preserve intrinsic distances. Enforcing this condition strictly only
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allows for global shape matching as we have analyzed in the previous chapters.

However, we would like to go one step further and detect symmetric parts, i.e.

pieces of a shape which are similar to each other. This kind of problem is closely

related to the global deformable shape matching. The additional challenge here is

that we are looking for partial self-matching, by registering a shape to itself.

The detection of symmetry patterns in data sets is a very useful tool for a large

number of applications, such as compression, noise reduction, object recognition

or abnormality detection. Although the recognition of symmetries is a seemingly

effortless task for human perception, the algorithmic extraction of symmetries in

digital data sets is a very challenging task. It receives a lot of attention in computer

vision and graphics research [21, 89, 90, 97, 100, 101, 104, 111].

In order to achieve the goal of symmetric part detection with our probabilis-

tic model, we employ truncated potentials that yield piecewise consistent solutions

that describe partial shape matches. This model describes a probability distribution

over all possible assignments of source to target geometry. This probability space

is of exponential size, and it would be very hard to find actual symmetry matches.

The critical observation for our method is that this extremely large space is usually

mostly empty: For realistic 3D models, only very few sets of correspondences ex-

ist that actually have a significant non-zero probability. Therefore, it is possible to

compute a solution in a projection to a much smaller subspace and still retain all the

relevant information. We implement this idea by computing the marginals of distri-

butions for each source point, i.e. the distribution over all correspondences of a sin-

gle point, marginalized over all assignments to the other correspondence variables.

This “averages” and thus overlays all potential matches. In a final postprocessing

step, we then extract the actual symmetries from this condensed representation.

In general, we make three main contributions in the first chapter of this part:

• Our method is based on a conceptually simple probabilistic formulation of

partial shape matching. The actual matching algorithm is then derived from

this formal model.

• Due to the generality of our framework we are able to detect intrinsic partial

symmetries. This means that symmetric parts of a deformable object (for

example the hands of a human) are recognized independent of the actual

pose as long as the deformation is approximately isometric.

• We compute marginals using loopy belief propagation on the graphics hard-
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ware to reduce the computational effort

We apply our method on several standard 3D models and extract partial sym-

metries, in general, deformed poses. Hence demonstrating that the theoretical

model indeed leads to a practical solution for symmetry detection in more gen-

eral settings than previous approaches.

As we will see towards the end of the Chapter 7 the size of the inference prob-

lem becomes very large for practical problem sizes. The number of states (or

labels) which every variable in the Markov random field can take is in the order of

thousands. For n random variables, each of the variables can be in k different states

with potentials of order (clique size) c, each iteration of the basic algorithm needs

Θ(nkc) running time. For large state spaces, this is often prohibitively expensive,

even in the case of pairwise MRFs (c=2). Due to this space-time complexity belief

propagation is infeasible for very large state spaces.

In general, this “restriction” is also unfavorable for MRFs with continuous

states. Such MRFs are frequently used in applications such as shape and image

matching, where labels for example represent positions in a 2D image. Represent-

ing such distributions accurately with a grid of discrete bins often leads to high

costs despite coarse resolutions.

However, if take a closer look at the marginal distributions within such algo-

rithms as shape matching, optical flow, stereo reconstruction, etc., the marginals

computed with these approaches typically show a lot of coherence so that a full

histogram representation is waste. For example, in image matching applications,

we obtain sharply peaked initial beliefs at salient features and rather uniform, un-

informative beliefs within uniformly colored regions. The LBP algorithm then

distributes this knowledge under some regularizer. This successively creates more

peaked believes until only a few final sharp peaks are left. Figure 6.1 shows such

typical marginal distributions before and after belief propagation is applied.

In the second and last chapter of this part of the thesis, we examine a more

compact representation of marginals, which leads to a novel belief propagation al-

gorithm that scales better to state spaces discretized at a high resolution. Instead of

the original histograms, we operate in a space of linearly transformed histograms.

A natural choice for the basis of such a message-passing space is a wavelet basis

because wavelets are able to efficiently encode both low frequency distributions,

referring to high uncertainty, as well as sharply peaked distributions. Uncertain

knowledge is easily captured by a few low frequency wavelet coefficients. On
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Figure 6.1: Marginal distributions in an optical flow and a symmetry detection

by shape self-matching (Chapter 7) application. Marginals are computed with the

loopy belief propagation algorithm. Typical marginals are usually sparse and con-

sist of some smooth regions with a few salient peaks distributed over the surface.

the other hand, a Dirac delta pulse represented at resolution O(ε) can be encoded

with O(log 1
ε ) coefficients, as shown in Chapter 8. Because of the linearity of the

transform, mixtures of such cases can also be handled.

In order to work with this representation, there is a major technical obstacle:

While the transformation and compression of individual messages and beliefs into

the wavelet domain is straightforward, the message passing algorithm itself cannot

be easily formulated in the wavelet domain. A trivial solution would be to trans-

form the message back to the spatial domain at each iteration step. However, this

would avoid the computational advantages of the encoding. The other obvious al-

ternative is using n-ary wavelet products for message evaluation, which in a naı̈ve

implementation leads to exponential costs with respect to n.

In general, we make the following main contributions:

• We present an algorithm which employs recent results on efficient evaluation

of n-ary wavelet product integrals [94, 136] in order to perform the direct

algebraic product evaluation in linear rather than exponential time.

• We develop a wavelet-space encoding and a hierarchical scheduling scheme

for efficient computation of the integration over pairwise potentials required

in each LBP iteration

• We show that we can formulate a resolution independent version of LBP that

does not require any a priori discretization of the domain.

For evaluation, we apply the algorithm to image matching, which is closely

related to shape matching, and optical flow tasks that require large label spaces.
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We compare the implementation to a simple histogram-based implementation of

LBP as well as an optimized version. The observed scaling behavior of the new

technique is significantly better than that of both spatial domain algorithms. Com-

putational costs grow significantly weaker with discretization resolution, and for

large label spaces, the new algorithm outperforms the spatial domain implementa-

tions.
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Shape Matching as an

Inference Problem

7.1 Model definition

First, let us remind on the actual problem definition. Given two manifoldsMS and

MT and two point subsets MS ∈ MS and MT ∈ MT , we seek a deformation

function f : MS → MT , which maps every point s ∈ MS to every point t ∈
MT . The subsets MS and MT denote the discrete, sampled versions of the source

and target shape respectively. As already stated in the introduction, in this chapter

we are focusing on detecting symmetrical parts of a single object, hence in this case

MS = MT . However, the model described in this chapter is directly applicable

to the case of two different shapes.

In our practical implementation we obtain the point sets MS and MT by a

Poisson-disc sampling of both source and target surface, where the target surface

receives a higher resolution (typically: a factor of 4) in order to be able to adjust

the matching positions reliably. In the following we will refer toMS andMT as

original shapes, i.e. input shapes which were not sub-sampled, and MS and MT as

the sub-sampled versions.

In contrast to the point-to-point mappings as presented in Part II of the thesis, a

whole distribution over the function f is computed. This stores matching probabili-

ties for every possible target point. Similar idea has been already used in Chapter 5,

however this time the distribution is computed in a global way incorporating also

the distribution of neighbor points.

Each point in MS represents a node in a graph or, more precise in probabilistic

inference terminology, a hidden node associated with a state variable. The state

variables are the set of points MT and are denoted as fs = f(s), s ∈ MS to indi-

cate the label/state assigned to the node s. As in [6], adjacent points on the surface

are connected with each other to preserve geometric compatibility between corre-
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(a) (b) (c)

(d) (e) (f)

Figure 7.1: (a) NMI between 2 identical spin images around one point. The point

is shown in (d). (b) NMI between spin images around similar point surroundings.

The two points are shown in (e). (c) NMI between spin images of different points

surroundings. The corresponding points are shown in (f).

spondences. We consider only pairwise interactions between neighboring nodes.

A set of neighbor nodes for each node s is denoted as Ns. This results in a joint

probability distribution of the form

P (f) =
1

Z

∏
s∈MS

Φs (fs)
∏
q∈Ns

Ψsq (fs, fq) (7.1)

The probability that a source point corresponds to a target point is given by the

single potential Φs. For the single potential we use the normalized mutual informa-

tion (NMI) [149] between two corresponding spin images [60]. Spin images acts

as descriptors in our case. NMI is a similarity measure based on entropy [122].

Given pI(i) which is the probability that a discrete random variable I has value i

the entropy is defined, as already introduced in Chapter 4 as:

H(I) = −
∑
i

pI (i) log pI(i) (7.2)
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(a) (b) (c) (d) (e)

Figure 7.2: Example of parameter settings. (a) The set of sampled points MS on

the source side and the selected source point in red for which the belief is shown

on the target side on the subsequent images. The brighter the spots the better the

source point matches the corresponding target points. (b) A probability distribution

without any smoothness term (λ = 0). (c) and (d) Paramater settings (λ = 1, ρ =

0.2, respectively λ = 5, ρ = 0.1) for more globalized symmetry patterns. At the

other end of scale, (e) shows a marginal distribution which has exactly one peak

(λ = 5, ρ = 0.05).

