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Abstract

Selection is one of the fundamental tasks in virtual reality applications and the initial task
for most common user’s interactions in a virtual environment. In this thesis we analyze
major factors influencing selection performance, and propose new techniques for facilitating
selection in 3D space. Considering the frequency of selection tasks in a typical virtual
reality workflow, improving selection tasks often results in significant gains in the overall
user performance.

A 3D selection task requires the user to gesture in 3D space, e.g. grabbing an object or
pointing to something. The success or failure of the task depends mainly on the interaction
technique, the dexterity of the user, and the spatial perception of the virtual environment.
Since the dexterity of the user can be improved by training, we focus on how to take advan-
tage of existing human control models to minimize the effort required to select an object,
and how to enhance the user’s spatial perception of the virtual environment to facilitate
selection and referral tasks. We propose several selection techniques based on Fitts’ Law
and study how visual feedback can be used to overcome spatial perception limitations in vir-
tual environments. The techniques proposed are not only oriented to achieve performance
gains as we also account for user’s preferences. During the development of this thesis we
have conducted a number of user studies, both to validate our theoretical analyses, and to
compare the proposed selection techniques to existing ones.

Although the major contributions of this thesis refer to the selection of 3D objects, we
also provide new techniques for facilitating the interaction with 2D graphical user interfaces
embedded in 3D space. Furthermore, we explore selection tasks in collaborative virtual
environments. In CVEs pointing tasks often change their purpose and turn into referring
tasks. Referential awareness can be compromised in complex environments, because a user
can point to a feature in the environment which might be occluded for the other users.
We analyzed how improvements on referential awareness increase the information exchange
among users without violating social protocols in formal presentations.
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Chapter 1

Introduction

Virtual reality (VR) has gained in popularity over the last years. The strong potential
of VR has been acknowledged in multiple areas including design, prototyping, psychiatric
treatment, scientific visualization, cultural heritage, virtual tourism and collaborative work.
However, VR has also been criticized since it has not always lived up to its promises. The lack
of usable user interfaces for virtual environments (VEs) has been a major factor preventing
the deployment of effective VR systems outside research labs.

User Interfaces (UIs) are an essential component of any interactive application. The UI
defines how the communication between the user and the application is done, being a critical
issue during application design. The UI translates user actions (inputs) into application
changes, and application state (output) into a representation the user can understand. A
good UI must provide the user with efficient tools for driving the application while balancing
expressiveness and simplicity.

Most interactive applications available today still rely on the well-established WIMP paradigm
and the mouse-and-keyboard interface. Although these traditional UI components are well
suited for personal computers, interaction techniques available for mouse-and-keyboard se-
tups are inappropriate for most immersive virtual environments (IVEs). In these systems,
a mouse-and-keyboard setup is practically unusable, as users might be standing in front of
a projection screen or wearing a head mounted display. Furthermore, the displayed content
is always 3D, so traditional 2D approaches might no longer apply; user interfaces involving
3D interaction are thus required.

User interfaces involving 3D interaction are called 3D user interfaces (3DUIs). By employing
VR tracking technologies [109], 3DUIs allow users to interact directly in 3D space and
reproduce everyday actions into the virtual environment. Users can e.g. interact with objects
by grasping them with their hands or explore the virtual environment by just moving their
heads.
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A number of 3D interaction techniques have been developed to allow users accomplish typ-
ical tasks in virtual environments. Bowman et al. [12] proposed a task-driven taxonomy to
classify 3D interaction techniques according to four main interaction tasks: selection, ma-
nipulation, navigation, and application control. While manipulation and navigation tasks
have their clear counterpart in real world tasks, selection and application control are more
specific to computer applications.

Manipulation tasks range from applying rigid transformations to 3D objects (translations and
rotations), to modifying their physical properties or their shapes. Navigation tasks involve
modifying the current viewpoint to explore the environment, search for some feature, travel
from one location to another, or perform precise maneuvering tasks. Application control
tasks allow the user to send specific commands to the application, changing state values, or
requesting some functionality.

Concerning selection tasks, although they resemble real world tasks, their purpose is slightly
different. In reality humans do no perform selection tasks directly; we just made choices.
If we want to move an object, we think about the object we want to move, and then we
perform an action to move it. In a computer application though, in addition to think about
the object, we also have to inform the system about the object we want to interact with
(selection task).

Although in this thesis we only focus on selection tasks, improvements on selection tasks will
also improve manipulation, application control and navigation tasks, as they often depend
on (as are preceded by) selection tasks. In this sense, efficient and error-proof selection
techniques are critical because they allow the user to control the interaction flow between
the above tasks.

Manipulation tasks and selection tasks are highly coupled; the user often has to select an
object prior to its manipulation. In some situations, the same action used to manipulate
an object can also be employed to select it. If the user has to translate an object, he can
select it by directly grasping it, move it to the desired location and release it. However, as
we shall see, grasping is not suitable for many VR applications. Application control tasks
also benefit from improvements in selection tasks. Since they are performed by interacting
with a 2D or 3D graphical user interfaces, efficient and error-proof selection mechanisms are
also required. Finally, navigation can also benefit from efficient selection tasks when the
navigation technique requires the user to select the destination.

In summary, despite selection tasks are conceptually simple, even small improvements will
result in overall improvement of the usability of the entire application. By analyzing and
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classifying existing selection techniques, we identified their major hindrances and explored
how to overcome them.

1.1 Motivation

Developing appropriate 3D interaction techniques for immersive virtual environments is a
challenging problem. On the one hand, interacting in free space with gestures greatly in-
creases the richness and expressiveness of the interaction. On the other hand it might hinder
interaction by increasing the dexterity required and it might raise fatigue levels. Consider
for example the differences in selecting a 2D object using a mouse pointer, and grasping a
3D object in free space. Grasping an object in 3D space requires a complex arm movement
(shoulder, arm, forearm and wrist) while using a mouse it only requires wrist and finger
movements. The involvement of bigger muscle groups (and the extra degrees of freedom to
control) often decreases the precision of the movement and increases the physical effort.

Moreover, immersive virtual environments (IVEs) cannot provide the same level of cues for
understanding the environment, nor reproduce faithfully the physical constraints of the real
world. For that reason, despite users always use 3D interaction in the real world, in a IVE
users experiment difficulties in controlling multiple degrees of freedom simultaneously or
understanding 3D spatial relationships. Furthermore, these problems are magnified due to
the lack of standards for VR input and output devices.

There seems to be, in general, little understanding of human computer interaction (HCI)
in three dimensions, and a lack of knowledge regarding the effectiveness of interaction in
IVEs, although some recent work has begun to address these issues [86]. During decades,
many researchers held to the intuitive notion that interaction in IVEs should replicate our
interaction with the physical world. However, such interaction is never completely realistic,
and severely limits the potential for productivity. In contrast, we can enhance the physi-
cal, cognitive, and perceptual capabilities of the user, allowing them to do things that are
impossible in the real world.

Over the last decades, a number of interaction techniques have been proposed for object
selection in virtual environments. We can identify two main approaches: virtual hand [96, 98]
and virtual pointing metaphors [82, 56]. In the early days, virtual hand techniques were the
most popular metaphor as they map identically the real task and the virtual task, giving a
more natural interaction. Lately, it has been shown that virtual environments can overcome
the physical constraints of the real world. For example, letting the user to select objects out
of reach by enlarging the user’s virtual arm [96] or using virtual pointing techniques such as
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raycasting [82], which is one of the most popular techniques for 3D object selection tasks [9].

There are a number of user studies in the literature comparing different selection tech-
niques [4] and, in overall, virtual pointing techniques result on better selection effectiveness
than competing 3D selecting metaphors such as the virtual hand. Unlike virtual hand tech-
niques, virtual pointing techniques allow the user to select objects beyond the area of reach
and require less physical hand movement.

However, current pointing selection techniques still leave much room for improvement. Se-
lection of small or distant objects is particularly difficult, and performance tends to degrade
in high-density scenes. Some techniques attempt to solve the selection of small objects by
increasing the size of the selection tool [40, 94], at the expense of requiring disambiguation
mechanisms, for example, using metrics to guess which object the user wants to select [32].

Furthermore, the lack of physical support [71] and tracking noise have a severe negative
impact on selection performance, specially for high precision selections. Current approaches
to mitigate these effects include choosing appropriate selection devices or filtering the user’s
hand position and orientation [92]. Moreover, once the selection ray intersects the target,
the user has to maintain the ray’s orientation until the selection confirmation is triggered
by, for example, pressing a button. When pressing a button, the user’s hand might change
its orientation involuntarily, changing slightly the pointing direction and causing a wrong
selection. This effect, nicknamed Heisenberg effect [13], introduces a further difficulty in
selecting small targets. All these problems contrast with mouse-based interaction where
none of them arise.

In addition, occlusion is a big handicap for accomplishing spatial tasks [36], as most interac-
tion techniques for 3D selection and manipulation require the involved objects to be visible
from the user’s viewpoint. A common solution for selecting occluded objects is to navigate to
a different location so that the targets become unoccluded. However, this navigate-to-select
approach is impractical for selection intensive applications. Three-dimensional occlusion
management techniques are often essential for helping viewers understand the spatial rela-
tionships between the constituent parts that make up these data sets.

In essence, selection of small and partially occluded objects can cause user dissatisfaction
due to increased error rates, discomfort due to the duration of corrective movements, which
in the absence of physical support require an additional physical effort, and unconfidence on
which object will be selected after triggering the confirmation, thus compromising usability.

Usability is a key factor from different points of view. From the user’s perspective it can
make the difference between performing a task accurately or not, and enjoying the task or
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being frustrated. From the developer’s perspective, usability is important because it can
mean the difference between the success and the failure of a system. From a management
point of view, software with poor usability can reduce productivity. In all cases, the lack of
usability can cost time and effort.

Usability of current 3D selection techniques can be improved in several aspects. On the
one hand, we can focus on user performance, which can be measured with objective metrics
such as task completion time and error rate. An strategy to improve performance lays on
applying human control models such as the optimized initial impulse model [81] and Fitts’
Law [38, 39]. While the optimized impulse model refers to the accuracy a user can achieve
given the movement required to perform the action, Fitts’ Law estimates the time required
to acquire a target, both in the physical and in the virtual world. However, as we are
bounded by human motor skills, there is a natural trade-off between speed and accuracy.
In a standard scenario, high-accuracy rates will produce high task completion times and
vice-versa.

On the other hand, we can take into account user preferences. User preferences are mainly
subjective and qualitative. We can consider a number of different measures, including ease
of use, ease of learning, user satisfaction, user comfort and intuitiveness. In the context
of the real usage of a VR application, the subjective impressions of the users about an
interaction technique can play a much larger role than speed in controlled experiments. The
inability to select precisely may prove to be overly annoying to the user and thus be a source
of frustration and dissatisfaction. In addition, a reduction of selection time might not be
always desirable, for example, if the reduction is achieved at the expense of increasing the
cognitive load of the task, or requiring longer learning curves.

Finally, we cannot obviate the potential overhead of the interaction technique in the appli-
cation performance; VR applications have to provide interactive frame rates (over 25-30 fps)
and the end-to-end latency must be as low as possible.

1.2 Contributions

The main goal of this thesis is to contribute to the 3D user interfaces field by analyzing
major factors influencing selection performance, and proposing new interaction techniques
for 3D object selection in immersive virtual environments. We also aim at improving the
interaction with 2D GUIs embedded within virtual environments. As they are a particular
case of 3D object selection, we can develop specific selection techniques according to their
needs.



6 1.2 Contributions

In Chapter 2 we present a complete analysis of current selection techniques, and then, we
follow with the contributions of this PhD. The contributions are subdivided into four main
blocks:

• Analysis of visual issues in virtual pointing.

• Overcoming visual issues in virtual pointing.

• Apply Fitts’ law to enhance 3D object selection.

• Improve the development and the usability of 2D GUIs embedded in virtual environ-
ments.

Now a short summary for all contributions is provided.

1.2.1 Analysis of visual issues in virtual pointing tasks

The user’s perception of the virtual environment is crucial for an effective interaction. Ef-
fective object selection and manipulation requires the object to be clearly visible in its exact
location. This mostly holds for 2D displays, but it does not hold for immersive virtual en-
vironments due to the limitations of the displayed content. For example, the deficiencies of
the depth cues provided by stereoscopic output devices keep users from grabbing 3D objects
effectively, requiring multiple feedback loops in order to accomplish the action.

Visual feedback for pointing on stereoscopic displays

One of our main concerns is visual feedback. Selection techniques require the application
to provide appropriate visual feedback about the pointing tool and its spatial relationship
with potential targets. In virtual pointing techniques, this is often provided by drawing a
ray/cone extending out from the user’s hand. Similarly, virtual hand techniques use a hand
avatar. Visual feedback has to provide information about two key questions: which object
is being intersected by the selection tool (if any), thus allowing users to identify the object
that would be selected if the selection is confirmed, and which movement of the selection
tool (translation, rotation, or a combination of both) is needed to aim at a particular target.

The usage of stereoscopic displays poses several problems to provide precise feedback on the
two questions above. First, current stereoscopic displays are not able to reproduce well all
the visual cues provided by real-world objects. A second problem is the limited ability of
the human visual system to fuse objects with different retinal disparities.
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We performed an exhaustive analysis of existing selection techniques and their visual feed-
back, studying how they behave when accurate pointing is needed. We analyzed the main
cursor-based and ray-based visual feedback techniques in combination with multiple hand-to-
device mappings. Both theoretical and experimental analysis showed that existing selection
techniques have severe limitations regarding their visual feedback when precise selection
tasks are required.

Moreover, the fact that most pointing techniques for 3D selection rely on a ray originating at
the user’s hand whose direction is controlled by the hand orientation introduces additional
problems. The literature has largely ignored the effect of the misalignment between the
user’s viewpoint and the user’s hand.

However, this misalignment in combination with poor visual feedback have a significant
impact on selection performance. For objects that are visible but appear occluded from the
user’s hand position, visual feedback will misguide the user decreasing selection performance
(see Figure 1.1). We will refer to this issue as the eye-hand visibility mismatch.

B A

A

(a)

B

A

C

C
A
B

(b)

B
A

A
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(c)

Figure 1.1: Eye-hand visibility mismatch issues. (a) The user can selected an object which is hidden by
another object. The last visible point on the ray, is projected over the screen projection of the occluding
object, leading to misinterpretation: the ray appears to intersect object A, although the intersected object
is behind. (b) The visible object A cannot be selected because it cannot be reached by a ray emanating
from the user’s hand. The dotted line shows the path followed by the ray-scene intersection as seen on
the screen; it skips object A. (c) Object A is visible and selectable, but no point on its boundary is simul-
taneously visible and selectable. The dotted line shows the path followed by the ray-scene intersection as
seen on the screen, any intersection point on the boundary of B is visible from the user’s viewpoint.

We designed an experiment to evaluate the impact of the eye-hand visibility mismatch for
raycasting selection. We proposed two different test scenarios where all objects had the same
theoretical index of difficulty (computed using Fitts’ Law formulation). In the first scenario
all the objects appeared unoccluded from the hand’s position, but in the second scenario
several objects suffered from eye-hand visibility mismatch. The results of the experiment
showed a significant drop in selection performance when objects appear occluded from the
hand’s position.

The details of this contribution can be found in Chapter 3.
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1.2.2 Overcoming visual issues in virtual pointing tasks

Eye-hand visibility mismatch and visual feedback

For selection tasks, the eye-hand visibility mismatch appears when the set of selectable
objects and the set of visible objects differ. We can avoid this limitation by matching
the origin of the selection tool with the user’s viewpoint. The first option considered was
employing image-plane techniques.

However, existing image-plane techniques do not allow controlling the selection tool with
hand rotations (they are controlled only by hand position). As the selection tool is controlled
by bigger muscle groups, it results in increased fatigue levels and decreased precision, . In
addition our visual feedback analysis showed that existing visual feedback techniques are
not enough accurate when selecting small 3D objects.

We proposed a new device-ray mapping, where the selection ray is controlled by hand rota-
tions, but emanates from the eye position. This mapping combines the benefits of image-
plane techniques (absence of visibility mismatch and continuity of the ray movement in
screen-space) with the benefits of ray control through hand rotation (requiring less physical
hand movement from the user). In this sense, it can be considered as a hybrid technique
between raycasting and image-plane techniques.

Besides the device-ray mapping, adequate visual feedback must be provided. Since the
selection ray originates at the eye position, the ray projects into a single point in the view-
ing plane. We successfully developed two different visual feedback techniques which better
comply with stereoscopic output devices.

(a) Hand-to-cursor ray (b) Viewfinder

Figure 1.2: Proposed visual feedbacks to use in combination with the Raycasting from the eye
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• The hand-to-cursor ray (see Figure 1.2a). The visual feedback provided is a ray (the
display ray) described by the hand position and the intersection point of the selection ray
with the virtual environment. The feedback ray clearly determines the object currently
selected, and provides enough information about the movement required to aim a target.

• The Viewfinder (see Figure 1.2b). The visual feedback provided locally flatten potential
targets in the vicinity of the pointing direction by projecting them onto a small virtual
screen attached to the pointing direction itself. We call this technique viewfinder be-
cause the resulting effect is similar to looking a small part of the scene thought an LCD
digital camera display. The visual feedback provides enough information of the object
intersected (a small cursor in the middle of the viewfinder represent the selection ray),
and provides enhanced information regarding the movement required to aim a target,
as the cursor is continuous along the screen space.

The user evaluation showed that Raycasting from the Eye outperformed existing device-ray
mappings (raycasting and image plane techniques) no matter which visual feedback was
used. Our proposed mapping clearly outperformed raycasting especially for selections with
significant levels of eye-hand visibility mismatch.

The details of the Raycasting from the eye and the Viewfinder can be found in Section 4.1.

Supporting referential awareness in collaborative virtual environments

In the common workflow of a virtual reality application, 3D selection techniques are used
to determine the the object (or feature) of interest. Once defined, the user may transform
or change its properties. However, in applications where several users interact in the same
virtual environment (collaborative virtual environments, CVEs) selection tasks can change
their purpose and become referral tasks. One user might want to show some feature of the
environment to others.

One of the main concerns in CVEs is to keep awareness among users. All users should know
where other users are and what are they doing. We have discussed how eye-hand visibility
mismatch can play an important role for selection tasks, but in CVEs the potential viewpoint
mismatch among several users can be extreme: one user might select an object but other
users might be unable to locate the object (absence of referential awareness).

To solve this problem in the real world, people have to walk around the occluding objects
to obtain a suitable viewing position. Often they move close to the person who is pointing
in order to see the specified object (e.g. by looking over his shoulder). This issue is of
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particular importance if the two users collaborate in the same physical environment because
it may result in physical proximity. Close proximity among two users can potentially induce
discomfort and does not comply with social protocols, especially in formal presentations.

We have explored how users behave in these situations in a real scenario, by resembling a
joint design review of an automotive engine model. One user (the presenter) was responsible
to show some occluded features to another (the observer). We explored how users behave
in that situation, keeping track of the distance between them and checking whether the
distance among users comply with social protocols.

As we expected, users tend to keep closer to the presenter violating social protocols. In
order to keep referential awareness observers had to continuously follow the presenter, thus
keeping a similar viewpoint. While in reality this problem can only be solved by adapting
the viewing position, specialized individual views of the shared virtual scene enable various
other solutions (see Figure 1.3).

As one such solution we propose using virtual X-Ray techniques to ensure that referred
objects can be seen by others. For each specialized individual view, potential occluders can
be removed or turned semitransparent. X-Ray techniques ensure that users are able to see
the referred object. However, the use of such augmentation techniques might compromise
spatial perception and decrease context information because the removed content.

We analyzed the influence of such augmented viewing techniques on the spatial understand-
ing of the scene, the rapidity of information exchange as well as the social behavior of users.
The results of our user study revealed that X-Ray techniques in addition to allow users to
keep more comfortable distances, they support spatial understanding on a similar level as
walking around to achieve a non-occluded view of specified objects.

The details of this contribution can be found in Section 4.2.

(a) (b) (c)

Figure 1.3: Figures (a) and (b) illustrate the issue of interpersonal occlusion between two tracked users
in a collaborative virtual environment: an object that is fully visible to one user (a), can or cannot be
partially seen from other viewpoints (b). Virtual X-Ray techniques can improve target discovery in such
situations by showing the indicated object through the occluding environment (c).
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1.2.3 Applying Fitts’ law to enhance 3D object selection

Fitts’ law is a human psychomotor behavior model which introduces several guidelines to
improve selection performance. According to Fitts’ law formulation (MT = a+b log(A/W +
1)), the mean selection time of an acquisition task (MT) can be reduced by decreasing the
amplitude of the movement (A), increasing the size of the target (W) or a combination of
both.

These guidelines have been successfully applied to develop pointing facilitation techniques
for WIMP interfaces, but have been hardly applied to 3D object selection. For 3D object
selection, the efforts have been focused on increasing the area of influence of the selection
tool, or modulating the control-display ratio [41, 63].

However, there are no studies on 3D object selection techniques which dynamically increase
the size of objects to improve their selection. Increasing the effective size of objects, as Fitts’
law predicts, may result in better selection times but it may introduce some drawbacks. For
example, if we scale an object it might occlude neighboring objects making them unselectable.
We have developed and evaluated two different methods to increase the size of small and
occluded objects: Dynamic Scaling and Forced Dissoclusion.

(a) (b)

Figure 1.4: (a) Dynamic Scaling approach scales the currently selected object and Neighbouring ob-
jects are rearranged to avoid occlusion. (b) The forced dissoclusion approach shows the selected object
completely unoccluded.

Dynamic Scaling (DS) increases the size of objects indicated by the selection tool and rear-
ranges neighboring objects to minimize occlusion (see Figure 1.4a). The rearrangement is
driven by an image-space graph which encodes neighboring information for each object in
the environment. Neighboring objects are slightly scaled and moved apart to avoid occlu-
sion and also for facilitating their selection in case the currently indicated target is not the
intended one.



12 1.2 Contributions

In contrast, Forced Disoclussion (FD) maximizes the number of visible pixels of the focus
object by forcing it to appear completely unoccluded (see Figure 1.4b). An object which
was partially visible becomes fully visible.

Given that the effort to select small and partially occluded objects is governed by the final
corrective movements, in the best case scenario one could expect that Dynamic Scaling
and Forced Disocclusion have a positive impact on selection performance. However, the
transformation of neighboring targets to avoid occlusion could be potentially distracting
to the users and negate the benefits of Dynamic Scalling. On the other hand, forcing the
disocclusion of the object being pointed to might occlude neighboring objects and result in
poor performance.

To evaluate their usability, we conducted a user study. In terms of task performance, the
results showed that the drawbacks of increasing the effective size of targets may exceed their
benefits. Although we did not found significant differences for task completion time among
classic raycasting, task completion time for FD and DS tends to degrade as the complexity
of the scene increases. On the other hand, error rates were significantly lower for DS and
FD, and, the additional visual feedback provided made easier to users to recognize the object
intersected by the selection ray.

The details of this contribution can be found in Section 5.

1.2.4 Interacting with 2D GUIs embedded in VEs

Application control is one of the fundamental tasks a Virtual Reality application must ensure.
Given its flexibility and its ease of use, graphical user interfaces are typically employed for
these purposes, but creating graphical user interfaces for virtual environments can pose
several problems.

A cost-effective approach for embedding 2D GUIs in VEs

Existing GUI toolkits for VEs are still too simple; they allow only a limited number of GUI
components and often lack visual authoring tools. In contrast, existing GUI toolkits for 2D
desktop environments are mature, include powerful authoring tools and provide a wide range
of widgets.

We proposed a new approach to improve GUI prototyping for virtual environments. This
approach allows developers to re-use existing 2D GUIs and embed them into virtual envi-
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ronments. It is based on monitoring and capturing the 2D displayed contents (windows) and
embed them into the virtual environment as 3D windows. Once embedded, the user is able to
interact with them using standard 3D interaction techniques (selection and manipulation),
and in contrast to VNC and other frame-based approaches, the application has knowledge
of the GUI structure. Our approach minimizes the number of lines of source code that need
to be modified to migrate the GUI of an existing application to a VE. As migration, we refer
not only to the graphical representation of the widgets, but also to their behavior.

The details of this contribution can be found in Section 6.1

However, although this approach reduces the development step as the 2D GUI remains
unchanged, embedding an existing 2D GUI directly in a virtual environment may pose
some usability problems. As 2D widgets are optimized for mouse and keyboard interaction,
existing 3D interaction techniques might result in poor usability. Instead of having the 2D
GUI redesigned, we proposed two alternative approaches to improve its usability.

Anisomorphic ray-casting manipulation

The selection of small GUI elements using raycasting pose several usability issues as it
requires a high degree of accuracy. Small rotations of the wrist sweep out large arcs at the
end of the selection ray. Therefore hand trembling and tracking errors are amplified with
increasing distance, thus requiring a high level of angular accuracy. Accurate selection is
also compromised by the hand instability caused by the absence of constraints on the hand
movements (lack of physical support for manipulation). As a result, users attempting to
select small buttons have to make a considerable effort to stabilize their wrist.

Using an anisomorphic mapping between the user’s hand orientation and the selection ray
orientation, we are able to scale down hand rotations and enable accurate selections and
manipulations. The anisomorphic mapping modifies the control-display ratio to increase
accuracy, so that the ray rotates more slowly than the user’s hand, thus reducing the effect
of hand instability. Our technique uses a curved representation of the ray providing visual
feedback of the orientation of both the input device and the selection ray (see Figure 1.5a).

Altough the anisomorphic mapping increases the amplitude of movement, our experiments
indicate that it outperforms significantly isomorphic ray-casting in task completion time,
number of mistakes and manipulation accuracy, especially for high accurate selections.

The details of this contribution can be found in Section 6.2.
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Decoupling Motor Space and Visual Space

When interacting with WIMP interfaces in a personal computer, the motor space and the
visual space are decoupled. The relative movement of the mouse on the table (motor space)
is mapped to the cursor over the graphical user interface (visual space). We explored whether
decoupling motor and visual space is beneficial also for 2D GUIs embedded in virtual envi-
ronments.

The main advantage of this decoupling is than 2D GUI components can be selected and
manipulated within a user-defined working volume, whose location and size is completely
independent from the application’s visual representation (see Figure 1.5b). This decoupling
is accomplished through a virtual pad which receives user actions and maps them into cursor
movements. The user can place the virtual pad freely on the environment, e.g. in a location
that allows a more comfortable interaction. In addition, the virtual pad can be scaled to
manually adjust the control-display ratio.

We designed an experiment to evaluate how the virtual pad metaphor behaves in terms
of time-to-complete a task and accuracy. The results showed no significant differences in
terms of selection performance and error rates between direct interaction and interaction
through the virtual pad. However, our experiments indicate that the manipulation through
the virtual pad technique increases user’s comfort while providing dynamic management of
speed/accuracy trade-off.

The details of this contribution can be found in Section 6.3.

(a) Friction Surfaces (b) Virtual Pad

Figure 1.5: (a) Anisomorphic raycasting’s visual feedback. The red way corresponds to the computed
selection ray and the blue ray to the real hand orientation. (b) Using the virtual pad metaphor the user
can decouple the working and the visual space.



Chapter 2

Previous work

In this chapter we discuss the intrinsic and extrinsic limitations of 3D object selection. The
ability to efficiently select an object is constrained by several factors: the properties of the
object to select, the virtual environment, the input and output devices, and the users’ skills.
The knowledge of these limiting factors allows to design better selection techniques and
improve existing ones.

Object selection techniques involving physical interaction are constrained by the human
motor system as the speed and the accuracy of any gesture are limited by the nervous and
muscular systems. In Section 2.1 we introduce two human control models, the Fitts’ Law and
the optimized initial impulse model. Both explain how selection performance is related to the
object’s size (accuracy) and the location of the object (amplitude of the movement required
for its selection). On the one hand, Fitts’ law determines the relationship between the time
required to perform an acquisition task regarding the object’s size and the amplitude of the
movement required for its selection. On the other hand, the optimized initial impulse model
explains how users performs acquisition tasks and how they trade-off speed an accuracy. The
application of these principles to human computer interaction provide several guidelines to
improve pointing performance.

In contrast, other limitations are explained in terms of the main characteristics of the selec-
tion technique. Each selection technique provides the user with a selection tool (e.g. a 3D
cursor, a ray) and states how the user is able to control it (e.g. through hand translations,
wrist rotations). Both determine the level of accuracy the user can achieve and the physical
effort required to perform a selection task. In Section 2.2 we classify current selection tech-
niques according to these characteristics. The resulting classification allows the identification
of the worst and the best case scenarios for each selection technique.

Moreover, external factors, such as the virtual environment and the input and output devices,
introduce additional limitations. For example, selections in cluttered environments require
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additional accuracy due to occlusion, and inaccurate tracking devices can hinder selection
tasks requiring high accuracy. In Section 2.3 we detail these limitations and present usability
guidelines to deal with them.

In addition to this general perspective on selection techniques, we are also interested in
two particular situations: the use of selection techniques to refer to objects in collaborative
environments and the interaction with 2D graphical user interfaces embedded in virtual
environments.

In Section 2.4 we discuss the importance of referential awareness in collaborative environ-
ments and how it has been traditionally addressed. Regarding the interaction with 2D
graphical user interfaces, in Section 2.5 we review existing approaches to embed them in
a virtual environment and analyze whether existing selection techniques are well suited to
interact with them. Finally, in Section 2.6 we summarize current approaches for designing
evaluations of 3D user interfaces.

2.1 Human pointing models

In order to point to (acquire) an object (the target), a user is required to perform a set of
gestures (movements) to position the selection tool (e.g. his finger) over it. For each move-
ment, the final position of the selection tool (endpoint) determines whether the acquisition is
accomplished (the endpoint is inside the target) or not (the endpoint is outside the target).
Once the target is acquired, the user has to trigger some selection mechanism to confirm the
acquisition (e.g. pressing a button).

Pointing tasks involving physical interaction are constrained by the human psychomotor
behavior. Several human pointing models have been presented in order to model these
aiming movements, to allow a better understanding of the processes involved and providing
reliable prediction models of performance. From all the existing human motor models, Fitts’
law provides by far the most successful and complete explanation. Fitts’ law estimates
the time required to perform an aimed movement considering only the physical properties
underlying the acquisition task (the size of the target and the amplitude of the movement
required to acquire it).

However, Fitts’ law does not explain the processes involved in the acquisition task. Several
explanations appeared, like the iterative corrections model by Crossman and Goodeve [28],
which stated that the entire movement towards the target is subdivided in a set of small
movements, each taking the user closer to the target. However, only the optimized initial
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impulse model, proposed by Meyer et al. [81], provided a complete explanation accounting
from all the effects shown in the literature. It states that acquisition tasks are subdivided
in a two-step movement phases. First a fast and inaccurate movement is made towards
the target and then, iterative slow correction movements are executed until the target is
acquired.

2.1.1 Fitts’ Law

Fitts’ law [38], which emerged from experimental psychology, is a well known human psy-
chomotor behavior model which has been widely adopted in numerous areas, including hu-
man factors, ergonomics and human-computer interaction. The application of Fitts’ law
ranges from estimating the time required to perform an assembly operation, the time re-
quired to press a button with a mouse or to select an object in 3D space. Fitts’ law is so
well know because it provides one of the few quantitative measures for human-computer
interaction research.

Fitts, originally, sought to establish the information capacity of the human motor system.
His model mimics Shannon’s Theorem 17 [129] (see Equation 2.1), which expresses that the
information capacity of a channel (C) is determined by the bandwidth (B), the signal power
(S) and the perturbations introduced by white thermal noise (N).

C = B log2

(
S +N

N

)
(2.1)

Fitts claimed that electronic signals are analogous to the distance or the amplitude of the
movement to acquire a target (A) and noise is analogous to the tolerance or width (W) of
the movement’s endpoint during acquisition tasks.

Fitts’ law stated that the information capacity of a given task, which he called the index of
performance (IP) (see Equation 2.2), is obtained by dividing the index of difficulty (ID) of
a motor task, by the movement time (MT) required to perform the task.

IP = ID/MT (2.2)

Following Shannon’s logarithmic expression, Fitts’ proposed Equation 2.3 as the index of
difficulty; the ID is considered in bits as it has no units. The formulation slightly differs
from Shannon’s theorem. The purpose of multiplying A by two was to avoid negative IDs,
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for all practical situations the minimum value for A is W/2. It also has the effect of adding
one bit to the index of difficulty.

ID = − log2

(
W

2A

)
(2.3)

Combining Equations 2.1,2.2 and 2.3, we can build the original Fitts’ law formulation (see
Equation 2.4.

MT = a+ b log2

(2A
W

)
(2.4)

Where a and b are regression coefficients (see Figure 2.1). The intercept a is sensitive to
additive factors like reaction times (e.g. time to locate the target or time to trigger the
selection confirmation) and the inverse of the slope 1/b is the index of performance (IP)
expressed in seconds/bit.

Figure 2.1: Example of a Fitts’ law regression study. Each dot represent a different acquisition task.
The stripped line corresponds to the function f(ID) = a+ b ID.

If we forget about the Shannon derivation, the model still has a simple physical interpreta-
tion. The mean selection time increases when the amplitude of the movement (A) increases,
decreases when the precision required to acquire the target (W) increases and vice-versa. In
other words, tasks become more difficult when targets are smaller or farther away [116].

To validate his model, Fitts designed three different user studies. As a requirement, the
experiments had to be simple enough to keep the cognitive load of the participants as low
as possible. Each task involved successive repetitive actions covering the same amplitude,
maximizing user’s performance due to repetition and the participants were asked to perform
the task as fast as possible.
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(a) (b) (c)

Figure 2.2: Original Fitts’ experiments. (a) Reciprocal tapping task. Participants had to hit repeatedly
both center plates (stripped), without hitting the error plates surrounding the center plates. (b) Disc
transfer task. Participants had to transfer eight washers (one at a time) from the right to the left pin.
(c) Pin transfer task. Participants had to transfer each pin from one side to another. Image from
Fitts [38].

With these requirements, Fitts assumed that the performance would be limited mainly by
the capacity of the human motor system.

