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Abstract

This thesis presents new methods for the inverse reflector design prob-
lem. We have focused on three main topics that are deeply related with the
problem: the use of real and complex light sources, the definition of a fast
lighting simulation algorithm to compute the reflector lighting in a fast way,
and the definition of an optimization algorithm to more efficiently find the
desired reflector.

To achieve accuracy and realism in the lighting simulations, we have used
near-field light sources. We present a method for compressing measured
datasets of the near-field emission of physical light sources. We create a
mesh on the bounding surface of the light source that stores illumination
information. The mesh is augmented with information about directional dis-
tribution and energy density. We have developed a new approach to smoothly
generate random samples on the illumination distribution represented by the
mesh, and to efficiently handle importance sampling of points and directions.
We show that our representation can compress a 10 million particle rayset
into a mesh of a few hundred triangles. We also show that the error of this
representation is low, even for very close objects.

Then, we have proposed a fast method to obtain the outgoing light dis-
tribution of a parameterized reflector, and then compare it with the desired
illumination. The new method works completely in the GPU. We trace mil-
lions of rays using a hierarchical height-field representation of the reflector,
and multiple reflections are taken into account. We show that our method
can calculate a reflector lighting at least one order of magnitude faster than
previous methods, even with millions of rays, complex geometries and light
sources.

Finally, a new global optimization algorithm has been specifically tailored
to minimize the function that calculates the difference between the reflector
lighting and the desired one. The optimization is an iterative process where
each step evaluates the difference between a reflector illumination and the
desired one. We have proposed a tree-based stochastic method that drives
the optimization process, using heuristic rules to reach a minimum below a
threshold that satisfies the user-provided requirements. We show that our
method reaches a solution in less steps than most other classic optimization
methods, also avoiding many local minima.





Resum

En aquesta tesi es presenten nous mètodes per al problema del disseny
invers de reflectors. Ens hem centrat en tres temes principals que estan
profundament relacionats amb el problema: l’ús de fonts de llum reals i
complexes, la definició d’un algorisme ràpid de simulació de la il·luminació,
i la definició d’un algorisme d’optimització per cercar més eficientment el
reflector desitjat.

Per aconseguir resultats precisos i realistes en la simulació de la il·luminació,
s’han utilitzat fonts de llum near-field. Presentem un mètode per comprimir
els conjunts de dades mesurats que defineixen un near-field. Per fer-ho, el
mètode crea una malla al voltant la font de llum i emmagatzema la informació
de la il·luminació. Alhora, a la malla se li afegeix la informació sobre la dis-
tribució direccional i la densitat de l’energia. Donat el model comprimit, hem
desenvolupat un mètode per generar raigs aleatòriament i per importància
sobre la distribució de la il·luminació representada per la malla. Els resultats
mostren com es poden comprimir models de 10 milions de partícules en una
malla de tan sols uns centenars de triangles. També observem que l’error
generat per aquesta representació és molt petit, inclòs per distàncies molt
properes a la font de llum.

Llavors, hem proposat un mètode per calcular la il·luminació d’un reflec-
tor amb rapidesa, i comparar aquesta distribució amb la il·luminació desit-
jada. Aquest nou mètode s’executa completament en la GPU i permet traçar
milions de raigs amb múltiples reflexions, utilitzant una representació de la
geometria en forma de height-field. Els resultats mostren com el mètode per-
met calcular la il·luminació d’un reflector amb, com a mínim, un ordre de
magnitud més ràpid que mètodes anteriors, fins i tot amb milions de raigs i
geometries i fonts de llum complexes.

Finalment, s’ha dissenyat un mètode d’optimització global adaptat al
problema i que minimitza la funció que calcula la diferència entre la il-
luminació generada per un reflector i la desitjada. Aquest algorisme d’ op-
timització és un procés iteratiu on en cada pas s’avalua la diferència entre
ambdues il·luminacions. Hem proposat un mètode estocàstic basat en la con-
strucció d’un arbre i dirigit mitjançant regles heurístiques, per tal de poder
assolir el mínim sota un llindar que satisfà els requeriments especificats per
l’usuari. Els resultats mostren que el nostre mètode obté una solució en
menys passos que altres mètodes clàssics d’optimització, alhora que evita el
processat de molts mínims locals.
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Chapter 1

Introduction

Nowadays, lighting design is a very important aspect in our society. It is
present in many places where human activities are involved, and it influences
life quality and work performance. A good lighting design, driven by energy
efficiency and lighting quality, is the key to get correctly lighted environ-
ments.

Lighting design is based on the definition of a bulb light source and a
reflector, together producing the desired lighting. The bulb and its light-
ing distribution are usually known beforehand, following rules about power
consumption and energy efficiency. The reflector shape should provide the
control to manage this distribution and to generate the desired light distri-
bution.

When manufacturers need to create a reflector that produces a desired
illumination, an iterative process starts, and a set of reflectors are built and
tested. Because the reflector shape is unknown, this process is usually carried
out in a very empirical way, since there is not any established engineering
process to get the final shape. Therefore, experienced users follow a trial and
error procedure, which involves a high manufacturing cost, both in materials
and in time. This inverse engineering design is usually carried out with
software tools that help designers to model the reflector shape and to perform
the lighting simulation. However, the trial and error process is similar, and
the time costs are high, too.

Another aspect to be considered is the accuracy in lighting simulations.
The reflector shape geometry has to be detailed enough and feasible to be
constructed. Moreover, the light source distributions generally used in the
design process, called far-fields, are based on isotropic point light models,
considering that the bulb is placed at a large distance from the measurement
point. This is not correct, as in practice the bulb volume is located very close
to the reflector shape.

1
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The objective of this thesis is to present new solutions for the whole prob-
lem: Inverse reflector design using accurate lighting simulation techniques.
First, complex light sources (near-field light distributions) have to be con-
sidered instead of far-field distributions to get accurate results in lighting
simulations. One of the main problems of using complex light sources is the
management cost, because this kind of light representations are too huge to
be used with classic lighting simulation tools. To solve it, a new compres-
sion method will be presented that compresses the light distribution with a
minimum error.

Next, we will focus on reflector lighting simulation. During an optimiza-
tion process, we need to calculate lighting distributions from a huge set of
possible reflectors. Therefore, we need to use a very fast method to com-
pute each one of these lighting simulations. We will use GPU techniques to
compute and compare the light distributions in a fast way.

Finally, we will define an optimization method to perform the search
for the reflector which produces the minimum illumination difference in the
family of feasible reflectors. A new global optimization algorithm, that spans
the reflector domain in a stochastical way, will be presented, searching for a
suitable reflector which produces a minimum difference between the current
light distribution and the desired one.

Figure 1.1: Overall scheme of this thesis. The orange boxes are the problems
to solve, and the yellow boxes are the solutions. The boxes with text in bold
are the developed solutions in this thesis.
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1.1 Overview

Reflector design is based on the definition of three components: the light
source, the reflector and the desired lighting. Since designers know how the
desired lighting must be, we should focus on the light source and the reflector.

The light source is usually defined as a far-field light source. As is said
in the previous section, this is not correct for bulbs located very close to
the reflector shape. To achieve accurate lighting simulations, we have to use
anisotropic light models that are near-field light distributions. The main
problem of near-field light representations is the huge amount of data re-
quired. They are usually represented as a set of millions of particles captured
on a virtual bounding enclosure of the bulb light source. To manage them
we need high computational resources, which turns into a problem when
we want to use them with classic lighting simulation algorithms. For that
reason, we need to define a method to loseless compact the near-field. A
clustering algorithm is proposed that creates clusters over the bounding sur-
face where the particle data is similar. The resulting clustering data requires
small memory size. Then, a reconstruction algorithm generates samples on
demand following the original near-field light distribution with a small error.

The reflector is defined as a surface that represents a constructible de-
sign. The reflector must be able to be manufactured through a press-forming
process, where the reflector shape is deformed only in one direction. This
surface shape, together with the light source, should produce the desired
lighting. But usually it is not possible to get this shape directly from the
desired lighting, only for very simple cases. In general, we need to resort to
some sort of optimization algorithm where we test a huge set of reflectors,
from a family of feasible reflectors, and choose the best one. For that reason,
a fast lighting simulation algorithm is needed to get the light distribution for
each reflector and compare it with the desired one. To achieve it, a GPU ray
tracing algorithm is proposed to calculate each reflector light distribution in
a fast way. In addition, a GPU algorithm is also defined to calculate the
difference between the obtained and the desired light distributions.

Because we want to get a reflector that produces a distribution as close
as possible to the desired one, we need an iterative process where a set of
reflectors is tested, choosing the reflector with the minimum light distribu-
tion difference. That means we need an optimization algorithm to minimize
an unknown function, becoming a strongly non linear problem, due can be
found many local minima. In general, optimization algorithms can be clas-
sified in local or global optimization methods. The local methods do not
guarantee that the solution found is the minimum solution, as they tend to
fall in local minima, and depend on the starting minimization point. The
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classic global methods search for the best minimum solution, but do not
fit well to our problem because of its strongly non-linear nature, and the
computational time requirements are too high. We propose a new global
optimization algorithm, specifically tailored for this problem, as a tree-based
stochastic method that drives the optimization process, using some heuristic
rules, to reach the desired minimum.

1.2 Contributions
The main contributions of this thesis are :

• Improving current inverse reflector design tools and methods to achieve
faster and more accurate results.

• Utilization of complex real light sources in inverse reflector design.

• A fast method to compute the reflector lighting distribution using GPU
algorithms

• A new optimization algorithm to get the desired reflector in a fast way.

1.3 Organization of the Thesis
The thesis is organized as follows:

Chapter 1: Introduction. Introduces the motivation of the thesis and de-
scribes the interest of the Inverse Reflector Design problem in the con-
text of illumination engineering. Also summarises the contributions of
the thesis and its organization.

Chapter 2: Previous work. General Inverse Rendering problems are pre-
sented and summarized. Next is described the state of the art for real
and complex light source. Then is included a summary of the most
relevant methods to render the reflector lighting in a fast way. Fi-
nally, is shown a summary of significative local and global optimization
methods.

Chapter 3: Compact representation of near-field light sources. Presents
the differences on using near-field and far-field light sources for reflec-
tor lighting calculation. Due the high computational costs required to
manage near-field models, a new compression method is presented that
allows to use efficiently real complex light sources for reflector lighting
rendering.
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Chapter 4: A fast algorithm for reflector lighting. Proposes solutions
to calculate the reflector lighting distribution in a fast way. A new
adapted method for ray tracing on the GPU is presented. Also most
recent GPU capabilities have been tested in the GPU ray tracing field.

Chapter 5: Optimization. Define and fit an optimization algorithm into
the inverse reflector design problem. A new global optimization method
is presented that allow to reach the solution in a few minutes.

Chapter 6: Conclusions and Future work. Concludes the thesis sum-
marizing its main contributions and pointing out unsolved problems of
our approach. Also, possible future directions of research in the context
of the thesis are commented.
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Chapter 2

Previous work

The work presented in this thesis focuses into obtaining the reflector shape
that generates a desired light distribution.

In general, we can consider the light transport theory and the general
rendering equation [Kaj86] to solve it:

L(p, ω) = Le(p, ω) +

∫
Ω

fr(p, ω, ωi)Li(p, ωi) cos θidωi

Le(p, ω) is the emitted radiance at point p and direction ω. The radiance
is a measure of the flux density per unit solid viewing angle [Rye02], and is
defined as the power radiated at point p in a direction ω per unit of projected
area perpendicular to that direction, per unit solid angle for a given frequency,
that is [Watt ·m−2 · sr−1]. Radiance is commonly used for light sources, that
are one of the most important parts of the luminaire, so it defines how the
light source rays arrive at the reflector surface. In section 2.1 we will discuss
how this light sources are represented to get accurate results.

The scattered radiance from point p in direction ω is the sum of the
emitted radiance and the incoming radiance Li(p, ωi) from all directions ωi

controlled by the scattering function fr(p, ω, ωi) and the light attenuation
θi from the incident angles. This part of the equation depends on the scene
geometry: the reflector shape in our case. Therefore, we consider p as a point
on the reflector surface. In section 2.2 we will show a summary of methods
to simulate the lighting in a general scene. Moreover, we will focus on those
algorithms, with acceleration structures and methods, that fit well to our
purpose.

L(p, ω) is is the radiance exiting from a point p at direction ω. The goal
is to get a radiance L(p, ω) as closest as possible to a desired one. Thus, we
need an optimization algorithm to search for a good solution progressively

7
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from a set of suitable reflectors. The most common optimization algorithms
will be reviewed in section 2.3.

On the whole, the problem can be classified as an inverse design problem.
In section 2.4 there is the state of the art of inverse design problems, focusing
on those methods that are in the scope of inverse lighting methods.

2.1 Light source distribution representations

Light sources are objects that emit light defined mainly by the shape, the light
distribution and the emittance energy. The light source shape defines how
the rays are emitted from the light source surface, or a virtual representation
of it. Some classic examples are point light sources (rays are emitted from
the same point), spherical light sources (rays are emitted from the surface
of a sphere) and area light sources (rays are emitted from a generic surface).
The light source distribution specifies how the rays are distributed from the
light source into the geometrical space. These distributions are defined often
by an analytical function that makes easy the light generation process. This
light can be represented as a set of rays, photons or emittance radiance
(Le in equation (1)). Some classic examples are the directional distribution
(the most basic, where all rays are emitted in a unique direction), radial
distribution (rays are emitted in all directions with the same probability),
cosine and Phong distributions (rays are emitted following a cosine or Phong
lobe, where ray density is greater as the ray directions are closer to the light
surface normal vector). Since the mentioned light sources try to simulate
real light sources, more detailed representations are needed to get accurate
results. Real world light sources are represented as complex light sources,
using more detailed shapes and light distributions. There are two kind of
complex light source representations: far-field and near-field.

A far-field representation models a luminaire as an anisotropic point light
source, and assumes that objects to be illuminated are located far away. As
stated in [Ash93], the distance to consider a light source as a point light is
about seven times the longest dimension of the light source bounding volume.
There are some established standards to represent far-field light sources, the
most important being IESNA and EULUMDAT [ANS02][bCL99]. However,
far-field representations do not produce accurate results when objects are
close to the light source.

The near-field models represent real light sources, modelled as extended
light sources, without any assumption on the exact light source placement.
The standard procedure to construct a near-field is to take several raw im-
ages from the light source. In [Ash93] it was proposed a simple acquisition
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system controlled by two degrees of freedom (see Fig. 2.1). A photosensor
device turns around the light source taking images at each step. At the same
time, the light source can be rotated over itself. The result is a goniopho-
tometer capable to get, over a light source bounding sphere, a set of particles
composed by points and directions.

Figure 2.1: Goniophotometer system description, as is shown in [Ash93]

In recent years there has been an important effort to improve real light
source capture and representation methods using near-field models. How-
ever, the raw data produced by these capture methods can produce sev-
eral gigabytes of images. Captured data can be compressed to a light field
[LH96][GGSC96] or interpolated to generate a rayset [AR98].

A light field is usually represented with a Lumigraph [GGSC96]. A Lu-
migraph is a 4D structure that is created from the relationship between two
levels of 2D structures or slices (see Figure 2.2). Each cell at the first level
is linked with one slice at the second level. The second level slices store the
radiance for each ray, represented by a 4D parameterization. The quality of
the represented light field depends on the slices resolution and the distance
between them. The first approach to generate a light field was proposed
in the canned light sources method [HKSS98]. They used a representation
similar than the one proposed in [Ash95], computing a light field to be used
later in a ray tracing algorithm. The main drawback of this method is that
they do not show any way to use importance sampling for the light field to
be used in a light ray tracing method, and it is not suitable to be used at
short distances due the regular pattern of the light field. Another method
is presented in [GGHS03a] that solves these drawbacks. However it needs
around 100Mb per light using an efficient memory representation.
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Figure 2.2: Lumigraph description. Each ray is represented by a 4D param-
eterization of a pair of cells in two parallel planes. In the example, the ray
is represented by (ui, vj, sp, tq), where ui,vj and sp,tq are the cell coordinates
for first and second planes respectively.

A rayset is a set of particles (point, direction) with equal energy and
without spectral distribution, emitted at the light source and captured in a
virtual bounding surface. The capture process uses a gonio-photometer that
could be mounted on two rotating arms that allow the device to capture the
light coming from a source from all possible directions, but other setups are
also possible [AR98][GGHS03a][GGHS03b]. This representation is the indus-
try standard for optical illumination analysis software [Rad][Lam][Bre, OPT].
Nevertheless, a rayset dataset needs around 220Mb of memory allocation for
a light source with 10M particles.

2.2 Lighting simulation

For a given reflector and light source we have to compare the generated light
distribution with the desired one. Thus, we need to perform a lighting sim-
ulation (rendering) to get the reflector light distribution. Although a direct
lighting simulation method would be enough, we need realistic renderings to
get accurate results. Therefore we need direct and indirect lighting methods
(global lighting algorithms). On the next section we present a summary of
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the most relevant global illumination methods. Next, we focus on techniques
to accelerate the rendering times using current GPU capabilities.

2.2.1 Global illumination

Lighting simulation for realistic rendering is performed using global illumi-
nation techniques. There are three main aspects to consider for global illu-
mination: the light sources, the light transport through the scene and the
light interaction with scene objects. All of them can be represented using
the rendering equation (1) as it is explained at the start of the current chap-
ter. The scattering function fr(p, ω, ωi) is usually defined as a BSDF (Bidi-
rectional Scattering Distribution Function), and defines how the incoming
rays ωi are related with the outgoing direction ω at point p. This function
is commonly the composition of two other functions: BRDF and BTDF.
The BRDF (Bidirectional Reflectance Distribution Function) defines how
the rays reflect over the surface [Pho73][Bli77][Whi80][CT81][Sch94][AS00].
The BTDF (Bidirectional Transmittance Distribution Function) define how
the rays are transmitted through the surface [He93]. In addition there is
the BSSRDF (Bidirectional Surface Scattering Distribution Function), that
covers those materials where the ray is transmitted through the surface, and
scattered inside, entering in a point and outcoming in a different one, like
translucent materials or layered surfaces [HK93][JMLH01]. The BSDFs can
be considered a subset of the BSSRDFs. For our case only will be considered
the BRDF of the reflector surface.

According on how the rendering equation is solved, there are different
global illumination techniques. Some examples are ray tracing-based tech-
niques [Gla89], such as path tracing, bidirectional path tracing, metropolis
light transport, or photon mapping ; and radiosity techniques. In the follow-
ing subsections we are going to explain in more detail these techniques.

2.2.2 Ray Tracing

In [Whi80] it was introduced the ray tracing technique. From the eye, so for
each pixel of the image on the viewport, a ray is traced through the scene.
The ray intersection point is calculated with the ray casting algorithm. When
an intersection point is found, three new rays could be considered. First, the
reflected ray, that is traced again through the reflected direction, taking
into account the BRDF. Second, the refracted ray, tracing the incoming ray
through a translucent or transparent material, taking into account the BTDF.
Third, the shadow ray, where the current point is checked in order to know if
it is in shadow or not, tracing the ray until reach the light sources. If any ray
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intersects first with an opaque object, the current point is in shadow. The
three rays and the current point material properties are used to calculate
the shading for this point, and the final color for the pixel image. This
iterative process stops when no more ray intersects with geometry, or when
a maximum number of bounces is reached.

The ray tracing is a view dependent algorithm, so if the eye position or
view direction changes, the scene must be rendered again. This is necessary
to get realistic details such as reflections or specular effects. Also, the quality
of the results depends on the image resolution, but more rays are traced into
the scene if not enough rays are used. This can produce aliasing effects. To
solve it, multiple rays are sampled for each pixel. In [CPC84] it was presented
some improvements to get more realistic effects, such as motion blur, depth
of field, shadow penumbra and fuzzy reflections.

