
Dipartimento di Informatica e
Scienze dell’Informazione

•
••
•• ••

A robust approach to interactive virtual cutting:

geometry and color

by

Pietroni Nico

Theses Series DISI-TH-2009-02

DISI, Università di Genova

v. Dodecaneso 35, 16146 Genova, Italy http://www.disi.unige.it/

http://www.eg.org
http://diglib.eg.org

Università degli Studi di Genova

Dipartimento di Informatica e

Scienze dell’Informazione

Dottorato di Ricerca in Informatica

Ph.D. Thesis in Computer Science

A robust approach to interactive virtual
cutting: geometry and color

by

Pietroni Nico

June, 2009

Dottorato di Ricerca in Informatica
Dipartimento di Informatica e Scienze dell’Informazione

Università degli Studi di Genova

DISI, Univ. di Genova
via Dodecaneso 35

I-16146 Genova, Italy
http://www.disi.unige.it/

Ph.D. Thesis in Computer Science (S.S.D. INF/01)

Submitted by Nico Pietroni
DISI, Univ. di Genova

nico.pietroni@isti.cnr.it

Date of submission: February 2009

Title: A robust approach to interactive virtual cutting: geometry and color

Advisor: FABIO GANOVELLI
Visual Computing Laboratory

ISTI, Consiglio Nazionale delle Ricerche (C.N.R.)
fabio.ganovelli@isti.cnr.it

Supervisor: ENRICO PUPPO
Dipartimento di Informatica e Scienze dell’Informazione

Università di Genova
puppo@disi.unige.it

Ext. Reviewers: SUMANTA N. PATTANAIK
School of Electrical Engineering and Computer Science

University of Central Florida
sumant@cs.ucf.edu

RICCARDO SCATENI
Dipartimento di Matematica e Informatica Università di Cagliari

riccardo@unica.it

Abstract

Interactive simulation of deformable bodies has attracted growing interest in the course
of the last decade and, while for a long time it has been limited to applicative domains
such as virtual surgery, it is nowadays a fundamental part of almost every game engine.
The reasons of this evolution may be found both in the continuous effort of the scientific
community and in the technological improvement of computers performance that allowed
to sustain such a calculation-intensive task even on commodity computers.

The simulation of a deforming object requires a physical model of the object behavior and
an efficient and stable algorithm to simulate it. Generally speaking, the physical model
must consider the phenomenon at the right scale (e.g. a ball will not be modeled as the
interaction of its atoms) and capture the aspects of the simulation we are interested in (e.g.
do not include the temperature when computing the bouncing of the ball). Concerning the
algorithm, it must be able to update the state of the system in real-time and it must be
stable. The latter is particularly critical because simulation includes resolution of Partial
Differential Equations (PDEs) which easily could easily diverge if not handled with care.

Although many consolidated results in this field exist, there are still problems that need
further investigation, for example how to model the cutting (or fracturing) of deformable
objects.

A cut on a deformable object has two major implications: it changes its boundary by
adding a new portion of surface (the part that is revealed by the cut) which means that
the geometric description must be updated on-the-fly; new information (e.g. the color)
is needed to render the newly generated surface portion; finally, it changes the physical
behavior of the object, which translates in updating the boundary conditions of the physical
model.

The contribution of this thesis to the problem stated above is twofold:

• A new algorithm to model interactive cuts or fractures on deforming objects, named
Splitting Cubes. The Splitting Cubes can be considered as a tessellation algorithm
for deformable surfaces. It is independent from the underlying physical model which
defines the deformation functions. Due to its stability and efficiency, the Splitting
Cubes is particularly suitable for interactive simulations, including virtual surgery
and games.

• A new algorithm to derive the color of the interior of an object from few cross
sections. To address this problem we propose a new appearance-modeling paradigm
for synthesizing the internal structure of a 3D model from photographs of a few
cross-sections of a real object. In our approach colors attributes (textures) of the
surface are synthesized on demand during the simulation. We will demonstrate that
our modeling paradigm reveal highly realistic internal surfaces in a variety of artistic
flavors. Due to its efficiency, our approach is suitable for real-time simulations.

We finally present two collateral results that emerged during the research carried out in
these years: a robust model for real-time simulation of knot-tying which is certainly useful
in endoscopic surgical simulator; a technique for building a virtual model of a human head,
developed in the framework of the approximation of individual Head Related Transfer
Functions (HRTF) for the realistic binaural rendering of three-dimensional sound.

2

To my family

Creativity is more than just being different. Anybody can plan weird; that’s
easy. What’s hard is to be as simple as Bach. Making the simple, awesomely
simple, that’s creativity. (Charles Mingus)

Acknowledgements

First, I thank Fabio Ganovelli for the solid scientific contribute he provides to this work.
Another special thank goes to Miguel A. Otaduy for his precious help on texturing stuff.
Thanks to Roberto Scopigno, Claudio Montani and Enrico Puppo for supporting me dur-
ing the PHD.
I wish to thank all the people composing the Visual Computing Laboratory including
Marco Tarini, Paolo Cignoni, Guido Ranzuglia, Marco Callieri, Matteo Delle Piane, Ri-
cardo Marroquim, Marco Di Benedetto, Federico Ponchio, Massimiliano Corsini, together
with past Lab members: Giuseppe Turini, Andrea Spinelli, Valentino Fiorin, Giuseppe
Croccia, Rita Borgo and Paolo Pingi.
Thanks to Markus Gross for involving me in the Computer Graphics Laboratory in Zurich,
and thus enriching my scientific skill.
I wish to thank all the other people involved in my papers: Blazej Kubiak, Marco Fratar-
cangeli, Bernd Bickel, Nicolas Tsingos and Manuel Asselot.
A special thanks goes to Paola for providing me every day a new fresh loving energy, to-
gether with Angela for her artistic sense of life. I am grateful to my parents and to my
brothers, they everyday believed in me.
Finally, thanks to my secret advisor...

Figure 1: My secret advisor..

Table of Contents

List of Figures 5

List of Tables 9

Chapter 1 Introduction 11

1.1 Applications domains of deformable bodies simulation 12

1.2 Cutting or fracturing a deformable object 13

1.3 Scope of the thesis and results . 14

1.3.1 Primary Contribution . 14

1.3.2 Secondary Contribution . 15

1.4 Outline of the thesis . 15

Chapter 2 Interacting with deformable objects 17

2.1 Background . 17

2.1.1 Continuum Elasticity . 17

2.1.2 Discretization . 19

2.1.3 Time Integration . 20

2.1.4 Mesh-based and Meshless methods 23

2.1.5 Mass-Spring Method . 24

2.1.6 Finite Elements Method . 25

2.1.7 Meshless methods . 28

1

2.1.8 Meshless deformations Based on Shape Matching 31

2.1.9 Mesh-based vs Mesh-free methods 32

2.2 Encoding discontinuities on Mesh-based methods 33

2.3 Encoding discontinuities on Mesh-free methods 35

2.3.1 Adapting the physical simulation in mesh-free methods 36

2.3.2 Adapting the surface in mesh-free methods 37

2.3.3 An abstract representation of a Discontinuity 39

2.4 The Splitting Cubes Algorithm . 40

2.4.1 Splitting Cubes: a 2D illustrative example 42

2.4.2 Splitting Cubes: from 2D to 3D . 43

2.4.3 Position of the vertices . 44

2.4.4 Interpolation inside a cell . 46

2.5 Construction of the Look-Up-Table. 47

2.6 Physical response to cutting . 49

2.6.1 Nodes-Phyxels bounds . 49

2.6.2 Phyxels-Phyxels bounds: the Extended Visibility Method 49

2.6.3 Implementing the Extended Visibility Method. 51

2.7 Initial Setup . 52

2.8 Results and discussion . 53

Chapter 3 Modeling the interior of an object 59

3.1 texture classification . 60

3.2 A brief introduction to 2D Texture Synthesis 60

3.2.1 Procedural Methods . 61

3.2.2 Statistical features-matching methods 62

3.2.3 Pixel Based . 64

3.2.4 Patch Based Methods . 66

3.2.5 Texture optimization method . 68

2

3.3 Designing internal properties of meshes . 70

3.3.1 Solid Textures . 70

3.3.2 Solid Meshes . 82

3.3.3 Solid Textures vs Solid Meshes . 86

3.4 Texturing Internal surfaces from a few cross sections 89

3.4.1 Texture Synthesis Pipeline . 90

3.4.2 Texture Interpolation Domain . 92

3.4.3 Texture Morphing . 95

3.5 Results . 100

3.6 Conclusions and Future Work . 104

Chapter 4 Additional Results 107

4.1 A Robust method for Real-Time thread simulation 107

4.1.1 Previous Work . 108

4.1.2 Our Approach . 109

4.1.3 Collision Detection . 113

4.1.4 Visual and Haptic feedback . 114

4.1.5 Conclusions and future work . 115

4.2 Reconstructing head models from photographs for individualized 3D-audio
processing . 116

4.2.1 individualized HRTF modeling . 117

4.2.2 Reconstruction of head models . 119

4.2.3 Results . 125

4.3 Conclusions and future work . 127

Chapter 5 Final Remarks 129

5.1 Future work . 130

5.2 List of Publications . 132

3

Bibliography 133

4

List of Figures

1 My secret advisor.. 1

2.1 Clothes modeled with mass spring systems using implicit time integration
[BW98]. 25

2.2 FEM with Stiffness Warping . 26

2.3 A sequence produced by using Invertible FEM [ITF04] 28

2.4 Point Based Animation [MKN+04] . 30

2.5 Meshless deformation based on shape matching [MHTG05] 32

2.6 Techniques to implement cuts in mesh based models 33

2.7 Comparison of between a real (Top) and a simulated (Bottom) fracture
[OH99] . 34

2.8 Visibility, Diffraction and Transparency kernel 36

2.9 A Comparison between visibility criterion, diffraction methods, transparency
method and Extended Visibility criterion 38

2.10 An abstract representation of a discontinuity 39

2.11 Example of cut with multiple advancing fronts using the Splitting Cubes . 40

2.12 The idea underlying the Splitting Cubes 41

2.13 The six configurations for a face of the splitting cube 43

2.14 Two examples of cuts handled with the splitting cubes 44

2.15 Placement of vertices in the Splitting Cubes 45

2.16 Interpolation inside a Cell . 46

2.17 Construction of Splitting Cubes Look-Up-Table 47

5

2.18 The occlusion Discs . 50

2.19 Decrease kernel by using the Extended Visibility Method 51

2.20 Cutting of a deformable model of the liver 53

2.21 Performances of the Splitting Cubes . 53

2.22 Scissors cutting a deformable pear. 54

2.23 A cut with a curved tool. 55

2.24 Another cut with a curved tool. 56

3.1 Classification of textures as proposed by [LLH04]. 60

3.2 Application of Perlin noise . 61

3.3 Examples of textures generated by the generalized reaction-diffusion model
[McG08]. 62

3.4 Example of conditioning kernel for Pixel-based methods 64

3.5 A comparison between 2D texture synthesis algorithms 66

3.6 some results of Parallel 2D texture synthesis [LH05, LH06] 67

3.7 Texture quilting algorithm [EF01] . 68

3.8 Examples of textures synthesized by using global optimization [KEBK05] . 69

3.9 A 3D neighborhood composed by 3 orthogonal 3D slices. 71

3.10 Examples of solid textures produced by using Perlin noise 71

3.11 [Examples of solid textures synthesized by using statistical features-matching
methods](a) Examples of solid textures produced by [HB95]. The textured
model is carved from the synthesized texture block (b) Anisotropic solid
textures generated by [DGF98] using multiple template images. 73

3.12 The synthesis pipeline of stereological technique for solid texture synthesis
[JDR04] . 74

3.13 Displacement configurations of [QY07] generated by a 32 kernel. 75

3.14 Examples of Aura 3D synthesis [QY07] 77

3.15 Examples of solid textures produced by [Wei02] 78

3.16 The candidate used by Lazy solid texture synthesis 79

3.17 Solid textures produced by Lazy Solid Texture Synthesis [DLTD08] 80

6

3.18 Comparison of different methods to authoring solid texture synthesis . . . 82

3.19 Layered textures created by using a procedural language [CDM+02] 83

3.20 Volumetric Illustrations [ONOI04] . 84

3.21 2D Lapped textures [PFH00] . 85

3.22 Classification of solid texture appearance according to [TOII08]. 86

3.23 Lapped Solid Textures [TOII08] . 87

3.24 Our Paradigm for Digital Content Creation 90

3.25 BSP-Tree Produced by Exemplars . 93

3.26 Interpolation Inside BSP Regions . 94

3.27 Morphing Using Gaussian Stacks . 96

3.28 Showing the internal appearance of an orange. 99

3.29 Feature enhancement using local histogram matching 101

3.30 Bunny with patterned textures . 102

3.31 Versatile Texturing . 103

3.32 New Generation of Transgenic Fruits . 104

4.1 An example of knot tying performed by our algorithm. 108

4.2 Stiffness,Bending & Collision constraints formulation 110

4.3 Friction & Contact constraints formulation 111

4.4 Torsion constraints formulation . 112

4.5 Simple pruning test for self collision detection based on angles 113

4.6 Haptic setup . 114

4.7 Strangling the bunny . 115

4.8 Example of knots . 116

4.9 A scheme of the whole HRTF calculation system 118

4.10 Three elements of the 3D dummy library 120

4.11 Ear and Head selection and alignment . 121

4.12 Lateral head deformation . 123

7

4.13 Symmetrization . 124

4.14 Example of ear morphing sequence. 124

4.15 Two results of processed heads. 125

4.16 Two examples of polar plots for measurements on couples of scanned-reconstructed
3D heads. 127

8

List of Tables

3.1 Comparison between solid textures and solid meshes. 87

4.1 Distance in mm between key-points of scanned and reconstructed model . . 126

4.2 Difference in mm between distances indicated in [Lar01] 126

9

10

Chapter 1

Introduction

The simulation of real-world phenomena is one of the major topics of Computer Graphics.
Physics provides models for representing and simulate natural phenomena in a way they
can be encoded and solved via computer simulation.

In computer graphics, physically-based models are exploited in several contexts with the
goal of increasing the degree of realism of a simulated environment. For example, physically-
based modeling of light transmission increases visual realism of a rendered scene, as well
as accurate simulation of mechanical phenomena present in a virtual scene, like smoke, fire
or fluids, co-occur to make a simulated environment more realistic.
Among the applications of physics to computer graphics, a growing interest concerns the
simulation of deformable bodies. With the term deformable body we mean an object whose
shape changes under the action of external forces, according to the mechanical properties
of the materials it is made of. Most organic objects in the real world are deformable. The
simulation of deformable objects is used to increase the realism of a simulated world by an-
imating the objects in the scene. Moreover, deformable bodies simulation is a fundamental
task for various application domains such as off-line animation or interactive applications
like video-games or virtual surgery.
The models proposed by continuum mechanics are usually approximated and discretized
to make them suitable for computer simulation. Intuitively, the more a simulation is phys-
ically accurate the more it is perceived as real by the user. Nevertheless, the majority of
Computer Graphics applications require only that the produced simulation appears physi-
cally “plausible”. That is not the case, for example, for mechanical engineering applications
that generally needs highly accurate simulations for safety and functionality.

Although the early approaches to implement deformation where essentially borrowed from

11

mechanical engineering, further research for interactive methods lead to solutions that
not necessarily produce plausible but not necessarily accurate behavior, therefore trading
accuracy for speed preserving realism.

1.1 Applications domains of deformable bodies simu-

lation

We can split the Computer Graphics applications domain of deformable bodies modeling
in two main categories:

Off-line simulation Simulation of deformable objects can be used to create realistic an-
imations with a minimum user intervention.
Imagine we want to create a sequence of frames, which defines the animation of a
particular physical phenomenon. In this case, we want to maximize the realism of the
animation and at the same time to minimize the workload of the animator. Instead
of animating manually each frame of the entire sequence, a physically-based method
can be used to define implicitly the behavior of the different objects composing the
scene. For some complex scenarios, such as fluid animation, defining manually the
entire animation is a tedious work, and, in most of the cases, the final result will ap-
pear unrealistic. On the other hand, the quality produced by a physical simulation is
almost indistinguishable with respect to a real-world sequence. Another application
can be found in the design of clothes, to be able to see how they fit a particular
virtual body before actually producing it.
This class of applications requires the simulation to be as accurate as possible, in
terms of rendering quality and accuracy of the mechanical behavior, while efficiency
is generally considered a secondary objective.

Real-time simulation A different group of applications requires the simulation of de-
formable objects in real-time, i.e. a sustained frame rate has to be achieved. Virtual
surgery and games are the typical application domains for this class of systems. In
both cases the visual feedback produced by the system has to be fast enough to
give the user the impression of the real world. The accuracy of the simulation and
the rendering quality are typically compromised to benefit the update frequency and
the visual smoothness of the system. Another fundamental property that must be
achieved by this class of systems is robustness, since the approximations due to model
discretization may lead to numerical errors that make the system unstable.

12

1.2 Cutting or fracturing a deformable object

One of the main goal of this thesis is real-time simulation of cutting and fracturing of
deformable objects. This task is fundamental, for example, in virtual surgery, where the
surgeon usually cuts or lacerates human tissues by using a set of tools. In a similar way, a
game may allow fracturing objects to increase both interactivity and degrees of realism.
Modeling cuts is a complex operation, which involves physical and visual modifications in
the deformable object:

Physical Modification When we cut a deformable objects we create a discontinuity in-
side its volume.
Most of the representations employ a subdivision of the object domain in finite ele-
ments that are used both for visual representation and for deformation computation.
The problem is that the requirements of such subdivision to guarantee an accurate
and stable simulation conflicts with the need to update it on-the-fly to implement a
cut. This problem has been tackled in a number of research papers without actually
providing a complete solution. Generally speaking, for off line simulation the sub-
division can be carefully adapted step by step, trading speed for accuracy, while for
interactive simulation the solutions tend to add simplificative assumptions and/or to
limit the accuracy for keeping the simulation fast and stable.

Modification of object’s appearance Some modifications have an impact on the ob-
ject representation in terms of shape and color properties.
The external shape of the object has to be modified in order to show internal sur-
faces revealed by cuts or fractures. Such modifications are typically implemented
by increasing the geometric primitives representing the object’s boundary. Since the
external surface of the object has to be animated as well, its complexity has to be
limited in order ensure the minimum update rate required by the application. Fur-
thermore, the modifications of the external shape may produce degeneration of the
surface representation.
When an object is cut or fractured, it shows its internal appearance. For example
if we split a fruit or a vegetable we expect to see its internal structure, in terms
of color variation, according to the cut location and orientation. Then, in order to
increase the realism of the simulation, it is important to provide a system that dy-
namically texturizes appropriately the new object’s boundaries created by the cuts
or the fractures.

13

1.3 Scope of the thesis and results

We define a set of efficient methodologies, which are integrated in a framework, to produce
an interactive simulation of deformable objects, which allows the insertion of cuts or frac-
tures. Our research is mainly motivated to ensure stability and efficiency in a real time
framework. Furthermore, rendering quality is improved by synthesizing texture attribute
of internal surfaces in real-time.

As previously stated, interactive simulation of deformable objects cut must be at the same
time robust and realistic.
Robustness is the capacity of the system to remain stable even when cuts, fractures or
large deformations occur. Methods previously proposed in literature keep the system sta-
ble by using complex re-meshing operations effecting both physical model and boundary
representation.

1.3.1 Primary Contribution

Splitting Cubes We propose a new object’s boundary representation called Splitting
Cubes, which allows to define cuts and fractures while, at the same time, ensuring
stability and efficiency. Splitting Cubes is an algorithm which provides a dynamic
tessellation of an evolving surface embedded in a deforming space. Such deforming
space could be dynamically updated by a physical simulation.
We decouple the physical simulation from the boundary shape representation. Al-
though the cut resolution is fixed, we gain a considerable advantage in terms of
efficiency and stability with respect to previous methods. That characteristic makes
this algorithm particularly suitable for real time applications.

Extended Transparency Method We successfully integrate the Splitting Cubes with
a meshless method which simulates the physical behavior of the deformable object.
We propose the Extended Transparency Method to model discontinuities due to cuts
or fractures for meshless methods. We demonstrate how our method improves sta-
bility with respect to previous methods proposed in literature. Furthermore thanks
to its formulation, the Extended Transparency Method is particularly suitable for
real-time applications, since it can be easily implemented on the GPU.

Synthesis of internal appearance We integrate our framework with a method that al-
lows, with a minimum user intervention, to define internal appearance of the objects.

14

The main challenges relatives to these particular class of modeling paradigm are: to
design of an intuitive interface allowing the user to specify the interior of the object
with a minimum workload, to built a synthesis method that can capture and syn-
thesize features at different scales of resolution. The modeling paradigm we propose
is an advance in terms of intuitive modeling and expressing power (in terms of syn-
thesis). We show how a naive user can easily model the internal appearance of an
object to increase the visual realism of the simulation. Furthermore, being real-time,
our method is particularly suitable for interactive simulations.

1.3.2 Secondary Contribution

Tying knots As additional result we first propose a novel method for interactive simu-
lation of thread dynamics allowing knot tying, which is a key task for endoscopic
surgery simulation. Our method proves to be more efficient and robust, with respect
to previous methods.

Automatic calculation of HRTF Secondarily, we propose a method for automatic cal-
culation of individualized Head Related Transfer Function (HRTF), which is indis-
pensable for binaural rendering of three-dimensional sound. This function is strictly
related to the peculiar features of ears and face of the listener. The system proves to
be fast, automatic, robust and reliable: geometric validation and preliminary assess-
ments show that it can be accurate enough for HRTF calculation.

1.4 Outline of the thesis

The remaining of this dissertation is organized as follows:

• In Chapter 2 we introduce the problem of virtual cutting. First we provide a brief
introduction on continuum based mechanics, which is the basic theory underlying
discretized models used in Computer Graphics. Next, we introduce the problem of
time discretization, which is fundamental to represent body dynamics, showing and
discussing existing methodologies. The models proposed in literature for deformable
object simulation are split in two main groups: mesh-based and mesh-less methods.
We finally conclude this introduction by making a comparison between this two class
of methods, devoting particular attention to how they model discontinuities. Then
we provide a detailed description of the splitting cubes algorithm, showing results
and main advantages provided by our method.

15

• In Chapter 3 we analyze the problem of defining the internal appearance of an object.
After an introduction to 2D texture synthesis, we illustrate the main approaches
proposed in literature, which we group in two main classes: solid texture and solid
meshes, describing advantages and drawbacks of each class of methods. Then we
introduce a novel paradigm to capture and synthesize the property of an interior of
an object in real-time. Among the possible advantages shown by this method, we
show how it can be easily integrated with the interactive simulation framework we
proposed in the previous chapter to provide the color of newly created surfaces.

• Finally, we provide in Chapter 4 our additional contributions. We first define a
new robust and efficient method for real-time thread simulation allowing knot tying.
Then, we define a completely automatic system for producing a 3D model of a head
using uncalibrated photographs. The method has been used for sound scattering
calculation.

The contributions of this thesis are summarized in chapter 5, also suggesting some way to
improve our work and opportunities for future research

16

Chapter 2

Interacting with deformable objects

2.1 Background

2.1.1 Continuum Elasticity

A deformable object is a body whose shape may change dynamically under the action of
a force field. The way its shape changes depends on a set of parameters K that represents
its mechanical properties.
The undeformed shape, or rest shape, is the initial configuration in which the object is when
no external force is applied.
An equilibrium configuration is a state where the energy due to deformation is at a local
minimum. In particular, rest shape can be classified as an equilibrium configuration where
that energy term is zero.
The rest shape is described by a continuous connected subset of IR3 referred as material
coordinates or M , while points belonging to such subset are usually called material points.
The parameters K characterize how the object changes its shape when external events per-
turbs its equilibrium configuration. Intuitively, such parameters determine the mechanical
behavior of a deformable object, for example they differentiate a soft from a stiff object or
fluid from a solid object.