Fitts’ successfully validated his model on a tapping and two transfer tasks (see Figures 2.2).
He obtained high correlation values (r = 0.99), using Equation 2.4, between mean selection
time and ID (ID values ranging from 1 to 7). A number of following studies from other
authors also validated the model and proved its robustness.

In addition to the mean selection time estimation, if we experimentally obtain the mean
movement time (MT), we can compute the index of performance (IP). In a study presented
by Card, English and Burr [17] several input devices were evaluated by performing a text
selection task. In that scenario they used the index of performance IP to rank devices taking
into account the measured performance. Other examples can be found in [74, 76].

Fitts’ law can also be used to evaluate the performance of different aiming movements. In a
study by Stuard et al. [18] several aiming movements involving different muscle groups were
evaluated (hand, forearm, arm). Their results showed than the bigger is the muscle group
the lower is the IP. It is interesting to notice that the index of difficulty was the same for the
different muscle groups and only the slope (b) changed. It also supports the thought that
the intercept a accounts for additive factors like reaction times and b for task performance.

Successive iterations have been done in order to improve the data-to-model fit. The most
common adopted formulation was proposed by Scott MacKenzie [75]. His formulation (see
Equation 2.5) obtains a better fit for lower IDs (< 3). This formulation is also known as the
Shannon formulation of Fitts’ Law, as it totally resembles the Shannon’s Theorem.

MT = a+ b log2

(
A+W

W

)
(2.5)
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Now we review additional studies that have been carried out focusing on the W and A

adjustments and the extension of Fitts’ law to higher dimensional tasks.

Effective target width

MacKenzie explored in [74] how the ID can be adjusted for high values of W . Instead of
computing W directly from the task, MacKenzie proposed a method to compute the value
of W considering how the subjects performed, and thus W becoming a dependent variable.
The width computed by the MacKenzie method is called effective target width (We).

The effective width is computed considering the number of errors (the endpoint of the move-
ment is outside the target) and the distribution of the distance from each endpoint to the
midpoint of the target for each task (see Figure 2.3). The distribution of the distance is
assumed to follow a normal distribution. If the percentage of errors is smaller than 4%,
We can be computed as 4.133σd, where σd is the standard deviation of the endpoint of the
movements. Otherwise, if the percentage is greater than 4%, We is equal to W . In essence,
We corresponds to the distance covering the 96% of endpoint distances. When We is used,
the index of difficulty will be referred as IDe.

A

W

We

2%2%

96%

(a)

A

W

We

1%1%

96%
1% 1%

96%

(b)

Figure 2.3: Method proposed by MacKenzie in [74] to adjust the target’s width. The plots represents
the distribution of the endpoints for each acquisition task. They follow a normal distribution. (a) If the
number of errors is greater or equal than 4% then W = We, (b) otherwise We accounts for the 96% of
the endpoints closer to the center of the target, We = 4.133σ.

Fitts’ in its original experiments allowed up to 4% of erroneous trials. If higher values are
obtained, he stated that the task is not well designed or the level of difficulty is too high.
In addition, Crossman and Goodev in [28] and Klapp in [62] showed that Fitts’ law does
not hold neither for low ID values. Their analysis showed that the mean selection time
reached an asymptotic lower bound as the ID decreases. While the effective width does not
provide any solution for tasks with high ID values, they typically result in more than 4%
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of erroneous trials, it does for low ID values. If the low ID is due to increased target size,
at some point the standard deviation of the endpoint of the movements will also reach an
asymptotic lower bound. In these situations We provides a better estimation of the endpoint
tolerance determined by W . However, the main issue about this approach for the effective
width computation is that we cannot estimate the performance of a task, we require to
perform the task to model the performance.

Zhai et al. in [137] studied the bias introduced when providing different instructions to users.
They explored how users trade-off speed and accuracy and how IDe can account for it. They
described two different speed-accuracy trade-off layers, one defined by the task, and a second
one determined by the user’s behavior. In the original Fitts’ law formulation user’s behavior
is explained by a and b, but IDe also accounts for user’s behavior, which may result in a
better data fit.

Zhai observed differences for each condition on MT when providing different instructions to
users (e.g. “Perform as accurately as possible and do not worry about time or speed”; “as
accurate as possible and as fast as possible”). The more accuracy is required the greater
was MT . They performed two different regression analyses; grouping the trials among the
different instruction’s sets or considering all the trials together. The correlation between the
selection time and the ID when considering the groups separately was better when using ID
rather than IDe. In contrast, when considering all the groups together the correlation was
significantly better using IDe. The effective target width better explains the bias introduced
by the speed-accuracy trade-off, although it was not totally explained.

Noise

The distribution of the movement endpoints, as stated earlier, follow a normal distribution.
The human motor system is unable to perform perfect aimed movements and introduces
endpoint variability. This endpoint variability is considered noise and is referred as neuro-
motor noise [119]. Neuromotor noise is already considered in Fitts’ law as W is the measure
of the allowed distribution of the endpoint of the movement.

However, in addition to the neuromotor noise, input devices introduce additional noise.
Jagacinsky and Monk [58] explored how Fitts’ law formulation can be modified to include the
noise of input devices. They solution relied on subtracting the mean of the noise distribution
(W0) (considered as white Gaussian noise) to W . As the noise increases the index of difficulty
also increases, which can be resembled as the width of the object shrinks. Equation 2.6 shows
the formulation provided which resulted in a better data-to-model fit in their experiments.
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ID = log2

( 2A
W −W0

)
(2.6)

Latency

In human-computer interaction the communication between the user and the system is ac-
complished through input and output devices. This communication often introduces latency
due to (a) the processes involved, (b) low refresh rate for the output devices and (c) limited
input device sampling.

MacKenzie and Ware in [77] explored how latency effects can be introduced in Fitts’ law
formulation. Their experiments showed that task performance is reduced if the frame rate
decreases or if the latency introduced by the device sampling increases. The effect was
stronger for the latency introduced by the device sampling than the latency introduced due
to low frame rates

The resulting model was Equation 2.7. The lag only affects the slope (b in Equation 2.5)
and it increases linearly if the lag increases. If there is no lag Equation 2.7 reduces to
Equation 2.5.

MT = a+ (b+ c LAG)ID (2.7)

Ware and Balakrishnan in [125] in reference to Equation 2.7, stated that a include the
initial reaction time plus the selection confirmation, b represents the human processing time
required to perform a corrective movement and c LAG represents the impact of latency
during the corrective movement.

Equation 2.7 is useful when the latency is a known factor which varies among experiments
and when comparing different studies with different latency conditions. If the latency is
constant among the experiments, the b factor can absorb the term c LAG, resulting in the
original Fitts’ law formulation.

Fitts’ law extensions

Originally, Fitts’ law was applied only for 1D acquisition tasks, but along the years a huge
number of studies support it usage for 2D [75, 106, 84, 1] and 3D [125, 85, 47] acquisition
tasks. However Fitts’ law extensions only apply for simple scenarios; the user has to perform
a 1D task embedded in a 2D or 3D space and point to a simple target (rectangular or
spherical).
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The main challenge of extending Fitts’ law to higher dimensional tasks is how to compute
W and A and determine whether changes in the formulation are required or not. Increasing
the dimensions also increase the degrees of freedom and the muscle groups involved in the
acquisition task.

The extension of A to higher dimensional tasks is easier, as the Euclidean distance between
the starting point and the target’s midpoint is still a valid measure. However as we increase
the number of dimensions, computing the size of the target (W ) becomes more difficult. In
1D, W is clearly defined, but for 2D and 3D is not longer the case; W depends on the shape
of the target and the approach angle of the movement (Θ). If the targets considered are
only circular (or sphere like) the 1D constraint still holds as the W is directly related to the
radius of the target.

In the literature only rectangular-shaped axis-aligned targets are considered, which allows
for the interaction with words, buttons and simple 3D shapes. In order to compute the
size for higher dimensional targets, additional measures have to be considered, typically
the width (W), height (H) and depth (D) of the target are considered [74, 47]. In a 2D
scenario, the width of the target is the dimension more aligned with the direction of the
acquisition movement (see Figure 2.4) and the height is the remaining dimension [74]. For
a 3D scenario, the same rule applies to determine the width of the target, but it is not clear
how to determine the other two dimensions. Grossman and Balakrishnan [47] defined the
height considering a up-down axis (Y-axis) and the depth was the remaining dimension, but
no additional discussion was provided. However, as we will see, it is not relevant how the
height and the depth are defined.
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Figure 2.4: Roles of target width and target height for 2D acquisition tasks proposed by MacKenzie
in [75]. (a, b) Target width is aligned with the direction of movement. (c) If there is no perfect alignment
alternatives rely on considering the width of the target along the approach vector (W ′).

Extensions of Fitts’ law to higher dimensional tasks follow two different strategies, (a) com-
pute a new target size considering the dimensions of the target (Wc) or (b) introduce all the
dimensions into Fitts’ law formulation.
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MacKenzie in [75], proposed two different approaches to computeWc for 2D acquisition tasks,
obtaining good data-to-fit results. First, considering that the smaller dimensions restricts
the movement, Wc was determined by the minimum of both dimensions Wc = min(W,H).
Second, considering Wc = W ′, being W ′ the distance of the segment delimited by the
approach axis and the target (see Figure 2.4c).

However as stated by Accot and Zhai in [1], when considering Wc = min(W,H), several tar-
get configurations can have the same Wc which potentially can have different IDs. Moreover,
considering the minimum does not account for the movement direction. Nevertheless it is still
a good approximation and it is easy to extend to 3D acquisition tasks: Wc = min(W,H,D).

Murata [84] improved the computation of Wc by computing its effective value (as MacKenzie
did for 1D acquisition tasks [74]). They compute the effective with in the axis parallel to the
approach angle Wxe and in the perpendicular axis Wye (see Figure 2.5). Considering both
axes, they compute Wc as the min(Wxe,Wye). This approach can also be extended to 3D
acquisition tasks.

Wx

Wy

Wxe

2%2%

96%

Wye

2%
2%
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Figure 2.5: Computation of the effective target size for two dimensional tasks, as proposed by Mu-
rata [84]. It considers the endpoint variability for each dimension separately.

The second approach to extend Fitts’ law to higher dimensional tasks is based on consid-
ering the dimensions involved in the acquisition task separately and introducing them into
Fitts’ law formulation. The first model was suggested by Crossman [27] (see Equation 2.8).
Crossman observed that the restriction introduced by the height of the target also affected
movement time, but in a lesser grade.

MT = a+ b log2

(2A
W

)
+ c log2

(2A
H

)
(2.8)
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Later, Accot and Zhai in [1] proposed an improved version employing only one logarithmic
term (see Equation 2.9). The η is an additional parameter and varies approximately in the
range of [1/3, 1/7].

MT = a+ b log2

√( A
W

)2
+ η

(
A

H

)2
+ 1

 (2.9)

Compared to Shannon’s formulation of Fitts’ law using Wc = min(W,H), the model pro-
posed by Accot and Zhai only obtains a better data-fit when W ≥ H. However, the better
fit can be explained due to the fact that when W ≥ H, We is typically smaller than W .
Nevertheless, they showed how the computation of Wc as min(W,H) breaks when H < W

(remember that the movement is aligned with W ). They observed that increasing W results
in performance improvements although Wc remained constant (see Figure 2.6).

M
ov

em
en

t t
im

e 
(m

s)
70

0
80

0
90

0
10

00

5∞ 3 2 11/2 11/4 1 5 ∞3211/211/4

H/W with W≤H W/H with H ≤W

Figure 2.6: Performance plot for different W and H configurations (same Wc) obtained by Accot and
Zhai in the experiment presented in [1]. The computation of Wc as min(W,H) breaks when W > H.

Grossman and Balakrishnan in [47] applied a similar approach to introduce a new ID formu-
lation for 3D acquisition tasks (see Equation 2.10). In addition to consider the three direc-
tions of movement (W,H,D), all three components are weighted by an additional parameter
fW,H,D(Θ). This parameter is determined experimentally and depends on the approach angle
Θ.

IDWtEucΘ = log2


√√√√fW (Θ)

(
A

W

2)
+ fH(Θ)

(
A

H

2)
+ fD(Θ)

(
A

D

2)
+ 1

 (2.10)

They performed a user evaluation comparing its model with four additional ID formulations
(see Equations 2.11). These formulations were obtained applying the models proposed by
MacKenzie [75] and Accot [1].
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IDmin = log2

(
A

min(W,H,D) + 1
)

IDWtmin = log2

(
A

min(W,αH, βD) + 1
)

IDWtEuc = log2


√√√√( A

W

2)
+ α

(
A

H

2)
+ β

(
A

D

2)
+ 1


IDWtminΘ = log2

(
A

min(fW (Θ)W, fH(Θ)H, fD(Θ)D) + 1
)

(2.11)

The results showed that IDWtEucΘ (R2 = 0.912) and IDWtEuc (R2 = 0.911) provide the
better explanation of the data obtained. Followed by IDWtminΘ (R2 = 0.878), IDWtmin

(R2 = 0.878) and IDmin (R2 = 0.799). Although their results showed a slightly better data-
to-model fit with its proposed formulation, it not clear whether the improvements of the fit
are due to the additional degrees of freedom. The simplest model is still able to account for
the 80% of the data.

Interestingly, during the evaluation they observed that acquisition tasks requiring forward
and backward movements were significantly slower than left and right movements and were
more prone to errors. This observation matches with the observations of Ware and Balakrish-
nan [125], which also showed higher error rates for movements involving depth perception.
They justify performance and error rates because bigger muscle groups are involved, and
due to limitations in the visual feedback provided. Visual feedback is crucial for virtual re-
ality interaction, but depth perception available in virtual reality setups is limited. A more
detailed discussion can be found in Section 3.1.

Virtual pointing tasks

Until now we have considered only acquisition tasks where the user has to reach the target
with its hand (or with a stylus). Wingrave and Bowman [131] showed that Fitts’ law still
holds for virtual pointing tasks in VEs. Instead of considering the size of the target, they
observed that W is related to the visual size of the target and A to the amplitude of the
movement considering the angle covered by hand rotations. Poupyrev et al. in [97] went
further, by defining the size of an object W according to the vertical ϕ and horizontal φ
angles an object occupies in the user’s field of view. They also consider how occlusion
between objects diminishes W . In Section 3.1.2 we will go deeper on how occlusion alters
W .
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2.1.2 Optimized initial impulse model

Fitts’ law only accounts for movement time according to the target’s characteristics and the
empirical parameters a and b. However it does not provide any insight on how subjects
perform acquisition tasks. Different human performance models have been proposed to
explain the logarithmic speed-accuracy trade-off defined by Fitts’ law.

The human movement model which better accounts for Fitts’ Law is the optimized initial
impulse model proposed by Meyer et al. [81]. It has its origins in the model proposed by
Woodworth [135] where acquisition tasks are subdivided in a two-step movement phases. In
the first phase, called ballistic phase, a fast and inaccurate movement is made towards the
target. If the target is not acquired, then, iterative slow correction movements are executed
until the target is acquired (see Figure 2.7).
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Figure 2.7: Following the optimized initial impulse model, after the ballistic movement: (a) the target
might be selected, (b) under shooted or (c) over shooted. For situations (b) and (c) subsequent corrective
movements are required.

Ballistic movements are intended to cover the whole distance towards the target, but due
to limitations of the human motor system, the endpoint of the movement is randomly dis-
tributed over the desired endpoint [100]. This variability depends on the muscle groups in-
volved in the movement [18], bigger muscle groups introduce higher variability than smaller
ones. On the other hand, corrective movements are slow movements where precision is the
main requirement. They are needed when the target is undershot or overshot.

In his experiments Meyer et al. [81] defined the speed-accuracy ratio for ballistic movements.
They exposed that the standard deviation of the movement’s endpoint is proportional to the
average of the movement speed (D/T ),
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S = k
D

T
(2.12)

Where S is the standard deviation of the endpoint, D is the distance covered and T is the
movement time. This relationship determines te trade-off between the speed of the move-
ment and the precision needed. Faster movements result in higher endpoint variability, thus
requiring more corrective movements to acquire the target. On the other hand, slow move-
ments result in smaller endpoint variability and thus requiring fewer corrective movements.

Experimental observations showed than given a task, users minimize movement times by
balancing the speed of the ballistic movement in relation with the required corrective sub-
movements [119]. Other researchers have studied the velocity profiles of acquisition move-
ments taking into account the index of difficulty of the task [73]. Their results also match
with the optimized initial impulse model, the profiles showed two different movement phases
(see Figure 2.8), few fast movements followed by a sequence of slower movements.
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Figure 2.8: Example of velocity profile of a 3D acquisition task using raycasting selection; the ballistic
and corrective phases of the movement are clearly visible.

MacKenzie et al. [73] concluded that velocity profiles depend on W and A and not only
on the ID. During the acceleration phase, A determines the maximum movement speed,
regardless of target size. In contrast, W determines the deceleration phase and the corrective
movements required to acquire the target. The higher is A the higher is the peek velocity, and
the smaller is W the longer is the deceleration phase. In other words, the shape of movement
trajectories is directly influenced by the required precision of the movement endpoint.

Walker et al. [106] introduced two additional movement phases: the initiation phase and the
verification phase. The initiation phase covers the time required until the user starts the
acquisition process. During the verification phase the user ensures that he has acquired the
desired target and confirms the selection. Both phases did not depend on the movement at
all, and only introduce additive effects.
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2.2 3D object selection techniques

Since the first 3D object selection techniques appeared [82], many researchers have focused
on improving their usability. Typically small improvements are introduced at each iteration
step by improving performance, precision or user comfort. Most selection techniques are
related to other techniques and share several features.

Bowman et al. [11] proposed a classification based on task decomposition, where selection
techniques are decomposed into subtasks, and classified according to them (see Figure 2.9).
They state that a selection technique has to provide means to indicate an object (object
indication), a way to confirm its selection (confirmation of selection) and visual, haptic
or audio feedback to guide the user during the selection task (feedback). However, their
classification does not consider that the purpose of the feedback may vary during indication
and confirmation tasks. While feedback guides user’s actions during indication tasks, it
has to show if the selection was successful in confirmation tasks. In addition the feedback is
highly coupled with the object indication which introduces redundancy into the classification.

Selection
Technique

Indication of
object

Confirmation
of selection

Feedback

Occlusion
Object touching
Pointing
Indirect selection

Event
Gesture
Voice command
No explicit command

Text/symbolic
Aural
Visual
Force/tactile

Figure 2.9: Classification of selection techniques by task decomposition. Bowman et al. [11]

Poupyrev et al. in [95] proposed an alternative classification based on interaction metaphors;
each technique can be classified considering real world interactions (see Figure 2.10). The
classification have several levels. The first level considers selection techniques as exocentric
and egocentric. For exocentric techniques (god’s-eye viewpoint) the user interacts from
outside the environment, while for egocentric (first person viewpoint) the user interacts from
inside the environment. In the second level, egocentric metaphors are further subdivided into
virtual hand and virtual pointer metaphors and exocentric metaphors are subdivided into
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World-in-miniature and automatic scaling. In contrast to Bowman’s classification, Poupyrev
classification’s does not to consider small technique differences like feedback or selection
confirmation mechanisms.

Selection
techniques

Exocentric
metaphors

Egocentric
metaphors

World-in-miniature

Automatic scaling

Virtual hand metaphors

Virtual pointer metaphors

Figure 2.10: Classification of selection techniques by interaction metaphor. Poupyrev et al. [95]

Notice the similarities between the classification for egocentric metaphors in Poupyrev’s
classification and the indication of object in Bowman’s. Both classifications can be combined
by considering that the object indication subtask in Bowman’s classification can be further
subdivided into exocentric and egocentric metaphors as in Poupyrev’s classification.

Both taxonomies provide a broad view of selection techniques but consider a small number of
design variables. Additional design variables relate to the characteristics of the selection tool
and how the user is able to control it. Given a selection technique, it can be characterized
considering how the user controls the 3D selection tool, the area of influence of the tool,
whether the control-display ratio is modified or not, the mapping between the motor and
visual space and automatic processes which guide user’s actions.

For example, consider raycasting and virtual hand selection techniques (see Figure 2.11). For
raycasting, the 3D selection tool is a 3D ray, controlled by the hand position and orientation,
being the area of influence a segment determined by the ray, the control-display ratio is 1:1,
the motor and visual space are coupled, no automatic process are provided and the feedback
consists in the visualization of the 3D ray.

In contrast, for virtual hand, the 3D selection tool is a virtual hand avatar, controlled by
the hand position, the area of influence is the volume defined by the virtual hand, the
control-display ratio is 1:1, the motor and visual space are coupled, no automatic process
are provided and the feedback provided is the visualization of the 3D virtual hand avatar.

According to our classification, the only differences appear in the selection tool and how the
user is able to control. Obviously, the visual feedback differs as the visual representation of
both tools also differ.
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(a) (b)

Figure 2.11: (a) Raycasting selection, the first object intersected by the ray is selected. (b) Virtual
hand selection, the object intersected by the virtual hand is selected.

In the rest of the section we describe the characteristics considered and how current selection
techniques can be classified according to them.

2.2.1 Selection tool

Three-dimensional object selection techniques requiring physical interaction provide the user
with a selection tool and define how user’s actions are mapped onto the selection tool. The
most common selection techniques employ rays, 3D cursors or simple 3D shapes. Once the
user places conveniently the selection tool, an intersection or a proximity test is performed
against the 3D environment. As we consider only the selection of single objects, if more than
one object is selected, the selection technique has to provide mechanisms to disambiguate
the result.

Virtual prop

Referring to Poupyrev’s classification, virtual hand and virtual pointing techniques are de-
termined by the selection tool. Virtual hand techniques rely on 3D cursor tools while virtual
pointing techniques employ 3D rays (or cones). A classification of existing selection tech-
niques against their selection tool is presented in Table 2.1.

For the majority of techniques, the selection tool does not change its shape during the
interaction process, although there are techniques which provide mechanisms to alter the
shape of the selection tool. For example, the Bubble cursor [120], which employs a sphere-
like selection tool, automatically increase the radius of the sphere to reach object closest to
it. Another example is aperture selection [40] which allow to manually adjust the size of the
selection tool.



32 2.2 3D object selection techniques

In addition to 3D Cursors and 3D rays other techniques employ alternative solutions. For
example, the depth ray and the lock ray [48] are hybrid solutions which combine a ray with
a 3D cursor constrained along the ray. When the selection trigger is activated the object
intersected by the ray and closest to the 3D cursor is selected. Another example is the iSith
technique [93] which employs two selection rays. Both rays determine a 3D point which is
used to perform a proximity test against the scene. Finally, the flexible pointing [90] allows
the user to bend the selection ray to select fully or partially occluded objects.

Metaphor Selection Tool Technique

Virtual Hand
Hand avatar

Virtual-hand
Go-go [96]

Adjustable sphere Bubble-Cursor [120]
Axis aligned box Silk Cursor [136]

Virtual Pointing

Ray

RayCasting [82]
Direct Image plane [69]
Flow Ray [48]
Eye-gazed selection [115]
Occlusion Selection [94]
One-Eyed Cursor [126]
Two-handed Pointing [83]
PRISM [42]
Adaptive pointing [63]
IntenSelect [32]
Smart Ray [48]

Cone

Sticky Ray [112]
Flashlight [56]
Sense Shapes [89]
Shadow Cone Selection [111]
Probabilistic Pointing [105]
Enhanced Cone Selection [110]

Adjustable cone Aperture [40]
Two rays iSith [93]

Curved ray Flexible Pointing [90]

Hybrid Ray & 3D cursor
Depth Ray [48]
Lock Ray [48]

Table 2.1: Selection techniques classified according to their interaction metaphor and their selection
tool.
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Tool Control

Once defined the shape of the selection tool, the selection technique also determines how the
user is able to control it. As virtual reality systems are equipped with tracking devices, the
system is able to track users’ actions and map them into the selection tool.

The user can control a 3D cursor by moving its dominant hand (virtual hand), control a
virtual ray with the hand’s position and wrist’s orientation (raycasting) or define a virtual
ray emanating from the head going along the hand’s position, as in occlusion selection [94].
Other techniques determine the ray’s orientation by the vector defined by both hands [83],
bending the ray given the position of the non-dominant hand [90], or using eye tracking [115].

Virtual pointing techniques whose tool origin is located in the hand position will be referred
as hand-rooted techniques and techniques having the origin at the eye position will be referred
as eye-rooted techniques. An analysis of its implications is detailed in Section 3.1.

The control mechanism also determines the degrees of freedom (DoF) required to control
the selection tool. A 3D cursor controlled by the hand position has three DoFs (one for each
dimension), while a virtual ray controlled by hand position and orientation has five DoF,
three to determine the ray’s origin and two for the ray’s orientation.

However, some DoFs are more relevant than others. For example, when selecting objects
placed far away form the user with a virtual ray, selection can be accomplished without
changing the ray’s origin. Changes in the origin of the virtual ray result in relatively small
variations of the ray’s endpoint. Although a virtual ray has up to five DoFs in most situations
it is enough using only two DoFs. An exception is the smart ray [48] which was conceived
to select semitransparent objects in cluttered environments. To select an object, the user
has to point to it from several directions. The depth ray and the lock ray [48] require an
additional DoF, as the selection tool is a 3D cursor constrained along a 3D ray.

Two-handed techniques also increase the number of DoFs the user has to control. In Two-
Handed pointing [83] the virtual ray is constrained by the position of both user’s hands
resulting in six positional DoFs. A variation of two-handed pointing is flexible pointing [90]
which employs a Bézier curve as a selection tool. Two control points are determined by
the position of the user’s hands (six DoFs) and the remaining control point is computed
regarding the orientation of both hands (four DoFs). Another two-handed technique is the
iSith technique [93] in which the user has to control two virtual rays, requiring up to ten
DoFs. In contrast to raycasting, the origin of the rays play an important role, as the selected
object is determined by the intersection of both rays.
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Table 2.2 shows the maximum degrees of freedom and the effective DoFs required for each
selection technique. In Section 2.3.3 we discuss the implications of the number of DoF in
usability.

Origin/Location Orientation Effective
Technique

DoFs DoFs DoFs

(x, y, z)

None (x, y, z)

Virtual Hand
Go-go [96]
Silk Cursor [136]
Bubble Cursor [120]

(θ, ϕ)

(θ, ϕ)

RayCasting [82]
Sticky Ray [112]
Flashlight [56]
Sense Shapes [89]
Shadow Cone Selection [111]
Probabilistic Pointing [105]
PRISM [42]
Adaptive Pointing [63]
Enhanced Cone Selection [110]
IntentSelect [32]
Flow Ray [48]

(z, θ, ϕ)
Depth Ray [48]
Lock Ray [48]

(x, y, z, θ, ϕ) Smart Ray [48]
None (1) (x, y) Direct Image Plane [69]

(xn, yn, zn)
(x, y, z)

Two-Handed Pointing [83]
(xn, yn, zn)

(xn, yn, zn, θn, ϕn) Flexible Pointing [90]
(θ, ϕ) (x, y, z, θ, ϕ)

(x, y, z) (θ, ϕ) (xn, yn, zn, θn, ϕn) iSith [93]
(xn, yn, zn) (θn, ϕn)

(xe, ye, ze)
(x, y, z)

(x, y)
One-Eyed Cursor [126]
Occlusion Selection [94]

(x, y, z) (2) Aperture Selection [40]
(θe, ϕe) (θe, ϕe) Eye-gazed Selection [115]

Table 2.2: Selection techniques classified according to how the user controls the selection tool.
(x, y, z, θ, ϕ) refers to the dominant hand position, and yaw and pitch angles. (xn, yn, zn, θn, ϕn) refers
to the user’s non-dominant hand and (xe, ye, ze, θe, ϕe) to the user’s eye. The coordinate system is
user-centered. (1) The orientation of the selection ray is determined by the screen normal. (2) The third
DoF allows to adjust the apex angle of the selection cone.
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Disambiguation Mechanisms

As discussed above, one of the common strategies to improve selection performance relies on
volumetric selection tools [56, 111]. Volumetric tools are prone to indicate more than one
object at once, specially in dense environments [120]. In these situations, the selection tech-
nique has to provide mechanisms to disambiguate the selection. Disambiguation mechanisms
can be classified into three groups: manual, heuristic and behavioral.

For manual approaches, the user has to decide, among the indicated targets, which target
is the desired one. Manual approaches provide the maximum flexibility at the expense of
increasing the cognitive load of the user due to additional selection steps. The simplest
solution consists on using a button to cycle among all indicated objects [54], but obviously,
it does not scale well if too many objects are selected.

A better solution, proposed by Grossman et al. in [48] is the flow ray. Although it behaves as
raycasting, all objects intersected by the virtual ray are selected. In a second step, selected
objects are displayed in a list or a pie menu, thus letting the user select the desired one. Other
options may require more complex interaction like iSith [93], which employs two selection
rays; the object closest to both rays is selected.

Grossman et al. in [48] proposed another extension for raycasting selection called depth ray.
In addition to the virtual ray, it provides a 3D cursor constrained along the virtual ray. The
3D cursor is controlled by pulling the hand forwards and backwards; the object intersected
by the virtual ray and closest to the 3D cursor is the selected one.

The second group of disambiguation techniques employ heuristics to determine which is the
object the user wants to select. Objects are ranked according to a heuristic and the higher
ranked object is selected. The easiest approach considers the distance between objects and
the center of the selection volume, as flashlight selection does [56]; the object closest to the
axis of the selection cone is selected.

Schmidt et al. [105] extended this naive approach by proposing probabilistic pointing-based
selection algorithms. All methods are based on computing a weighted pixel count of a circular
area surrounding a 2D cursor. They considered three alternatives:

1. Each pixel has the same relevance (similar to [89]).

2. For each object, the pixel relevance is inversely proportional to the distance of the pixel
to the barycenter of the visible portion of the object.

3. Use hierarchical information of the model to weight the pixel’s relevance.
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The first approach, obviously presents issues when selecting small objects surrounded by
bigger ones, and the third is problematic as we need the hierarchical information of the
model which may be unavailable. The user study presented in [105], showed that the second
approach worked better. Users, when pointing to an object, tend to move the selection tool
towards its center. However as they state, concave objects may pose some difficulties as the
barycenter is not located inside the object. They report that it is less sensible to noise but
inefficient for selecting small items.

Finally, behavioral approaches take into account user’s actions prior selection confirmation.
Instead of applying an heuristic when the user triggers the selection, they continuously
rank objects during the selection process, gathering statistical information, such as IntenS-
elect [32], enhanced cone selection [110] and sense shapes [89].

The data they considered is related to: the time the object is inside the selection volume, its
distance to the center of the volume, the number of times the object has entered the volume,
the objects’s visible pixels in the volume frustum and the average or minimum pixel distance
to the center of the volume’s center. These approaches are particularly useful for selecting
moving targets; as if we track the moving target with the selection tool its selection weight
will increase with respect to static objects.

In summary, manual approaches provide total control to users at the expense of increased
cognitive load or additional selection steps. On the other hand, heuristic and behavioral
techniques do not introduce any further selection steps, but as they are not completely
accurate, they might result in unwanted selections and thus require the user to perform
another selection. Table 2.3 shows the disambiguation mechanisms provided for each of the
considered selection techniques.

2.2.2 Control display ratio

The Control-Display ratio (CD ratio) determines how translations and rotations of the input
device (x) are transfered to the selection tool (X): CD ratio = ∆x/∆X. In a system where
there is an isomorphism between the pointing device and the display, the CD ratio is one,
which means than the movement of the pointing device is the same as the movement of
the selection tool in the virtual environment. When the CD ratio differs from one, there
is an anisomorphism, the movement is scaled (greater than one) or downscaled (lower than
one). A related concept is the Control-Display gain which provides a relationship between
the velocity of the physical device and the selection tool.
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Disambiguation Technique

N/A

Virtual-hand
Go-go [96]
Silk Cursor [136]
RayCasting [82]
Direct Image plane [69]
Eye-gazed selection [115]
Occlusion Selection [94]
One-Eyed Cursor [126]
Two-handed Pointing [83]
Flexible Pointing [90]
PRISM [42]
Adaptive pointing [63]

Manual

Flow Ray [48]
Depth Ray [48]
Lock Ray [48]
iSith (Two Handed) [93]
Shadow Cone Selection [111]
Smart Ray [48]

Heuristic

Probabilistic Pointing [105]
Aperture [40]
Sticky Ray [112]
Flashlight [56]
Bubble-Cursor [120]

Behavioral
Enhanced Cone Selection [110]
Sense Shapes [89]
IntenSelect [32]

Table 2.3: Selection techniques classified according to the disambiguation mechanism provided.

The effect of a constant CD ratio on performance has been extensively explored in the
literature but results are still inconclusive [4]. Considering Fitts’ law, a constant CD ratio
affects the amplitude of the movement and the target size at the same level, keeping the
index of difficulty unchanged.

The first 3D object selection technique proposing a change on the CD ratio was the go-go
technique [96]. Poupyrev et al. proposed a non-linear mapping for the CD ratio to increase
the limited area of reach of virtual hand techniques. They defined two areas considering
the distance between the user’s hand and its torso. When the distance is smaller than a
threshold, the CD ratio is one. But as the distance increases, user’s movements are mapped
non-linearly to the virtual hand. A factor k, where 0 < k < 1, is used to adjust the non-linear
component (see Figure 2.12). In some sense, the go-go technique allows the user to stretch
its virtual arm to select objects placed far away.
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Figure 2.12: Plot of the distance between the user’s torso and the user’s hand (Dr) in comparison
to the virtual hand (Dv). If the user’s hand is close to the user’s torso (Dr < D) both are coupled
(Dv = Dr). When the user moves the hand further (Dr > D), the virtual hand moves faster than the
real hand (Dv = Dr + k(Dr −D)2).

However, on the downside, precision decreases as the user move its hand further (user’s
movements are magnified). In addition, although the CD ratio depends on the distance
between the user’s hand and torso, it may result unnatural and unpredictable. People tend
to judge their hand movement mainly on the basis of the on-screen movement of the cursor
and adapt their hand movement accordingly [63].

König et al. in [63] classified existing CD ratio based techniques into three groups, according
to how they manage the CD ratio: manual switching, target oriented and velocity oriented
techniques.