A variation of ray tracing, taken from another point of view, is light ray
tracing. This method, first presented in [Arv86], computes the light rays from
the light sources through the scene, until no more geometry is intersected (see
Figure 2.3). The light rays are sampled from the light source distribution
description using Monte Carlo methods (see next section). Furthermore,
shadow rays are not used, and the technique is view independent. This
method is usefull when it is required to obtain the outgoing light distribution
on a scene, like for example reflector lighting. The number of light rays traced
will depend on desired light distribution quality.

Figure 2.3: Light ray tracing description.
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Monte Carlo methods

In [Whi80] and [CPC84] it was introduced the idea of stochastic methods
to sample view rays or light sources. This led to the rendering equation
[Kaj86] and the first unbiased Monte Carlo transport algorithm, called Path
Tracing. The main difference with ray tracing is the reflected ray generation,
that is sampled stochastically on the hemisphere over the intersected point.
Also, the shadow ray is not traced. The idea is to bounce recursively the ray
through the scene until it reaches any light source. This path is commonly
known as random walk The main drawback of this method is the need to
trace a large amount of rays per pixel to get enough sampled paths, and
consequently accurate results.

To improve it, in [LW93] and [VG994] it was presented Bidirectional Path
Tracing. Two random walks are traced, one from eye view, like in path trac-
ing, and the another one from each light source. The light ray is also sampled
by Monte Carlo methods. Then, all hit points for the respective paths are
connected together using shadow rays, and the appropriate contributions are
added to final result.

In [VG97] it was presented the Metropolis Light Transport algorithm,
based on a variation of Monte Carlo Metropolis. This method improves
bidirectional path tracing for effects such as caustics, or cases when there
is concentrated indirect lighting. From the traced light rays, each path is
mutated inserting new points in the path and new propagation directions.
The mutations are done by sampling a probabilistic function based on how
the light arrives to the eye.

Photon Mapping was presented in [Jen96] and [Jen01]. This method im-
proves the previous bidirectional path tracing and metropolis light transport
algorithms in the way of obtaining realistic results with complex effects, such
as realistic caustics, diffuse interreflections, or subsurface scattering. In a first
step, the algorithm traces the photons trough the scene. The photon hits are
stored in a KD-Tree (see Section 2.2.2), also called Photon Map. Also, the
absorbed energy by the surface, that is the indirect illumination, is specified
by a stochastic choice, where the photon energy is absorbed, reflected or re-
fracted based on the surface material properties. Another map, the Caustic
Map, stores the photons whose previous intersection is on a specular surface.
The caustic map is a subset of the photon map, but it has to store more sam-
ples to get accurate caustics results. In the next step, view rays are traced
through the scene. When a hit succeeds, a density estimator gets the radi-
ance for the intersected point from the interpolation of the nearest photons
on the photon map (see Figure 2.4). This radiance is accounted for together
with the direct illumination, obtained by tracing a ray to the light sources;
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the specular lighting, obtained using the classic ray tracing; and caustics,
calculated from the caustics map and using also a density estimator. Unlike
previous methods, this is a biased method, which means that results could
be incorrect. But this is usually solved by increasing the number of sampled
photons.

Figure 2.4: Photon Map (left) and Caustic Map (right) creation. The sphere
(bottom) is used as density estimator over the KD-Tree that contains the
maps

Acceleration structures

One of the most costly lighting simulation operation is the ray traversing
trough the scene geometry, so a ray-geometry intersection check algorithm
must be executed for each object. The organization of the scene geometry
in triangle or quad meshes simplifies the intersection test, but it remains
a slow rendering stage for large scenes. To improve it, some acceleration
structures were proposed. The most basic is a regular grid, where a list with
all geometry that is contained or intersected is stored . But this only reduces
the problem linearly. To improve the efficiency we have to use hierarchical
structures.

The Octree [Gla84] [San85] is a structure of square boxes (voxels), where
each box is recursively subdivided into eight non overlapping equal boxes,
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defining a tree. The octree nodes that are empty or that contain less than a
specified amount of geometry, are not subdivided any more. Since the ray-
box intersection is easy to compute, the ray traversal is easy too. First, the
ray is tested on top level voxels. If it intersects, the next level is considered,
and the intersection test is performed for the eight subboxes. This process is
repeated until the box intersected is empty, or until it is a tree leaf, where the
ray intersection test is calculated against the list of the stored geometry. The
octree size is specified by this list size, a smaller list means a larger octree.
There are many works and octree improvements for ray traversal [ES94], such
as [Sam89] that introduces the neighbor finding, [Grö93] for dynamic scenes,
[WSC∗95] that constructs the octree in basis of an estimation of ray-geometry
intersection tests, or [RUL00], that shows an interesting traversal algorithm
that works in tangent space and uses a voxel encoding method that allows
the traversing in a fast way.

The Binary Space Partition (BSP) tree [FKN80] is another structure that
subdivides the space into planes (in 3D space), where each one of these planes
is a node in a tree, called BSP tree. Each node subdivides the space in two
parts, placing the plane at the middle of the current geometry bounding box,
repeating it until the subdivided geometry is small enough. The traversal is
done checking in each tree level at what side of the plane the ray hits. The
most difficult part of this algorithm is the BSP tree generation, so for each
node we have to choose the subdivision plane, and this affects directly the
ray traversal performance. Many works and improvements can be found in
the literature [TN87] [Nay93]

The KD-Tree [Ben75][Ben80] could be considered as a particular case
of BSP. In this case, the planes are axis aligned, so there are only three
possible planes, and can be placed anywhere in the geometry bounding box.
The most usefull advantage of KD-Tree is the use of the k-nearest neighbor
algorithm. From a selected point, the algorithm searches the closest k nearest
neighbors climbing into the hierarchy, and checking for each adjacent node
if it intersects with a virtual sphere with the same radius as the maximum
neighbor distance. This is the basis of the Photon Mapping method (see
Section 2.2.2) to calculate the average energy around a hit point on the
Photon Map.

The Bounding Volume Hierarchy (BVH) [RW80][KK86][GS87] is a tree
structure where each node is a minimum axis aligned bounding box (AABB)
that encloses the geometry (see Figure 2.5). Each node is subdivided into two
children nodes, that represent the bounding boxes of the subdivided geome-
try. The traversal is done like in an octree, checking the ray-box intersection
until the leaf is reached, or discarding the tree branch if it does not intersect.

As stated in [Hav00], KD-Trees are the best option for static scenes.
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Figure 2.5: Bounding Volume Hierarchy example.

Furthermore, efficient BVH software implementations remained inferior to
performance of KD-Trees [WBS06]. In general, both methods are not suit-
able for dynamic scenes. The best results are obtained when a Surface Area
Heuristic (SAH) [Hav00][Wal07] is used, but this implies an exhaustive anal-
ysis of the scene geometry. There is an hybrid approach between the BVH
and the KD-Tree, the Bounding Interval Hierarchy (BIH) [WK06], that takes
advantage on the best of both methods, and that is useful for dynamic scenes.

2.2.3 Radiosity

Radiosity [GTGB84][CG85][SP94] is a global illumination algorithm that
tries to solve the rendering equation in a context of finite elements and diffuse
surfaces. Firstly the scene is subdivided into patches. The rendering equation
is solved in an equation system where all patches are considered. The radi-
ance transmitted between them is controlled by the form factor, that defines
their visibility. The overall process is an iterative method. When the form
factors have been calculated, the rendering equation computes the radiance
for the scene patches considering only the light source emitting patches (usu-
ally area light sources) Then, the system is solved again with the radiance
obtained in the last step. The process stops when there are no more radiance
changes in the patches, or when the results are good enough. The main dis-
advantage is that the rendering requires high computational times. The form
factor calculations consume a lot of time because all visibility conditions be-
tween all patches have to be calculated [WEH89][BRW89]. Moreover, in each
iteration step, we have to solve the rendering equation for all scene patches.
On the other hand, the result is view independent, so the rendering has to
be calculated only one time if geometry, material surfaces or light sources
do not change. There are some improvements to add non-diffuse effects, like
specular lighting or merging ray tracing with radiosity techniques (two pass
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solutions) [WCG87][SP89]. In [CCWG88][Che90][DS97] there were presented
progressive algorithms to accelerate the method, avoiding unnecessary patch
updates. In [BMSW91][HSA91] there were presented some improvements on
mesh generation for automatic geometry subdivision in function of lighting
variation.

The radiosity methods fall out of our scope, because they are useful for
diffuse geometries, but not for specular surfaces like our reflector ones.

2.2.4 GPU acceleration rendering methods

Image synthesis is based on the computation of radiance on those points that
are visible through the pixels of a virtual camera. This means that each point
can be shaded independently. Hardware graphical cards (GPU) are capable
to process many execution threads in parallel. On the other hand, ray tracing
based algorithms can be considered for parallel processing. Therefore, we
can define new ray tracing algorithms based on GPU usage, exponentally
accelerating rendering times. The survey presented in [UPSK07] summarizes
the most important methods.

GPU ray tracing algorithms

There are several GPU ray tracing algorithms to consider. In [CHH02] it is
presented the Ray Engine. This method computes all ray primitive inter-
sections on the GPU. The ray data is stored into a texture, and each scene
triangle is rendered using the full screen quad technique: This method ren-
ders a textured quad on the full viewport, where each texture texel encodes
the data to be processed in each fragment (see Figure 2.6).

Then, the pixel shader calculates for each ray the intersection with the
current rendered triangle. This is not a full ray tracing engine, and usually it
is used in combination with a CPU method, with the consequent increase of
the overload between CPU and GPU communication. A full ray tracing en-
gine is defined in [PBMH02]. This method defines the shaders and structures
to calculate the ray tracing in different steps, such as the primary ray gen-
eration, traversal, intersection, shading and secondary ray generation. The
main drawback is that only one pixel shader can be loaded at the same time
on the GPU, so for each step, many shaders have to be stored and loaded.

The main GPU problem for ray tracing is the creation and traversal of
the acceleration structures, as happens in classic CPU ray tracing algorithms,
they need a stack for each ray. Stacks are poorly supported by GPUs, and
considering that we process one ray per thread, the parallel processing allows
just few memory resources for each thread.
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Figure 2.6: Full screen quad technique. A quad is rendered on the full
viewport. The viewport has the same size than the desired output texture.
Then, each pixel becomes a fragment that is processed by a GPU fragment
shader.

As is stated in [Hav00], the best acceleration structure for static scenes
is the KD-Tree. To solve the stack problem, some stackless proposals were
presented in [FS05], [HSHH07] and [PGSS07] for KD-Tree acceleration struc-
tures in the GPU. In [FS05] there were presented two stackless KD-Tree
traversal algorithms, called KD-restart and KD-backtrack. Both algorithms
are based in restarting the traversal of a ray when it does not intersect with
a leaf. Then, the visited branch is discarded using an axis aligned bound-
ing range that decreases as more branches are discarded. The main draw-
back of this method is the need of a restart, or backtrack of the ray until
it reaches the intersection with any leaf. Also, the method performance is
uncompetitive with optimized CPU algorithms. The method was improved
in [HSHH07], taking the new GPU possibilities in branching and dynamic
looping. In [PGSS07] it is used a KD-Tree traversal based on links between
nodes [HBZ98]. The rays are packed to be processed together as a GPU
block of threads, and to maintain ray coherence. For each node, the whole
ray pack is tested for the intersection for both children nodes, traversing the
tree by the node with more intersection rays. If a node is a leaf, then the
final geometry intersection is checked for the leaf node. The non-intersecting
rays on the leaf nodes traverse the KD-Tree by the previously defined links
between leafs, avoiding to backtrack, and in consequence, without the need
of a stack.

In [GPSS07] there was proposed an algorithm to use the Bounding Volume
Hierarchy (BVH) acceleration structure in the GPU. The BVH is constructed
as a binary tree aligned to the three axis, following the classic SAH node den-
sity estimation function [MB90], that is calculated using a method based on
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the classification of the geometry in bins. The rays are processed like in
[PGSS07]. For each node, all the rays are tested for suitable intersections on
both children nodes. Then the child node with more suitable intersections
is chosen, storing the index of the other children nodes into a stack, that
is stored into the chunk shared memory. The children nodes without any
suitable ray intersection are discarded. If none of both children nodes has
suitable intersections with the current chunk of rays, the process continues us-
ing the first node in the stack. If the current node is a leaf, final intersections
are performed. This method improves the previous one described in [TS05]
in the way that the current method is based on a view dependent traversal
algorithm, hence it uses less rays. The main drawback of this method is the
required BVH construction time. This is improved in later proposals, such as
in [Wal07] and [LGS∗09]. Furthermore, this algorithm achieves a comparable
performance to the KD-Tree GPU implementation presented in [PGSS07].
As also is seen in [Wal07], the BVH is suitable both for large scenes and
dynamic ones.

In [RAH07] it was presented a GPU algorithm for the classic Whitted ray
tracing algorithm, focusing on the tracing of secondary rays. They create a
hierarchical structure with spatial coherence of rays over the scene, where
the triangles are intersected. Once all triangles are checked for the current
rays, new rays are generated from the current bounces, and a new structure
is created. The number of maximum ray bounces on the scene has to be
limited to get fast renderings. This method has a similar performance than
the previous ones, and it is also suitable for dynamic scenes.

In [SSK07] it was proposed a KD-Tree based method for dynamic scenes.
They focused on the fast creation with maximum quality of the KD-Tree
to get interactive rendering times. To do it, the SAH function is redefined,
creating a new simplest binning method to classify the geometry and to
construct each tree node. This permits to assign one thread for each tree node
construction with the related geometry, doing the whole tree construction in
parallel. The results show that, for high resolution scenes, the KD-Tree has
less quality than for low resolution scenes, and that to get high KD-Tree
quality, the rendering time increases.

GPU relief texturing methods

Since we are interested on rendering scenes where there is only one reflector,
we do not need a ray tracing engine to render a full scene with complex
geometry. There are specific acceleration methods based on relief texturing
that are more interesting for our case. As the reflector to be built must be
able to be manufactured through a press-forming process, where the reflector
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shape is deformed only in one direction, this allows us to process the geometry
in a discretized space like a height field. In [SKU08] it is presented a survey
of techniques to calculate displacement mapping on the GPU. The relief
geometry is stored into textures as height fields, that are traversed in tangent
space by scene rays to obtain the texture coordinates of the intersection
point. These coordinates are used to fetch color and normal vector data
previously stored in textures. There are many algorithms that offer different
solutions in basis of the method to get the intersection point. In [POJ05] it
is proposed a binary search method. An interval over the ray, with minimum
and maximum heights as bounds, is halved in an iterative process. Then
the middle interval height and the real height field value are compared at
the middle point, checking what section of the interval subdivision contains
the intersection point (see Figure 2.7). The method is fast, but the final
intersection will not be necessarily the first intersection. Also, the method
can be affected by false intersections and artifacts for high frequency height
fields [BD06]. This is solved by performing some initial fixed-step iterations,
but this could miss important information.

Figure 2.7: Binary Search algorithm

An improvement over binary search is presented in the precomputed robust
binary search method [BD06]. The algorithm moves a point along the ray
with a precomputed safety radius, that is a distance where can be at most
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one intersection. If the next point is closer to the intersection point, a classic
binary search is used to reach it with more precission.

In [YJ04] a secant method it is proposed. It assumes that the surface,
between the current ray point height and the next one, is planar calculating
the intersection point between both height bounds. But this method and the
previous one do not guarantee that the resulting intersection is the first one.
The sphere tracing method [Don05] improves the fixed step size calculating
a 3D distance map, where each 3D texture texel stores the radius of a virtual
sphere that guarantees no intersect with the height field (see Figure 2.8).
Then, the step size will be the sphere radius. The problem of this method is
the 3D distance map calculation and storage cost as it has to be precomputed.

Figure 2.8: Sphere Tracing algorithm

One of the most well-known and used traversal methods for height fields
is the Relief Mapping algorithm [POJ05]. The method has two stages. First
it is performed a linear search algorithm, based on ray-marching [Lev90],
where the point advances over the ray with a fixed step size. Second, when
the current ray height is under the height field value, a binary search starts
to reach the intersection point, avoiding the stair-stepping artifacts of lin-
ear search methods [SKU08] (see Figure 2.9). The main drawback of the
relief mapping method is the decision on the linear search step size. Larger
steps mean faster results, but possibly missing intersection points. Also, the
method does not guarantees to get the first intersection point, like the binary
search based methods.
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Figure 2.9: Relief Mapping algorithm.

To improve the fixed step size problem, hierarchical height fields are con-
sidered, implementing them as mip-map textures (or height maps). At each
level there is a texture with a different height field resolution. This resolution
at each level defines the step size over the ray. The Quadtree Relief mapping
method [SG06] uses this idea. The ray is projected onto the XY plane of
the height map texture (considering the height values aligned with the Z
axis) at the lower level. This gives a starting ray height. Then, and starting
at the quadtree top level, the ray advances according to the texture resolu-
tion at the current quadtree level. Two intersection distances are calculated.
First, the intersection distance to the current quadtree height. Second, the
intersection distance to the current quadtree texel boundary. If the height
intersection distance is negative, the ray does not advance, and the quadtree
level is decreased. Otherwise, the minimum distance is chosen as advance-
ment step size. If the lowest quadtree level is reached, and the current ray
height is under the current quadtree texel height, the intersection is found
(see Figure 2.10).

A very similar method is found in the Pyramidal Displacement mapping
method [OKL06], differing only on the method to move the ray along the
height map.
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Figure 2.10: Quadtree Relief Mapping algorithm.

2.3 Optimization algorithms
We are interested in finding the minimum value for an unknown function
that returns the difference between the calculated reflector light distribution
and the desired one. To get this minimum we use an optimization algorithm.
Optimization algorithms are usually based on an iterative processes that
approach step by step to the solution traversing the function domain. There
are two main types of optimization algorithms for minimizing a function:
local algorithms, that try to get a solution, and global algorithms, that try
to get the best solution for the whole function domain.

2.3.1 Local optimization methods

Local optimization algorithms try to get the minimum locally on the un-
known function domain. This kind of algorithms is suitable when the so-
lution is near to the starting point. There is a large amount of local op-
timization methods that minimize a function. Here we focus on the most
relevant local methods capable to manage multidimensional functions. For
other methods, we recommend to the reader to references the classic litera-
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ture [Fle87][NW99][Pre07].
One possible classification of local algorithms is between direct search and

pattern search methods. Direct search methods calculate or approximate the
derivatives of the function. One of the most commonly used method is the
conjugate gradients algorithm [Pre07]. This method calculates the function
derivatives to know in which direction (in parameter space) the function
decreases faster. To calculate the derivatives, the function must be known.
Because the function is unknown, many evaluations of the function at near
points have to be calculated to interpolate the derivatives.

Pattern search methods compute patterns of function points trying to
get the best optimization direction, and avoiding the derivative dependence.
The most classic algorithm is Hill Climbing [Wei07]. This simple method
starts from a point on the domain and searches between its neighbors for
a point with the best value. The optimization ends when there is not any
best near point. The method is very sensitive to local minima. A more
efficient algorithm is the Downhill Simplex method, also known as Nelder-
Mead method [Pre07]. This is an optimization algorithm that for each step,
creates and manipulates systematically a pattern of points trying to get the
best direction to drive the optimization. This pattern defines the shape of
a simplex with as many vertices as function parameters. Then, the worst
one is chosen and it is reflected over the simplex centroid if the new point
is better than the current better one. Otherwise, the simplex is contracted.
The process continues until the simplex vertices are close enough, so the
solution is found. This method is suitable for smooth functions, and the
main drawback is the number of function evaluations to calculate.

Another pattern search method is the Hooke & Jeeves algorithm [HJ61].
This method is based on a downhill simplex search method, but only con-
siders two points along each parameter axis to construct the pattern. These
points are shifted along their axis with an initial offset from the current pa-
rameter point. The combination that produces the best function evaluation
is chosen. Then, it is performed a jump in the parameter space from the last
best point and through the new one, obtaining a new point, that is checked
again shifting the parameters along their axis. When no new point produces
better results than the current one, the jump step is reduced, and the process
starts again at last point. Therefore, the pattern becomes more accurate as
the method approaches the solution (see Figure 2.11).