Under the action of applied forces, the object deforms, according to K, to reach a new
equilibrium position. In particular, each material point x originally located at its rest
position m(x) ∈ IR3, moves to a new coordinates w(x) ∈ IR3, which are called deformed
coordinates. We can express deformed coordinates as the sum of material coordinates m(x)
and a displacement vector u(x):

17

w(x) = m(x) + u(x) (2.1)

The displacement field u(x),∀x ∈ M encode the entire body’s deformation. It is impor-
tant to notice that not every possible displacement field produces a deformation; a rigid
transformation for example, such as a rotation or uniform displacement, does not produce
any deformation.
The ”amount of deformation” is expressed in terms of spatial variations of the displace-
ment fields, so that the contribute provided by rigid transformations is nullified.

The Strain tensor ε express the ”amount of deformation” in terms of gradient of the
displacement field ∇u, that is the Jacobian of the displacement field:

∇u =

 uxx uyx uzx
uxy uyy uzy
uxz uyz uzz

 (2.2)

A popular choice consist of evaluating strain trough the Green strain tensor εg, or its linear
approximation, the Cauchy’s strain tensor εc:

εg =
1

2
(∇u+∇uT +∇uT∇u) (2.3)

εc =
1

2
(∇u+∇uT) (2.4)

Cauchy’s stress principle asserts that when a force acts on a continuum body, then internal
reactions (coded as force vectors) rise between the material points. In order to simulate
the dynamic of a deforming object, it is important to quantify such internal forces.
The Stress measures the amount of force applied per area-unit. It is a measure of the
intensity of the total internal forces acting within M across imaginary internal surfaces.
The state of stress at a point in M is defined by the nine components of the Cauchy stress
tensor, σ ∈ IR3×3, that, for isotropic purely elastic materials, is linearly related to strain
by the Hook’s law :

σ = Eε (2.5)

The coefficients E ∈ IR3×3 depend on intrinsic material characteristics K, and determine
the stiffness of simulated object. If we assume that the material is isotropic, then E is
univocally determined by two independent values, Young’s modulus and Poisson’s ratio.
Young’s modulus E is the ratio of stress to strain on the loading plane along the loading

18

direction, while Poisson’s express the ratio of lateral strain and axial strain. The Strain
Energy Density U(x) defines the amount of energy stored on material points:

U(x) =
1

2
ε(x) · σ(x) (2.6)

consequently, the total elastic energy U is obtained by integrating U(x) over the entire
domain:

U =

∫
M

U(x) (2.7)

Finally, the Elastic Force, F (x), acting on a material point, is the negative gradient of
elastic strain density with respect to material point’s displacement.
In linear elasticity this relation can be expressed as:

F (x) = −∇uU(x) (2.8)

2.1.2 Discretization

The total potential energy Π of a deformable object is described by the following equation:

Π = U +W (2.9)

Where W is the load due to external forces (gravity or contact constraints for example).
The potential energy reaches a local minimum (defining an equilibrium configuration of
the deformable object), when the derivative of Π with respect to the material points dis-
placements functions is zero.

The minimization process leads to the resolution of the following differential equation,
commonly referred as Equilibrium Equation, which describes the dynamics of a material
point x:

ρ · ẅ(x, t) = ∇ · σ + fext (2.10)

where ρ is the density of the material, fext represents an externally applied force The
divergence operator turns the 3 by 3 stress tensor back into a 3 vector:

∇ · σ =

 σxx,x + σxy,y + σxz,z
σyx,x + σyy,y + σyz,z
σzx,x + σzy,y + σzz,z

 (2.11)

19

The first term of equation 2.10 represents the internal force acting on material point x. It
is defined by multiplying the second derivative of it’s world position, which represents the
acceleration, by its local density. The second term of equation is the sum of internal forces
(which are described in terms of stress tensor) and the external applied forces.
While is possible to solve the PDE expressed by Equation 2.10 directly for very simple
cases which provides an analytic description of the domain M (such as a sphere or a bar),
it not possible to do so for the cases where the shape is more complex. For the majority
of the real objects we have no analytic description of the domain (the integral described
by Equation 2.7 is analytically insoluble), then in order simulate their elastic behavior we
need to approximate somehow their domain.

Following these considerations, it becomes essential to discretize the continuum-mechanic
based model, (described in Section 2.1.1), in a way that the PDE of Equation 2.10 is locally
soluble on each discrete sample.
There are two main classes of methods related to the discretization of deformable objects
domain, mesh-based and mesh-less. The following paragraphs give an overview of the
major advantages and drawback of both classes, along with a detailed description of the
discrete models that are the most popular in computer animation.

The derivation of the forces, due to deformation, is clearly not sufficient to animate a
deforming body. Animating its dynamics requires the knowledge of time-dependent world
coordinates of material points w(x, t).
To make the whole simulation suitable for computer animation, time must be discretized
by sampling at fixed interval δt, usually called time steps.
Then the ”time-step dependent” sequence of world coordinates:

w(x, t0), w(x, t1)..., w(x, t(n−1)), w(x, t(n−1)) (2.12)

can be used to generate the frame sequence of the scene.
Next section introduces the different numerical methods to express time-dependent world
coordinates during the simulation, focusing on advantages and drawbacks of each of them.

2.1.3 Time Integration

If we want to display the dynamics of deforming objects, it is fundamental to know, for
each time step ti, the world coordinates w(x, ti) of material points.
Unfortunately, given the internal forces acting on the material points x and its world
coordinates w(x, ti) at time step ti, to obtain world coordinates for the next time step
w(x, t(i+1)) is not straightforward.
The value of world coordinates at next time-step is implicitly defined by the solution of
the differential equation resulting from Newton’s second law of motion:

20

ẅ(x, t) = D(ẇ(x, t), w(x, t), t) (2.13)

Where the function D depends on the model used in the simulation. The formula 2.13
asserts that the acceleration of the material point (expressed as second derivative of po-
sition, ẅ(x, t)) is a function of its velocity (ẇ(x, t)) and its current position w(x, t). The
function, indicated as D, is uniquely determined by the model used for the simulation.

The most basic scheme to solve this differential equation is called Explicit Euler Integration.
Given the solution at time t, that is w(x, t); the solution for time t + δt, is approximated
using the first two terms of the Taylor expansion:

w(x, t+ δt) = w(x, t) + δt · ẇ(x, t) +O(δ2
t) (2.14)

If we associate the mass Mass(x) to the material point x, by applying that principle to
equation 2.13, then the motion of material point x can be rewritten as:

ẇ(x, t+ δt) = ẇ(x, t) + ẅ(x, t+ δt) · δt (2.15)

w(x, t+ δt) = w(x, t) + ẇ(x, t+ δt) · δt (2.16)

By considering Taylor expansion, it is easy to see that the error, for small δt, is proportional
to δ2

t .

Runge-Kutta Integration is an extension of Euler integration that allows substantially im-
proved accuracy. The basic idea to subdivide the time step in interval to get a better
evaluation of the derivatives:

w(x, t+ δt) = w(x, t) + δt · ẇ(x, t+
δt
2

) (2.17)

Equation 2.17 shows a particular instance of Runge-Kutta method, in this case derivatives
are approximated using an additional evaluation step located in the middle of the time
interval. This method is referred in literature as Mid-Point Method.
It is important to notice that the increment of accuracy given by Runge-Kutta methods,
implies a computational overhead. This better approximation of time derivatives increases
the stability of the whole time integration process, nevertheless, since it requires an addi-
tional evaluation step, the computational complexity is increased as well.
Another popular choice in computer graphics is the Verlet Method (see [MHHR07] for

21

details).

Summarizing, we can schematize the typical animation loop as follows:

u(x, ti)→ ε(x, ti)→ σ(x, ti)→ F (x, ti)︸ ︷︷ ︸
elastic forces derivation

=⇒ ẅ(x, ti)→ ẇ(x, ti)→ w(x, ti)︸ ︷︷ ︸
integration phase

=⇒ u(x, t(i+1))→ ...

(2.18)
The first part of the animation loop concern the derivation of elastic forces: by using
displacements of material points it is possible to derive strains, stresses and consequently
the resulting elastic forces. Then in the integration phase, by using elastic forces we
can derive acceleration, velocity and finally the word coordinates of the material point x.
Finally, world coordinates of material point x, is used to derive its displacement vector for
the sequent time interval.

All the Integration methods cited above can be grouped as explicit integration techniques,
in fact unknown values for time ti are calculated explicitly as a function of values at time
t(i−1).
Explicit time integration methods are easy to implement and computationally light to
execute, unfortunately its stability is strictly related to the size of time-step. In case of
Euler integration, Delingette [Del98] asserts that given system of n masses linked by linear
springs, then stability is achieved if kc ≤ Mtot

nπ2(δt)2
,where kc is the elastic constant of the

strings, and Mtot is the total mass. In general stability is achieved by reducing the time
step, slowing the overall simulation. The degree of realism of an interactive simulation of
deformable bodies is strictly related to the size of the time step. Indeed reducing the size
of time-step, usually increases the gap between simulated time and real-time, reducing the
realism perceived by the user.

This problems is resolved by Implicit Integration Techniques. While for explicit methods
the solution at time t + δt is a function of values and derivatives at time t, w(x, t + δt) =
Funexplicit(w(x, t), ẇ(x, t)), in implicit methods the solution at time t + δt is function of
derivatives at the same time t+ δt, then w(x, t+ δt) = Funimplicit(w(x, t), ẇ(x, t+ δt)).
Baraff et al. in [BW98] introduce the Computer Graphics community to implicit integra-
tion; they develop an implicit integration schema using Euler method for cloth simulation,
showing a significant advance in terms of stability. The implicit instance of Euler integra-
tion is usually referred as backward Euler step ,while its explicit version as forward Euler
step.
In backward euler step the unknowns for next time step (t + δt) appear in both sides of
equation:

w(x, t + δt) = w(x, t) + δtẇ(x, t + δt) (2.19)

22

ẇ(x, t + δt) = ẇ(x, t) + δtFunimplicit(ẇ(x, t + δt), w(x, t + δt)) (2.20)

Where Funimplicit is defined by the discretized model used for the simulation (please see
[BW98] for details).

Implicit methods still generate some error (similarly to explicit method, it derives from
a truncation of the Taylor-series), but, in practical cases, it is more robust than explicit
methods. Implicit integration solves world coordinates of material points together at each
time step, as a coupled system, while Explicit integration treat each point independently.
Additionally, Implicit methods reduces the potential for instability.
Implicit methods are, in general, more difficult to implement with respect to explicit meth-
ods and require more computational resources. Indeed these methods comports the reso-
lution of a large sparse linear system at each time step, which is solved by [BW98] using a
modified conjugate gradient. That system of equation is determined by the function D of
equation 2.20. Such function describes the relation between the material points belonging
to the deformable model.
If we want to create a discontinuity (such as cuts or fractures) into the domain, then we
have to change the formulation of D, with the consequent reassembly of the system of
equations. For this reasons Explicit time integration is more suitable for the simulation of
cuts and fractures in real-time, since it treat each material point independently.

2.1.4 Mesh-based and Meshless methods

Discrete methods for deformable bodies simulation can be grouped into two broad cate-
gories: mesh-based and meshless methods.

In mesh-based methods the domain is divided into a set of disjoint elements grouped into
topological map called a mesh.
The topology of the mesh and the shape of each element is designed such that is possible
to interpolate inside each cell quantities that are defined just on nodes.
So doing we can integrate functions inside each cell and, consequently, apply continuum-
based mechanics formulation (as explained in Section 2.1.1). In other words, the mechanic
behavior of the entire domain is described by this mesh of cells, each one of them consid-
ered as a continuous piece of material. That consideration summarizes the main philosophy
constituting the Finite Element Analysis.
Section 2.1.5 shows the simpler and more intuitive among mesh-based models, the mass-
spring method, then section 2.1.6 introduces the classical Finite Element Method or FEM.

23

In meshless methods the volume of the body is sampled with a set of particles without
any constraints regarding their distribution or connections. Quantities are interpolated
using meshless shape functions that requires only the knowledge of a set of neighbors.
Connectivity between particles (neighboring relations) usually is not maintained explicitly
but updated for each simulation step.
Section 2.1.7 reports a meshless method for the simulation of deformable bodies: The Point
Based Animation Method [MKN+04], which can be considered the implementation of the
Element-free Galerkin Method [BLG94].
Finally in Section 2.1.8 we briefly present a simulation framework based on a geometry-
based energy formulation: the Shape Matching Method [MHTG05] for deformable object
simulation, which does not rely on continuum mechanics.

The reader can find a wider collection of simulation models in [GM97] or [NMK+05]).

2.1.5 Mass-Spring Method

Mass-Springs systems can be considered the simplest and most intuitive of all deformable
models. They were successfully used for facial ([PB81], [Wat87]) and cloth animation
([EWS96], [BW98], [CK02], [EGS03]). Figure 2.1 shows an example of clothes animated
using an implicit formulation of a mass-spring system [BW98].
In Mass-Springs system the domain M is sampled with unitary particles linked by a net
of springs. Usually, springs are considered to be linear, but non-linear springs can be also
used to model tissues that exhibit inelastic behavior.
Elastic forces rise when springs are elongated or compressed; if springs are linear then they
are modeled by Hook’s law. The elastic force F acting on a mass m0 generated by a spring
connecting the two particles p0 and p1, is described by the following equation:

F (m0) = K · (L− |w(p0)− w(p1)|) · sign(w(p0)− w(p1)) (2.21)

Where K is spring elastic constant , w(p0) and w(p1) are respectively world position of
particles p0 and p1, and L is the length of the spring at its rest shape.
Since physical bodies are not perfectly elastic, they lose energy during deformation. To
simulate this feature, a viscosity force term FV is added:

FV (m0) = Kd(v1 − v0) (2.22)

where v0 and v1 are the velocity of the particles and Kd is the spring’s damping constant.

Usually, to model the dynamics of a deformable object we redistribute its total mass
among particles. Similarly, quantities representing object’s current state (such as velocity
and world position) are sampled by particles.

24

Figure 2.1: Clothes modeled with mass spring systems using implicit time integration
[BW98].

Mass-springs systems are intuitive and simple to implement. However, to tune parameters
of the springs that correspond to the known elastic properties of the material is not a
trivial task [DKT95, Van98].

2.1.6 Finite Elements Method

In Finite Elements Methods (FEM) the volume is discretized into a set (mesh) of disjoint
volumetric elements (also called cells) whose vertices are commonly referred to as nodes.
Each element can be seen as continuously connected volume that can be modeled using
continuum mechanics (as explained in section 2.1.1) .
Instead of solving the partial differential equation governing body dynamics (expressed in
2.10), over the entire volume, they are solved locally for each element.

Quantities that are defined for nodes Q(xi), are continuously interpolated inside each cell
using nodal values:

25

Figure 2.2: Two deformable bars simulated using Tetrahedral FEM with warped (blue)
and linear (red) stress measures. Courtesy of [MMD+02].

Q̃(x) =
∑
i

Q(xi)Bi (2.23)

where Bi are in general referred to as shape functions which are 1 at node i and zero at
all other nodes (Kronecker Delta property). Because adjacent elements share nodes, then
the entire mesh defines a piecewise interpolation function across the domain.
Through the shape functions it is possible to express PDE of 2.10, as a function of nodal
values w(xi, t).

In computer animation is common to use a simplified version of FEM, which is called
Explicit Finite Element Method. In Explicit FEM, for each cell i, a continuous 3D dis-
placement vector field ui(x) is obtained trough linear interpolation of nodal displacements
U = u0, u1...uN , weighted by shape functions Bk(x):

ui(x) =
∑
k<N

u(xk)Bk(x) (2.24)

Where N is the number of nodes composing the element.
Given ui(x) , we can express the jacobian of displacement field ∇ui(x) and, consequently,
define a strain εi(x) and a stress σi(x) field over each cell.

Then elastic energy is integrated for each cell:

U i =

∫
V

1

2
εi(x) · σi(x) (2.25)

The total elastic energy can be seen as the sum of energy contributes coming from cells:

26

U =
∑
i

U i (2.26)

Similarly to Equation , the elastic force F (ni) acting on the node ni is defined as the
negative gradient of U with respect to nodal displacements (the strain energy density of
each point belonging to the cell can defined trough interpolation of shape functions).
Since in linear elasticity force is considered to be linearly related to energy, then it is
possible to express the force field Fe(x) produced by an element e as:

Fe(x) = Keue(x) +O(‖ue(x)‖2) (2.27)

where Ke is usually called the stiffness matrix. The linear algebraic equation governing
the motion for a mesh composed by of N nodes is:

Mü+Du̇+Ku = fext (2.28)

Where M ∈ RN×N is the Mass Matrix expressing the mass of each node, D ∈ RN×N is the
Damping Matrix. The damping matrix reduces the force acting on a node proportionally
to its velocity. The stiffness matrix K ∈ RN×N is the obtained by cumulating the stiffness
matrices coming from each elements, with respect to nodes (considering that adjacent ele-
ments shares nodes).Then, the simulation loop only requires the resolution of a system of
equation. Since the stiffness matrix K depends on mesh topology and mesh’s rest shape,
then it can be precomputed. Note that equation can be considered as a discretization of
equation 2.10, where the term Mü corresponds to the total elastic forces acting on a node,
Ku models the elastic internal forces due to deformation, and the force term Du̇ is added
to model damping.

Linear elastic forces yield stable and accurate simulation in case of small deformations,
while for large deformation it create visible artifacts.
Non-linear tensors overcome this problems ([DSB99]), unfortunately the use of non-linearity
introduce stability problems and make the simulation loop more complex. To elimi-
nate these artifacts while maintaining the main advantages of linear methods, Müller et
al.([MMD+02]) extracts the rotational part of the deformation for each element and com-
pute the forces with respect to the non-rotated reference frame (see figure 2.2) . At each
time step is computed a tensor field that describes the local rotations of all the vertices
in the mesh. This field allows us to compute the elastic forces in a non-rotated reference
frame (nullifying the strain contributes given by rotations).
An interesting development of FEM method is presented by Irving et al. ([ITF04]), where
authors propose a FEM model that allows large stable deformations and volume inversion
(as shown by figure 2.3).

27

Figure 2.3: A sequence produced by using Invertible FEM [ITF04]

In computer graphics the most popular choice is to use tetrahedral cell to implement
FEM; tetrahedrons are always convex and basis functions are derived from barycentric
coordinates (see [OH99] and [OBH02] for details regarding tetrahedral FEM).
The current trend is to generalize FEM basis function to works on cells of arbitrary shapes.
In [WBG07] using mean-value coordinates, tetrahedral barycentric basis functions are ex-
tended to spread into arbitrary convex polyhedra, while in [MKB+08] FEM is generalized
to non-convex shapes using harmonic coordinates.

2.1.7 Meshless methods

As we previously introduced in Section 2.1.4, mesh-free methods doesn’t impose any con-
straints regarding volume decomposition.
Similarly to explicit FEM, meshless methods are also based on continuum mechanics. The
main difference between them is the strategy used to extrapolate a continuous 3D values
field from sampled values. Meshless methods requires the knowledge, for each sample i

28

(also referred to as Phyxel), of a set neighbors Ni for which the distance respect to i
is lesser than a given support radius ri. A continuous displacement fields is interpolated
from values sampled by neighbors. Since the set of neighbors can be dynamically updated
during the simulation, then the shape functions adapts dynamically to the current object’s
state. Thanks to their flexibility, meshless methods are particularly suitable for the simu-
lation of large deformations and topology changes. They are often used for the simulation
of fracturing [PKA+05], melting [MKN+04] of deforming objects. In ([KAG+05]) authors
explain how to extend this method to simulate fluids by merging mechanics equation with
Navier-Stokes equations. The reader may refer to [SL04, BLG94, BKF+96] for an in-depth
examination of meshless models.

In ([MKN+04]) authors introduce a mesh-free continuum mechanics-based framework to
simulate elastic plastic and melting objects. The approach proposed in that paper is known
as Point-Based Animation or PBA.
While in FEM values are interpolated through basis functions (that are usually designed
on element’s shape); in PBA values are approximated from neighbors using the first two
terms of the Taylor series.
More in detail, a continuous displacement u(x) in the neighborhood of phyxel i can be
approximated by the first two terms of the Taylor series:

u(xi + ∆x) = u(xi) +∇u(xi)∆x+O(‖∆x‖2) (2.29)

where u(xi) refers to the displacement vector of phyxel i. Equation 2.29 should be modified
in order to work over a discretized domain. Following that consideration, the displacement
value of phyxel j is approximated by Taylor expansion at neighbor i as:

ũ(xij) = u(xi) +∇u(xi) (2.30)

Considering that the displacements approximations ũ(xij) is estimated at its neighbors,
then the introduced error can be estimated as:

errj =
∑

i∈Neighj

(u(xj)− ũ(xij))
2 ∗ wji (2.31)

Interpolation weights wji are defined by continuous shape functions, which are functions
of the distance between the phyxel’s i and j.

Displacement derivatives on phyxels are approximated trough Moving Least Squares Method
(see [LS81] for details). For each phyxel xj, the derivatives of displacement field ∇u(xj) ∈
IR3 with respect to each component x, y, z are estimated by minimizing the error errj (see
for the complete formulation [MKN+04]).

29

Figure 2.4: Point Based Animation [MKN+04] allows to animate elastic, plastic, melting
and solidifying objects

These derivatives are reassembled to obtain the Jacobian of the displacement field∇u(xj) ∈
IR3×3.
Once we estimated the Jacobian of displacement field, then strain ε is evaluated by Green
strain tensor (equation 2.3), stress σ by applying Hook’s linear material law (equation 2.5),
and finally strain energy density U(xj) is evaluated using equation 2.6:

εj =
1

2
(∇u(xj) +∇u(xj)

T +∇u(xj)
T∇u(xj))

σj = Eεj

U(xj) =
1

2
(εj · σj) (2.32)

Finally, elastic forces ar computed via the derivation of Uj.
Point-based animation simulates the behavior of a wide range of material properties (See
figure 2.4), furthermore they can be adapted to simulate non-linear characteristic like plas-
ticity.

Since PBA does not naturally provide a representation of the object’s boundary, a detailed
surface representation is used to render the external boundary of the object.
In the case that any topological change occurs during the simulation that surface can be
simply dragged along with phyxels displacements. Each vertex, or surfel, of the external
surface stores a kernel of neighboring phyxels. The position of the surfels is dynamically

30

updated using a smooth displacement vector field which is invariant under linear trans-
formation. The displacement vector is evaluated by using the displacement’s derivative
∇u(xi) of neighboring phyxels:

usurf =
1∑
wi,surf

∑
wi,surf

(
u(xi) +∇u(xi)

T (xi − xsurf)
)

(2.33)

In a more complex scenario, like in fluids or viscoelastic objects simulation, topology can
arbitrary changes during the simulation. In that case the external boundary is defined as
an implicit surface which can be rendered as a triangle mesh, extracted by Marching Cubes
Algorithm [LC87, MS94], or using Point-Based rendering techniques [PKKG03, ZPvBG02].

2.1.8 Meshless deformations Based on Shape Matching

In [PW89] the authors introduce the use modal analysis for computer animation purposes.
Modal analysis is used to find a linear approximation of the PDE governing the dynamics
of a deforming body (equation 2.10 or its discretization for FEM in Equation 2.1.6). This
system of nonlinear equation is turned into a simple set of decoupled linear equations that
may be individually solved analytically. The main benefit of modal analysis is the gain in
term of efficiency and stability. Nevertheless the realism of the simulation is compromised
by the fact that the linearization leads to a first order approximation of the true solution.
Some interesting application of modal analysis on FEM are [SHGO02, HSO03].

In [MHTG05] the authors propose a non physically based animation technique based on
modal analysis.
The main difference of this model with respect to [PW89] is that the classic continuum-
mechanics based formulation of energies is replaced with a purely by geometric formulation.
Solving a set of geometric constraints it is possible to find a set of goal positions defined
for each particle.
These goal positions are determined via a generalized shape matching of an undeformed
rest state with the current deformed state of the point cloud.
Basing on the knowledge of the goal positions, it is possible to define an integration scheme
that avoid overshooting (see Section 2.1.3 for details on integration methods), making the
whole system unconditionally stable (see figure 2.5).
The performance of this approach in terms memory consumption and computational ef-
ficiency together with the unconditional stability of the dynamic simulation make the
approach particularly interesting for games.
This method is unconditionally stable even under large deformation, but it does not pro-
duce realistic deformation since it is not physically based.