Manual switching techniques provide mechanisms allowing the user to manually control the
CD ratio. The most common approach is based on reducing the CD ratio when additional
accuracy is required. For example, Vogel et al. in [122], proposed the use of gestures to allow
the user to switch between isomorphic raycasting and anisomorphinc raycasting with a CD
ratio lower than one. Although they obtained higher selection times with their approach
(mainly due to mode switches), they got lower error rates than standard raycasting.

The second group, target oriented techniques, are based on reducing the CD ratio when the
selection tool enters or approaches an object, following a sticky metaphor. Although this
approach is useful for the selection of isolated targets, its performance tends to degrade in
cluttered environments.

Finally, velocity oriented techniques dynamically adjust the CD ratio according to the in-
put device speed. Considering the optimized initial impulse model [81], accuracy can be
decreased during ballistic phases (CD ratio higher than one) and increased during corrective
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movements (CD ratio lower than one). As a result, during ballistic movements the amplitude
of the movement A decreases, while during corrective movements the size of the target W
increases. This approach has been widely adopted for 2D mouse interaction.

The PRISM technique, proposed by Frees and Kessler in [41], applied this concept for manip-
ulation and selection tasks. Figure 2.13 shows the plot of how the CD ratio varies according
to the speed of the input device. Movements below a minimum speed (MinS) are considered
noise and thus ignored. Corrective movements (speeds between MinS and SC) are scaled
down, increasing precision. For ballistic movements (speed higher than SC), they applied a
1:1 CD ratio.

However, changes in the CD ratio introduce an offset between the physical device and the
virtual selection tool. After a sequence of corrective movements the position of the input
device no longer matches the position of the virtual device. In order to solve this issue, when
the speed exceeds a maximum speed (MaxS) the CD ratio is increased until the offset is
recovered. A fast movement allows the user to recover the accumulated offset.

gain

1

0

MinS SC MaxS

Offset recovery

Hand
speed

Figure 2.13: Control display ratio function for PRISM.

A similar approach was applied by König et al. in [63]. They proposed the technique named
Adaptive Pointing which is based on a similar mapping as PRISM (see Figure 2.14), but it
also takes into account the accumulated offset between the physical device and the virtual
selection tool. They introduce to the CD ratio computation the accumulated offset, limiting
the maximum offset allowed. Similar to PRISM, their user evaluation showed that Adaptive
Pointing applied in combination with raycasting selection result in reduced error rates due
to increased precision and slightly improved selection time.
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Figure 2.14: Control display ratio function for Adaptive pointing. The influence of the offset is not
considered in this plot.

2.2.3 Motor and visual space

Two main spaces are involved during the interaction with an object on immersive virtual
environments: the motor and the visual space. The motor space (or working space) is the
physical space available for the user to operate, which is constrained to the degrees of freedom
available and the virtual reality setup. For example, a user controlling a 6 DoFs hand-held
device inside a CAVE is constrained by the 6 DoFs of the input device, the CAVE’s walls
and its own body limitations. In contrast, the visual space is the visual representation of the
environment perceived by the user, it is independent to the selection technique employed
and it is constrained by the field of view of the output device.

In a typical desktop PC setup, the motor space is decoupled from the visual space. The
movement of the mouse on a horizontal plane is transformed to the movement of a 2D cursor
on a vertical plane (screen). The motor space is thus mapped onto the visual space by a
rotation and a translation.

In contrast, for the virtual hand technique both spaces are coupled (there is an absolute
mapping); the selection is accomplished by simply touching the virtual object. Absolute
hand pointing can be carried out with the proprioceptive feedback of the hand. However,
when the motor and the visual space are decoupled proprioceptive feedback is broken, in that
situation visual feedback is mandatory. The user has to sample the selection tool location
with gaze to provide accurate corrective movements [107].

The selection tool together and its control determines which objects within the visual space
may afford direct manipulation. In other words, these two components (selection tool and
control) transforms the motor space into another space, which defines the scope of the user’s
actions. We refer to this transformed space as the control space. The intersection between
the control space and the visual space determines which objects afford direct manipulation.
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For the isomorphic virtual hand technique, as depicted in Figure 2.15a, the control space
matches the motor space; objects outside the motor space are not selectable. In contrast,
for virtual pointing techniques, the control space matches the visual space allowing to select
objects outside the motor space.

Changes in the CD ratio modify the relationship between the motor and the control space.
A CD ratio greater than one scales the control space increasing the area affording direct
manipulation at the expense of decreasing the accuracy and vice-versa. For example, the
non-linear mapping of the CD ratio provided by the go-go technique [96] increases the control
space (see Figure 2.15b), although no uniformly.

D

CB

A

Motor Space Control Space

(a)

D

CB

A

CB

A

Control SpaceMotor Space

(b)

Figure 2.15: Mapping between motor and control space for virtual hand and go-go. (a) In classic
virtual hand selection, only objects inside the working space are selectable. (b) The go-go techniques
alters the mapping between the motor space and the control space, so the control space matches the
visual space. An alternative explanation is that the visual space shrinks to match the motor space.

The alternative relies on variable CD ratios; reducing the control space when precision is
required and vice-versa. However, as in PRISM [42] and adaptive pointing [63] an offset
recovery mechanism is required to avoid an excessive decouple between the motor and the
control space.

The motor and the control space can also be decoupled by introducing a constant offset and
allowing the user to determine the transformation between both spaces (clutching).

For example, in occlusion selection [94], the pointing direction is defined by roughly aligning
the hand with the eye position which requires the user to keep its arm extended. Introducing
a vertical offset allows the user to keep its hand in a lower position, reducing fatigue levels
(see Figure 2.16). Indeed, it is mandatory when using projection based systems as the real
hand may occlude the projected content.
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(a) (b)

Figure 2.16: Occlusion selection requires the user to keep its hand roughly aligned with the eye posi-
tion (a). By introducing an offset between the motor and the visual space, the user can keep a more
comfortable position (b).

On the other hand, clutching mechanisms allow the user to relocate the control space ac-
counting for hand repositioning [54], at the expense of introducing an offset between the
selection tool and the physical device. Relocating the control space allows to select objects
otherwise unreachable (see Figure 2.17) and avoids unwanted user movements to affect the
selection tool at the expense of increased user attention. A trigger is needed to enable and
disable the clutching. This trigger can be explicit like pressing a button, or implicit like a
2D mouse where the clutching is achieved by lifting the mouse.
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Figure 2.17: A clutching mechanisms allows the user to relocate the control space. (a) The object
A is not selectable as it is outside the control space. (b) The user places the 3D cursor and fixes its
position with the clutching mechanism. (c) The user returns its hand to the center of the motor space
and disengages the clutching mechanism. Now the control space is centered at the previous 3D cursor
position and object A is now selectable.

However, decoupling the motor and visual spaces may result in performance loss. Humans
seem to achieve optimum manipulation performance when haptic and graphic displays of
objects are superimposed [124], particularly during rotation tasks. However, moderate dis-
parity in orientation between haptic and graphic displays appears to have no significant effect
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on object translation. This higher tolerance to object translation with respect to rotations
explains why most virtual hand techniques can provide clutching mechanisms while virtual
pointing techniques do not.

CD Ratio
Motor and visual space

Technique
relationship

Isomorphic

Coupled

RayCasting [82]
Flexible Pointing [90]
Eye-gazed selection [115]
Flashlight [56]
Sense Shapes [89]
Sticky Ray [112]
Shadow Cone Selection [111]
Probabilistic Pointing [105]
Enhanced Cone Selection [110]
Flow Ray [48]
IntenSelect [32]
Smart Ray [48]
Lock Ray [48]
Depth Ray [48]
iSith [93]
Two-handed Pointing [83]

Offset
Aperture [40]
Occlusion Selection [94]

Offset / Clutching

Virtual-hand
Silk Cursor [136]
Bubble-Cursor [120]
One-Eyed Cursor [126]
Direct Image plane [69]

Anisomorphic CD ratio
Go-go [96]

(Distance Based) Offset / Clutching
Anisomorphic

CD ratio
PRISM [42]

(Velocity Based) Adaptive pointing [63]

Table 2.4: Selection techniques classified according to the control display ratio and how the motor and
the visual space can be decoupled. Offset and clutching mechanisms can be provided, or not, by the
technique.
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2.2.4 Summary

A selection technique is characterized by the selection tool and the user’s control of it. Both
determine the affordances (what users can do) and the constraints (how users can do it).
Affordances are determined by the selection tool itself, while the mapping between users’
actions and the selection tool determines the constraints.

Unlike to the sub-task classification [11], we have not considered neither feedback nor selec-
tion confirmation mechanisms. Although they are critical issues, they are not related to a
specific selection technique. The feedback and the selection confirmation mechanism might
vary depending external factors, such as the pointing device or the output devices, which
are discussed in the following section.

Regarding Popyrev’s classification, interaction metaphors provide an overview of the selec-
tion technique, but they are too generic. To refine Popyrev’s classification but keeping its
abstraction layer, we propose a complementary classification where selection techniques are
grouped according to its main purpose: (a) selection techniques providing alternative ways
to map user’s actions into the environment by improving the selection tool control (Con-
trol), (b) techniques which apply human motor control principles to increase performance
(Fitts) and techniques which tracks user’s actions and adapt its behavior (User). Notice
that the three groups are not disjoint, a selection technique might fit in more than one. The
raycasting and the isomorphic virtual hand techniques are considered baseline techniques,
as they are the simplest representation of virtual pointing and virtual hand techniques. For
completeness, techniques which do not involve 3D interaction, like menu or speech based
selections, are considered in a fourth group (Indirect).

Table 2.5 shows the classification of the considered selection techniques. Furthermore, two
additional classifications are provided. The first one is based on the origin of the selection
tool (hand-rooted or eye-rooted) and the second is related to the principle of Fitts’ law they
exploit (increase width or decrease amplitude).

As we will discuss in Chapter 3 hand-rooted virtual pointing techniques present a mismatch
between the visible objects and the selectable objects which significantly reduces selection
performance. In contrast, eye-rooted techniques do not present this issue.
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Interaction Origin of the
Purpose

Fitts’ Law
Technique

Metaphor Selection tool Basis

N/A

Baseline
None

Virtual-hand
Virtual Control Go-go [96]
Hand

Fitts’ Width
Silk Cursor [136]
Bubble-Cursor [120]

Hand-rooted

Baseline

None

RayCasting [82]

Control

Flow Ray [48]
iSith [93]
Two-handed Pointing [83]
Flexible Pointing [90]

Eye-rooted

Direct Image plane [69]
Eye-gazed selection [115]
Occlusion Selection [94]

Virtual One-Eyed Cursor [126]
Pointing Control / Fitts’

Width

Aperture [40]

Hand-rooted

Fitts’

Sticky Ray [112]
Flashlight [56]
Sense Shapes [89]
Shadow Cone Selection [111]
Probabilistic Pointing [105]

Fitts’/User

Width PRISM [42]
Amplitude Adaptive pointing [63]

Width
Enhanced Cone Selection [110]
IntenSelect [32]

User
None

Smart Ray [48]

Hybrid Control
Depth Ray [48]
Lock Ray [48]

Table 2.5: Selection techniques classified according to the classification by metaphor proposed by
Poupyrev in [95], the origin of the selection tool, its main purpose and the Fitts’ Law principles they
exploit.
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2.3 Usability guidelines and limitations for
3D object selection

Usability, broadly speaking, encompasses everything about an artifact and how a person is
affected by the use of the artifact. In human computer interaction, usability is considered
as a measure of the user experience when interacting with a user interface. A usable user
interface is easy to use, is engaging and efficiently supports user’s tasks.

Despite a number of usability guidelines exists for 2D user interfaces, they are not directly
applicable to 3D user interfaces. 3D user interfaces are significantly more difficult to design,
implement and use than their 2D counterparts. 3DUIs are based upon real-world character-
istics such as naive physics, body awareness, environmental awareness, social awareness and
social skills [57].

While designing a new interaction technique, we first have to determine its purpose, and
consider its requirements at a higher level. For a selection technique, we can ask about the
selectable objects, the object layout in the virtual environment, the amount of objects to be
selected or which are the input and output devices available.

Usability issues might arise due to intrinsic factors, mainly determined by the nature of the
selection task, and due to extrinsic factors introduced by input and output devices. There
are not too many works explicitly focusing only on usability guidelines for 3D user interfaces;
being the work of Gabbard [44], Hal [54] and Bowman [12] notable exceptions. Usability
guidelines are useful during the first stages of the design as they avoid known usability issues
and speed up the whole design process.

VR community has been more focused on providing novel selection techniques, addressing
specific problems or considering only a subset of the requirements, lacking completeness.
On the other hand, having so many well known selection techniques allows us to choose the
selection technique that better fulfills our specific requirements. From a usability point of
view, a selection technique has to:

• Provide reduced selection time.

• Be accurate and error-proof.

• Support for precise selection.

• Be easy to understand and control.

• Produce low levels of fatigue.
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Additional requirements depend on the application, e.g. support sparse or dense environ-
ments, provide with mechanisms to select semi-transparent or occluded objects, and do not
interfere with the user’s immersion in the virtual environment.

In the previous section we focused on classifying existing selection techniques considering
its distinctive characteristics. In contrast, in this section we focus on the main factors
limiting selection tasks and additional requirements a selection technique must ensure. The
requirements considered range from common requirements for 3D user interfaces to specific
requirements for 3D selection tasks.

2.3.1 Target size and location

Different applications have different requirements depending on the potential objects the
user has to select. Selection performance is highly coupled with the geometrical properties
(size, shape and location) of the target. As in reality, its properties determine the level of
difficulty required to select it (e.g, grasping a cup is much easier than grasping a needle).

Object’s size and location have a direct relation with selection performance. In Section 2.1,
we reviewed Fitts’ law which estimates the selection time considering the object size and
the amplitude of the movement. Recall that Fitts’ law asserts that the time T to acquire a
target of width W which lies at a distance A is governed by the relationship:

T = a+ b log2

(
A

W
+ 1

)
(2.13)

Selection time increases if the amplitude of the movement A and/or the object size W

decreases, and vice-versa. It has been corroborated by several studies [120, 92, 6, 98].

According to Fitts’ law and the optimized initial impulse model, several guidelines can be
proposed to increase user’s performance in selection tasks. As proposed by Balakrishnan [4],
options rely on decreasing A, increasing W , or modifying both at the same time.

Techniques attempting to reduce A include designs where graphical elements are laid out
to minimize the distance to the cursor [29]. However, these approaches are limited to GUI
elements where potential targets are known a priori. A more general approach is to reduce
A only in control space, thus preserving the original layout of the elements in the visual
space. For example, it can be accomplished by ignoring the empty space between targets
(see Figure 2.18a).

In contrast, techniques attempting to increase W focus on increasing the area of influence of
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the selection tool, increasing the activation area of targets in control space or dynamically
increasing the size of targets.

The area of influence can be increased by using volumetric tools such as the flashlight [56]
or aperture selection [40]. They allow for fast selections in sparse environments (see Fig-
ure 2.18b), but in cluttered environments their performance tends to degrade as disambigua-
tion mechanisms are needed. As previously discussed, they performance is bounded by the
efficiency of the disambiguation mechanism provided.

Increasing the activation area of a target can be done only in control space. For example, the
bubble-cursor [120], subdivides the control space into Voronoy cells according to the layout of
the objects in the virtual environment. Instead of selecting the object by placing the selection
tool over it, the object is selected if the selection tool is inside the Voronoy cell defined by
the object (see Figure 2.18c). In other words, the object selected is the object closest to the
virtual hand. Another example is the sticky ray [112], the object selected is the object closest
to the selection ray. However, improvements on selection performance depends on the area of
the control space that do not belong to any activation area, which depends on the density of
the virtual environment. So, again improvements are more apparent in sparse environments.
Furthermore, as the visual representation is kept unmodified, additional feedback is required
to show changes in the control space.

The last approach, increasing W in control and visual space, known as expanding targets,
relies on dynamically increasing the size of targets closer to the selection tool. By dynamically
increasing the size of targets, users are provided with a larger target area to interact with.

(a)

(b) (c)

Figure 2.18: Three approaches to improve the acquisition of small targets without changing their visual
representation. (a) Reduce the distance between targets only in control space. (b) Increase the size of
the selection tool. (c) Increase the area of influence of each target.
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Considering that the time to acquire isolated targets depends mostly on the final target size
and not on the initial one [4], selection performance is improved. Several studies support
the use of expanding targets for 2D acquisition tasks [23], but no work has addressed 3D
acquisition tasks. We explore the viability of 3D expanding target approaches in Chapter 5.

Another approach to increase W is to apply a distortion pattern in image space by using
magic lens effects [46]. To ensure the compatibility with VR display systems, correct parallax
values of the projected stereo images are required. This means that standard techniques
based on 2D image distortion cannot be used as they completely disrupt parallax values.

A general drawback of increasing W , as reported by Wingrave et al. in [132], is that it will
induce users to decrease their accuracy as they no longer need to be precise. In other words,
the index of difficulty will be lower, but the index of performance (1/b) will also decrease,
resulting in similar selection times.

Finally, techniques which increase W and reduce A at the same time, are techniques which
in essence change the CD ratio (already detailed in Section 2.2.2). They have the best of
both worlds, they can reduce A by increasing the CD ratio and increase W by decreasing
the CD ratio. According to how the user performs aimed movements, ballistics movements
covers most of the distance towards the target (A), while slow corrective movements depend
on the size of the target (W ), the CD ratio can be adjusted according to the speed of the
user’s actions [42].

Area of Reach

As stated in the previous section, the control space determines which objects can be selected.
Virtual hand techniques only allow to select the objects inside the working space if no
decoupling mechanism is employed. Although clutching or CD ratio based techniques can
be used to extend the control space, clutching mechanisms introduce additional cognitive
overhead and CD ratio based techniques, like the go-go [96], cannot provide enough precision
when selecting distant objects.

In contrast, the control space for virtual techniques matches the visual space, thus all objects
in the visual space are selectable. However, as the selection tool is mainly governed by hand’s
rotations, its precision is limited to the user’s hand angular accuracy and stability. The
further away an object is the higher the accuracy is required. Although the theoretical control
space matches the visual space, the precision slightly decreases as the distance increases.
Nevertheless its precision is higher than that provided by the go-go technique.
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Furthermore, depth perception become an additional limiting factor when selecting distant
objects. The level of required depth perception varies from one selection technique to another.
For example, virtual hand metaphors require higher depth perception as the hand’s depth is
used to control the virtual tool. In contrast it is less important for virtual pointing techniques
and even less for image plane techniques.

At this point, we have to ask whether it is necessary to provide techniques being able to
select small or distant objects. The alternative relies on navigating towards the target to
obtain an easier selection, but does the time spend during navigation compensates for a
“potentially” difficult selection?

Two main issues arise. First, navigate to obtain an easier selection can be also “potentially”
difficult. Navigation in cluttered environments require proper navigation techniques and the
selection of small objects will require to scale the virtual environment. Furthermore, the
user has to be provided with mechanisms to easily switch between selection and navigation
tasks.

Second, when navigating in homogeneous virtual environments, such as a molecular model,
the user can lose context information. For example, while navigating towards the target, the
user might lose track of it. If this happens, the user has to go back to the starting position,
locate again the target and start the navigation task again.

In conclusion, although for some situations the navigation approach will be more efficient, we
believe than for selection intensive scenarios, the ability to select small and distant objects
is necessary.

2.3.2 Environment limitations

Until now, we considered selection tasks when the objects are aisled, but in a standard
scenario objects might be surrounded by other objects. As the object density increases,
occlusions between objects is likely to increase.

Occlusion is always present in reality and provides important depth cues for spatial percep-
tion. However, occlusion is not always a desired feature. It can have a detrimental impact
on tasks requiring to locate an object (discovery), obtain information encoded in the object
(access) or obtain spatial information of the object and its context (spatial relationship) [36].
Occlusion is a common issue for cluttered environments [120]. High object density leads to
occluded objects from the user viewpoint, reducing user’s selection performance.
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Selection performance can be reduced at different levels. First, occlusion might increase the
time required to discover an object in the virtual environment. In the worst case scenario
the object can be fully occluded and the user will need to navigate to locate it. We assume
that the user knows where the target is located or at least, the object is partially visible.

Furthermore, although the user sees the target in the environment, occlusion still results in
reduced object visual sizes and restricted access to targets [97] which impacts on user perfor-
mance [110, 120]. In these situations the user has two choices, navigate to find a unoccluded
view of the target or perform the selection from the occluded viewpoint. Improvements
can be focused on the discovery phase or on the access phase, although it remains unclear
whether improvements in the discovery phase will also improve access phase.

To avoid occlusion, in controlled situations, we can rearrange the environment [110]. How-
ever, in most situations it is not possible as the environment is fixed and context information
should be preserved.

Volumetric selection tools (e.g. flashlight selection [56]) are more efficient when selecting
objects in sparse environments. But, as the density increases, ensure that only one object
is inside the selection volume becomes harder. Even if the selection technique provides
disambiguation mechanisms, performance is compromised due to additional manual disam-
biguation steps or erroneous selections due to inaccurate automatic disambiguations.

Techniques based on virtual constraints like damping, snapping or trolling, which are useful
in sparse scenarios [54, 44], might confuse the user in dense environments. Users tend
to complain mainly about flickering effects [132]. CD ratio based techniques better adapt
to dense environments, although the overall index of performance depends on the level of
occlusion.

A different solution is to employ occlusion management techniques. Elmqvist and Tsigas [36]
analyze a broad range of techniques for occlusion management and identify five main design
patterns: Multiple Viewports (using two or more separate views of the scene), Virtual X-Ray
(turn occluded objects visible), Tour Planners (a precomputed camera animation reveals the
otherwise occluded geometry), Volumetric Probes (user controls an object which alters the
environment in its neighborhood) and Projection Distorters (nonlinear projections integrate
two or more views into a single view).

Despite having so many options to deal with occlusion, when considering direct interaction
in virtual environments the alternatives are limited and there is no single solution that com-
pletely solves occlusion issues. Multiple viewports and projection distorters do not integrate
well in immersive environments; we cannot modify the user perspective and having addi-
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tional viewports may be a distractor factor. Tour planners involves navigation and the user
has to stick to the predefined navigation paths, lacking flexibility.

On the other hand, virtual x-ray and volumetric probes allow to manually remove occluders in
order to get an unoccluded view of the intended target. However, these alternatives increase
the cognitive load of the user, potentially increasing selection time. Moreover removing
occluders may remove useful context information. The most common solution is to employ
semi-transparency [120]. However spatial relationships between semi-transparent objects
may result unclear to users and access tasks can be compromised.

2.3.3 Input and output devices

The staggering number of devices available for use in VEs makes the development of 3DUIs
significantly harder than their 2D counterparts [133, 12]. Input and output devices affect
the usability of existing interaction techniques [7].

Typically, interaction techniques are designed and evaluated taking into account only one
hardware configuration, due to time, availability and budget limitations. This might result
in techniques usable only for that specific configuration, being the comparison with other
existing techniques unfair.

Displays

Emerging and specialized devices like holographic devices require specific interaction tech-
niques, as they may present unique conditions in terms of working and visual areas [48].
Available display devices range from semi-immersive displays, LCD screens and projection
based systems, to fully immersive displays like head mounted displays and CAVEs systems.
Every display has its own field of view and provides the user with different levels of immer-
sion [118]. The field of view determines the amount of information that is visible at a time.
The more information displayed the easier is to locate an object without head movements.

Head mounted displays (HMD), typically have greater field of regard (amount of physical
space surrounding the user in which visual images are displayed), with the exception of
CAVE systems. On the other hand, HMDs have reduced resolution in comparison with
projection based systems.

The output device also conditions the visual feedback. When using raycasting selection in
a fully immersive device, the selection ray is displayed entirely, allowing the user to easily
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determine the origin and the orientation of the ray. However, in a semi-immersive display,
only a fraction of the ray can be displayed, decreasing the amount of information available
for the user.

Moreover, the level of immersion determines how the user sees and perceives its body. In ob-
trusive devices like head-mounted displays, the user cannot see its body and the application,
if required, has to provide with a virtual representations of his body. If the user body is not
correctly tracked, proprioceptive information will conflict with the virtual avatar hindering
interaction.

Furthermore, for projection based systems, user’s actions can obstruct the visualization of
the virtual environment. For example, when selecting an object with the virtual hand tech-
nique, the user’s hand will occlude the projection of the object during corrective movements.
Another example is occlusion selection, where the user has to keep its hand roughly aligned
with the eye position. In both scenarios the user’s hand occludes part of the projected virtual
environment, increasing the chance of erroneous selections.

Degrees of freedom of input devices

When designing a new interaction technique, it is important to consider the matching be-
tween the DoFs required for the interaction technique and the DoFs provided by the input
device [54]. Most spatial input devices return up to six DoFs, but usually, the DoFs used are
less. It is recommended to minimize the number of DoFs required, as the more DoFs used
the harder is the control of the selection tool [12].

Virtual hand techniques only require three DoFs for the hand position, and raycasting tech-
niques are mainly governed by the yaw and pitch of the hand (only two DoFs). Employing six
DoFs for tasks requiring less could be confusing if the input device is not well constrained [51],
as changes in the unused DoFs are not visible to the user. Wingrave et al. in [134] observed
that users performing with raycasting tend to move their arms forward and backward to
select objects placed at different depths. This is totally unnecessary as raycasting is almost
insensitive to hand position, specially for selecting distant objects. This behavior is common
for novice users which unknowingly hinder their ability and thus they have to be taught not
to perform in that way.
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Ergonomics

The physical device employed has to match the functionality of the interaction technique [54].
It makes no sense to employ a sphere-shaped device for virtual pointing, as the way of
grasping the device should provide the pointing direction by proprioception.

Furthermore, most of the existing input devices are equipped with a number of buttons. The
mapping between the buttons and the functionalities of the interaction technique is crucial
for its usability. For example, a button press in a hand held device (like a wand) introduces
instability when the button is pressed. This effect, nicknamed Heisenberg effect [134], may
prevent successful selections when high accuracy is required. As a result, buttons introducing
less hand instability should be employed.

Performance is also tightly coupled with the muscle groups involved [97, 19]. Smaller muscle
groups achieve higher motor precision than bigger ones [138, 63], thus impacting on user
performance. If possible, input devices employing smaller muscle groups should be employed.

User fatigue

One of the most known issue in virtual reality applications is fatigue. The reduction of
the fatigue is especially important if a hand-held device is used, as fatigue levels can raise
rapidly. Interacting with our own body can raise fatigue levels and extended use may induce
simulation sickness [67] and muscular strain. Selection techniques are more prone to arm and
wrist strain, while for example, navigation techniques are more prone to induce simulation
sickness. Knowing the requirements of arm effort, wrist effort and hand fixation of each
selection technique allow to build an effort profile.

Arm and wrist effort can be extrapolated taking into account the degrees of freedom required
to control the selection tool. Virtual hand techniques will require more arm effort than
virtual pointing techniques, while virtual pointing techniques will require more wrist effort.
Other device-ray mapping such as occlusion selection, which require to keep the arm roughly
aligned with the eye, will require increased arm effort.

In the absence of input filtering (discussed below), hand fixation reduces hand trembling
and stabilize the selection tool, but it requires additional user effort. Hand fixation is tightly
coupled with the precision required; the greater the impact of hand trembling the higher the
hand fixation should be.

Moreover, the position and orientation of the working space with respect to the user plays
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an important role in the user’s comfort. For example, the user can accomplish manipulation
tasks with the arm lowered in a relaxed position by defining a convenient working space.
Ideally, VE applications should allow users to define their working spaces according to the
their own preferences, the physical condition of the user and the desired speed/accuracy
balance.

Application performance, end-to-end latency and noise

In order to ensure smooth interaction the VR application has to keep high and constant
frame rate [128], avoid high end-to-end latency [125, 77] and filter data from noisy input
signals [63, 51, 44]. If the application does not ensure these requirements, it might reduce
interaction performance [116], hinder high precision tasks, and also break immersion and
presence.

Noisy tracking devices in combination with users’ hand trembling [63] decrease the precision
of the selection technique. Selection techniques have different tolerance levels to noise.
Virtual hand metaphors are more tolerant to noise as they only rely on positional tracking
data. Volumetric tools and CD ratio based techniques are also more tolerant to noise as
they indirectly increase the effective width. On the other hand, virtual pointing techniques
are less tolerant to noise, as they mainly rely on rotational data.

When high precision is required, a device with low latency and low noise should be used. If
not possible, band-pass filters or Kalman filters can be applied to reduce noise of the input
signal [63]. However, too much filtering increases the end-to-end latency. Pawar and Steed
in [92] state that 60ms is the maximum latency that can be introduced without degrading
interaction. In situations with high latency, Wingrave et al. in [134] observed that users
performed steady movements and relied on proprioception rather than on the visual feedback.
Obviously these behaviors trade off speed and accuracy.

Moreover, changes in latency with respect to time, referred to as temporal jitter, also hinder
interaction and thus should be avoided. People can detect small fluctuations in latency likely
as low as 16 milliseconds [92].

2.3.4 Feedback

Selection techniques involving spatial interaction require users to perform gestures to control
the selection tool. The gesture can be a simple grasp operation or a pointing operation. If
no feedback is provided, the user has to rely only in proprioception and depth perception to
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ensure that the gesture results in the selection of the intended virtual object.

Although interaction with close objects can be achieved only by proprioception [83], several
studies revealed that users without any selection feedback are unable to efficiently interact
with the virtual environment [132]. Users do not have a model of interaction with the
environment but a model of how to respond to the feedback the environment provides [132].
So, it is mandatory to provide feedback [44].

A selection technique has to provide, at least, visual feedback to drive user’s actions. The
simplest option consists in displaying a virtual representation of the user’s actions in the
environment, for example, drawing the user’s hand position or displaying the pointing direc-
tion. The visual feedback allows users to observe how their gestures map with the virtual
tool. In situations where the CD ratio differs from one or when the shape of the selection
tool changes over time, a good visual representation of the selection tool is a key feature to
ensure usability. But in general, proper visual feedback highly depends on the interaction
technique.

Moreover, after the selection confirmation, the selected target can be highlighted [82].
Changes on its visual properties allow the user to ensure that the object selected is the
right one. For example, changing its color or displaying the object in wire frame. In con-
trast, continuous highlighting of the object indicated by the selection tool has to be used
carefully. It might cause excessive popping and a distracting effect on the user, particularly
while interacting with cluttered scenes. Furthermore, object highlighting requires to check
for every frame which is the object indicated by the selection tool, thus potentially increasing
the application’s overhead.

In general, increasing the amount of visual feedback does not always improve user perfor-
mance [98] and might even reduce selection performance [131, 48]. On the other hand,
providing redundant information might allow to bypass aptitude and expertise, allowing
unexperienced users to perform as experienced ones.

Furthermore, we cannot forget how to determine which are the selectable areas of the virtual
environment. Although the motor and the visual space are easy to determine for the user,
the control space relies on the selection technique used. Selectable areas should be indicated
to avoid confusion [44], as selectability may change dynamically over time [110]. Selectable
areas can also be outside the viewing frustum, the user can be provided with markers to
guide them towards the desired object [134].

In addition to visual feedback, introducing different feedback modalities, like haptic and
acoustic feedback, can also be beneficial [51]. Again, although it is not assured that including



Chapter 2 - Previous work 57

additional feedback results in performance improvements [14], users often prefer the addition
of extra feedback [121].

Active haptic feedback can assist users during the selection process [92, 121]. Guiding the
user to possible targets by introducing gravity wells (traction) or turning surfaces sticky
(friction). However it requires a fine tuning of the forces applied and in dense environments
it might be counterproductive; the user might be guided to the wrong object.

An easier approach is to provide passive haptic feedback (physical constraints), which can
further increase interaction precision [51]. The most adopted solutions remain on using prop-
based physical constraints [53] or physical surfaces [10, 72]. Both provide spatial references,
which are intuitive to learn and speed up 2D pointing tasks in free space.

The user’s body can be used as a frame of reference, as the user is able to determine its own
body position by proprioception. One clear example is the go-go technique [96]; the user
always knows the distance between its body and its hand. Using the non-dominant hand [54]
can also be considered, as it provides a frame of reference for the dominant hand, and the
user can employ it to perform two tasks in parallel.

Lastly, auditory feedback [121] can reinforce user’s actions. For example, it can inform the
user when a target has been highlighted or successfully selected. However, similar to haptic
feedback, when interacting on dense environments it might produce distracting effects and
playing the same sound multiple times might become annoying.

2.3.5 User’s preferences

Users interacting with virtual environments account for different preferences. Knowing these
preferences allows interface designers to determine which are their preferred interaction tech-
niques [134]. Users have different levels of expertise and perform actions in different ways.

According to the user’s method of interaction the designer may personalize the behavior of
the interaction technique to behave like the user wants. As Wingrave et al. show in [132],
subtle versions of the same IT can be provided, and we can let the user choose they preferred
configuration. In their experiment, they employ raycasting and occlusion selection with a
snapping mechanism (the selection tool bends to the closest object within a range). The user
could introduce a rotational (raycasting) or a translational (occlusion selection) offset to the
virtual hand with respect to the real hand, thus allowing for a more comfortable interaction,
and change the threshold of the snapping mechanism. They results showed that there was
not a trend when tunning the selection techniques, each user had its own preferences.
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Instead of letting the user customize its interaction, we can adapt the available techniques
to better suit the user. Octavia et al. in [87] explored how to choose automatically the most
suitable IT for a certain situation. They gathered physiological data to measure user frus-
tration, user experience and the mental workload. They observed that frustration measures
were strongly correlated to the task completion time. Users accepted the technique adap-
tation; they did not bother if the system automatically chose the best suitable technique
and the performance was slightly improved. However in their study they knew a priori the
intended targets and only considered two selection techniques.

As stated before, manipulating input devices in free space can easily raise fatigue [54]. We
can provide the user with recalibration mechanisms to allow the user to define its working
space, obtaining a more comfortable positions.