For two discrete random variables I1 and I2 the entropy of their joint distribution

is defined as

H(I) = −
∑
i1,i2

pI1,I2 (i1, i2) log pI1,I2 (i1, i2) (7.3)

The more similar the distribution of the random variables I1 and I2 is, the lower the

joint entropy is compared to the individual entropies. The NMI is at a maximum

when both distributions are equal. It is defined as

NMI (I1, I2) =
H (I1) +H (I2)

H (I1, I2)
(7.4)

Figure 7.1 illustrates an example of NMI distribution for different points selected

on a shape. In order to reject outliers in the single potential, we employ a robust

function [78]

Φs (fs) =
1

1 + (1−NMI)2

γ

(7.5)

The smaller γ the higher the rejection rate. In our experiments we set γ to 0.01.

Other similarity metrics can be employed for the single potentials like curvature

maps [44], or shape index (computed from principal curvatures) [38].
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Figure 7.3: Example of network over the uniformly sampled 271 points of the

elephant dataset 7.1.

For the pairwise potential Ψsq (fs, fq), we also use a robust potential where the

probability of an assignment for the two neighboring points s ∈MS and q ∈MS is

defined to preserve locally isometric deformations. It is encoded by the difference

in the geodesic distances between the source neighboring points dMS
(s, q) and the

assignment dMT
(fs, fq).

ψgeometric = exp
{
−λ (dMS

(s, q)− dMT
(fs, fq))

2
}

(7.6)

Ψ (fs, fq) = max
(
ψgeometric, ρ

2
)

λ controls the smoothness of the distribution in the assignment space. The higher

the value the more influential becomes the pairwise potential enforcing geometri-

cal consistency. For partial symmetry detection it is important to allow for multiple

peaks in the marginals while ensuring geometrical consistency. This is controlled

by the parameter ρ which enables to have different probability values for neighbor-

ing source points (i.e. allow for discontinuities). It takes values between [0.1..1.0].

In our experiments we set ρ to 0.4. In the literature the parameter is called the

truncation parameter in the negative log likelihood space [148]. The level of dis-

cretization on the target side has to be linked with λ since it defines the allowed

variation from a perfectly isometric mapping.

By varying λ and ρ we can extract symmetries at different levels of resolution.

For instance, global symmetries, i.e. shape matching, can be detected at a coarser

resolution and hense λ should be set high. Fine symmetries can be detected at a

high resolution and in this case λ should be smaller. See Figure 7.2 for examples
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of parameter settings.

7.1.1 Sum-Product Belief Propagation

We shortly recall the sum-product belief propagation algorithm for Markov random

fields. For each node in the graph the marginal probability in the correspondence

space is computed. This is achieved by passing messages around the graph in a de-

fined neighborhood N of each node. The graph is computed in the following way:

around each sampled point on the surface, a region-growing on the full resolution

mesh is performed. If two regions meet, both sampled points are connected by an

edge. Figure 7.3 shows an example of a network configuration. The messages from

a node to its neighboring nodes are passed either in parallel, hence all nodes pass

their messages in parallel, or in sequential order. Goldberger et al. [47] analyze the

benefits of a serial order message updating compared to parallel. In general, serial

order converges two times faster than parallel updating. Since for a serial update

rule the memory requirements are smaller than for the parallel order (i.e. no need

to hold the message vector of the previous time step in memory) and it converges in

the general case more quickly, we use serial order message updating. The message

update rule is computed as follows:

ms→q (fq) =
∑

fs∈MT

Ψsq (fs, fq) Φs (fs)
∏

n∈N(s)\q

mn→s (fs)

 , (7.7)

wheremn→s is the message sent from the s’ neighbor node n to s. After t iterations

the belief vector is computed for each node

bq (fq) = Φq (fq)
∏

n∈N(q)

mn→q (fq) , (7.8)

where the belief value bq(fq) is a probability of how well point q ∈ MS matches

the point fq ∈MT .

7.2 Implementation

In order to reduce the complexity, we choose MS to be much smaller in size than

MT . The level of surface discretization determines also the symmetry scale de-

tection, i.e. a denser sampling results in finer symmetries. In our experiments, λ

is set to 5, ρ to 0.4 and we run 10 iterations. We have tested our framework on

145



Chapter 7. Shape Matching as an Inference Problem

two rigid models (cuboctahedron and star) and on three deformable shapes (male

figure, elephant and dragon). Furthermore, to test the ambiguous registration, two

deformed frames of a lantern model have been used.

The messages are initialized with uniform probabilities, i.e. 1/|MT |, so that

the probabilities for a node s sum up to 1. At the first iteration the order of passing

is the order of vertex numbering and at all other iterations we generate a random

path. One iteration consists in a forward pass to compute the probabilities when

arriving at the node and a backward pass computing the final probabilities in the

current iteration (in the backward pass the order is reversed). The complexity of

the message computation is quadratic in the number of labels and the message

passing is linear in the number of vertices for the pairwise MRF (Equation 7.7). In

order to shorten the computation time, we have implemented a GPU version of our

algorithm as described next.

7.2.1 Exploiting parallelism

Belief propagation is known to be well suited for a parallel implementation. Sev-

eral researchers have implemented BP either on a large scale CPU cluster [14] as a

support vector regression solver, or on a GPU [28] to solve stereo vision problems.

In this work we also exploit the GPU parallelism to compute the sum-product belief

propagation.

For our GPU implementation we use an nVidia GeForce GTX280 with CUDA

environment, which provides 1GB of video memory and double precision support.

The messages sent between nodes are stored as a 2D array of doubles in the CUDA

memory space. The number of processed nodes and labels is limited by the avail-

able video memory. For example the dragon2 data set, which has the dimensions

of |MS | = 259 and |MT | = 11837 labels occupies 832 MB including a small

amount of additional memory space for temporary data structures. The memory

consumption doubles if parallel message update is used, since the data structure

for mt
p→q(fq) and mt−1

p→q(fq) need to be held in memory. As stated before we use

sequential message update schedule in order to process huge number of nodes and

labels with a smaller memory footprint. In this case the convergence time of the

algorithm becomes almost one half of the time needed when updating the mes-

sages in parallel as [47] shows, which provides an additional benefit. The GPU

implementation is outlined in the following pseudocode.

The message from node s to q for each label fq is computed in one thread,
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GPU Procedure 1 Compute BP in parallel over fq
for all nodes s do

compute zs = Φs(fs)
∏
n∈N(s)\qmn→s (fs) (in parallel over fs)

compute ms→q (fq) =
∑

fs∈MT
(Ψsq (fs, fq) · zs)

normalize ms→q (fq)

end for
compute

∏
n∈N(q)mn→q (fq)

compute bq(fq)

however with different computation kernels. Threads are arranged in blocks and

are scheduled by the hardware to different multi-processors on the GPU. Threads

arranged in warps are executed in parallel. The CUDA guide [95] gives a more

detailed information about this architecture. One of the main bottlenecks in CUDA

applications is a non-optimized access to the memory. To solve this issue, Silber-

stein et al. [126] proposes to use a block’s shared memory to implement a software

managed cache for the sum-product computation. However this strategy is not ap-

plicable for our datasets which exceed the available shared memory size. Hence

we arranged the used datasets in a coalescent way (see Figure 7.4), so that read

and write accesses performed by each thread can be executed more efficiently. Co-

alescent access is achieved, when multiple threads in a block access memory at

sequential addresses, taking full advantage of GPU’s memory bandwidth. In case

where this was not possible or where many threads access nearby areas in the look-

up tables (i.e. Φp), we have used CUDA’s texture interface to incorporate hardware

cached access for the data. See CUDA’s guide [95] for a detailed description of

performance optimization techniques.

We support variable neighborhood size which differs from previous belief

propagation implementations on the GPU [28]. However, this increases the branch-

ing complexity of the implementation of the message update rule, Equation 7.7. As

an improvement, we precompute the product of the incoming messages into a node

s as shown in the algorithm “GPU Procedure 1“ before the main message update

computation. The parallelization is performed over all labels fq and fs, hence each

thread from a two-dimensional thread block (see [95]) computes the product of

incoming message and the single potential Φs for all possible fq and fs combina-

tions. The result is stored in the data-structure as shown in Figure 7.4. Using this

data structure the computation of all incoming messages into a node q for each label
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Figure 7.4: Illustration of the datastructure used to speed-up the sum-product com-

putation. The values zs, see ”GPU Procedure 1” on the previous page, are stored

row wise. Messages from neighbor vertices are stored columnwise, for example:

mN(qi)[k]→qi is the value of zs for the neighbour k of node qi. Thread paralleliza-

tion over all labels fs and fq enables efficient implementation.

fq becomes a simple multiplication along a column. Afterwards we compute the

actual value of the message vector for label fq in parallel by summing up the previ-

ous result row-wise. Splitting up these two computations enables a more coalescent

computation which perfectly suits for the SIMD (Single Instruction Multiple Data)

structure of the GPU’s processing units. Although we have a sum-loop within a

computation kernel in the second step of the shown GPU procedures, the access is

still coalescent and is performed in parallel with respect to the labels fq, resulting

in efficient read from the memory. Our GPU implementation achieves a speedup

up to 700x in comparison to the single-threaded CPU implementation, see Table

7.1.