31

Figure 2.5: Excessive deformation handled by [MHTG05]. The stability of this approach
makes it the possible for the object to recover to its original shape.

2.1.9 Mesh-based vs Mesh-free methods

Most of the methods for real time interaction with deformable objects deal with mesh-
based models.
Mesh-based methods usually show their limits when large deformations occurs, in those
cases an excessive element’s change of shape can make the simulation inaccurate or un-
stable. On the other hand, due to their flexibility, mesh-free methods are suitable for the
simulation of a wide range of material, from deformable bodies to viscoelastic fluids.
When a topology change occurs (such as cuts or fractures), mesh-based methods require
remeshing operations to preserve a conforming mesh, that operations can introduces some
instabilities. Since in mesh-free methods there is no explicit connectivity, topology changes
come for free.
Topological changes entail shape functions to code a discontinuity. Unfortunately, while in
mesh-based methods discontinuities are implicitly defined by mesh connectivity, mesh-less
methods require to update the interpolation weights.

Mesh-Based methods provide a natural representation of the boundary which is described
by the external surface of the polyhedral elements composing the volumetric mesh. Since
cuts or fractures are usually realized by modifying mesh connectivity, then the external
boundary is updated while elements defines new portion of external boundary.
In meshless method, as explained in Section 2.1.7, a detailed surface is dynamically up-
dated according to the deformation field expressed by phyxels. That surface has to be
modified to show internal features revealed by cuts or fractures.
In the following sections we present a discussion about cuts and fractures representation
for mesh-based and mesh-less models.

32

a b c d

Figure 2.6: Techniques to implement cuts in mesh based models: (a) Portion of a triangu-
lation with a cut surface (in red) (b) Removing elements (c) Snapping vertices on the cut
surface (d) Remeshing.

2.2 Encoding discontinuities on Mesh-based methods

In Mesh-based models, the refresh rate of the physical system is linearly related to the
number of primitives of the mesh. Moreover, the stability of dynamic solvers is strongly
influenced by the quality of the elements composing the mesh. Therefore, mesh-based
methods for modeling discontinuities focuses on how to produce an accurate cut repre-
sentation with the minimum number of primitives, taking into account of their geometric
quality.
Because of Kronecker delta property, shape functions becomes zero over element’s bound-
ary. Exploiting the advantage given by that property it is possible to create discontinuities
inside the mesh by simply changing its connectivity.

Delingette et. al. [DCA99] uses Tensor Mass Model to simulate the mechanics of elements
involved in the cut, while the rest of the mesh is modeled with a more accurate FEM.
Tensor Mass Model can be considered as a continuum extension of the mass spring system.
As in FEM, nodal displacements are continuously interpolated inside each tetrahedron,
then forces are evaluated on each tetrahedron independently, as an isolated system. Fi-
nally, the force contributions, coming from tetrahedrons, are accumulated on their shared
vertices.
Due to the fact that Tensor Mass Model treat each tetrahedron independently (instead
of precomputing a global stiffness matrix as in the FEM), it is particularly suitable for
topological modifications.
Cuts are realized by removing the tetrahedra touched by the cutting tool. This method
avoids the creation of new primitives, unfortunately, because of element removal opera-
tions, it produce a poor visual feedback , along with the loss of volume (see Figure 2.6.(b)).

33

Figure 2.7: Comparison of between a real (Top) and a simulated (Bottom) fracture [OH99]

In the solution proposed by Nienhuys et al. [Nie03], the nodes closer to cut’s path are
snapped onto the cut surface and duplicated to open the cut (see Figure 2.6.(c)). This
method does not create new tetrahedra and can be coupled with a FEM simulation, since
the updating of the stiffness matrix can be done on-the-fly.
Several authors use re-meshing operations to adapt mesh tessellation to cut surface. In
[THK98, BS01, LD04] the deformable object is modeled using a mesh of triangles. Trian-
gles are split in correspondence of the intersection between the object and the cut surface.
Instead of using a mesh of triangles, Bielser et al. [BMG99, BG00] and Ganovelli et
al.[GCMS00] represent the deformable object using a tetrahedral mesh. The set of tetra-
hedrons intersected by the cut surface are substituted with a new set of tetrahedra such
that the new object’s boundary represent the cut surface. Each of the tetrahedrons in-
volved in the cut is re-meshed by a new set of tetrahedrons, whose connectivity is usually
determined by the combination of cut edges (see Figure 2.6.(d)). A pre-computed Look-
Up-Table is used to store the connectivity deriving from each possible combination of cut
edges. Remeshing provides an accurate representation of the cut surface, although it pro-
duces mesh fragmentation that can be only partially alleviated by enhancing the re-meshing
strategy with on-the-fly edge collapse operations [Gan01]. In [SHGS06], the authors reduce
the number of inserted primitives by limiting re-meshing operations to the cases where the
two sides of the cut edge are longer than a prefixed threshold; otherwise, they proceed as in
[Nie03] (nodes belonging to the cut edge are projected onto the cut surface and duplicated).

O’Brien et al. proposed a solution for modeling brittle and ductile fractures [OH99, OBH02]
in off-line simulations (see Figure 2.7). The authors proposed a formulation of Finite
Element Method on tetrahedral meshes that has become very popular in the Computer
Graphics community. Shape functions are realized trough barycentric coordinates while
mass is lumped on nodes. They used continuum mechanics equations to derive the crack
surface. In their method re-meshing is used to accurately represent the crack surface,
since “approximating it with the existing element boundaries would create undesirable

34

artifacts” [OH99].
Other solutions decouple the simulation from the representation. In [MBF04], similarly
to [BMG99, BG00], each tetrahedron is re-meshed to show the details revealed by cuts or
fractures. Such decomposition effects only the rendering, since the original tetrahedron is
still used for the physical simulation; only in the case that the cut generates disconnected
components, such tetrahedron is duplicated.
While in [MBF04] the tetrahedron can be decomposed at most in 4 components (one
for each node), in [SDF07] this idea extended by allowing the tetrahedra to be split any
number of time, always considering the intersection of the crack surface with the current
decomposition, and not only with the 6 edges of the original tetrahedron. In this manner
the objects can be cut in pieces arbitrarily small, at the price of generating polyhedra with
any number of faces (which all need to be tested for intersection and collision detection.
A more recent approach [PK08] uses Discontinuous Galerkin Finite Element Method.
This method allows to define discontinuities inside the shape functions used by classic
FEM formulation, and is used to perform robust cutting. However the computational
complexity required by this method is too high for real-time simulation.

2.3 Encoding discontinuities on Mesh-free methods

Since mesh-free methods do not satisfy the Kronecker delta property, special care needs to
be taken to model discontinuities.
As explained in section 2.1.7, phyxels are interconnected between them by a set of continu-
ous shape functions. Therefore, a discontinuity in mesh-free model, is realized by changing
the shape functions such that phyxels on opposite sides of the cut surface become dis-
connected. This is usually realized by enriching the shape function or, more easily, by
reducing the weight function to loosen the mutual influence between phyxels separated by
cut’s surface.

Contrary to mesh-based methods, mesh-free methods do not naturally provide a repre-
sentation of the boundary surface. That characteristic has to be taken in account in the
case we have to model discontinuities. A mesh of surfels, as explained in section 2.1.7,
encodes the external boundary of a mesh-less animated deformable body. This mesh must
be dynamically modified in order to visualize new details revealed when cuts or fractures
occurs. That modifications involves only the appearance of the deformable object, since
the updating of the physical characteristics is a separate task.
Indeed, while in mesh-based method modifications of external surface is direct consequence
of modifications of the physical model, in mesh-less methods physical model and rendered
surface can be considered as two disjoint entities that have to be treated separately.
In the following paragraphs we’ll give an overview of techniques to model discontinuities

35

Visibility Diffraction Transparency

(a) (b) (c)

Figure 2.8: (a) The Visibility Criterion [BLG94]: If the segment x xi crosses the newly
created surface the kernel value is set to zero. (b) The Diffraction Method [BKF+96,
OFTB96]: the value of shape function between two points is function of the shortest path
not intersecting the discontinuity line. (c)The Transparency Method [OFTB96, BKF+96]
uses the the length of x xi and the distance between the intersection point and the the
crack tip xc.

on mesh-free models, where the physical model and external surface are treated as two
disjoint entities.

2.3.1 Adapting the physical simulation in mesh-free methods

As previously stated (see section 2.3.3), a cut introduces a discontinuity in the deformation
function. In mesh-less methods this discontinuity can be encoded by altering the weights
of the shape functions, which can be done in various ways. Those methods has to satisfy
some requirements.
If a discontinuity separate the domain in two or more disjoint partitions, then such parti-
tions must be two ”physically independent” objects, i.e. weights bindings phyxels coming
from different partitions are equal to zero.
During the simulation, while a discontinuity progressively appear in the domain, weights
are progressively modified. Moreover, while those weights are modified, the framework
continue the simulation loop. In order to keep the whole simulation stable, weights must
be updated as smoothly as possible. An abrupt change of weight reflects on forces evalua-
tion, possibly making the system diverge.

One straightforward method to encode discontinuities is the Visibility Criterion proposed

36

by Belytschko et al. in [BLG94]. It consists in zeroing the value of the shape function
in those points from which the phyxel i is not visible, i.e. if the segment x xi crosses the
newly created surface (see figure 2.8.a). Although very simple to implement, this method
introduces also an undesired discontinuity at the horizon line (see Figure 2.9.a) that affects
convergence and stability.
In the Diffraction Method [BKF+96, OFTB96] the value of shape function between two
points is function of the shortest path not intersecting the discontinuity line. If xc identifies
the crack tip through which passes the shortest path not intersecting crack surface, then
the distance dl between a point x with respect to a phyxel xi is described by the following
equation:

dl =
{s1 + s2

s0

}γ
s0 (2.34)

Where, γ is usually equal to 1 or 2 [FTP03, DMTB96], and s0 = ‖xi − x‖, s1 = ‖xi − xc‖
and s1 = ‖x − xc‖, see Figure 2.8.b. Although the diffraction method produce a smooth
weight decrease in most of the cases, one potential divergence situation still exists. In
fact, when the discontinuity obscures the visibility completely, weight suddenly collapses
to zero, producing a discontinuity between two consecutive time steps (see Figure 2.9.b.
for details). Furthermore, due to complexity of the distance approximation, this method
is, in most the cases, not suitable for real-time simulations.
An approximated but interactive version of this approach is also used by Steinemann et
al. in [SOG06]. In a preprocessing phase, they build a connectivity graph on the phyxels
by adding an edge for each couple of neighboring phyxels, i.e. phyxels connected with
a weight value greater than zero. The distance between two phyxels is always taken as
the shortest path in the connectivity graph. When a discontinuity surface is defined, the
arcs intersecting the discontinuity surface are removed and the shortest paths between the
phyxels in the neighborhood are recomputed.
The Transparency Method [OFTB96, BKF+96] uses the the length of x xi and the distance
between the intersection point and the crack tip xc (see figure 2.8.c):

dl = s0 + ρl

{sc
sc

}γ
, γ ≥ 2 (2.35)

This method, similarly to the Diffraction Method, can produce a temporal discontinuity
(see Figure 2.8.a).
Transparency method is successfully used in [PKA+05] for non-interactive simulation of
fracturing solids.

2.3.2 Adapting the surface in mesh-free methods

In the solution proposed by Pauly et al. [PKA+05] the surface of the deformable object is
dynamically sampled with surfels rendered as oriented elliptical splats.

37

Visibility Diffraction Transparency Extended Visibility

a b c d

Figure 2.9: The images show how the weight function is modified by the introduction of
a cut surface (white line) by using: the visibility criterion, the diffraction methods, the
transparency method and the Extended Visibility criterion.

Cuts or fractures are often characterized by sharp features, in order to render that features
correctly, surfels overlapping a crack are clipped against a plane lying on the other side of
the crack [PKKG03].
In their model a crack is codified by a sequence of phyxels (called crack nodes) which iden-
tifies the crack propagation front. For cracks starting from the surface (e.g. when a cut
is being made), the first and last node of the sequence lie on the surface, while for cracks
generating inside the volume the front is circular. Every time a new crack node is added
to the sequence, i.e. every time the front propagates, new surfels are added to represent
the two new pieces of surface.
This technique avoids the classical problems of the mesh-based methods, i.e. fragmenta-
tion and degeneracies due to re-meshing. On the other hand the crack fronts can split and
merge and these events need to be handled explicitly to maintain the topology of the crack
front(s) consistent.
An alternative approach has been proposed by Steinemann et al. [SOG06], where the
surface is represented by a triangle mesh, which vertex moving according to equation 2.33
basing on a set of neighboring phyxels. When a cutting tool penetrates the object, the cut
surface is triangulated and used to update the current object’s surface.
As for the previous solution, the branching and merging of crack fronts has to be handled

38

Figure 2.10: An abstract representation of a discontinuity

explicitly. The set of neighbors of surfels is updated by extending the connectivity graph
to the surface’s vertices.
Compared to the point sampled method described above, the use of a triangle mesh give
advantages in terms of rendering speed. Unfortunately, if multiple cuts are executed in
the same region triangle fragmentation may occur, causing degradation in terms in perfor-
mance.

2.3.3 An abstract representation of a Discontinuity

Many solutions have been proposed to the problem of virtual fracturing/cutting of de-
formable objects, using different methods for physical simulation and rendering.

For the sake of generality, we introduce the problem in abstract terms. We characterize a
deformable object as a time dependent function F : Ω× Time→ R3 and a description of
its surface s, as shown in Figure 2.10. The function F gives, for each point of the object
domain at rest shape Ω, its position at a given time t. F is usually at least C0 continuous
except on the boundary of Ω. A cut is a function that modifies F and s on the base of a
cut surface inside the volume Ω: Cutcs(F, s) = (F ′, s′).
In this terms, the problem of virtual cutting can be expressed as the problem of defining
the function Cut.

39

Figure 2.11: Example of cut with multiple advancing fronts using the Splitting Cubes,
frames captured during an interactive simulation. The cut path is defined by the counter
clock-wise motion of the two blades.

2.4 The Splitting Cubes Algorithm

The Splitting Cubes algorithm is a technique for providing a tessellation of an evolving
surface embedded in a deforming space.
In this specific case the surface evolves when a cut exposes new parts of the object bound-
ary, and when the space deforms.
The key idea of the Splitting Cubes algorithm is to embed the object in a regular 3D
grid whose nodes are moved according to the deformation function F . The deformation
function F is continuously defined over the entire domain by interpolation of nodal values.
Since cells are cubic, the deformation function is interpolated inside each cube from its 8
nodes. This scheme allows us to implement discontinuities of the deformation inside a cell,
by varying the interpolation values of the nodes, depending on which edges are cut.

We introduce the details with a practical 2D example.
Figure 2.12.a shows a tessellated surface crossing a few cells of the regular grid (in 2D).
The cyan arrows leaving from the vertices of the tessellation show the dependencies of that
vertex on the cell nodes, i.e. from which nodes we compute its position. The red curve
shows the intersection of a cutting tool path with one edge of the embedding grid.
The tessellated surface is defined cell by cell on the base of the configuration of cut edges.
Positions of vertices is derived by position and normal of the intersection points.
In this sense, the main philosophy of our method is similar to what is done in the vari-

40

Figure 2.12: The Splitting Cubes idea. (a) The object is embedded in a regular grid, the
vertices of the tessellated surface depends on the grid nodes. (b) A cut surface crosses
an edge and changes the configuration of cells CellA and CellB. (c) The new surface in
the deformed space. (d) Dual interpretation: each node of the grid models a portion of
material.

ous extensions of the Marching Cubes approach [LC87, WMW86] that exploit hermitian
data [KBSS01, JLSW02]. However, the cut shown in Figure 2.12.b would generate an
invalid configuration for the standard Look Up Table (LUT) of the Marching Cubes both
for cell CellA and cell CellB (one edge of the cell is intersected). On the contrary, the
Splitting Cubes algorithm includes these configurations. The reason relies in the nature of
the cut surface.

In the literature the cut surface is regarded as the surface swept by the cutting tool,
which is usually identified with a segment (or a set of segments in order to approximate
the a curved blade). We use a more topological definition to explain our technique: the
cut surface is the boundary of a protrusion of the empty space surrounding the object.
We define the empty space as the absolute complement of the object’s volume domain M .

41

When a cutting tool penetrates into the object, it actually extends the empty space into
the object. Indeed, the cut surface represents a portion of the boundary of the empty space
surrounding the object.
When the object is in its rest position, the empty space always degenerates locally to a
surface where a cut occurs (Figure 2.12.(b)). However, that is not always verified when
the object is deformed (Figure 2.12.(c)).
Although at rest shape the volume of this protrusion is zero, its boundary (the blue curve
in Figure 2.10) is topologically well defined and can be tessellated, which is exactly what
the Splitting Cube does by sampling the cut surface on the cells edges and using these
points to define a tessellation.

The tessellation is defined individually cell by cell. Figure 2.12.b shows the tessellation
for the configurations of cells CellA and CellB. We can see that the cut generates two
vertices on the edge and one inside the cell CellB. Furthermore, the dependencies of the
vertices inside the two cells have been changed to reflect the cut.
The Splitting Cubes LUT (Look-Up-Table) contains all the 212 possible configurations de-
termined by cuts on cell edges, specifying for each configuration the relative triangulation
along with the dependencies of the vertices from the cell nodes. Figure 2.12.(d) shows a
dual interpretation of the Splitting Cubes.
Every node represents an amount of material. The material between two adjacent nodes
is continuously defined if and only if the corresponding edge is not cut. Similarly , when a
cell has no cut edge, then that cell is considered as an interval of continuously connected
material. Since cell shares nodes, then the whole cubic meshes defines a continuous piece-
wise interpolation function. Following that definition, the splitting cubes can be seen as a
cuboid version of the Virtual Node algorithm [MBF04].

It is important to remark the splitting cubes grid is an instrument to represent and inter-
polate a generic continuously defined function. Furthermore, the splitting cubes grid give
us the possibility to modify that function to model discontinuities on a resolution that is
limited by the edge length. This limitations is compensated by the robustness and the
efficiency achieved by the method.

2.4.1 Splitting Cubes: a 2D illustrative example

Figure 2.13 shows the six configurations for a cell in the 2D case. For each configuration
a tessellation of surface inside the cell is given. The cyan arrows leaving the vertices and
pointing to the cell nodes show the dependencies.
We start considering the 2D case, where the cells are quadrilaterals (besides, these are also
the configurations for the faces of a 3D cell). The first column shows the configuration

42

A) 1 B) 4 C) 4 D) 2 E) 4 F) 1

Figure 2.13: The six configurations for a face of the splitting cube (i.e. the 2D case). We
show: the configurations at rest shape (first row); the configurations at a given deformed
shape (second row); the need for the internal face vertex to avoid volume loss (right most
column).

in the parametric domain while the second shows a possible deformation of the cell with
the vertex-node dependencies. The number next to the case letter indicates how many
equivalent configurations are obtained by rotation or mirroring.
The configurations B-F are tessellations of the cut surface as derived by the cut edges.
Note that each cut edge will always create two vertices, called edge-vertices which always
depend on one of the two extremes of the edge. This choice reflects the discontinuity of the
deformation function F along the edge. The two edge-vertices will be free to move apart
in the deformed space.
Similarly, the vertex in the middle of the face, called face-vertex, is replicated for each
connected component and depends on the nodes constituting its connected component.
Face-vertices become necessary if we want to preserve the amount of material, otherwise a
cut in the parametric space will reduce the total volume.
We define as connected component a portion of the cell where every pair of points can be
connected by a curve without intersecting the cut surface. In the configurations A and B
of Figure 2.13, the cell includes only one connected component, while in C and D there
are 2 connected components, finally configurations E and F shown respectively 3 and 4
connected components. Obviously, extending that example to a 3D cubic cell, there should
be up to 8 different connected component.

2.4.2 Splitting Cubes: from 2D to 3D

The configuration for the 3D cell are derived by extending the 2D case (as described in
Section 2.4.1). Let us consider a cell with only one edge cut. In this case, extending the
corresponding 2D configuration (which is the case B of Figure 2.13), the resulting surface

43

Figure 2.14: Two examples of cuts. (a-b): The quads created by cutting 1 and 5 edges.
(c-d): the resulting tessellation.

will be represented as shown in Figure 2.14.(a). More in particular, we build a quad with
two edge-vertex, two face vertices and a center vertex placed inside the cube.
That configuration is replicated for each possible edge become cut, duplicating appropri-
ately the vertices and assigning the dependencies accordingly to the different connected
components. Figure 2.14.(b) and 2.14.(d) shows a case with 5 edges cut generating two
connected components, with the resulting tessellation, while Figure 2.14.(d) illustrates
vertices dependencies.
The tessellation and the dependencies are computed once for all and stored in a LUT
composed of 212 entries. We will show details about the LUT generation in Section 2.5.

2.4.3 Position of the vertices

While the connectivity of the vertices added by a cut is stored in the LUT, their position
has to be found on-the-fly. For the edge vertex the choice is trivially the cutting point
along the edge.
The position of face points is less obvious to find. Our goal is to provide a tessellation that
mimics the cut surface inside the cell, so we cannot use simplistic solutions as the center
of the face or the average of the edge vertices.

44

a b c d e

Figure 2.15: The figure shows how the vertices of the tessellation are derived from the
intersection o the cut surface with the edges of the cell and the normal to the cut surface
at the crossing point. It is important to notice that the normal represented for each vertices
on examples (d) and (e) were defined during the cut, the system uses such information to
place the central vertex in an unique position at undeformed space. It turns out that those
normals may be slightly different from the ones defined by the geometry.

Instead we take into account the normal of the cut surface at the edge-vertices, that we
obtain from the movement of the tool. This normal and the relative edge-vertex define a
plane the we call Cut Plane. In other terms, a cut plane is the approximation of the cut
surface around a edge vertex.
To explain the different cut combination together with the position of surface’s vertices we
refer to the schema shown by Figure2.15.

For cases b and c, we use the same approach described in [KBSS01]: if the angle α formed
by the two cut planes is close to π, i.e. |π − α| < θ, 0 < θ < π , we assume the two
edges have been cut with a smooth movement. In that case we place the face vertex in
the middle of the Bezier curve defined by the edge vertices and the intersection of their
associated cut planes (see Figure 2.15.(b)). Otherwise we place the vertex exactly at such
intersection point, showing a sharp feature (see Figure 2.15.(c)).
The cases d and e would clearly require a tessellation with more detail for representing the
cut surface exactly.
We use a strategy that leads to little or no visible artifact with the assumption that in a
simulation step, no more than two edges are cut on the same cell. In the case where this
conditions is not satisfied the set of cuts are re-distributed over different time-steps. Using
this strategy we smoothly proceed from configuration a to d.
Any further cut will find the face vertex already placed, so we redefine (move) the face ver-
tex by projecting it into the new cut plane, as shown in Figure 2.15.(d) and Figure 2.15.(e).
Similar considerations hold for the position of the central vertex. The first time the cell is
cut, if the cut does not split the cell in two parts, the central vertex is positioned in the
average position among the face vertices, otherwise it is placed so that it minimizes the
sum of the squared distances from all the planes by using a quadric metric as in [GH97].

45

Figure 2.16: Two types of cut (case B and case D of figure 2.13). The frames rendered in
blue are virtual and depend on the frame pointed by the arrow.

Again, for any further cut we project the position onto the new cut plane.