Selection Trigger

For virtual pointing selection techniques in addition to point to the desired target, the
system has to be informed when to perform the selection. The most common option is to
press a button conveniently placed in the pointing device “press to select”. Steed in [110]
considered two additional options: “hold and select” and “dwell on object”. For hold and
select instead of triggering the selection when pressing the button, it is triggered when the
button is released, which may be less sensitive to the Heisenberg effect. In contrast, for the
dwell on object approach, the selection is triggered when the user points to an object during
a fixed amount of time. Dwell time thresholds introduce a fixed constant latency, being
sensitive from the “Midas Touch effect” : for high precision selections fixations may occur
at objects that do not interest the user, resulting in unwanted selections.

Gestures can also be used as selection triggers. The simples approach is to perform a pinch
gesture [13]. Vogel and Balakrishnan in [122] exposed different alternatives for triggering se-
lection for free-hand pointing in large displays without using any button. They proposed two
different hand gestures to perform the selection, AirTap and Thumb Trigger in combination
of visual and auditory feedback (see Figure 2.19).

The selection of small objects can be compromised due to hand instability during the con-
firmation of the selection. So, it is important to choose a selection trigger mechanism that
minimizes hand instability.
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Figure 2.19: The air tap (first column) mimics pressing the button of a mouse. The thumb trigger
gesture (second column) consists in moving the thumb finger towards the index finger. Auditory and
visual feedback is provided for both while performing the gesture (third and fourth columns). Image
courtesy of Vogel et al. [122].

2.4 Object selection in collaborative virtual
environments

Multi-view virtual reality systems [2] enable the collaborative experience of a shared 3D space
in a similar way as in real life (see Figure 2.20). Multi-view systems [103] provide tracked
users with their own stereoscopic perspective-correct viewpoint. Consequently, natural forms
of gestural communication, such as pointing, can immediately be used for the collaborative
inspection of computer-generated 3D models.

However, real-world correspondence also results in real-world problems. One might want to
show a virtual object to colleagues, which may be occluded from their respective viewpoints.
To solve this problem in reality, people have to walk around the occluding objects to obtain
a suitable viewing position. Often they move close to the person who is pointing to the
object, sharing the viewpoint in order to see the specified object.

Eduard T. Hall in [49] explored how people deal with human interactions taking into account
the space surrounding each other. Particularly, Hall showed that interactions where people
are close to each other are constrained to intimate or friendship relationships. Behaviors
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(a) (b)

Figure 2.20: Multi-view virtual reality allows multiple users to interact with the virtual environment
(a) as in real life (b). Image courtesy of Salzmann et al. [103]

resulting in physical proximity of users do not comply with social protocols, especially for
formal presentations.

2.4.1 Referential awareness

Meaningful exchange of information and collaborative work are only possible if we know what
others are referring to. In shared physical spaces deictic gestures like pointing and tracing in
combination with verbal hints generally provide sufficient cues for efficient communication.
However, if the spatial layout of the explored environment becomes dense and complex,
objects and features are not always visible from all the viewpoints involved. Awareness of
reference gestures and selected objects can thus be compromised due to occlusion. Consider
the set of visible objects for one user V1 and the set of visible objects for a second user V2.
Objects visible for both users, V1

⋂
V2, do not pose a communication problem. However,

one user may point at an object that cannot be seen from the others’s viewpoint V1 − V2 or
V2 − V1.

The obvious way to alleviate this problem is changing the viewpoint, e.g., by looking over
the other’s shoulder. In computer-mediated collaboration multiple people may even share
exactly the same viewpoint. In the context of remote collaboration this approach has been
shown to be beneficial as occlusion issues are prevented and referential ambiguity can be
minimized [22, 64].

In co-located multi-user VR, however, this is not an option. Aligning the virtual viewpoints
of all involved users necessarily corrupts the notion of a shared 3D space and thus hinders
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gestural communication [2]. Just as in reality, one must walk over to the person who indicates
a point of interest to see what he/she is referring to. This however may interfere with social
protocols. We assumed that being in such close proximity to one another can make the users
feel uncomfortable.

For video-based tele-collaboration Chastine and Zhu suggested in [21] occlusion-compensating
visualization techniques as an alternative solution. However, the suitability of special visual-
ization techniques and the corresponding impact on mutual communication and collaboration
has not been studied yet.

2.4.2 Proxemics

Space is one of the fundamental organizational systems of humans. The layout of cities,
architecture and interiors undoubtedly affects human behavior in these environments. The
extent of open space a person needs surrounding him or her depends on several factors,
including physical ones such as temperature, lighting and noise. But one’s culture and social
relations are also encoded in terms of space. Edward T. Hall coined the term proxemics [49]
for “the interrelated observations and theories of man’s use of space as a specialized elabo-
ration of culture”. Proxemics deal with social and personal space and humans perception of
it.

In “The Hidden Dimension” [49], Hall defines four classes of interpersonal distances and their
respective meaning in regards to social relations (see Figure 2.21). All four are further sub-
divided into their respective close and far phases: intimate distance (0 cm – 15 cm – 46 cm);
personal distance (46 cm – 76 cm – 120 cm); social distance (1.2 m – 2.1 m – 3.7 m); and pub-
lic distance (3.7 m – 7.6 m – more). Hall derived these measurements from experiments and
interviews he conducted with adult natives from the northeastern seaboard of the US. Since
they mainly depend on culture and perceptional channels involved in the communication
among one another, they also serve as rough approximations for interpersonal distances in
other regions of western culture. Proxemic behaviors are also present in virtual environments
when interacting with user’s avatars [130] or virtual agents [5].

Intimate distance involves touch and olfaction. Visual perception becomes distorted. It
occurs only in certain situations such as “wrestling or making love”. Otherwise, people
generally try to avoid such closeness. Personal distance is mostly observed between family
members, partners and close friends. The distinction between the close and the far phase of
personal distance corresponds to one’s arm reach at approximately 76 cm. In more formal
relations among acquaintances (e.g. in collaborative work settings), people tend to maintain
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Public space (3.7 m - more)

Social space (1.2 m - 3.7 m)

Personal space (46 cm - 120 cm)

Intimate space (0 cm - 46 cm)

Figure 2.21: Distances of men proposed by Eduard T.H its Proxemics theory [49].

a social distance. Hall describes the close phase of social distance (up to 2.1 m) as the
generally observed situation in collaborative work settings. He also notes that important
people often try to keep their subordinates at this far phase. Public distance can be observed
in settings like public speeches.

The infrastructural and technical requirements of collaborative work can have an important
influence on the distances between co-workers. For instance, to see objects somebody else is
referring to in dense three-dimensional scenes, it is often necessary to keep intimate distances.

2.5 Embedding 2D GUIs in virtual environments

One of the main tasks in virtual reality is related to application control. Application control
refers to the user task of issuing commands, requesting the system to accomplish a particular
function or change its internal state [12]. In 2D UIs, application control tasks are basically
performed by using a graphical user interface (GUI) following a WIMP (Windows, Icons,
Menus and Pointers) metaphor.

For immersive VE applications, in addition to GUIs, a greater number of interaction tech-
niques have been proposed for accomplishing application control tasks. These interaction
techniques range from interaction with 3D Menus [30] and voice-recognition systems [80] to
gesture-based interaction [59] through specialized physical devices such as Tangible UIs [55].
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However, the simplest and most popular GUIs are two dimensional widgets adapted to 3D
space. These widgets are simple adaptations of their 2D counterparts and basically work in
the same way as they do in the desktop metaphor.

Despite the broad diversity of application control techniques for 3D user interfaces, only a
limited amount of attention has been paid to the development of standard APIs and reusable
software components enabling 3D GUI development in a cost-effective manner and providing
a wide range of 2D widgets. There have been several approaches of incorporating GUIs in
virtual environments, which basically can be grouped in two different categories:

• GUI outside the virtual world: the GUI is displayed and operated in a separate device.

• GUI inside the virtual world: the GUI is displayed in 3D space as a virtual object.

On the one hand, applications which follow the GUI-outside approach have their user inter-
face split into two parts (see Figure 2.22a). Some of the functionality is accessible through a
3D user interface (usually navigation and manipulation tasks) and application control tasks
can only be controlled through a conventional GUI running on a console outside the VE.
This approach simplifies UI development but presents some problems. First, it increases the
cost of the system as a hand-held computer is needed [127] or specialized hardware. Second,
it present obvious usability problems, the user must be aware of two different visual output
devices and one hand is required to hold the device.

(a) (b)

Figure 2.22: Two approaches to incorporate GUIs into virtual environments. (a) GUI outside the
virtual world. The GUI is displayed in a hand-held device. (b) GUI inside the virtual world. Images
courtesy of Hartling et al. [50]

On the other hand, placing GUI components inside the virtual world offers much more
possibilities and interaction styles, and thus this is often the most suitable option (see Fig-
ure 2.22b). Developers willing to put a 3D GUI inside a VE application are faced with two
options. They could implement the full functionality of the 3D GUI inside the application
(a non cost-effective approach) or they could adopt any of the few available APIs for 3D
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GUI creation [66, 91, 50]. Specific APIs for handling 3D interaction in VE are undoubtly a
reasonable solution but in their current state of development they present some limitations:

• They force developers to learn a new API. In addition, the lack of standard APIs, and
mature and well established implementations, make this problem worse.

• They usually implement all the functionalities for each widget, including drawing and
handling. As a consequence, available 3D toolkits offer a limited set of widgets and it
is difficult to plug-in third-party components (e.g. media players and web browsers).

• A commonly accepted opinion is that GUI interfaces should be optimized for each plat-
form. For example, a desktop interface using 2D interaction for system control is cer-
tainly appropriate for a desktop system, whereas an immersive stereoscopic-compatible
interface should be used in an immersive system. Most widget libraries for VEs tar-
get only the second kind of platforms and thus two or more different versions of the
applications are often required.

These problems suggest that traditional 3D GUI tools are not always appropriate for fast
development of complex GUIs and particularly for fast migration of existing desktop-based
3D applications to immersive VEs. For example, an existing desktop-based 3D application
can be modified to display its contents on a stereoscopic workbench with minor effort, but
the migration of its GUI can be a much more difficult task.

As a solution, some authors have proposed the immersion of 2D applications into 3D worlds
to make them available to VE and Augmented Reality (AR) applications. The basic idea is to
project 2D image content onto texture-mapped rectangles on the 3D world, and let the users
interact with them through VR input devices such as gloves and tracking systems. Current
systems for launching and/or sharing existing 2D applications into VE and 3D window
managers are good examples of this technique. Although application-sharing systems and
3D workspaces can be used to access 2D GUIs within VEs, they suffer from some performance
and flexibility limitations mainly because they are built upon framebuffer-oriented protocols.

2.5.1 Software tools for 3D UI authoring

Software tools for 3D UI authoring can be broadly subdivided into three categories: general
frameworks for developing VE applications, specific modules for 3D UI development, and
automatic generation tools from specifications.

A number of frameworks and APIs for developing device independent VE applications have
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been proposed. Some well known examples are DIVERSE [61], VRCO’s CAVElib [123]
and VR Juggler [25]. These tools put the emphasis on abstracting common programming
tasks on VE such as window creation, viewer-centered perspective calculations, stereoscopic
viewing, displaying to multiple graphics channels, cluster synchronization and accessing VR
hardware such as trackers, wands and motion systems.

However, only a few provide specific modules for 3D UI creation:

• VR Juggler’s Tweek [50] provide VE users with an extensible Java GUI that commu-
nicates with VR applications through CORBA (the Common Object Request Broker
Architecture).

• The VEWL (Virtual Environment Windowing Library) [66] is an API providing a win-
dow manager that supports the use of menus, windows, buttons and other widgets
within an immersive virtual environment. VEWL widgets use class names similar to
Qt [26], although the actual rendering is done using OpenGL. VEWL provides device-
independent input through DIVERSE [61]. The VEWL interface is controlled using a
3D pointer controlled via a tracked input device.

• The it3d (Interactive Toolkit Library for 3D Applications) [91] provides an input/output
library for distributed devices, a 3D widget library for multimodal interaction and a
gesture-recognition library.

Despite these valuable tools, there is a lack of standard APIs and well-established tools for
3D UI development. One of the few UI standardization efforts is UsiXML (USer Interface
eXtensible Markup Language) [70], a XML-compliant language for describing a UI for mul-
tiple contexts. The language has been designed to support the description of interactive
applications with different types of interaction techniques, modalities of use, and physi-
cal computing platforms. Although some promising tools exist for automatic generation of
VRML97 or eXtensible 3D (X3D) GUIs [78, 60].

2.5.2 Immersing 2D applications into 3D worlds

A related and very active research topic is the immersion of 2D applications into 3D space.
We distinguish two basic categories of tools: 3D window managers for desktop computers
and tools for accessing remote applications from within VE and AR applications.

Tools in the first category aim at providing 3D workspaces designed for replacing 2D desk-
tops. These tools rely on mouse-and-keyboard interaction and are intended for non-immersive
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display devices. A first example is MaW [68], a prototypal 3D Window Manager which allows
the application to create windows that are displayed in 3D space using OpenGL primitives.
Another example is Task Gallery [102] which is a 3D prototype user interface that expands
the desktop into an entire office with an unlimited number of desktops. The screen becomes
a long gallery with paintings on the walls that represent different tasks.

Tools on the second category aim at providing access to remote applications from within
VE and AR applications. Two different approaches can be observed [15]. Hardware oriented
approaches provide access to external applications through additional display devices such as
PDAs and see-through-displays [127]. Software oriented approaches directly display the UI
into the virtual environment. The VE software can manage directly the actual 2D drawing
(using geometric and text primitives) or it can access 2D display content generated by
external applications and display them as texture-mapped rectangles.

Early work using application sharing in 3D environments is described by Dykstra [35], where
texture-mapped rectangles are used to operate X applications 3D virtual spaces. A similar
approach is described in [117] for immersing X window applications into a 3D scene. This
idea has been adopted and extended both in VE and AR applications.

A more general approach is using VNC (Virtual Network Computing) [101] which is a remote
display system which allows viewing a computing desktop running elsewhere on a network.
VNC provides a distribution mechanism for desktops on the lowest level by transmitting
frame buffer contents to the remote client and receiving keyboard and pointing device events,
inserting these into the server-side input queue. Each time a client interacts with the shared
application, the VNC server broadcasts the image of the areas affected by updates on the
remote interface. VNC is the foundation of a number of systems providing immersion of
2D applications into 3D space. A number of approaches use VNC [15, 31, 108, 34] but all
suffer from performance and flexibility limitations mainly because they are build upon a
protocol providing little control to the VE application over the properties and behavior of
GUI components.

2.6 Evaluation of 3D user interfaces

Focusing on usability from the beginning of the application development reduces the num-
ber of user interfaces dismissed, ensuring than the final user interface better fits the task
requirements. Evaluation is critical step in all the software design paradigms, but in the de-
velopment of 3D user interfaces it is even more critical. The evaluation of a 3D user interface
not only covers how robust is the application, but it has to take into account the usability
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of the interface. The evaluation step has to give feedback to the development step reducing
usability problems and improving the overall system. It is recommended to evaluate more
than once the system during its development.

Bowman et al. in [8] sumarized two evaluation methods applied to the evaluation of virtual
environments: the testbed evaluation [11] and the sequential evaluation [45]. Their main
difference is the scope of the evaluation: while testbed evaluation’s main goal is to evaluate
different interaction techniques in a generic environment, sequential evaluation focus on the
evaluation of the entire application.

In this thesis we focus on the evaluation of individual interaction techniques, so we consider
only the testbed evaluation method. The testbed evaluation enables to test the techniques in
a generic environment and allow us to compare among other existing interaction techniques
ensuring that the interaction technique will be usable in other environments.

The main steps followed by a testbed evaluation are depicted in Figure 2.23. First, an initial
evaluation is done to obtain intuitive understanding of the interaction tasks involved, and
which are the existing techniques providing the functionality required. Usability guidelines
help to detect possible hindrances before the evaluation. This first step narrows the options
considered in posterior phases.

Initial Evaluation

Quantitative
Performance
Results

Heuristics
&

Guidelines

User-centered Application

Testbed
Evaluation

Taxonomy
Outside Factors

task, users,
environment, system

Performance
Metrics

Figure 2.23: Testbed evaluation flow diagram by Bowman et al. [11]
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On a second step we need to define a taxonomy of the tasks and subtasks involved in
the evaluation (user task and work flow analysis), determine the possible outside factors
(e.g. environment, system, users), which can potentially affect the results of the evaluation,
include them in the data analysis and choose which performance metrics (e.g. accuracy,
time, number of errors) should be recorded during the evaluation.

It is essential to define a complete task taxonomy. The simple task of moving one object from
one position to another, can be subdivided into three different subtasks: select the object,
translate the object to the final position and release it. The more complete the subdivision is
the stronger is the resulting taxonomy. The taxonomy combines all options for each subtask,
resulting in different designs for the same task. Some of the designs will be valid and others
will be rejected for being inappropriate from a usability point of view. External evaluators
may detect these inappropriate combinations thus reducing the number of combination to
evaluate, which is also recommended by the sequential evaluation [45].

In VEs setups we are facing heterogeneous input and output devices, a great number of
different configurations are possible which will undoubtedly impact on the evaluation. These
devices will define the working position (users may be standing or seating), the working space
(users can walk or they have to remain still) and physical constraints (cables, projection
screen, walls). Furthermore, consider the diverse user population to run the evaluation, age,
gender, expertise and so on. If detected during the design phase, all these possible outside
factors have to be considered in the experimental design.

Moreover, we have to choose the performance metrics to score the interface quantitatively
and qualitatively. Bowman et al. in [8] proposed the a classification of the performance
metrics in three different groups:

• Computer graphics’ performance. To provide a good level of immersion the system must
have a high frame rate (over 25-30 fps) and the latency must be as low as possible. If the
frame rate drops down this limit, the system would be less usable and an optimization
must be done in order to achieve a higher frame rate.

• User’s performance. The main measures are task completion time and accuracy (error
rate). Due to the trade-off between speed and accuracy, in a standard scenario high
accuracy rates will produce high task completion time and vice-versa.

• User’s preferences. In contrast to the first two groups which provide objective and
quantitative metrics, the user preferences are mainly subjective and qualitative. We can
consider a number of different metrics, ease of use, ease of learning, sense of presence,
user satisfaction and user comfort. User’s preferences can also help to detect issues in
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the design of the experiment (e.g. motion sickness or fatigue). Typically questionnaires
are given to user before and after the experiment to gather subjective user’s preferences.

All performance metrics have to be recorded during the evaluation automatically by the ap-
plication, thus ensuring that all measurements are consistent among different users. More-
over, the evaluation can be monitored by one or more evaluators or even recorded to perform
post-evaluation analysis. Nevertheless, videotaping in a VR setup is hard due to the impos-
sibility of gathering the projected stereo images; we can only capture user’s gestures in free
space without any correspondence with the virtual environment.

A better option consists on logging all user’s movements to virtually reproduce the task. By
monitoring users’ actions we can detect possible hardware malfunctions or even application
bugs. However, it is recommended to perform pilot studies to detect these issues beforehand.

The next step is to define the experimental design. According to the taxonomy, the outside
factors and the metrics, a formal, factorial experiment design can be defined. Each factor
can have different levels, e.g, in a selection task we can consider “selection technique” as the
first factor, with the levels “raycasting”, “occlusion selection” and “virtual hand”. A second
factor can be the “target size”, with the levels “5cm”, “10cm” and “20cm”, resulting in a
3× 3 design. Moreover, additional external factors can be taken into account. Wingrave et
al. in [134] observed differences according to the participant’s experience in computers, 2D
and 3D graphics and gaming experience. We can also consider if the user is right-handed or
left-handed.

Typical experimental designs may range between simple experiments (one factor) to over
complex (many factors) - finding the proper balance is difficult (the number of combinations
increase factorially). Once the factors are defined, the designer has to choose which factors
will be considered within-subjects (each user performs the evaluation for each combination)
or between-groups (we only consider a subset of combinations for each user) and the order
they will be presented to users. Notice than for each between-groups factor, the number of
users required has to be roughly doubled to ensure validity.

Factors presenting ordering effects should be considered as between-groups factors. Ordering
effects appear when the order of the factors alter the results. Nevertheless, if ordering effects
are due to learning effects (users learn over trials), providing training sessions and introducing
repetitions will mitigate them and will also reduce the variability of the gathered data.

Counterbalancing the order of the factors presented to users will further decrease possible
interactions among them. The most common method employed is the latin squares (see
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Figure 2.24) which guarantees that (1) every level appears in every position the same number
of times, (1) every level is followed by each other level and (3) every level is preceded by
every other level, thus counterbalancing any possible ordering effects.
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Figure 2.24: Example of the latin squares distribution for different combination of factors. Notice that
no 3x3 combination meets the properties of the latin squares.

The last step of a typical experimental design consists in defining the hypotheses. According
to the theoretical basis, the experiment designer formulates the expected results of the
experiment. The data analysis will determine whether these hypotheses have to be accepted
or rejected.

If we are performing a Fitts’ law experiment, the experimental task has to consist on simple
and fast aimed movements. To ensure less variability, users’ performance has to be limited
by the capacity of their motor systems not by their cognitive capabilities.

In order to ensure validity, the number of errors should be less than 4% [38]. As task ID
does not account for user accuracy, the number of errors has to be kept as low as possible.
If we obtain a high number of errors, first, the threshold of the movement endpoint will
no longer be W , and second, if the users notice that they are making a lot of errors, they
index of performance (IP) would be affected. They will sacrifice speed for accuracy along
the task until they get a good balance, which will affect the IP along the task. As noticed
in [134, 132], errors will produce “bad vibe” behaviors, after a mistake users slow down for
a while until they recover confidence.

Variability can also be minimized by providing training to users. Training will allow users
to achieve a similar index of performance as experienced users. However, expert users can
still obtain better results in some scenarios [131].

In addition, the examiner has to provide users with instructions to ensure than the speed-
accuracy trade off is consistent among all users. Asking participants to perform both quickly
and accurately will lead to a compromise between accuracy and speed [137], but each user
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may perform in a different way. The evaluator might find the best speed-accuracy trade off
given the evaluation.

Examiners have to guarantee that all users correctly understand the tasks and the work
flow. A well defined work flow will ensure a fast learning step and avoid misunderstandings
in the procedure. Moreover, the examiner has to ensure that conditions are the same among
all users, task, objects, distance, environment and instructions. If necessary a whole system
recalibration has to be performed for each participant.

It is also important to take into account how long the evaluation session will last; a great
number of factors may result in longish experiments which have to be avoided. Possible
solutions rely on providing breaks among trials, split the evaluation in different days or
turn some within-users factors into between-group factors, reducing the overall length of the
experiment, thus avoiding fatigue, sickness and discouragement.

Participants have different motivational forces acting on them which can invalidate the re-
sults. One motivation is to perform well so as to help the researcher, another might just
be to perform well so as to not be embarrassed. However, as the experiment advances, the
dominating motivational force is to complete the experiment so the participant can leave.

The most common approach to keep users motivated is to pay users or award the better-
performing users with some reward (e.g. money, cinema tickets). Competitiveness among
users can be further stimulated by displaying how they are performing [131] or showing the
current highscore [132].

Once everything is set, the evaluation is conducted and all the user’s actions are recorded:
performance measures, video feed and incidences. Finally, all the gathered data has to be
analyzed employing descriptive (histograms, box plots) and inferential statistics (t-tests,
ANOVAs) to obtain conclusions. Before analyzing the data, a common strategy is to remove
outliers (remove samples greater than 3σ) and erroneous trials [48].

We have to be careful with the results of the evaluations as it is tempting to over-generalize
the results to a generic context. It is desirable to include information about the environment
setup and, if possible, perform the evaluation in different environments and hardware setups.

As a last remark, we have to notice that user studies are performed by human beings. As
discussed by Kristensson and Blackwell in [65], ethical requirements vary among universities,
research institutions, research councils or funding bodies. For example, although the Asso-
ciation for Computing Machinery (ACM) has a code of ethics [88], it does not consider user
studies explicitly. In contrast, ethical considerations for psychological user evaluations are
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well established for the American Psychological Association (APA) [3]. We now detail some
guidelines extracted from [20] regarding the ethical considerations for HCI user evaluations
in the APA ethical principles [3].

• Ensure that users are not harmed neither physically nor psychologically during the
experiment.

• Detail all the potential risks involved during the evaluation. For example, during VR
user studies users can suffer simulation sickness or get disoriented.

• The purpose of the evaluation and the data recorded during the experiment have to
be detailed to the users. Exceptionally, if this information is susceptible to bias the
experiment, the experimenter has to ensure that all the information is provided at the
end of the experiment. Moreover, all the data gathered during the user evaluations
must be confidential.

• Users have to be informed that they have the right to leave the experiment at any
moment if needed.

• Experimenters have to ensure that users do not get frustrated by being unable to per-
form the proposed tasks. It might be desirable to state that the tasks are complicated
and the tools provided are not enough to perform the task.

The standard procedure is to present, at the beginning of the experiment, a written document
to the users, detailing all this information and ask for their written permission.



Chapter 3

Analysis of visual issues in virtual
pointing tasks

Virtual pointing techniques are by far the more used 3D object selection technique in virtual
environments. For most virtual pointing techniques, the underlying selection tool is a ray
(or a cone), controlled through hand position and/or orientation. In comparison with virtual
hand techniques, virtual pointing techniques allow users to select distant objects, and require
less physical effort.

In this chapter we focus on how the visual feedback of virtual pointing techniques allows for
accurate selection tasks. User’s perception of the virtual environment and visual feedback
are crucial for effective interaction, as users rely on visual feedback to guide the pointing
gesture rather than relying only on proprioception. Furthermore, virtual pointing techniques
require potential targets to be clearly visible.

These requirements mostly hold for monoscopic displays, but do not hold for immersive vir-
tual environments. Stereoscopic virtual content does not provide the same amount of depth
cues as the real world, thus decreasing the spatial understanding of the virtual environment.
Moreover, occlusion is a common issue in 3D environments, and occluded objects, as we shall
see, hinders selection tasks.

We first analyze the most adopted solutions for visual feedback in virtual pointing tech-
niques, detailing their limitations. The analysis considers the amount of accuracy the visual
feedback achieves, according to the adopted selection technique and the current limitations
of stereoscopic vision.

Second, we present an intrinsic limitation all hand-rooted virtual pointing techniques suffers
from: the eye-hand visibility mismatch. We study the potential mismatch between visible
objects (those which appear unoccluded from the user’s viewpoint) and selectable objects
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(those which appear unoccluded from the user’s hand position) and how it affects selection
tasks. We show analytically and experimentally that precise selections for hand-rooted
techniques can only be achieved if the object to be selected is simultaneously visible from
the user’s hand and the eye’s position.

3.1 Visual feedback for pointing on stereoscopic
displays

Virtual pointing techniques require the application to provide appropriate visual feedback
about the pointing tool and its spatial relationship with potential targets, e.g. drawing a
ray emanating from the user’s hand. In an ideal scenario, the visual feedback should allow
users to univocally identify the object being pointed to under all possible viewing conditions
and scene layouts.

Regarding the judgment of the movement required to approach a particular target, the visual
feedback (a) should give a precise indication of the direction and the amount of movement
required, (b) should work under all possible viewing conditions and scene layouts, and (c)
should work for all the degrees of freedom (DoFs) of the selection tool.

When designing the visual feedback for a virtual pointing technique the following factors
should be considered:

• The origin of the pointing tool (eye-rooted or hand-rooted techniques).

• The tool control. We distinguish between translational control (based on hand position)
and rotational control (based on hand orientation).

• The display type. Depending on provided depth cues and whether users can see their
physical hand or not, we distinguish between fully-immersive displays (such as HMDs),
and semi-immersive displays (such as CAVEs and other projection based stereoscopic
displays).

The origin of the pointing tool is critical to choose a proper visual feedback. When the
pointing direction is cast from the hand position H, the usual approach is to draw a ray
extending out from H. Other visual feedback techniques such as drawing a cursor are
clearly inappropriate as they would force the user to figure out how the ray extends behind
the cursor.
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On the other hand, when the pointing direction is cast from the user’s eye E, its projection
on the viewing plane is a single point, so we must choose another strategy for providing
appropriate visual feedback.

Note that virtual pointing always requires some kind of visual feedback, as relying solely
on proprioception is not sufficient for accurate selection. The only exception are image-
plane techniques with translational control running on semi-immersive displays; the user’s
hand/finger provides a rough feedback of the pointing direction.

Our main goal is to anticipate potential usability issues for accurate pointing on stereoscopic
displays by exploring how current visual feedback approaches guide the user during ballistic
and corrective phases of selection tasks. The analysis distinguishes between cursor-based
approaches and ray-based approaches.

3.1.1 Cursor-based approaches

A simple feedback option for eye-rooted techniques is to draw a cursor/avatar somewhere
along the ray E+λ(H−E). In a monoscopic display, the value chosen for λ > 0 is irrelevant,
but in a stereoscopic display this value plays a key role, as the resulting cursor parallax is
proportional to λ . The analysis considers a cursor drawn at zero parallax and a cursor
matching the parallax of the indicated object (see Figure 3.1).

(a) (b)

Figure 3.1: Considered cursor-based visual feedback techniques in pseudo-anaglyph stereo. (a) 2D
cursor, the cursor is always displayed at zero parallax. (b) 3D cursor, the cursor’s parallax matches the
indicated object.

2D cursors

A natural option is to draw a cursor at the depth given by the screen surface, which results
in a cursor at zero parallax. Drawing an element at zero parallax condition has the unique
advantage of being the only situation were the breakdown between eye accommodation and
eye vergence does not occur.
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Design variables for 2D cursors include cursor shape, cursor size, size of the active re-
gion [120], and visibility priority (always on top vs. normal rendering). For our analysis, we
consider a cross-shaped 2D cursor covering about 5% of the screen, whose active region was
defined implicitly by the selection ray (see Figure 3.1a). The cursor is drawn with depth test
disabled to avoid close-up objects from occluding it, thus guaranteeing its visibility under
all circumstances.

Our analysis on suitability of 2D cursors for accurate pointing on stereoscopic displays fol-
lows. We start analyzing potential depth cue conflicts. Since the 2D cursor is drawn always
on top of the other objects, it will occlude all the objects whose screen projection overlaps
with that of the cursor. This results in a depth cue conflict between interposition and stere-
opsis: objects in front of the screen will exhibit a negative parallax value, whereas they
might appear partially occluded by the cursor which is perceived on the screen plane. It is
well known that this disagreement hinders depth-ordering judgments and thus might have a
potential negative impact on selection performance.

We now analyze the quality of the feedback provided by 2D cursors in terms of allowing
users to univocally identify the object being pointed to. On a monoscopic display, a 2D
cursor univocally identifies the object it is drawn on top of. However, objects displayed on
stereoscopic displays have a pair of screen projections, one for each eye. The left and right
eyes will be referred to as EL and ER, and the left and right screen projections of an object
will be referred to as L and R, respectively. As we shall see, placing the cursor on top of only
one of the two screen projections of an object does not guarantee the corresponding selection
ray to intersect the object. Conversely, a cursor drawn outside the L and R projections can
intersect the object.

Figure 3.2 illustrates when these situations might occur. For the sake of clarity, we consider
the virtual object A (represented as a sphere) to be fixed, and we move the projection screen
(or the virtual image plane, for the case of HMDs) towards or away from the user. The
figure shows the three shadow volumes defined by joining EL, ER and E (the origin of the
selection tool) with the object’s silhouette. The selection ray intersects the virtual objects
only if it is contained inside the volume defined by E (dashed areas at the right of the figure).
Considering intersection events among the three volumes, we can distinguish six different
sections where the projection screen can be placed with respect to the virtual object.

The object would exhibit negative parallax in sections S−1 , S−2 , S−3 (the screen is behind the
object), and the object would exhibit positive parallax in sections S+

1 , S+
2 , S+

3 (the screen
is in front of the object). In S+

1 , S−1 sections the L and R screen projections of the object
partially overlap. This situation can be slightly confusing, since placing the cursor on top of
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Figure 3.2: Six different configurations of the L and R screen projections of an object and the selection
area (dashed circle) for a 2D cursor. The position of the projection screen where these situations occur
is shown on the left. The virtual object is the sphere at the intersection of the three cones.

only one of the two screen projections of the object does not guarantee its intersection. In
sections S+

2 and S−2 the L and R screen projections are disjoint, although the selection area
(i.e. the set of positions where the ray represented by a 2D cursor at that position intersects
the object) partially overlaps L and R. This situation can be more distracting than the
previous one. Again, placing the cursor on top of only one of the two screen projections
of the object does not guarantee its intersection. Furthermore, when the intended target is
another object B whose projection overlaps with the dashed circle, users might think that
placing the 2D cursor at the dashed circle would allow them to select object B instead of
object A. This situation is even worse in S+

3 and S−3 sections, where the three projections
are disjoint. In this case, there is no way to select object A by placing the 2D cursor over L
or R. Instead, the user must judge the midpoint between both projections and point to that
direction. Since L and R can be several centimeters apart, the presence of nearby objects
overlapping the dashed circle might be distracting to the user.

Another key point is how a 2D cursor helps the user to judge the movement required to
approach a particular target. We distinguish between the initial ballistic phase and the
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corrective phase of the selection movement. Executing the ballistic movement requires the
user to judge the displacement between the current location of the cursor and the screen
projection of the object. A 2D cursor provides adequate feedback for this phase, as the above
displacement is parallel to the viewing plane and hence it does not rely on depth cues. For
the corrective phase, the separation between L and R comes into play and users might doubt
about where to place the cursor along the segment joining L and R projections.

3D cursors

Given the poor visual feedback provided by a cursor at zero parallax condition, an alternative
option is to draw the cursor at the depth defined by the first intersection point with the scene
(Q). The user will perceive the cursor attached to the object being pointed to [113] (see
Figure 3.1b). Notice that drawing the cursor at Q results in varying parallax values.

In terms of application performance, drawing such a 3D cursor does not require the applica-
tion to identify the object being intersected. Point Q can be easily obtained by computing
the pixel the selection ray projects onto and querying the associated depth value in the depth
buffer.