7.3 Partial symmetry detection

To recall, for each node or source point si, the belief vector defines a marginal

probability distribution over all correspondences on the target pointset. In order

to recognize symmetric parts of an object, we use the peaks, i.e. labels with the

high probability, in the marginal distribution, ti ∈ MT , to start a region growing

algorithm around them. The peaks are predetermined by a threshold, which is

typically set to be in the range [0.5..0.75], i.e. points with a smaller marginal

are rejected and points which are above the threshold are added to a queue. The

criteria for the growing is to consider all the neighbors ni ∈ MS in the graphical

model of si ∈ MS , and their corresponding geodesic distance dMS
(si, ni). In

the same time, we identify the peaks in the marginal distribution of these points,
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data set |MS |, |MT | |MS | |MT | max|N | time GPU time CPU

dragon1 20002 115 6000 14 4.10s 2870.30s
dragon2 53859 259 11837 10 40.39s 27083.92s

cuboctahedron 200000 126 10888 9 16.83s 1075.45s
star 30181 479 8000 14 73.58s 28004.27s

elephant 42321 271 12722 11 55.45s 36920.53s
male figure 41492 270 8000 8 14.17s 12894.38s

lantern 16735 111 11434 8 12.32s 8604.37s

Table 7.1: Test data set name, number of points in the original source shape and

target shapes (|MS | and |MT |), number of graph vertices (|MS |), number of corre-

spondences on the target side (|MT |), maximum neighbor number, time measured

for GPU solution, time measured for single-threaded CPU (2.66 GHz and 3.25 GB

RAM) solution. Timings are given for 1 iteration only. Note that for all datasets

except the two deformed lantern shapes which have the same number of points, the

source and target deformable shapes are identical (MS =MT )

ti = fsi ∈ MT and t′i = fni ∈ MT and their corresponding geodesic distance

dMT
(ti, t

′
i). If |dMT

(ti, t
′
i)−dMS

(si, ni)| is within an error bound derror (typically

derror ∈ [0.001..0.15]), the corresponding target point t′ as also its counterpart ni
is also added to the seed queue for the region growing. All the involved geodesics

have been previously computed for the belief propagation algorithm.

Iterating this algorithm until the queue is empty results in regions which are

identified as being symmetric to the region marked by point si. This is the case

as long as any pair of direct neighbor points in shapeMS and their counterparts

identified by higher marginals in shapeMT preserve the geodesic distances.

7.4 Results

We applied our algorithm to several datasets, dragon, elephant, male, lantern, star

and cuboctahedron.

Figures 7.5(c), 7.5(f), 7.5(i), and 7.5(m) show the marginal probability distri-

bution for the red marked source points shown in Figures 7.5(b), 7.5(h), and 7.5(l)

color encoded over the triangle mesh1. The color encoding of the probability is

seen in Figure 7.5(a), where blue color stands for 0 and red for 1.0. For a contin-

1the triangle mesh is used only for visualization purposes
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uous representation of the probability distribution P on the original pointset of the

shapeMT or on the triangle mesh, we use positive basis functions u which have a

support radius σ:

Psi (t) =

N(t)∑
j=1

λi,juj (t) , t ∈MT , (7.9)

where
∑N(t)

j=1 λi,j = 1 and uj (t) = exp{−‖tj − t‖2/σ2}.
To evaluate the symmetry detection results, we manually segmented the rec-

ognized parts of the shapes. We then computed the percentage of points that have

been correctly classified. Incorrect points are either those outside the manual seg-

mentation or missing. The overlap is annotated in the figure captions. To check

how prone to local minima the framework is, which might vary strongly for be-

lief propagation applications, we run belief propagation several times starting from

random initializations for the results datasets. Belief propagation converged to the

same fixed point on the average of 7 iterations. This does not guarantee global

convergence, but is a strong indicator of robustness.

Dragon2 represents a case of higher resolution of the dragon dataset, Fig-

ure 7.5(l)-7.5(o). The feet of the dragon have been recognized only partially since

the back of the feet differ too much. Unfortunately, the scales of the dragon could

not be accurately detected, even when the model was sampled more densely. We

assume that this failure case is caused by geodetic noise, which is introduced by

only approximating geodesics on a k−neighborhood relatively sparsely sampled in

respect to the size of the scales. Finer sampling reflects in infeasible computation

time and memory requirements, which is why we did not sampled the dragon more

densely.

The extraction of symmetries is influenced by two parameters: the marginal

threshold and geodesic matching quality encoded in derror. In case of highly de-

formable parts like the ears of the elephant, derror can be relaxed. This parameter

removes outliers from other peaks that show a local similarity to the source point.

For the male figure, the hands have been recognized well.

The 12 symmetries of the vertices defining the cuboctahedron have been mutu-

ally recognized (Figure 7.6(a)). And in case of ambiguous matching, the algorithm

could retrieve all four parts of the lantern (Figures 7.7(a), 7.7(b)) all of which un-

derwent isometric deformation. This shows that the theoretical statements made in

this chapter are well applicable also for deformable shape matching.
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7.5 Symmetry breaking

The algorithm shown so far to find symmetries works reasonably well, however

due to the nature of loopy belief propagation there is a potential shortcoming of

the algorithm. In general, belief propagation can compute correct results only in

case of absence of loops in the underlying graph structure. In our case, however,

the graph structure used to approximate the geometry contains loops. In such a

configuration loopy belief propagation can only yield to an approximate marginal

distribution.

This problem has been already analyzed by Pearl [106] for the polytree algo-

rithm on a Bayesian network containing loops. In presence of loops messages are

circulating around the network and hence the marginal distribution described by

the messages may not converge to a stable equilibrium. Same thoughts are directly

appliable to belief propagation because of the message passing structure around

the graph. Thus the marginal distribution can start to oscillate instead of a stable

convergence. This has been observed and further analyzed by Murphy et al. [93]

in the context of error-correcting codes as well as by Jansen [59] in the context of

partial symmetries in two-dimensional images.

Due to the oscillation of the marginals the distribution containing several peaks,

which is in our case given by the presence of symmetries in the underlying shapes,

might start to “prefer” one of the peaks by assigning a slightly higher probability

value. This can further be reinforced by consecutive iterations. We refer to such

a scenario as symmetry breaking which is similar to a phenomenon known in the

field of physics. Thus, higher number of iterations could “over-fit” the marginal

inference and hence results in a deficient solution.

Murphy et al. [93] propose to solve the problem of oscillation by replacing

messages sent at time point t with a weighted average of the message at time t and

t− 1. The authors show that this simple change sufficiently reduces the chance of

oscillating marginals while still resulting in same beliefs. Jansen [59] approximates

the beliefs using minimal spanning trees instead of the graph structure and shows

that the symmetry detection in 2D images benefits of these changes.

The examples shown in this chapter have not observed the symmetry breaking

behavior due to a graph structures not suffering of large amount of loops as it

can be for example observed in the 2D image symmetry problems [59]. In most

cases the symmetric part we were looking for in the shapes are located in loop-

151



Chapter 7. Shape Matching as an Inference Problem

free regions (see Figure 7.3 for an example) which again prevents the symmetry

breaking. However, it is worthwhile to analyze this problem in future work and

to see if we can incorporate the concepts of Murphy et al. as well as of Jansen in

order to reduce the chance of symmetry breaking further.

7.6 Conclusion

We have presented a probabilistic framework for identifying partial intrinsic sym-

metries in geometric data which can also be applied for global shape matching.

It exploits the marginal distribution over all possible correspondences and gives a

global localization of potential symmetries. By tracking the peaks in the marginals,

we are able to extract nearby symmetric parts that can be explained by an isometric

deformation. As a result, we obtain a technique to extract partial intrinsic symme-

tries in general data sets. One limitation of the current implementation is the noise

handling. Since noise acts as a low-pass filter on the available geometric informa-

tion, for stronger noise (> 0.3% object size), we obtain smoothed marginals which

introduce false positives in the ”peak tracking” step. Our framework can handle

only a small amount of noise. We consider this approach also to be useful for other

problems besides symmetry detection. For example, shape matching algorithms

are frequently troubled by ambiguities, which is in particular a problem for partial

and multi-piece matching. Our technique is able to represent ambiguities explicitly

so that the application algorithm can use this information and avoid problems, for

example by combinatorial search over several alternatives in multi-piece matching.