2.4.4 Interpolation inside a cell

As previously stated the space inside the cell is deformed accordingly to the cell nodes.
For each node of the grid, we attach a reference frame, that is updated for each time step
of the simulation. The reference frame of the node i at time step t is defined by a pair
fi(t) = (Ai(t), Oi(t)) where Ai(t) ∈ IR3x3 defines the three axis and Oi(t) the origin. The
reference frames are initialized by the three orthogonal directions of world reference frame
and the undeformed position of the node. We indicate as f 0

i = (A0
i , O

0
i) the reference frame

value.
Given the deformation function F (t) at time t and its Jacobian Ji(t) ∈ IR3x3 evaluated at
node i, then the reference frame fi(t) is updated as follows:

fi(t) = ((Ji(t)
−1)T (A0

i), F (O0
i)) (2.36)

Given that we updated the reference frame fi(t) of all nodes, then the position in the
deformed space of a generic point p is found as:

∑
j∈cell

ajpjfjt (2.37)

46

(a) (b)

Figure 2.17: (a) tessellation for the cell node 0. (b) two configurations that show why
dependency cannot be computed locally to the nodes.

where pj is the projection of p on the frame fi and aj are the scalar coefficients of the
trilinear interpolation. This interpolation scheme uses all of the 8 nodes of a cell, but
tessellation vertices must depend only on a subset of them.
In order to illustrate this problem we use the example shown in Figure 2.16. In that case
the position of the edge vertex v0 is interpolated from fa and fb (since the coefficient of the
trilinear interpolation are 0 for the other 6 frames). However, since we want to represent
the discontinuity of F along the edge, intuitively v0 should only depend on fa.
To solve this problem we proceed similarly to [MBF04]. We interpolate v0 using a copy of
fb(t), indicated as fb′(t), which is called virtual reference frame. The center of the virtual
reference frame b′ is computed by the function b′ = F ′(b) = F (a) + (b − a) JFt(a), i.e.
the deformation function in b as approximated by its value in a by Taylor series, the same
transformation is applied to obtain the directions composing the virtual reference frame.

2.5 Construction of the Look-Up-Table.

As explained in Section 2.4, each one of the 212 possible configurations of the cut edges of
a cell corresponds to a row of the LUT, which encodes two data: the tessellation repre-

47

senting the piece of surface internal to the cell and, for each vertex of such tessellation, its
dependency from the cell nodes.

Fortunately we can take advantage from noticing that the tessellation of a cell can be
expressed as the union of 8 tessellations, one for each cell node, and that each tessellation
only depends on the cell edges entering the node. This can be better understood recalling
the dual interpretation of the Splitting Cubes shown in Figure 2.12.(d) where the material
(and therefore its boundary and the tessellation of its boundary) is associated to the grid
nodes.
We define the tessellation for a single node and then obtain the tessellation for the cell by
translating the vertices appropriately.
We show a practical example on Figure 2.17.a. Let us consider the tessellation for the
node n0. For each cut edge leaving this node (e0, e3 and e8 respectively), we build a quad
which has one point on the edge, one point on each of the two faces sharing the edge and
the point at the cube center. We obtain the tessellations for the other 7 nodes simply
rototranslating the frames and reapplying this scheme.
You may note that we will create duplicate vertices. As explained below, some vertices
actually need to be duplicated and some other do not; to know it which ones have to be
duplicated we must compute their dependency.

Unlike the tessellation, the dependencies of the vertices cannot be treated locally to a
cell node. Figure 2.17.b shows two configurations for a face. The vertices va and vb are
created both when tessellating node a and node b. In the configuration B the face is par-
tially cut and va and vb depend on the same set of grid nodes and therefore will always
occupy the same spatial location. Conversely, in the configuration D va and vb depends on
two different set of nodes and therefore they will move apart.
As explained in Section 2.4, each vertex depends on the cell nodes of the same connected
component. Therefore we applied a simple principle: a vertex depends on all the nodes of
the same cell that are reachable through the material. We consider each grid node reachable
by the vertices of its associated tessellation and two nodes of a cell as mutually reachable
iff they are connected by a path of uncut edges.
Furthermore, since we need continuity of the deformation function across the cell bound-
ary, the interpolation weights of the cell nodes for a edge-vertex will be 0 except for the
2 nodes of the edge and the interpolation weights of the cell nodes for a face-vertex will
be 0 except for the 4 nodes of the face. Therefore we only need to find reachable nodes of
the edge for the case of the edge-vertex (which is only one node) and reachable nodes of
the face for the case face-vertex, since the weight for the other nodes would be zero even
if they were reachable.
Considering the tessellation, when two vertices have the same dependencies we do not cre-
ate two vertex instances, but we statically unify them in the tessellation contained in the
LUT so no useless duplicate vertex are created.

48

The LUT and the necessary code to read it can be found in the IDOLib library [Vis05a].

2.6 Physical response to cutting

In the previous section we introduced the Splitting Cubes algorithm, which enables to
introduce cuts and to setup the corresponding discontinuity in the deformation function F
inside each single cell, without making any assumption on the physical model.
However, the deformation function must be changed to reflect the discontinuity introduced.
This sections shows how to modify the deformation function to show discontinuities using
point-based animation.

2.6.1 Nodes-Phyxels bounds

The deformation function at a grid node depends on the set of phyxels within a certain
support radius r that are visible, i.e. the segment connecting the node to the phyxel does
not intersect the boundary surface. This set is usually referred as kernel of the node.
The kernel of a node is kept up to date when new pieces of surface are added. Updating a
kernel means to check which of the phyxels in its kernel are still visible. To perform this
check it is sufficient to test only for the nodes within a radius r from the cell where the
new piece of surface was created. Since the grid is regular it is possible to get this set of
node in a constant time.

2.6.2 Phyxels-Phyxels bounds: the Extended Visibility Method

In Section 2.3.1 we reviewed the methods to update inter-phyxels relations after a cut.
Here we propose to extend the visibility criterion by substituting the segment of sight
between two phyxels with a pair of cones as shown in Figure 2.18.
Consider the common base of the two cones, that we call visibility disk. From each point
on this disk we trace two rays, directed to each phyxel and say that this single point is
occluded if at least one of these two rays intersects the cut surface.
Then we define the weight function as:

w′(pi, pj) = w(pi, pj)

(
1− 1

DiskArea

∫
p∈Disk

IsOccluded(p)dp

)
(2.38)

In this manner we replaced the binary value of the previous visibility criterion with a crite-
rion which returns a scalar value in the range [0, 1] that we use to weight the inter phyxel

49

Figure 2.18: (a-b) The cut (represented with two red curved stripes in 2D) surface partially
occludes the visibility disk. The percentage of weight remaining is represented with a red
line. (c) Hardware implementation of the Extended Visibility criterion. (d) A triangle of
the cut surface as seen by phyxel pi.

bound.
Figure 2.9 shows the value of the weight (in a color ramp from red= 1 to blue= 0) around
a phyxel in the proximity of a cut surface using the visibility criterion, the diffraction
method, the transparency method and finally our Extended Visibility criterion.

The first row shows the case were the cut surface is made of a single connected com-
ponent. In this case, all the methods correctly implements the discontinuity with respect
to the cut surface. Nevertheless the visibility criterion introduces an undesired discontinu-
ity in the weight function on the horizon line, while in the diffraction and the transparency
methods the weight function decays smoother.
The Extended Visibility criterion produces a reasonable compromise: the weight function
does not exhibit unwanted discontinuities as the visibility criterion does, but decays around
the tip point of the cut surface faster than diffraction and transparency methods.

50

Figure 2.19: A sequence of steps during a cut: the kernel value smoothly decreases as the
visibility disc is ’obscured’.

The second row shows the case where the cut surface is defined by two connected compo-
nents, e.g. in time immediately before two crack fronts merge.
Using either diffraction or transparency methods, the weight functions change discontinu-
ously with respect to the growth of the cut surface at the point when the two cut surface
merge, because both methods depend on the tip point. On the contrary, using the Ex-
tended Visibility criterion the weight function smoothly decays to 0 in the region under
the cut surface. Note that the merging of crack fronts is a common event if we propagate
cracks or if we perform a cut with scissors.

2.6.3 Implementing the Extended Visibility Method.

The choice of using cones may seems quite arbitrary, in reality it lead to an easy GPU
implementation of the Extended Visibility criterion.
Let pi and pj be two connected phyxels, i.e. for which w(pi, pj) > 0, and cs a cut surface
potentially occluding the disk between pi and pj (see sequence shown by Figure 2.19).
Consider the smallest square enclosing the occlusion disk. We associate a small single-
channel texture to this square to store which samples of the disk have been occluded.
Initially, as shown in Figure 2.18, it shows a circle representing the intact visibility disk.
This texture is permanently associated with the couple of phyxels and updated every time
a new piece of surface (e.g. produced by the Splitting Cubes algorithm) could potentially
occlude their visibility disk. Therefore we use #phyxels · k small textures, where k is the
average number of neighbors of a phyxels.
To update the visibility disk we render cs twice: once from pi towards pj and once from pj
towards pi, always setting the far plane of the projection on the mid point of the segment
pi and pj. To perform this render we set the size of the viewports equal to the size of the
texture’s square, so that each sample in the disk project on the same pixel for the two
renderings.

51

Using a fragment shader, we discard those fragments projecting onto a pixel already writ-
ten, so that all the fragments that are written into the frame buffer correspond to newly
rasterized fragments, i.e. newly occluded samples. By using the hardware occlusion query,
we count these fragments and finally update the weight as follows:

w′(pi, pj) = w(pi, pj)
˙n−#occluded

n
(2.39)

which is the discrete version of equation 2.38 where n is the number of texels composing
the circle of the visibility disk.

2.7 Initial Setup

Initially we load a watertight mesh creating the cubes that are intersected by such mesh.
The initial surface is obtained by considering the original mesh as a big cut surface.
Once the cut is done, we obtain two surfaces: one bounding the object and one bounding
the empty space around the object, that we simply throw away.
Phyxels are uniformly sampled in the volume in the setup of our experiments, however our
method doesn’t impose any restriction about phyxels distribution. A good choice could be
to sample phyxels following the method proposed by Pauly et al. in [PKA+05].
Finally, two parameters must be tuned in Extended Visibility method:

Texture Size A large texture requires a longer rendering time but provides a smoother
change of the weight and vice versa.

Radius of Visibility Disks A bigger radius provides a smooth weight change. Never-
theless since the cells generating potential occlusive surface are increased, then the
total number of rendering operations increases, effecting the performance of the sim-
ulation.

We found experimentally that a good tradeoff between smoothness and performance is
achieved by assigning a radius of the visibility disc equal to half of the distance between
the two phyxels and to use a 32× 32 buffer for rendering (which means 16 pixel radii for
the visibility disks).

52

Figure 2.20: Cutting of a deformable model of the liver

Figure 2.21: Performance of the method recorder during sequence shown in Figure 2.20

2.8 Results and discussion

The approach we presented was implemented on a Windows XP platform using C++ and
OpenGL running on a dual core P4 @ 3GHx PC equipped with 2GB Ram, and a NVIDIA
GeForce 8800GTX with 768MB video memory; the GPU code was written in GLSL. The
tests shown in the next sections were all recorded in real time.
The graph in Figure 2.21 shows the performance of our approach recorded during the
interactive sequence shown by Figure 2.20. The object was filled with 566 phyxels and
the initial surface created was made of 8452 triangles in 1177 grid cells. The radii of the
visibility disks were set to 16 pixels wide.

Although the number of disks to update obviously depends on the speed at which the

53

Figure 2.22: Scissors cutting a deformable pear.

cut surface grows, the time spent in updating the visibility disks is almost constant. This
is due to a time-critical implementation that assigns a fixed time slot per frame for disks
updating, giving the possibility to distribute the load over few consecutive frames. Note
that the time for updating a disk is short and predictable (two renderings) and therefore
the updating of all the disks is easily made interruptible by updating a few disks and then
returning. It is clear that this may possibly cause a delay of the time step the cuts appears
open but processing the disks in a FIFO order and distributing the load uniformly over
the frames substantially avoids noticeable discontinuities during the opening of the cuts.

The time spent to interpolate the tessellation vertices is about 2ms for 4103 vertices.
If we tessellate the surface by building a triangle mesh directly on the grid nodes, such a
triangulation will have average triangle size of the order of a grid cell. In this sense, the
time interpolation can be considered as an overhead introduced by the Splitting Cubes.
The time for generating the tessellation includes, for each grid cell: computing the cell
configuration, accessing the LUT, instantiating new triangles and setting the dependencies
of the vertices. The generation of the initial surface of the liver required to process 1177
cells and took 282 ms. In general, the processing of a grid cell takes less than 5 ms.

The memory consumption is also linearly related to the area of the cut surface (please
note that only the grid nodes of the cells containing the surface are actually stored in main
memory).

54

Figure 2.23: A cut with a curved tool.

As expected, the number of triangles grows linearly with the cut surface.

The Splitting Cubes algorithm does not pose restrictions on the tool path. Thanks to the
implicit definition of the tessellation, the surface is always intrinsically consistent and the
self intersection of the cut surface does not need any special treatment.
To support this claim figure 2.22 shows two cutting tools that act as scissors for cutting
a pear while it deforms. Another sequence shows a pair of parallel blades rototranslating
into a cube-like object, see figure 2.11. Finally Figure 2.23 and Figure 2.24 shows two
interactive cuts using curved tools.

With respect to the previous approaches, we can summarize the main advantages given by
the Splitting Cubes Algorithm as follows:

It is independent of the physical model The major benefit of the Splitting Cubes al-
gorithm is that it decouples the model for physical simulation from the problem of
virtual cutting. The dynamic re-tessellation, the intersection with other objects and
the representation of discontinuities are threaded independently with respect to the
underlying deformation function. Therefore, it can be seamlessly integrated with
other methods for physical simulation.

It is robust Since every possible configuration of cut edges corresponds to a predefined
tessellation, there are no possible states of the system that can lead the algorithm to
end inconsistently.

It is well conditioned for collision detection Since we do not have to care about bad
shaped triangles but only with the edges of a deformed regular grid, the task of
detecting intersections between the tool and the object is better conditioned than in

55

Figure 2.24: Another cut with a curved tool.

mesh-based approaches.

It handles implicitly the topology changes Topology changes come for free while edges
are cut, without having to analyze the crack front as in [PKA+05, SOG06].

It is simple The Splitting Cubes algorithm is conceptually simple and easy to implement.

It is efficient The surface update requires a direct access to the LUT for each cell affected
by the cut. Since the table can efficiently indexed, then its access time can be
considered negligible with respect to the rest of the simulation.

Furthermore, we proposed a new method to create discontinuities on Meshless Methods
without the need for exploring the graph of adjacency as in [SOG06], or the cut surface
as in [PKA+05]. The Extended Visibility Method is suitable a for GPU implementation
since it requires two renderings of few triangles (See Section 2.6.3 and 2.6.2 for details).

There are several directions of improvement/exploitation of the Splitting Cubes approach:

Original Boundary With the current solution the detail of the representation and the
granularity of the cut are coupled. We could preserve the original surface triangula-
tion by handling explicitly its intersection with the tessellation given by the LUT.
This approach prevents visual artifacts related to the snapping of the vertices when
the configuration of a cell changes.

56

Granularity of the cut Similarly to [MBF04], the efficiency of the Splitting Cubes algo-
rithm comes at the price of limiting the granularity of cuts to the size of the cell. This
limit can be overcome by considering that the Splitting Cubes Algorithm can be also
implemented in an adaptive fashion, therefore replacing the grid with a hierarchy.
However it is not immediately clear about how to switch to a hierarchical approach
and, at the same time, maintain robustness and efficiency. In general, if we allow
recursive subdivision of cells (typically 1 : 8) we implicitly introduce fragmentation,
slowing the whole system.
For example, suppose we would like to detect intersections with the grid edges. Since
we lose the implicit spatial indexing given by the regular grid, then this procedure
will be more complex.
In the main application that motivates this research, i.e. a virtual cutting for surgi-
cal training, the interaction happens within a scale frame. More precisely, for such
applications, robustness and interactivity is, in general, more important than the
granularity of the cut.

Collision Detection The Splitting Cubes does not add any particular issue regarding
the collision detection problem and existing techniques can seamlessly be integrated
in the framework.
Furthermore the parametrization of the volume given by the grid could offer some
advantage for self-collision detection.

57

58

Chapter 3

Modeling the interior of an object

Textures provide a simple and efficient way of modeling 3D objects by separating appear-
ance properties from its geometric description.
Textures have been extensively used in computer graphics for modeling the external struc-
ture of objects, either through photographs [SKvW+92] or through procedural models
[Per85, EMP+94].
When objects undergo topological changes (for example cuts or fractures) their internal
structures are revealed, and this phenomenon has motivated researchers to design ap-
proaches for modeling the texture of internal surfaces of objects. However, the simple
procedure of taking photographs of objects and ”pasting” them on a 3D model has been
successfully applied to external but not to internal surfaces.
In interactive cutting and fracturing, which is our specific application domain, the main
challenge is dynamically synthesize the appearance (textures) of internal surfaces, as they
appear as the consequence of cuts or fractures, minimizing the introduced overhead.
We consider the expressing power of a texture synthesis algorithm as its capacity of cap-
turing and reproducing features which are present at different scale in the input image.
Expressing power is one important characteristic of a synthesis algorithm, since it measures
its versatility in modeling the different appearances which are present in real world. As
explained in Section 3.1, we refer to texture appearance classification based on regularity
as proposed by [LLH04].
We group the existing algorithms for modeling internal appearance of objects in two classes:
Solid Textures [HB95, GD96, DGF98, JDR04, QY07, Wei03, DLTD08, KFCO+07] §3.3.1
and Solid meshes [CDM+02, ONOI04, TOII08] §3.3.2.

59

Figure 3.1: Classification of textures as proposed by [LLH04].

3.1 texture classification

By considering its appearance a texture can be classified into an interval which smoothly
varies from Stochastic to Structured [LLH04] :

Stochastic textures This class of textures looks like noise showing a high degree of
randomness. An example of a stochastic texture is roughcast.

Structured or regular textures These textures present regular patterns. An example
of a structured texture is a stonewall or a floor tiled with paving stones.

The 2D textures classification proposed by [LLH04] and illustrated by figure 3.1, is ex-
tendible to 3D textures, by considering the presence of regular patterns along the 3 direc-
tions, instead of 2, of a solid texture.
The algorithms for modeling object’s internal color are often defined by extending basic
concepts of 2D texture synthesis. For this reason, we first give a brief introduction about
2D texture synthesis algorithms, then in Section 3.3 we provide a detailed description of
existing methods for modeling and representation object’s internal appearance.

3.2 A brief introduction to 2D Texture Synthesis

The problem of texture synthesis is typically posed as producing a large (non-periodic)
texture from a small example.
In the next sections we provide a brief overview of the existing 2D texture synthesis tech-
niques, classifying existing methods as: Procedural, Statistical features-matching, Pixel

60

(a) (b)

Figure 3.2: Application of Perlin noise: (a) a set of synthesized materials [Fer04], (b) a
landscape is synthesized by Terragen [pla] using Perlin noise.

based, Patch based and finally Optimization based. We refer to [KLTW07] for a more
detailed description of existing methods for example-based 2D texture synthesis.

3.2.1 Procedural Methods

Procedural methods synthesize textures as a function of pixel coordinates and a set of tun-
ing parameters.
Among all procedural methods, the most used in Computer Graphics is Perlin Noise[Per85].
The key idea of Perlin noise consists of trying to replicate the patterns presents in nature.
Indeed, we can observe that nature creates patterns that are fractal, i.e. different level
of details show different variations, or, in other words, each level of detail is defined by a
pseudo-random pattern. For example, a terrain is formed by large variations (mountains)
upon that rises medium variations (hills) and small variations (rocks). The main goal of
[Per85] consists in replicating this phenomenon by applying noise functions on each level
of detail. Noise functions are combined together to create the final result.
More precisely, Perlin Noise is a gradient noise function that perturbs mathematical func-
tions in order to create pseudo-random patterns. Perlin noise has been widely used in
various application domains, to cite a few: rendering of water waves, rendering of fire,
realistic synthesis of the appearance of marble or crystal.
Among the procedural methods, [Lew87] derives noise functions by generalizing stochastic
subdivision, while [Gar84, Gar85] synthesizes terrains, water fields and clouds by summing

61

Figure 3.3: Examples of textures generated by the generalized reaction-diffusion model
[McG08].

and multiplying sine waves.
Textures can be synthesized also by simulating natural processes. In [WK91] and [Tur91]

authors extends the reaction-diffusion model (which is originally proposed in chemistry
to simulate the formation of biological patterns), to generate organic texture patterns.
This method has been recently generalized to allow the synthesis of new class of textures
[McG08]. Other examples of natural process simulation are [FLCB95, Wor96], which gen-
erate noise by simulating biological cells, which are modeled as small interacting geometric
elements distributed on the domain.

2D Procedural methods are, in general, efficient and easily extendable for solid-texture
synthesis. Moreover procedural methods constitute a useful and simple tool for the syn-
thesis of a set of textures, Figures 3.2 and 3.3 show possible application scenarios.
However, the main problem of procedural texture synthesis is its lack of expressive power.
Since a procedural method is limited to encode a specific texture appearance, if we want
to encode a new texture we must define a new function. In general, it is tricky to define
analytically texture patterns which are present in real world. In this sense, maybe it is
more useful a synthesis method that captures informations from a template image provided
by the user.

3.2.2 Statistical features-matching methods

The main strategy of this class of methods consists of capturing a set of features from
the template image and transfers it to the synthesized image. Generally, the synthesized
image is initialized using random noise, then the algorithm transfers characteristics cap-
tured from the template image, such that the resulting image looks like the template image.

62

[HB95] is the first relevant work in this class of methods. In this approach, Histogram
matching is used to iteratively modify the synthesized image in order to converge to the
appearance specified by template image. More precisely, the color range of an image is
quantized into a set of uniform intervals bins, each of which represent an subinterval and
the related probability of a pixel to fall into such interval (evaluated using color distribu-
tion).
Histogram matching is used to make the color distribution of a source image to match with
the color distribution of a target image. Histogram matching is based on the cumulative
distribution function CDFH : [bins]→ [0, 1] and its inverse CDF−1

H : [0, 1]→ [bins], were
H is an image histogram. Given a source I and a target images I ′, and considering their
histograms H and H ′, histogram matching consists of substituting each color of source
image v ∈ I ′ with the one having the same CDF value in target image I ′:

v′ = CDF−1
H′ (CDFH(v)) (3.1)

Image’s sub-bands are captured through steerable pyramid [Per91, SFAH92, SF95]. Steer-
able pyramids captures at different frequencies the gradient with respect to a set of possible
directions. Given that the steerable pyramids are invariant with respect to translation or
rotation, they are particularly suitable for detail transfer.
The overall algorithm can be schematized as follows: after a first histogram matching be-
tween noise and template images, the algorithm continue by iteratively applying histogram
matching across each pairs of steerable pyramids levels. Finally, the image is fully recon-
structed from the processed pyramids levels. This method, together with its extension
[PS00], works well only on stochastic textures, while it fails in general if the template im-
age is structured.

In [dB97] images are represented using Laplacian pyramids. Laplacian pyramids [Bur83]
encodes the differences between two adjacent levels of a gaussian pyramid. For each value
at a certain level of resolution is associated a parent structure which encodes a set of lo-
cal texture measures, called features (typically related to human perception) evaluated for
each ancestor. Two pixels at a certain level of the Laplacian Pyramid are considered to
be similar if and only if their parent structure is similar, i.e. the sum of squared differ-
ences between their features is less than a certain threshold. This method, starting form
a noise image, runs across laplacian pyramids levels, substituting each value level with a
similar pixel coming from template pyramid. This method improves the results obtained
by [HB95] especially for the near-stochastic cases.

63

(a) (b)

Figure 3.4: (a)Two possible causal conditioning neighborhood kernels [PP93]. The Pixel
in red is the one that has to be synthesized, while its conditioning neighborhood kernel is
indicated in green. The conditioning neighborhood kernel is a subset of the pixels that were
synthesized in a previous step, indicated in yellow. (b) The L-shaped causal conditioning
kernel defined across the same level and respective squared-shape kernels coming from next
level [WL00].

3.2.3 Pixel Based

The main idea of Pixel-Based methods consists of relating pixels color and spatial neigh-
borhood.

This intuition was developed in [PP93]. In this approach the color of a pixel is fully deter-
mined by a probabilistic causal conditioning neighborhood kernel. After an initial phase of
training, where each pixel of the template images is correlated to its neighborhood kernel,
the image is synthesized pixel by pixel in a scan-line order. Figure 3.4, shows two possible
neighborhood kernels for a row-major scan-line order. The neighborhood kernel is designed
such that the pixel that has to be actually synthesized (indicated in red) depends from a
subset (indicated in green) of previously synthesized ones (indicated in yellow).