A new design variable for 3D cursors is the projection type (perspective or orthographic).
A 3D cursor rendered with perspective projection results in an arbitrarily small on-screen
cursor for distant objects, making this option completely inappropriate for scenes with a
large depth range. For the analysis we considered a cross-shaped orthographic 3D cursor
covering about a 5% of the screen, whose active region was defined implicitly by the selection
ray. The cursor has to be drawn with the depth test disabled to avoid close-up objects from
occluding it, thus guaranteeing its complete visibility under all circumstances. The only
difference with respect to the 2D cursor is the varying parallax value of its L and R screen
projections.

An additional design decision is how to compute the cursor’s depth when the selection ray
does not intersect any object and thus point Q is undefined. After some experimentation,
we found the best option in case of no intersection is to preserve the last valid depth. This
option minimizes parallax changes during corrective movements.

We start analyzing potential depth cue conflicts. It turns out that using a 3D cursor drawn
on top of the object pointed to might result in up to three depth cues to be in disagreement
(besides accommodation depth cues). On the one hand, parallax values will induce the user
to perceive the cursor on top of the pointed object. On the other hand, since 3D cursor
is drawn always on top of the other objects, it will occlude all the objects whose screen
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projection overlaps with that of the cursor. Furthermore, since orthographic projection is
used instead of perspective projection, the size of the screen projection of the cursor remains
constant, thus the relative size depth cue would suggest that the cursor has not changed its
depth. These depth cue conflicts, considering the frequency at which a moving 3D cursor
might point to another object and hence results in a parallax change, is expected to have a
potential negative impact on selection performance.

We now analyze 3D cursors in terms of allowing users to identify the object being pointed
to. For a static 3D cursor, no identification problems are expected, as the cursor is drawn on
the surface of the object and hence the EL and ER screen projection of the object overlaps
with the L and R screen projection of the cursor. However, for a dynamic cursor where
the object pointed to changes at high rates, the depth cue conflicts described above are also
expected to distract the user.

Another difference is how a 3D cursor helps the user to judge the movement required to
approach a particular target. For the ballistic movement, a 3D cursor behaves like a 2D
cursor. For the corrective phase, though, depth cues conflicts come into play. The worst
case scenario is a small target whose screen projection is surrounded by other objects at
a different depth, causing the 3D cursor to switch depth and parallax during corrective
movements.

3.1.2 Ray-based approaches

The most used visual feedback technique for ray-based approaches is to draw a ray originating
from the user’s hand, following a laser beam metaphor. The first intersection point of
the virtual ray with the environment determines the int object. This technique assumes a
selection ray controlled by the position and the orientation of a hand-held device. The visual
feedback consists simply in drawing this selection ray, which does not present any apparent
depth cue conflict. Unfortunately, the misalignment between the user’s viewpoint and the
origin of the selection tool limits its performance during the corrective phase.

A first issue is related to the indication of the movement required to approach a particular
target. In this respect, a hand-extending ray provides imprecise visual feedback to judge the
vertical misalignment of the ray, as it forces the user to rely on depth cues rather than on
stronger visual cues such as those provided by a cursor moving parallel to the viewing plane.

This problem is illustrated in Figure 3.3. Aiming at any of the two spheres clearly requires
rotating the ray slightly to the right. However, judging which one of the spheres (if any)
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(a) (b) (c)

Figure 3.3: Consider the situation depicted in (a). The judgment of the vertical alignment of the ray
with respect to the targets relies solely on depth perception. Although the real layout is depicted in (b),
errors on depth perception may induce the user to believe that the real layout is the one shown in (c).

would be intersected after the rotation relies solely on depth cues. The ray seems to be
closer to the sphere in the top, fact which can be misinterpreted as the situation depicted
in Figure 3.3c. However, in this case the ray would intersect the sphere at the bottom
(Figure 3.3b). Notice that the parallax of the sphere in the bottom matches the parallax of
the ray at its closest point on the ray. As a result, factors affecting depth perception, such
as ghosting effects produced by poor stereo pair separation will impact on user performance.

A second issue derives from the fact that objects are selected by pointing directly to them,
which differs from cursor based techniques where objects are selected by pointing directly
to their screen projections. A first consequence is that objects with exactly the same screen
projection might require different ray orientations to select them (see Figure 3.4a).

(a)

S1 S2

(b)

Figure 3.4: (a) Three objects with increasing size and distance can have the same screen projection, but
require notably different ray directions for their selection. (b) Objects with the same screen projection
subtend different solid angles with respect to the hand position.

Indeed, the accuracy required to select objects with raycasting is not given directly by their
screen projections. Let ΩE(S) and ΩH(S) be the solid angle subtended by an object S with
respect to the user’s eye and the user’s hand, respectively. Considering Fitts’ law, ΩH(S)
in absence of occluding objects is a good measure of the size (W ) of S and thus a measure
of how much accuracy is required to select that object. ΩE(S) is proportional to the (area
of the) screen projection of S. Figure 3.4b shows two objects S1, S2 with the same screen
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Figure 3.5: Notation used in the computation of the solid angle for a 3D object

projection but different solid angles, ΩH(S1) > ΩH(S2).

Consider Figure 3.5, the accuracy ΩH(S) required for selecting an object S varies depending
on its distance (d) to the eye E and the distance (h) between the user’s viewpoint E and
user’s hand H (see Figure and Equation 3.1)). Assuming that H is vertically aligned with E
at distance h, if the radius r of S is uniformly scaled with respect to E, ΩE(S) is preserved.
For the sake of simplicity we consider the bounding sphere of an object S located in front
of E.

ΩH(S) = 2π(1− cos(θH))

θH = arcsin( r√
d2 + h2

)
(3.1)

Figure 3.6 shows a plot of the ratio ΩH(S)/ΩE(S) as we increase the distance d while
preserving the screen projection of S (and thus ΩE(S)), for h varying between 0 cm and
80 cm. This means that r = d sin(θE), where θE = arccos(1 − ΩE(S)/(2π)) is the planar
angle of the cone defined by S and E. Obviously, h = 0 indicates that the position of the
hand and the eye are the same thus the ratio is 1. As the eye-hand distance increases,
closer objects exhibit more mismatch than distant ones, although having the same screen
projection. For h= 80 cm, which is a typical eye-hand distance when the user is standing up,
an object standing at 70 cm from the user will subtend with respect to the hand only a 50%
of its solid angle with respect to the eye. Nevertheless, the ratio ΩH(S)/ΩE(S) converges
quite quickly to 1: objects at 2.3 m from the user expose to the hand the 90% of their solid
angle with respect to the eye.

Let us now discuss the potential effects of the above fact on selection performance, assuming
h > 0, in terms of Fitts’ Law. On the one hand, if we scale down a single object with respect
to the eye position (thus preserving its screen projection), we are clearly decreasing the size
W and indirectly the precision needed to select it increases. However, if we scale down the
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Figure 3.6: Evolution of the ratio ΩH(S)/ΩE(S) when the distance to S increases from 10 cm to 3 m,
while preserving its screen projection, for several eye-to-hand distances h.

whole scene while preserving its screen projection, we are decreasing both and W and D,
which in essence means we are reducing the CD ratio while preserving the index of difficulty
of the task [4], ID = log2(D/W + 1). As stated earlier, scaling down the scene means that
more accuracy is required to fix the ray on top of the target, but also that the amplitude of
the required movements is shorter, so at the end the effect of such a change of the CD ratio
on performance is quite unpredictable.

In any case, we see this as a flaw of raycasting techniques in comparison with image-plane
techniques, as the object’s screen projection of a target does not convey appropriate visual
feedback about the difficulty of the selection task.

Eye-hand visibility mismatch

A fact that has been largely ignored in the literature is that whenever the selection ray
originates at a point other than the user’s eye, the set of visible objects which appear
unoccluded from the user’s eye position and selectable objects which appear unoccluded
from the user’s hand position, might differ.

An object S is visible if at least one point in its boundary surface (∂S) is visible from
the user’s viewpoint and is selectable if at least one point is visible from the user’s hand
viewpoint. Let νE be the set of visible objects and νH the set of selectable objects. The set
of objects νE ∪νH can be decomposed into three disjoint sets: νE ∩νH , νE−νH and νH−νE.

Let us first discuss the behavior of raycasting selection for objects in νH−νE. This correspond
to objects which are hidden to the user’s eyes but are reachable from a ray emanating from
the user’s hand (Figure 3.7a illustrates this situation). Object B is occluded from the eye
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Figure 3.7: Eye-hand visibility mismatch issues. (a) The user can selected an object which is hidden by
another object. The last visible point on the ray, is projected over the screen projection of the occluding
object, leading to misinterpretation: the ray appears to intersect object A, although the intersected object
is behind. (b) A visible object cannot be selected because it cannot be reached by a ray emanating from
the user’s hand. The dotted line shows the path followed by the ray-scene intersection as seen on the
screen, which skips object A. (c) Object A is visible from both E and H, but no point on its boundary is
simultaneously visible from E and H.

position but not from the hand position. Therefore it is currently selectable even though
it is not visible. This phenomenon is particularly distracting to the user. The user might
think that the currently selected object is A, as there is an apparent intersection of the ray
with object A (the screen projection of the last visible point of the ray is on the silhouette
of the screen projection of A). In the absence of additional feedback, if the user triggers the
selection confirmation at this point, the hidden object B would be erroneously selected.

Let us now examine the selection behavior for objects in νE−νH . This corresponds to objects
which are visible but which are not reachable from a ray emanating from the hand (Figure
3.7b illustrates this situation). Object A is visible from the eye position but it is completely
obscured from the hand position. Therefore, although being visible, object A cannot be
selected while preserving the hand position. Unlike the above case, the screen projection of
endpoint of the virtual ray Q appears over the projection of the currently selected object B,
so there is no room for misinterpretation of the selected object. However, the user would
be unable to select object A unless he changes the origin of the pointing tool. If the user
only moves the ray upwards, increasing the elevation of the ray trying to bring Q to the
screen projection of A, Q seen would jump from object B to object C. The discontinuous
path followed by Q on the screen is shown in Figure 3.7b bottom left. Note that Q skips the
regions occupied by the screen projection of A. Some users might perceive this unexpected
effect as an anomalous behavior, once they realize that the object is not accessible, they
have to move its hand to an unoccluded position.

In the last group νE ∩ νH , a more accurate approach to predict potential selection problems
is to consider the solid angles ΩE(S) and ΩH(S). An object S is a potentially difficult target
whenever ΩE(S) or ΩH(S) is below a threshold. But, as Figure 3.7c depicts, this approach
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is still inaccurate, as an object S with large ΩE(S) and ΩH(S) can still be difficult to select.
Now, both ΩE(A) and ΩH(A) are large, but object A is still difficult to select because no
point in the boundary of A is simultaneously visible from E and H. As a consequence, the
user can intersect object A with the ray, but the intersection point is hidden by object B,
keeping the user from having visual feedback. Therefore, a more accurate measure of the
difficulty/accuracy required to select an object S must be defined in terms of its simultaneous
visibility. Given an object S, we define ΩE×H(S) as the solid angle subtended by the points
of S which are simultaneously visible from E and H.

The impact on performance of the visibility mismatch depends, among other factors, on the
ratio ΩE×H(S)/ΩE(S). In sparsely occluded scenes, we could expect this ratio to be roughly
1; the same applies when the eye-to-hand distance h approaches zero. However, when h

increases, self-occlusion obviously increases, as more front faces from E become back faces
from H and vice versa. But, the behavior of the inter-object occlusion is more difficult to
predict, as it strongly depends on the object layout and user’s position E. Assuming objects
uniformly distributed around 3D space, one could expect ΩE×H(S) to decrease on average
as h increases, but many 3D scenes do not exhibit such a uniform layout.

Figures 3.8 and 3.9 show the empirical evaluation of visibility mismatch for several test
scenes. For practical reasons, in Figure 3.9 we approximate ΩE×H(S)/ΩE(S) as the per-
centage of pixels in the screen projection of S which are also visible from H. The results
show that ΩE×H(S) tends to decrease as h increases, although not uniformly. Note that
visibility mismatch rapidly affects a large part of the scene, (around 25% of the visible pixels
correspond to parts difficult to select), for typical values of the angle α = ̂ECH with C

being the center of the scene.

3.2 Eye-Hand visibility mismatch evaluation

The theoretical study of the eye-hand visibility mismatch exposed an ignored issue which
can potentially decrease selection performance when using hand-rooted techniques. In order
to prove our theoretical analysis, we performed a user evaluation to explore in a controlled
environment the impact of eye-hand visibility mismatch on 3D object selection tasks.

Eye-hand visibility mismatch is expected to increase the difficulty of selection tasks, but
the resulting difference might be non-significant. For instance, users can develop strategies
to compensate the visibility mismatch, e.g. by moving their hand quickly to a dissocluded
location or anticipating occlusion.
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(a) (b) (c)

Figure 3.8: Simultaneous visibility on three test models. The color temperature represents the eye-to-
hand distance at which each point appears occluded from H. Dark blue parts correspond to points whose
simultaneously visibility is preserved for all α = ÊCH in [0, 60]. A warmer color indicates that even a
small increase in α causes the point to become occluded from H.

Figure 3.9: Simultaneous visibility on three test models, for angle α = ÊCH in [0, 60]. The value
shown is the percentage of pixels in the screen projection which are not visible from H.

For completeness, we performed a Fitts’ law analysis of the obtained data. We studied
the correlation between selection time and the index of difficulty (MT = a + bID, being
ID = log2(A/W + 1)). As the ray is controlled by hand rotations, considering Euclidean
distances to compute D and W is not valid. Instead, we compute the amplitude of movement
A as the minimum rotation angle required for the selection ray to hit the target from the
start position and the target size W is computed as the apex angle of the minimum cone with
apex in the user’s hand containing the target (our targets were spheres). We controlled the
index of difficulty and the occlusion level on a per-object basis. The correlation obtained will



86 3.2 Eye-Hand visibility mismatch evaluation

determine if raycasting selection can be modeled using Fitts’ law and which is the impact of
the eye-hand visibility mismatch.

Twelve volunteers, aged from 22 to 35, participated in the experiment; 6 participants had
no experience with VE applications; 3 had some experience and 2 were experienced users.

Design and procedure

Users were requested to select a sequence of objects as quickly as possible, where the next
object to be selected was clearly highlighted. To provide additional visual feedback, the
object intersected by the selection ray was highlighted in red. Two different test model
were employed, each one having seventeen spheres with varying size (from 0.2 m to 60 m)
and distances (0.6 m to 70 m), placed in such a manner that all spheres had approximately
the same screen projection (since users were head-tracked, actual screen projection varied
according to user’s head movements).

In the first test model, spheres were lay out so as to avoid inter-object occlusion from the eye
and the hand position, with nearby spheres appearing above farther ones, from the user’s
perspective (see Figure 3.10a). We will refer to this model as the unoccluded model. In
the second test model (see Figure 3.10b), spheres were lay out so as to create varying levels
of inter-object occlusion from the user’s hand position but not from the user’s eye position
(all spheres were clearly visible so as to keep discovery time from altering the results). The
second model will be referred to as the occluded model.

The index of difficulty of targets ranged from 2 to 3 bits. This low range was due to the fact
that all objects had the same target width. Objects located at the center had lower IDs, as
in average, the amount of amplitude required to select them was lower.

To ensure that the difficulty of all trials remained constant among users, we precomputed a
random sequence of objects the user had to select. The same sequence was used for all the
trials, each consisting in 300 selections.

A repeated-measures within-subjects design was used. The independent variable was the test
model (occluded, unoccluded). Each participant performed the experiment in one session
lasting approximately 25 minutes. The experiment was divided into two blocks, one for each
model. Before each block users were provided with a very short (1 min) training session.
The order of the blocks was counterbalanced among users to avoid learning effects.

The dependent measures were total selection time, error rate and focus changes. The error
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rate was measured by counting the number of erroneous clicks and the focus changes was
the number of times the target object changed its selection status prior to confirming its
selection.

Apparatus

The experiment was conducted on a four-sided CAVE with stereo projectors at 1280× 1280
resolution. The input device was a 6-DOF Wanda and a tracking system providing 60
updates/s with 4 ms latency. At the user position (90 cm from the EM emitter), position
and orientation RMS errors were below 0.5 mm and 0.06 degrees, respectively. Users were
provided with a wireless mouse to trigger the selection confirmation to avoid the Heisenberg
effect and reduce the number of errors. The experiment was driven by a cluster of 2.66GHz
QuadCore PCs with NVIDIA Quadro FX 5500 cards.

Results

Average raycasting selection time for the unoccluded model was 264 s (0.88 s per object),
whereas for the occluded model average time was 319 s (1.06 s per object) (see Figure 3.11a).
The one-way ANOVA of selection time vs. test model confirmed the significant effect of the
test model on selection performance (p < 0.005;F = 10.32). Since the screen-projection of
the spheres in both models was roughly the same, this result seems to confirm our hypothesis
that, for raycasting selection, the eye-hand visibility mismatch has a significant impact on
selection time.

For erroneous click (see Figure 3.11b), the ANOVA of errors vs. test model did not found
any significant difference, once the user has been able to point to the target, the eye-hand
visibility mismatch does not pose additional hindrances.

Results on focus changes are shown in Figure 3.11c. The one-way ANOVA focus changes
vs test model also found significant differences (p < 0.05;F = 12.82). The number of focus
changes is an indication of how many times the user attempted to point at an object prior
to selecting it. As expected eye-hand visibility mismatch had a negative impact.

We condensed the selection time data gathered in a per-object basis to perform a regression
analysis of the selection time versus the index of difficulty. For each object we computed
its mean selection time and its mean index of difficulty. The correlation of the data for
the unoccluded model was high r = 0.898 for (see Figure 3.12a), but no correlation was
found for the occluded model. A per-object study showed that objects 2, 3, 7 and 9 (see
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(a)

(b)

Figure 3.10: Test models used in the study (a) unoccluded, (b) occluded. Color temperature encodes
the potential level of mismatch. Only the spheres from 1 to 16 where potential targets; sphere 17 was
introduced solely to increase mismatch. While the mismatch in (a) was due to object self-occlusion in
(b) it was also due to object inter-occlusion.
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Figure 3.11: Boxplots of selection time (s), erroneous clicks and focus changes for each test model.

Figure 3.10b) did not adjust well to the expected positive correlation. We repeated the
regression analysis ignoring these objects and then, we found a relatively high correlation
(r = 0.755). Interestingly, when we contrasted these objects with those exhibiting a high
level of eye-hand visibility mismatch, we found a perfect match (see Figure 3.12b). Selection
tasks not affected by the eye-hand visibility mismatch still present a Fitts’ law behavior.

(a) Unoccluded Model (b) Occluded Model

Figure 3.12: Scatterplot of mean object selection time vs index of difficulty. Correlation values are: (a)
0.898 and (b) 0.755 (this last one has been computed ignoring spheres with large visibility mismatch).

Discussion

We have explored analytically and empirically how the eye-hand visibility mismatch hinders
the selection of 3D objects. Both conclude that the eye-hand visibility mismatch has a
significant impact on user’s performance. However, the performance drop largely depends
on the scene complexity and on the eye-to-hand distance with respect to the scene size. In
addition to performance issues, the user might be forced to align its viewing and pointing
direction to achieve the selection which results in uncomfortable pointing gestures.
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The Fitts’ law analysis showed that raycasting in the absence of the eye-hand visibility
mismatch follows a Fitts’ law model. Although the range of the IDs was low (2.4 to 3.4
bits), the correlation between selection time and the index of difficulty was high (r = 0.899).
On the other hand, when the eye-hand visibility mismatch increases, the data did not longer
follow the Fitts’ law model, selection times were higher (see Figure 3.12b).

An open question remains though, can the eye-hand visibility mismatch be introduced into
Fitts’ law? Although we can estimate the amount of the eye-hand visibility mismatch, the
cognitive load to overcome the mismatch cannot be ignored. Fitts’ Law tasks require low
cognitive load and repetitive tasks. In our experiment, users did not notice the eye-hand
visibility mismatch until the ballistic movement was done. During corrective movements
users realized that they could not point to the target and were forced to reposition its hand
to find a suitable origin for the selection ray. In cluttered environments this might not be
a trivial task. So, it is not clear whether Fitts’ law can account for the eye-hand visibility
mismatch for 3D object acquisition tasks.

Encouraged by these results, we proceeded to develop new selection techniques which better
comply with our visual feedback analysis and avoid the eye-hand visibility mismatch. The
following chapter details the achieved results in this area.



Chapter 4

Overcoming visual issues in virtual
pointing tasks

The visual feedback analysis presented in the previous chapter concluded that visual feedback
techniques have to allow users to univocally identify the object being pointed to and have to
provide enough information regarding the direction and the amount of movement required
to point to an object. Furthermore, we have shown that the eye-hand visibility mismatch
hinders selection tasks and thus has to be avoided.

Our theoretical analysis revealed that widely employed selection techniques do not satisfy
these requirements. Raycasting suffers from the eye-hand visibility mismatch and its visual
feedback highly depends on the spatial understanding of the virtual environment, and visual
feedback available for eye-rooted techniques are not well suited for stereoscopic vision.

The contributions presented in this chapter focus on the avoidance of the eye-hand visibility
mismatch and the development of visual feedback techniques that better support plano-
stereoscopic displays and collaborative referral tasks.

We propose a new selection technique where the selection tool is controlled by hand rotations
as in raycasting, but emanates from the eye position like in occlusion selection. It combines
the absence of eye-hand visibility mismatch of image-plane techniques with the benefits of
ray control through hand rotations. Besides the new device-ray mapping, adequate visual
feedback must be provided. We successfully developed two alternative visual feedback tech-
niques which better comply with stereoscopic output devices. Our visual feedback analysis
is completed by the evaluation of existing visual feedback techniques.

Moreover, in collaborative virtual environments, the viewpoint mismatch does not only affect
selection tasks. Referral tasks are compromised as users do not share the same viewpoint
(they can navigate freely in the environment). One user might be pointing to an object which
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is occluded from the viewpoints of other users, hindering mutual exchange of information.
We present a study exploring users’ behavior in such situations and how existing occlusion
management techniques, such as X-Ray vision, allows for improved referential awareness and
better compliance with social protocols.

4.1 Raycasting from the eye (RCE)

Ray Casting from the eye is a new mapping for ray control which attempts to overcome the
negative effects of the eye-hand visibility mismatch. The selection tool’s origin in RCE is
determined by the eye position (E), even though the orientation of the ray is still controlled
by the hand orientation (~h). The selection ray is defined by the parametric equation E+λ~h.
The first intersection of this ray with the scene objects indicates the selected object (see
Figure 4.1).

In essence, RCE combines the benefits of image-plane techniques (absence of visibility mis-
match and continuity of the ray movement in screen-space) with the benefits of ray control
through hand rotation (requiring less physical hand movement from the user). In this sense,
it can be viewed as a hybrid technique between raycasting and image-plane techniques. To
the best of our knowledge, this mapping between user movements and pointing direction has
never been explicitly proposed nor evaluated.

Since the selection ray is cast from the eye, the selection ray projects onto a single point in
the viewing plane. As a consequence, we must choose another strategy distinct from drawing
the selection ray for providing appropriate visual feedback. We discarded the 2D and 3D
cursor strategies given all the limitations detailed in the previous chapter.

(a) (b) (c)

Figure 4.1: In classic raycasting (a) the selection ray is cast from the user’s hand, thus potentially
suffering from eye-hand visibility mismatch. This problem persists unless users align their hand with
the pointing direction (b), which results in an uncomfortable position. Ray casting from the eye (c)
uses a selection ray cast from the eye, whose direction is controlled with the hand orientation. Since
the selection ray is insensitive to hand position, users can select objects as in (b) but with less physical
effort.
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4.1.1 Hand-to-cursor ray (HCR)

Our first solution to the visual feedback is to draw a virtual ray (the feedback ray) defined
by equation H +λ(Q−H), Q being the first intersection point with the environment. More
precisely, we only draw the segment HQ (see Figure 4.2).

Q E

H

h

h
Selection Ray

Feedback Ray

Figure 4.2: As the selection ray projects into one single point, additional visual feedback is provided by
drawing a ray cast from the hand to the first intersection of the selection ray with the scene.

Similarly to 3D cursors, the parallax of the endpoint of the ray Q also changes rapidly but the
replacement of the 3D cursor by a ray notably alleviates convergence issues (in this respect
RCE behaves like any raycasting variant). We called this visual feedback approach hand-to-
cursor ray (HCR) as the virtual ray emanates from the user’s hand and has its endpoint at
the location which would be defined by a 3D cursor. We now state some properties of the
feedback ray:

• Since the feedback ray originates at the hand position and responds to hand orientation,
it feels like a normal raycasting ray. In fact, both techniques tend to be the same if the
user aligns her hand with the pointing direction, as in Figure 4.1b.

• Unlike classic raycasting, the endpoint of the ray is insensitive to the hand position,
and depends only on the hand orientation. When the user is standing up in a spatially-
immersive display, this allows for a more comfortable pose, requiring only hand rotation
gestures.

• The movement of the endpoint of the feedback ray is continuous (Q behaves like a 3D
cursor) and the screen projection of an object is a good measure of its effective size.

Limitations

In addition to the convergence issues due to fast changes of the endpoint Q, during pilot
experiments, we noticed that some novice users had difficulties in selecting some objects due
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to visual feedback conflicts. The worst case scenario for HCR seems to be the selection of
close-up objects whose screen projection is surrounded by distant objects.

This situation is depicted in Figure 4.3. Suppose the user wants to select the blue sphere.
Although both spheres have similar screen projections, the blue sphere is much smaller and
closer to the viewer (the picture shows the two spheres with reduced depth disparity for
clarity). Starting from the situation shown in the left, an untrained user might think that
the action required to select the blue sphere involves intersecting it with the display ray.
Since the ray is occluded by the blue sphere, the visual feedback indicates that the display
ray is behind it, so the user might rotate his hand upwards (Figure 4.3, top). This movement
causes the display ray to intersect the object, but this does not change the selection status
for the green sphere (remember that the display ray is drawn solely for visual feedback, the
pointed object being defined by the selection ray). Therefore the correct action to select the
blue sphere is to rotate the hand downwards (Figure 4.3, bottom). Although this behavior
may hinder selection performance during corrective phases for novice users, trained users by
focusing at the endpoint of the feedback ray are able to mitigate its effects.

Figure 4.3: Worst-case scenario for the hand-to-cursor ray.

4.1.2 Viewfinder

The hand-to-cursor ray is a simple visual feedback approach but it still presents some of the
limitations of 3D cursors. We now detail an improved visual feedback approach avoiding
such limitations, the viewfinder.

The key idea is to locally flatten potential targets in the vicinity of the pointing direction
by projecting them onto a small virtual screen attached to the pointing direction (see Fig-
ure 4.4a). We call this technique viewfinder because the resulting effect is similar to looking
a small part of the scene through an LCD digital camera display. A 2D cursor on the middle
viewfinder represents the pointing direction. Since the cursor and the objects displayed on
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the viewfinder are drawn at fixed parallax, we avoid selection ambiguity problems that have
discouraged the adoption of image-plane techniques in stereoscopic displays.

(a) (b)

Figure 4.4: (a) User view of the viewfinder (not to scale). (b) Viewing pyramids of L/R eyes and the
placement of the viewfinder.

Viewfinder placement

The center of the viewfinder is constrained by the pointing direction (E+λ~h). We now discuss
two different options regarding the orientation of the viewfinder with respect to the pointing
vector ~h. In both cases the viewfinder is centered at the intersection of the selection ray
with the projection screen. A first option is to keep the viewfinder parallel to the projection
screen. This option has the advantage that the viewfinder’s contents will appear exactly at
zero parallax condition. A second option is to keep the viewfinder perpendicular to ~h. In
that case a part of the viewfinder’s contents will appear with slightly negative parallax and
another part with slightly positive parallax. In our experiments we used this second option
as it imitates better the natural way of aiming at different parts of a scene with a hand-held
camera, it is compatible with multi-screen systems such as CAVEs, and it preserves the
solid angle subtended by the viewfinder with respect to the viewpoint, thus preserving its
apparent square shape.

Viewfinder frustum

The viewing frustum associated to the viewfinder is constructed from the dominant eye
position. An additional design variable is the field-of-view (fov) of such frustum, which
influences the size of the viewfinder. A small frustum has the advantage of minimizing the
impact of the viewfinder on the immersive view and having a smaller application overhead.
However, if too small, a potential target can enter and leave the viewfinder multiple times
during the corrective phase of the selection, potentially distracting the user. Therefore the
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viewfinder should be sized so as to ensure that, in most situations, it includes any given
target after the initial ballistic movement to approach the target. We conducted a simple
experiment to measure the deviation angle between the pointing vector and the vector joining
the viewpoint with the object’s center, just after the initial ballistic movement towards the
target. In our particular VR system, the maximum deviation angle was found to be about
four degrees. Thus in our experiments we decided to use a symmetric frustum with a fov of
eight degrees and unit aspect ratio. For the near and far clipping planes we used the same
values as in the immersive view.

Drawing the viewfinder

The viewfinder itself is rendered as a textured quad perpendicular to the pointing direc-
tion, where the texture map contains the projection of the scene according to the viewing
frustum defined above (Figure 4.4b). The texture map can be computed in several ways.
A simple option with negligible overhead is to reuse the stereoscopic image generated for
the dominant eye, by simply grabbing a rectangular region of the color buffer. OpenGL’s
glCopyTexImage2D() function can be user for that purpose. A second option is to setup the
viewfinder’s camera and render the scene to a texture. OpenGL’s frame buffer objects can be
used to minimize image data transfers. Since current scene graphs support hierarchical frus-
tum culling, and the frustum of the viewfinder is a small fraction of the immersive viewing
frustum, we expect a relatively insignificant overhead compared with that of generating the
two stereoscopic images. Our prototype implementation uses the second rendering option,
as it provides higher quality renderings. The same texture map is used for rendering the
viewfinder both from the left and right eye positions.

Moreover, the pointing direction is indicated by drawing a small dot at the viewfinder’s
center (thus at zero parallax condition). The lack of depth cue conflicts in the viewfinder
eliminates the need for a highly contrasted cursor. We also highlighted the boundary of the
viewfinder by drawing a small frame around it, as depicted in Figure 4.4a.

Comparison with previous approaches

Our viewfinder metaphor is related to through-the-lens approaches [114, 52]. The basic idea
behind through-the-lens tools is to provide an additional view of the virtual environment,
which is shown in a dedicated window, to support simultaneous exploration from two different
viewpoints. Our approach differs from through-the-lens techniques proposed so far in several
key points. First, the primary goal of our viewfinder is to provide accurate pointing by
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avoiding depth cue conflicts and other feedback problems in stereo projections. Through-
the-lens tools proposed so far focus on overcoming occlusion problems and bringing objects
within arm reach for virtual hand manipulation. Second, our viewfinder is always attached
to the pointing direction; as a consequence, the viewfinder’s position, depth and orientation
are computed automatically from the pointing direction, requiring no specific setup from
the user. In through-the-lens approaches the window is either fixed with respect to the
virtual environment, fixed in the image plane of the user, or mapped onto a tracked pad
which can be moved independently [114]. Third, our viewfinder shows the scene from the
user’s viewpoint, with a viewing frustum which is a portion of the immersive frustum. This
introduces no complexity on the view and leaves no room for confusion.

Viewfinder extensions

A simple extension of the VF metaphor to facilitate selection of small targets is to scale up
the VF while preserving its fov, when the user holds the selection button for some time period
(e.g. 500ms). Also the image displayed on the viewfinder can be enhanced with any post-
process filter, e.g. highlighting selectable objects or applying through-the-lens approaches.

4.1.3 Evaluation of visual feedback techniques for virtual pointing

In the previous chapter we discussed theoretically the disadvantages of the most common
visual feedback approaches for 3D object selection. In order to corroborate our findings, we
conducted a user study to evaluate experimentally current device-ray mappings and visual
feedback approaches for virtual pointing. Furthermore, we also evaluate the Raycasting from
the Eye and the two proposed visual feedbacks.

One challenge of the experiment design was to cope with the multiple factors influencing
visual feedback, including the origin of the pointing direction, its translational/rotational
control, and the display device. We first conducted some pilots to choose a representative
subset among all possible combinations. We choose the combinations so that pair-wise
comparisons could be made in ceteris paribus condition (see Table 4.1). Regarding RCE, in
addition to the two visual feedback detailed, the hand-to-ray cursor and the view finder, we
also evaluated a 2D cursor. It was introduced for comparison purposes.

Other alternatives like modifying control-display ratio and volumetric tools were not con-
sidered, as they can be applied independently to all the studied techniques (although it is
unclear if they provide similar improvements for all combinations).
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Mnemonic Selection Technique Origin Orientation Visual Feedback

RC Raycasting Hand ~h ray
EH2D Occlusion Selection Eye

−−→
EH 2D Cursor

EH3D Occlusion Selection Eye
−−→
EH 3D Cursor

HCR RayCasting from the eye Eye ~h ray
C2D RayCasting from the eye Eye ~h 2D Cursor
VF RayCasting from the eye Eye ~h ViewFinder

Table 4.1: Evaluated techniques

Design and procedure

Users were presented with an intensive selection task, where the next object to be selected
was clearly highlighted. The virtual environment had one hundred spheres at different
depths (from 1 m to 80 m), thus allowing us to evaluate the techniques on scenes with a
large depth range. The size of the spheres was chosen so that all spheres had approximately
the same screen projection, about 30 × 30 pixels, subtending about 1.5 degrees from the
user’s viewpoint. We did not include large targets as these are easy to select no matter
which visual feedback technique is used. All targets were clearly visible from the user’s
viewpoint to simplify the discovery task. In order to ensure that the difficulty of all trials
remained constant among users, we pre-computed a random sequence of targets. The same
sequence was used in all the trials, each trial consisting in 50 selections.

A repeated-measures within-subjects design was used. The only independent variable was
the selection technique (see Table 4.1). We provided a short (1 min) training session before
each new technique and the order of the trials were randomized.

The dependent measures were selection time and erroneous clicks. According to the theoret-
ical limitations of the hand-rooted techniques and the visual feedback techniques considered,
we derived the following hypotheses about the results of the experiment:

• H1 : Lower mean of selection time for HCR as compared with RC.

• H2 : Lower mean of selection time for C2D as compared with EH2D.

• H3 : Lower mean of selection time for HCR as compared with C2D.