In [GL93] it is presented the Tabu Search algorithm, that tries to in-
crease the optimization speed avoiding already visited points on the domain.
For each optimization step, a new near point is selected. The new point is
searched into a taboo list that stores the already visited points. If it is not
visited, the point is evaluated and stored in the taboo list, and the current
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Figure 2.11: Example of Hooke & Jeeves optimization method for a function
of two parameters (P1, P2). The node numbers show the optimization pro-
gression. The gray squares are the point shiftings along the axis. Note that
in nodes 4 and 6 no new point produces better results, thus the shift jump
size is reduced and the process starts again at the same point.

minimum is updated.
The main drawback of local optimization methods is that it is not guar-

anteed to reach the best minimum of a function, so a point X0 is a local
minimum if

∃ε f(X0) ≤ f(X ′) ∀X ′ ∈ D′ ⊆ D ⊂ RN

with
D′ = {∀Y | ∥X0 − Y ∥ ≤ ε}

where X0 ∈ D, Y ∈ D, ε ∈ D, and ε is small enough. By the other hand,
they are usually fast and appropriate when we are near the desired minimum.

2.3.2 Global optimization methods

Global optimization algorithms, in contrast of local optimization methods,
are capable of getting the global minimum of a function, such that

∃X0 f(X0) ≤ f(X) ∀X ∈ D f : D → R
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converging to the optimal solution of a non-convex problem. Generally, global
optimization methods can be classified in deterministic and stochastic algo-
rithms.

Deterministic algorithms are used when there exists a clear relation be-
tween the features of a possible solutions and the problem to solve, or when
the parameter space is not too large. In that case, techniques like divide and
conquer space subdivisions are used. One example is the Branch & Bound
method [LD60]. This method is based on the creation of a tree, where each
node represents a bound on a function parameter domain. The algorithm
has two parts for each optimization step: branch and bound. In the branch-
ing part, the selected node range is splitted into new ones for creating the
children nodes. In the bounding part, a function estimator returns the chil-
dren nodes upper and lower bounds for the respective domains. Then, the
node with the minimum upper bound is selected, and all branches with lower
bound smaller than the selected upper bound are discarded. This pruning
process allows to discard those branches that never will drive the algorithm
to the solution (see Figure 2.12). The main drawback of this method is the
calculation of the children bounds if the function is unknown.

Deterministic algorithms are not suitable for problems like ours because
we can handle large parameter spaces and the solutions are not directly re-
lated with the problem to solve, because our parameter space defines the
reflector configuration domain and the solutions are a difference between a
reflector lighting distribution and a desired one (see Section 5.1). In this case,
stochastic optimization algorithms are a better option. Stochastic methods
check the function domain in a probabilistic way using Monte Carlo algo-
rithms. This guarantees the fast optimization termination with a result that
can be correct or wrong with a given probability. If the result is wrong it
means that the desired result is not exact, but it is not too far from the
desired result. Monte Carlo methods guarantee exact results in an inde-
terministic termination time. Simulated Annealing [KGV83] is one of the
most used stochastic optimization algorithms. It is a variant of the classic
Metropolis algorithm, and it is based on a physics analogy where the metal
tends to cool and anneal. Following this analogy, the method starts at an
initial point and tries to reach a state with minimum temperature, that is
our function minimum. For each optimization step, the algorithm evaluates
the function at a stochastically chosen point near the current one. Then, an
heuristic decides, stochastically too, if the process has to jump to the new
point, or remains at the current one. This heuristic is defined to drive the
process to a function minimum, giving more probability to paths where the
function evaluation differences are greater following the metal cooling anal-
ogy. One of the main advantages of this method is that it does not fall easily
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Figure 2.12: Example of Branch & Bound optimization method. The num-
bers show the optimization process. The first local minimum is found at 6,
and it allows to prune the branches 7, 5, 10 and 9 since their bounding min-
ima are greater or equal than the bounding maximum of the branch 6. The
next local minimum is found at branch 12, and finally, the global minimum
is found at branch 13.

to local minima, avoiding them when the cooling temperature is near to 0,
that is the optimization process is near to the solution. Simulated annealing
algorithms with appropriate cooling heuristics can asymptotically converge
to a global solution. But this does not guarantee that the solution will be
reached in a fast way. Also the method does not guarantees completely avoid-
ing local minima. If a local minimum is found, the process must restart at
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another starting point. It could be faster a brute force algorithm, checking
all possible states, than finding the global minimum with absolute certainty
with a simulated annealing algorithm.

2.3.3 Other optimization methods

There are other optimization techniques that solve specific cases. The algo-
rithms based on perturbation theory [Hol95] are used when the function is
known, but it is difficult to solve. These kind of algorithms apply small off-
sets to each function parameter, transforming the problem into a polynomial
form. The higher the polynomial order, the higher the precission.

linear programming optimization methods [Dan63] try to reach the func-
tion minimum or maximum using restrictions on this function. The restric-
tions are represented as linear equations composed by a set of independent
variables. A combination of linear equalities and inequalities define a poly-
tope from the intersection of all equations. The algorithm searches for a
point inside this polytope that represents the minimum or maximum of the
objective function. In other words, the goal is to solve the linear equation
system composed by all restrictions. One of the most popular methods on
linear programming is the Simplex method. However, the functions used in
our problem does not have enough restrictions to consider feasible this kind
of optimization method. There are also nonlinear programming optimization
methods. This kind of algorithms applies restrictions on different parts, re-
placing independent variables by new restrictions. Although these solutions
can handle global optimization problems, they do not guarantee the conver-
gence in a finite time if the problem is non-convex, so many local minima
can be found.

Other methods are the clustering algorithms, such as the Global k-means
clustering algorithm [LVV03]. The optimization algorithms based on clus-
tering start by evaluating a sparse set of points over the function domain.
Then, the points are clustered on points that generate values near to the
local minima. When the data is clustered enough, the cluster with mini-
mum representative value is chosen as solution. The clustering methods try
to solve the problem of starting points on local search methods. To avoid
local minima, usually a set of possible starting points are evaluated over the
full function domain (see Figure 2.13). But this does not guarantees that
some of these points drive to the same local minimum. This is usually solved
by sparsely sampling the function domain, thus their main drawback is the
evaluation of a huge number of points.

Finally, there are combinations of different methods, and variations of
previously commented algorithms. The literature on such problem is vast
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Figure 2.13: Clustering optimization. The clusters identify the local minima
and the best one is chosen.

and outside our scope. To know more about optimization algorithms, we
recommend the reading of classic optimization surveys, such as [Pre07] and
[Wei07]

2.3.4 Interval arithmetic

Interval analysis [Neu03] is the study of theory and computation with interval
data.

[a, a] = {x ∈ R | a ≤ x ≤ a}
This is important for optimization methods if function parameter ranges are
considered as intervals, for example by improving the bounds calculation.
Another avantage of interval analysis is that classic analysis is extended in
its ability to provide semilocal existence and optimality conditions for a pre-
specified local region around some point, while classic analysis generally only
asserts the existence of such neighborhoods without providing a simple way
to find them. The basic arithmetic operations are provided for intervals, such
as additions or substractions.

[a, a] + [b, b] = [a + b, a + b] [a, a]− [b, b] = [a− b, a− b]

More complex operations can be defined from the basic ones ever considering
that the functions are piecewise monotonic. For a general function with
more than one parameter, an overestimated but tighten interval range can
be defined as

g : RN → R

Range{g,x} = {g(x)|x ∈ x}
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g(z)− g′(x)(x− z) ⊇ Range{g,x}+ O(ε2)

O(ε) = x− x x, z ∈ x ∈ RN

One of the most interesting applications of interval arithmetic is the convexity
check, that tests if a function interval is convex. The main condition to do
this check is to create a matrix of intervals calculated as an enclosure of g′′(x).
A more detailed description of the checking algorithm is found in [Neu03].

The main drawback of interval analysis, for our case, is the need of func-
tion knowledge to calculate the derivatives, and the need to guarantees that
the interval is the enclosure of a monotonic function.

2.4 Inverse design
Considering a general model composed by a reflector and a light source,
the inverse design problems can be divided in function of the nature of the
unknown data [JL06] [PP03]:

• Inverse Lighting Problems (ILP), where the reflector shape geometry
and material properties are known, but the emittance and light sources
placement are unknown.

• Inverse Reflectometry Problems (IRP), where the reflector material
properties are unknown, and some features about the emittance and
reflector shape are known. These kind of problems are usually called
Inverse BRDF Design or Inverse Texture Design [Sch94].

• Inverse Geometry Problems (IGP), where the reflector shape geometry
is unknown.

2.4.1 ILP problems

There are different examples of solutions of ILP problems. In [SDS∗93] an
optimization algorithm adjusts the light source intensities, where the place-
ments and light distributions are known, until reaching the user specified
lighting. The work presented in [PRJ97] tries to get the light source place-
ments from the user specified shadows in the scene. Another local illumi-
nation algorithm is found in [Gui00] for multiple light sources, where a grid
of simple light sources is defined and clustered in each optimization step,
trying to reach the approximate light source positions and emittance. In
[Mar98] it is presented an algorithm that, starting from an already lighted
scene, constructs a system of equations for all light source unknown data,
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controlled by variable weights. An optimization algorithm searches for the
best weights to get the closest solution to desired one. In a similar way, the
work presented in [LFD∗99] starts from the real lighted scene images, and
extracts the lighted geometry using an optimization algorithm. Whereas pre-
vious mentioned solutions consider local illumination, this work considers the
scene radiosity, although some simplifications are assumed, such as diffuse
BRDFs and a hierarchical radiosity approach [SP94]. The result is a matrix
system to solve. Other solution for global illumination is found in [OH95],
where an inverse heat transfer method applied to light transfer is defined.
This method tries to get the lighting of a zone from other scene areas where
a desired lighting has been specified. An iterative process adjust the light-
ing of the whole scene until the solution is found. Another work in inverse
lighting problems is found in [RH01], where a solution for ILP problems is
presented. It simplifies the radiosity equation into an equation system using
spherical harmonic components as an approximation. However, only specu-
lar reflections can be considered to avoid large equation systems. There are
global illumination methods based on ray tracing, such as [CSF99], where
an inverse ray tracing algorithm is used based on the user specification of
the intensities over the scene surfaces, obtaining the approximate scene light
source placements. Then a simple optimization algorithm is used to better
fit the final light source positions. The work presented in [SL01] is similar,
but it uses human perception factors. Finally, other particular solutions have
been developed, such as in [PRJ97], where the light placements are approxi-
mated by the user specified shadows on the scene, or the work presented in
[Gui00], where a starting regular grid of lights is clustered in an optimization
process until the clusters produce lighting similar to the desired one.

As is stated in [PP03], ILP methods have the drawback of computing
large equation systems, and there are no global illumination solutions for
light source placements.

2.4.2 IRP problems

The goal of IRP problems is to define the material properties of the scene
geometry. In [BG01] the geometry and lighting are known, and in basis of a
real image, different BRDFs are tested until the result is close enough to the
image. In [LKG∗01] a set of images are taken around an interesting point.
Then, diffuse BRDFs are used to approximate the results to the images taken.
A similar work is presented in [YDMH99], where the BRDF of human skin is
approximated. As in ILP problems, [RH01] propose a large equation system
to solve in an optimization method. In the global illumination solutions field,
the work presented in [LD00] tries to identify the BRDF from the known
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scene radiosity, and compare them to real images. Also, it is demonstrated
that the camera calibration is very important.

The main drawbacks of these solutions are the dependence on camera
acquisition parameters, and the limited BRDF parameters that can be found.

There are also solutions to ILP and IRP combined problems, where the
geometry is known, but not the emittance and the reflectance. Among global
illumination solutions, the work presented in [KPC93], starts from an initial
radiosity distribution and light sources positions, searching the light source
emittance and the diffuse reflectance. To do it, an optimization process
finds the approximation error in three stages: the light source intensities, the
directional distribution, and the scene BRDF.

2.4.3 IGP problems

IGP problems can be grouped in two sets: analytical and numerical solutions.
For analytical solutions, the work in [Oli89] presented a solution for rotation-
ally symmetric reflectors, demonstrating the uniqueness of the solution. For
more general cases, in [KO97] they demonstrated a general weak solution,
showing existence, uniqueness and smooth of the function. The numerical
solutions can be classified by the kind of lighting method used to simulate the
light propagation, that is either local or global illumination methods. Local
illumination methods [KO98][CKO99] do not take into account the reflector
inter-reflections, considerably affecting the accuracy of the results. In [KO98]
it was presented a method that constructs the reflector boundary from the
intersection of confocal ellipsoids, where the other foci of the ellipsoid lies
in a point that already has the desired intensity. A very similar approach
was described in [CKO99] and [KO03], but this time using paraboloids, and
where the paraboloid direction lies in a direction that already has the de-
sired intensity. For both methods (see Figure 2.14), the main difference is
that the former is suitable for near-field desired lighting, and the second for
far-field desired lighting. In [EN91] and [Neu97] methods were proposed for
the reflector representation as a cubic tensor product splines. Then, a local
optimization algorithm was used to search the spline coefficients under some
function domain constraints.

The numerical solutions that use global illumination methods consider
the reflector inter-reflections. In [DCC01] it was presented a global illumina-
tion IGP method for specular reflector surfaces constructed from a 2D Bezier
curve. The four control points of a Bezier curve are specified by a genetic
optimization algorithm. The illumination algorithm is a recursive ray tracing
method, that uses the number of bounces as the optimization stopping crite-
ria. The main drawback is the problem on convergence of the optimization
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Figure 2.14: Reflector construction from the intersection of confocal ellipsoids
(left) [KO98] and reflector construction from the intersection of paraboloids
(right) [CKO99][KO03].

algorithm.
In [PPV04] and [PPV07] methods were proposed starting from an initial

reflector mesh representing a height field. Then new reflectors were obtained
changing the height of each mesh vertex. A brute force optimization algo-
rithm was used trying to minimize a distance function that measures the
difference between each reflector light distribution and the user specified one
(see Fig.2.15). The reflector lighting is calculated by a global illumination
method (see Fig. 2.16), with an anisotropic point light source (see Section
2.1). The global illumination algorithm samples by Monte Carlo, and it is
able to compute diffuse reflector surfaces, in contrast with previous methods.
The main drawback of this method is the high number of reflectors needed
to be calculated and the high computational cost to compute each reflec-
tor lighting distribution. The computational order is O(hn), where n is the
number of control points, and h is the number of discrete positions where the
control points are moved. To reach a good enough solution, the algorithm
spends a considerable amount of time (hours or even days).

Another consideration to take into account for IGP problems is the kind
of desired reflector light distribution. For far-field representations, we can
enumerate the works of [EN91], [Neu97], [CKO99] and [PPV04]. For near-
field representations, there are the works of [EN91], [Neu97], [KO98] and
[DCC01]. On the other hand, common reflector industry requirements are
far-field representations.

More recently, a new approach presented in [ASG08] proposed the gener-
ation of reflectors based on parametric equations. An optimization process
searches for the parameters that generate the desired reflector lighting using
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Figure 2.15: The overall optimization system presented in [PPV04]

Figure 2.16: From the desired lighting (left), the reflector mesh is transformed
until the lighting distribution is close to desired one (right)

photon mapping as global lighting algorithm. Although the method is fast,
its main drawback is the optimization method, the Hooke & Jeeves algo-
rithm, that is a local algorithm, and, as seen on section 2.3.1, this does not
guarantees the convergence of the method.

Finally, the recent work presented in [FDL10] shows a method to recon-
struct geometry with specular reflectance from caustic images. The method
uses a B-spline surface to define the geometry, where the control points are
moved in vertical direction, like in [PPV04] and [PPV07]. For each geom-
etry shape, caustics are calculated by a GPU Monte Carlo light transport
simulation ignoring multiple interactions. They use a global optimization
algorithm based on perturbation theory (see 2.3.3). Although the method is
very fast, its main drawback is the single reflection limitation, that makes



2.5. CONCLUSIONS 35

it not suitable for classic reflector shapes, such as paraboloid ones. Another
drawback is the optimization method, since it only guarantees a probabilistic
convergence to a global solution.

In [PP05] and [PP03] there are presented more in deep summaries of IGP
methods.

2.5 Conclusions

In this chapter, we have described different works and approaches that di-
rectly or indirectly focus on the same goal: providing tools for the inverse
reflector design. Most of these works concentrate on the reflector and light-
ing design techniques, real-world light source representations, simulation of
global illumination, and optimization methods. Although we have described
the best methods for each field, there is still much room for improvement on
the efficiency, both in computational costs and reliable results.

From realistic lighting simulation methods, that is, global illumination
methods, there are many techniques that depend on the required simulation
quality, rendering speed or computer requirements. For our purposes, we
need a very fast rendering algorithm to get the lighting simulation of a re-
flector in a minimum time. Ray tracing methods are more suitable for this
objective, in contrast with radiosity methods, because we need to compute
purely specular reflections, in accordance with industry standards, and us-
ing only a reflectance attenuation factor. From that, we could consider the
GPU ray tracing algorithms to get the required performance. However, we
do not need ray tracing engines for general scene geometries, since our case
is very particular and constrained. We have a mesh that defines the reflector
and a complex light source. Moreover, the mesh material is considered fully
specular, so we can avoid the BRDF considerations. Therefore, and consid-
ering that the reflector can be represented by a height map, we can use relief
mapping-based techniques, such as quadtree relief mapping. In addition, we
must note that we do not need a ray tracing algorithm that generates an im-
age from the viewpoint. We need a light tracer only, as we are only interested
in the reflector outgoing light distribution.

From the light source point of view, it is clear that we need to work with
near-field light sources. Current representations, such as light fields, have
some drawbacks, as they are too large models. The raysets have the same
problems. However, since raysets represent raw data, we could consider them
to define a new compressed structure to make them suitable to be used in a
light ray tracing algorithm.

Concerning the optimization methods, two main kinds of algorithms have
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been reviewed: local and global optimization. The use of local optimization
methods could be discarded, since we are interested in finding the best solu-
tion in the function domain, avoiding local minima and assuring convergence.
By the other hand, local methods are faster than global ones. We have seen
two global methods: Branch & Bound and Simulated Annelaing. The for-
mer has the problem of the bounding calculation, so we do not require any
prior knowledge about the function to optimize. The second uses an efficient
heuristic to search for the minimum, but the convergence is not guaranteed,
and it would be necessary to restart the process from another initial point.
We have seen other optimization methods such as the ones based on perturba-
tion theory, that need some knowledge of the function; linear programming,
that needs an enough number of function constraints; or clustering methods,
that need a large number of function evaluations. Interval theory shows us
the possibility to fit the function minimum by an analytical way, but with
the drawback of the lack of function knowledge to compute derivatives we
cannot use these methods. It is clear that a specific optimization algorithm
is needed, considering the most interesting parts of current optimization al-
gorithms, and creating new ones to adapt them to our problem.

Finally, we have shown that this is a case of IGP problem. There are some
interesting works done in this field, but they require high computational costs,
in time and memory size, to make them suitable for obtain accurate results
in a fast way. We think a new IGP method is needed to get the desired
reflector mesh, from a known light source that produces the desired lighting
as a far-field description. This method will be described in the next chapters
of this thesis.



Chapter 3

Compact representation of
near-field light sources

One of the most important factors for accuracy and realism in global il-
lumination is lighting complexity. This is achieved using real light source
representations. However, most of the times non measurement-based or
analytical light sources are used. This is reasonable in applications where
physical accuracy is not important, but it is critical in situations where we
want the lighting simulations to be as close as possible to the real illumina-
tion. Traditionally, a far-field approximation has been used in industry to
model real light sources. A far-field representation models a luminaire as an
anisotropic point light source, and assumes that objects to be illuminated
are located far away. There are some established standards to represent
far-field light sources, the most important being IESNA and EULUMDAT
[ANS02, bCL99]. However, far-field representations do not produce accurate
results when objects are close to the light source. As an example, a far-field
representation of a bulb can not be used to compute the light distribution
produced by a reflector, since the distance between the bulb and the reflector
surface is usually very small. The alternative is to use near-field representa-
tions. A near-field representation models a light source as a complex light
source, where the light source geometry is considered in addition with the
light source distribution. In this case, the luminaires are modeled as extended
light sources, and there is no assumption on the distance of the objects to be
illuminated [Ash93, SS96, GGHS03a].