The requirement to sample source and target surface rather densely are the main

bottleneck in terms of computational costs.

In the next chapter we will develop an improvement of the basic belief prop-

agation algorithm in terms of spatial as also computational complexity. We will

show that by transforming the belief propagation algorithm into another data rep-

resentation, we can simultaneously improve on memory consumption as well as on

the running time required to compute the inference result.
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(a) (b) Model (c) Marginals (d) Symmetries

(e) Model (f) Marginals (g) Sym-

metries

(h) Model (i) Marginals (j) Symme-

tries

(k) Sym-

metries

(l) Model (m) Marginals (n) Symmetries (o)

Symme-

tries

Figure 7.5: Visualization of different datasets, color encoded interpolated

marginals for the corresponding selected point (in red) and symmetries. (a) Color

encoding of the marginals, blue is equal to 0 and red to 1.0. (b)-(g) Elephant

dataset. The overlap with a manual segmentation is 79% for the ears and 92% for

the legs. (h)-(k) Male dataset. The hands have an overlap of 89% compared to

the manual segmentation. (l)-(o) Dragon1 dataset. The overlap with the manual

segmentation is 91%.
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(a) (b) (c)

Figure 7.6: Cuboctahedron dataset. (a) On the left the selected point on an edge of

the cuboctahedron. On the right the marginals computed without smoothness term

(λ = 0) on the point set MT . (b) Computed marginals with λ = 5 and ρ = 0.05.

Note that the peaks are now more localized around the symmetric points on the

edges. (c) Selected point on one of the faces of the cuboctahedron (left) and the

marginal distribution of the point set MT (right). The selected point matches to

any other points on any other face of the object.

(a) (b)

Figure 7.7: Lantern dataset. (a) Selected point marked in red (left) followed by the

marginals on the point setMT (middle) and extracted symmetries on the shapeMT

(right). It correctly identified the 4 ambiguous parts. Note that the segmentation

stopped at the bending of the arms where the geodesic error became to large. (b)

Another example on the same dataset. In this case the parameter controlling the

geodesic compatibility derror is set more restrictively such that only the tops are

segmented.
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In the previous chapter we studied belief propagation (BP) and employed this ap-

proach for symmetry detection or shape matching. We have seen that the disad-

vantage of BP is the high amount of memory required to store the marginals for

every node in the graph. Given k labels and n nodes we have a space complexity of

O(nk) and even worse the time complexity is Θ(nkc), where c is the clique size in

the graph. However, the attractiveness of BP for typical applications such as match-

ing, stereo reconstruction or optical flow is rooted in the fact that the marginals

often show a coherent structure. Figure 6.1 shows these typical marginals.

In this chapter we will use this fact and present a new approach which reduces

the space-time complexity of the belief propagation algorithm. The theory pre-

sented here is not the first step towards continuous state representation of the ran-

dom variables [50, 58, 99, 133] in a graphical model; however, in contrast to these

techniques, we represent the full messages in the wavelet domain. In addition we

achieve very high signal-to-noise ratios with this “compression” approach.

In general throughout this chapter we will concentrate on several computer

vision tasks, like optical flow or image matching. This example applications allow

us a more intuitive presentation of the theory and provides easier representation of

the underlying problem. Additionally, the complexity achieved with loopy belief

propagation executed on a regular grid is below the one of a general graphical

structure.

8.1 Wavelet representation

The goal of this contribution is to perform belief propagation algorithm completely

in the wavelet domain. For the overview and the definition of the belief propagation

approach please refer to the Section 1.2.1 of the Chapter 1.
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In the following, we use a Haar-wavelet basis B = {b1, ..., bN} with N =

(2k)d, k ∈ N, i.e., the resolution in each dimension is a power of two, with a non-

standard decomposition, see [131] for more details on wavelets. A nonstandard

decomposition yields basis function of a square non-zero support in each level,

see Figure 8.1(a); whereas a standard decomposition yields rectangular basis func-

tions. A nonstandard decomposition enables efficient algorithms for computing

products of wavelet encoded signals as shown in [94,136]. The Haar basis consists

of one constant scaling function b1, covering the whole domain, as well as wavelets

that describe local differences at different scales. The basis functions together form

a d-dimensional tree, e.g. for d = 2 this is a quadtree. The basis is orthonormal

and all functions except from b1 integrate to zero over the full domain Ω. We now

express all marginal distributions that show up in the LBP algorithm, Section 1.2.1,

as linear combinations of wavelet functions:

mij (x) =

N∑
p=1

λ
mij
p bp (x) (8.1)

Φi (x) =

N∑
p=1

λΦi
p bp (x) (8.2)

Ψij (x,y) =
N∑
p=1

N∑
q=1

λ
Ψij
pq bpq(x,y). (8.3)

In the following, we will use just λmij , λΦi , and λΨij , without the indices p, q, to

denote the complete vector of wavelet coefficients. Before we go on, Equation 8.3

needs some more attention: since Ψ is a 2 · d-dimensional function we cannot use

the same basis as for the other, d-dimensional functions. At this point, we opt for

a tensor product construction bpq(xi,xj) := bp(xi) · bq(xj). In case if bp and bq
are both 1D-basis functions, this yields a 2D standard decomposition Haar wavelet

basis, and for higher dimensions, we obtain functions that are nonstandard shaped

restricted to the first and last d dimensions, and standard shaped for combinations

of these dimensions. Figure 8.1(b) illustrates the build of the two-dimensional stan-

dard Haar-wavelet basis function as a tensor product of two one-dimensional basis

functions. Choosing the tensor product basis at this point facilitates the computa-

tion of the message passing integral, as we will see in the next step.

We now plug this representation into the message passing equation 1.6 intro-
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duced in Chapter 1. After algebraic reordering, we obtain:

mij (y) =
∑
q

bq (y)

 N∑
p=1

λ
Ψij
pq

∫
x∈Ω

bp (x)Rij(x)

 (8.4)

with

Rij(x) :=

(
N∑
r=1

λΦi
r br (x)

) ∏
k∈Ni\j

(
N∑
l=1

λmki

l bl (x)

)
dx. (8.5)

As we see, due to our tensor product basis representation of the Ψij , we can split

the basis functions bpq into two parts and directly obtain a wavelet representation

for the new message mij . The coefficients of the basis are given by the expres-

sion in square brackets. We now deal with this expression in two steps: First, we

evaluate the products in the term Rij(x) (Equation 8.5) using the n-ary wavelet

product integral algorithm of Sun et al. [136]. In a second step, we perform the

outer summation. We show that this step corresponds to a matrix vector product

and provide an adaptive approximation algorithm for this step.

8.2 Wavelet Product Integrals

The term Rij(x) is a product of functions represented in the same wavelet basis B.

Algebraically, this is a product of |Ni|+ 1 sums of up to N terms each. Assuming

that r of them are non-zero, a naı̈ve expansion of this product would result in

O(r|Ni|+1) terms. Clearly, this is not acceptable.

Recently, there has been considerable interest in computing such products of

wavelet-represented functions in the field of three-dimensional rendering, where

integrals of products of transformed functions occur for example in lighting com-

putations. Ng et al. [94] provide a fast solution for triple product integrals, which

has been extended to general products by Sun et al. [136]. In both cases, a non-

standard Haar wavelet basis is used. The key observation is that the functions are

orthogonal and have only limited support. Due to the quadtree-structure of the

basis functions, only direct and indirect descendant nodes can cause non-zero con-

tributions in a pointwise multiplication, and the integral over most combinations

is still zero. Based on these observations, Sun et al. [136] construct an algorithm

that can evaluate the product of m wavelet-represented functions with at most r

non-zero coefficients each in time O(r ·m).
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(a) Nonstandard decomposition (b) Standard decomposition

Figure 8.1: The 2D-basis functions of a Haar-wavelet obtained with a nonstandard

and standard decomposition. (a) A nonstandard decomposition is defined to be of

square in each level and comes directly from the definition of the Haar-wavelet

decomposition [131]. (b) A d-dimensional basis function obtained with standard

decomposition can be expressed as a tensor product of two d − 1-basis functions.

In this example, the tensor product is build by two 1-dimensional basis functions,

illustrates along horizontal and vertical axis. In case of two 2D-basis function the

coupling of both squares results in a 4D domain with hyper-rectangles as a basis

function. [Image taken from [130]]

We now use their wavelet product algorithm to compute the coefficients of

the function Rij(x). Because we will always be looking at a fixed message pass-

ing step from node i to j, we will in the following omit the indices i, j to sim-

plify the exposition. The wavelet product algorithm builds explicit hierarchies

(d-dimensional quadtrees) to represent each term in the product and then incre-

mentally merges these trees by a simultaneous hierarchical traversal. The output of

the algorithm is a quadtree hierarchy that stores all non-zero wavelet basis coeffi-

cients for the product. We denote these by λR =
(
λR1 , ..., λ

R
N

)
. For further details

of the wavelet product algorithm, see [136].