• H4 : Lower mean of selection time for VF as compared with HCR and C2D.

After each trial, users were asked to fill a short questionnaire to rate each technique using
a 7-Likert scale. The questions were if they had experimented double vision, the level of
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difficulty of the selection task, and if they perceived some kind of depth incoherence (depth
cue conflicts).

Apparatus

The experiment was conducted in a 2.5 × 2 rear-projected screen with passive stereo with
1024 × 768 pixel resolution. The input device was a 6-DOF Wand with an IS900 acoustic
tracking system, providing 120 updates/s with 4ms latency. The experiment was driven by
a 3.2GHz Core2Duo PC with a GF8800 GFX card.

Participants

Twelve volunteers, aged from 21 to 35, participated in the experiment; 2 participants had
no experience with VE applications; 8 had some experience and 2 were experienced users.

Results

Figure 4.5 shows the boxplots of the data gathered during the experiment. The one-way
ANOVA of selection time vs. technique showed significant differences among techniques
(p < 0.001;F = 31.25). The following discussion is based on Tukey’s pair-wise tests.

We first focus on the ray origin by comparing RC and HCR. Both techniques share rotational
control and use a virtual ray emanating from the users’ hand as visual feedback, they only
differ in the origin of the selection tool. The Tukey’s test showed that HCR was significantly
faster than RC (p < 0.001, 34% faster), thus confirming H1.

(a) (b)

Figure 4.5: Boxplots of mean selection time per object (a) and mean erroneous clicks per object (b).
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We now consider EH2D and C2D which only differ in the selection tool control: translational
control vs. rotational control. The Tukey’s test showed that C2D was significantly faster
than EH2D (p < 0.001, 40% faster), thus confirming H2. Using the hand position to establish
the pointing direction leads to poor performance and it requires more physical effort from
the user.

Let us now analyze the role of visual feedback on user performance. We start by comparing
EH2D and EH3D. These techniques only differ on the depth of the displayed cursor. Al-
though the Tukey’s test did not found any significant difference, a per-user analysis shows
that all users performed better with EH2D, and EH3D received the lowest score in the ques-
tionnaires. Users complained about binocular fusion and depth cue conflicts when using
EH3D. This confirms our hypothesis that 3D cursors drawn over the object’s surface result
in too many depth conflicts and too frequent parallax changes to be effective for accurate
pointing. We found this limitation early in the pilot experiments and we decided not to
include a 3D cursor to use in combination with the raycasting from the eye.

Finally, we now compare the three visual feedback techniques used in combination with the
Raycasting from the Eye: VF, HCR and C2D. Unexpectedly, all three techniques exhibited a
similar performance and the Tukey’s pairwise test only showed significant differences between
VF and HCR, VF being significantly faster than HCR (p < 0.025, 15% faster). We thus
accept hypothesis H4 and do not accept hypothesis H3.

Regarding error rates (see Figure 4.5b), the one-way ANOVA of error rate vs. technique
showed significant differences among techniques (p < 0.001;F = 6.67). Tukey’s pairwise tests
confirmed that occlusion selection based techniques (EH2D and EH3D) have a significant
higher error rate than the other considered techniques, no other significant differences were
found.

Figure 4.6: Results of the questionnaires.



Chapter 4 - Overcoming visual issues in virtual pointing tasks 101

Discussion

Despite its widespread use, we have shown experimentally that raycasting provides inaccu-
rate feedback about the alignment of the pointing tool with the target, and that it performs
poorly when accurate pointing is required, even in scenes with a low level of occlusion.

In addition, RCE clearly outperformed competing device-ray mappings in terms of selection
performance and error rates, no matter which visual feedback is provided. Moreover, RCE
does not exhibit eye-hand visibility mismatch, which as seen in the previous chapter, signif-
icantly impacts on selection performance. Furthermore, RCE allows for more comfortable
interaction than occlusion selection as the orientation of the ray is controlled through hand
rotations.

Regarding the visual feedback used with RCE, all three approaches showed a similar per-
formance. Surprisingly, we did not expect such a good result for the 2D cursor for accurate
pointing. We found that users succeeded in finding the right position to place the cursor,
even when the left and right projections of the target did not overlap and despite the po-
tential binocular fusion problems we anticipated in the previous chapter. In addition, C2D
was one of the best ranked techniques (see Figure 4.6).

We conducted an informal evaluation to test C2D and VF in an identical setup but in a
worst case scenario. We kept the set of frontmost (1 m away) and backmost (80 m away)
objects and removed the rest. In this situation the VF approach clearly outperformed C2D,
both in terms of selection time, and number of errors. Users immediately complained about
double vision when selecting targets with C2D. Average selection times with VF were similar
in both experiments (1.3 s per object), but C2D mean selection time increased from 1.4 s to
2.1 s. Although this kind of depth disparity is not a common situation, it exposes the C2D
limitations.

In summary, among the visual feedback techniques evaluated, the Viewfinder is the vi-
sual feedback technique more suitable for accurate selection on stereoscopic displays. The
viewfinder does not require any spatial understanding of the environment and it better de-
termines the amount of movement required to aim the target, both in the ballistic and the
corrective phases of the movement. It can be argued that an effect similar to that produced
by the viewfinder metaphor can be achieved by just asking the user to close her dominant
eye during pointing tasks. Our approach provides some notable advantages tough. First, it
has a much smaller impact on the immersive view, keeping stereo vision on the part of the
scene outside the viewfinder. Second, it is insensitive to poor stereo separation and ghosting
effects, still present in monocular vision.
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4.2 Supporting referential awareness in CVEs

Collaborative virtual environments (CVEs) allow users to work together in order to accom-
plish a particular task or, as we are now interested, in the exchange of mutual information
regarding the virtual environment. We distinguish two types of CVEs: co-located and dis-
tributed. In a co-located CVE, users interact in the same VR setup (physical location) while
in distributed CVEs each user can be at a different physical location. A common character-
istic of CVEs is that users are provided with a unique and perspective-correct stereoscopic
image that allows to explore the environment from a first person viewpoint. Thus, for each
user specific visualization modes can be implemented.

Imagine a design review of a car’s engine compartment where two engineers (users) are
discussing the features of a new prototype. A common task is to refer to areas or pieces of
the prototype detailing to others which are their defects and possible improvements. This
task is commonly accomplished by directly pointing to (indication or selection) the feature
(see Figure 4.7a). However in such a cluttered environment occlusion becomes an issue.

In previous chapters we have discussed the eye-hand visibility mismatch and how it can
hinder selection tasks. Now, for referral tasks, there is a similar issue but the mismatch
is related to the users’ viewpoints. In contrast to the mismatch between the eye and the
hand, which is limited, the mismatch between users’ viewpoints can be extreme as users can
navigate freely in the virtual environment.

We observed that during collaborative exploration of complex 3D environments the viewpoint
disparity compromises referential awareness. Features which are not simultaneously visible
for all users cannot be easily referred and can cause misunderstandings (see Figure 4.7b).

(a) (b)

Figure 4.7: Both images illustrate the issue of interpersonal occlusion between two tracked users in a
co-located CVE: an object that is fully visible to one user (a) cannot or can only partially be seen from
other viewpoints (b).
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To solve this problem in reality, people have to walk around the occluding objects to obtain
a suitable viewing position. A common behavior is to move close to the person who is
pointing to in order to obtain a unoccluded view of the specified object (e.g. by looking over
his shoulder). This behavior reduces the viewpoint disparity obtaining a similar view as the
user who is pointing to.

However this behavior has two main issues. First, it discourages users to freely navigate
through the environment, as they have to keep close to each other, and second, it results
in physical proximity between users. Users can bump into each other and, as stated in
proxemics theory [49], it does not comply with social protocols of formal presentations.

To deal with these limitations, we must provide users with mechanisms to improve referential
awareness. For example, users can be provided with augmentations to easily overcome
limitations we face in the real world. As each user in a CVE has its own specialized view,
additional information and augmentations can be displayed only for the users requiring them;
the user who initiates the referral task does not need additional information.

We believe that occlusion management techniques are the better choice. Occlusion man-
agement techniques are valuable tools which help users to better understand the spatial
relationships of complex environments and allow them to see otherwise occluded objects.

In order to choose the more suitable occlusion management technique, we followed the design
space proposed by Elmqvist and Tsigas [36]. They classification considered six primary
dimensions:

• Primary Purpose. It relates to the main purpose of the technique. We might need to
locate an object (discovery), obtain information encoded in the object (access) or obtain
spatial information of the object and its context (relation).

• Disambiguation Strength. Determines the occlusion level the technique is able to handle.
Four scenarios are considered: proximity, intersection, enclosement and containment
(see Figure 4.8).

Figure 4.8: Occlusion in 3D environment can be classified given the objects interactions: (a) Proximity,
(b) Intersection, (c) Enclosement and (d) Containment.
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• Depth Cues. Some techniques alter the environment in a way that depth perception
may be compromised or although we are able to see the occluded targets we cannot
infer their depth. This dimension contains the amount of depth cues that are preserved.

• View Paradigm. Additional views can be used to provide additional information to
the user. The options considered were : single view, double separate views, double
integrated views, multiple integrated views and multiple separate views.

• Interaction Model. It determines the mechanism to trigger the augmentation technique;
the user can actively enable the augmentation or it can be passively triggered. The
interaction model also considers whether a change of the selected objects requires an
off-line process or the changes are displayed in real time (on-line).

• Target Invariances. An enumeration of the properties preserved for objects affected by
the technique: appearance, depth, geometry and location.

Using these six primary dimensions, Elmqvist and Tsigas [36] classified existing occlusion
management techniques into five design patterns: Multiple Views (use two or more separate
views of the scene), Virtual X-Ray (turn occluded objects visible automatically), Tour Plan-
ners (a precomputed camera animation reveals the otherwise occluded geometry), Volumetric
probes (the user can actively alter object properties to manage occlusion) and Projection
Distorters (nonlinear projections integrate two or more views into a single view).

Let us now explore which is the better suited occlusion management for our needs. In terms
of their design space, our requirements are:

• As primary purpose, we aim to improve gestural communication between users by fa-
cilitating the discovery of referred objects. However, access and relation purposes are
also desirable features.

• We require the maximum disambiguation strength available, in order to support occlu-
sion handling for objects that are strongly interacting with other objects in the virtual
environment.

• Depth cues ought to be maintained as far as possible to better support the users’ spatial
perception of the environment.

• Since our primary purpose is to improve interpersonal communication, the notion of
a shared 3D environment must not be destroyed. A single-view paradigm must be
enforced. Furthermore, we argue that target objects ought to be seen embedded in the
shared 3D space to make sense of pointing gestures and to better understand the spatial
layout of the scene.
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• Techniques for handling interpersonal occlusions must follow a passive interaction model.
Although the user who is performing the referral task actively selects the referred ob-
ject, changes in the environment have to be passively perceived by others. In addition,
the results must be computed in real time.

• Regarding target invariances, it is important to preserve the location, the geometry
and the appearance of the objects. Otherwise, users would not obtain the same visual
information as if they were looking at the objects without any augmentation.

Virtual X-Ray fulfills nearly all our requirements better than other techniques and only in
terms of provided depth cues, Multiple Views, Tour Planners and Volumetric Probes may
offer better performance. However, they have severe drawbacks with respect to the other
dimensions in the design space.

Multiple Viewports provides additional non-occluded views which can display the referred
object. However, it is difficult to determine the location of the referred objects in the virtual
environment according to an auxiliary viewport, which is essential for the collaborative
inspection of a 3D scene. In addition, their disambiguation strength is very low.

Tour Planner techniques rely on changing the user viewpoint to gather a non-occluded vi-
sion of selected objects. However, they require off-line computations to determine a valid
unoccluded viewing position and their disambiguation strength is limited to proximity and
intersect.

When using Volumetric Probes users can move occluding objects aside, but this requires
active interaction and a moderate effort to obtain good results. It takes time to manipulate
objects and due to the fact that the layout of the scene is changed, users might lose important
context information regarding the relative placement of objects.

Finally, projection distorters are totally unsuitable as they modify the viewing projection;
this will distort the user’s perception of the virtual environment.

Show-through techniques

To facilitate collaborative inspections of a virtual 3D scene, Virtual X-Ray techniques ensure
for all users that the object referenced by one user is always showing through. We there-
fore suggest using the term “show-through” techniques for this particular application of the
Virtual X-Ray.

Virtual X-Ray techniques can solve visibility issues by removing or rendering transparently
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occluding objects [16, 24, 33, 37]. In contrast to other approaches, they can solve occlu-
sion issues while preserving the layout of the scene as well as the coherence of the virtual
environment which is shared by multiple users.

We implemented two show-through techniques (see Figure 4.9) with different visualization
parameters to perform a user evaluation: Cutaway and Transparency. The implementation
of both show-through techniques is largely similar. First, a volume containing the selected
object and both eyes of the user, is computed. For simplification, we constrained the volume
to the smallest possible cylindrical shape. In our user evaluation, we were only considering
the mutual presentation of simple, sphere-like objects. The axis of the cylinder is defined by
the center of the object and the center between the user’s eyes.

(a) Transparency (b) Cutaway

Figure 4.9: Show-through techniques can improve target discovery by completely or partially removing
the occluding environment.

Once the cutting volume is defined, the fragments falling inside that area can be deter-
mined and their appearance can be transformed accordingly. For the Cutaway approach,
all fragments inside the cutting volume are discarded. In contrast, for the Transparency
approach, alpha values of each fragment are modified according to the distance to the axis
of the cylinder. Occluding objects were only sorted in depth on a per-object basis. For our
test scenario, transparency effects were correct for most viewpoints. In a different scenario,
however, sorting on a per-triangle basis might be required.

The lightweight implementation of the proposed show-through techniques introduced a neg-
ligible impact on rendering performance. The most time-consuming process of our sample
application was the general graphics rendering for two stereoscopic image pairs (one for each
user). The application was running at around 40 fps.
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4.2.1 Show-through techniques evaluation

We designed a two-user pointing task to analyze the usability aspects of the proposed show-
through techniques in a co-located CVE setup. The experimental task was designed to
investigate user performance regarding the identification of indicated targets in a dense 3D
environment and the memorization of their respective locations. Both show-through tech-
niques (Cutaway and Transparency) were compared to a baseline condition (Baseline) in
which users had to obtain adequate viewpoints by walking around to see the otherwise oc-
cluded objects. In addition to these pure performance measures, we studied the impact of
our visualization techniques on the users’ behavior in such a collaborative work setting. We
were interested to check whether users could benefit from the proposed show-through tech-
niques in terms of maintaining more comfortable distances to each other without decreasing
the efficiency of their collaborative interaction.

The experimental task we implemented for our studies refers to a collaborative design review
in the automotive industry, where variations of a design are evaluated by a group of experts.
Showing certain features of the model to colleagues is a frequently occurring subtask in
such collaborative work settings. Co-located CVE systems are a promising technology to
facilitate this as they enable immediate information exchange about features in a shared 3D
environment.

Following the situation of a design review as a reference, we presented the engine compart-
ment of a VW Golf in its original size (see Figure 4.10b) on a multi-view projection screen
(see Figure 4.10a). Our experimental system supported two tracked users that could individ-

(a) (b)

Figure 4.10: (a) Two-user projection-based setup employed on the evaluation. Both users are provided
with correct stereo perspectives. (b) Engine model used for the user study. The black frame represents
the borders of the real screen.
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ually walk around the virtual model to observe it from different viewpoints. The perceived
stereoscopic view was always corresponding to the users’ respective viewing position. Thus,
the model was perceived to remain at a fixed location in the shared environment while users
were walking around it. The 3D model was tilted about 40 degrees in order to provide users
with a good overview, similar to the visual experience in the real world where people look
from above at a car’s engine compartment.

Apparatus

The experiments were conducted on a projection based two-user VR setup (see Figure 4.10a).
The VR system was developed by the Virtual Reality Systems Group at the Bauhaus-
Universität (Weimar, Germany). The system is built on time-multiplexing of individual
views using LC-shutter technology as described in [43]. The users were required to wear
tracked shutter glasses which were custom made double-cell shutter glasses sizing 65 mm in
width and 45 mm in height. Square 80 mm shutters were mounted in front of the projectors.
While single LC-shutter elements provide a contrast ratio ranging from 1000:1 to 5000:1
between the open and the closed state, the contrast ratio achieved was of 25000:1 with their
double-cell approach. As a result, absolutely no crosstalk between the views of both users
was perceptible.

The physical dimensions of the projection screen were 3 m in width and 2 m in height with a
resolution of 1800× 1200 pixels. The tracked workspace, wherein people could walk around
to examine and gather information about the scenery from different angles, covered an area
of approximately 4 by 4 meters. Note that these spatial constraints of the operational
environment also affect the users’ behavior in terms of proxemics.

The visual stimuli were presented at a stereo depth range of ±0.8 m from the projection
screen. The target objects inside the simulated engine compartment were situated in places
which were hidden from most possible viewing positions (e. g. behind the engine block).
Without using show-through techniques, the observer could not directly see them.

Procedure

We assigned different tasks to the two involved users: the experimenter (hereinafter referred
to as the presenter) was pointing to certain objects in the model that had to be identified
and located by a second user, the observer. The role of the presenter was always assumed by
a researcher. For the role of the observer, we invited volunteers to analyze how show-through
techniques would affect their ability to identify, locate and memorize the indicated objects
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and also their behavior in terms of proxemics.

Abstract spherical-like 3D geometries which were placed at 15 predefined positions in the
model served as target objects for presentation and identification. Therefore, all targets were
of the same size. We decided to use abstract target objects that had no semantic relation to
the model in order to minimize the potential bias from different levels of knowledge users may
have about the structure of a car’s engine compartment. Only one target object was shown
at a time to ensure that all experimental conditions were evaluated using the same sequences
of target objects. Two different researchers were alternately running the experiments. We
made sure to fulfill the role of the presenter in compliance with a strictly defined storyboard
to minimize the influence of personality. Additionally, we prevented the presenter to search
for the next target object in line by providing a visual localization aid. The high quality of
the shutter elements we used in our setup effectively prevented these hints from being seen
by the observer.

Correspondingly to the different roles of the presenter and the observer, each trial also
consisted of two phases. During the presentation phase, the presenter was pointing to three
target objects in a row, while always waiting until the observer confirmed that he had located
the respective objects in the scene. In the following retrieval phase, the observer was asked
to prove that he had memorized the three objects and their location by pointing to them
in the same sequence as they were presented. In both show-through conditions, X-Ray
vision facilitated the identification of presented objects for the observer, but only during the
presentation phase. In the following retrieval phase, users had to rely on the information
they gathered in the presentation phase to once again find the three objects in the scene.

During the experiments, different types of data were recorded. Primarily, we logged discovery
time during the presentation phase and the time required for the retrieval of target objects.
The logged discovery time did not include the time required by the presenter to approach
the next target. Instead, we only recored the time from the moment the presenter points to
the next target until the observer confirms that he has seen it. Additionally, we logged the
users’ head positions throughout the experiments. This enabled us to sum up the covered
distance of the participants during the presentation phase as well as to track the distance
both users maintained from each other during the experiment.

Design

Each participant of our study was involved in two successive experiments. First, we compared
the target retrieval performance and the learning progress of user groups that were oper-
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ating with different occlusion management techniques (Baseline, Cutaway, Transparency).
Thereafter, we introduced each user to the two other conditions they had not been exposed
to during the first experiment. Another set of trials was performed with each technique con-
dition in order to analyze user behavior with different techniques and to provide a basis for
the users’ subjective ratings. From now on, we will refer to block each set of trials performed
for each condition.

We expected stronger effects of learning the task than that of techniques. Therefore, tech-
nique was compared between-subjects with repetitive blocks (five subsequent trials) as a
within-subjects variable. Each user group consisted of 8 people. Before the experiment
started, users were given written descriptions of the task including the advice to strive for
the best possible target retrieval performance, and the hint that the sequence of target object
was repeated during each block. We provided a short training session to make sure users
understood the task, the respective occlusion management technique they were assigned to
and also that they could effectively handle the involved interaction techniques (e.g. head
tracking, ray selection). We trained the interaction procedure of our experiment using a
special sequence of six target objects which did not occur during the recorded trials.

The following recorded trials also consisted of the presentation of three subsequent target
objects that had to be found by the observer. Five different trials, with unique object
locations, were performed during one block. The combination resulted in 15 different target
locations inside the engine compartment which were repeated in three subsequent blocks. In
total, 15 trials were performed by each user. Participants were encouraged to take breaks
between blocks to minimize fatigue.

The dependent variables for the first experiment were: the discovery time (time during
which targets were shown by the presenter until the confirmation that the observer localized
them); the retrieval time (duration of the retrieval phase); and the covered distance during
the discovery phase. The independent variables were the occlusion management technique
and block.

We expected users to learn the task sequence rapidly, and thereby successively optimizing the
effectiveness of their operations. We also assumed that they needed to move less when show-
through techniques were applied. We reasoned that this could enhance the discovery phase
by reducing discovery times. However, the reduced movement in the scene’s surroundings
and the unfamiliar visual appearance of objects that show through other geometries can
also have a negative impact on the users’ spatial understanding of the scene and thus affect
retrieval times. From these considerations, we derived the following hypotheses about the
results of the first experiment:



Chapter 4 - Overcoming visual issues in virtual pointing tasks 111

• H1.1 : Decreasing mean of discovery time over successive blocks.

• H1.2 : Decreasing mean of retrieval time over successive blocks.

• H1.3 : Decreasing mean of covered distance over successive blocks.

• H1.4 : Larger mean of covered distance in the Baseline condition as compared to both
show-through techniques.

• H1.5 : Larger mean of discovery times in the Baseline condition as compared to both
of the other techniques.

• H1.6 : Larger mean of retrieval times in both show-through conditions as compared to
the Baseline condition.

During a break of approximately 15 minutes users were asked to provide information about
their age and gender, as well as previous experience with VR-systems. Using a short question-
naire, we checked whether any particular problems were experienced during the experiments.

In a second experiment we wanted to compare the three occlusion management techniques
within subjects. We assumed that after having gained experience during the first experiment,
users would have acquired a robust cognitive model, meaning that they were well trained with
the task procedure. Thus, we estimated expert performance, in that effects of further learning
would be negligible. However, since users were trained with only one of the techniques,
we refrained from comparing task performance within subjects. Instead, we focused on
subjective preference of users and user behavior in terms of proxemics.

We logged the distance between users during the presentation phase of each trial. As in the
first study, the experimenters performed the role of the presenter, making sure to follow a
strict storyboard in order to avoid biasing the distance data.

We conducted three additional blocks in that second experiment conforming to those from
the first one - aside from this, users were now testing other occlusion management techniques
in each block. The order of the techniques was counter balanced among the 24 test subjects
to avoid ordering effects.

After having completed three blocks with different technique conditions, we asked users to
score techniques on a 5 point Likert-scale regarding spatial understanding (how techniques
support gathering information about the position of target objects in the scene), collabo-
ration (how techniques support interpersonal communication about the scene) and comfort
(the perceived comfort while interacting in presence of different occlusion management tech-
niques).
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Without the use of visual aids, close proximity to the presenter is generally required in or-
der to see an indicated object. Our proposed show-through techniques, instead, enable to
observe indicated objects in the scene from every viewpoint that the operational environ-
ment permits. Following the findings of Hall [49], we assumed that users would tend to
remain in the close phase of social distance rather than in closer proximity. The size of the
operational environment, however, hardly allowed users to interact with the virtual scene,
while remaining in social distance to each other. Nevertheless, we expected much shorter
average distances between users in the Baseline condition as compared to both show-through
techniques. Consequently, we estimated a user preference for show-through techniques with
respect to comfort. Regarding spatial understanding we felt that the localization of objects in
the scene was cognitively more difficult in cases in which they are only perceived as showing-
through other geometries than if an appropriate viewpoint has to be obtained by walking
around the virtual scene. We therefore expected the best scores for the Baseline condition
in the domain of spatial understanding. On the other hand, since show-through techniques
allow users to see indicated objects from other perspectives than that of the presenter, the
pure amount of information that can be gathered as a group of users is considerably in-
creased. We assumed that users would consider this advantage when scoring techniques in
the domain of collaboration. In summary, we noted the following hypotheses regarding the
results of the second experiment:

• H2.1 : In average, larger distances will be kept between users in both show-through
techniques as compared to the Baseline condition.

• H2.2 : Strong user preference for both show-through techniques in the domain of com-
fort.

• H2.3 : Lower subjective ratings for both s how-through techniques as compared to the
Baseline condition in the domain of spatial understanding.

• H2.4 : Stronger user preference for both show-through techniques in the domain of
collaboration.

Participants

Twenty-four paid users, aged between 19 and 31, participated in the study. All of them were
students of varying disciplines ranging from engineering to computer science and to design
and humanities. Seventeen participants had prior experience with VR applications while
7 did not. We organized the experiments as a competition so that the three participants
with the shortest retrieval times of targets, won a ticket to the movies. Note that the
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differences regarding social hierarchies between presenter (research assistant) and participant
(students), were not that distinctive as they certainly are within formal presentations held
for an executive committee.

First experiment results

Performance data from the first experiment was collapsed and entered into a one-factor
(technique) between subjects ANOVA considering block as a within-subjects variable. For
all post-hoc comparisons, Bonferroni adjustment for α was applied.

Regarding discovery time (see Figure 4.11a), we found a significant effect of block (p <

0.001;F = 29.36). Post-hoc tests revealed that all differences between the successive three
blocks were significant (all p < 0.05). This confirms H1.1, stating that learning would have
a significant effect on the time required to find target objects. No significant differences
could be found for technique. Thus, we had to reject H1.5. In contradiction to that, we
were expecting longer confirmation times in the Baseline condition. During the experiment,
we observed users developing appropriate strategies for efficient interaction under different
technique conditions. In the Baseline condition, users generally followed the presenter to
ensure a similar point of view, whereas they rarely changed their position when show-trough
techniques were enabled. Therefore, users were able to localize indicated target objects in a
comparable time for all techniques.

With respect to the covered distance (see Figure 4.11b), we found significant effects for
block (p < 0.001;F = 18.15). Post-hoc comparisons revealed significant differences between
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Figure 4.11: Boxplots of discovery time (a) and the corresponding covered distance (b) during the first
experiment. We can clearly see the learning effect over blocks, and also how users were required to move
more if they were not provided with show-through techniques.
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all three block conditions (all p < 0.05). This confirms H1.3, stating that learning the
task would allow users to minimize the required physical action. Additionally, significant
effects were found for technique ( p < 0.05;F = 9.04). Post-hoc comparisons revealed
that in the Baseline condition users moved significantly more than in both other conditions
(p < 0.001). This result confirms H1.4. Without making use of show-through techniques,
people are required to adapt their viewing position more often. Between both show-through
techniques, we found no significant differences.

Retrieval time was only affected by block ( p < 0.001;F = 43.92). Therefore, we can confirm
H1.2, stating that learning the task would allow users to improve upon the rapidity of target
retrieval. No significant effect of technique on retrieval time was found. We thus reject H1.6.
We were assuming that the time required to retrieve target objects is strongly affected by
the spatial knowledge the users were able to gather beforehand. As we cannot find an effect
of technique on retrieval times, we argue that the three tested occlusion handling techniques
can comparably well support the users’ spatial perception of objects within the 3D scene.

Second experiment results

In the second experiment we analyzed the users mutual distance during the presentation
phase. We compared the techniques between subjects because we expected the training
during the first experiment to have an important impact at the users interaction. As such
we were only considering data from these users, that were well trained with the respective
technique.

Since the length of trials varied, we first normalized the distribution of distances to obtain
the relative frequency of distance ranges during the experiments. Figure 4.12 shows a plot of
the normalized frequencies at which distances occurred during different technique conditions.
For all techniques this distribution fits accurately to a normal distribution (Anderson-Darling
normality test: p < 0.005).

It is apparent in these graphs that show-through techniques allowed users to maintain larger
distances. In the Baseline condition, instead, users were crowding each other, frequently
ending up at intimate distances, sometimes even bumping into each other. Note that the
position of the user was taken from the center between their eyes. So, at distances ∼ 40cm
their shoulders were touching. Distance values under ∼ 20cm would mean that their heads
were colliding.

We observe that in all conditions users kept about half of the time in the far phase of
the personal distance. With show-through techniques applied, the other half of the time
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Figure 4.12: The distance kept between users in relation to the applied occlusion-handling technique.
Dashed outlines represents the histogram of logged distances, shaded areas represent the “distances in
man” as defined by E.T.Hall [49]. 0..15cm intimate distance (close phase) 14..46cm intimate dis-
tance (far phase) 46..76cm personal distance (close phase), 76..120cm personal distance (far phase)
and 120..210cm social distance (close phase).

was spent in the close phase of the social distance. According to Hall this is generally the
preferred distance in collaborative work settings as simulated in our study. Thus, we assume,
that distances between users would still be larger, if not affected by the following limitations
of our display setup:

• Our working space was only about 3 meter wide, which clearly limited the maximum
distance among users.

• The eye-wear used in the experiment consisted of relatively large shutter glasses, but
still they limited the users’ field of view. Particularly, peripheral vision of users was
affected and as such that the subconscious attention to changes in the surrounding
environment, e.g., colleagues approaching from beside, was impaired.

• There was barely any social hierarchy present between the presenter (research assistant)
and the observer (students). In a real world setting this would be different. Recall that
the more important somebody is, the larger the distances kept to others generally are.

However, in absence of show-through techniques users kept more time in the close phase
of the personal distance and, what is probably even more important, they could not avoid
intruding frequently into the other’s intimate distance. Table 4.2 shows the exact values.

For a statistical evaluation, we collapsed the data and entered it into a one-factor (tech-
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Zone Phase Baseline Transparency Cutaway

Intimate
Close 0.16% 0.00% 0.00%
Far 5.10% 0.05% 0.18%

Personal
Close 28.46% 2.76% 5.05%
Far 57.59% 49.59% 53.09%

Social Close 8.69% 47.60% 41.68%

Table 4.2: Average time spent at distinct zones of interpersonal distances when operating with each
show-through technique.

nique) between subjects ANOVA. We found a significant effect of technique on distance
(F = 21.01, p < 0.001). This effect stems again only from differences between the Base-
line condition and both show-through techniques. Between the latter two, no significant
differences could be found.

We expect that if users would have had more space available, they would also have kept
larger distances between the presenter and the observer, while increasing the size of the
operational environment would not have had much effect on the distance observations in the
Baseline condition.

Survey

Subjective ratings (see Figure 4.13) revealed a significant user preference for the Cutaway and
Transparency conditions in terms of comfort. The Friedman Rank Test showed significant
differences among conditions (p < 0.001) with Baseline as the bottom line, which confirms
H2.2. Show-through techniques allow users to keep more comfortable distances between each
other. Also, less viewpoint motion is required since even otherwise occluded geometry can
be seen. In the domain of spatial understanding, we could not find significant differences
among techniques. Thus, we had to reject H2.3. It appears as if users were very confident
about their ability to gather spatial knowledge in the virtual environment independently
from the used occlusion handling technique.

In the domain of collaboration support we have found significant differences among the
subjective ratings of techniques (p < 0.001). Again, the Baseline condition received the
lowest score from users which confirms H2.4. Though our experimental task did not require
much collaborative interaction but rather only fundamental information exchange, users
seemed to predict further benefits for collaborative interaction from show-through techniques.
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Figure 4.13: Subjective comparison of the three conditions, in terms of collaboration, comfort and
spatial understanding of the model.

Discussion

Overall, the results of the first experiment indicate that all three conditions allow for com-
parable user performance, not only in terms of fundamental task efficiency, but also with
respect to supporting the users’ learning progress. Regarding the required distance covered
to localize indicated targets, we found significant benefits for both show-through techniques.

By decreasing referential ambiguity, show-through techniques were particularly beneficial for
the presenter as he or she did not need to worry if an object is occluded from the observer’s
point of view. Showing objects is not always straightforward. One needs to consider the
viewing position of the observers. In cluttered 3D environments we experience an important
difference between pointing or actually showing something. Pointing does not necessarily
mean that the observer is seeing the indicated feature. Instead, pointing to an object often
implies for colleagues to move around in order to arrive at an appropriate viewing position.
Showing, on the other hand, often involves the effort of moving something explicitly into the
field of view of others.

In the second experiment, we have observed how using show-though techniques reduced the
number of cases in which users needed to get very close or even bump into each other. Our
findings also showed that they can maintain a socially convenient distance for most of the
time while moving much less than without applying these techniques.

In our experiments, we involved only two users with distinct roles; the presenter and the
observer. However, in real life these roles change and users are taking turns at showing
and observing, which needs to be supported appropriately. Furthermore, with show-through
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techniques, the observer sees a different perspective of the object being pointed to than the
presenter, which can prove to be a limitation in certain situations. Often, for example, more
than two people are involved in a collaborative discussion of a design scenario. The questions
are if our techniques are similarly effective in such cases, how do they scale, and how do
they handle situations wherein more than one person is pointing. One issue already became
apparent: the size of the display needs to be appropriate with regards to the number of users
involved. A three-meter wide display allows at most two users to maintain a comfortable
distance to each other.



Chapter 5

Applying Fitts’ Law to enhance 3D
object selection

The selection of small and distant objects has been recognized as one of the major limitations
of raycasting, especially when a 6-DOF sensor is used to control the selection ray. The
acquisition of small targets require a high level of angular accuracy, which is difficult to
achieve due to hand trembling and tracking errors. In this chapter we explore whether Fitts’
law principles are able to enhance selection performance in these situations.

Fitts’ law asserts that the mean selection time MT to acquire a target of size W which lies
at a distance A is governed by the relationship MT = a+ b log2(A/W + 1); the logarithmic
term is referred to as the index of difficulty of the task. Considering its formulation, three
possible approaches can be considered to reduce the index of difficulty: reduce the distance A
towards the target, increase the size W of the target, or a combination of both [4]. However,
it is unclear which is the best way to optimize a task as Fitts’ Law does not provide any
model about how people perform acquisition tasks. For example, doubling the size of the
target and halving the distance towards the target result in the same index of difficulty, but
is unclear which one is the best choice.