In this chapter we present a novel approach for using, in an efficient way,
near-fields of real light sources for global illumination algorithms that will
help to solve the overall goal of inverse reflector design.

The rest of the chapter is organized as follows. The near-field acquisition
and data set models are presented in Section 3.1. In Section 3.2 it is presented
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the overview of proposed method for efficiently managing the near-fields. The
following sections 3.3 and 3.4 show the method details and how to use the
near-field representation into a global lighting algorithm. The main results
are presented in Section 3.5 Finally, some discussion on the results and the
method is presented in 3.6.

3.1 Near-field light sources acquisition and rep-
resentation

In recent years there has been an important effort to improve real light source
capture and representation methods using near-field models. This is obtained
from the capturing process around the virtual bounding surface of the light
source. A gonio-photometer performs this capture. It is usually based on two
rotating arms that allow the device to capture the light coming from a source
from all possible directions (Figure 3.1), but other setups are also possible.
However, the raw data produced by these capture methods can produce huge
near-field data sets.

To make these models useful we can compress the model to a Light Field
representation [HKSS98, Ash95] or to a rayset representation. Although
the former generates a compressed structure where the near-field is repre-
sented, the required amount of memory for data sets is high (around 100MB
[GGHS03a]). On the other hand, the data can be processed to generate a
rayset [AR98]. A rayset consists of a list of pairs of a point and a direction
(see Figure 3.2). Thus, each particle has a location and an outgoing direc-
tion. Each pair in the list can be considered as an exitant particle that comes
from the measured light source, all of them carrying the same energy.

Raysets are a convenient representation for global illumination algorithms
such as light ray tracing or photon mapping, since they provide a set of
particles that can be used directly for shooting rays from the light source.
However, raysets are usually too big (10M particles) to be efficiently sam-
pled. To solve it, a new compressing method is proposed for dense raysets
of near-field light source measurements. This compressing method transform
the rayset into a reduced set of anisotropic point light sources, with no signif-
icant loss of information. Then, a Monte Carlo method based on importance
sampling is used to efficiently sample the emittance of the light source from
the compressed data.
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Figure 3.1: Gonio-photometer RiGO [Rad] used to capture the rayset from
the light source

Figure 3.2: A rayset is a set of particles (point + direction) stored on a
bounding surface. These particles represent the light emission from a light
source.
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3.2 Overview

The method presented here deals with rayset models. The goal is to highly
compress the data set with a small error even for closely illuminated objects.

The particles of a rayset are located on a virtual bounding surface that
wraps the light source. This surface usually corresponds to a convex surface
like sphere or a cylinder, but different providers use different supporting
shapes. To take into account this variety, the algorithm is able to handle any
sort of surface as long as it is convex.

In a first step, a partition of the initial rayset into clusters is computed
using the particle locations and their directions. For each cluster a represen-
tative point is computed together with an average particle density, obtained
from the particles included in this cluster. In order to accurately capture the
particle density changes, the clustering produces more density in areas with
a rapid variation of particle density. Areas with constant particle density will
have less clusters. Once the clustering is finished, it is created an anisotropic
point light source for each cluster, where the position is the representative
point, and the directional distribution is computed using the directions of the
particles of the corresponding cluster. The point light source energy is the
sum of all original related particles to this cluster. The directional distribu-
tion is stored using a simple constant basis function over a subdivision of the
sphere of directions into spherical triangles (see Figure 3.3) in a hierarchical
way.

Figure 3.3: A regular subdivision of the sphere using spherical triangles.
From left to right, the images correspond to levels 1,2,3 and 4 of the subdi-
vision.

At the end of this process we have the compressed rayset by defining a
set of direction-dependent point light sources (see Figure 3.4) located on the
virtual bounding surface of the light source. Then, to uncompress and use
it for a ray shooting algorithm, the stored structure is used to sample each
particle, in both position and direction. First, a triangle mesh is created from
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Figure 3.4: The process of transforming a rayset into a set of anisotropic
point light sources.

the stored clusters, where the triangle vertices are the point light source po-
sitions, obtaining a mesh representation of the bounding surface (see Figure
3.5). Then, the position is chosen by sampling a triangle on the mesh and
sampling a position inside of it. Next, the direction is chosen by sampling
the directional distributions stored in the nearest triangle vertex, that is the
nearest cluster. This way, it is ensured that we sample all the domain of
possible outgoing directions.

Figure 3.5: Mesh produced from a 10M rayset corresponding to a OSRAM
PowerBall bulb.
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3.3 Compressing the Near-Field

Rayset compression has two steps. The first one groups the particles using
a clustering technique. The second one creates directional distributions over
each cluster from the original particle directional data. The result is a set of
anisotropic point light sources that represents, in a compact way, the original
light source.

3.3.1 Clustering creation

The first step of the method is to group the original set of particles into a set
of clusters. At the end, each cluster will have associated a subset of particles
and a representative point. The goal is to have a higher cluster density
where the emittance is more variable, so we can correctly capture the high
frequencies on the emission distribution, both positional and directional.

Figure 3.6: Set of clusters (below) that represents the original particle spatial
distribution (above).

The algorithm starts with a very dense initial clustering that is computed
by creating an octree, see Figure 3.6. The criterion for voxel subdivision
in this first step is to have a maximum number of particles in each voxel.
This helps avoiding a too fine initial discretization, which would lead to an
unacceptable computational cost. The experiments show that octrees with
a number of leafs between 20000 and 30000 are enough for a 10M dataset.
Once the octree has been created, each leaf voxel of the octree corresponds
to a cluster. Then, an iterative process removes unnecessary clusters until
no cluster needs to be removed. The particles of the removed clusters are
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redistributed to the remaining clusters. Each of these iterations has the
following steps:

1. 3D triangulation of cluster representatives. This produces a mesh ap-
proximation of the luminaire virtual bounding surface.

2. All clusters are traversed and marked for removal in case that they are
unnecessary. A cluster can be removed if it does not help to capture
detail. The specific criteria used will be shown below.

3. Cluster removal and particle redistribution. Particles of the removed
clusters are redistributed to the nearest neighboring cluster that has
not been removed.

After each iteration, the new cluster set is re-triangulated before a new
iteration starts. Following, it is explained in more detail the first two steps.

Triangulation

In the first iteration step we need to triangulate the virtual bounding surface
of the light source using the cluster representatives as vertices. A cluster
representative is the particle location belonging to the given cluster Ci that
is closer to the average location of the subset of particles associated to the
cluster. This average location of a cluster is computed as:

Ci =
1

Ni

Ni∑
j

Pj

where Pj is the position of particle j, and Ni is the number of particles
associated to cluster i. Then we choose the representative Ri as:

Ri = {Pn : ∀m ∈ 1..Ni, m ̸= n,Pm ∈ Ci ∥Pm −Ci∥ > ∥Pn −Ci∥}

There are many methods that calculate 3D triangulated surfaces from
point clouds, such as [SR01] or [AB99]. Unfortunately, most of these meth-
ods do not guarantee that all input points are used as mesh vertices, con-
sidering some of them irrelevant for mesh construction. As we are dealing
with clusters of energy-carrying photons, we can not neglect any point. This
can occur if the point is not relevant for the mesh definition, or if the point
produces a small concavity. In the later case, it would not be possible to
extract the faces of tetrahedra that contain this point, and it would be lost
(see Figure 3.7).
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Figure 3.7: If a point particle produces a small concavity, the tetrahedra
faces that contain it will be discarded.

So, we need a method that considers all input points, because each point
represents a cluster. The classic methods ([AB99][SR01]) have a high compu-
tational cost for a simple surface like the ones used by most rayset providers.
Also, none of these methods guarantees a mesh with mostly equilateral trian-
gles. As is explained in Section 3.4, the method needs to sample over triangle
areas. Thus, to get well distributed samples, the mesh has to be composed
by approximately equilateral triangles.

A new method is proposed, that starts from the tetrahedralization (anal-
ogous to a 3D triangulation) of the point cluster representation and the later
elimination of tetrahedra sides that do not belong to the virtual bounding
surface. The tetrahedralization is done by the Delaunay algorithm [She97].
To discard the tetrahedra sides we follow the next algorithm:

1. All input points are duplicated into a new set. The original ones are
projected over a sphere that wraps the virtual bounding surface. The
new ones are projected over the same sphere but with a larger radius.

2. The overall set of points, the original and the new ones, are used to
compute the tetrahedralization.

3. Select those triangles that have their three vertices projected together
onto the first bounding sphere.

4. Project again the selected vertices and triangles over the original virtual
bounding surface.

In Figure 3.8 a simplified 2D sectional illustration of this method can be
observed.

This algorithm is only valid for star-shaped surfaces, but the nature of the
input models used in industry already guarantees that. Note that the center
of the star must be also the center of the bounding spheres. This algorithm
works for simple convex shapes, such as spheres or cylinders. For more
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Figure 3.8: Simplified 2D sectional illustration of light source bounding sur-
face triangulation.

complex convex shapes we could use the ball pivoting algorithm [BMR∗99]
with a large sphere. Note also that the bounding sphere does not assure
that all mesh triangles are near to be equilateral triangles, but it can be
guaranteed for most of them. One special case is the cylinder light source
bounding volume, because the projection on the spheres generates distorted
triangles near the caps (see Figure 3.5). Since the point density for this
kind of near-fields decreases near bounding cylinder caps (see Section 3.5),
this does not affect too much to the overall mesh quality. Other bounding
volume shapes have been tested, such as ellipsoids, and different projection
methods based on other references, such as axis aligned projections or from
light source bounding volume medial axis. In basis on the tested cases, we
have found that the sphere bounding is the best choice.

Cluster removal

On the second step of the clustering algorithm, and once the triangulation is
finished, all clusters are traversed and tested for removal. The idea is that,
if the density of a cluster can be approximated by linear interpolation of
the neighboring vertices, then the cluster can be removed since the particle
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density is still correctly represented without it. Then, the particles are redis-
tributed among its neighbors, and the set is re-triangulated. Note that it is
much more efficient the re-triangulation in this case than keeping information
for an incremental update.

The algorithm consists of the following steps. For each cluster Ci, a
normal vector Ni and a plane Si are approximated. This approximation
is computed by performing a nearest neighbor search centered on the cluster
representative Ri. This search of nearest clusters is accelerated by using
a KD-tree built with the original particle data. Next, all adjacent cluster
representatives Rj in the triangulated mesh are projected onto Si (see top
of Figure 3.9). For each projected cluster representative Qj and for Ri, and
considering only the 2D projected coordinates, the respective density values
dj and di are added as a third coordinate. Finally, a new regression plane Sr

is calculated for the new points (see bottom of Figure 3.9). If the projection
distance t between di and Sr is larger than a user-defined threshold (called
density threshold td), the cluster cannot be removed from the mesh. The
threshold is a percentage of the maximum projection distance of neighboring
clusters. Otherwise, if this threshold test is passed, the distance from the
cluster to its neighbors is verified, in a way such that the cluster will not be
removed if the distance is larger than a given threshold, called edge filtering
threshold te. The edge filtering threshold is a percentage of the length of the
longest edge of the bounding box, which was observed to be a good distance
measure. Finally, the cluster’s mean emittance direction is compared with
the ones from its neighbors, and the cluster is removed if the angle they form
is smaller than a third threshold, the angle threshold ta. Observe that this
last verification avoids collapsing clusters on edges with sharp angles. Note
also that this is only a first approximation that works sufficiently well on the
experiments.

In Table 3.1 there are some results of clustering creation method.

3.3.2 Creation of Point Light Sources

Once the clustering is finished, we create a point light source for each cluster
Ci at its representative point. The approximation used is to accumulate all
the particles to Ri. This will result in a set of directions centered at the
point. As the number of directions can be quite high, we have to choose a
more compact representation that can be efficiently sampled with importance
sampling.

We have used a piece-wise constant set of basis functions defined over the
sphere of directions in a hierarchical way. The support of each basis function
is a spherical triangle. The sphere of directions is initially subdivided into 8
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Figure 3.9: Top: neighboring cluster representatives Rj are projected onto
plane Si. Bottom: each projected cluster representative Qj is augmented
with its density values. A regression plane is computed with all dj values.

ta td te Clusters Loops Time Size
(deg) (%) (%) (sec) MB
90 50 20 347 29 476 1.2
70 45 20 841 38 428 2.6
60 40 20 1680 48 496 5.8
30 35 15 4696 57 531 16.6
25 25 15 8776 51 642 31.6

Table 3.1: Number of clusters, number of loops in the iterative clustering pro-
cess, precomputation time and resulting memory usage for different thresh-
olds (angle difference, density and edge filtering threshold), for the Osram
PowerBall.

spherical triangles, and then each triangle is recursively subdivided using a
quaternary tree [Arv95]. We force this subdivision for a fixed initial number
of levels so we get a uniform subdivision of the sphere of directions (see
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Figure 3.3). Then, a new subdivision is done adaptively to perform a tigh
directional representation. For the raysets we have used to test the technique,
we have found that between 3 and 5 levels of subdivision are enough to get
an accurate representation (see Figure 3.10).

Figure 3.10: Adaptive spherical triangle subdivision for directional data of a
cluster. Each point over triangles is a ray direction in directional space.

Once the subdivision is created, we store at each spherical triangle the
number of original particles in the cluster with directions that belong to the
corresponding solid angle. This number also represents the exitant energy
through the corresponding solid angle. To improve compression, we only
store the triangles that have non-zero energy. Typically, less than half of the
triangles need to be stored as only half of the sphere is pointing towards the
source of the light.

3.4 Importance Sampling

Once the model is compressed, it has to be decompressed to be used in a ray
shooting algorithm. This is performed by sampling rays on the compressed
model by importance sampling. The process has to guarantee that with
enough samples, we maintain as much as possible the accuracy of the original
rayset.

In order to be able to sample the complete domain, we create a triangula-
tion of the bounding surface using the point light sources as the vertices for
such triangulation (see Section 3.2). Once we have created the triangulation,
every time we want to generate the 3D position of a particle, we first have
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to choose a triangle. We construct a probability density function (pdf) for
this, and each triangle is assigned a given value proportional to its energy.
We set this energy to the amount of original particles that exit the light
surface through the given triangle, without taking into account the densities
computed for the respective vertices. This value has to be stored with the
compressed model.

Therefore, with this pdf we can choose a triangle by importance sampling.
Then we have to select a random point on the triangle. The straightforward
approach would be to choose a point following a uniform distribution. But
this poses another problem: the pdf that results is not continuous over the
edges of the mesh, resulting in illumination artifacts. These artifacts are
caused because the spatial distribution generated by this approach changes
strongly from triangle to triangle (see Figure 3.11, left).

Figure 3.11: Uniform sampling over triangles produces artifacts (left). A
continuous sampling across the edges of the mesh avoids them (right).

To solve this problem we propose a non-uniform pdf that is C0 continuous
over the edges of the mesh (see Figure 3.11, right). The idea is to compute
the density of particles at each vertex of the mesh and perform a linear
interpolation across each polygon. For a triangle n we define the pdf at a
point x in parametric space as (see Section 3.4.1):

pn =
d0 + u(d1 − d0) + v(d2 − d0)

2An

∫ 1

0

∫ 1−v

0
(d0 + u(d1 − d0) + v(d2 − d0)) du dv

where u, v are the coordinates of point p within the triangle, d0, d1 and d2

are the densities of vertices V0, V1 and V2 (see Figure 3.12), and An is the
area of the triangle.

Unfortunately, sampling values from pn is a complex task due to the
integration needed over the triangular domain, which would require a slow
numerical integration. In order to simplify computations, we created an
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Figure 3.12: Plot of the pdf used for sampling a point inside a triangle. We
consider the function over the whole quadrilateral, but samples outside the
triangle V0,V1,V2 are rejected.

instrumental distribution p′n, which is the extension of the previous pdf to
the whole unit square, and get the samples by the rejection sampling method
[Bek99], see below. To guarantee the positiveness of the new pdf, we choose
the origin of the u, v parameterization (vertex V0) as the vertex with a lower
density, allowing us to be sure that the pdf is positive all over the domain.
The pdf also holds the condition that the integral over the domain is 1:

p′n(u, v) =
d0 + u(d1 − d0) + v(d2 − d0)

2An

∫ 1

0

∫ 1

0
(d0 + u(d1 − d0) + v(d2 − d0)) du dv

(3.1)

If we want to generate random points proportionally distributed to this
pdf we have to apply the principles described in [Scr66, Shi90]. Given two
uniformly sampled random numbers ru ∈ [0, 1] and rv ∈ [0, 1], the sample
point is ui = F−1

0 (ru), vi = F−1
1 (rv), where functions F0 and F1 are defined

using a function F :

F (u, v) =

∫ v

0

∫ u

0

p′n(u′, v′) du′ dv′

and, from here:
F0(u) = F (u, 1)

F1(v) =
F (ui, v)

F (ui, 1)
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Figure 3.13: Not all of the random sample pairs ru, rv such that ru + rv ≤ 1
produce u, v pairs such that u+ v ≤ 1. However, all the random pairs in the
green area produce u, v pairs that are not rejected.

Solving these integrals gives a quadratic polynomial that can be easily
evaluated. Unfortunately, this mechanism produces samples all over the do-
main ui ∈ [0, 1] , vi ∈ [0, 1]. That means that we have to apply rejection
sampling and reject samples that verify ui + vi > 1. This can be very in-
efficient since at least 50% of the samples are rejected. Even worse, in case
that d0 is much lower than d1 and d2, the number of rejected samples can be
much higher.

However, as vertex V0 corresponds to the lowest density, it is clear that
random numbers such that ru + rv > 1 will always produce invalid samples
(see Figure 3.13). Taking this into account, we always generate uniform
random points on the triangle defined by equation ru + rv ≤ 1. Results show
that, by using this sampling strategy, the number of rejected samples is very
small: in the experiments, less than 10% of the samples were rejected.

Figure 3.14 shows the original rayset point distribution (no directions
shown) and the point set produced by the sampling technique.

3.4.1 PDF for Position Sampling

In order to have a continuous Probability Density Function defined all over
the light surface, it is necessary to propose a well defined, continuous global
function, and normalize it. We decided to use a piece-wise linear function
defined over each triangle of the triangulation: at each vertex Pi, we require
the evaluation of the global function to be f(Pi) = di, where di is the density
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Figure 3.14: Comparison of original rayset with importance sampled set. Top
image shows the point distribution of the original rayset, and bottom image
shows the point distribution generated by the sampling technique.
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associated with the corresponding vertex. Continuity is granted over different
triangles as triangles with common vertices will use the same di values. This
way, continuity is C∞ within the interior of the triangles and C0 at the edges.

In the u, v parameter space we can formulate an expression for the n-th
triangle

fn(u, v) = (d1 − d0)u + (d2 − d0)v + d0

Now that we have the function defined over all the triangles i, we can
compute the global normalization, defined as the integral I =

∫
Ω

f(r)dr
where the domain Ω is the triangulated surface we got. This expression is
nothing else than the sum over all N triangles, each with domain Ωn:

I =

∫
Ω

f(r)dr =
N−1∑
n=0

∫
Ωn

fn(r)dr

by changing variables to the unit square, we get that this is equal to

I =
N∑

n=0

∫
Trin

fn(r(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv

where the integration domain Trin is the lower half triangle in the unit
square, and ∂(x,y)

∂(u,v)
is the Jacobian of the transformation [Wu99].