Next, we deal with the integral in Equation 8.4: The integration over bp(x)

multiplied with R(x) is actually easy to evaluate [136]. As B is an orthonormal

basis, this integral just outputs the coefficient with index p from the wavelet tree of

R.
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In the following, we will write the wavelet coefficients of Ψ as anN×N matrix

ΛΨ :=
[
λΨ
pq

]
p,q

. In this notation, the summation in square brackets in Equation 8.4

reduces to a dot product of the wavelet coefficients λR and the q-th column of ΛΨ.

The full message vector λm can be thus computed as the matrix-vector product:

λm = ΛΨλR, (8.6)

The task is now to evaluate this product efficiently, which we will address in the

next section.

8.3 Adaptive Approximate Summation

A naı̈ve multiplication leads to O(N2) running time, identical to the standard al-

gorithm. To speed up, we make use of the special structure of this data. Both

the input vector λR and the output vector λm consist of wavelet coefficients struc-

tured as d-dimensional quadtrees. The support of the associated basis functions is

strictly hierarchically nested. We use this property to compute hierarchical bounds

on contribution of subtrees within λR and ΛΨ. For λR, this is easy: In linear time,

we can compute the sum of squared coefficients within the subtree of each node.

Because of the orthogonality of the wavelet basis, the sum of squared coefficients

values for one node is exactly the integral error that we make if we drop one such

subtree completely. In the following we denote this sum as λRτ .

Hierarchical bounds

Next, we determine hierarchical bounds on ΛΨ. The supports of the basis functions

associated with these coefficients are also hierarchically nested. However, because

of the tensor product construction, the structure is a bit more complex: The com-

patibility potentials Ψ are (2d)-dimensional objects. For example, in the case of a

2D state space, the Ψ is a 4D function. Each coefficient in the wavelet represen-

tation describes the coupling of a 2D square in the input and another 2D square in

the output domain. Figure 8.1(b) illustrates the coupling of two one-dimensional

basis functions. The same holds for the corresponding hyper-squares in arbitrary

dimension. The actual bounds are easy to obtain if we know the difference be-

tween maximum and minimum absolute values of Ψ within the non-zero domain

of the basis function. Section 8.4 discusses three different ways how to compute

these values. In general, no wavelet coefficient can be larger in absolute value than
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this bound scaled with the area (or hyper-volume in case of four dimensions) and

the normalization constant of the wavelet basis. For any given function f(x) one

can prove this claim as following: given an orthonormal Haar-wavelet basis, the

corresponding wavelet coefficient λi is computed as [131]:

λi =

∫
Ω
f(x)bi(x)dx,

where bi(x) is the Haar-wavelet basis function and Ω is the domain of the function

f(x). This can be reformulated as:

λi =

∫
Ω+

f(x)bi(x)dx+

∫
Ω−

f(x)bi(x)dx+

∫
Ω0

f(x)bi(x)dx, (8.7)

where Ω+ and Ω− are subdomains of Ω with the Haar-wavelet basis function being

positive or negative respectively. Ω0 corresponds to the subdomain with bi(x) = 0.

Taking the normalization constant out of the basis function, the Equation 8.7 can

be rewritten as:

λi = Z

(∫
Ω+

f(x)dx−
∫

Ω−
f(x)dx

)
= Z(A−B), (8.8)

where Z is the Haar-wavelet normalization constant of the basis function bi, i.e.,

bi(x) = Z · b0i (x) and b0i (x) is the Haar-wavelet box-function, see [131]. For any

function f(x) the boundary conditions are defined as:∫
Ω′
f(x)dx ≤ |Ω′|max

x∈Ω′
f(x) and

∫
Ω′
f(x)dx ≥ |Ω′|min

x∈Ω′
f(x),

where Ω′ is just any subdomain of f(x). Hence the boundaries for A and B from

Equation 8.8 are:

A ≤ |Ω+|fmax and B ≥ |Ω−|fmin ⇔ −B ≤ −|Ω−|fmin,

where fmax = maxx f(x) and fmin = minx f(x). For the Haar-wavelets it fol-

lows that |Ω+| = |Ω−| = N . Substituting this and the inequalities of A and B into

Equation 8.8 we get for the absolute value of λi:

|λi| = |Z(A−B)| → |λi| ≤ λΨ
τ = |ZN(fmax − fmin)|. (8.9)

Adaptive summation

Using the hierarchical bounds on ΛΨ and λR, we can now evaluate the vector-

matrix product efficiently. Figure 8.2 shows the key steps. The blue tree represents
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the output tree for m, which is empty in the beginning. An empty output tree repre-

sents the vector of wavelet coefficients λm initialized to zero, i.e., λm = [0, .., 0]T .

Since nodes which represents zero coefficients have not to exists in the wavelet

quadtree representation, the initial tree is just empty. The orange colored tree en-

codes the input λR. A link connecting nodes of both trees represents a product

operation λm → λm + λΨ
pq · λRp . We now try to restrict ourselves to the most

important interactions by using a priority queue to schedule the most interesting

regions of interaction first. Please note that the importance of interactions depend

both on the structure of Ψ as well as on the actual function R. Intuitively, the

algorithm prefers to contribute to the solution λm, only that part of missing infor-

mation, i.e., λΨ
pq · λRp , which promises the largest reduction in the reconstruction

error. For each link, we set the priority to the upper bound of the integral error that

we would incur if we leave out this whole subtree of computation. This error is

estimated by multiplying the upper error bound on the corresponding region in the

domain of Ψ with the upper error bound of the corresponding region in the domain

of R, i.e., τw = λΨ
τ · λRτ .

In the first step, Figure 8.2(a), of the tree scheduling algorithm, the roots of

both trees are linked with infinite cost. This initial link represents the product

of scaling coefficients of the pairwise potential and the input tree λR, i.e., λm0 =

λΨ
00 ·λR0 . Now a pair with the largest upper bound τw on the potential error is picked

iteratively from the queue. Intuitively, this improves the solution by computing

the most promising products first. The multiplication indicated by the linked pair

is performed and the result is stored. Next, all link combinations between the

children of nodes of both trees are put on the queue, Figure 8.2(b). Additionally,

Figure 8.2(c), links between every child node and pair nodes are built. For these

links, the parent nodes are marked as fixed, which enforces that the iteration will

never subdivide these nodes but keep the connection to the fixed parent node. These

links correspond to asymmetric combinations of hyper-squares of different size. In

matrix notation, these links corresponds to the column-wise (fixed on λR side) or

row-wise (fixed on λm side) multiplication, see Figure 8.2(d).

The stopping criterion is the relative l2 error of the current estimate: While

building the message, its current square integral norm is tracked, i.e. c =∑
i∈M (λmi )2. Here M indicates the set of output nodes whose coefficient is non-

zero or in other words: M is a set of existing nodes in the wavelet quadtree. At

the same time, we can track the amount of potential error left in the priority queue
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(d) matrix vector view

Figure 8.2: Illustration of the adaptive matrix vector product. Trees on the left

(blue) are outputs, trees on the right (orange) are input. (a) Initial link on the

priority queue denoting the product λm0 → λΨ
00·λR0 . (b) After processing a link, new

connections which indicates the product of the children of both processed input

nodes, are added. In this example the links represent the products: λm2 → λm2 +

λΨ
21 ·λR1 and λm2 → λm2 +λΨ

22 ·λR2 . (c) Additionally, “fixed” links between nodes and

their counterpart’s children added. In this case, the links represents the products:

λm0 → λm0 + λΨ
01 · λR1 and λm0 → λm0 + λΨ

02 · λR2 . (d) Matrix interpretation: Colors

indicate the corresponding cases of (a) - (c). Non-filled rectangles indicates the

further development of the tree-scheduling algorithm for the corresponding edge.

For example; introducing a fixed link in (c) (purple color) the node on the output

side will stay fixed while on the input side (right side) they will be propagating

down. This results in an element-wise multiplication and summation along a row in

the matrix vector representation. Due to illustration purpose, the scaling coefficient

λΨ
0 is omitted. The level of the input tree is indicated by k.
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by keeping track of the sum of the error bounds. If the ratio is smaller than a user

specified constant the iteration is ended. The constant can be chosen empirically

to achieve the desired approximation compared to the baseline method, see Sec-

tion 8.7. Our actual implementation uses a simple absolute error stopping criterion,

i.e., a link is not pushed to the queue if τw < τε, where τε is chosen empirically.