The human movement model which better accounts for Fitts’ Law is the optimized initial
impulse model proposed by Meyer et al. in [81]. It states that acquisition tasks can be
subdivided into a two-step movement phases: ballistic and corrective. While ballistic move-
ments are fast movements which covers most of the distance A towards the target, corrective
movements are precise movements intended to correct the deviation towards the target in-
troduced by the ballistic movement. In addition, MacKenzie et al. in [73] concluded that
velocity profiles of acquisition movements depend on both W and A. While A determines
the maximum movement speed, W determines the movement deceleration and the corrective
movements.
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In summary, techniques attempting to improve pointing performance by decreasing A should
concentrate on the initial large movement (ballistic phase) that covers most of the distance
towards the target. On the other hand, techniques that attempt to increase W should
focus on the final corrective phase. The effect of changes on W occurring after the ballistic
movement has been initiated will be more apparent in the final corrective phase, when the
user is trying to home in on the target under closed-loop feedback control [4].

The application of these principles to human computer interaction has led to a number
of successful pointing facilitation techniques to improve pointing performance for WIMP
interfaces [4]. However, less effort have been made to apply them to 3D object selection.

Current pointing facilitation techniques for 3D object selection are mainly based on increasing
the size of the selection tool (increase W ), techniques which statically increase the size
of targets in control space, such as the sticky ray [112], and techniques which adapt the
control-display ratio taking into account users’ actions (increase W and decrease A), as in
PRISM [41].

Approaches focusing on decreasing the amplitude of the movement A are limited to GUI
elements when potential targets are known a priori. In contrast, increasing dynamically the
size of objects, although it has been widely studied in 2D graphical user interfaces it has not
been applied to 3D object selection.

In the 2D HCI literature there are two main expanding targets approaches [79]. The first
approach relies on increasing the motor and the visual space of the GUI element the user
is pointing to (see Figure 5.1a). This is accomplished by determining an activation area
around each widget, the activation area defines the new value of W for the widget. When
the cursor enters into an activation area, the corresponding widget is expanded to match the
activation area and vice-versa.

(a) (b) (c) (d)

Figure 5.1: Alternatives to increase the motor and/or the visual space for 2D mouse based interac-
tion.(a) Increase the motor and the visual space. (b,c,d) Increase only the visual space. Image based on
Cockburn et al. [23]
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However, this approach can only be applied if there is no overlap between activation areas. If
the cursor enters into two activation areas at the same time it is not clear which GUI element
has to be expanded. Moreover, the expansion of one widget might occlude neighboring
widgets if not handled properly.

The second approach relies only on increasing the visual space (see Figures 5.1b-5.1d). In
contrast to the previous approach, it does not alter the index of difficulty of the task, as W is
computed in motor space, and the visual feedback provided, in addition to scale the widget
the cursor is pointing to, also scales neighboring widgets. This visual feedback misleads users
and makes them believe that the motor space of the widget is scaled.

The evaluation of these expanding target techniques by Cockburn and Brock in [23], showed
that they effectively provide an improvement over standard moused-based interactions. How-
ever, as expected, improvements were more apparent for targets with greater IDs. Interest-
ingly, increasing only the visual space also results in reduced selection time. Authors stated
that the increase of performance was due to the additional visual feedback provided.

In this chapter we explore how increasing dynamically the size of objects for 3D selection
tasks affects selection performance and error rates. However, it turns out that the extension
of 2D expanding targets techniques to 3D scenes, is not a trivial task:

• It requires a proper handling of the occlusion among potential targets. If an object is
expanded, it can potentially occlude neighboring targets which were visible before the
expansion. Unlike the 2D counterpart, occlusion among 3D objects is view-dependent
and is a global problem, meaning that two objects arbitrarily far away in 3D can occlude
each other when the user’s viewpoint is aligned with them.

• Occlusion handling is especially difficult in the absence of a regular layout or with
objects appearing at different scale levels. Unlike GUI elements, objects in a 3D scene
exhibit no regular arrangement nor similar scale levels.

• To ensure the compatibility with VR display systems, correct parallax values on the
projected stereo images are required. This means that standard techniques based on
2D image distortion cannot be used, as they completely disrupt parallax values.

We propose two orthogonal approaches: the Dynamic Scalling and the Forced Dissoclusion.
The discussion of both techniques considers the use of classic raycasting selection, although
both can be used in combination with other virtual pointing techniques.
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5.1 Dynamic Scaling

In order to increase the effective size of potential targets, objects near the selection ray
can be dynamically scaled, thus increasing control and visual space. However, as noticed
before, when an object is scaled it can potentially occlude neighboring objects, thus requiring
some mechanism to guarantee that originally-visible objects can still be selected after the
expansion. This condition must be enforced at least in the vicinity of the ray.

Although all object transformations are applied in 3D space, potential overlaps among objects
must be analyzed in 2D by considering their screen projection. Potential overlaps from a
given viewpoint can be encoded in a graph G (see Figure 5.2a) where nodes represent objects.
There is a link joining to nodes A and B if the screen projection of object represented by
A can overlap with the object represented by B after a transformation. Although, the
graph could have O(n2) links we have observed a linear behavior in all the tested scenes.
A conservative way for computing G is to consider the screen projection of the object’s
bounding spheres.

The graph G is obviously view-dependent and must be recomputed every time the viewpoint
moves far apart. Since the viewpoint can be considered to be roughly stationary during
selection, G must be recomputed only when the viewpoint stabilizes, indicating the potential
start of a pointing act.

The dynamic scaling algorithm proceeds as follows. First, The focus object (the object
intersected by the selection ray will be referred as the focus) is scaled with respect to its
center. As we have considered only raycasting selection, we assume that a usable size for the
focus object (in terms of the solid angle subtended from the viewpoint) has been decided

(a) (b)

Figure 5.2: (a) A molecule model and its view-dependent graph. (b) The Focus object is scaled with
respect to its center.
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considering the characteristics of the input device and the user preferences. The solid angle
can be dynamically converted into a number of pixels Π considering the screen resolution
and the current viewpoint. The scale factor for the focus can be computed with Equation 5.1
where Pi is the number of pixels in the screen projection of the (unexpanded) focus. The
computed s value is used to scale the focus in 3D space with respect to its center (see Figure
5.2b).

sf = max(1, 2

√
Π
Pi

) (5.1)

Once computed the scale factor for the focus object, we compute for the neighboring objects
a transformation (scale and translation) which ensures that they are still selectable. This
transformation is encoded as (s, t) where s is the scaling factor with respect to the object’s
center, and t is a translation vector. These values can be computed by a local breadth first
traversal of G starting from the focus object. The traversal can be restricted to a maximum
depth to limit its effect to the objects in the vicinity of the ray.

For each visited object A, we search the graph for the neighboring object B which max-
imizes the overlap with A (the search is limited to already visited objects for which the
transformation has been already computed). If the overlap is below a certain threshold, the
transformation (sa, ta) for object A is left unmodified. Above this threshold, the transfor-
mation for A can be computed as depicted in Figure 5.3. Let ra and rb be the radius of the
bounding circles of the screen projection of A and B, as they appear in the original, untrans-
formed scene. After scaling B by sb, the radius of B is incremented by ∆rb = rb(sb − 1). It
seems reasonable to compute the scale factor for A with the constraint ∆ra = ∆rb. This can
be accomplished by letting sa = (∆rb/ra) + 1. In our experiments we used this approach for
computing sa in combination with a linear attenuation based on the distance to the focus
object. The translation vector ta can be computed as t1 + t2, where t1 = tb simply propa-
gates to object A the translation applied to object B, and t2 is computed so that the screen
projection of object A is moved apart from B while preserving their relative overlap in the

A
B

sb,tb sa t2t1

Figure 5.3: Propagation of transformations for Dynamic Scaling. The transformation (sb, tb) applied
to object B is used to compute the transformation (sa, ta) for object A. We apply a second transformation
t2 to preserve the original overlap between A and B.
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original, untransformed scene. The direction of t2 is defined by the line joining the centers
of their screen projections. The computation of t2 can be adjusted taking into account the
maximum overlap allowed, as shown in Figure 5.4. In the experiments we allowed for a 50%
of overlap.

(a) No overlap (b) ≈ 25% overlap (c) ≈ 50% overlap

Figure 5.4: Different overlaps can be considered when propagating transformations.

In order to avoid abrupt changes, these transformations should be applied gradually. Every
time a focus change occurs, the transformations for all objects are computed and they are
smoothly interpolated across several frames. If another focus change occurs while the ani-
mation is still running, the new transformation values are computed from the interpolated
values at the time of the event.

Technique overhead

Performance overhead is negligible with the only exception of the graph computation, which
was nevertheless computed in less than 5 ms for moderately-sized scenes. Since this graph
needs to be recomputed only when the viewpoint changes significantly, the impact on the
frame rate can be neglected.

5.2 Forced Dissoclusion

An orthogonal approach to increase W is to maximize the number of selectable pixels of
the focus object, by forcing the object to appear completely unoccluded. This can be easily
accomplished by a proper use of OpenGL’s depth range functionality (see Figure 5.5).

So far, when the selection ray intersected several objects, we considered only the first inter-
section. Now we must guarantee that the focus object will remain selected until the ray leaves
it, the ray might intersect other closer objects hidden due to the focus object. This situation
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(a) (b)

Figure 5.5: (a) Raycasting selection. (b) Raycasting selection where the focus object is shown completely
unoccluded.

is depicted in Figure 5.5b, where the intersection with the (hidden) envelope must be ignored
until the ray leaves the selected object. This selection behavior is also straightforward using
OpenGL’s selection buffer with different depth ranges.

We conducted a pilot study to get a first evaluation of forced dissoclusion. Unexpectedly,
most users reported an erratic behavior of the ray when interacting with densely-occluded
scenes. We discovered that the reason for this behavior was the eye-hand visibility mismatch.
This visibility mismatch between the user’s hand and the user’s eye occurs whenever the ray
is controlled by the hand (see Section 3.1.2 for more details). However, these effects are much
more apparent when forced disocclusion is enabled. This situation is depicted in Figure 5.6
and results in a completely counterintuitive behavior.

(a) (b) (c)

Figure 5.6: Starting from situation (a) one might thought that if the user moves the ray upwards it
would result in the selection of object 3 (b), but, the selected object is object 2 (c). In situation (a) the
ray is intersecting first the object number 2, but due to Force Disocclusion the object 1 is still in focus.
When the ray no longer intersects object 1, the intersection with object 2 is no longer ignored, and object
2 is selected. Furthermore, the ray does not even intersect object 3, it is only an illusion due to depth
sorting.
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(a) (b)

Figure 5.7: Intersection algorithm for Forced Disocclusion. The ray is modified to match the expected
intersection point from the users point of view.

This issue can be ameliorated by further adapting the ray-scene intersection. First we
compute the intersection of the current ray with the scene. If the ray has left the object
that was selected in the previous frame, we proceed as follows. Let Pold be the closest point
in the current selection ray to the last frame intersection point with the focus object. Since
we are forcing disocclusion, Pold is not guaranteed to be the closest intersection, as shown
in Figure 5.7. We compute a second ray defined by joining the user’s eye position with Pold.
The closest intersection Pnew of this second ray with the scene, indicates the next selected
object. We introduce a slight correction in the orientation of the ray so that it intersects
Pnew.

This correction means that we create a subtle mismatch between the orientation of the input
device and the ray orientation. The resulting offset is similar to the offset accumulated by
techniques adjusting CD gain according to the speed of movement [41]. The orientation
disparity occurs in the plane defined by the ray and the user’s eye, and thus it is hardly
visible from the user’s viewpoint. The offset is accumulated until a fast movement of the
user’s hand is detected, we considered a threshold of 30 deg/s.

This behavior though does not appears if an eye-rooted technique is used.

5.3 Evaluation of expanding targets techniques

We conducted an experiment to evaluate how both expanding target techniques behave in
combination with raycasting selection. Since the effort to select small and partially oc-
cluded objects in the default raycasting implementation is governed by the final corrective
movements, in the best case scenario one could expect Dynamic Scaling (DS) and Forced
Disocclusion (FD) to have a positive impact in selection performance.
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In practice, however, this may not be the case. On the one hand, the movement of neigh-
boring targets to avoid occlusion with expanded targets could be potentially distracting to
the users and negate the benefits of DS. On the other hand, by forcing the focus object to
appear unoccluded, it might occlude neighboring objects and result in poor performance.
The main goal of our experiments is therefore to evaluate potential advantages of DS and
FD in selection time, error rates, user discomfort and user confidence, and in scenes with
multiple targets at varying densities.

To evaluate both techniques, we have designed a user evaluation where users are presented
with an selection intensive tasks in three virtual environments. The environments have
different object density to explore how the proposed pointing facilitation techniques behave:
(a) Evaluate the effects of expanding targets in a 3D scene with low target density (see
Figure 5.8a), (b) explore how behave in a representative of a scenario with multiple targets
at close proximity (see Figure 5.8b) and (c) study the effects of DS and FD on a worst-case
scenario with multiple potential targets with a high degree of overlap (see Figure 5.8c).

(a) Telephone (b) Molecule (c) Thorax

Figure 5.8: Virtual environments employed in the evaluation of Forced Disocclusion and Dynamic
Scaling.

Design and procedure

A repeated-measures, within-subjects design was used. The independent variables were
DS (enabled, disabled), and FD (enabled, disabled). Since all targets appeared already
unoccluded in the telephone environment, only DS was considered as a factor.

The dependent measures were total selection time, homing time, error rate and focus changes.
For homing time we consider the time from the first intersection of the ray with the target
until the selection is achieved. The focus changes were the number of times the target object
changed its selection status prior to confirming the selection.
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For each combination, the task was to select a sequence of objects, where the next object to
be selected was clearly highlighted. The session was divided into four blocks, one for each
combination of techniques (DS x FD). The order was randomized for each user. The virtual
environments were always presented in increased order of density, first the telephone, then
the molecule and finally the thorax.

Before each session users were provided with a short training session which required them to
complete practice trials. Each participant performed the experiment in one session lasting
approximately 25 minutes and were requested to complete the selection task as accurate as
possible.

Additional feedback was provided by highlighting the object intersected by the selection ray,
and acoustic feedback was also provided by triggering a different sound every time users hit
or missed a target.

Apparatus

The experiments were conducted on a four-sided CAVE with active-stereo projectors at
1280 × 1280 resolution. The input device was a 6-DOF Ascension Wanda and a tracking
system with 2 receivers providing 60 updates/s with 4 ms latency. At the user position
(90 cm from the EM emitter), position and orientation RMS errors were below 0.5 mm and
0.06 degrees, respectively. The experiment was driven by a cluster of 2.66GHz QuadCore
PCs with GF8800 GTX cards.

Participants

Sixteen volunteers (4 female, 12 male), aged from 24 to 41, participated in the experiment.
Most participants (9) had no experience with VE applications; 5 had some experience and
2 were experienced users.

Results

Let us first discuss the results obtained for the first environment (telephone). The one-way
ANOVA showed a significant effect for DS in error rate (p < 0.001;F = 15, 50), homing
time (p < 0.05;F = 4.37), and focus changes (p < 0.001;F = 26, 33). In all these measures
users performed significantly better with DS enabled. This result was expected as in the
telephone model potential targets are relatively far apart and benefits of enabling DS on
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accuracy are more apparent. However for the total selection time no significant differences
were found. One possible explanation is that users wait until the expanding animation is
finished to confirm the selection.

For the second environment (molecule), the two-way ANOVA showed a significant effect for
DS in error rate (p < 0.01;F = 7.28) and focus changes (p < 0.01;F = 7.94). Again users
performed significantly better with DS enabled. No significant differences were found in
terms of selection time and homing time for DS and FD. This suggests that DS benefits on
accuracy also apply to scenes with potential targets located in close proximity. The lack of
a significant effect for FD was also expected considering the relatively low level of occlusion
between targets.
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Figure 5.9: Boxplots of the number of clicks (a), homming time (b), clicks (c) and focus changes (d).

Regarding the last environment (thorax), the two-way ANOVA showed a significant negative
effect for DS in selection time (p < 0.001;F = 17.93), and homing time (p < 0.01;F = 7.11),
whereas we found no significant effect for DS in error rate (p > 0.3). Conversely, a positive
effect was found for FD in error rate (p < 0.05;F = 4.65) and focus changes (p < 0.001;F =
26.24). No significant effect was found for the DSxFD.
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Survey

After each block participants were requested to rate the easiness of the selection, the con-
fidence on hitting the right target immediately before pressing the button, and the level of
physical effort, using a 7-point Likert scale. We applied the Friedman test to rank techniques
for each question. The test only showed significant differences in easiness and confidence.
Users ranked the selection tasks as significantly easier when DS is enabled (p < 0.05), fol-
lowed by FD, DS+FD and RC.

Concerning the confidence on hitting the target, the Friedman test indicated a significant
difference (p < 0.01), ranking DS+FD in the first place, followed by DS, FD and finally RC.
This seems to confirm that, since the selection of difficult targets is governed by the final
corrective phase, dynamic scaling is perceived by the user as a positive facilitation technique.

5.4 Discussion

The results of DS for the thorax model were worse than expected. An analysis on a per-
object basis revealed that two vertebrae were particularly difficult to select with DS enabled.
We discovered that the common point on these two objects was that, when expanded, their
through hole was visible from the user’s hand but not from the user’s eye; a clear example
of eye-hand visibility mismatch.

This situation is depicted in Figure 5.10. Our best explanation for the poor behavior of DS
with these two objects is that the following sequence of events was repeated multiple times
until the selection could be confirmed by the user:

1. The target was intersected by the ray, thus triggering its expansion.

2. The expansion caused the through object to be exposed, potentially causing the selection
ray to go through the hole and thus missing the object.

3. Once the object lost the focus, the object smoothly returned to its original size.

We observed that this loop was repeated several times for both objects. The fact the hole
was not visible for the eye was another major factor that came into play to make selection
more difficult. This behavior seems to be confirmed by the abnormally high number of focus
changes. Again this is another example of how eye-hand visibility mismatch can hinder
selection tasks.
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(a) (b)

Figure 5.10: Difference between the scene as seen from: (a) the user’s viewpoint and the user’s hand
viewpoint (b). Note that the hole is only visible from the hand position

Should time performance be the primary goal, the two presented embodiments do not provide
a significant advantage. As with most of Fitts’ based techniques focusing on increase the
size of the targets, time improvements are more apparent in situations where targets are
isolated. When targets are more closely packed together, the benefit of these techniques
tend to degrade, and can even be detrimental to selection time.

This does not mean though, that 3D expanding targets do not offer some advantages. In
the context of real usage in a VR application, the subjective impressions of an interaction
technique can play a much larger role than speed in controlled experiments. The inability to
control accurately the selection ray may prove to be overly annoying to the user and thus be
a source of dissatisfaction. As observed in the survey, users perceived the task easier when
dynamic scaling was enabled and both approaches allowed for lower error rates.

By focusing on the final movement phase, the proposed techniques help the user to keep the
selection tool over the intended object and confirm the selection with more certainty, due to
increased motor space. In addition, the enlargement in visual space also facilitates the visual
recognition of the object, an important aspect which is lacking in techniques manipulating
the CD ratio.

On the other hand, concave objects and objects with through holes pose a problem with
Dynamic Scaling, as the ray might no longer intersect the object after the expansion. An
improvement will rely on modifying the intersection test to avoid such a distracting effect.
Also, is still unclear how the Forced Disocclusion affects depth perception, it may be inter-
esting to evaluate the potential conflict between occlusion and binocular depth cues.





Chapter 6

Interacting with 2D GUIs embedded
in VEs

Application control is one of the fundamental tasks a Virtual Reality application must en-
sure. It refers to the user task of issuing commands, requesting the system to accomplish
a particular function or changing its internal state [12]. Given its flexibility and its ease of
use, WIMP user interfaces are the facto standard for PC desktop based interaction.

By providing mechanisms to efficiently deploy and interact with 2D graphical user interfaces
in virtual environments, we can provide increased flexibility and functionality to VR appli-
cations. However, the usage of 2D graphical user interfaces in virtual environments present
two main issues.

First, existing GUI toolkits for VEs are still too simple; they allow only for a limited number
of GUI components and often lack visual authoring tools. In contrast, existing GUI toolkits
for 2D desktop environments are mature, include powerful authoring tools, have a wide range
of widgets and are actively maintained.

Second, efficient selection and manipulation of 2D GUI elements (widgets) are required. A
common requirement for graphical user interfaces is that they have to cover a relatively
small field of the user’s viewport to limit the occluded content. As the GUI is placed in 3D
space, it can be placed away from the user or downscaled. Nevertheless, in both cases, it will
require the user to select and manipulate small widgets, potentially decreasing performance,
increasing error rates and reducing comfort.

In this chapter, we address both issues by presenting a new approach for fast development
of application-control graphical user interfaces in virtual environments and two orthogonal
approaches to improve performance and comfort when interacting with complex GUIs.
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6.1 A cost-effective approach for embedding 2D GUIs
in virtual environments

Rather than providing a new API for defining and managing the user interface components,
we aim at extending current 2D toolkits so that their full range of widgets can be displayed
and manipulated either as 2D shapes on the desktop or as textured 3D objects within the
virtual world. The proposed approach allows 3D GUI developers to take advantage of the
increasing number of components, layout managers and graphical design tools provided by
2D GUI toolkits. Resulting programs can run on platforms ranging from fully immersive
systems to generic desktop workstations with little or no modification.

The basic components of the system are depicted in Figure 6.1. The host toolkit is a 2D GUI
extensible toolkit such as Qt [26], whose widgets are accommodated to VE applications by
the extended toolkit. A key feature of our approach is that the additional features are provided
by only subclassing the host toolkit. The first consequence is that existing applications with
2D GUIs already designed with the host toolkit can be adapted to a VE environment with
minimum effort and all the application’s source code for GUI creation and behavior remain
unmodified.

We now introduce some notation that will be used through-out the rest of the section.
The word widget is used to refer to user interface objects such as windows, buttons and
sliders that are used as the basic constituents of GUIs. A widget receives mouse, keyboard
and other events from the environment, and paints a representation of itself on the output
device. Widgets are arranged into a hierarchical structure. A widget that is not embedded
in a parent widget is called a top-level widget. Usually, top-level widgets are windows with
decoration (a frame and a title bar). Non-top-level widgets are child widgets. We also

VE Application

Window Systems
(X-Window, MS Windows, Mac OS X)

Extended Toolkit

Host Toolkit
(e.g. Qt)

3D Graphics
(OpenGL, DirectX)

Device I/O System
(VRPN)

Figure 6.1: System overview
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distinguish between widget objects provided by the host toolkit (called native widgets) and
the objects that represent widgets as texture-mapped rectangles in 3D space (called virtual
widgets).

Events of current 2D GUI toolkits can be roughly classified into two categories: application
events, user events and synthetic events. Application events refer to GUI-related high-level
events such as show, hide, close, resize and paint. On the other hand, user events are
produced by simple user actions through input devices. According to the originating source,
we also distinguish between native events originating from the window system or the host
toolkit, and synthetic events initiated by the extension classes. For example, when the user
presses a button on a 3D wand with the aim of selecting a menu item, a user event is created
and then translated into a synthetic event (a mouse press event in this case) that is send to
the native widget representing the menu item.

6.1.1 System components

The core of the extension toolkit consists on the components depicted in Figure 6.2. The
main responsibilities of each component are described below.

+start()
+stop()
+drawGUI()
+setMatrix()

Applicacion 3D

+eventFilter()

Window Listener

+createWindow()
+destroyWindow()
+updateTextures()
+drawGUI()

Virtual Window Manager

+keyPress()
+keyRelease()

Keyboard

+show()
+hide()
+draw()
+sendSynthEvent()

Virtual Window

+getDeviceData()

Device I/O System

+drawDecoration()

Window Decorator

+drawDecoration()

Custom Decoration +keyPress()
+keyRelease()

Custom Keyboard

Native Widget Native Toolkit

Extended Toolkit

Figure 6.2: UML Conceptual design of the extended toolkit. Only the most relevant components and
operations are shown.
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The Application 3D provides a unified interface to the VE application, delegating client
requests to appropriate subcomponents. This is the only component the application has to
collaborate with, thus making the toolkit easier to use. The Application 3D manages the
drawing of the GUI windows in 3D space as texture-mapped objects (forwarding the request
to other components) and configuration options.

The Virtual Window Manager manages the behavior of virtual windows associated with
top-level native widgets. This component handles basic window operations such as creation,
destruction, show, hide and resize operations. This component also manages user events.
This includes getting VR devices input data through the Device I/O System, managing
interaction with the virtual window decoration through a decorator subclass, and translating
user events into synthetic events that will be send to the appropriate virtual window.

Virtual Windows keep attributes concerning the 3D version of a top-level native widget
such as rectangle size, texture size and transformation matrix. This component checks for
intersection between the virtual window’s plane and a selection primitive (e.g. a ray). In
response to user events, Virtual Window objects send synthetic mouse events (to the child
widget at a given 2D position) and keyboard events (to the child widget having the keyboard
focus).

The Window Listener acts basically as an application-event filter. This component moni-
torizes the creation of new native widgets by the application and asks the Virtual Window
Manager to create a new virtual window every time the application instantiates a top-level
widget. Moreover, it also monitorizes application events related with a widget’s life cycle:
create, show, hide, paint, close and resize events originated from within the application. For
each paint event (change on the image content) asks the virtual window manager to update
the texture rectangle of the virtual window containing the native widget.

The rest of the components have simple responsibilities. The Virtual Keyboard defines an
interface for a virtual keyboard that sends synthetic keyboard events to the application
in response to user actions. The Window Decorator defines an interface for drawing the
decoration of a virtual window. Decoration includes the frame, and buttons to iconify,
deiconify and close the virtual window. Finally, the Device I/O system is used to read data
from an extensible set of generic input devices.

Widget creation and placement

Each time a native window is created, the Virtual Window Manager receives a notification.
If the widget is top-level, a virtual window is created along with a texture map capturing
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the contents of the widget’s area. A rectangular portion of this texture is updated every
time a widget of the native window changes its appearance.

An important issue is the initial window placement inside the 3D world. The placement
strongly influences the user’s ability and accuracy. A situation which arises in the use of
multiple windows is the need to constantly arrange windows to get access to the particular
window which houses the task or information needed at a given instant (window thrash-
ing) [68]. According to the spatial reference, we can considerer windows that are world-
referenced, object referenced, head-referenced and device-referenced [12]. Head-referenced
and body referenced menus provide an appropriate spatial reference frame as they take the
most of the user’s proprioceptive sense, allowing users to accomplish some application con-
trol tasks without having to look at the menu. Since the extension toolkit knows everything
about the widget hierarchy, any of these strategies can be plugged in.

Input handling

User events such as hand movements are captured by the Device I/O System and converted
into synthetic events that are sent to native widgets. We will describe the main steps involved
in this process with a concrete example. Suppose a CAVE user wearing a virtual wand (the
wand has a six-DOF sensor, a two-DOF joystick and three buttons). Each time the user
presses the left button a new user event is generated. This event contains a ray and a button
state as parameters. This event is forwarded to the Extended toolkit which searches for
the nearest virtual window containing the ray intersection. Finally, the intersected virtual
window creates a synthetic event (a mouse event) and posts it to the native widget. The main
advantage of this solution is that the management of the GUI elements and their behavior
is delegated completely to the host toolkit, thus simplifying the migration of existing GUIs.
Moreover, this approach allows the system to provide several interaction techniques for object
selection such as ray-casting and arm-extension.

Host Toolkit Requirements

We now summarize the main features required for an extensible 2D GUI toolkit to be used
as a host toolkit for the 3D extension:

• A hook to monitorize the creation and destruction of top-level widgets. In addition to
this, the toolkit has to provide a mechanism to intercept widget-related events such as
paint, show, hide, close and resize. For example, if a widget is repainted in response to
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a paint event, the application has to intercept the event to know that the associated
texture requires an update. This feature is required by the Event Listener component.

• An operation to send a synthetic event (keyboard/mouse) to any widget (required by
the Virtual Window component).

• A function to capture the image of a native widget into a bitmap. The image will be
used to update the texture of the virtual window containing the widget (required by the
Event Listener). If this function is supported also on widgets hidden by other windows,
then the native GUI can share the desktop space with the OpenGL window where the
VE application renders the virtual world.

• Functions to traverse the widget hierarchy (access to parent and children widgets) and
operations to obtain the visible child widget at a given pixel position.

6.1.2 Prototype

A prototype system has been implemented above Qt, a cross-platform GUI development
toolkit, and evaluated. Qt fulfills all the requirements listed in the previous section. Ap-
plication events can be intercepted through adding a application event-filter through QAp-
plications::installEventFilter(). The filter can either stop the event or forward it to other
objects. Moreover, Qt allows multiple event filters to be installed, thus avoiding conflicts
with application-defined event filters.

Creation of top-level widgets can be monitorized by listening to the QEvent::Show event
which is send each time a window becomes visible. Changes in the widget’s content are
monitorized by listening to the QEvent::Paint. The QPixmap class provides two methods
to grab the contents of a widget: grabWindow() grabs pixels directly off the screen, whereas
grabWidget() asks the widget to paint itself by calling paintEvent() with output redirected
to a bitmap. Although a bit slower, the later is more suitable because it works with hidden
widgets.

Synthetic events (including predefined and user-defined events) can be send to any object
through QApplicationpost::Event() and QApplication::sendEvent() methods. The former
adds a synthetic event to the event queue with a given object as the receiver of the event;
the later sends the event directly to the object. Finally, the toolkit provides operations for
traversing the object hierarchy and for returning the visible child widget at a given pixel
position in the widget’s own coordinate system.

An example of collaboration is shown in Figure 6.3. (1) When a widget detects that it
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should repaint itself, it sends an event to the QApplication indicating which part of the
widget should be repainted. (2) When appropriate, QApplication tells the widget it has to
be painted. (3) This event is captured by the event filter and (4) produces a grab widget
call to the QPixmap object, (5) which sends a repaint command to the QWidget. Finally,
(6) the window listener asks the virtual window manager to update the texture.

QApplication

QWidget

QPixmap

Window Listener

Virtual Window 
Manager

1: sendEvent

2: paintEvent

3: eventFilter

5: repaint

4: grabWidget

6: updateTexture

Qt Toolkit Extended toolkit

Figure 6.3: Collaboration for processing a paint event between the Qt and our Extended toolkit.

The prototype has been tested with two different applications: a scene viewer specialized
for shipbuilding design (see Figure 6.4) and a volume rendering application (see Figure 6.5).
Both applications had a Qt-based GUI and were extended to display stereoscopic images on
either a CAVE or a stereo workbench. The source code modifications needed to accommodate
the GUI to the CAVE where minimum. Moreover, it allowed the evaluation of the interaction
techniques for selecting and manipulating 2D GUIs detailed in Sections 6.2 and 6.3.

The source code of the extended toolkit is available for download under the GNU GPL
license at: http://www.lsi.upc.edu/~virtual/Qt3D.
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Figure 6.4: Scene viewer specialized for shipbuilding using the developed GUI toolkit.

Figure 6.5: Volume rendering application using the developed GUI toolkit.
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6.1.3 Discussion

Our approach has several advantages over previously-reported systems. Applications adopt-
ing our approach can provide an interface optimized for each platform (e.g. a desktop
interface can be used on a desktop system, and an immersive interface can be used in an
immersive system), without needing to modify the application. Moreover, importing 2D
interfaces into the VE has some considerable advantages:

• Transparent use of all the functionalities provided by the host toolkit, enabling the use
of a large number of widgets.

• Delegation of functional interface handling to an independent component.

• Users can work with the graphical user interface they are used to.

• Accommodation of different 3D selection techniques.

From the point of view of software development, the advantages of our approach are:

• An important part of the UI can be developed and tested in a desktop workstation.

• Access to UI graphical design tools (e.g. QtDesigner).

• Fast porting of existing applications to VEs with minimum changes.

• Transparent support to cluster-based systems and collaboration.

Our approach has some additional advantages over VNC-based methods for immersing 2D
GUIs. The system is not framebuffer-oriented but widget-oriented. That implies that the
VE application knows everything about the immersed GUI, not only framebuffer updates.
That allows for much more flexibility for placing and sizing the widgets: host widgets can be
automatically resized so that width and height are appropriate for fast texture conversion
(power of two), widgets can be independently resized and moved from within the VE ap-
plication, pop-up menus and pop-up lists can be true pop-up components, i.e. they can be
drawn at a certain offset from the parent widget; the look-and-feel is completely customiz-
able from within the VE application. Moreover, our system does not have any network nor
image encoding overhead. For example, when running on a cluster, texture updates are not
broadcasted to all clients because the native widgets and the virtual windows are local to
each process.
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6.2 Anisomorphic raycasting interaction

Two-dimensional windows in 3D environments can include small, nearby buttons which can
be difficult to select and manipulate using standard 3D interaction techniques. For example,
raycasting does not perform well when selecting small or distant objects. Small rotations
of the wrist sweep out large arcs at the end of the selection ray. Therefore hand trembling
and tracking errors are amplified with increasing distance, thus requiring a higher level of
angular accuracy.

Accurate selection is also compromised by hand instability, amplified by the absence of
constraints on the hand movements. Selections of small widgets require a considerable effort
to stabilize the selection tool.

6.2.1 Friction Surfaces

We have conceived the Friction Surfaces metaphor to facilitate the interaction with external
2D applications being accessed from immersive VEs. The main goal is to provide accurate
selection and manipulation of 2D GUIs that have not been particularly designed for VEs.
To this end, we use a modified raycasting technique which adapts the CD ratio according to
the size and position of the virtual window.

Friction surfaces uses two distinct modes: one which scales hand rotations when accuracy is
needed (scaled mode) and one which provides direct, isomorphic interaction (normal mode).
The scaled mode is activated automatically whenever the selection ray enters a virtual win-
dow. The mode is set back to normal mode when the selection ray leaves the active window.

We start by introducing some notation that will be used in the rest of the section. The Device
Coordinate System (DCS) is an orthonormal frame centered at the position of the 6-DOF
sensor attached to the user’s hand. We assume the DCS is oriented as depicted in Figure 6.6a,
with the negative Z axis defining the user’s hand pointing direction. This pointing direction
will be referred to as the device ray. The Zero orientation is an orthonormal reference basis
is defined from DCS and the window’s center when the scaled mode is activated and then
remains unchanged until the mode is deactivated.