It is important to notice that computing the absolute value of the deter-
minant of the Jacobian gives the same expression as 2An, i.e. twice the area
of the triangle An = 1/2|(rj − ri) × (rk − ri)|, where ri, rj and rk are the
three vertices of the triangle.

Now, we can proceed with the integration

I = 2
N∑

n=0

An

∫ 1

0

∫ 1−v

0

fn(u, v)dudv = 2
N∑

n=0

AnIn

Then, we can write the final pdf as

pdf =

∑N
n=0 fn(r)δ(Ωn, r)

I

where δ(Ωn, r) is 1 over the triangular domain Ωn and zero everywhere else.
In order to have a clearer sampling strategy, we can multiply and divide each
term by AnIn, what will give

pdf =
N∑

n=0

AnIn

I

fn(r)δ(Ωn, r)

AnIn

=
N∑

n=0

AnIn

2
∑

AnIn

fn(r)δ(Ωn, r)

AnIn
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which clearly is a linear combination of pdfs [Bek99]. Actually, we can say
that it is a linear combination of N primary pdf’s pn:

pn =
fn(r)δ(Ωn, r)

2AnIn

=
f

′
n(r(u, v))

2AnIn

To be able to sample the pdf, a primary pn is selected first with probability

p(n) =
AnIn∑
AnIn

and next a sample is drawn using pn. So, the final expression for the pdf
becomes

pdf =
N∑

n=0

p(n)pn

Although only a single primary pdf is sampled, the result of that sampling
is obtained following the combined pdf. Obviously, when sampling pn the
δ(Ωn, x, y) factor can be omitted, as it was built to be 1 all over the domain.

3.4.2 Sampling Directions

Sampling a direction involves using importance sampling on the three direc-
tional distributions stored at the vertices of the triangle.

Once we have selected a point x, we compute its barycentric coordinates
u, v and 1− u− v. As their sum is 1, we can use these values to construct a
small CDF for the three vertices. This allows us to select one vertex and its
corresponding point light source. Then, we can perform importance sampling
on the point light source by creating a CDF from all the spherical triangles.
With the CDF we can select a spherical triangle and then sample it uniformly
with respect to the solid angle.

In Figure 3.15 is shown the overall scheme of the full particle generation
algorithm.

3.4.3 Direct illumination

As explained above, the light source is represented by a bounding geome-
try, which can be sampled to find the illumination at a given point. But,
for lights with a high directional variation, this approach for a scene point
can be quite inefficient, for example in those cases where we need to know
the received energy from the light source. If we think of this light source
model as a many light sources model, we could use a light tree technique
[War94][SWZ96][PPD98][WFA∗05] to adaptively sample the light source de-
pending on the relative position of the illuminated point.
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Figure 3.15: Overall sampling method. At step 1, one triangle is sampled
from the mesh. At step 2, a position x inside the triangle is calculated by
sampling the weighted barycentric coordinates. At step 3, a direction Ox

is sampled from the stored directional distribution on one of the triangle
vertices Vi

Lightcuts

We will use the Lightcuts technique [WFA∗05] that has been proven to be
very effective for complex illumination environments.

This technique builds a binary tree for all light sources. At each node
there is a point light source that represents the illumination of all the lights
in its sub-tree. For each point x that we want to illuminate we have to create
a cut. A cut is defined as the set of nodes of the tree such that every path
from the root node to a leaf contains just one node from the cut (see Figure
3.16). If S is the set of nodes of a given cut then the direct illumination at
point x will be:

LS(x, ω) =
∑
i∈S

Mi(x, ω)Gi(x)Vi(x)Ii



56 CHAPTER 3. COMP.REP. OF NEAR-FIELD LIG.SOUR.

Figure 3.16: Lightcuts example. The scene have 5 point light sources. A light
tree is constructed, where each node shows the main light source number
at this tree level and branch, and the number contained light sources as
subscript. From left to right, three examples show how the illumination
changes with different cuts.

where Mi(x, ω) is the material term (BRDF), Gi(x) is the geometric term,
Vi(x) is the visibility term, and Ii is the intensity of light i. Each node j of the
cut represents a set of point light sources Sj that correspond to the leaves of
its sub-tree. The direct illumination from the cluster j can be approximated
as:

Lj(x, ω) ≈Mj(x, ω)Gj(x)Vj(x)
∑
i∈Sj

Ii

This equation means that the illumination is approximated using a single
material, geometric factor, and visibility term, computed using the represen-
tative point of node j. The intensity of the node is the sum of the intensities
of the lights it represents. The lightcuts approach needs to compute bounds
on terms M , G and V in order to ensure the accuracy and smoothness of
the approximation. However, the lightcuts technique defines bounds for a
small set of light sources: omnidirectional, directional and oriented. None of
these types can be used directly for our non-uniform directional distributions.
Moreover, the fact that our method represents the original light source with
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a relatively small set of point light sources (a few hundred) makes it impos-
sible to use these points as the leaves of the tree since it would be a sampling
too coarse for nearby objects. Finding a tight bound for point light sources
with arbitrary directional distributions is very complex. But even worse is
the fact that it would be too computationally expensive since it would mean
to evaluate the directional distributions over projections of the bounding box
on the sphere. We have chosen a much simpler approach even if it is not a
very tight bound. We simply fit a cosine directional distribution that repre-
sents an upper bound of the arbitrary directional distribution. This way we
simply apply the strategy for oriented lights.

Light ray tracing

The nature of the rayset makes it a perfect choice to be used in a light
ray tracing algorithm. The same fact can be considered for the compressed
model, as it is based on the original rayset. To use a rayset into a light tracing
algorithm, the model has to be preloaded before the rendering starts, or a
stored data set has to be queried each time a new light ray is needed. None
of these solutions is efficient, because of the huge memory requirements to
preload the rayset, or because of the computing time delays on querying the
stored data set. On the other hand, the compressed rayset can be preloaded
without many computer resources, and each time a new light ray is needed
in rendering process, a new ray is sampled from the compressed data in a
fast way, as we have already explained.

We have tested the model with the Photon Mapping algorithm (see Sec-
tion 2.2.2). Like in [GGHS03a], the global map is separated in the direct
map, that stores the direct light source impacts, and a new global map, that
stores indirect lighting. Once the direct map is created, it can be used to
reconstruct the illumination directly from the map. This is very efficient for
highly directional sources, which can be made even better by storing a large
quantity of photons in the direct map, while keeping a low quantity for the
global map.

3.5 Results

We have tested the method with two raysets corresponding to real measure-
ments. Both of them have 10 million particles. The first one corresponds to
an OSRAM PowerBall bulb (courtesy of Lambda Research), and the second
one is a Tungsten Halogen bulb (Radiant Imaging demo) (see Figure 3.17).

Also, we have tested four synthetic raysets (see Figure 3.18), sampling 10
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Figure 3.17: Real-measured raysets. At top, the OSRAM PowerBall model.
At bottom, the Tungsten Halogen model.

Figure 3.18: Synthetic tested raysets: Phong (top left corner, Phong expo-
nent = 500), Phong directional pattern (top right corner, Phong exponent =
25), radial with pattern (bottom left corner) and cosine with pattern (bottom
right corner, exponent = 1) distributions.
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million particles for each one in a uniform way. The first one has a Phong
distribution over the sphere. We use the same sampling method than [LW94]
to construct the Phong distribution. The second one has Phong distribution,
but with a directional pattern distribution. The other two are radial and a
cosine ray direction distribution over the sphere, but with a positional pat-
tern onto the sphere of origins. These synthetic raysets are used to check
the method performance in different conditions, such as high frequencies in
ray positions or directions. It is specially interesting the case of the Phong
directional pattern distribution, which leads to a triangularization which is
shown in Figure 3.19, showing that the angle threshold criteria for the trian-
gularization effectively preserves the discontinuity in the distribution.

Figure 3.19: The resulting triangulation of the Phong directional distribution
with a directional patterns shown on the right top part of Figure 3.18.

Figures 3.20, 3.21 and 3.22 show false color images for particle emission
experiments. The images represent the energy arriving at a plane that is
located 1 mm from the bounding surface of the rayset. There is a side by side
comparison between the 10e6 original particles and a 10e6 particle emission
using importance sampling from the compressed datasets. Also, difference
images are displayed for each one. Observe that, with the method explained
above, no photons are generated inside the bounding surface or pointing
inwards from it, so any surface intersecting its interior will not receive any
hit. Actually, this cannot be a problem since this is the space physically
occupied by the light bulb itself.
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Figure 3.20: Images of 10 million particles gathered on a plane situated
at 1mm of the bounding surface. The images correspond to the OSRAM
PowerBall bulb with a compressed data of 1680 clusters (see Table 3.2). In
columns, from left to right, the images correspond to original rayset, sam-
pled compressed data, difference image (error), and scaled difference image
respectively (x5). Under the false color images you can find the scale used,
normalized over the entire set of positions/directions.
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Figure 3.21: Images of 10 million particles gathered on a plane situated at
1mm of the bounding surface. The images correspond to the Tungsten Halo-
gen bulb with a compressed data of 452 clusters 3.2). In columns, from
left to right, the images correspond to the original rayset, the sampled com-
pressed data, the difference image (error), and the scaled difference image
respectively (x5). Under the false color images you can find the scale used,
normalized over the entire set of positions/directions.
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Figure 3.22: Images of 10 million particles gathered in a planes situated at
1mm of the bounding surface. First row corresponds to the Phong synthetic
rayset, using a compressed data of 1597 clusters (see Table 3.2). Second row
corresponds to the Phong Pattern synthetic rayset, using a compressed data
with 1146 clusters. Third row corresponds to the radial pattern synthetic
rayset, using a compressed data of 4454 clusters. And the fourth row cor-
responds to the Cosine Pattern synthetic rayset, using a compressed data
of 2244 clusters. In columns, from left to right, the images correspond to
the original rayset, the sampled compressed data, the difference image (er-
ror), and the scaled difference image respectively (Phong model at x8, and
the others at x3). Under the false color images you can find the scale used,
normalized over the entire set of positions/directions.
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We have tested different compression levels for each one of the avaliable
raysets. The memory sizes have been reduced drastically, as can be seen
in Figure 3.23, since the rayset representation of all of these models has a
memory consumption of about 270MB. In Figure 3.24 and Figure 3.25 there
are some results for the OSRAM PowerBall rayset using different compression
levels and measuring the error at different distances. Two error metrics have
been used: l2

Dl2(a, b) =

√√√√ N∑
i

(ai − bi)2

and Hellinger [RFS03],

DHellinger(a, b) =

√√√√∑N
i (
√

ai

N
−
√

bi

N
)2

2

with similar behavior on the results.

Figure 3.23: Relationship between number of clusters and memory usage for
the OSRAM PowerBall.

In Figure 3.24 it can be observed how the error decreases as the number
of clusters increases, in the same way for each tested distance.

In Figure 3.25 three zones of interest are shown. The first one is the error
obtained at near distances, as 1 mm. In this case the importance sampling
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Figure 3.24: OSRAM PowerBall Hellinger errors for different measurement
distances in function of the number of clusters .

Figure 3.25: OSRAM PowerBall l2 errors for different number of clusters in
function of measurement distances .

positional error is the main contributor to the overall error. The second one
is the error obtained at large distances. Here, the directional sampling error
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was found to be the main source of error. The third case is the peak observed
at distance 300 mm. To explain it, we have traced the particles of original
rayset on a set of bounding spheres of different radii. The results (Figures
3.26 and 3.27) show that, at distance 300 mm, it can be observed a pattern
over the sphere. This is because of the pattern of the acquisition mechanism
that has been used to obtain the rayset can be found in this region. If the
gonio-photometer used in the acquisition system uses photosensors placed
over a virtual bounding sphere, then the gathering distance (bounding sphere
radii) is 300 mm. So, each accumulation point in the pattern corresponds to
each photosensor position in the acquisition process.

Figure 3.26: Ray gathering over bounding spheres at different distances (from
left to right, 50, 300 and 1200 mm). At distance of 300mm appears a pattern
due the acquisition method.

Figure 3.27: Left: acquisition system scheme. Right: ray gathering over
bounding spheres at different distances. The observed pattern at distance of
300 mm corresponds to photosensor distance, and each shot accumulation is
each photosensor placement.

All the other models have also been tested. In Table 3.2 there is a sum-
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mary of l2 error values obtained for each rayset, with different numbers of
clusters, and at different distances from the light sources. All models show
similar behaviors to the previously explained one. As a reference, we have
included for each rayset the errors for a far-field distribution created with
the original raysets, but using 2048 spherical triangles, as a distribution with
less spherical triangles fails to keep the different pattern details. As we can
see, the new compression method outperforms the far-field representation at
short distances, also demonstrating that a far-field representation is unsuited
for real light bulbs at short distances, as they cannot be approximated by an
anisotropic point light. At large distances compared with the size of the light
bulb, both converge to the same values, showing that for those distances it is
better to use a far field representation, because of the easy evaluation. How-
ever, many applications (e.g. reflector design) require evaluations at short
distances, where a far-field is clearly not good enough. One further point
should be noted: all measurements in Table 3.2 have been evaluated by the
procedure described in Section 3.4, so they have a variance associated. The
variance depends on the the emitting distribution, the more diffuse, the more
variance, as shown in [PPV04]. So, the l2 error values have a variance, which
we have measured to range from ±31 and ±64 for the Tungsten Halogen and
the OSRAM Powerball respectively, to values of ±125 for the cosine pattern
(which is like a Phong lobe with exponent k = 1), of ±64 for the radial pat-
tern, of ±41 for the Phong and Phong pattern distributions (with k = 500).
This variance is enough to explain some strange behaviors at large distances
for some distributions, as the values plus their respective variances overlap,
as happens for the cosine pattern distribution at 100 and 1200 mm. Also, in
Table 3.2 we have included the resulting sizes of each compressed set, clearly
showing the much lower memory usage required by the compression method.

To prove that the representation is accurate enough for cases such as
reflector design, we show in Figure 3.28 a set of renderings of the OSRAM
PowerBall bulb model mounted in a reflector, illuminating a plane. We have
used three representations of this bulb: the original rayset, the compressed
rayset and the farfield. The compressed model has 1680 clusters (see Table
3.2).

Some examples have been rendered using the Mental Ray Renderer on
Mayar. To do it, we have developed a plugin that works as interface between
the compressed rayset and the Mayarrendering system. In Figure 3.29 you
can see a comparison between two Photon Mapping results (without gather-
ing), one using the original rayset, and the other using the compressed rayset,
both placed in a near (1 mm.) bounding box around the light source bound-
ing volume. The figures are rendered using only the Direct Map mentioned
in Section 3.4.3. The figure uses the OSRAM Powerball example, which has
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Figure 3.28: Lighting from a reflector with the OSRAM Powerball mounted
in. At left, the reflector and bulb setup, and the plane used to gather the
lighting. Next, from left to right, the lighting using the original rayset, using
the compressed rayset (1680 clusters, see Table 3.2) and using only the bulb
farfield.

Figure 3.29: Photon Map results (without gathering). At top there are the
original rayset result. At bottom there is the compressed rayset result.

a bounding cylindrical shape (70 mm. length and 20 mm. diameter dimen-
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sions). There are some gaps on the illumination of the sides of the box for
original rayset, because very few photons are emitted at the cylinder caps.
These gaps disappear on compressed rayset results, due to an insufficient
sampling, creating a smooth filtering effect.

The same comparison has been done in 3.30. In this case, a bigger scene
has been compared. Here, the difference between using a near-field or a far-
field is minimum. Therefore, the differences are related just for directional
light distribution component. Again, the main differences between both im-
ages are due an insufficient sampling.

Finally, a similar example than 3.29 has been rendered, this time using
Lightcuts (see Figure 3.31). There are two noticeable problems with that
result. First, the lighting is quite different from previous examples. Second,
there is a triangle pattern on lighted box sides. Both problems are related to
the same one: the Lightcuts technique assumes a small error because of the
choosing of only the more relevant light sources. This error is not relevant
if simple light sources are used, such as point or oriented light sources. But
for this case, this error is enough to change the tight near-field light distribu-
tion. In addition, the undersampling method introduces some pattern effects
because the new points are sampled uniformly using a constant energy value
for each triangle. We can conclude that we cannot render highly directional
distributions with LightCuts.

3.6 Discussion
The most time and storage consuming part of the method is the directional
distribution management. Obtaining the spherical triangles from a given di-
rection means descending through the levels of the subdivision, and this is
a costly operation. It must be taken into account that this kind of direc-
tional non-analytical representations always have a higher cost than analytic
distributions [LRR04, MPBM03].

On the other hand, directional distributions are also very storage con-
suming. In the current technique, we have the advantage that, with a low
number of point light sources, we can characterize the illumination distribu-
tion of the bulb and, as we only store information of the spherical triangles
with non-zero energy, the total memory used is not too high in comparison.

Finally, it has been demonstrated that this model is suitable for ray shoot-
ing rendering algorithms.
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Figure 3.30: Scene rendered with the same light source than 3.29 using Pho-
ton Mapping. At top, results for the original rayset. At bottom, results for
the compressed rayset.

Figure 3.31: Image obtained with a LightCuts implementation for Mental
Ray on Maya. The images represent direct illumination (no bounces) for a
box located at 50mm from the bounding surface of the light source (the same
light source than 3.29. There is no possible comparison because the rayset
model cannot be used for direct illumination since it is a set of particles.
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Chapter 4

A fast algorithm for reflector
lighting

Global illumination algorithms perform realistic renderings to simulate the
light interaction through a scene. For our case this means that we need to
calculate how the light rays are traced between the bulb and the reflector.
The outgoing rays of this light ray tracing define the reflector light distri-
bution. The objective is to obtain the reflector light distribution in a fast
way and compare it with the desired light distribution. This comparison will
be used to drive an optimization algorithm (explained more in detail on the
next chapter) that will search for the best solution.

In this chapter we will present a new GPU-based method to compute the
reflector light distribution in a fast way. This new method works completely
in the GPU, including the light ray tracing and the reflector light distribution
comparison with the desired one. We show that our method can calculate
the reflector lighting at least one order of magnitude faster than previous
methods, even with millions of rays, complex geometries and light sources.

The rest of chapter is organized as follows. First it is explained in Section
4.1 the overview of the method. Then, the explanation of how the input
data is processed is presented in Section 4.2. In Section 4.3 it is proposed a
GPU light ray tracing algorithm to compute the reflector light distribution.
The light distribution comparison algorithm is explained in Section 4.4. The
main results are presented in Section 4.5. In addition, in Section 4.6 is
briefly explained a new released full GPU ray tracing engine. Finally, some
discussion on results and the method is presented in 4.7.

71
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4.1 Overview

The goal is to obtain a reflector shape that produces a minimum error be-
tween the desired and the resulting light distributions. This is accomplished
using an optimization algorithm that minimizes this error (see Chapter 5).
The most expensive part of an optimization method is the evaluation of the
function to minimize. In our case, the function evaluation is the reflector
lighting simulation and the light distributions comparison to get the error.
Therefore, the main objective here is to define a method to evaluate this
function in a fast way.

The problem has three inputs: the light source, the desired luminaire
light distribution and the reflector shape. The light source is represented
by an implicit rayset or any other light source data representation able to
sample a set of rays, such as the compressed rayset model seen in Chapter 3.
Because the light source is very close to the reflector surface, we need a near-
field to get precise results. The desired outgoing light distribution is a far-
field representation to match with industry requirements, based on industry
standard formats (IESNA [ANS02], EULUMDAT [bCL99]). However, the
presented algorithm can deal with more complex representations, like near-
fields, as well. Finally, the reflector shape is defined as a mesh that is able to
be manufactured through a press-forming process. Therefore, the reflector
shape is deformed only in one direction. The reflector material is considered
as purely specular, and only a reflectance attenuation factor is taken into
account.

The method has three main steps:

• The input data is processed.

• A light ray tracing algorithm computes the reflector lighting distribu-
tion in a fast way.

• The reflector light distribution and the desired light distribution are
compared, and the difference value is returned.