The tree based message update algorithm presented here is just an adaptive,

approximate matrix vector multiplication. It solves the matrix vector product

element-wise and prefers to compute those products of elements first, which most

contribute to the squared norm of the resulting vector. It is independent of the

domain resolution. Solution gathering is stopped if there is no more input sum-

mands given, i.e., priority queue is empty. This is achieved when the desired signal

approximation is reached. Therefore, we can work with an unbounded potential

number N of wavelet coefficients and let the algorithm automatically choose a

representation that in each step is accurate up to a fixed l2 error bound. In other

words, the algorithm adaptively determines a hierarchical discretization on the fly

rather than fixing it upfront. This automatic adaptation cannot be obtained with

traditional algorithms that work on fixed grids. Non-parametric sampling meth-

ods [133] are resolution independent by design but available methods cannot guar-

antee strict error bounds.

For moderately sized state spaces, this property might not be necessary so that

we can simplify our algorithm by performing the priority queue-driven scheduling

for each row of the matrix-vector multiplication instead of globally. We refer to

this approach as pruned WBP, indicating that we prune the solution on a row-base

instead of a globally consistent error minimization. The scaling behavior of this

method is, however, not as good, see Figure 8.6, since we then require at least

O(N) row-wise multiplications. For small-sized state spaces the runtime is quite a

bit lower because the access to a sparse data structure storing the result coefficients,

as in our full featured hierarchical multiplication, is avoided. The fully adaptive

version uses a hash table to store coefficients while the row-wise version can use a

simple array.

8.4 Conversion to the Wavelet Domain

The algorithm described above relies on the availability of certain information

about Φi and the Ψij . So far, we have formulated this as an abstract oracle; now
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we propose different implementations. The first type of information is the wavelet

transform of these functions. Because the Haar-basis functions bp (as well as the

tensor-product basis function bpq) are orthogonal to each other, the transformation

is given by just an inner product between the input function and a basis function.

Because of the simple, piecewise constant form of the basis, this can be reduced to

a sum of a small number of integrals over the input function. Again:

λ
Ψij
pq =

∑
xi,xj

Ψij(xi,xj)bpq(xi,xj) (8.10)

=
∑
xi

∑
xj

Ψij(xi,xj)bp(xi)bq(xj), (8.11)

where bpq(xi,xj) is a tensor product of both orthogonal basis functions bp(xi) and

bq(xj). Hence the main problem of computing of λΨij
pq reduces to the computation

of an integral over a certain domain.

The second type of information we need are lower and upper bounds for Ψij :

For two quadtree-aligned squares X ,Y , we need to be able to bound the minimum

and maximum value of Ψij(x,y) for x ∈ X ,y ∈ Y .

We have evaluated three variants how to achieve both types of information in

practice:

1. Full wavelet transformation of all (different) Φi and Ψij on a regular 2K×2K

grid for fixed K.

2. On-demand wavelet coefficients computation of Ψ utilizing its spatial sym-

metry.

3. Completely analytical solution.

For the first point, (1), we precomputed both the bounds as well as the wavelet

transforms using a simple fast-wavelet transform as described in [131]. For large

K, this is not feasible anymore, since the size of the Ψ-table becomes too large

because of the quadratic growth with respect to Φ-table. Hence we experimented

with other two possibilities. (2) Given a pairwise compatibility function Ψ that

is symmetric, i.e., Ψ(x, y) = Ψ(y, x) and stationary with respect to x or y, i.e.,

Ψ(x, y) = Ψ(x+ t, y+ t), the space can be reduced by exploiting this redundancy

as we will see next:
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Computing λψpq by exploiting symmetry redundancy

In case when Ψij(x,y) is symmetric and stationary we can compute its wavelet

coefficient in worst-case running time ofO(log n) for a 2D andO(log2 n) for a 4D

domain, where n =
√
k is the width of the discretization domain. The following

algorithm, Algorithm 1, shows a computation of the integral in a 2D case over a

given domain specified by x and y as the position andw,h as the size of the domain.

computeIntegral(x, y, w, h)
ifw = 0 ∨ h = 0 then

return 0
end if

if y = 0∧ inCache(x,w, h) then
return fromCache(x,w, h)

end if

if y > 0 then
if y > x then

swap(x, y)
swap(w, h)

end if
return computeIntegral(x− y, 0, w, h)

end if

sum = computeIntegral(x, y, w
2
, h

2
) + computeIntegral(x + w

2
, y, w

2
, h

2
) +

computeIntegral(x, y + h
2
, w

2
, h

2
) + computeIntegral(x + w

2
, y + h

2
, w

2
, h

2
)

if y = 0∧w = h then
putIntoCache(sum, x, w)

end if

return sum

Algorithm 1 The figure illustrates a 2-dimensional pairwise compatibility func-

tion, which is symmetric and stationary. Each of the Psiij functions (in this case

Gauss-distribution) is sampled along the vertical axis, i.e. along its domain. A

computation of a wavelet coefficients is proportional to an integration over the hy-

perdomain of the full Ψ function. The integral hyperrectangle (x, y, w, h) is first

mirrored and projected to the x-axis. This is repeated recursively for each of the

sub-rectangles (i.e. children). If cell is found in the cache, its value is used. For

cells of the size 1× 1 (i.e. green cells) the function Ψ is evaluated directly. Yellow

cells mark those added to the cache.

Since the extensions of the basis functions are always a power of two, the

memory complexity of Algorithm 1 is bounded by Θ(n log n) for two-dimensional

and Θ(n2 log2 n) for a four-dimensional case. It is straight forward to extend the

algorithm to a four-dimensional case where one has to mirror the hyperrectangle
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on the middle hyperplane and project it to the xy-plane. As caching criterion for

the 4D case, one can set x = 0 ∧ y = 0 ∧ dx = dy ∧ dz = dw, where di is the

extension of the hyperrectangle in dimension i, which is optimal with respect to

the tensor product basis function bpq.

Given that algorithm, however, a resolution free, i.e., independent of the reso-

lution K, operation is not possible. Furthermore, the coefficient evaluation has a

non-constant complexity and hence reduces the overall running time either. Hence

in the following we assume that an analytical integration of Ψ as well as the com-

putation of minimal and maximal values of Ψ over any interval is possible (3).

We omit all precomputed tables and perform an analytic integration and bound-

ing at runtime. An analytic solution of an integral is provided for many classes of

functions Ψ (directly or through a piecewise Taylor approximation) but requires

additional manual effort. In case, if no analytical solution is possible and the given

pairwise potential Ψ is symmetric and stationary with respect to x or y, the pro-

posed method (2) can be employed. In case, when the discretized domain has a

smaller size K even a straightforward a priori wavelet transformation (1) might

be sufficient. Figure 8.6 illustrates the running time complexity for different dis-

cretization levels.

8.5 Evaluation and Applications

8.6 Applications

We evaluate our method with two standard applications of LBP that typically re-

quire large state spaces: deformable image matching and wide-baseline optical

flow [27, 128, 132]. In both cases, we are operating on a two-dimensional domain

Ω. As data term Φ, we use Fourier descriptors [64] (compressed by PCA) that

characterize local image content in a rotationally invariant way. The compatibility

function Ψ differs for the two applications:

Deformable image matching: Here, we aim at preserving distances along the

edges of the graph G, with increasing penalty for larger deviations. In other words,

we are trying to keep the matching “as-rigid-as-possible”:

Ψdef
ij (xi, xj) = max

(
e−β(Ds(i,j)−Dt(xi,xj))2

, ρ
)

(8.12)

ds(i, j) and dt(xi, xj) are Euclidean distances between source and target point
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pairs, β determines how easily deformable the model is, and ρ is a truncation pa-

rameter that allows for discontinuities in the solution to make the matching robust.

Optical flow: Here, we use a regularizer that imposes a non-rotational invariant

smoothness constraint [128]:

ΨFd
ij (a, b) = max

(
e−β(|ax−bx+dx|+|ay−by+dy |), ρ

)
(8.13)

(ax, a,y ), (bx, by) are the displacement vectors and (dx, dy) is one of the four sta-

tionary vectors (1, 0)T , (−1, 0)T , (0, 1)T , (0,−1)T , depending on current direction

of the message propagation in the MRF graph, respectively. When propagating a

message from node i to node j in the MRF graph, we would like both nodes to

have parallel displacement vectors, hence we need to move the highest response of

the smoothness potential by a vector equal to the displacement between these both

nodes, which is encoded by the stationary vector (dx, dy). Again, β and ρ control

the regularizer strength and robustness.