Efros and Leung in [EL99] extend this idea by reinterpreting the algorithm as a nearest
neighbor-search problem. More precisely, instead of constructing an explicit probabilistic
model relating a pixel to its neighbors, they search for the sample that minimizes a distance
function d in the template image. The distance function d relates two pixel’s neighborhood
and is usually defined as the weighted sum of squared differences. Weights are calculated
by using a two-dimensional Gaussian kernel.

64

Given that an initial portion of the image is synthesized, the algorithm continues synthe-
sizing pixels in a spiral order as follows: for each pixel p, find the set of candidates Ω(p)
that minimizes d (candidates comes from the template image), then pick one randomly
and assign its color to p.

Wey and Levoy in [WL00], starting from [PP93], define an algorithm that, thanks to
its simplicity and its performance has become very popular in the Computer Graphics
community. They proposes two versions of the synthesis algorithm.
The first approach works on a single resolution level: starting from an image made of
random noise, pixels are synthesized in a scan-line order using a causal conditioning neigh-
borhood kernel. Similarly to [EL99], the color of current pixel is substituted by the one
that minimize a distance function, choosing from the template image.
This algorithm is extended to work in a multi-resolution fashion. The multi-resolution
approach is based on the Gaussian pyramids of template and synthesized images. The
main difference with respect to single-resolution consists in how distances are measured.
Indeed, in this case distances are calculated by combining different levels of the Gaussian
Pyramid. More precisely, distances are defined by using simultaneously:

• L-shaped causal conditioning kernel defined across the same level.

• The whole sequence of square kernels coming from higher levels (considering that all
those pixels were already synthesized, then is possible to use a square kernel).

Figure 3.4.b shows an example of causal conditioning kernel, together with the associated
inter-level kernel. The multi-res algorithm starts from the highest level (which has to be
initialized) synthesizing iteratively each level of the gaussian pyramids, until the final im-
age is completed.
Thanks to the multi-resolution approach it is possible to capture multi-scale features and
inter-scale dependencies present in the texture, producing a significant improvement on
final results (see figure 3.5). Moreover, by considering that neighborhood has a fixed size,
the search process can runs faster by using a tree-structured vector quantization (TSVQ)
[GG92]. The overall synthesis time is reduced then from 503 to 12 seconds to synthesize
an 1922 image, while [EL99] needs 1941 seconds (timings were measured using a 195 MHz
R10000 processor [WL00]).
Some significant extensions of [WL00] were proposed in literature. For example Michael

Ashikhmin in [Ash01] introduce the concept of pixels coherence to improve results using
natural textures. Coherence tend to group the pixels that are together in the input image.
While image analogies [HJO+01] uses pixel’s neighborhood similarity to learn and repro-
duce image filters from exemplars.

The Pixel-based methods presented are considered order-dependent, i.e. the resulting im-
age depends on the order the pixels are synthesized. In [WL01] Wei and Levoy modify

65

Figure 3.5: A comparison of texture synthesis results using different algorithms (a) Heeger
and Bergen’s method [HB95] (b) De Bonet’s method [dB97] (c) Efros and Leung’s method
[EL99] (d) Wei and Levoy method [WL00].

their original pixel-based algorithm to make it order-independent. The main idea can be
summarized as follows: the value of a synthesized pixel is stored in a new image (instead
of overwriting), while the kernel used for neighborhood search is made by pixels that were
synthesized in the previous step. Since the algorithm is order-independent, the kernel can
be designed as a square of pixels. The algorithm proceeds by repeating the synthesis step
on pyramid levels until convergence.

In 2005 Lefebvre and Hoppe [LH05] parallelized the order-independent synthesis. By
using the GPU, synthesis can be performed in real-time (some results in 3.6.a), opening
new application scenarios. One year later, in [LH06], the same authors proposed to enrich
the neighborhood search space. That space, called appearance-space, extends the RGB
color space by including neighborhood information (like gradients), features information
(like distance to image’s edges). The search space is reduced in dimensionality by using
principal component analysis (PCA). Thanks to the high concentration of per-pixel infor-
mation the kernel size is reduced, with a resulting improving of speed performances (from
3 to 4 times faster respect to [LH05]), see figure 3.6.b.

3.2.4 Patch Based Methods

This class of methods relies on a different philosophy: the template image is divided in a
set of patches, which are re-arranged in the output image. Patch-based methods can be
seen as an extension of pixel-based methods, but instead of copying one pixel at time an
entire patch is copied to the output image. Managing patches instead of pixels, can be
seen as a way to keep as more as possible the original structure of the template texture.
The main challenges raised by this methods are:

• How to arrange patches to produce randomness in the synthesized image?

66

(a)

(b)

Figure 3.6: (a)Examples of results generated by using the parallel controllable texture
synthesis algorithm [LH05]. (b)A comparison between [LH05] (Left) and [LH06] (Right),
thanks to the high concentration of per-pixel information expressed in the feature image
(Center) the resulting texture preserves the original pattern.

• How to avoid artifacts between adjacent patches?

The first patch-based method is the chaos mosaic algorithm [GSX00]. In this approach
patches were arranged by using an iterative discrete chaos mapping [Sch88], which is called
Cat-Map, that creates visually stochastic patterns. The mismatch across adjacent patches
were resolved by using a constrained texture synthesis [EL99]. However, the quality of
results produced by chaos mosaic is often unsatisfactory, due to visible artifacts between
patches.

In 2001, Efros and Freeman proposes a new patch-based algorithm [EF01]. Between ad-
jacent patches an overlap region (usually 1/6 of patch size, see Figure 3.7.b) is used to
quilt appropriately adjacent patches making sure they all fit together. Patches are placed
in the output image in a scan-line order. Patches are chosen step-by-step randomly from
a set of candidates, which is constituted by the ones that minimize an error. Such error is
defined as the squared differences of color between overlapping pixels. As shown in Figure

67

(a) (b) (c)

Figure 3.7: Texture quilting algorithm [EF01]: (a) Patches are chosen randomly. (b)
Patches are placed in order to minimize error on overlap regions. (c) The overlap region is
cut to reduce artifacts between adjacent patches

3.7.c, once patches are placed, overlap region is quilted appropriately to minimize the error.
In 2003 Kwatra et al. [KSE+03] improve this approach by minimizing the error using a
different strategy: a graph-cut algorithm.

In [CSHD03] Cohen et al ensure the tileability of adjacent patterns by using a differ-
ent strategy: a set of patches, called Wang tiles, were extracted from the template texture
such that the edges are pairwise tileable, i.e. the colors across the edges are coincident.
The final images is constructed by simply assembling Wang tiles in a way that adjacent
edges share compatible colors. That algorithm was extended to work on the GPU in 2004
[Wei04].

3.2.5 Texture optimization method

This technique, introduced in [KEBK05] relies on a global optimization framework to
synthesize a new texture.
It essentially consists of minimizing an energy function ET which considers all the pixels
together. This energy function measures the similarity with respect to template texture
and it is locally defined for each pixel. Similarly to pixel-based methods, ET is defined
using a local neighborhood:

ET (x; {zp}) =
∑
p∈X†

‖xp − zp‖2 (3.2)

68

(a) (b) (c) (d)

Figure 3.8: Examples of textures synthesized by using [KEBK05]: (a) Simple texture
synthesis (b) The flow field used to lead the synthesis process in (c). (d) An example of
synthesis with a structured texture.

where xp is the local neighborhood of pixel x in the synthesized image, and zp its most sim-
ilar neighborhood in the template image. In order to make the minimization process more
robust, terms of equation 3.2 are weighed by considering distance to the center. Those
local energy contributes are merged together in a global metric which is minimized.
While the local energy term of equation 3.2 is related to pixel-based methods, the global
minimization process is related to patch-based methods, since pixels are considered to-
gether at each minimization step.
Minimization is performed by using an EM (Expectation-Maximization) algorithm [MK97],

which consists in two main steps:

E step keeping fixed {zp}, minimize ET by modifying x (and consequently xp). In other
words, colors of synthesized image are modified to resemble locally, as more as pos-
sible, to the precomputed neighborhood sets {zp}.

M step keeping fixed x minimize ET by updating {zp}. For each synthesized pixel x,
the corresponding zp is updated by finding the best matching neighborhood in the
template image.

This steps are repeated in a multi-resolution and multi-scale fashion.
Despite its slow convergence, this method produces very good results (see Figure 3.8.a
and 3.8.d), furthermore energy formulation can be easily extended to create flow-guided
synthesis (see Figure 3.8.b and 3.8.c).

69

3.3 Designing internal properties of meshes

The internal appearance of an objectM is defined by a function F which maps each point
p belonging toM to the respective color attribute color(p) = F(p), p ∈M. This mapping
is usually extrapolated from a reduced input provided by the user.
We can divide the methods, and relative data structures, that models the internal appear-
ance of an objects in two main categories: solid textures and solid meshes. Intuitively
the main difference is that solid textures are independent respect to the object on which
they’re mapped, while solid meshes are built upon the object.
Next chapter makes this classification more clear, providing an exhaustive description of
existing approaches. We finally provide a comparison between this two main class.

3.3.1 Solid Textures

Solid textures were introduced in Computer Graphics by [Pea85], “This paper introduces
the notion of “solid texturing”. Solid texturing uses texture functions defined throughout
a region of three-dimensional space”. While traditional textures relies to 2D, solid textures
are defined across a 3D space.
If we embed an object into the domain of a solid texture we implicitly define its surface’s
color without introducing distortion. Moreover, since solid texture defines the color for
each point belonging to object’s volume it can be utilized to texturize surfaces revealed by
cuts or fractures.
Similarly 2D texture synthesis, methods proposed in literature for the synthesis of solid
textures can be classified in:

Procedural methods The color is a function of the 3D positions and a set of parameters
provided by the user.

Statistical features-matching methods Extracts statistics from 2D textures and repli-
cates on the solid texture.

Pixel based methods The color of each pixel belonging to solid texture depends on its
neighbors.

Optimization based methods The solid texture is the result of a global minimization.

In the following sections we presents most significative approaches according to this clas-
sification.

70

Figure 3.9: A 3D neighborhood composed by 3 orthogonal 3D slices.

Figure 3.10: Examples of solid textures produced by using Perlin noise

3.3.1.1 Notation

We introduce a simple notation used in the following sections, the reader may refers to
Figure 3.9 for better understanding.
We call voxel the cells belonging to solid texture to distinguish from texel which belongs to
a 2D texture. The 3D neighborhood of a voxel v is formed by assembling 2D neighborhood
centered in v slicing the solid texture along each axis. A 3D slice refers to each orthogonal
2D neighborhood defining a 3D neighborhood.

3.3.1.2 Procedural Methods

Procedural methods for the synthesis of solid textures are, in general, derived directly from
the 2D methods. Indeed, thanks to their “dimension-independent” formulation, procedural
methods are, in general, easily extendible to the 3D case.

For example the noise functions defined by Perlin in [Per85] can be used to synthesize
solid textures. Solid noise is a 3D function used to perturb a basis 3D function in order to
create realistic solid patterns. For example solid marble can be obtained by perturbing a
sinus function:

Marble(x, y, z) = sinn(x+Noise(x, y, z)) (3.3)

71

Perlin noise has been largely used in Computer Graphics to produce solid textures of mar-
ble, rocks or wood (see Figure 3.10 for application examples).

A procedural methods for solid texture synthesis is, in general, easy to implement and
computationally light. Since the color of a voxel is a function of its coordinates, procedural
methods can synthesize each voxel independently, while the majority of methods requires
the synthesis of the entire solid block.
As in the 2D case procedural methods can be defined to simulate natural process. For
example, Buchanan in [Buc98] proposes to synthesize wood solid texture by simulating
the growth process of a tree, Dorsey at al proposes to simulates the natural process of
weathering stones [DEL+99], while [HTK98] uses a mass-spring model to simulate the
propagation of crack patterns.
As in the 2D case, main problem of these methods is their lacks of generality. In general
a procedural method corresponds to a specific type of pattern.

3.3.1.3 Statistical features-matching methods

Similarly to 2D, the main purpose of this method is to extract a set of statistical properties
from the template image in order to replicate them in the synthesized texture. However,
solid texture synthesis is a more complex scenario: properties are defined in 2D, while the
syntheses is performed in 3D. Since no 3D information is provided, these methods transfers
statistical properties which are defined over a 2D space, to an higher order space, i.e. the
3D space embedding the solid texture.

For example, [HB95], which has been introduced in section 3.2.2, can be easily extended
to produce solid textures. Since the CDF (Cumulative Distribution Function) expressed
by image histogram is independent of the dimensionality of input data, then it is possible
to apply the same histogram matching on a solid texture, rather then an image. In this
specific case, target histograms relies on 2D steerable pyramids of the template image,
while source histograms relies on 3D steerable pyramids of the solid texture. Initially the
solid texture is initialized with random noise, then the algorithm continues by repeatedly
applying multi-scale histogram matching operations (as the 2D case, see Section 3.2.2 for
details). Finally the solid texture is reconstructed by collapsing the tri-dimensional steer-
able pyramid.

Ghazanfarpour and Dischler [GD95] propose to use spectral analysis for solid texture syn-
thesis. Spectral information is extracted from the template images using the Fast Fourier
Transformation (FFT), and used to obtain a basis and a noise function. Finally, the solid
texture is obtained procedurally as in [Per85].
This method is extended by [GD96] to use multiple images. Each image defines the ap-

72

(a) (b)

Figure 3.11: [Examples of solid textures synthesized by using statistical features-matching
methods](a) Examples of solid textures produced by [HB95]. The textured model is carved
from the synthesized texture block (b) Anisotropic solid textures generated by [DGF98]
using multiple template images.

pearance of the solid texture along an imaginary axis-aligned slice. The algorithm is built
upon the assumption that the appearance of axis-aligned cross-sections are invariant with
respect to translation, while a the non-orthogonal ones blend the appearance of the three
template images according to their orientation.
Modifications are realized by using spectral and phase processing of image FFT. The syn-
thesis process take as input a solid block initialized with noise, and modifies axis-aligned
slices, extracted from the solid texture, according to the corresponding template image.
Since each voxel belongs to three different slice, it defines three possible colors, which are
simply averaged. By repeating this step, the noise block slowly converges to the appear-
ance of template images.
In [DGF98] this approach was modified to avoid phase processing. The solid texture is
generated by repeatedly applying spectral and histogram matching. The reader my refers
to [DG01] for a survey on spectral analysis methods.
While methods based on spectral analysis([GD95],[GD96] and [DGF98]) produces pleasant
results using stochastic textures, it usually fails with structured textures.

A significantly different approach in generating structured textures is proposed by Jagnow
et al. [JDR04]. This method is based on classical stereology [Und70, Hag90]. Stereology is
an interdisciplinary field that provides techniques to extract three-dimensional information

73

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.12: The synthesis pipeline of [JDR04]: (a) The initial image, (b) the profile
image, (c) the residual image, (d) the synthesized residual solid texture, (e) 3D meshes
of the different particles, (f) slices of a particle, (g) solid texture obtained by distributing
particles (h) final result.

from measurements made on two-dimensional planar sections.
Figure 3.12 give an overview of the method. The initial image (a) is filtered to extract two
components: a profile image (b) and a residual image (c). The profile image, together with
particle’s shape (f) is used to infer, trough stereological techniques, the 3D distribution of
particles (e) (encoded as triangle meshes), while the residual image is used to synthesize a
residual solid texture (d) . The final solid texture (h) is obtained by adding residual solid
texture, which encode the fine details, to the solid texture obtained by the distributing
particles (g), which encode the rough structure.
In this method, stereology relates the particle’s area distribution in the profile image,
with particle’s area distribution revealed by an arbitrary cross-section of the solid texture.
Profile image and particles’s shape concurs to define the 3D particle’s distribution, since:

• The profile image captures the distribution of particle’s area. This distribution must
be replicated in the solid texture, so that is preserved along every cross-section.

• On other hands, a cross-sections of the solid texture cuts some particles defining an
area distribution which is obviously related to particle’s shape. Authors propose to
capture the area distribution generated by a particle by cutting randomly its meshed

74

Figure 3.13: Displacement configurations of [QY07] generated by a 32 kernel.

model (Figure 3.12.f).

These probability distributions concur to extract a particle density function which defines
implicitly how particles has to be distributed.
In [JDR08], Jagnow et al. presents an interesting analysis about how different methods for
approximating particle’s shape influence the perception of the generated solid texture.
This stereology-based synthesis technique, despite its impressive results, can be applied
only to a limited set of textures.

Aura 3D textures [QY07] overcome this lack of generality. Aura 3D solid texture synthesis
is based on Basic Gray Level Aura Matrices (BGLAM)[EP94, QY05]. The information
stored in BGLAMs characterizes the co-occurrence probability of each grey level at all
possible neighbor positions, which are called also displacement configurations (see Figure
3.13). The synthesis algorithm is based on the consideration that two textures look similar
if their Aura matrix distance is within a certain threshold. Aura matrix distance between
two images is defined considering their BGLAMs. This approach, similarly to [GD96] and
[DGF98], produces a solid texture given a set of oriented template images. Usually two or
three axis-aligned template images are enough to define the anisotropic nature of a solid
textures, nevertheless this method supports an arbitrary number of input textures. As
previously introduced, the structure of a texture is captured by the BGLAM. More pre-
cisely, given a grey level image I quantized into G grey levels, and considering the n × n
squared neighborhood of a texel t, there are (n2 − 1) = m possible BGLAMs, one for
each possible displacement configuration with respect to t (see Figure 3.13). The BGLAM
distance Ai ∈ RGXG for a given displacement configuration i : 0 ≤ i < m is computed as

75

follows:

• Initialize Ai with zero.

• For each texel s belonging to I, consider its neighbor k defined by the current dis-
placement configuration i.

• Increment Ai[gs][gk] by 1. Where gs and gk are respectively the grey levels of s and
k.

• Normalize Ai, such that
∑G−1

i,j=0A[i][j] = 1.

Then, the distance D(A,B) between two BGLAMs is defined as follows:

D(A,B) =
1

m

i<m∑
i=0

‖Ai −Bi‖, (3.4)

where ‖A‖ =
∑G−1

i,j=0A[i][j].

This formula relates only two 2D textures. In the case of solid texture synthesis, it has to
be extended in order to consider the distance of a voxel (with its volumetric neighborhood)
from a set of oriented slices. Such extension is the Aura matrix distance. Aura matrix
distance is defined by blending appropriately the BGLAM distances between 3D slices
and template images. This method can be generalized to support an arbitrary number
of template textures. As usual, the solid texture is initialized with random noise, then
the synthesis process consists of minimizing the Aura matrix distance of each voxel with
respect to template textures. In detail, the algorithm repeats the following steps:

• Choose randomly a voxel v.

• Among all possible grey levels 0 . . . G − 1, select the subset of candidates CG that
reduces the current Aura matrix distance from template images.

• Substitute the grey value of v, by choosing randomly from CG.

Since BGLAM works only with grey levels, the RGB channels of the template images must
be decorrelated in a way such that the algorithm can work independently on each channel.
The algorithm produces good results, especially for structured textures (see Figure 3.14.a).
Unfortunately it has some drawbacks (see Figure 3.14.b,3.14.c,3.14.d):

• It converges slowly (about one hour of computation needed to produce a 1283 solid
texture).

76

(a) (b)

Figure 3.14: (a) Successfully examples of textures synthesized by Aura 3D synthesis
[QY07]. (b) Examples of failures of [QY07]: The top row shows the effect of a conver-
gence on a local minima, Middle row shows that independent synthesis of decorrelated
channels leads to visual artifacts (courtesy of [KFCO+07]), while the bottom row show an
inconsistency generated by an oriented structural texture.

• It can converge to local minima, producing inconsistent results.

• Independent synthesis of channels may lead to visual artifacts.

• Oriented structural textures can cause inconsistencies in the solid textures.

3.3.1.4 Pixel based methods

Pixel-based methods for 2D texture synthesis (previously described in 3.2.3) have been
extended to synthesize solid textures.
Similarly to the 2D pixel-based synthesis, the main intuition is to characterize a pixel by
using its neighbors only. Again, the solid texture is produced by modifying a single pixel at
time, searching in the template texture for the candidate which has a similar neighborhood.
Despite the underlying principles are the same, volumetric synthesis entails novel problems:

• How to compare 3D neighborhood of a voxel with 2D texel’s neighborhoods coming
from template textures?

77

Figure 3.15: Examples of solid textures produced by [Wei02]

• How to handle multiple oriented template textures that concurs to define a single
voxel color?

In [Wei03] and [Wei02] Wei extends [WL00] to synthesize textures from multiple sources.
This method, originally proposed to synthesize 2D textures by mixing multiple sources,
is modified to create solid textures from a set of oriented slices. As in [GD96, DGF98,
QY07], the user defines the appearance of the solid texture along its principal directions
by providing a set of axis-aligned slices Tx, Ty, Tz.
For each voxel v, 3D slices are used to select best-matching texel of template images. As in
[WL00], three candidates colors px, py, pz were selected by minimizing the energy function
E, defined as the squared differences between 3D slices and 2D neighborhood:

Ex(v, px) = ‖v − px‖2 + ‖Ix −N(px)‖2; (3.5)

Ey(v, py) = ‖v − py‖2 + ‖Iy −N(py)‖2; (3.6)

Ez(v, pz) = ‖v − pz‖2 + ‖Iz −N(pz)‖2; (3.7)

Where px, py, pz are texels chosen form the respective templates textures Tx, Ty, T z, while
N(pi) represents 2D neighborhood of a texel pi. Voxel color is finally assigned by averaging
the candidate colors px, py, pz.
The synthesis process starts with a block of noise and runs over voxels changing the colors.
As in [WL00], by using gaussian pyramids, the entire process is performed in a multi-
resolution fashion.
This method is simple to implement but, as shown in Figure 3.15, resulting textures ex-
hibits blurring and usually don’t preserve patterns which are presents in template textures.

In 2008 Dong et al.[DLTD08] propose a new method to synthesize solid textures called
Lazy Solid Texture Synthesis.

The main advantage provided by this method is the possibility to synthesize texture in
real-time, which make it particularly suitable for interactive simulations such as real time
fracturing or cutting objects. More precisely two main characteristics make this method
suitable for real time application:

78

Figure 3.16: Left:Three exemplar composing a candidate. Right: The overlap region
defined by a candidate. Courtesy of [DLTD08].

Parallelism The algorithm can be parallelized. The authors proposes a GPU parallel
implementation that provides real-time synthesis.

Granularity of the synthesis Thanks to its locality, this algorithm can synthesize a
small subset of voxels near to a visible surface instead of synthesizing the whole
volume.

The main idea consists in performing synthesis on pre-computed sets of candidates. A
candidate is essentially a 3D neighborhood created by selecting slices from the template
images. Each candidate defines an overlap region (see Figure 3.16). The cardinality of
possible candidates is huge if we consider that we can create candidates by combining
triple of 2D neighborhood selected from template textures.
This space can be reduced by pruning candidates that produces color incoherences. More
precisely, a candidate can be classified according to two metrics:

Color Consistency Measured as the coherence of a candidate along its overlap region.
Based on similarity of colors, it is evaluated by summing squared color differences in
the overlap region.

Color Coherence Which is the ability of the candidate to form coherent patches from
template textures [Ash01]. This is evaluated by considering the amount of neighbor-
ing texels which forms contiguous patches.

The synthesis is performed in multi-resolution, from coarse to fine level, by using gaussian
pyramids. Starting from an initial block, which is formed by tiling the best overlap regions
(valuated using color consistency), the synthesis pipeline, as in [LH05], is divided into three
main steps:

79

Figure 3.17: Some example of solid textures synthesized by Lazy Solid Texture Synthesis
[DLTD08] using single or multiple exemplars.

Upsampling This step is used when the algorithm switch to a finer resolution level.
Upsampling is simply realized by colors inheritance.

Jittering Introduce variance in the output data. It is realized by deforming colors in the
solid texture.

Correction It makes the jittered data to look like template textures. It consists into
searching for each voxel the candidate which is more similar to its 3D neighbor-
hood, the searching phase is speeded by using PCA projection(Principal Component
Analysis)[LH05].