The overall algorithm, called FIRD (Fast Inverse Reflector Design) is
implemented using GPU shaders (see Figure 4.1), where each GPU fragment
processes a light ray. This results in a very fast algorithm that is able, even
for millions of rays and complex reflector geometry shapes, to calculate the
reflector lighting is a few seconds, as shown in Section 4.5.
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Figure 4.1: Overall scheme of the method.

4.2 Preprocessing of the input data
The user-provided data is composed of the desired far-field illumination spec-
ification, the light source characteristics and the reflector shape. The bulb
light source and the reflector are embedded in a holder box (see Figure 4.2).
All data is preprocessed and stored into GPU memory optimized structures.

Figure 4.2: General configuration of a reflector and a light source inside the
holder box. The reflector is manufactured through a press-forming process
where the shape is deformed in height direction, in our representation the Z
axis.

The light source specification provides the light source position and di-
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mensions, and the near-field emittance description. From the near-field we
obtain a rayset, either by loading an original ray data set or by sampling a
light source to generate it, as we did in Chapter 3. Next, the rays that do
not intersect with the holder bounding box are discarded. The non-discarded
rays are stored into GPU memory using two RGB textures, one for ray di-
rections and another one for ray origin positions. The energy units for the
light sources are lumens. The energy for each ray is calculated by dividing
the light source lumens by the rayset size.

The desired light distribution far-field is given by an IES specification (fol-
lowing IESNA or EULUMDAT standard specifications), and assumes large
distances from the sources to the lighting environment, so spatial information
in the emission of the light can be neglected, considering it as a point light
source with a non-uniform directional distribution emittance model. The
provided far-field only takes into account the vectors reflected from the de-
sired reflector, discarding the direct rays from the light source. The set of ray
directions are stored into GPU memory using one single component texture
that represents a histogram over the directional space. Each texel value of
this texture is the energy emitted on the direction that the texel represents,
in lumens. Please, see Section 4.4 for more details.

The reflector shape generation depends strongly on the light ray tracing
method, that is explained in detail in next section.

4.3 GPU light ray tracing
Ray tracing on the reflector is based on the Quadtree Relief Mapping method
(QRM) [SG06], which it is a variation of relief rapping [POJ05]. QRM takes
adaptive steps along the view rays in tangent space without overshooting
the surface, due to the use of a quadtree on the height map. The goal is
to advance a cursor position over the ray until we reach the lowest quadtree
level, thereby obtaining the intersection point with the height field. For a
more detailed description and comparison with other methods, see Section
2.2.4.

Reflector light calculation occurs in three steps (see Figure 4.3):

• Transformation of the reflector geometry into a hierarchical height field
that defines a quadtree, in order to efficiently trace rays in the GPU.

• The set of rays is traced through the height field, searching for inter-
sections with the reflector.

• Gather all reflected rays and create a far-field distribution that is com-
pared with the desired far-field using a histogram comparison method,
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and an error value is generated. Note that once the light rays leave the
light source, further collisions with it are ignored.

Figure 4.3: Overall scheme of reflector lighting pipeline and the used shaders
and textures.
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4.3.1 Quadtree construction

To store the reflector geometry to be used by QRM, a hierarchical height-
field structure is constructed. This is a quadtree represented by a mip-map
texture. Each quadtree node contains the maximum height of its child nodes
(see Figure 4.4).

Figure 4.4: The reflector mip-map height texture is constructed from the z-
buffer, using a view point where all the reflector geometry is visible. Darker
texel colours mean greater heights.

The overall method does not depend on reflector geometry complexity,
the only restriction being that the reflector must be able to be manufactured
through a press-forming process, where the reflector shape is deformed only
in the vertical direction (see Figure 4.2). More precisely, the shape must
satisfy certain constructive constraints that require the shape of the reflector
to be the graph of a function defined on a subset of the plane delimited
by the reflector’s border. That is, in our formulation, for the shape to be
“build-able”, it must be a function of type z = f(x, y).

We calculate one orthogonal projection view from which all reflector ge-
ometry is visible. The view direction can be used as the pressing direction,
so in our case, the Z axis is chosen as the press-forming vertical direction.
For our experiments, just fitting the viewport to the reflector front is good
enough. To avoid an excessive number of texels representing the background,
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we fit the mip-map texture into a tight bounding rectangle around the reflec-
tor. Therefore the mip-map texture is non-power-of-two size, which means
the number of mip-map levels will depend on the largest texture dimension.
When the viewport is specified, the reflector is rendered, and then the hard-
ware z-buffer is read, considering the Z component as heights. Then, a GPU
shader creates the mip-map single component texture, where the highest
map level is a texture with one texel that contains the maximum reflector
height. This process is based on a reduction scheme (see Figure 4.5) and
it is explained in Algorithms 4.1 and 4.2. The Algorithm 4.1 is the pro-
cess for the CPU, where a mip-map texture is built from the depth buffer
(from the z-buffer) contents at the initial step (see line 1 of Algorithm 4.1).
Then it is started an iterative process where for each loop the GPU shader is
launched, reducing the texture size by two, and increasing the mip-map level.
The functions on lines 6-9 of Algorithm 4.1 set the GPU shader to run, the
mip-map texture, the control parameters, and executes the GPU shader re-
spectively. The process stops when it achieves the maximum mip-map level,
that is when texture size is 1. As is shown in the Algorithm 4.2, each time the
GPU shader is executed, it calculates the maximum of the four height values
stored at previous mip-map levels (SampleMipMapTexel function returns the
texel value for given mip-map texture, at given position and at given level),
and stores it at mip-map texel for the current level (SetTexel function stores
at given texture, texel coordinates and mip-map level the given value). Note
that this reduction algorithm only needs one texture because the mip-map
texture allows reading and writing at different levels.

Algorithm 4.1 MipMapCPUCreation(MipMapTex, texSize)

1: StoreDepthMapIntoTexture(MipMapTex)
2: level ← 1
3: while texSize > 1 do
4: ∆← 1/(texSize ∗ 2)
5: texSize← texSize/2
6: GPUSetShader(MipMapGPUCreation)
7: GPUSetTexture(MipMapTex, texSize)
8: GPUSetParameters(∆, level)
9: GPURun()

10: level ← level + 1
11: end while

Finally, another GPU shader extracts the reflector normal vectors, and
stores them in a second RGB texture. These normals will be later used to
calculate the reflection vectors.
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Algorithm 4.2 MipMapGPUCreation(tex, frag, ∆, level)

1: h1← SampleMipMapTexel(tex, frag.x−∆, frag.y −∆, level − 1)
2: h2← SampleMipMapTexel(tex, frag.x−∆, frag.y + ∆, level − 1)
3: h3← SampleMipMapTexel(tex, frag.x + ∆, frag.y −∆, level − 1)
4: h4← SampleMipMapTexel(tex, frag.x + ∆, frag.y + ∆, level − 1)
5: hmax← max(h1,max(h2,max(h3, h4)))
6: SetTexel(tex, frag, level, hmax)

Figure 4.5: GPU reduction algorithm example. At each step, the texture
size is reduced by 2, and each new texel value is calculated from the desired
arithmetical operation between the four previous texels related to the current
one. In this example, the algorithm calculates the maximum texel value.

4.3.2 Traversing the quadtree

Once the geometry has been stored into the hierarchical height-field struc-
ture, the set of rays is traced through it using an method based on the QRM
algorithm. The method starts at the highest quadtree level, where the root
node has the maximum height. The ray cursor displacement at this point is
tcursor0 = 0. To advance the cursor, the ray is intersected with the quadtree
node bounds (see Fig. 4.6, left), and with the stored quadtree node height
(see Fig. 4.6 right).

There are two possible node bound intersections in tangent space: tx and
ty. From them, we use the smaller one, called tbound. Also, an intersection
called theight is obtained by intersecting the ray with the height value stored
in the node. If tbound is greater than theight, it means that the ray intersects
with the current quadtree cell. So, the quadtree level is decreased, and the
process starts again with one of the four child nodes. In this case, the cursor
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Figure 4.6: Two ray steps are calculated for a quadtree node. At the left,
tbound is the minimum displacement to quadtree node bounds tx and ty. At
the right, theight is the displacement to the stored node height h. The final
selected step is the minimum between both.

does not advance, so tcursori+1
= tcursori

. Otherwise, the cursor advances
to the cell bound, tcursori+1

= tbound, and the process starts again with the
neighboring cell. This process stops when the minimum quadtree level is
reached, or when the cursor position is out of the texture bounds. In Figure
4.7 there is an example of the execution of this algorithm.

In the QRM algorithm, the first cursor position is found by intersecting
the view ray with the geometry bounding box. In our case, the first cursor
position is the light ray origin (see Figure 4.7). This means that one more
step is processed in comparison with QRM, because we need to intersect the
root quadtree node in an initial step. However, we avoid the ray-bounding
box intersection calculation that QRM performs.

On the other hand, QRM only processes rays going down the quadtree
hierarchy, being unable to process the rays going up. This is the case when
the light source is inside the reflector, or when more than one ray bounce
inside the reflector are considered. To solve it, We propose an intersection
search algorithm going up the quadtree hierarchy. The pseudo-code for the
new algorithm, called RQRM, is presented in Algorithm 4.3.

The original algorithm assumes that the cursor always advances in the
opposite direction to the height map direction. Otherwise, QRM discards
the ray because it does not intersect with the surface. If the reflected ray
separates from the surface, going up, we start the algorithm from the highest
quadtree level using the new ray, composed of the current intersection point
and reflection direction. A small offset is applied as initial cursor displace-
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Figure 4.7: Intersection search going down the quadtree hierarchy.

Algorithm 4.3 RQRM(texCoord)

1: RQRMInitialization(texCoord)
2: while level ≤ log(max(reliefMapSizexy)) do
3: RQRMCalculateTangentSpaceBounds
4: RQRMStep
5: if OutOfLimits(cursor) then
6: if FirstBounce then
7: return DISCARDED
8: else
9: return FINISHED

10: end if
11: end if
12: end while
13: finalPos← reflectorTex[cursor]
14: finalNormal ← reflectorNormTex[cursor]
15: reflectRay ← reflect(rayDir, finalNormal)
16: return(finalPos, reflectRay)

ment to avoid self-intersections, thus tcursor0 = δ (see lines 4-7 of Algorithm
4.4). Then, we go down through the quadtree until tcursori

> theight (see Al-
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gorithm 4.5 for tangent space bound calculations), which means the height
of the current cursor position is above the current node height. Now, we
are sure there are not any nodes under the current one that have a height
that might intersect with the ray. Hence, we jump to the neighbor node,
so tcursori+1

= tbound, and we update the quadtree level increasing it by one.
If tcursori

< theight then there is not any possible intersection under current
level. Thus, we decrease the current quadtree level, and do not update tcursori

(see lines 8-14 of Algorithm 4.6). The process stops when the intersection
is reached, or when the cursor position falls out of the texture bounds (see
lines 6-10 of Algorithm 4.3). In the second case, it is a reflected ray with no
more bounces, and it is stored as an outgoing ray. In Figure 4.8 there is an
example of this algorithm.

Algorithm 4.4 RQRMInitialization(texCoord)

1: rayPos← rayPosTex[texCoord]
2: rayDir ← rayDirTex[texCoord]
3: cursor ← ReflectorMapProjection(rayPos)
4: if FirstBounce then
5: tcursor ← 0
6: else
7: tcursor ← δ
8: end if
9: cursor ← cursor + rayDir · tcursor

10: startPoint← cursor
11: quadrant← (sign(rayDir) + 1) div 2
12: level ← 0

Algorithm 4.5 RQRMCalculateTangentSpaceBounds

1: bound← ⌊(cursor · 2level) + quadrant⌋
2: tbound←

bound

2level −startPoint

rayDirxy

3: tmin← min(tboundx, tboundy)
4: height← reliefMap[cursor, level]
5: heightNorm← (height− rayPosz) · α
6: t← heightNorm

rayDirz

The algorithm is implemented in a GPU fragment shader. The rayset
data is provided by the previously stored rayset textures. The textures are
mapped into a quad, so each ray corresponds to a fragment (see Section
2.2.4). Each fragment program runs an iterative process that ends with an
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Algorithm 4.6 RQRMStep

1: if rayDirz ≤ 0 then
2: tcursor ← max(tcursor,min(t, tmin + δ))
3: cursor ← startPoint + (rayDirxy · tcursor)
4: if t < (tmin + δ) then
5: level ← level + 1
6: end if
7: else
8: if t > tcursor then
9: level ← level + 1

10: else
11: tcursor ← tmin + δ
12: cursor ← startPoint + (rayDirxy · tcursor)
13: level ← level − 1
14: end if
15: end if
16: return level

Figure 4.8: Intersection search going up the quadtree hierarchy.

intersection point and a reflection vector. These values are stored in two out-
put RGB textures, one for the intersection positions, and the another one for
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the reflected directions and bounce counters (see next section). This shader
is executed as many times as the maximum number of allowed bounces. The
resulting textures are used as input textures for the next execution, thus a
GPU ping-pong approach is used (see Figure 4.9). In addition, the shaders
contain the algorithms to check the ray intersections with the light source:
The light source volume is defined as a bounding sphere or cylinder, so we
can analytically check the intersection.

Figure 4.9: GPU ping-pong method for the RQRM algorithm. Two pair of
textures (positions and directions) are used as input data and output data
respectively. When the reflected rays have been calculated, both pairs are
switched, allowing to use the previous result as new input data.

4.4 Comparison with the desired distribution

When light tracing is done and all rays have left the reflector, they are gath-
ered generating a new rayset. At this step we compare the obtained light
distribution with the desired one. The luminaire light distribution is con-
verted to a far-field, just discarding the positional component of each rayset
particle. Both distributions are converted to a histogram structure to be
compared in the same domain (see Figure 4.10).

The histograms, one for each distribution, are a regular grid used to clas-
sify ray directions. Each grid cell represents a pair of azimuth and altitude
directions in a horizontal coordinate system, and contains the gathered en-
ergy in this direction. The total azimuth and altitude ranges are [−π...π] and
[π/2...−π/2] respectively. The grid size depends on the specified far-field di-
rectional space discretization. We use two textures to store both grids, with
the same resolution as the sizes of the grids, so that each texel represents a
grid cell.
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Figure 4.10: Both the desired distribution and the reflected rays are classified
into histograms. Next, the histograms are compared using the l2 metric.

We classify the reflected directions by calculating a histogram, where each
grid cell represents an interval. The algorithm, based on [SH07], has two steps
(see Figure 4.11). First, after the last reflection step, the results are stored
into a vertex buffer object. Next, this vertex buffer is rendered, and a vertex
shader classifies the directions by calculating the fragment coordinates for
each reflected direction. Then, the fragment shader gathers the directions
and the emitted energy using counters and the hardware additive blending.
To calculate the energy for each ray we define

rayEnergyi = ei ·RF bouncesi [lm] RF ∈ [0..1]

where ei is the initial energy for ray i (see Section 4.2), bouncesi is the
number of ray bounces inside the reflector, and RF is the reflector reflectance
factor, as an attenuation factor.

We use the same algorithm to classify the desired distribution. In this
case, we do not have to use a counter because each far-field directional com-
ponent has its respective emitted energy.

The comparison between both textures is done with a shader that calcu-
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Figure 4.11: Classification algorithm for the reflected rays.

lates, for each fragment, the l2 error metric:

Dl2(a, b) =

√√√√ N∑
i

(ai − bi)2

where ai and bi are the values of the texels indexed by i on textures a and
b. In addition, a reduction shader is used to calculate the summation part of
the formula (see Figure 4.5; in this case the arithmetic operation is a sum).
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4.5 Results

To test the algorithm we use a standard and simple optimization method to
obtain a reflector shape that produces a light distribution close to the desired
one. The algorithm is an iterative process where each parameter is increased
inside a given range by its step value [PPV04]. For each optimization step,
a new reflector shape is obtained, and the outgoing light distribution is com-
pared with the desired one. If the difference value is below a user-specified
threshold, the process stops. If no reflector produces a light distribution close
enough to the objective, the best one is chosen. Figure 4.12 shows the overall
scheme of the optimization algorithm.

Figure 4.12: Overall scheme of the optimization algorithm.

The mip-map height texture must be regenerated at each iteration, due to
reflector geometry changes. Hence, for each iteration we have to recalculate
the outgoing light distribution. However we do not have to recalculate the
rayset for each reflector, so the initial ray intersection step on the reflector
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bounding box guarantees that the rayset is valid for any reflector inside this
box (see Section 4.2).

We have tested our method with three cases. The first one, called Model
A, uses a cylindrical light source with a cosine emittance along its surface,
except for the caps that do not emit light. The cylinder dimensions are
4.1mm in length and a 0.65 mm radius. It is placed at (0,0,0), inside a
holder bounding box located between (-30, -20, -20) and (30, 20, 0), also in
mm. The second case, called Model B, uses a spherical light source with a
cosine emittance. It has a radius of 0.5mm, and it is placed at (5, -5, -5)
inside a holder bounding box located between (0, -10, -6) and (10, 0, 0).
The third one, called Model C, uses a spherical light source with a cosine
emittance. It has a radius of 1mm, and it is placed at (5, 5, 0) inside a
holder bounding box located between (0, 0, -6) and (10, 10, 0). The cross
sections of the three cases and light source relative positions are shown in
Figure 4.13. For Models A and C, the light sources emit 10 million rays, and
5 million rays for Model B. All of them have an overall energy of 1100 lumens.
Also, for all cases, the mip-map height texture resolution is 1200× 800, and
a quadtree is created with 9 subdivision levels.

Figure 4.13: Cross section views of reflectors and their associated light
sources used to test our method.
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The optimization results for each case are shown in Figures 4.14, 4.15
and 4.16. The desired and obtained reflectors are shown, with the respective
far-field distributions and difference images. In the figures, both far-field
and difference images are represented by false-colour histograms. These his-
tograms are defined as far-field textures, thus the columns of the texture grid
correspond to horizontal angles, and the rows correspond to vertical angles.
The directional space resolution is 1800 × 900 for horizontal and vertical
angles respectively. Therefore, each histogram cell represents an angle of
0.2× 0.2 degrees. The colour scale represents the amount of energy for each
histogram cell.

Table 4.1 provides a summary of the data for the overall inverse reflector
search process for each model. The number of effective rays is the number
of non-discarded rays from the initial rayset. For Model B there are not any
discarded rays because the light source is inside the reflector bounding box,
and all the rays intersect the height map. The time needed to compute the
reflector lighting depends on the number of effective rays and the number
of maximum allowed bounces. All models have a similar number of effective
rays, but Model A has the lower computation time because only one bounce
is specified. The optimization time depends on the reflector lighting time and
the number of tested reflectors, and the number of tested reflectors depends
in turn on the number of optimizable parameters and on the range and offsets
applied in the optimization procedure.

Model A B C
Effective rays 7.38x106 5x106 6.05x106

Max. bounces 1 5 6
Reflector lighting mean time (sec.) 1.3 3.2 2.7
Best l2 0.599456 0.975587 0.245821
Tested reflectors 1728 2401 6561
Optimized parameters 3 4 4
Optimization time (hours) 0.63 2.2 4.9

Table 4.1: Results for our three configurations: From left to right, we find
the number of traced rays, maximum number of bounces inside the reflec-
tor, mean time of reflector lighting computation, total time of optimization,
number of tested reflectors, number of optimized parameters and resulting
error.
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Figure 4.14: Results for our Model A. At the top, the desired and obtained
reflectors. In the middle, the desired and obtained far-field histograms in
false-colour, indicating the respective angle domains. At the bottom, the
histogram difference between both
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Figure 4.15: Results for our Model B. At the top, the desired and obtained
reflectors. In the middle, the desired and obtained far-field histograms in
false-colour, indicating the respective angle domains. At the bottom, the
histogram difference between both.
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Figure 4.16: Results for our Model C. At the top, the desired and obtained
reflectors. In the middle, the desired and obtained far-field histograms in
false-colour, indicating the respective angle domains. At the bottom, the
histogram difference between both.
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Table 4.2 summarizes the isolated times for each reflector lighting step.
The height map creation times are similar because all the models use the same
mip-map height texture resolution. The intersection search time depends on
the number of traced rays, on the maximum number of allowed bounces and
on the height map levels. This results have been obtained executing the
algorithm on a NVIDIA R⃝ GeForceTM 8800 GTX graphic card.