8.7 Baseline methods

We compare our approach with standard loopy belief propagation (LBP) as well

with an optimized version, which we call pruned belief propagation (PBP). Pruned

belief propagation employs a simple but very effective optimization: Many pair-

wise compatibility potentials Ψ are rather sparse. For a fixed y, Ψ(x,y) is typically

non-constant only for a small area A ⊆ Ω. In this case, we can restrict the evalua-

tion of the integral in Equation 1.6 to A. To account for the integral over constant

Ψ, we compute the unweighted integral of Φ overA and compute the integral over

A as complement to the integral over Ω, at no extra costs. Then, we weight this

value with the constant value Ψ attains in A. In practice, this easy to implement

optimization typically leads to large speedups and is still exact compared to a stan-

dard belief propagation implementation. Therefore, it should be included for a fair

comparison.

The comparison with WBP is based on PSNR (peak signal to noise ratio):

PSNR = 20 · log10

(
1√
MSE

)
[dB]. (8.14)

The mean squared error (MSE) is defined as

MSE =
1

kn

n−1∑
i=0

k−1∑
j=0

(fwi (xk)− fi(xk))2, (8.15)
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where fwi (xk) is the belief of node i for the label xk computed within the wavelet

domain. In other words, mean-squared-error (MSE) is a sum of quadratic dif-

ferences between belief vectors of the final result in the wavelet and the spatial

domain. Here, we assume that our ground-truth is the solution computed by the

standard belief propagation approach. A PSNR of 70dB 1, which corresponds to

a MSE of 1e-7, is a good quality threshold for compressed marginals and will be

further used in our experiments. We consider a signal as being approximately equal

if the PSNR is more than 100dB with respect to the ground-truth.

8.8 Results

Image matching: Our first test is performing as-rigid-as-possible image matching

on a strongly deformed example image. We use the first and fourth frame of the

teddy image sequence [150] and additionally deformed the fourth frame by apply-

ing a spatial “sine-wave” filter, in order to stress the correspondence estimation. In

this example, we use precomputed wavelet decompositions and row-based approx-

imative summation (Section 8.3). Figure 8.3 shows the visual results. We are able

to obtain a more than threefold speedup with WBP (1.25 hours), over the optimized

PBP (4.8 hours), implementation at a PSNR of 95dB. The baseline standard LBP

implementation would have used (estimated) 1200 hours for the same data set.

Optical flow: Our second test is optical flow, applied to the BeanBag data set

from the Middlebury database [8]. The displacements in this experiment are in the

range of 10-20% of the image size, which is a good test case for large displacment

optical flow. Figure 8.7 shows the warped source to target image and correspond-

ing optical flow. The color encoded displacement vectors computed with standard

belief propagation are shown in Figure 8.7(d) and those computed with wavelet

belief propagation in Figure 8.7(g). Please note that our PSNR error is computed

over all belief vectors m rather then the maximum label likelehood as shown in the

resulting figures.

Comparison against downsampling: We have also performed an experiment

for a 1D case (a 1D Markov chain with a 1D interval as state space) where the

solution can be computed exactly. We run wavelet and standard BP at different res-

olutions to study how the error scales with the retained information. Our analytical

1Due to conversion of a signal into/from the wavelet domain we are limited by hardware double

precision value representation, achieving at most a PSNR of 156dB.
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(a) source with G (b) data term Φ

(c) correspondences

Figure 8.3: Teddy data set for the image matching experiment. (a) Source image;

the 292 = 841 nodes of G are shown as white dots. State space: 2562 = 65536 la-

bels, i.e. 128×128 resolution with half-pixel accuracy. (b) Fourier data term for the

point on the teddy’s belly marked in red. (c) Visualization of the correspondences.
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Figure 8.4: Left: Reference solution. Right: PSNR for the same percentage of

coefficients, comparing LBP with simple binning (“spatial”) and a wavelet LBP

algorithm.

example uses a Φ that is a Dirac impulse for the first node and a constant function

for all nodes i 6= 0. The regularizer consists of a Gaussian blur with a slight up-

ward shift. The reference solution is computed with 1024 states. Figure 8.4 shows

the error for the same number of coefficients used in the state space. The accuracy

of the wavelet approximation drops much more gracefully; the PSNR is between

two to four orders of magnitude better than that for simple downsampling.

Scaling behavior: We study one more wide-baseline optical flow example

on a synthetic “lady bug” data set (see Figure 8.5). We vary the resolution of

the discretization domain and compare the running times of standard LBP, pruned

PBP, and wavelet BP. We use wavelet BP at 70dB and 100dB PSNR, compared

against the final results of the reference LBP solution. For 70dB, we use both

the precomputed and the analytical computation of the wavelet transform of Ψ,

all other cases are precomputed. We also test the simplified row-based summation

(Section 8.3), where very small entries in the precomputed table for Ψ are statically

pruned by 1e-15, i.e. floating point accuracy; the method is therefore referred to as

“WBP pruned”) and achieves a PSNR of more than 110dB.

Figure 8.6 shows the running times for one iteration of belief propagation. As

expected, the spatial domain implementations all scale quadratically (confirmed

by a slope of 2 in the log-log plot). The row-based summation is very fast in

absolute numbers, but scales slightly super-linearly (empirical slope 1.3). The full

WPB implementations have the largest constant overhead factor (due to the more
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(a) source with MRF and target (b) flow (c) warp

Figure 8.5: Synthetic example for time complexity evaluation. (a) Source and

target images. The MRF consists of 256 nodes. (b) Flow fields computed with

WBP at 70dB (top) and with PBP (bottom) at 4096 nodes and 4096 labels. The

computation is 7min and 56min for WBP and PBP respectively. (c) Warped image

computed with WBP at 70dB (top) and difference image to the source (bottom).

involved data structures), but show the best scaling behavior.

8.9 Summary

In this chapter we have introduced a new algorithm that performs sum-product be-

lief propagation directly in a wavelet transformed representation. It represents all

messages as a sparse linear combination of wavelet basis functions, which typ-

ically yields a much more concise representation than traditional histograms of

labels. Our technique is general and applicable to pairwise MRFs with general

potential functions. Unlike previous work our algorithm performs all operations

in the wavelet domain only, thereby only requiring computational costs dependent

on the information content in this representation rather than on the spatial reso-

lution. In practice, we obtain a significantly better scaling behavior, however, at

the price of a larger overhead (larger constant factor in the runtime). In absolute

time, wavelet belief propagation outperforms even our optimized spatial domain

base-line implementation for medium to large state spaces (depending on the cho-

sen summation algorithm). In terms of quality, we obtain large signal-to-noise in

comparison to the final marginals obtained from standard LBP.

Limitations: Probably the most important one is the larger constant in the

runtime due to the more involved data structures. For small state spaces, the method

does not offer advantages. The usage of wavelets also limits the domain of the state

space; we need to be able to define an orthogonal Haar-basis on this domain. So

171



Chapter 8. Wavelet Belief Propagation

0

2

20

200

2,000

20,000

128 1024 8192

BP standard

BP pruned

WBP pruned

WBP ~ 100dB

WBP ~ 70dB

WBP analytic 70dB

Figure 8.6: Execution time of one belief propagation iteration for different num-

ber of labels, 162 = 256 to 1282 = 16384 labels. The number of nodes in the

MRF is constant. Both axes of the diagram are logarithmic. Wavelet belief propa-

gation scales differently and thus outperforms the spatial domain implementations

for large state spaces.

far, we have only looked at square domains, but generalizations may be possible,

i.e. by embedding an irregular domain into a square and pad the extra space with

zeros. Another limitation is the use of sum-product belief propagation; the max-

product algorithm cannot be supported. Finally, for very high and unlimited (purely

adaptive) resolutions, some integral properties and bounds of Ψ must be derived

analytically. A hybrid, partially precomputed technique with caching might reduce

these issues.
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(a) Source (b) Target (c) Color coding

(d) PBP Flow (e) PBP Warped (f) PBP Error

(g) WBP Flow (h) WBP Warped (i) WBP Error

Figure 8.7: Results of the BeanBag data set. (e) and (h) Warped image computed

with pruned BP and our tree-based wavelet BP. The MRF graph consists of 1024

nodes and is shown in (a). On the target side (b) we incorporate subpixel accuracy,

by defining a label set of 16384 labels. (d) Flow computed with pruned BP in

around 12 hours. (g) Flow computed with wavelet BP in 1.5 hours, the PSNR

is 70dB. Number of iterations is 3. Please note that PSNR is computed over all

marginal distributions at every node and might be different to the signal-to-noise

ratio of peak marginals only used for flow encoding. This explains the large flow

estimate in the right-bottom corner of the flow image. (c) Color coding used in our

optical flow results. Note: The contrast in the error images has been enhanced for

a more pleasant visualization.
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(a) Source (b) Target (c) Color coding

(d) PBP Flow (e) PBP Warped (f) PBP Error

(g) WBP Flow (h) WBP Warped (i) WBP Error

Figure 8.8: City hall Leuven data set (http://cvlab.epfl.ch/data/

strechamvs/). (a) and (b) Source and target images. The number of MRF

nodes is 1024 and the number of labels is 65536. Results were computed in 3 iter-

ations. (d), (e) and (f) Flow, warped and difference image (i.e. difference between

warped and source image) for the results computed with pruned BP. The computa-

tion time by pruned BP was 150 hours. (g), (h) and (i) Flow, warped and difference

image of pruned wavelet BP (i.e. simplified row-based summation) computed in

around 5 hours with a PSNR of 102dB. Note: The contrast in the error images has

been enhanced for a more pleasant visualization.
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Part Summary

In this part of the thesis we have introduced two approaches. In the first case,

Chapter 7, we have seen that deformable shape matching can be expressed as an

inference problem on a Markov random field (MRF) and solved with the help of

Loopy Belief Propagation (LBP). We derived a solution for symmetry detection,

which is in particular the same as computing a correspondence of the shape to

itself. Our results proved that the problem definition is sound and can be used

alternatively to the common approach of feature point based shape matching as

used in the previous part of the dissertation.