As previously stated, thanks to the locality of the data involved by the process, it is possible
to synthesize on demand a block of voxels instead of synthesizing the entire block. The
granularity of the synthesis is limited by neighborhood size. It follows that, in the case we
have to texturize a triangle mesh, we can to limit the synthesis to a solid shell following
the surface.
As shown in Figure 3.17 this method produces nice results for a wide variety of input
textures.

80

3.3.1.5 Optimization based methods

The 2D optimization based texture synthesis method [KEBK05](see Section 3.2.5 for de-
tails) has been extended by Kopf et al [KFCO+07] to synthesize solid textures.
As in [KEBK05], the main goal of this method is to make the solid texture look like the
2D template texture by minimizing globally an energy function. Since EM energy mini-
mization process proposed by [KEBK05] can stop in a local minima, provoking blurring
or creating artifacts in the output, [KFCO+07] proposes to improve convergency by inter-
leaving minimization with histogram matching operations.
For the case of solid texture synthesis the global energy equation, expressed by 3.2, is
reformulated in order to consider a 3D neighborhood:

ET (v; {e}) =
∑
v

∑
i∈{x,y,z}

‖Svi − Ee
i ‖r (3.8)

where the voxel v iterate across the whole solid texture, Svi are 3D slice at voxel v, while Ee
i

is the 2D neighborhood centered on texel e coming from template textures i. The exponent
r = 0.8 makes the optimization more robust [KEBK05].
The terms of above equation can be rewritten as follows:

‖Svi − Ee
i ‖r = wvi ‖Svi − Ee

i ‖2 (3.9)

Where wvi = ‖Svi − Ee
i ‖(r−2). Equation 3.8 is then rewritten with respect to each single

voxel belonging to Svi :

ET (v; {e}) =
∑
v

∑
i∈{x,y,z}

∑
u∈Nv

i

wv,ui (Sv,ui − E
e,u
i)2 (3.10)

By setting the derivative of 3.10 to zero, and assuming the weights wv,ui are constant,
it turns out that the optimal value for a voxel is simply the average of Ee,u

i , but this
formulation can cause blurring in the synthesized texture.
To overcome this problem weights are recomputed by using histograms. More precisely,
[KFCO+07] proposes to reduce weights that increases the difference between the current
histogram and the histogram of template textures. Minimization is realized by using
again the same Expectation-Maximization process of the 2D case. Starting from a solid
block initialized by choosing colors randomly from the template textures the synthesis is
performed in multi-resolution. To enforce preservation of strong features it’s possible to
include a feature map [LH06] in the synthesis process.
The ability of this method to preserve sharp features is superior if compared with previous

works (see Figure 3.18.(c)). Moreover, using an user-defined constraint map, it is possible
to tune the minimization to create predefined patterns (see Figure 3.18.(b)).
Since the optimization is performed globally, this method requires that entire block is
synthesized. Furthermore, the time needed for minimization process is high (from 10 to 90
minutes to synthesize a 1283 block).

81

[Wei02] [QY07] [KFCO+07]

(a)

(b) (c)

Figure 3.18: (a) Comparison of different methods in solid texture synthesis from 2D ex-
emplar, [KFCO+07] preserves sharp features, while [QY07] and [KFCO+07] introduces
blurring. (b) An example of constrained synthesis. (c) Examples of surfaces carved from
a texture block synthesized using [KFCO+07].

3.3.2 Solid Meshes

Solid textures are not the unique way to model the interior of an object, alternative so-
lutions were proposed in literature. Solid textures do not care about the object on which
colors are projected. Alternatively object’s volume can be used as domain on which the
synthesis is performed, we call this class of approaches as solid meshes.
Main challenge of solid meshes consists in creating an appropriate representation of ob-
ject’s volume and use it as the synthesis domain.
Since in solid meshes the synthesis process is constrained by the mesh, it’s possible to
obtain interesting effects, like, for example, to orient the textures to follows mesh’s shape,
or to define a layered texture.
Those methods are, in general, semi-automatic: the user specifies some appearance prop-
erty of the object and the system infers how to synthesize its interiors. Furthermore, those
methods are fast and, contrarily to solid textures, they don’t store explicitly the color of
each voxel, but it is implicitly defined by the domain model.

We consider [CDM+02] to be the first example of solid mesh synthesis. In this method
the interior of on object is defined by using a simple scripting language which allows to
define nested textures. This effect is realized by using a signed distance field.
Despite the interesting results shown in the paper, textures are generated procedurally so
the set of possible appearances is limited. Furthermore, defining internal textures by using
a scripting language is not user-friendly. Other methods that we classified as solid meshes
synthesis are [ONOI04] and [TOII08], which will be described in the next subsections.

82

Figure 3.19: Examples of layered textures created by [CDM+02].

3.3.2.1 Volumetric Illustrations

In 2004 Owada et al. proposes a novel method to create solid meshes [ONOI04].
The user specifies the interior of an object by using a browsing interface and a modeling
interface.
The browsing interface is a model viewer which allows the user to visualize the internal
structure of an object (See Figure 3.20.a). The interface is simple and intuitive: the user
freely sketches 2D path lines on the screen [IMT99] to specifies the direction along the
object has to split. This paths were projected on the 3D mesh to define the cross-section.
Once the surfaces is split in two parts, its internal surface is re-triangulated, according to
the split section, such that internal appearance can be finally rendered [ONNI03].
The modeling interface provides an intuitive way to specify the internal structure of the
model. When an object reveals its internal surface it is possible to specify a texture for
each closed volumetric region. It allows, for example, to define multiple appearances in the
case that the domain contains multiple closed regions (see Figure 3.20.e). That information
is used, together with the triangle mesh, to perform synthesis on cross-sections. More in
details, once each region of the mesh is linked with the respective template texture, then
cross sections can be synthesized on-the-fly using a 2D synthesis algorithm. That operation
requires the parametrization of cross-section, since no volumetric textures were created.
The system allows to use three different kinds of textures:

Isotropic textures This kind of textures does not care about the mesh, they can simply
synthesized in the parametric space of a cross-section using a standard 2D synthesis
algorithm [WL00] (see Figure 3.20.b).

Layered Textures The appearance of this texture changes according to the depth. A
smooth 2D depth field is calculated in the cross section [TO99], then the synthesis is
performed again using 2D texture synthesis algorithm [Tur01, ZZV+03] which allows
to distort the texture according to the depth field (see Figure 3.20.c).

Oriented textures This texture has distinct appearances in cross-sections that are per-

83

(a)

(b) Isotropic (c) Layered (d) Oriented
(e)

Figure 3.20: (a) The browsing interface of [ONOI04]. (b) Isotropic texture. (c) Layered
texture (d)Oriented texture. (e)Example of subdivided domain (bone and meat) modeled
by [ONOI04].

pendicular and parallel to a flow orientation (One example of oriented texture is
shown by Figure 3.20.d). The user defines by sketching a main flow direction, the
system use this vector to orient a 3D flow field defined into the volume, which is
calculated by using [TO99].
A reference volume is synthesized simply by sweeping the texture image along the y
direction. This reference volume is used, together with the 3D flow field, to ”textur-
ize” properly the cross-section. A 2D pixel-based texture synthesis technique [WL00]
is used to synthesize colors of the parameterized cross-section. To make the syn-
thesis process dependent on surface’s orientation, the neighborhood search step is
modified as follows: Given a pixel p, with normal n, the set of candidates used in
coherent search, is formed by slicing patches from the reference volume along planes
orthogonal to n.

As shown by Figure 3.20, the user easily produces nice results with a few mouse clicks.
Thanks to the user-friendly interface, this method is an interesting solution to produce
nice scientific illustrations (useful in medicine, biology or geology).
However the expressing power of this method is limited.

84

(a) (b) (c) (d)

Figure 3.21: 2D Lapped textures [PFH00]: (a) The continuous tangent field and the 2D
template patch. (b) The local surface parametrization. (c)&(d) Some results.

3.3.2.2 Lapped Solid textures

Lapped textures[PFH00] is a technique to synthesize textures on surfaces. It consists
mainly into overlapping properly an irregular patch to cover the entire surface. Figure
3.21 illustrate how the lapped textures works: by using a continuous tangent field and a
2D template patch (Figure 3.21.a), the surface is locally parameterized (Figure 3.21.b), so
that it’s possible to texturing it by repeatedly pasting patches (Figure 3.21.c and Figure
3.21.d). The method does not require to store explicitly the color, since it is implicitly
defined by texture coordinates.

Takayama et al.[TOII08] propose to extended Lapped Textures to fill volumes instead
of surfaces. The basic concepts behind the 2D and the 3D version are similar. As we previ-
ously introduced, 2D Lapped Textures paste irregular patches over triangles, similarly 3D
Lapped Textures paste solid patches over tetrahedrons. Moreover, 2D Lapped Textures
uses a tangent field on the surface to orient textures, similarly 3D Lapped Textures uses
a smooth tensor field (three orthogonal vector fields) along the volume to arrange solid
patches. Furthermore, like in 2D Lapped Textures, 3D Lapped Textures requires to store
only the 3D texture coordinates of each vertex belonging to the tetrahedral mesh. Finally
in order to avoid artifacts in the final texturing, [PFH00] proposes to use a ”splotch” alpha
mask (As shown by Figure 3.21), while in 3D lapped texture a volumetric alpha mask is
used to make solid texture have a ”splotch” shape.
[TOII08] classifies solid textures by considering both their anisotropy and variation (See

Figure 3.22). Anisotropy level describes the appearance of a cross section varying with re-
spect to the orientation of the slice, while Variation level express the number of directions
along which the texture changes. The tileability of the texture depends on the variation
level, i.e. a solid block is tileable along the directions that preserve the appearance.
The user first select the appearance class (according to table) he wants to model. Then if

85

Figure 3.22: Classification of solid texture appearance according to [TOII08].

required by texture class, specifies directions by sketching strokes (The interface is similar
to [ONOI04]).
The system creates a consistent global tensor field to make texture follow the orientations
in the case the solid texture is anisotropic. The tensor field is calculated by Laplacian
smoothing of user-defined direction along the tetrahedral mesh (see [TOII08] for details).
Then, the algorithm can be summarized as follows: Initially a patch is pasted by the user
in the object’s volume, then tetrahedrons that are inside the alpha mask were marked as
“covered”, then the “covered” region is expanded until it include the entire tetrahedral
mesh, by repeatedly pasting patches.
Each pasting operation implies that covered tetrahedrons must be transformed in texture
space according to the tensor field, such that it is possible to assign per-vertex 3D texture
coordinates.

This method has a nice formulation, it can model a wide variety of textures (as shown by
Figure 3.23), and requires low memory consumption. However, it has one strict require-
ment: the initial set of solid textures has to be provided a priori, together with relative
alpha masks.

3.3.3 Solid Textures vs Solid Meshes

Solid texture synthesis has both advantages and disadvantages with respect to solid meshes,
we list advantages and drawback of both approach in table 3.1.

86

(a) (b)

(c) (d)

Figure 3.23: Lapped Solid Textures [TOII08]: (a) The alpha mask used to modify the
shape of volumetric sample used for synthesis process. (b) & (c) & (d) Examples of results.

Solid textures introduces no distortion, while solid meshes can produces distortion depend-
ing on the surface. Furthermore solid textures can be reused to color every surface, while
solid meshes are adaptable only to a single surface. Solid texture creation is completely
automatic, while solid meshes requires a minimal user-interaction.
On the other hand, solid texture are no customizable. At the moment none of the tech-
niques allows to orient textures along object’s shape, or to produce layered textures. While
this effects are producible by using solid meshes. Moreover, solid textures requires a huge
memory to store data, which grows cubically with respect to the amount of edge size.
Solid meshes usually just store the minimal amount of information used to retrieve colors

Solid Textures Solid Meshes
No Distortion + -

Versatile + -
Completely Automatic + -

Customizable - +
Memory consumption - +
Preprocessing time - +

Table 3.1: Comparison between solid textures and solid meshes.

87

on demand. Finally to produce a solid texture requires, in general, a long preprocessing
time ([DLTD08] which uses GPU is an exception), while solid meshes usually just need
some seconds.

88

3.4 Texturing Internal surfaces from a few cross sec-

tions

We introduce a new texture modeling paradigm. As shown in Figure 3.24, the input data
to our modeling paradigm consists of the boundary representation of a 3D model, plus a
few photographs of cross-sections of a real object, which we refer to as exemplars. This
data is sufficient for defining plausible appearance properties of internal structure at any
point inside the 3D model and, as a result, we can generate instances of the 3D model that
reveal internal surfaces with highly realistic texture.

Our modeling paradigm can be applied for carving other 3D models out of organic objects,
interactively texturing cut surfaces in virtual cutting or fracture simulations, transferring
internal textures of real objects to arbitrary 3D models without topology restrictions, or
producing artistic combinations of internal textures from different objects.
We also relax the requirement of full cross-section photographs, allowing the user to input
partial samples or even synthetic exemplars. With our approach, it would be possible to
compute a full 3D volumetric texture and then synthesize an internal surface as a cut on
the 3D texture.
However, the computation of the 3D texture is not a requirement. We have designed an
efficient algorithm for on-demand computation on a per-point basis inside the 3D model,
which, in our implementation, yields a throughput of 20000 points/sec. Our on-demand
solution allows for a texture resolution that is not limited by storage, at most by the reso-
lution of the input exemplars.

Our texture morphing algorithm rests on two main technical contributions.
The first contribution is the definition of a domain and a procedure for interpolating ap-
pearance properties from planar oriented exemplars in 3D. We observe that splitting a
physical object with planar cuts produces a binary space partitioning (BSP) [FKN80] of
the object, thus we naturally employ a BSP tree for decomposing our interpolation domain.
Then, we employ curved projections and scattered data interpolation for defining source
points for interpolation and their weights.
The second contribution is an efficient single-point multi-exemplar morphing algorithm,
inspired on the elegant warping-based morphing algorithm of Matusik et al. [MZD05],
with notable differences. We adapt the computation of texture warpings to our BSP-based
interpolation domain, and we present an efficient method for computing inverse warpings
on a per-point basis through first-order approximation, plus a local orientation-aware his-
togram matching procedure for feature enhancement.

89

Figure 3.24: Our Paradigm for Digital Content Creation: We capture images of internal
surfaces of real objects and, in an interactive editor, we place them in the local reference
frame of a 3D model. Relying on our two main technical contributions (a natural inter-
polation domain for object cross-sections and a novel texture morphing algorithm), we
can, among other results, produce models that reveal internal surfaces with highly realistic
texture, or carve 3D models out of organic objects.

We implement our modeling paradigm through an interactive and very intuitive editor
where the user can place the exemplars inside the 3D model, trigger the preprocessing of
the data, and then use the precomputed data for the actual on-demand computation of
internal textures.

3.4.1 Texture Synthesis Pipeline

The synthesis of 3D textures from cross-section images can be decomposed into two pro-
cedures:

• At runtime, texture colors are synthesized on arbitrary 3D positions from predefined
model cross-sections through a morphing operation.

• As a preprocessing step, the user must collect input images, set them up together

90

with 3D geometry in an interactive 3D framework, and compute data necessary for
the runtime morphing.

In this section, we outline both the runtime and preprocessing tasks. Section 3.4.2 de-
scribes the interpolation domain in which we perform texture synthesis through morphing,
while section 3.4.3 describes the morphing algorithm itself.

In cases where the texture of internal surfaces must be stored for repeated use, our syn-
thesis method must be accompanied of parametrization and packing of surface triangles
in a texture atlas. We have not aimed at optimizing these steps, we have simply packed
triangles individually in an area-preserving manner [CH02].

3.4.1.1 Runtime Texture Synthesis

Our texture synthesis algorithm produces the color of one target point at a time. Given the
3D position p and orientation n of the target point, together with a set of input exemplars
{Ω1, ...,Ωn}, the synthesis function c = f(p,n,Ω1, ...,Ωn), outputs the color c of the point.

The texture synthesis is executed on an interpolation domain D, which typically con-
stitutes the interior of a 3D modelM. Given a target point p ∈ D, we classify its location
in a binary space partitioning (BSP) of D, constructed as described in §3.4.2.1. Each region
of the BSP is defined by a subset of exemplars, which are employed for synthesizing the
output color c.
We identify a source point pi and an interpolation weight wi for each exemplar, through
projection and scattered data interpolation, as described in detail in §3.4.2.2. Once we
know the source point and the weight for each contributing exemplar, we apply texture
morphing as described in §3.4.3.2.
Our morphing algorithm is an extension of the work of Matusik et al. [MZD05], with no-
table differences. In our setting, the source points are different on each exemplar image,
and each target point must be synthesized independently, as the contributions of the ex-
emplars vary according to its position. Hence, we have designed an optimized algorithm
for synthesizing the color of each target point on demand, allowing for real-time synthesis
of thousands of pixels. Nevertheless, we account for the effect of orientation on small-scale
features (See §3.4.3.3), and we ensure texture continuity across spatially-adjacent target
points.

3.4.1.2 Preprocessing of Input Exemplars

The preprocessing is composed of four main tasks:

91

• Generating exemplars and placing them in the interpolation domain D (See §3.4.2.3).

• Constructing the BSP of the interpolation domain D (See §3.4.2.1).

• Performing precomputations (e.g., feature detection, histograms, etc.) on each of the
exemplars independently (See §3.4.3.3 and §3.4.3.1).

• Defining pairwise warping functions between exemplars that bound common BSP
regions (See §3.4.3.1).

One major design desiderata for our algorithm was to rely on a small amount of data (in
contrast to the richness of possibilities that our synthesis algorithm can produce).
Therefore, we allow for some user interaction in order to optimize the quality of the input
data at the preprocessing stage. The user has the possibility to interactively place exem-
plars in the interpolation domain (§3.4.2.3), analyze and judge the need for further input
exemplars (§3.4.2.3), or introduce a priori knowledge about the textures for guiding the
interpolation (§3.4.2.2).

Thanks to the versatility of our algorithm, exemplars may be photographs of cross sections
of a real object, or synthetic images. Similarly, photographs of a certain object can be used
for synthesizing textures on yet a different object, enabling efficient 3D texture transfer.

3.4.2 Texture Interpolation Domain

In this section, we describe the construction of the BSP of the interpolation domain D us-
ing exemplars, among with how interpolation is performed inside each region of the BSP.
Then, we propose approaches for defining input exemplars and placing them in the inter-
polation domain.

3.4.2.1 Binary Space Partitioning

As mentioned earlier, we perform texture synthesis on a domain D ⊂ R3 corresponding to
the interior of a model M. Using a sorted sequence of input exemplars {Ω1, ...,Ωn}, we
construct a BSP of D in the following way.
We assume that each exemplar Ωi constitutes a planar region in D. Then, given a sub-
sequence of exemplars {Ω1, ...,Ωi}, defining BSP regions {D1, ...,Dm},the addition of the
next exemplar Ωi+1 subdivides one of the regions, Dj, into two new ones.
Figure 3.25 shows the BSP of a bunny model produced by a set of exemplars. It is impor-
tant to highlight that a BSP is actually a natural choice as data structure in our application.
Cutting a solid object by successive bisection of one of the existing pieces with a planar

92

Figure 3.25: BSP-Tree Produced by Exemplars: (a)The intersection of the top exemplar
plane with the ears of the bunny yields two connected components. (b)This situation is
fixed by adding another exemplar. The exemplars bounding the target point (in red) are
highlighted.

cut produces indeed a BSP of the original object.
Each region Dj of the BSP of D is bounded by curved surfaces {Si} ∈ ∂D, and planar
exemplar subdomains {Ωi,j = Ωi ∩ Dj}. We enforce the user to produce exemplar subdo-
mains {Ωi,j} topologically equivalent to a disk. If this condition does not hold, the user
must introduce additional exemplars, as shown in Figure 3.25. In §3.4.3.1, we discuss the
computation of pairwise warpings between exemplar subdomains.

3.4.2.2 Source Image Points and Interpolation Weights

In order to synthesize the color at a point p in the BSP region Dj, the texture morphing
algorithm takes as input source points on the exemplars that bound Dj, along with asso-
ciated interpolation weights. Here, we describe an algorithm based on (possibly curved)
projections for finding the source points and computing their weights.

Conceptually, we define the source point pi of an exemplar subdomain Ωi,j by projec-
tion of p onto Ωi,j along a path line γ(pi) emanating from Ωi,j and flowing through Dj.
If no assumption is made on texture isotropy, there is no ideal projection scheme a priori.
Any method producing smooth, evenly distributed path lines emanating from {Ωi,j} and
covering the entire subdomain Dj would be valid.
In our implementation, we have adopted the following approach. We compute the barycen-
ter of the exemplar Ωi,j, we define a curve γ emanating from the barycenter, and we sweep
and rotate the exemplar plane along γ, until it contains the target point p. In this configu-

93

Figure 3.26: Interpolation Inside BSP Regions: Given a target point p, we define source
points pi on the exemplars Ωi that bound the BSP region where p is located.

ration, we compute the ray from the swept barycenter to p, and we map this ray onto Ωi,j.
We define the location of the source point pi along the mapped ray by preserving the ratio
of distances w.r.t. the barycenter and the boundary of the subdomain in the original and
swept configurations. If we can assume no knowledge about texture isotropy, we define γ
as the line normal to the exemplar. In cases such as the oranges in Figure 3.24, we exploit
a priori knowledge by defining γ as a great arc on the sphere.

Given the set of source points {pi}, we define interpolation weights for morphing based
on scattered data interpolation. Specifically, we compute the (pre-normalized) weight wi
of each source point pi based on Shepard interpolation: wi = 1

‖p−pi‖ . In BSP regions that

do not lie on the boundary of D, the source points {pi} define a convex polyhedron that
bounds p, and then it is also possible to use convex weights given by e.g., mean-value
coordinates [Flo03].

Our interpolation procedure is guaranteed to be continuous inside regions Dj of the BSP,
as well as across regions. The projection operation and the interpolation weights are all
continuous inside a given region. When a BSP boundary is crossed, the interpolation is
dominated by a single source point, thus ensuring continuity as well. Since the morphing
algorithm described in §3.4.3 is also continuous, the complete texture synthesis procedure
is C0 continuous. Of course, the features of the input exemplars may not be continuous,
therefore we do not enforce continuity on the output textures.

94

3.4.2.3 Defining Input Exemplars

The generation of input data for the synthesis algorithm encompasses:

• The definition of texture attributes for the exemplars.

• The definition of a polygonal representation of the model M.

• The placement of exemplar planes in the domain D.

We typically collect exemplars by taking photographs of cross sections of real objects, but
it is also possible to let an artist define exemplars and their attributes. For example,
Figure 3.30 shows a case where exemplars were generated using 2D texture synthesis tech-
niques [LH05].
When trying to simulate the textures of a real object, the modelM should approximate the
boundary of the real-world object that is cut for generating the exemplars. High quality
results could be generated by scanning the real-world object, but a coarse approximation
(such as the orange model used in Figure 3.24) proved to be enough in our examples.
Once the representation of M is available, we provide the user with an interactive tool
for placing exemplar planes in D. The user may typically judge how many exemplars to
add based on visual examination of the textures, but we have also incorporated a warping
quality metric [MZD05] to aid with this judgement.

Since the model M may not exactly correspond to the real cut object and it is very
hard to accurately place the exemplars, we allow the user to place the exemplars approxi-
mately, and then we warp them so that the texture images exactly fit the boundary ofM.
In our implementation, we constrain the image boundaries to the boundary of M and we
perform a relaxation process in the interior.

3.4.3 Texture Morphing

In this section, we describe our algorithm for synthesizing the color of a 3D point as a
morphing operation.
First, we summarize the texture morphing algorithm of Matusik et al. [MZD05], which
comprises a preprocessing part for computing image warpings, and the actual runtime
morphing algorithm.
Our algorithm presents differences in the preprocessing of warpings, such as finding mul-
tilevel feature correspondences, and allowing for user interaction. But, most importantly,
our runtime morphing algorithm is designed for efficiently synthesizing the texture of in-
dividual 3D points on-demand. This aspect is essential when synthesizing texture on the

95

(a)

(b) (c)

(d)

Figure 3.27: Morphing Using Gaussian Stacks: (a) Computation of gaussian stack. (b)&(c)
Feature maps for a kiwi and an onion. On the top, feature map at full resolution; on the
center, feature map at a level of our Gaussian stack; and on the bottom, feature map at
the same level without Gaussian stack. Notice the blurry region in the center of the kiwi’s
feature map. (d)Morphing with our Gaussian stack (left) vs Morphing without Gaussian
stack (right), which noticeably increases blur.

internal surface of an object, as no pair of surface points shares interpolation weights for
morphing.
In the second part of this section, we introduce the definition of warping in our interpo-
lation domain, and we describe an approximation to the inverse warping that allows for
fast morphing at a single point at a time. Moreover, we present an approach for feature
enhancement based on local high-frequency histogram computation.