Model Heigh map Intersection Error
construction search calculation

A 56 976 277
B 34 2963 278
C 86 2406 263

Table 4.2: Mean times (in milliseconds) broken down into the three main
algorithm sections.

Figure 4.17: Reflector searching progress for model A, from an initial shape
(left), to the desired one (right). Below each reflector, there are the current
number of steps in the optimization process and the l2 error
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Figure 4.18: Reflector searching progress for model B, from an initial shape
(left), to the desired one (right). Below each reflector, there are the current
number of steps in the optimization process and the l2 error

Figures 4.17, 4.18 and 4.19 show the progress in the optimization process
for the three tested models. The results are very similar between the three
different models, because they have the same height map texture sizes (thus,
the same number of quadtree levels), and the number of traced rays is also
similar. The GPU parallel processing involves a linear computational cost
on the rayset size. Therefore, the most important factor in the intersection
search procedure is the maximum number of allowed bounces. Finally, the
error calculation has similar times for all cases, since the outgoing textures
have the same size.

4.5.1 Method calibration

To test the accuracy of method, we performed a preprocessing step, where
the lighting simulation was calculated several times using the desired reflec-
tor and combining different rayset sizes. For each test the light source was
resampled. The Table 4.3 presents the results for the Model A example (see
Section 4.5), showing the mean and variance of the l2 errors from the differ-
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Figure 4.19: Reflector searching progress for model C, from an initial shape
(left), to the desired one (right). Below each reflector, there are the current
number of steps in the optimization process and the l2 error

ence between each result and the desired light distribution. For each rayset
size, 100 lighting simulations have been calculated.

Rays Mean l2 Variance l2

Error Error
1000 271.68 15078.60

10000 27.97 20.97
100000 2.91 0.04

1000000 0.38 6× 10−4

10000000 0.13 3× 10−7

Table 4.3: Results of several lighting simulations on the Model A using dif-
ferent rayset sizes.

We observe that the variance error decreases when the rayset increases.
On the rayset of 1 million rays, the mean error is quite good, so we can use
this rayset to perform the optimizations. The last row shows the calibration
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values to consider the quality of our method.
Moreover, we are interested in knowing the minimum optimization pa-

rameter step required to consider that two consecutive measures are differ-
ent. For this, we use the semivariogram [Ole99], a statistical measure that
assesses the average decrease in similarity between two random variables as
the distance between the variables increases. The measure defines a lag called
range, at which the semivariogram reaches a constant value. We can consider
that two measures separated by a distance larger than the range are stochas-
tically independent, so the range is equivalent to the notion of influence of
an observation. That is, if we want to get significant measurements without
being influenced by statistical noise problems, we can not take measurements
that are closer than the range. From this, we can find a lower bound for the
step size in the optimization process.

The semivariogram is defined as follows: Given two locations x and x+h
inside the domain of a random function Z, the semivariogram is:

γ(h) =
1

2n(h)

n(h)∑
i=1

[Z(xi + h)− Z(xi)]
2

where n(h) is the number of pairs of measurements at a distance h apart.
Figure 4.20 presents the semivariogram for one of the parameters of Model
A. From this graph we can see that the range of the semivariogram is about
0.1 units in the l2 metric. So, we have to use values larger than 0.1 units as
the step size for this parameter in the optimization process. We computed
this lower bound for every degree of freedom included in the optimization
process.

4.6 Full GPU ray tracing engine: OptiXTM

Recently, a new full GPU ray tracing engine has been presented, the NVIDIAR⃝

OptiXTM system [NVI09]. This is a programmable pipeline to achieve fast
ray tracing results on the GPU. OptiX implements some optimized geome-
try structures for ray tracing on the GPU, such as KD-trees or BVHs, and
incorporates algorithms for traversing these structures in a fast way.

4.6.1 Implementation

We have tested OptiX on our method by replacing the heightmap construc-
tion and the RQRM ray tracing algorithm.

The OptiX implementation has been focused on two parts. First, an
appropriate acceleration structure has been chosen. The most important
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Figure 4.20: Semivariogram when changing one parameter of Model A using
106 rays.

aspect is the structure construction time, as it has to be reconstructed for
each new reflector. The reflector geometry is composed by a triangle mesh
with indexed vertices. Our experiments showed that the BVH structure is
slightly more efficient than the KD-tree. Second, it has been implemented a
simple ray tracer that traces light particles through the BVH. The light rays
are initially stored into a texture, one for each texel. Then, each texel is used
as an entry point mapped to a thread. For each thread, OptiX traces the ray
through the BVH until a final node is found. Then, the intersected triangle
is returned with the vertex indices. The triangle data is used to perform
a ray-triangle intersection test that has been implemented inside the OptiX
framework. Once the intersection is found, the reflected ray is calculated
using the interpolated vertex normals and a reflectance factor. The later
only affects at the ray energy as an attenuation factor, the same way as
described in the FIRD system (see Section 4.4). Note that we don’t use any
BRDF or transparency factors, so the reflector material is purely specular.
Then, the reflected ray is traced again searching for new intersections. The
thread stops when the ray has not intersected any more geometry, and the
current ray is stored as an outgoing ray. In contrast of CUDA applications,
OptiX manages automaticly the threads management. Thus, we are not
able to specify the thread block size. OptiX chooses automaticly the best
configuration from the current entry data.
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Finally, we use the same method as used in FIRD (see Section 4.4) to
compare the final light distribution with the desired one.

4.6.2 Results

To test the OptiX system we need a high performance graphics hardware
device. We have tried it using a NVIDIA QuadroTM FX 4800 with 1.5GB of
internal memory.

We have repeated the same tests used for FIRD, but in this case, only the
mean reflector computation time has been considered. Because the FIRD
results were previously computed with a different GPU, we have repeated
them using the mentioned Quadro GPU to compare them with the OptiX
results. This comparison is shown in Table 4.4.

Method Model Method stages Total
PG RT CL

FIRD A 39 95 13 147
B 36 200 6 242
C 56 260 20 336

OptiX A 32 69 55 156
B 33 477 69 579
C 31 190 58 279

Table 4.4: Comparison between FIRD and OptiX reflector computation times
(in milliseconds) for each model (see Figure 4.13) and for each method stage.
The stages are: Preprocessing the reflector geometry (PG), ray tracing (RT)
and comparing final light distribution with desired one (CL). For all models
we have traced 106 rays.

The preprocessing of the reflector geometry (PG), that is the height map
construction for FIRD and the BVH construction for OptiX, have similar
consumption times.

There are noticeable differences between both in the ray tracing stage
(RT). OptiX is more efficient than FIRD when the number of ray bounces
inside the reflector is low. This is the case of models A and C (see Figure
4.13). For the model B, the light source is placed very close to the reflector,
so there are many light rays that bounce many times inside the reflector.
In that case, FIRD is more efficient. On the other hand, as can be seen in
the results for FIRD (see Section 4.5), the model C computes more bounces
than model B. The reason for that is due to the OptiX thread management,
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that only allows to process a fixed number of threads, as happens in CUDA.
Considering that each thread processes a light ray, the number of light rays
able to be processed in parallel is smaller than the whole rayset to trace.
Therefore, the rest of the threads have to wait until the initial entries are
returned. If there are a lot of threads computing many bounces, the rest
of the threads wait longer to be processed. Our experiments show that the
model C computes more ray bounces inside the reflector, but for less rays. In
contrast, the model B computes less bounces for more rays. In comparison,
the FIRD method computes the whole rayset, stored into a texture, for each
bounce, discarding those rays that have already finished, and finishes when
there are no more bounces to calculate. In this way, FIRD only has to wait
for the last ray bounce, resulting in a faster evaluation for these cases.

Finally, the comparison of final light distributions (CL) is slightly better
using FIRD. In the FIRD method, the data structure in the whole GPU
algorithm is always the same. But in OptiX, the comparison is computed
using a GPU shader, outside of the OptiX system. OptiX is a GPU ray
tracing engine, but it is not a general purpose GPU shader framework.

4.7 Discussion

As shown in the results section (Section 4.5), we cannot obtain the desired
reflector with zero error. This is because the optimization algorithm tests
different parameterized reflectors by changing the parameter values in a con-
stant step size and in a floating point space. On the other hand, we can
improve the results by optimizing in very small steps, thereby guaranteeing
convergence to a better solution, but this would strongly affect the processing
times. Also, the semivariogram gives us a lower bound to the step size for
each parameter in the optimization.

The most time consuming part of FIRD algorithm is the intersection
search algorithm (RQRM). If we use a very refined height map, we will
need more time to traverse the ray through the quadtree. If we wanted to
manage very complex reflector shapes, we would need height maps with high
resolutions. Therefore, we should find a compromise between time costs and
quality of results.

The presented method is fast and works well for many reflectors, specially
under the constraint of be constructable by a pressing reflector procedure.
This gives us the chance of representing the reflector geometry on a texture
(height map), storing only the inner reflector geometry. This way, FIRD is
an image-space based technique, creating a dependence between the texture
resolution and the geometry, since each texel represents a small amount of
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geometry. Image-space based GPU ray tracing methods have the common
problem of loosing geometric information due this texture-geometry depen-
dence. This is a problem if we have a reflector with some parts parallel
or near parallel to the pressing direction, such is a hemispherical reflector
shape. The problem can be improved by interpolating the geometry between
texels, or supersampling at problematic reflector zones, but neither solves
the problem completely (see Figure 4.21). By the other hand, these kind of
reflectors are not efficient, since they can produce too many light ray bounces
inside the reflector, loosing energy in each bounce and increasing the reflector
temperature.

Figure 4.21: FIRD intersection problem when there are geometry almost
parallel to the vertical direction. Height interpolation (a) or supersampling
(b) can improve the intersection error, but cannot solve it completely

Finally, we have studied the OptiX system as a full GPU ray tracing
engine. This system improves some of the mentioned FIRD problems, as
it is not image-based. Moreover, our experiments showed that for non-
problematic reflectors, the quality differences between the ray tracing meth-
ods are small. In Table 4.5 is shown a comparison between both methods. We
have used the three desired reflector shapes, with a reference value computed
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with raysets of 5 million rays. Then, the l2 errors from the light distribution
comparisons have been compared using the same reflector shapes and raysets
of 3 million rays.

Model RQRM OptiX Difference (abs.)
A 0.412 0.233 0.179
B 0.23 0.181 0.049
C 0.092 0.139 0.047

Table 4.5: Comparison between RQRM and OptiX ray tracers. The values,
in l2, are the difference between the light distributions of a reflector shape
using a rayset of 5 million rays, and the light distribution of same reflector
shapes using a rayset of 3 millon rays.

Note that we use raysets of 5 million rays because OptiX cannot handle
bigger raysets. This limitation depends on the memory integrated in the
graphical card and the memory used to construct the BVH.

Finally, our experiments show that the OptiX solution is faster than FIRD
if there are a low number of light ray bounces inside the reflector, but slower
on the opposite case. Furthermore, we need a high performance graphic card
to use it.



Chapter 5

Optimization

As is exposed in previous chapters, the inverse reflector design procedure
is based in a trial and error process where a set of reflectors are checked,
until the reflector that produces the light distribution closest to desired one
is found. This is a classic optimization approach. This particular case is
a systematic search to reach the right reflector. The optimization tries to
minimize (or maximize) a function, that is in our case the difference between
a reflector light distribution and the desired one. However, this solution
implies high computational costs due to the size of the search space.

To improve the search, other optimization methods can be considered.
Local optimization methods are fast, but converge only if the solution is near,
making them suitable only for local solutions, not for global ones. Global
optimization methods are used to search the solution in the whole domain,
but usually these methods are slower than the local ones, or they do not fit
well on our problem. In Section 2.3 there is a description of these kinds of
methods.

Here we propose a new specific optimization algorithm that allows to
reach the global minimum in a fast way. A tree is constructed on the fly,
where each node is the evaluation of a reflector shape. We use one of the
GPU-based raytracing algorithms described in Chapter 4 to calculate the
illumination of each reflector and to evaluate the difference function in a fast
way. Tree branches are constructed from the stochastically selected nodes
following heuristic rules. The goal is to successively refine the reflector shape
in regions where it produces the best results and where it better approaches
the global minimum, avoiding to fall in local minima. When we are close to
the solution, a classic local search optimization algorithm is started to faster
reach the minimum.

101
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5.1 Problem formulation
In this section we will show the problem formulation, defining the function
to be optimized and explaining the function evaluation system.

5.1.1 Function to optimize

The goal of the optimization is to obtain the reflector that produces a light
distribution as close as possible to the desired light distribution. The reflector
shape is created using a function r(

−→
P ) from a predefined family of functions,

such that
r(
−→
P ) :: RN → S

−→
P ∈ RN

where
−→
P is a vector of N parameters in the function domain, and S is the

space of reflector shapes. We need the function l(r(
−→
P )) that returns the light

distribution of the reflector defined by
−→
P , such as

l(r) :: S→ L

We also define
L(
−→
P ) ≡ l(r(

−→
P )) L :: RN → L

where L is the domain space of the light distributions. We define a function
f that returns the difference between a given reflector light distribution and
a desired light distribution LDesired, as

f(
−→
P ) = diff(L(

−→
P ), LDesired)

f :: RN → R
where diff(A,B) :: L× L → R is the difference between the light distribu-
tions A and B. Therefore, we have to calculate a value q ∈ RN for the domain
of f that satisfies:

q =
min
−→
P
{f(
−→
P )}

5.1.2 Reflector Evaluation

To evaluate f we use an algorithm with three steps (see Figure 5.1):

• The reflector is constructed by evaluating r from the parameters
−→
P .

• The illumination L is calculated from the reflector and the given light
source. This is the most time consuming step since we are using light
sources with millions of rays, and it is calculated on the GPU.
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• The desired and resulting light distribution are compared using diff .
First, L and LDesired are classified in histograms. Next, both histograms
are compared using a difference function that uses the l2 metric. Both
steps are also calculated on the GPU.

Figure 5.1: Detailed scheme of the node evaluation system.

Following this pipeline, we use both the FIRD and OptiX (see Section
4.6) methods to compute each reflector as is seen in the last chapter.

5.2 Overview

The objective of this algorithm is to obtain a reflector that produces a light
distribution as close as possible to the desired light distribution in a rapid
way.

The algorithm searches parameters in RN space for the best combination
such that it produces a reflector that minimizes the function f . To do it,
the method is based on the construction of a binary tree, where each tree
node represents a reflector where the function f is evaluated. In each tree
construction step, an already created node is chosen in a stochastic way, using
heuristics based on the node evaluation and current statistical information
of surrounding tree nodes. The chosen node is replaced by two new children
nodes. These nodes contain all the same parameter ranges as their parent
except for one, which is splitted in two subranges. For each new node, we use
an heuristic, based on its ancestors, to choose what parameter range to split.
Since we evaluate the nodes after they are created, and because we are using
a greedy breadth-first search algorithm, we do not need to construct the full
tree structure. The process stops when a node evaluation result is below a
user termination threshold. However, when the chosen node is close enough
to a minimum, or when the parameter space size is smaller than a user defined
threshold, a local optimization method is used to converge in a rapid way.
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In this case, the chosen node becomes a tree leaf. If the minimum found by
the local optimization process is under the user termination threshold, the
process stops. Otherwise, the process continues choosing a new tree node.

5.3 Tree construction
As mentioned in the previous section, the tree is lazily created. The tree is
constructed according to a greedy breadth-first search algorithm. At each
iteration of the optimization algorithm, a tree branch is chosen depending
on two stochastic selections: the node selection and the selection of the
parameter space to split. To better guide the process, in order to obtain
good rates in the optimization convergence, we use a set of heuristics on
both stochastic selections.

Now we are going to explain the node selection process, and after that
the parameter splitting mechanism.

5.3.1 Node selection

Each time a node is created it is stored into a list called “tree section”, which
is a sorted list where all current tree leaves are stored and sorted by their
evaluation values. When a node is selected, it is removed from the list, and
two new children nodes are created and stored into the list (see Figure 5.2).

The tree section objective is to help in the decision of what node to choose
to continue the optimization. However, simple node evaluation is not enough
to decide if we are approaching to the global minimum or not. We should also
consider the differences between the current evaluation and the last evaluated
values to get information about how we are approaching a minimum. But we
cannot know if this is a local or global minimum. However, we can use the
information of already created nodes to know how the function f behaves on
different parameter ranges, and decide what domain zone is more suitable to
be a global minimum.

For each tree section node, we calculate a corresponding weight value.
Then, the list is sorted by the node evaluation values multiplied by their
respective weights. This used weight is the linear combination of three com-
ponent weights, that are estimations of how close the current node is to a
minimum.

The first weight, named wdiff , represents the difference between the cur-
rent node and the parent node evaluation values, so

wdiffi
=

max(f(P parent
i )− f(Pi), 0)

maxV al
· weightDiff
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Figure 5.2: Node selection example. When a node is selected from the tree
section it is replaced by its two children. The tree section is updated sorting
the nodes by their weighted evaluation values.

where f(P parent
i ) is the evaluation of the parent node, maxV al is the maxi-

mum accepted node evaluation value, and weightDiff is a user-defined fac-
tor for controlling the importance of this difference. The nodes with greater
evaluation values than maxV al are stored at the end of the tree section with
a weight value of 0. We cannot simply discard these nodes because the pa-
rameter values used only are representative values of their ranges. Therefore,
these nodes are considered after all the other suitable branches are processed.
For the other nodes, if wdiff is high it means that f(Pi) is on a steep slope
of the function, thus we probably are approaching faster to a minimum (see
Figure 5.3)

The second weight, named wdensity, represents the density of nodes around
the current one, so

wdensityi
=
(
1− neari

NTreeNodes

)
· weightDensity

where neari is the number of nodes in a neighborhood of node i (we get the
nodes using an Euclidean distance and a user specified maximum distance),
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Figure 5.3: The wdiff weight allows the selection of nodes that are approach-
ing faster to a minimum

NTreeNodes is the number of current tree nodes, and weightDensity is
a user-defined factor for controlling the importance of this density. If the
density is high, it means that the current parameter range contains a lot
of evaluated nodes, so wdensity should be low because we consider that the
region has been evaluated enough (see Figure 5.4).

The third weight, named wstdev, represents the variance on evaluation
values of nodes around the current one, so

wstdevi
=

(
stdevi

neari · (maxV al ·meani)
2

)
· weightStDev

where stdevi is the standard deviation of the evaluation values of the near
nodes, meani is the mean of evaluation values of the near nodes, and weightStDev
is antoher user-defined factor to control the importance of this variance. If
the current parameter domain region has low variance, it probably means
that the function is nearly flat in this region, so it might imply there is not
any minimum. In this case, wstdev should to be low (see Figure 5.5).

The final composed value is normalized to avoid biased data, so the
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Figure 5.4: The nodes with smaller number of near nodes have higher wdensity

values.

weighted evaluated value vi for node i is

vi =

(
1− f(

−→
P i)

maxV al

)
· wi (5.1)

wi =
wdiffi

+ wdensityi
+ wstdevi

weightDiff + weightDensity + weightStDev

The node selection is performed stochastically by importance sampling (see
Figure 5.6), giving more priority to the nodes with greater v values. Note
that this random selection avoids focusing the optimization progress only
on one tree branch, so the optimization always considers a set of possible
minima at the same time.

5.3.2 Node parameter space splitting

As we already mentioned, for each parameter, a range is defined and stored
in each node. Initially, these ranges are the domain of each parameter space,
that are taken from the initial constraints for the RN space. Since we need a
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Figure 5.5: The nodes with greater standard deviation with respect to near
nodes have higher wstdev values.

parameter vector
−→
P ∈ RN to evaluate f , the central values of each parameter

range are used. −→
P = {p0, ..., pi, ..., pN}

pi =
dimin

+ dimax

2
pi ∈ [dimin

, dimax ]

where dimin
and dimax define the range of parameter pi.