Looking at the results achieved in Chapter 7, the number of states/labels each

variable in such MRF can take is becoming very large. Even worse, there rarely

exists a theoretical or practical solution for solving MRFs with tremendous state

spaces. In Chapter 8 we have developed an algorithm which is capable of comput-

ing an inference with LBP entirely formulated in the wavelet domain. The space-

time complexity of LBP in the wavelet domain became data-driven and has in the

worst-case the same complexity as standard LBP. We have seen that compared to

standard and optimized versions of belief propagation, the newly developed WBP

was able to achieve speedups in the order of several magnitudes. An evaluation

on a synthetic examples showed that the running time complexity of wavelet belief

propagation (WBP) is even sub-linear in case of a highly peaked marginal distribu-

tion, which is not that uncommon for many tasks where LBP is commonly used.

In general, we believe that the theoretical foundation made with the develop-

ment of wavelet belief propagation approach will find their use in other research

fields dealing with MRF optimizations.
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Part IV

Epilogue
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EPILOGUE

In the first half of the thesis, Chapter 3, a correspondence estimation algorithm

based on the idea of RANSAC has been shown. A robustness score, which incorpo-

rates only a subset of witness geodesics, make the shape matching algorithm resis-

tant to topological noise. Utilizing an importance sampling function, the random-

ized search for correct correspondences has been biased towards a more promising

solution. An additional tangential optimization technique reduces the overall cor-

respondence error and improve the deformation function with respect to isometry.

Real-world data demonstrate the robustness of the algorithm and its capability to

find an approximation of the deformation function between two given pieces of

geometry more densely than it was possible before. In general, the proposed al-

gorithm is capable of computing correspondences between two geometry pieces

acquired with 3D scanner devices in a robust and efficient way. This provides an

important building block for solving deformable shape matching problems.

In Chapter 4, we took a closer look at the problem of shape matching and

proposed an improvement of the existing RANSAC matching by incorporating an

a-priori planning step. A so-called plan represented by a set of landmark points

distributed over the surface has been introduced. These landmarks are automati-
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cally placed in a way, that the numerical complexity of the shape matching process

is reduced. In this case, the complexity of the shape matching is measured as the

number of RANSAC samples required to compute a valid solution. Furthermore

it has been empirically shown that for different types of shapes there exist dif-

ferent numbers and constellations of landmark points in the plan. This hints at a

possible characterization of a shape’s intrinsic complexity by counting the num-

ber of plan points required to reduce the problem of self-matching to a minimum.

Summarized, the PLANSAC scheme, has a much wider applicability than shape

matching. Many related areas in computer graphics and computer vision use ran-

dom sampling based procedures for an abundance of tasks. Introducing a planning

step might result in significant performance improvements similar to those demon-

strated in this thesis.

In Chapter 5, using the concept of robust correspondence estimation and land-

mark coordinates, a method for animation reconstruction has been derived. Here,

the goal is to reconstruct a shape and its motion from a given set of unordered and

uncorrelated dynamic point clouds. The concept of landmark coordinates, shown

in Chapter 4, has been reinforced with respect to topological noise. Incorporating

the RANSAC-like correspondence estimation from Chapter 3 the algorithm is able

to estimate correspondences even between frames with large temporal gaps. Point

clouds acquired with real-time 3D scanners or by other scanning approaches like

multiview-stereo reconstruction has been used in order to demonstrate the real-

world scenarios. Although the problem of animation reconstruction is very com-

plex, the algorithm is still able to achieve very good results without any a priori

given template model. The results show that the reconstruction of shape and mo-

tion based on geometric information only, as shown in Chapter 5, is possible and

acts as solid grounding for the research in this area.

In the third part of this thesis, Chapter 7, the problem of shape matching has

been observed from another perspective. It has been redefined as a Markov random

field (MRF) where each node describes a point on the source shape. The goal is to

find the best inference over the label set, which is described by the target points.

The formulation of the problem as MRF provides one with the benefit of being

able to find all local, partial symmetries in the shape. This is in stark contrast to

the methods shown in the previous chapters, which, if used as symmetry detectors,

would only be able to find global symmetries, i.e. mappings of the complete shape

onto itself. The formulation as a MRF also offers another interesting perspective:
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just by varying one parameter the algorithm is able to find either more local or

more global symmetries. The ability to find local symmetries as also global shape

matchings has been demonstrated on various shapes. The inference in the MRF

has been computed with loopy belief propagation (LBP). The ability of computing

partial symmetries or matches in a shape provides a large step towards automatic

understanding and classification of objects as seen by a machine.

One big disadvantage of any belief propagation approach is the relatively high

amount of memory and running time required to estimate the inference. Since

the model is “managing” a large amount of possible states for each variable, the

performance drops very quickly. Equipped with the strong wish to solve that prob-

lem an approach for an optimized version of belief propagation, namely wavelet

belief propagation, has been shown in Chapter 8. The marginal distribution and

all computations have been moved into the wavelet domain. The transformation

into the wavelet domain dramatically reduces the space-time complexity for spe-

cific types of problems. Experimenting with computer vision tasks, such as image

matching and optical flow, the use of the wavelet based belief propagation approach

facilitates not only theoretical but also a practical performance advantage over the

existing methods. The advantage of an efficient inference estimation provides an

important building block for other research fields which employ belief propagation.

Summarized as a simple list, the main contributions of this dissertation are:

• a RANSAC-like approach for robust correspondence estimation between a

pair of point clouds.

• PLANSAC as a new concept for shape matching by incorporating a novel

a-priori planning step which reduces the subsequent correspondence estima-

tion to a minimum.

• a method known as animation reconstruction for reconstructing the shape

and the motion of a moving deformable object from a set of unordered point

clouds as obtained by a dynamic 3D scanner. The method is able to deal

with large temporal and spatial gaps in the data.

• a redefinition of shape matching as a MRF problem and a solution using

belief propagation, providing the ability to detect even partial matches as for

example required for self-symmetry detection.

• an optimization of belief propagation by performing the computation in the
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wavelet domain taking a large step towards resolution independent, i.e. con-

tinuous, belief propagation inference computation.

9.1 Discussion and future work

To the end, I would like to discuss the main essence of the contribution made in

this dissertation and what remains to be done in the future research.

The problem of shape matching has evolved over several years. Right in the

beginning, research was interested in the case of rigid shape matching. I believe

that this problem can be considered as solved nowadays, since it has been widely

adopted in the industry and is relatively easy to solve with ICP related approaches,

assuming a good initial alignment is given. Besides that, one can imagine a simple

RANSAC algorithm which estimates the initial shape alignment with respect to the

reference frame by computing the transformation matrices based on a set of three

or four matched descriptors.

Matching shapes, which undergo strong deformation, however, can still not

be considered as solved on its own. In this dissertation I have shown several ap-

proaches for the case of isometric deformation. Here the main assumption is that

the shape’s surface does not strongly deform in elastic way hence preserving a dis-

tance between any two points on the surface. This assumption is well founded as

discussed in the beginning of the thesis. Of course this assumption does not gener-

alize to all instances of deformable shapes and hence can not be considered as the

answer to everything. However, I believe that there exists a large set of problems

which are perfectly reflected in this assumption. My personal opinion is that in the

next years we have to try to understand the complexity of the shape matching prob-

lem first, before implementing any algorithm trying to solve it. The contribution

proposed in Chapter 4 is one of the steps towards the comprehension of the prob-

lem. This idea has now been taken up by Ovsjanikov and colleagues [98] where

the authors derive a so called condition number which maps the difficulty of shape

matching for different types of shapes to a single number as has been hinted in this

thesis.

I think, as soon as we understand the problem we are trying to solve in the

possible best way, the solution will be obvious.
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If we knew what it was we

were doing, it would not be

called research, would it?

Albert Einstein (1879-1955)
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