96

3.4.3.1 Morphing Images

Given a set of input images {Ωi}, Matusik et al. [MZD05] defined morphing as a convex
combination of warped versions of the images. Hence, their algorithm relies heavily on
the computation of a warping for each pair of images (Ωi,Ωj). They defined a bijective
mapping fij : Ωi ⊂ IR2 → Ωj ⊂ IR2, such that a point pi ∈ Ωi maps to a point fij(pi) ∈ Ωj,
where fij(pi) = pi +Wij(pi). The 2D vector Wij is referred to as the warping, and can be
regarded as a translation.

3.4.3.1.1 Computation of Warpings Matusik et al. followed these steps to compute
each mapping fij:

• Apply an edge detector [RT01] to Ωi and Ωj to compute feature images.

• Compute a stack of feature images by downsampling.

• Perform multilevel feature matching by minimization of the Euclidean norm of feature
image differences, together with a regularization term that measures image deforma-
tion.

In our setting, we first need to align pairs of exemplars if they share a boundary, and we
scale them such that their axis-aligned bounding boxes match.
As opposed to Matusik et al., we apply multilevel feature detection, by computing Gaus-
sian stacks [LH05] of the input exemplars, and applying the edge detector and further
downsampling to each image of the Gaussian stack independently. Figure 3.27 shows the
improvement obtained in the morphing by incorporating the Gaussian stack.
We perform feature matching through an iterative optimization of Matusik’s matching
energy, but we also allow for user interaction to add a priori knowledge into the process.
The regularization term in the matching energy measures the norm of the Jacobian for
each warped triangle. If the user considers that the warping is mostly dominated by a
global scaling or rotation, he/she may estimate this global transformation and remove it
from each triangle’s Jacobian using polar decomposition [HS88]. We also let the user grab
specific vertices and constrain them, while the regularization term guarantees a smooth
warping.

3.4.3.1.2 Computation of Morphed Images Based on all pairwise mappings, Ma-
tusik et al. computed the morphed image from convex color interpolation weights αi
and convex warping interpolation weights βi. In order to synthesize the color c at pixel
p, their algorithm performs a convex combination of the images evaluated at pixels qi,
c(p) =

∑
i αici(qi), where each qi − p represents the inverse warping of p based on the

97

convex combination of warpings. In other words, qi is the pixel in image Ωi that maps to
p: qi +

∑
j βjWij(qi) = p. The complete morphing function can then be expressed using

the concept of inverse warping as:

c(p) =
∑
i

αici(p +

(∑
j 6=i

βjWij

)−1

(p)). (3.11)

The evaluation of the inverse warping requires that each warping Wij must be scaled by
its associated weight, and the weighted sum is then computed over the complete image,
searching for the pixel that maps to p. This search can be implemented, e.g., by ras-
terization of the warped mesh with original locations as attributes. When the morphing
algorithm is applied to a complete texture image, the cost of computing the inverse of the
scaled warping is amortized over all target pixels. However, this approach is far from opti-
mal when the interpolation weights vary for each target point, as is our case. In §3.4.3.2,
we describe our optimized solution for single-point synthesis.
Matusik et al. complete the morphing process by applying a histogram matching for fea-
ture enhancement [HB95]. Unlike in our method, Histogram computation also presents
a cost dependent on the size of the exemplars, which is amortized for complete texture
synthesis. In §3.4.3.3, we again present an optimized solution for single-point synthesis.

3.4.3.2 Single-Point Multi-Exemplar Morphing

We now present the definition of warping in our BSP-based interpolation domain, together
with an efficient approximation of the inverse warping that can be explicitly evaluated.

3.4.3.2.1 Warping in the Interpolation Domain In the interpolation domain D,
morphing takes place among different source points pi for each exemplar. For two exem-
plars (Ωi,Ωj), the warping vector Wij cannot be defined as the difference vector between
a point q ∈ Ωi and its corresponding point fij(q) ∈ Ωj. Instead, we account for the
translation between the reference systems of the two exemplars, and we define the warping
as:

Wij(q) = (fij(q)− pj)) + (pi − q) . (3.12)

As noted in §3.4.3.1, it is highly inefficient to compute the exact inverse warping in the
context of single-point morphing, but we have devised an efficient approximation, presented
next.

3.4.3.2.2 Efficient Warping Approximation For texture morphing in the interpo-
lation domain D, we slightly modify (3.11). The source points {pi} vary across exemplars,

98

Figure 3.28: Showing the internal appearance of an orange.

and we use the same weights {wi} for color and warping interpolation. Then, we obtain
the following morphing equation:

c(p) =
∑
i

wici(pi +

(∑
j 6=i

wjWij

)−1

(pi)), (3.13)

where qi − pi =
(∑

j 6=iwjWij

)−1

(pi) is the inverse warping of pi.

In order to find the inverse warping on an exemplar Ωi, we approximate the warping from
each other exemplar Ωj, j 6= i based on the value at the corresponding point of its source
point, pj.
In other words, Wij(q) ≈ Wij(fji(pj)) = pi − fji(pj). From this approximation, we reach
the estimate for the inverse warping in (3.13), which yields:

qi ≈ wipi +
∑
j 6=i

wjfji(pj). (3.14)

The approximation results in the evaluation of the convex combination of the source texel
pi ∈ Ωi and the corresponding points of all other source points pj ∈ Ωj, j 6= i. Remarkably,
this approximation produces the accurate result if one of the weights wk = 1, and this

99

contributes to the continuity of the morphing as the source point crosses boundaries of
BSP regions. Our approximation obviously does not yield the same morphs as using the
exact warping, as the warping is a highly nonlinear function, but our approach produces
plausible, sharp results.

3.4.3.3 Feature Enhancement

The morphing algorithm we just described inevitably produces a certain blending of the
source exemplars. It exploits the warping for morphing large and medium scale features
effectively, but small scale features are blended.
As mentioned before, Matusik et al. [MZD05] proposed a histogram matching technique
for reinserting small scale features into the final synthesized texture. The basic idea is to
compute the histogram of high-frequency spectra in the target texture, and replace colors
based on the probability distribution functions of the source exemplars. Matusik et al.
employed steerable pyramids [HB95] for matching histograms at high-frequencies and then
recovering the full texture colors.

Although effective, this feature enhancement approach requires the computation of the
histogram on the full synthesized texture image, which is inefficient for our per-point
on-demand synthesis algorithm. However, one can observe that the histogram in the high-
frequency spectrum can be well approximated by windowing the computation. In other
words, it suffices to compute the histogram in a local kernel around the target point. We
exploit this observation by precomputing local histograms (with a 7 × 7 kernel) for every
pixel of the input exemplars, and similarly computing at runtime only a local histogram
around the target point. In fact, since textures are computed on a surface, we anyway must
synthesize the texture on a local kernel around each target point. Reusing the texture val-
ues from neighboring points also produces an orientation-aware histogram matching, as
the small-scale features depend on the local orientation of the surface. Figure 3.29 shows
the successful feature enhancement achieved with our local histogram computation.

3.5 Results

We have applied our appearance modeling framework in a variety of examples that show
the diversity of problems where it can be used, as well as its versatility in terms of in-
put data. Our examples have been generated on a laptop, with 1.7 GHz Intel Centrino
processor and 1 GB of RAM. With such commodity hardware, our on-demand texture syn-
thesis algorithm is capable of producing a throughput of approximately 20 000 pixels/sec.
Histogram matching, with a 72 kernel, takes 50% of the computations.

100

(a)

(b)

Figure 3.29: Feature enhancement using local histogram matching: (a) Feature enhance-
ment from multiple sources. (b) Morphing from an onion to a cabbage. The rightmost
column compares a portion of the morphed texture, with feature enhancement through our
local histogram computation (top), and without feature enhancement (bottom).

One of the applications where our modeling paradigm shows great benefit is the simulation
of cutting and fracture.
Figure 3.32 shows two examples of interactive cutting simulation.Note that the simulations

101

(a) (b)

Figure 3.30: Bunny with Patterned Textures: (a) Exemplars (a circuit board, leaves, and
water reflections) and bunny’s surface. (b) Cross-section of the textured bunny.

were created interactively, although they were later ray-traced offline. During interactive
cutting or fracture, the on-demand synthesis of texture on internal surfaces plays a crucial
role on the richness and realism of the results. The top row of Figure 3.32 depicts the
synthesis of internal surfaces of the apple with the texture of an orange. The slices appear
crisp and clear, and one can easily distinguish the border and the different features of the
orange, even though we only performed three cross-sections on the real orange. Notice
that the cuts in the simulation are not planar, yet our technique successfully captures the
changes in orientation.
The bottom row of Figure 3.32 depicts a similar animation, where texture was synthesized
from cross-sections of a cabbage and an onion (See Figure 3.29). The morphing between
onion texture (bottom of the apple) and cabbage texture (top of the apple) is clearly visi-

102

(a) (b)

Figure 3.31: Versatile Texturing: (a) Carving happy-Buddha from multiple exemplars.
(b)Highly diverse textures are morphed onto a bunny and a dragon.

ble, while features are sharply captured.

Our versatile texturing approach allows the combination of highly diverse textures, as
shown in Figures 3.30 and 3.31. In these examples, we use a simple sphere as the contain-
ing object M. Notice also that the colors of exemplars do not match at their intersections,
but our morphing was able to handle this situation without artifacts.

103

Figure 3.32: New Generation of Transgenic Fruits. Virtual slicing of an apple, showing
internal textures generated with our algorithm. Top: orange texture morphed from three
cross-sections. Bottom: morph between onion and cabbage cross-sections.

3.6 Conclusions and Future Work

The texturing technique presented in this paper provides a very simple yet powerful
paradigm for creating appearance models for 3D objects. We have shown its application for

104

carving objects or texturing internal surfaces in cutting simulation. The simplicity of the
method, where a user takes cross-section photographs of real objects and places them in an
interactive 3D editor, makes it highly amenable. As shown in the examples, our method
produces highly realistic textures for internal surfaces of models that resemble real objects,
but it also produces plausible textures for non-realistic examples. Our algorithm captures
successfully the morphing of global and medium-scale features through multi-level warping,
and reintroduces small features efficiently through local histogram matching. Moreover,
an efficient approximation of warping enables the implementation of the algorithm as an
on-demand routine for texturing internal surfaces during cutting simulation.

In many of the examples we have produced (e.g., morphing between onion and cabbage, the
bunnies, or the dragon), it is practically impossible to find a warping between the exem-
plars that completely avoids blur. In essence, the feature images are not pure deformations
of each other, hence a warping is not sufficient for capturing the transition. Although our
method succeeds at producing plausible results with little blur, the automatic feature
matching may lead to warpings that produce high feature distortion when morphing be-
tween images. A purely morphing-based technique may not be the best solution for such
examples, and it would be interesting to study combinations of morphing-based texturing
with techniques from stereology [JDR04] or global optimization optimization [KFCO+07].

Our current implementation is limited to synthesis of color, but it would be interesting
to investigate other appearance attributes. It is not obvious, however, that our morphing-
based approach will be applicable to techniques such as bump mapping, as its major
strength is capturing global features. We also consider the possibility of designing a par-
allel implementation on graphics hardware, as this could accelerate the morphing stage
of the algorithm. Moreover, there could be cases where the texture does not need to be
stored, as the user simply looks at an internal surface once, while sweeping through the
object. The BSP-tree poses probably the biggest difficulties for a parallel implementation,
and one option could be to limit the cross-sections to be axis-aligned, and implement the
BSP-tree as a K-d tree.

105

106

Chapter 4

Additional Results

In this chapter we present some additional results we achieved. In the first section §4.1 we
present a novel algorithm for interactive rope simulation which allows the user to create
complex knots. In the second part §4.2 we present a system to produce a 3D head model
from a set of input photos, that model is used to simulate sound scattering for realistic
rendering of 3D sound.

4.1 A Robust method for Real-Time thread simula-

tion

The main use of a thread simulator is certainly in endoscopic surgical simulation. Handling
the surgical thread to make knots (which is required in many surgical procedures) is one
of the most difficult tasks for a surgeon, which requires ambidexterity with the endoscopic
forceps.
Simulating a thread is a intriguing problem because, although it seems simpler than for
more complex 3D structures, the interaction with a thread involves some worst case sit-
uations for self-collision detection and contact handling, which are both fundamental to
make knots. Furthermore, the thread is almost inextensible, and from the point of view of
the simulation, this means that the methods modeling elasticity and using explicit time-
integration schemes are poorly conditioned.

We implemented a method for simulating surgical thread based on Position Based Dy-
namics [MHHR07], modeling stiffness, bending, torsion and providing feedback for the
haptic device.
The collision detection is carried out by spatial hashing [THM+03]. We speed up collision

107

Figure 4.1: An example of knot tying performed by our algorithm.

detection introducing a hierarchical test on the curvature of the thread to early discard
those portion of the thread that cannot self intersect.

In Section 4.1.1 we briefly review the state of the art in thread simulation, while in Sec-
tion 4.1.2 we describe the detail of our implementation, finally results and conclusion are
reported in Section 4.1.5.

4.1.1 Previous Work

Most of the approaches to thread simulation are energy-based (i.e., define a system energy
and derive it for computing the forces), and model the thread as a one dimensional chain
of mass points, where adjacent mass points are connected by springs. If the spring are
pure elastic elements following Hooke law, some care needs to be taken to avoid oscillation
and instability of the simulation.
In [PLK02] stability is enforced by making adaptive the number of points and using a
modified integration scheme.
In [WBD+05] the relation between points also includes bending and torsion. A dissipation
factor is also considered in the form of friction forces consequent to contact.
A continuous model is proposed in [LMGC02], where the thread is modeled as a spline
and energy of the system is defined with an integral over the spline. Although the mass is
distributed along the thread and not lumped at the points, the energy term is ultimately
computed by discretizing the computation of elongation and bending of the curve.
A non energy based model is presented in [BLM04] under the name of Follow The Leader
(FTL) algorithm. It consists of first moving the nodes constrained by external action (e.g.,
grasped by a tool), and then heuristically moving the others trying to preserve the original
inter-points distance. Although the absence of physical simulation is apparent, this method
allows making complex knots at interactive frame rate.
A critical aspect of all the methods is how self-collision is detected and how contact is
handled. A common approach is to use a hierarchy of bounding spheres. For the simplicity
of the thread structure and for the low number of points generally used (few hundreds),

108

it turns out to be an effective solution, although the sphere is the worst fitting geometric
primitive for a segment. As for more general simulation models, the collision generates
impulse forces trying to restore non contact situation and the friction due to continuous
contact is modeled as a dissipative force. Recently Spillmann and Teschner in [ST07]
and [ST08] present two novel solutions for the simulation of ropes allowing knot-tying and
adaptive refinement.

4.1.2 Our Approach

We model the physics of the thread using Position Based Dynamics [MHHR07].
This approach consists of modeling the physics as a set of constraints and then running
the simulation iterating three steps:

1. Moving the mass points according to their velocity and external action (e.g. grasp-
ing).

2. Moving the mass points to satisfy the constraints.

3. Performing time integration.

If the direction of movement is along the gradient of the constraint function then the
linear and angular momentum are preserved and no ghost forces are introduced. This
characteristic coupled with a Verlet scheme (which does not store velocity) guarantees a
unconditionally stable method (please refer to [MHHR07] for further details).
The main reason we choose Position Based Dynamics relies in its stability in collision and
contact handling, where energy based method generally fails.

4.1.2.1 Stiffness and Bending

We use a Distance Constraint C(p0, p1) = ‖p1 − p0‖ − Lrest, both to keep the inter-points
distance constant (see Figure 4.2.a) and to model resistance to bending by constraining
the distance between every second mass point as proposed in [Pro95] (see Figure 4.2.b).

4.1.2.2 Contact constraint

Self contact constraints are added whenever the cable self-intersects, i.e. when the distance
between two non adjacent edges is less than the radius of the thread r. The constraint is of
the form C(p) = [p− (pn0 + pv)] where pv = (‖pn0 − pn1‖ − r) · pn0−pn1

‖pn0−pn1‖ is the penetration

vector and pn0 is the current position of point p.

109

(a)

(b) (c)

Figure 4.2: Stiffness,Bending & Collision constraints formulation: (a) Stiffness constraint :
The two particles p0 and p1 are displaced in opposite directions along the edge in order to
restore the original length of the thread Lrest. (b) Bending constraint : A stiffness constraint
is added between node Ni and node Ni+2 in order to oppose to bending operations. (c)
Contact constraint : Given the section of the thread r the cable self-intersect if the distance
between two non adjacent edges is less than r. The penetration vector Pv defines how to
move the colliding segments in order to resolve the collision

4.1.2.3 Friction constraint

If a segment composing the thread is in contact, then its movement should be limited by
adding friction.
In the original approach [MHHR07], friction is modeled by manipulating the velocities.
Instead, we chose to integrate the friction in the constraints projection. The main reason
is that the projection of the other constraints could bring the particles in a non-contact
state before the velocities are updated and the risk of oscillating between contact state and
non-contact state is greater.
Let ∆ip be the displacement computed by the projection of a set of constraints, the point
p be in contact with a surface locally approximate by a plane Pfric. Then the displace-
ment is modified as: ∆′ip = ∆ip · µPvfrict, where µ is the friction constant and Pvfrict is
the penetration vector. In other words we apply the Coulomb friction in the constraint
formulation, i.e. replacing forces with displacement. If the contact involves the thread and
a surface, then the friction plane Pfric is defined by the normal over the nearest point of
surface, while if the contact involve two segments then the friction plane is defined as the
plane passing through the two segments (figure 4.3). The choice of integrating the friction
in the constraint resolution is an heuristic that may make it more difficult to tune the

110

(a) (b)

Figure 4.3: Friction & Contact constraints formulation: (a) An example of friction. (b)
Friction plane definition in the case of 2 segments in contact: the friction plane is defined
as the best plane fitting the 2 segments.

parameter, but in our experiments it leads to a more stable simulation.

4.1.2.4 Torsion constraint

To add a torsion constraint we first have to evaluate the torsion angle. While stiffness,
bending and contact constraint can be easily defined over a one dimensional thread, the
torsion cannot be derived solely on the position of the mass points. For this reason we add
to the system a material vector for each segment. This vector is orthogonal to the segment
and it is meant to have fixed orientation in material coordinates.
Without loss of generality, let us assume that at the beginning of the simulation the thread
is straight and the torsion is 0 everywhere, so that all the material vectors have the same
orientation.
For each segment we define the torsion angle as the angle between the actual material
vector and a material vector computed assuming no torsion in the thread.

Figure 4.4.a shows two adjacent segments where the node p is moved from position pa
to the position pa′ keeping the segment b fixed. The movement is done so that a torsion
is created therefore the vector vta′ is not in the same plane as vtb. Figure 4.4.b shows the
same final configuration but this time the movement is a single rotation and no torsion is
created, therefore va′ is in the same plane as vtb. In other words the vector va′ is the value
the material vector would have if the configuration was reached without applying a torque

111

(a) (b)

(c) (d)

Figure 4.4: Torsion constraints formulation: (a) Computation of the material vector. (b)
Finding the material vector under the assumption that there is no torsion (c-d) Definition
of the torsion constraint.

to the thread.
Figure 4.4.c shows a configuration of the thread where the two material vectors have been
computed. Consider the projection of the node p onto the plane orthogonal to the central
segment. If we rotate p by the torsion angle α the torsion would be 0, therefore we express
the constraint as C(p) = |α|.

4.1.2.4.1 Material vector computation The material vector of each segment known
at the beginning and it is updated step by step. Let us consider the segment si with material
vector vi at time t and t+ 1. We find the rototranslation RTi as min{RT |RTsit − sit+1||}
and update the material vector as vit+1 = RTivit. This approximation relies on frame to
frame coherency and on the fact that the thread has a very stiff behavior, so that the
segments have almost constant length.

112

(a) (b)

Figure 4.5: Simple pruning test for self collision detection based on angles: if
∑i<n

i=0 ‖αi‖ <=
2π, then self-intersection can not occur.

4.1.3 Collision Detection

Because the segments of the thread are equally sized we used a regular partition of the
space and the Spatial Hashing technique with temporal marks introduced in [THM+03].
We also exploit the one dimensional nature of the model to define an quick rejection test
based on the discrete curvature of the thread. The idea is to consider the angles between
consecutive segments of the piecewise rectilinear curve and to check if such angles would
allow a self-intersection of the curve.

Let us consider Figure 4.5.(a) representing a thread made of four segments where two
ends have been joined to form a non selfintersecting (i.e. simple) polygon. The angles
indicated with αi are the turns taken to walk the polygon clockwise.
In general it holds ‖

∑i<n
i=0 αi‖ = 2π with αi signed (positive clockwise, negative counter-

clockwise). If the polygon is convex, than ‖
∑i<n

i=0 αi‖ =
∑i<n

i=0 ‖αi‖ while if it is non convex

‖
∑i<n

i=0 αi‖ <
∑i<n

i=0 ‖αi‖.

We use the fact that if a polygon is not simple then it cannot be convex to derive a
rejection test for self intersection, i.e. if we can prove the polygon is convex that it cannot
be non simple.

Since the thread is embedded in 3D, we would need to find a plane on which the pro-
jection of the thread (plus the closing segment) is a convex polygon, which would become

113

Figure 4.6: Our simulation framework include a 6 degree haptic device to allow real-time
knot tying

too much demanding for a quick rejection test. Instead we simply compute the 3D angles
between consecutive segments αi and test if

∑i<n
i=0 ‖αi‖ <= 2π. If this inequality holds, the

thread is guaranteed not to self-intersect. The intuitive meaning of this test is that if we
flatten the thread on to a plane preserving all the angles and so that they have the same
sign, the thread will not self intersect because it simply is not bent enough to self intersect.
We use this test in a hierarchical fashion, starting from the whole thread and recurring on
failure to reject the self-intersection.

4.1.4 Visual and Haptic feedback

In order to have a smooth shape of the rope, we refine it at rendering time using the
Chaikin’s Algorithm [Cha74], starting from the set of particles used during the simulation.
We render each segment of the rope using textured impostors, in order to minimize the
number geometric primitives. We draw a set of connected polygons that were transformed
respect to the eye point of the scene using a cylindrical symmetry. The overload due to
this rendering technique is negligible and it has been successfully used to produce the final
visual examples shown on videos. The framework for knot tying simulation include a 6
degree haptic device to allow real-time knot tying, the FREEDOM6S interface [J.D98](See
Figure 4.6). The user interact by grasping and freely moving a grasped node using the
haptic device. The resulting feedback force is computed by considering the two segments
adjacent to the grasped node as linear springs. While the frame rate of haptic device is
guaranteed by performing a linear extrapolation in a dedicated thread.

114

Figure 4.7: Strangling the bunny

4.1.5 Conclusions and future work

We applied our model to simulate real time knot tying. Figures 4.7, 4.8 and 4.1 show some
examples of interactive knot tying. The simulation runs at 70fps on a Intel Pentium 4 -
3,0 GHz using 90 particles and 320 sampled points for ropes rendering.
We implemented the technique using the VCG library for the geometry concepts [Vis05b],
IDOLib for simulation primitives (time integration and contact)[Vis05a] and the Haptik
Library [dPP07] for interface with generic haptic hardware.

With respect to the Follow-The-Leader algorithm proposed in [BLM04] that only takes
into account stiffness and assumes the thread has no mass, our solution also considers grav-
ity and torsion. Thanks to the stability and controllability of position based dynamics, our
algorithm can model a very stiff thread, that is more similar to a real surgical thread with
respect to the explicit mass spring formulation described in [WBD+05].

For future research, we plan to formulate new constraints on the thread in order to simulate
the suturing process. In this case, it may be rather simple to constrain the cable to slide
trough holes. Another direction of research is to investigate the possibility of adapting
sampling of the thread and adaptive time step of integration. This was not necessary in
our current setting but it will be when using longer threads without losing the detail of
the representation.