When a node is selected from the “tree section”, two new children nodes
are created. Then, a parameter pj is chosen stochastically from

−→
P , and its

range is splitted in two equal parts, creating two new vectors named
−−→
Pleft

and
−−−→
Pright, that are assigned to the created children nodes.

−−→
Pleft = {p0, ..., pjleft

, ..., pN}
−−−→
Pright = {p0, ..., pjright

, ..., pN}

pjleft
=

djmin
+ pj

2
pjleft

∈ [djmin
, pj]

pjright
=

pj + djmax

2
pjright

∈ [pj, djmax ]
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Figure 5.6: Node selection example. The tree is created on the fly by selecting
for each optimization step the best suitable node by importance sampling.
The tree section is updated with the new children that are inserted. The list
is kept sorted by the values vi.

We use an heuristic based on node ancestors to choose pj. For each
node we store a vector

−→
H , named “history vector” (of size N), where each

entry contains information about one parameter. The purpose of this vector
is to provide the information of the minimization progress depending on
the previously chosen parameters in the same tree branch. On the first
optimization step, a random vector index is chosen from the root node history
vector to split the parameter range of the first children nodes. Next, when
the new children nodes are created and evaluated, the history vectors of each
one are cloned from their parent node. Then, the vector entry with the same
index as the previous chosen one on the parent node is updated with the
difference between the current and parent node weighted evaluation value vi

(see Equation 1) :
−−−−→
Hparent = {h0, ..., hk, ..., hN}
−−→
Hleft = {h0, ..., h

′
kl
, ..., hN}

−−−→
Hright = {h0, ..., h

′
kr

, ..., hN}

with
h′

kl
= v(
−−−−→
Pparent)− v(

−−→
Pleft)
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h′
kr

= v(
−−−−→
Pparent)− v(

−−−→
Pright)

where
−−−−→
Hparent and

−−−−→
Pparent are the history and parameter vectors of the parent

node,
−−→
Hleft,

−−→
Pleft,

−−−→
Hright and

−−−→
Pright are the history and parameter vectors

of the left and right child nodes respectively, and k is the previous selected
parameter index of the parent node.

To choose the parameter range to split, we use the history vector to per-
form a stochastic selection by importance sampling, giving more priority to
the parameters with greater difference values. Therefore, we give more impor-
tance to parameters that previously have had greater differences with their
parents, which means that the optimization progress with these parameters
probably approaches faster to the minimum.

In Figure 5.7 there is an example of the parameter selection. The example
shows a tree parameter selection with N = 3. At the root node the first
parameter is chosen and splitted in two new children nodes named left and
right nodes (each one contains

−−→
Pleft and

−−−→
Pright respectively). Then, the two

new nodes are evaluated, and the differences between the weighted values
of each one and its parent are stored in the first history vector entry of
each new node. In this example the right node is chosen from the tree
section list, the first parameter is selected again and splitted to create its
two new children. Later on, the new left node is chosen in turn, it turns
out the first history vector entry value is smaller. This means that the
previously chosen parameter does not carry significant changes with respect
its parent, so we are not approaching to a minimum in a fast way. In this case,
the algorithm chooses other parameters that previously produced similar or
better approaches to a minimum, selecting stochastically the second history
vector entry, and splitting the second parameter.

5.4 Local search

As we said before, we use a local search method to get as close as possible
to the final solution. There are many methods to perform a local search,
like the conjugate gradients algorithms (see Section 2.3.1). We have chosen
the Hooke and Jeeves method [HJ61] because it is fast, like other conjugate
gradient algorithms, and it is not necessary to calculate the derivatives of
the function, replacing them by a few function evaluations

This method has two steps, the Exploratory Step and the Pattern Step.
The Exploratory Step searches for a better parameter value by evaluating
new parameter vectors around the original one. A small offset ∆ is added
and subtracted for each parameter, evaluating each combination. We search
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Figure 5.7: Example of parameter selection with 3 parameters. The color
cells are a representation of the parameter ranges. Observe that these ranges
are reduced for each level of the tree with respect to its parent node. The
function v(p1, p2, p3) is the node weighted evaluation on the three parameters.
The gray vector cells are the chosen parameters for each node.

a new parameter vector P k
′ from the original one P k such that

f(P k
′) = min(f(P+

k ), f(P−
k ), f(Pk))

P+
k = (p1, ..., pi + ∆, ..., pN)

P−
k = (p1, ..., pi −∆, ..., pN)

where k is the local search step. If there is not any combination that produces
better results than the original one, the Exploratory Step fails. Otherwise,
the best combination is chosen.

The main step is the Pattern Step. When it starts, an Exploratory Step
is performed with the original tree node parameter vector. Next, the param-
eters change with a jump in the direction of the chosen Exploratory Step
parameter vector P ′

k, creating a new parameter vector Pk+1, such that

Pk+1 = P k
′ + ((P k

′ − Pk) · stepSize
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where stepSize is the jump value. If the Exploratory Step fails, it means
that this is not a good way to reach the minimum, and the previous jump
is undone. Then, the offset is reduced, and a Exploratory Step is performed
again.

The process stops when it reaches the global minimum, or when the offset
is small enough to be able to assess that the current local minimum is not
the desired minimum. Back in our method, if the desired minimum is not
found, the whole tree node is discarded.

In the Figure 5.8 there is an example of Hooke and Jeeves process. Note
the Exploratory Step fail in steps 8 and 13. In these cases, the jump is
undone and the Delta offset value is reduced, that is the axis lengths in the
Figure 5.8.

5.5 Results
We have tested our method with three test-cases. The first one, called Model
A (see Figure 5.9), uses the basis function

r(
−→
P )(x, y) = p0x

2 + p1y
2 + p2

−→
P = (p0, p1, p2) ∈ R3 (5.2)

to construct the reflector, where x, y ∈ [−0.5, 0.5] to match the holder bound-
ary. The light source is a sphere of radius 0.05 mm placed at the origin. The
emittance is a cosine distribution with 1100 lumens. The second test-case,
called Model B (see Figure 5.10), uses the basis function

r(
−→
P )(x, y) = p0 ∗ (−| sin(y/π) ∗ (p1 ∗ sin(x/π)−

−p3 ∗ (1− | cos(p4 ∗ x/π)|))|)
−→
P = (p0, p1, p2, p3) ∈ R4 (5.3)

to construct the reflector, where x, y ∈ [0, 10] to match the respective holder
boundary. The light source is a sphere of radius 0.5 mm placed at (5, 5,
-0.5). The emittance is a cosine distribution with 2500 lumens. The third
test-case, called Model C (see Figure 5.11), uses 7 control values to define
the geometry shape of a real-case reflector. The light source has a cosine
emittance of 28000 lumens on a cylinder of length 65 mm and radius 4 mm,
placed along the main reflector axis.

The desired lighting and optimization results for each case are also shown
in figures 5.9, 5.10 and 5.11 respectively. For each one it is shown the desired
and resulting lighting in IES format. Also, a render of the lighting projection
is shown to help a better understanding of how the lighting is. Finally, we
can observe the reflector shape with the initial parameter values and the
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Figure 5.8: Example of Hooke & Jeeves optimization method for a function
of two parameters. The numbers show the process order. The gray squares
symbolize each Pattern Step. The axis around the squares are the parameters
of the function. Delta is represented as the axis lengths. The circles represent
the successful Exploratory Steps.

obtained parameters after the optimization. The differences between the
desired lighting and the obtained one are quite small, in all cases below 4%
(see Table 5.1)

The overall optimization times, number of processed reflectors and rel-
ative errors are shown in Table 5.1. It is also shown the number of local
searches processed. We have used a 2 × 106 rayset size for Model A, and
1 × 106 for the others. The lighting calculation for each reflector lasts, in
average, around 200 ms for all cases. The evaluation of the l2 error for each
final lighting distribution lasts around 70 ms in average. Considering some
extra time to compute the reflector shape, less than 300 ms are needed in
average to compute the final f(

−→
P ) value for each reflector.
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Figure 5.9: Results for our Model A. At the left, the desired lighting. At
the right, the optimization result. From the top to the bottom, the IES
representations, a render projection of lighting distribution, and the initial
and final reflector shapes. These shapes are constructed using the parametric
function (2).
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Figure 5.10: Results for our Model B. The image structure is the same as
in Figure 5.9. The reflector shapes are constructed using the parametric
function (3).
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Figure 5.11: Results for our Model C. The image structure is the same as
in Figure 5.9. The reflector shapes are constructed by modifying 7 control
parameters. This kind of reflector is based on a real reflector.
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Model A B C
Mesh triangles 19796 19404 16200
Parameters 3 4 7
Evaluated reflectors 637 3172 1431
Local searches 1 2 2
Optimization time 3m 2s 12m 50s 6m 30s
Relative error (%) 1.08 0.32 3.7

Table 5.1: Optimization results for all tested cases.

The same cases have been also tested using a brute force optimization
and the Simulated Annealing algorithms (see Section 2.3.2) for comparison
purposes. The results for the comparison of the brute force optimization are
shown in Table 5.2. The number of tested reflectors (see Figure 5.12) and, in
consequence, the time to reach a solution (see Figure 5.13) are exponentially
related with the number of parameters, as the brute force algorithm tests all
parameter combinations. Also the relative errors tend to be larger because
the local search method used in our algorithm approaches to the minimum
with more precision than what is possible with the brute force algorithm (see
Figure 5.14).

Model A B C
Evaluated reflectors 39965 75486 772677
Optimization time 2h 52m 4h 43m 53h 21m
Relative error (%) 1.09 0.54 11.62

Table 5.2: Optimization comparison with Table 5.1 using a brute force opti-
mization algorithm.

Finally, we present the comparison done using the Simulated Annealing
optimization algorithm. The results are shown in Table 5.3. Although Simu-
lated Annealing is a global optimization algorithm, the process could quickly
fall into a local minimum if the initial temperature is low and the cooling
factor is high. Hence the temperature should increase with the number of
parameters to optimize. Also, the number of evaluated reflectors is higher
than our method (see Figure 5.12). This implies higher computational times
to get the solution. The visited reflectors are the number of reflectors that
have been evaluated one or more times. To avoid the recalculation of the al-
ready evaluated reflectors, we use a sort of cache data structure. Therefore,
although for the model B a similar number of reflectors than our method is
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evaluated, the final computational time is higher. Note that, for the model A,
the optimization time for the Simulated Annealing algorithm is higher than
for the other methods. This is because the global minimum is closer to the
global maximum (see Figure 5.16), making it difficult for Simulated Anneal-
ing in that domain region. On the whole, the Simulated Annealing algorithm
is faster than the brute force algorithm, but slower than our method (see Fig-
ure 5.13). Moreover, the relative errors are similar since we can approach to
the minimum with more precission than with the brute force method (see
Figure 5.14).

Model A B C
Initial temperature 3× 106 7× 106 15× 106

Cooling factor (%) 0.02 0.2 0.2
Evaluated reflectors 25397 4654 5024
Visited reflectors 51550 6282 14035
Optimization time 1h 31m 23m 36s 17m 46s
Relative error (%) 1.1 0.35 4.36

Table 5.3: Optimization comparison with Table 5.1 using the Simulated An-
nealing optimization algorithm.

Industrial application case

The method has been tested on a real-world industry case, where the goal
was to get a reflector to optimize road lighting. The input data and the
reflector basis correspond to the third example case seen in the previous
section. The resulting reflector is shown in Figure 5.11. In Figure 5.15 there
is the lighting comparison, in false color, between the desired lighting over
the road, and the resulting one. Although the road lighting is obtained from
the composition of many reflectors, we actually only need to calculate one.
Then, the lighting distribution is translated to each pole position to compute
the final road lighting. As is shown in the image, the differences between the
desired lighting and the obtained one are quite small.

The road lighting optimization often needs to calculate the most suitable
distance between poles, the boom angle, or other pole placement parameters.
Since the nature of our algorithm, these parameters can be easily adapted and
optimized together with the rest of the reflector parameters. Road lighting
also requires considering quality criteria, which is a composition of differ-
ent lighting evaluations [SB01]. The most important values of this quality
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Figure 5.12: Comparison graph for the number of reflectors evaluated
for each model using the three tested optimization methods.

Figure 5.13: Comparison graph for the optimization time for each reflector
model using the three tested optimization methods.
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Figure 5.14: Comparison graph for the relative error for each reflector
model using the three tested optimization methods.

Figure 5.15: Road lighting example in false color (cd/m2). At the left, the
desired lighting. At the right, the optimization result. The differences are
quite small. The used reflector is shown in Figure 5.11.
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criteria are: the average road luminance, the overall uniformity and the lon-
gitudinal uniformity. Other values define the surrounding lighting ratio or
the threshold increment of disability glare. Our algorithm permits to include
this quality criteria parameters inside the error function using new weights
to drive the optimization to a suitable result.

5.6 Discussion
As shown in the previous section, the optimization is very fast, and returns
reflectors that generate lighting distributions very close to the desired ones.
The main bottleneck of the method is the ray tracing calculation for each
reflector. On the other hand, the ray tracing system has a very good ray
performance in comparison with other methods.

The key of the optimization method is the node selection and splitting.
The weighted evaluations gives us an heuristic way to do it. It is important
to cover all the parameter space domain, but always focusing on suitable
minima. This way, this is not too far from the kd-tree axis subdivision space
idea, so we can be sure that all of the parameter domain space is covered. The
selection of the user thresholds and weights is also relevant. In Figure 5.16
it is shown the error graph for a part of the domain of the reflector model
A. This example shows how the heuristics that the method uses help the
optimization to reach the global minimum and avoid local minima. The flat
region is easily discarded using the weight wstdev. Then, the optimization
can fall in two minima in a fast way using wdiff , but it is discarded with
wdensity when it is sampled enough. It can be seen that the lineal combination
between the three weights improve the results for each one of these decisions.
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Figure 5.16: Function error graph for model A example and parameters P0

and P1. The parameter P2 has been fixed at −0.5 to help the visualization.



Chapter 6

Conclusions and future work

6.1 Conclusions

We have presented new methods for the inverse reflector design problem
that improve previous approaches. We have focused into three main topics:
using real and complex light sources, defining a fast ray tracing algorithm to
compute the reflector lighting and defining a new optimization algorithm to
faster achieve the desired reflector.

To achieve accuracy and realism in the lighting simulations, we have used
near-field light source measurements, represented as raysets. Since raysets
require a huge amount of data, a novel approach has been presented for com-
pressing them. The compressed model is created by calculating a bounding
mesh of triangles for the light source, where each triangle contains the illumi-
nation information from the related particles. We have defined a method to
perform importance sampling on this representation that allows for smooth
particle distributions over the mesh with almost no artifacts, even for very
close objects. The mesh representation is also very efficient in storage terms.
High precision raysets can contain up to 10 million particles, and the storage
needed for this representation is about 270Mb, while our equivalent mesh
representation uses only up to a few megabytes.

To perform realistic lighting simulations with complex light sources and a
reflector, we have defined a new GPU-based ray tracing method to compute
the reflector light distribution in a fast way. The method is based on a very
fast GPU algorithm that calculates the reflected rays on the reflector (with
an arbitrary number of bounces) in a few seconds, using millions of rays and
highly complex reflector shapes. The ray tracing acceleration structure is a
height map that is constructed from an image of a reflector, thus we may
say that the method is image-based. Then the algorithm focuses on the fast

123
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traversal of the scene through the height map hierarchy. In addition, the
final light distribution is compared with the desired one, also using GPU
algorithms. The presented method works well in most cases. Since this
is an image-based method, it is restrictive on those cases where the height
map cannot handle enough geometrical information from the reflector. In
addition, we have also used a recent full GPU ray tracing engine: NVIDIA R⃝

OptiXTM . OptiX can handle any kind of geometry, and we have concluded
that it can be faster if there is a low number of light ray bounces inside the
reflector, but slower in the opposite case. Moreover, OptiX needs a high
performance graphic device, and it can only handle smaller raysets than the
method we have proposed.

Finally, we have presented a new global optimization method for the
inverse reflector design problem. The goal is to minimize the function that
calculates the difference between a reflector light distribution and the desired
one. The method is based on a stochastic tree, and it is driven by heuristic
rules. The tree is constructed on the fly, where each node stores the function
evaluation for a reflector shape from a wide set of parameterized reflectors.
The heuristic rules are based on this evaluation and the already calculated
tree node evaluations, trying to choose the most suitable branch to reach the
desired minimum, and avoiding local minima. The minimum that satisfies the
user provided requirements is reached in minutes and with less evaluations
than other classic optimization algorithms.

6.2 Contributions

The main contributions of this thesis are:

• A method for compressing dense point (or particles) distributions and
restoring them with almost no artifacts. It has been used to compress
raysets, but it also could be used to compress photon maps or point-
based surface representations.

• A raytracing method based on a very fast GPU algorithm that calcu-
lates the reflected rays on a geometry stored into a heightmap accel-
eration structure. The method can handle millions of rays and it is
independent of the complexity of the geometry.

• A global optimization method based on a stochastic tree driven by
heuristic rules. The minimum or maximum of the function is reached
with fewer evaluations than other classical optimization algorithms,
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and it avoids many local minima. The method can be used with any
function of the kind f :: RN → R.

• A global solution for the inverse reflector design problem. It uses com-
plex light sources and reflector geometries into a very fast GPU ray-
tracing algorithm. Each step of an optimization algorithm computes a
reflector lighting in less than one second, comparing it with the desired
lighting. The reflector that produces the lighting closer to the desired
one is reached in minutes.

6.3 Publications

The following papers were published with the results of the research in this
thesis:

• Compression and Importance Sampling of Near-Field Light Sources,
Albert Mas, Ignacio Martín and Gustavo Patow Computer Graphics
Forum, Volume 27, Number 8, pages 2013-2027, 2008.

• Fast Inverse Reflector Design (FIRD), Albert Mas, Ignacio Martín and
Gustavo Patow. Computer Graphics Forum, Volume 28, Number 8,
pages 2046-2056, 2009.

• Stochastic Tree-based Inverse Reflector Design, Albert Mas, Gustavo
Patow and Ignacio Martín. Congreso Español de Informática Gráfica,
pp 165-174, 2010

6.4 Future work

The near-field compression method could be considered in a future work to be
used to compress other dense set of points or particles, as mentionend in the
previous section. For example, the method could be used to compress photon
maps in static scenes, since a photon map is a set of points with a related
radiance or energy. Another example would be the compression of 3D models
stored as a set of points representing the surface, where well-defined models
require large data sets. The compression method can reduce these data sets
considering only the density of points, and restoring them again with almost
no loss of geometric information. Because the restoring method is based on
importance sampling, we can specify the number of samples to obtain models
with different levels of detail without losing the most significative geometry.
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With respect to the GPU-based raytracing method, we consider as fu-
ture work to include more parameters in the lighting system. We would
consider using reflectors with complex BRDF surfaces to simulate real mate-
rials. In addition, we would like to consider how the manufacturing procedure
stretches and deforms the reflector material, changing its properties. Also,
we would like to consider to include new elements in the luminaire system
such as specific lenses, usually used to refract and set-up the final lighting.

Finally, the optimization method has demonstrated a good performance
for the tested cases, and we think that this could be improved using more spe-
cific heuristics. Although this optimization method has been defined specif-
ically for the inverse reflector design problem, we think that it is interesting
to explore whether this algorithm can be used in other optimization prob-
lems. In addition, we consider as a future work to increase the algorithm
parallelization using GPU tools, such as CUDA, to allow the processing of
multiple tree branches at a time.

We have presented an efficient method to get a reflector from a desired
lighting in a few minutes, but we believe that it could be improved by focusing
in more detail on the idea of obtaining the desired reflector shape, or a closer
one, directly from the desired lighting, avoiding the optimization process.
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