During the normal mode, the ray does not intersect any window, the CD ratio is always one;
the device mapping is isomorphic. When the ray intersects a window, the mode switches to
scaled mode and CD ratio is computed as follows. First, we compute the zero orientation
reference frame (~x, ~y, ~z) given the virtual window and the DCS (see Figure 6.6b). Let ~z be a
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unit vector in the direction of the segment joining the window center and the device position
at activation time. Let ~u the unit vector defined by the vertical orientation of the window.
We compute ~x = ~u×~z

‖~u×~z‖ and ~y = ~z × ~x.

Then, we compute the range of directions the device ray can travel before leaving the active
window. Let Pi be the i-th vertex of the virtual window. Let θi be the azimuthal angle
(longitude) of Pi in the XZ-plane, measured from the negative Z-axis of the zero orientation,
with 0 ≤ θi < 2π. Likewise, let φi be the zenith angle (latitude) from the XZ-plane, with
−π

2 ≤ φi ≤ π
2 .

These spherical coordinates can be computed using Equations 6.1, where (xi, yi, zi) are the
Pi coordinates relative to the zero orientation and where the inverse tangent must be suitably
defined to take the correct quadrant into account:

(θi, φi) =
tan−1

(−xi
−zi

)
, sin−1

 yi√
x2
i + y2

i + z2
i

 (6.1)

Once computed the angles for the four window’s corners, we obtain the maximum rotational
angles in both directions as θmax = maxi

{
|θi|} and φmax = maxi

{
|φi|}. Since we want to use

isotropic scale on both directions, we just use the maximum of both. Therefore, the CD ratio
r is computed as shown in Equation 6.2, where ψ is a user-defined constant. ψ determines
the range of directions of the input device that approximately map onto a selection ray
within the virtual window. If the device ray exceeds that angle the selection ray will fall
outside the active window. In our implementation we employed ψ = π/4, thus providing the
user with a 90 degrees arc for interaction with the active virtual window. If the window is
sufficiently close to the user (r < 1), we do not enable the scale mode and keep the CD ratio

(a) (b) (c)

Figure 6.6: Elements involved in the computation of the CD ratio during the scaled mode: (a) Device
coordinate system and device ray, (b) spherical coordinates used at activation time to fix the CD ratio ,
(c) spherical coordinates used for computing the selection ray direction during scaled mode.
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equal to one.

r = max
(

1, ψ

max(θmax, φmax)

)
(6.2)

As the deactivation causes the selection ray to coincide again with the device ray, the selection
ray might enter another window. We found this situation to be rare in practice as most
windows are likely to be placed in front of the user. Nevertheless, unintentional activation
can be easily avoided by waiting a short period of time (e.g. half a second) before the scaled
mode is activated over the new window.

Computation of the selection ray

In scaled mode, the selection ray is computed using the CD ratio defined at activation.
Let θd and φd be the spherical coordinates of an arbitrary point of the device ray (distinct
from its origin) with respect to the zero orientation basis. We first compute the spherical
coordinates θs and φs of a target point T by applying the CD ratio, θs = θd/r, φs = φd/r

(see Figure 6.6c).

The new coordinates of T require a simple conversion back to cartesian coordinates (see
Equation 6.3, ρ > 0 is an arbitrary value). The resulting selection ray passes through the
current device position and point T .

x = −ρ sin(θs) cos(φs)

y = ρ sin(φs) (6.3)

z = −ρ cos(θs) cos(φs)

Feedback

Two distinct options were considered to provide visual feedback. The first option consisted
in drawing both the device ray and the selection ray, using different visual attributes (such
as color and thickness). However, this option appears to be quite distracting so we have
opted for a single bent ray providing feedback of both the device ray and the selection ray.

Similar to IntentSelect [32] and the Flexible Pointer [90], we draw a curved line segment
using a Bézier spline (see Figure 6.7). The curve originates at the user’s hand and ends at
the intersection P of the selection ray with the virtual window’s plane. These two points
define the first and last control points of the Bézier curve. The second control point is
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computed on the device ray so that the tangent direction at the origin is that of the device
ray. Finally, the third control point is the point on the device ray closest to P .

When the selection ray leaves the virtual window, the scaled mode is deactivated and the
displayed ray instantly goes straight. The users’ feeling when scaled mode is active is that
a flexible ray gets curved as it is moved over a virtual high friction surface defined by the
window. Visual feedback is completed by drawing a cross-shaped cursor in the intersection
point P .

Figure 6.7: The red ray corresponds to the feedback ray and the blue ray to the real device ray. The
selection ray is not displayed but its defined by the hand’s position and the intersection point between
the feedback ray and the virtual window.

6.2.2 Friction Surfaces evaluation

We conducted a usability evaluation to measure the effectiveness of the anisomorphic ray-
casting manipulation compared with classic isomorphic raycasting and raycasting in combi-
nation with PRISM [41]. The evaluation test was designed to evaluate the task performance
in terms of time-to-complete a given task and the maximum accuracy achieved in a fixed
period of time.
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Design and procedure

The test dialogs used in the experiments are shown in Figure 6.8. The first two dialogs are
designed to measure task performance when selecting small/middle size objects. The first
dialog contains different kinds of buttons whereas the second dialog includes basically combo
boxes and selection lists. The third dialog is also designed to measure speed but putting the
emphasis on manipulation rather than on selection. Finally, the fourth dialog is designed
to measure the accuracy during object manipulation. In all cases the label attached to each
widget indicates the requested task.

A repeated-measures, within-subject design was used. The dependent variable was the se-
lection technique: raycasting (RC), friction surfaces (FS) and PRISM. Users performed the
task once for each technique condition. The order of the conditions was randomized for each
user to avoid ordering effects.

The dependent variables were selection time, error rates, the path length described by the
cursor over the virtual window, and the amount of directional changes (changes of direction
of the hand orientation greater than 90 degrees).

For the first three dialogs, users were requested to complete the involved tasks as quickly
as possible. For the fourth dialog, users were asked to manipulate several sliders to get a
certain value as accurately as possible, but giving only five seconds of time for each slider,
starting from the first click on it. After that time, the slider was disabled and the user was
forced to proceed with the next slider.

Apparatus and virtual setup

All the experiments were conducted on a four-sided CAVE with a 6-DOF hand-held device
and a Polhemus Fastrak tracking system with 2 receivers providing 60 updates/s with 4 ms
latency. The virtual window used in the experiments was initially placed at 1.5 m from the
CAVE center, covering about 20 degrees of the user’s field-of-view.

Participants

Seventeen users (undergraduate and graduate students) participated in the study, aged 22-
42, 14 male and 3 female. Most participants (9) had no experience with VE applications; 5
had some experience and 3 were experienced users.
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(a) (b)

(c) (d)

Figure 6.8: The test dialogs used in the user evaluation.
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Results

Figure 6.9a shows the completion time for each task. Tasks 1-4 correspond to the dialogs
(a)-(d) shown in Figure 6.8. The one-way ANOVA of completion time versus interaction
technique showed significant differences for task 1 (p < 0.05;F = 4.15) and for task 3
(p < 0.05;F = 3.7). Tukey pair-wise HSD tests showed only significant differences between
RC and FS, (p < 0.01) for both tasks, users with FS performed significantly faster than
users with RC.

Figure 6.9b shows the button clicks for each task. Note that in tasks emphasizing selection
(tasks 1 and 2), users made less mistakes on average with FS, whereas PRISM yield better
results in tasks emphasizing on manipulation (tasks 3 and 4). The one-way ANOVA showed
significant differences in clicks for tasks 1 (p < 0.001;F = 12.14), task 3 (p < 0.001;F =
13.62) and task 4 (p < 0.001;F = 5.53). Tukey pair-wise HSD tests showed that PRISM

(a)

(b)

Figure 6.9: (a) Time to complete the tasks involved for each dialog. (b) Number of button clicks
performed during each task.
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was always significantly better than RC (p < 0.01), and FS was better than RC in tasks
1 and 3 (p < 0.001). Regarding the number of mistakes, it should be noted that PRISM
incorporates a noise filter. Any motion below a given velocity is considered tracking error or
inadvertent drift and the controlled ray is not moved. Note that our current implementation
of Friction Surfaces does not have such a filter.

The length of the paths traced by the cursor, in native window pixel units, are shown in
Figure 6.10a. The one-way ANOVA showed significant differences (p < 0.001;F = 28.4582).
Tukey pair-wise tests confirmed that FS lead to cursor paths significantly shorter than both
RC (p < 0.01) and PRISM (p < 0.01). Figure 6.10b also shows the number of times the user
had to rectify their movement. Both PRISM and FS were found to produce less turns than
RC (p < 0.01).

Figure 6.10c shows the results of the accuracy test (Task 4). The plot shows the average
deviation (in slider units) from the target value when the user had only five seconds to
adjust it (see Figure 6.8d). Each slider had increasing ranges and thus increasing levels
of difficulty. Both PRISM and FS performed much better than RC, with nonsignificant
differences between PRISM and FS.

Regarding the path traced by the 3D cursor over the virtual window, Figure 6.11 shows the
paths described by users who achieved times on the first, second and third quartile values in
Task 1. Color temperature represents the speed of the trace. Note that the lack of accuracy
of isomorphic ray-casting forced the users to perform many attempts before the right button
was selected. This is reflected by the loops around the small targets in Figure 6.11a. This
contrasts with the smoother paths produced by PRISM and FS (Figure 6.11b and 6.11c).
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(a)

(b)

(c)

Figure 6.10: (a) Length of the path traced by the cursor. (b) Number of turns in the path traced by the
cursor. (c) Deviation from the target value on the accuracy test. The integer value between parentheses
is the slider’s range.
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(a)

(b)

(c)

Figure 6.11: Path traced by the 3D cursor over the virtual window with RC (top), PRISM (middle)
and FS (bottom). Paths correspond to users who achieved times on the first, second and third quartile
values. Note that checkboxes can be toggled by clicking on their label.
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Survey

After the experiments, subjects were requested to rate each interaction technique using a
7-point Likert scale. All users preferred either PRISM or FS against RC, with nonsignificant
differences between PRISM and FS. Nine users preferred PRISM with average rate of 5.5;
eight users preferred FS with average rate of 5.4. RC was given an average rate of 3.

We also asked subjects about what they found most difficult and what was the easiest for
them. The results were similar from all users. All of them agreed on having less problems
on selecting buttons and manipulating sliders with friction surfaces.

The most difficult task was to achieve a certain value on the sliders, because the free move-
ment of the wand on their hand makes it difficult to maintain the value when the finger is
moved to press or release the button. This problem was noticeably alleviated with PRISM
and with our technique. Most users complained about the effort required for selecting small
buttons with normal ray-casting because of the considerable effort to stabilize the wrist.

On the other hand, a few users pointed out that friction surfaces was a bit unnatural com-
pared with isomorphic raycasting, although their performance was better using an aniso-
morphic mapping.

A limitation of our technique is that, for certain orientations, the curvature of the selection
ray and its intersection with the virtual window is hard to perceive (when the viewpoint
approaches the plane defined by the four control points of the curved ray). However, users
did not find this to be a problem as the cross-shaped cursor showing the intersection of the
selection ray with the virtual window was clearly visible.

Discussion

Using an anisomorphic mapping between the user’s hand orientation and the selection ray
orientation, we are able to scale down hand rotations enabling accurate selection and ma-
nipulation of small GUI objects.

The user evaluation showed that PRISM and Friction Surfaces perform significantly better
than classic ray-casting, with little performance differences between FS and PRISM. PRISM
seems to perform better than Friction Surfaces when extreme accuracy is required (e.g.
adjusting a slider with pixel accuracy) whereas Friction Surfaces is particularly suitable for
fast selection of small targets. Both cannot be achieved with classical raycasting as they
require the user a great effort to stabilize the pointing device before each selection, the
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Heisenberg effect will further hinder precise selections.

A key feature of Friction Surfaces is that maintains both directional and nulling compli-
ances [99] as it simulates approximately the interaction with a large spherical window (see
Figure 6.12). Note that PRISM does not preserve nulling compliance and requires offset
recovery techniques to reduce the accumulation of an offset value representing the angular
difference between the hand and the ray being manipulated. Besides these aspects, an impor-
tant difference is that Friction Surfaces does not force users to slow down their movements
to gain precision. Our approach uses a larger range of movements for controlling the ray in
a more reduced region.

Figure 6.12: Manipulation with friction surfaces simulates approximately the interaction with a large
spherical window. Note that rendering this simulated window would be unusable as it would occlude most
of the scene.

6.3 Decoupling motor space and visual space

In a typical desktop HCI setup, the motor space is decoupled from the display space (e.g.
the movement of a mouse on a horizontal plane is transformed to the movement of a cursor
on a vertical screen). We propose a Virtual Pad metaphor exploiting how a similar decouple
is beneficial for the interaction with 2D virtual windows embedded in a VE. The decouple
is accomplished through a virtual pad which receives user actions (motor space) and maps
them into cursor movements on the active virtual window (visual space).

By decoupling the motor and the visual space, virtual windows can be manipulated within
a user-defined working volume (the virtual pad), whose location and size is completely inde-
pendent from the application’s visual representation. In addition, the user is able to adjust
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the control space (virtual pad dimensions) allowing to seamlessly balance speed and accuracy
without affecting the visual representation of the application’s GUI.

The Virtual Pad metaphor has been conceived to facilitate the interaction with external 2D
applications being accessed from immersive VEs that have not been particularly designed
for VEs while maximizing user’s comfort.

6.3.1 The Virtual Pad

The virtual pad (see Figure 6.13) is a rectangular region that defines the control space, i.e.,
the region the user has to touch or point to when interacting with a virtual window. This
tool establishes the link between the working space and the visual space.

In our implementation the virtual pad is rendered as a wireframe rectangle providing the
user with a reference frame with minimal visual obtrusion, the user is supposed to be looking
at the virtual pad only from time to time or through peripheral vision.

The virtual pad is user-adjustable, it allows the user to change its size and location. Allowing
to seamlessly balance speed and accuracy without affecting the visual representation of the
application’s GUI, through increasing or decreasing its area.

Figure 6.13: Virtual windows on VE. The green rectangle represents the frame of the virtual pad.
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Motor-to-visual space mapping

When using our virtual pad metaphor in combination with pointing techniques like ray-
casting, the mapping from control space to visual space is straightforward:

• Compute the intersection of the ray/selection volume with the virtual pad’s plane.

• Compute the new cursor location in the virtual window by transforming linearly the
pad’s coordinates into window coordinates.

In contrast, when using our virtual pad metaphor in combination with the virtual hand
technique, a projection method must be adopted. Due to the absence of constraints on
the hand movements, the user hand will move close to but not exactly over the virtual
pad. Therefore, the hand position must be projected into the virtual pad before mapping
its position to a new cursor position. Several projections can be adopted. Note that the
projection type actually defines the shape of the working space. We have considered two
different projections:

• Parallel projection: the normal vector of the virtual pad is used to project the hand
position into the virtual pad. The resulting working volume is a rectangular prism.

• Viewpoint projection: the hand position is projected to the virtual pad from the user’s
viewpoint. Note that this is equivalent to using the ray-casting variant where the ray’s
direction is defined by the segment joining the user’s viewpoint with the hand position.
The resulting working volume is a pyramidal frustum.

Activation/deactivation

The proposed metaphor has been conceived to manipulate 2D GUIs (or in general, constraint
2D manipulation) inside 3D worlds. Therefore, in a practical situation, this approach has to
co-exist with the selection and manipulation techniques used for interacting with the rest of
3D objects. The activation of the virtual pad should therefore be in accordance with these
techniques. In our implementation, raycasting is used to both select 3D objects and activate
the external application the user wants to interact with.

Activation of a virtual window causes the virtual pad to be adjusted so that its aspect
ratio matches the aspect ratio of the virtual window, as described above. Once the window
becomes active all the actions over the virtual pad are mapped to it.



156 6.3 Decoupling motor space and visual space

Several activation strategies can be adopted. If we want the user not to leave the virtual
pad every time he wants to interact with another window, we need to provide mechanisms
to choose the active window automatically. For selecting the active window we can use
hints given by window events and changes in the window hierarchy. In our implementation
a window becomes active automatically when (a) it is shown as the result of a user action
(e.g. the user clicks a menu to open a file dialog) or (b) its child window is closed or hidden
(e.g. after closing a modal dialog, the focus is assigned to the window where the action was
initiated).

This behavior is particularly convenient with pop-up menus and pop-up windows. Manual
activation of any window is also provided by simply clicking over the chosen window, although
this forces the user to move the ray outside the virtual pad.

As discussed above, when there is an active window all the actions over the virtual pad
are mapped to it. When no window is active, the virtual pad has to provide convenient
feedback of this fact. We have decided to let the virtual pad to behave as a virtual desktop
when no window is active (see Figure 6.14b). In this case the pad shows an icon for every
application window (including maximized, minimized and hidden windows). We also use
a button trigger to manually deactivate the active window and enable the virtual desktop
behavior of the pad. This allows the user to operate different windows with minimum effort
and without leaving the virtual pad.

(a) (b)

Figure 6.14: (a) Interaction using the Virtual Pad. (b) If no window is selected, the Virtual Pad works
as a window selector.
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6.3.2 Virtual Pad evaluation

Since the virtual pad can be freely adjusted to suit user preferences, we can expect a higher
degree of comfort on positions reducing fatigue in wrist, arm, shoulder and neck, plus the
additional benefit of dynamic adjustment of the speed/accuracy tradeoff.

Therefore we have designed an experiment to measure the price we have to pay in user
performance to achieve this higher degree of comfort and flexibility. More precisely, we want
to measure the impact in performance of the decoupling between control and visual spaces,
choosing ray-casting as the interaction technique and 2D GUI manipulation as the reference
task.

When motor and visual spaces are not superimposed, target acquisition requires a different
cognitive strategy to use vision to control the cursor rather than a more direct visuomotor
mechanism [107]. Although this decoupling is ubiquitous in desktop HCI setups, very few
studies have analyzed its impact in user performance.

Design and procedure

A repeated-measures, within-subjects design was used. The dependent variable was the
interaction technique used, (a) Direct Manipulation of the virtual window (Direct, see Fig-
ure 6.15a), (b) interaction through a Virtual Pad (VPad, see Figure 6.15b) with exactly the
same size of the virtual window but located in a more comfortable position and (c) interac-
tion through a 50% enlarged pad (VPad+) in a coplanar position with the VPad condition
(see Figure 6.15c). The three conditions were randomized for each user. Before each ex-

(a) (b) (c)

Figure 6.15: Scenarios used in our experiment: (a) direct manipulation of a window through raycasting,
(b) manipulation through a virtual pad rotated 45 degrees with respect to the window and (c) manipulation
through an 50% scaled virtual pad.
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(a) (b) (c)

Figure 6.16: The test dialogs used for the evaluation of the Virtual Pad metaphor

periment users were provided with a short training session (5 min) which required them to
complete a few practice trials.

As a dependent variables we recorded the time-to-complete the task and the number of clicks.
Also, at the end of the experiment, users were provided with a short questionnaire.

The dialogs used in the experiments are shown in Figure 6.16. The first two dialogs are
designed to measure task performance on selecting small/middle size objects. The first
dialog contains different kinds of buttons whereas the second dialog includes combo boxes
and selection lists. The third dialog is designed also to measure speed but putting the
emphasis on manipulation rather than on selection. In all cases the label attached to each
widget indicates the requested task, so users can be more focused at purely interaction tasks.
For all dialogs, users were requested to complete the involved tasks as quickly as possible

Apparatus

All the experiments were conducted on a four-sided CAVE with a 6-DOF wanda and a
Polhemus Fastrak tracking system with 2 receivers providing 60 updates/s with 4 ms latency.
The virtual window used in the experiments was initially placed at 1.5 m from the CAVE
center, covering about 20 degrees of the user’s field-of-view.

Participants

Thirteen users (undergraduate and graduate students) participated in the study, aged 22-38,
11 male and 2 female. Most participants (6) had some experience with VE applications; 5
had no experience and 2 were experienced users.
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Results

Figure 6.17a shows the completion time for each task. Tasks 1-3 correspond to the dialogs
(a)-(c) shown in Figure 6.16. Note that on average the completion times are quite similar
on tasks 1 and 2 which emphasize on selection. We performed a correlated samples one-way
ANOVA on the data with completion time as the dependent variable and the decoupling
(Direct, VPad or VPad+) as the independent variable. We found no significant differences
in tasks 1 and 3, but it showed a significant difference for task 2 (F = 6.29; p < 0.01). Tukey
pair-wise HSD tests revealed a significant difference between Direct vs VPad (p < 0.05) and
between Direct vs VPad+ (p < 0.01).

Regarding button clicks, Figure 6.17b shows the button clicks for each task. Note that in
tasks emphasizing on selection (1 and 2), the number of clicks is a good measure of the
number of mistakes. This does not applies to task 3, because sliders and spin boxes support
different interaction modalities. For example, the value of the spin box can be modified

(a)

(b)

Figure 6.17: (a) Time to complete the tasks involved for each dialog. (b) Number of button clicks
performed during each task.
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with repeated clicks or by holding down the wanda button. A correlated samples one-way
ANOVA on the data with button clicks as the dependent variable revealed no significant
differences.

Survey

After the experiments, subjects were requested to rate the arm fatigue with VPad and Direct
manipulation. As expected, all users reported less muscular fatigue when using VPad. Some
users even find it comfortable to slightly rest the wanda against the body. Virtual pads in a
completely horizontal orientation are also perfectly possible and greatly reduce arm fatigue.
Note that direct manipulation with a virtual window in this position is unfeasible on most
projection-based VR systems such as the CAVE using front projection on the floor screen.

Discussion

The Virtual Pad metaphor has many points in common with pen-and-tablet interfaces [55]
and transparent props [104], but also important differences. Besides the fact that it does
not require the user to hold any physical prop, the basic difference is that the Virtual
Pad decouples the motor and the visual space. It allows to scale virtual windows avoiding
visual obtrusion and readability issues while the motor space can be sized according to user
preferences and the desired speed/accuracy trade-off.

From the user evaluation, we can state that decoupling the motor space from the visual space
does not introduce significant differences in interaction time and erroneous selections. This
is also supported by the work of Wang and MacKenzie in [124] which revealed that moderate
disparity between motor and visual spaces does not have significant effects on interaction
performance.

Interestingly, although we expected differences between VPad the VPad+ conditions, it did
not happen. The results somehow match the experiments with 2D mouse based interfaces
where constant CD gain conditions do not have significant differences in user performance [4].
Furthermore, note that the corresponding dialog on Figure 6.16b includes several combo
boxes. A click on a combo box caused a new pop-up window to appear, which automatically
received the focus. In our experiment, focus changes did not affect the pad size. Therefore
movements on the pad were mapped to the smaller pop-up window (about 33% of the
parent’s width), resulting in a much lower CD ratio. We believe that the unexpected CD
ratio change (twice per pop-up, eight times per trial) were particularly distracting, since no
significant performance differences were found between VPad and VPad+ for Tasks 1 and 3.
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In addition, we also expected improved accuracy rates, buy it neither happened. As observed
by Wingrave et al. in [132], decreasing the degree of accuracy required may induce users to
decrease their accuracy; they no longer need to be precise. This might also happened for the
VPad+ condition.

In summary, the Virtual Pad metaphor is recommended when the footprint is a major
requirement or when the GUI has not been designed specifically for a VE. By allowing to
readjust the control space, user can interact with virtual windows with a more comfortable
position. Although statistically significant, the average time for VPad on task 2 was only
11% higher than Direct, so this overhead can be easily accepted in exchange for a more
comfortable and flexible interaction.

Moreover, the virtual pad can be used to define the area of the motor space allowed for
interaction with virtual windows, thus allowing to seamlessly decouple the interaction be-
tween the virtual environment and the virtual windows. The virtual pad can be invisible,
but reachable due to proprioception.





Conclusions

The thesis this PhD dissertation is defending can be summarized as follows:

Although 3D interaction techniques for object selection have been used for many
years, they still exhibit major limitations regarding effective, accurate selection of
targets in real-world VR applications. Some of these limitations are concerned with
visual feedback issues (occlusion, visibility mismatch, depth perception in stereo-
scopic displays) and the inherent features of the human motor system (instability
when interacting in free space, speed-accuracy trade-off, neuromotor noise). More
efficient 3D interaction techniques can be designed by devising new strategies for
controlling the selection tool and for providing appropriate visual feedback, drawing
the inspiration from Fitts’ law, occlusion management literature and depth percep-
tion studies.

We have provided theoretical and empirical evidence about important limitations of major
virtual pointing techniques. Although virtual pointing techniques typically deliver superior
performance than their virtual hand counterparts, they require appropriate continuous visual
feedback about the scene and the selection tool to complement the information derived from
proprioception.

Providing precise visual feedback about the selection tool on stereoscopic displays is a chal-
lenging problem. Visual feedback solutions should try to encompass the opposite goals of
guaranteeing a clear, unoccluded indication of the selection tool while minimizing the dis-
agreement among parallax, interposition and perspective depth cues. We have shown that
drawing a ray extending out from the user’s hand, which is the most typical representation
of the selection tool, hinders selection tasks as the perception of the tool’s tilt angle relies
on depth perception.

Occlusion is a major source of difficulties when indicating objects in complex 3D scenes. We
have shown the negative effects of occlusion and visibility mismatch (both within users and
among users) in selection and referral tasks.
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Eye-hand visibility mismatch has been proven to be a factor leading to a significant loss of
performance in all hand-rooted pointing techniques. Our analysis suggests that for these
techniques the effective width of an object should be computed in terms of the part of the
object simultatenously unoccluded from the user’s hand and eye locations. This results in a
paradoxical situation where some objects might exhibit a null effective width despite being
visible on the screen.

In order to overcome these visual-feedback limitations, we have proposed a new strategy for
controlling the selection tool dubbed Ray Casting from the Eye (RCE). RCE encompasses
the efficient rotational control of hand-rooted techniques (thus minimizing the physical effort)
with the mismatch-free feature of eye-rooted techniques. RCE clearly outperforms classic
ray casting, particularly in real-world, complex 3D scenes. RCE is especially effective when
used in combination with the newly introduced viewfinder metaphor. By flattening the
surroundings of the pointing direction, the viewfinder locally turns a 3D object selection
task into a simpler 2D selection task where depth perception is no longer an issue.

RCE control can be freely combined with further facilitation techniques for object selection
such as speed-based adaptation of the CD-ratio. RCE combined with PRISM-based CD-
ratio adjustment offers excellent performance even in cluttered scenes with objects spanning
a large range of depth values.

The analysis of major limitations of existing selection techniques and the proposed solutions
were published in:

• Ferran Argelaguet and Carlos Andujar. Efficient 3d pointing selection in clut-
tered virtual environments. IEEE Computer Graphics and Applications, 29(6):34-
43, 2009.

• Ferran Argelaguet, Carlos Andujar and Ramon Trueba. Overcoming eye-hand vis-
ibility mismatch in 3D pointing selection. In Proceedings of the 15th ACM
Symposium on Virtual Reality Software and Technology, VRST ’08, pages 43-46, 2008.

• Ferran Argelaguet and Carlos Andujar. Visual feedback techniques for virtual
pointing on stereoscopic displays. In Proceedings of the 16th ACM Symposium on
Virtual Reality Software and Technology, VRST ’09, pages 163-170, 2009.

Visibility mismatch among users in collaborative virtual environments is a common hindrance
during referral tasks, where one user is willing to show some object or feature to another
user. Typically, referral tasks are accomplished using selection techniques, with one user (the
presenter) selecting an object and asking the other users (observers) to look at it. Viewpoint
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mismatch often results in the selected object to be visible only for the presenter. According
to proxemics theory, users carrying out a collaborative tasks should stay at the close phase
of the social distance (about 1.2 to 2.1 m in Western culture). However, our experiment
performed in a co-located CVE showed that the viewpoint mismatch forces observers to
stay close to the presenter. Such a close distance between users does not agree with social
protocols and can cause users to bump accidentally into other users. Furthermore, this
discourages other users to freely navigate through the virtual environment.

In order to better support referral tasks, we explored which occlusion management techniques
ameliorate this situation and whether they hinder or not the spatial understanding of the
virtual environment. X-Ray vision techniques have been found to provide the best solution
for inter-personal occlusion. We have shown that semi-transparency and cut-away views are
suitable for guaranteeing the visibility of the objects being referred. The empirical evaluation
of these techniques showed that observers are able to gather the same amount of spatial
understanding with these techniques than when following the presenter, with additional
advantages related to freedom of movement and social protocols.

The evaluation of show-through techniques was published in:

• Ferran Argelaguet, André Kunert, Alexander Kulik, Carlos Andujar, and Bernd Froehlich.
See-through techniques for referential awareness in collaborative virtual re-
ality. International Journal of Human-Computer Studies. Volume 69, Issue 6, June
2011, Pages 387-400.

• Ferran Argelaguet, André Kunert, Alexander Kulik and Bernd Froehlich. Improving
co-located collaboration with show-through techniques. In IEEE Symposium
on 3D User Interfaces 2010, pages 55-92, 2010.

The review of Fitts’ law and existing pointing facilitation techniques for 3D object selection,
revealed that although expanding targets techniques have been used to improve 2D target
acquisition tasks, they were never applied for 3D object selection tasks.

Following Fitts’ law guidelines, we proposed two orthogonal techniques for improving 3D
target acquisition tasks: Dynamic Scaling and Forced Disoclussion. Both techniques increase
the effective size of potential targets, thus reducing the accuracy needed during corrective
movements. In an ideal scenario, increasing the size of potential targets should result in
improvements on selection performance and reduced error rates. However, the user study
showed that their drawbacks exceeded their benefits. As with most of Fitts’ law based
techniques which increase the size of potential targets, time and error rate improvements
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are more apparent in situations where targets are isolated. In cluttered environments, the
benefits of these techniques tend to degrade, and can even be detrimental to selection time.
First, unwanted expansions of objects surrounding the target might discourage its selection
and second, they might break the object layout.

Both approaches presented additional limitations related to the eye-hand visibility mismatch,
as they were evaluated in combination with classic ray casting selection. While Dynamic
Scaling computes the potential occlusions among objects in image space, Forced Disocclusion
required an alternative ray-scene intersection. Nevertheless, these limitations are avoided
when used in combination with Ray Casting from the Eye.

The Dynamic Scaling and the Forced Disocclussion approaches were presented in:

• Ferran Argelaguet and Carlos Andujar. Improving 3D selection in immersive
environments through expanding targets. SG ’08 Proceedings of the 9th interna-
tional symposium on Smart Graphics, 5166/2008, pages 45-57, 2008.

The operation of 2D widgets using 3D input devices relies also on selection techniques. The
last contribution of this dissertation (although the first contribution chronologically) is con-
cerned about improving the deployment and the interaction of 2D graphical user interfaces
embedded in virtual environments. First, we proposed a cost-effective approach to embed
2D GUIs into virtual environments. Rather than providing new tools, we focused on how
to adapt well established 2D GUI toolkits into VEs. This greatly simplifies the GUI design
and prototyping steps as developers and designers benefit from the widget functionality and
the design tools provided by existing 2D toolkits.

When 2D GUI toolkits designed for desktop computers are deployed to virtual environments,
they might include small, nearby buttons which can be difficult to select and manipulate
using standard 3D interaction techniques. Although 2D toolkits support widget customiza-
tion, complex 2D GUIs will require a complete redesign increasing the development step.

Instead of developing methods to automatically redesigning existing 2D GUIs, we developed
new strategies for controlling the selection tool for the particular case of selecting 2D widgets
embedded in 3D space. We explored whether decreasing the CD ratio according to the size of
virtual windows (Friction Surfaces) and decoupling the motor and the visual space (Virtual
Pad) allow for increased precision and increased comfort when interacting with 2D GUIs
embedded in VEs.

The evaluation of Friction Surfaces showed that selection of small widgets, in comparison
with standard raycasting selection, is enhanced both in terms of user performance and error
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rate. The reduction of the CD ratio increased the accuracy of selection and manipulation
tasks without decreasing selection time.

Regarding the Virtual Pad, its evaluation showed that the decoupling between the motor
and the visual space results in no significant performance penalty with respect to direct
interaction. When the reduction of the visual footprint of the GUI is a strong requirement,
the virtual pad allows the user to adjust its working space to maximize comfort without
decreasing performance.

Contributions regarding 2D GUI interaction were published in:

• Carlos Andujar and Ferran Argelaguet. Anisomorphic ray-casting manipulation
for interacting with 2D GUIs. Computer & Graphics, 31(1):15-25, 2007.

• Carlos Andujar, Marta Fairen and Ferran Argelaguet. A cost-effective approach
for developing application-control guis for virtual environments. In IEEE
Symposium on 3D User Interfaces (3DUI 2006), pages 45-52, 2006.

• Carlos Andujar and Ferran Argelaguet. Virtual pads: Decoupling motor space
and visual space for flexible manipulation of 2D windows within VEs. In
IEEE Symposium on 3D User Interfaces (3DUI 2007), pages 99-106. 2007.

• Carlos Andujar and Ferran Argelaguet. Friction surfaces: Scaled ray-casting ma-
nipulation for interacting with 2D GUIs. 12th Eurographics Symposium on Vir-
tual Environments, pages 101-108, 2006.

As a concluding remark, we would like to note that the interaction techniques proposed in
this dissertation do not consider any specific input and output device, although they are
obviously constrained by the limitations of current input and output devices. Improvements
in tracking technology will allow for a more accurate tracking of the user’s actions, and
better displays will enhance the user’s perception of the virtual environment. We believe
though that the major contributions of this dissertation will still be valid despite forthcoming
advances in VR technology. We can provide the user with extremely realistic volumetric
displays and perfectly accurate tracking systems, but pointing gestures will be still limited
by the human motor system, which is unlikely to improve in the near future.

Although new and better interaction techniques will arise, or in a mid-term future, brain-
computer interfaces might partially replace traditional gesture-based interfaces, we believe
that the presented techniques are a good choice for both current and upcoming VR applica-
tions.
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