115

(a) (b)

Figure 4.8: (a) Example of a knot with 2 ropes. (b) Detail views on other knots.

4.2 Reconstructing head models from photographs for

individualized 3D-audio processing

Audio has not been considered much as a mean to provide realism, but techniques like
binaural rendering can greatly enhance the perception of realism. Binaural rendering can
be fully exploited only by using individualized HRTF filters, otherwise it can produce lo-
calization artifacts (please refer to [Beg94] for a comprehensive overview on 3D sound for
Virtual Reality and Multimedia).
HRTFs are complicated functions of frequency and spatial variables, their shape can notice-
ably vary between subjects and it’s closely related to the features of the head (see [Bla97]
for a comprehensive overview about psychophysics of spatial hearing). In particular, the
primary role in determining sound perception seems to be associated with the peculiar
features of ears, while a secondary contribution is assigned to the size of the main features
of the head (nose, chin, head width and height...). This makes the modeling of accurate
individual HRTFs a central issue in the context of audio rendering techniques.
Among the several proposed solutions, a very promising direction is the simulation of the
measurements made on a 3D head model. Unfortunately, the quality of the final result is
strongly related to the accuracy of the geometric model.

The system we propose is an automatic way to build a 3D model of a human head, starting
from a few photos of the subject and some key-points indicated on them. The needed input
can be produced in a few minutes, and the rest of the procedure is fast and completely
automatic. It involves mechanisms to extract information from the photos , and to accord-
ingly deform a 3D dummy head model in order to reproduce the ears and face features of
the subject.
The final structure of the system proves to be:

116

• Usable for large scale application, thanks to the very low amount of input needed.

• Completely automatic. Once the input data are collected, the 3D model reconstruc-
tion and the HRTF calculation are performed with no further intervention.

• Fast and reliable: the system is structured to produce realistic results even in the
case of low quality or incongruent input data.

• Designed to accurately reproduce the ears shape, but also able to recreate the main
face features.

• Geometrically accurate: validation shows that the accuracy in reconstruction is ad-
equate to calculate a satisfactory HRTF.

4.2.1 individualized HRTF modeling

4.2.1.1 Related Work

Listening to 3D audio over headphones using non-individualized HRTF filters can lead
to localization artifacts, like notably increased “inside-the-head” perception and front-
back confusions [Bla97, WAKW93]. To address this issue, several approaches have been
proposed to model individualized HRTFs for 3D audio processing [Gar05]. They can be
classified into four major groups:

1. Directly measuring HRTFs by placing microphones inside the ears of the subject
[KB07]. This process can take up to several hours and is extremely uncomfortable
for the user.

2. Perform a set of Perceptually-oriented tests to choose a preprocessed HRTF [MMO00].
Unfortunately, efficient protocols to quickly select the most appropriate matches are
still not well defined.

3. Choose the right preprocessed HRTF by considering direct measurements of mor-
phological parameters on the subjects [Lar01, DAA99, ADMT01]. This approach
requires a large database which might not be fully reliable.

4. Simulate virtual measurements of HRTFs filters by running finite element simulations
[Kat01, KN06] or ray-casting [ARM06] on a 3D head model. Using an approximate
finite element simulations [TDLD07] provides results in a reasonable time, however,
this method require a 3D input mesh of the subject.

117

Figure 4.9: A scheme of the whole HRTF calculation system

4.2.1.2 Overview of our system

In order to be able to reach the goals listed in the introduction, the whole system was
designed as a custom solution which employs different techniques at their best for this
peculiar application.
A scheme of the whole system is shown in Figure 4.9. We can individualize four main
components involved in the generation of the 3D model. The whole process can be roughly
divided into two parts:

• The first one deals with the treatment of the input data, in order to extract relevant
features and select the best 3D dummy to be morphed.

• In the second part, work is performed on the selected 3D dummy mesh, in order to
morph and scale it to resemble the geometric features of the head of the user.

Though, for sake of clarity, the system has been subdivided in several parts, only the first
component (Input Collector) needs an intervention by the user. The rest of the system has
been designed to be completely automatic.

4.2.1.3 Photouploader

In order to collect data in a user-friendly way, we propose a simple tool called Photou-
ploader. By using Photouploader the user specifies the input photos and indicate some

118

key-points (6 or 7) on each image. Moreover, the system requires a global scale measure
in order to scale the final model (we chose nose length).

4.2.2 Reconstruction of head models

4.2.2.1 Related Work on ear reconstruction

The shape of the ears plays a key role in our reconstruction system. Ear biometrics try
to individuate a model for external ear features:[Ian89] is often cited as a very convincing
one. Unfortunately, these biometry measures are not well-defined, so it’s very hard to use
them in automatic methods. Ears are mainly considered in the field of recognition and
security by analyzing both 2D [JM06] and 3D [CB05, CB07] ear data. Unfortunately the
information extracted and used for recognition is usually not directly linked to geometric
features (like curves or size of the ear).

4.2.2.2 Related Work on head reconstruction

Several works in the field of 3D reconstruction focus on the reconstruction of 3D faces from
images.
Very realistic results can be achieved [HA04, D’A01], but the produced geometry is usually
not accurate enough. An approach which is more related to our goal is the morphing of
face model to fit images [BV99, Bla06, JHY+05] and 3D scans [BSS07]. These methods
are very accurate, but they don’t take into account the whole head, and especially the ears.

Regarding 3D head reconstruction from 2D data, some methods [LMT98, LLY04] ob-
tain low resolution complete and textured 3D head models. Even in these cases, geometry
is not accurate enough for our requirement. [FOT04] can generate accurate models, but
a very complex acquisition apparatus (28 digital cameras and two projectors) is needed.
Moreover, most of the works don’t take into account the scale of the model, that is a key
issue for scattering calculation.
In conclusion, a numerical comparison between the cited methods and our system is dif-
ficult due to the differences in goals (geometry accuracy vs. visual resemblance, 3D faces
vs. 3D heads). Hence, we will consider laser scanning as a reference, since it is the most
reliable technique for geometry acquisition.

119

Figure 4.10: Three elements of the 3D dummy library

4.2.2.3 Features extraction from images and starting 3D dummy selection

Once the input data are collected, the automatic model production process starts. The
goal of the first element of the system is the selection of the best starting dummy from
a library of 3D heads. The library of 3D heads is composed of ten models obtained via
3D scanning. As shown in Figure 4.10, each 3D model has differently colored parts, which
undergo different morphing operations.
As already stated, although face features are important and can’t be ignored, the shape of
the ears plays a key role in the final HRTF profile. So the dummy which best matches the
ear features (extracted from images) is selected for morphing.
The sub-image representing the ear is automatically cropped (by using key-points) from
original photos, then the ear external border is extracted by following the ear edge starting
form an initial seed which is automatically placed. The dummy selection is performed by
analyzing each of the ears of the library models. A model of perspective camera is used to
rigidly align segmented ears from photos with respect to 3D ears coming form the dummy
model.
A low accuracy morphing (see Figure 4.11.a) is applied on each 3D ear model, so that it
is slightly deformed to fit both the external mask and the internal features. After this
operation, a similarity measure between a rendering of the 3D ear and the extracted image
(based on the position of feature edges) is calculated, and the most similar dummy is
selected.

Similarly, profile and frontal photos are used to provide head contours together with each
aligned cameras to compute head deformation (Figure 4.11.b).

4.2.2.4 Dummy morphing

The 3D Morpher is the core of all the system: it applies a peculiar deformation to the
dummy 3D mesh. Using the set of cameras which defines the alignment of the dummy
model with respect to each image, a set of viewport-dependent 2D-to-3D model deformation

120

(a)

(b)

Figure 4.11: Ear and Head selection and alignment: (a) An example of ear selection:
starting image, dummy ear camera position before and after alignment, ear shape after
low accuracy morphing. (b) An example of head alignment: starting image, extracted
mask, dummy head camera position before and after alignment.

is calculated. The set of deformations is then combined to morph the dummy model to its
final shape.
The entire morphing process can be subdivided into the following steps:

Single View Head Deformation Three energy-driven deformations, one for each photo
(right and left profile, frontal) are calculated. Each one tries to match the geometry
with respect to a single point of view (view dependent deformation).

Global Head Deformation View dependent deformations are merged (according to cam-
era positions and orientations) to a global smooth deformation.

Ear deformation Ears, which have been preserved in previous steps, undergo an accurate
deformation using close-up ear cameras and images.

Morphing the geometry to match an input image requires the computation of a mapping
between the photo and a rendered image of the dummy head (taken from the associated
rigid-aligned camera position). This mapping operation is usually referred as warping in
literature.

4.2.2.4.1 Warping Computation Our warping function is an extension of the tech-
nique described in section 3.4 for textures warping computation.

121

The original energy function (see [MZD05] for details) is modified by adding a term
Kp =

∑
Pi∈keypoints |(Pi(photo) − Pi(model)| that measures the sum of distances between

the user-defined key-points on the input photo and the relative key-points on the dummy
head (transformed to screen-space coordinates).
Energy function can be schematized as follows:

E = L2 + α ∗ J + β ∗Kp (4.1)

where L2 is the per-pixel error scalar feature strength and J is the Jacobian term which
controls the smoothness of the warp field.
Once we calculate the warping function, the displacement for each 3D dummy vertex is
calculated by projecting the vertex on the associated camera plane, evaluating its warped
position, and un-projecting it back to world space (without changing z-value).
The size of images used for morphing is 2562. This size represents a good compromise
between detail preservation and processing time: higher resolution images could be used,
but the gain in detail would not justify the longer time necessary for computation.

4.2.2.4.2 Single View Head Deformation In this phase we apply the warping be-
tween a rendered image of the dummy head and the input photograph, using associated
camera parameters.
In the original method, both external and internal features would be taken into account for
deformation. But in a real scenario head photographs could reveal strong sharp features
that are difficult to be represented geometrically (such as beard, eyebrows..), furthermore
peculiar lighting environments could lead to incorrect edges warping. So the deformation
is applied using only the binary masks which define the external profile of the head.
The internal features of the face are then deformed by fitting a group of key-points as-
sociated to those indicated by user. Figure 4.12.a shows the key-points involved in head
warping: for frontal deformation we use 5 key-points: two for the eyes, one for the nose and
two for the mouth; while for lateral deformation we chose to use one side eye constraint
plus a set of four points around the ear. These points define the bounding box of the ear,
so that it is preserved for a latter deformation. Sequence 4.12.b shows the deformation
process involving the dummy mesh, using one lateral image.
Moreover, the frontal warping is controlled via symmetrization. Because of possible non-

symmetric head contours extracted from frontal photo or non perfect input image (i.e.
tilted or slightly rotated head), simple warping can produce asymmetric head shapes (see
Figure 4.13.a). To overcome this problem we symmetrize the warping as follows:

• We establish a symmetrization line on the rendered image, so that the rendered image
is divided into two subspaces (Figure 4.13.c). The symmetrization line is defined as
the line passing through the nose key-point and the point in the middle of the eyes
key-points.

122

(a) (b)

Figure 4.12: Lateral head deformation:(a)Keypoints used for frontal and lateral head de-
formation. (b)Lateral head deformation sequence.

• We obtain a mapping Mirr(x, y) between the two regions of the rendered dummy,
by mirroring over the symmetrization line.

• We finally average the warping of mirrored points:

Warp(x, y) =
Warp(x, y) +Mirr−1(Warp(Mirr(x, y)))

2
(4.2)

Figure 4.13.b shows the effect of warping symmetrization.

4.2.2.4.3 Global Head Deformation At this morphing stage, each vertex can be
translated in three different ways (one for each viewpoint). These three camera plane
warpings are unified to a single smooth deformation as follows:

• Lateral deformed positions are unified through a weighted sum (weights decrease
proportionally respect to ear distances)

• Unified lateral and frontal deformations are summed by assuming they are perpendic-
ular, so that displacements in x- and z-axis are independent: the final displacement
in the common direction (y-axis) is a weighted sum of the two contributions.

4.2.2.4.4 Ear deformation Accurate ear deformation is key to the final quality of the
results: in this case both internal and external features extracted from images can be used

123

(a) (b) (c)

Figure 4.13: Symmetrization: (a) & (b) Non-symmetrized versus symmetrized. (c) Sym-
metrization line of undeformed model.

Figure 4.14: Example of ear morphing sequence.

to compute the deformation (Figure 4.14). The morphing sequence is organized as follows:
3D ear rendering is morphed to fit the external ear silhouette, then an additional warping
is used to match internal features.
The colors of input ear images are previously modified in order to match the histogram of
frequency spectra of the rendering of the dummy model.

4.2.2.5 Global scaling and texturing

Scaling is one of the key issues about the accuracy of reconstruction. If the size of the
model is incorrect, the computed HRTF will be wrong. The scaling operation is performed
using the measure provided by user with the Photouploader (see Section 4.2.1.3), which is
the nose length.
Another feature of the system is the possibility to texture the obtained head model: the
input photos are deformed to match more precisely the geometry (essentially by applying
the inverse warping explained in section 4.2.2.4). Shown colored models are obtained by
projecting warped images using [CCCS08]. But, for clarity sake, textures are not needed
for HRTF calculation.

124

Figure 4.15: Two results of processed heads.

4.2.3 Results

Two results are shown in Figure 4.15. The entire system proves to be robust and quite
fast: the overall time needed to produce the final 3D model, from input collection to model
saving, it is less than ten minutes.
Although the visual resemblance of the obtained model is usually satisfactory, the main
goal of the entire system was to be able to guarantee sufficient geometric accuracy. For
this reason we performed some tests to compare 8 models obtained from photos to their
corresponding laser scanned models. Moreover, preliminary HRTF calculation tests were
performed on on reconstructed and laser scanned 3D heads, in order to obtain a comparison
between the resulting simulations.

4.2.3.1 Geometric validation

A sub-millimetric precision in geometry reconstruction from photos is a results which is
possible only under very particular and controlled conditions. In our case, since the input
is provided by the user, and the starting dummy can be very different from the final target,
the main goal is to be able to reproduce head features as much as possible. Hence, instead
of using purely geometric comparison tools like [CRS98], we compared the results by taking
into account two sets of measures, which could represent head features and their influence
on the HRTF profile.
The first set was the position in space of several key-points, picked on the models. Results
of comparison are shown in Table 4.1. The average error is usually less than 1 cm and
the variance of data is not big. These values can be considered as satisfactory, especially
considering the fact that the input data is solely two-dimensional and the scale factor can
introduce inaccuracies.

125

Average Maximum Variance
Nose 11.3 22.1 0.89
Chin 10.8 21.2 0.03

Left Eye 9.8 16.6 1.22
Right Eye 8.1 11.4 0.46
Left Mouth 11.4 22.2 2.83

Right Mouth 9.8 21.5 1.69
Left Lobule 8.4 13.5 1.89
Left Tragus 6.7 11.5 1.04
Right Lobule 8.3 14.0 1.30
Right Tragus 7.3 10.8 1.83

Table 4.1: Distance in mm between key-points of scanned and reconstructed model

Average Maximum Variance
Neck (d4) 5.6 15 0.10

Head Size (d9) 5.9 14.5 1.30
Head Size (d19) 3.2 6.7 0.47

Ear size (R) (d10) 3.7 6.3 0.50
Concha size (R) (d12) 1.8 3.4 0.04
Concha size (R)(d13) 0.8 1.3 0.005

Ear size (L) (d10) 3.8 8.2 0.58
Concha size (L) (d12) 2.1 3.8 0.33
Concha size (L) (d13) 1.1 2.5 0.24

Table 4.2: Difference in mm between distances indicated in [Lar01]

The second set of measures was extracted from [Lar01], where several ear and head
measures were statistically analyzed in order to find which ones were more related to the
changes in HRTF profile. We compared the set of 3D models using six measures (three for
the head, three for the ears) which are indicated as very important in the conclusions of
this work. Results are shown in Table 4.2. The difference between distances is often less
than 5 mm, in particular the ear internal features seem to be preserved accurately.
An overall analysis of the data shows that, even if accuracy for some features (like ear size

and tragus position) could be further improved, the error bound describes a very reliable
system.

4.2.3.2 Preliminary assessment of HRTF simulations

A preliminary validation of HRTF simulation on 3D models was performed on couples of
laser scanned and reconstructed 3D heads of the same subject.

To simulate HRTFs corresponding to the reconstructed geometry, we used a simplified
boundary element approach leveraging on the Kirchoff approximation. The Kirchoff ap-
proximation allows for efficiently computing first order scattering off the reconstructed

126

Figure 4.16: Two examples of polar plots for measurements on couples of scanned-
reconstructed 3D heads.

mesh and can be efficiently implemented using programmable graphics hardware. Please
refer to [TDLD07] for details.
We used this approach to compute the scattered field captured by two virtual microphones
placed at the entrance of the left and right ear canal, less than 5 millimeters away from the
surface of the mesh. Computed data are only a subset of a complete individual HRTF, but
they provide enough information for a preliminary comparison. Two polar plots of left ear
intensity-amplitude for our reconstruction approach compared to a laser scanned model are
shown in Figure 4.16. The obtained data from preliminary calculations prove to be encour-
aging for a future use of 3D reconstructed models for HRTF calculation. A further stage of
validation between reconstructed and measured in anechoic chamber HRTFs will provide
more information. Moreover, it will be possible to further investigate the importance of
each head feature to improve results and possibly further simplify the system.

4.3 Conclusions and future work

Our system automatically creates 3D head models from a small input set (five photos and
some key-points indicated on them). The system integrates image processing techniques
with a novel application of 3D morphing, based on a combination of several 2D deformations
calculated in different camera spaces. The technique has been proven to be fast, robust and
reliable, furthermore both geometric and preliminary HRTF validation are encouraging.
Future work to further improve the method includes:

• The implementation of more effective methods for face deformation (i.e. implement-
ing part of the contribution of [Bla06]). This would probably lead to a better visual
resemblance of the model, widening the application field of the proposed method to

127

geometrically accurate avatar generation. In this case, hair extraction and visualiza-
tion should be taken in account.

• Calculate warping by using the GPU. This could bring the whole computation time
from minutes to seconds.

• Enriching the dummy library: it is currently composed by only ten models, but the
best solution could be to select accurately a subset of 3D models from a wider set of
3D scanned heads.

In conclusion, the proposed system can be considered as a very promising method not only
for individualized 3D-audio processing, but also for other applications which need accurate
head geometry, produced from a few photographs.

128

Chapter 5

Final Remarks

In this thesis we propose a collection of novel techniques to improve efficiency, stability and
visualization quality for interactive simulation of virtual cutting of deformable objects.
We summarize the main contributions described in this thesis as follows:

• We presented a new data structure and algorithm called Splitting Cubes [PGCS09]
to dynamically represent the external boundary of deformable object. Splitting cubes
can be used in general to represent a surface embedded in a 3D deformation field
which, in the specific case of a deformable object, is defined by the underlying phys-
ical model.
One important advantage provided by the splitting cubes relies on its independence
with respect to the underlying physical model used to encode the deformation field.
Splitting cubes provides an implicit representation of the external boundary which
can be dynamically modified to represent any topological modification, such as cuts
or fractures, occurring during the simulation. Such implicit representation is encoded
by a regular grid, whose cells represent the sub-portions of surface embedded. More
precisely, each cell maintains a minimum set of information to derive the tessellation
and the deformation of its sub-portion of surface.
Due to this implicit representation, splitting cubes are unconditionally stable to topo-
logical modifications. Furthermore, efficiency is ensured by the fact that the amount
of geometric primitives introduced by cuts or fractures is limited by the grid resolu-
tion.
We also demonstrated how the Splitting Cubes can be successfully applied to mesh-
free methods, which do not have an associated boundary representation on their own,
by using the Point Based Method described in [MKN+04] to compute the deformation
field.

• We introduced a new method to model discontinuities on mesh-less methods called

129

Extended Transparency Method [PGCS09]. We illustrated how the Extended Trans-
parency Method improves stability and efficiency with respect to previous method
proposed in literature. Thanks to its formulation, this method can be easily imple-
mented on the GPU, producing a considerable speedup.

• We introduced a new appearance-modeling paradigm for synthesizing the internal
structure of a 3D model from photographs of a few cross-sections of a real object
[POB+07]. When the internal surfaces of the 3D model are revealed (for example
when it is cut, carved, or simply clipped) we are able to show the appropriate tex-
ture synthesized from the input photographs. Our texture synthesis algorithm is best
classified as a morphing technique, which efficiently outputs the texture attributes of
each surface point on demand. Our modeling paradigm, together with its implemen-
tation through our texture morphing algorithm, allows users to author 3D models
that reveal highly realistic internal surfaces in a variety of artistic flavors. With
respect to previous approaches this method can reproduce a large set of effects by
capturing features at different scales. Furthermore, it can efficiently synthesize colors
on demand so that it be integrated in a real-time simulation.

We also achieved two interesting additional results:

• We defined a new approach for interactive simulation of rope, including the possibility
of performing complex knots [KPGF07] using Position Based Dynamics [MHHR07].
More precisely, rope dynamic is described by a set of constraints must be satisfied
simultaneously during the simulation. With respect to previous methods proposed
in literature, our method can be considered as a good compromise between physical
accuracy and robustness.

• We presented a pipeline for reconstructing head models from a few photograph, to
perform sound scattering calculation [DPT+08]. Our algorithm relies on two main
contributions: first, we design the first pipeline to calculate personalized HRTF (for
3D sound rendering) from photos; second we define a method to reconstruct the
entire head with particular attention to the morphology of the ears, as opposite to
classical systems which mainly focus on facial features.

5.1 Future work

In this section we explore the directions for further investigation suggested by the results
obtained in this thesis.

Surface description The key idea of the Splitting Cubes algorithm is to associate an ad
hoc representation to the cut configuration of each cell, which in its current version is

130

a small triangle mesh. A natural extension could be to generalize the representation.
This would allow to use other rendering strategies. For example we could consider
a set of points rendered as splats [ZPvBG01, ZPvBG02] perform a ray cast in the
fragment shader. These choices could be beneficial since they could naturally provide
a level of detail representation, i.e. the work done for rendering the portion of surface
inside a cell could be proportional to the number of pixels on screen it project to
(while now is fixed with the number of triangles).
A second improvement could be to implement the Splitting Cubes in a multiresolution
fashion to be able to move away from a fixed granularity of the cut. Obviously
this approach would bring back the risk of excessive fragmentation and consequent
performance loss that should be taken into account.

Physical model We could simulate the mechanical behavior of a deformable object by
using the volumetric discretization provided by splitting cubes regular grid.
We can, for example, consider each cell as a continuous amount of material which can
be simulated by using FEM. By considering the fact that their shape never degenerate
to quasi zero volumes, the potential for instabilities is minimized.
Recently, Rivers and James [RJ07] presented the Fast Lattice Method, a shape
matching method optimized for cubical cells. This method is unconditionally stable
and easy to implement. We could consider each cell of the splitting cubes as a lattice
cell of the Fast Lattice Method, by taking into account duplicating cubes when
topological modifications occurs (according to the different connected components).
The resulting framework will be unconditionally stable.

Internal appearance modeling It would be useful to reproduce other internal appear-
ance attributes rather than simple color values. In the real world, if we cut an object,
the revealed internal surface is not perfectly flat as the path defined by the cutting
tool. Indeed the real surface often reveals micro-geometric structures whose shape
depends on the object’s constituent material and the tool used. This is especially
true for organic objects like meat or wood. Then, an interesting way to improve
our work could be to capture, reproduce and render efficiently such micro-geometric
structure in real time.

131

5.2 List of Publications

• N.Pietroni, A.Giachetti, F.Ganovelli. Robust segmentation of anatomical structures
with deformable surfaces and marching cubes. Poster session of CARS Computer
Assisted Radiology and Surgery. Berlin 2005

• N.Pietroni, A.Giachetti, F.Ganovelli. Robust segmentation of anatomical structures
with deformable surfaces and marching cubes. In Proceedings of Workshop in Virtual
Reality Interactions and Physical Simulations VRIPHYS, 2005

• G.Turini, N.Pietroni, F.Ganovelli, R.Scopigno Techniques for Computer Assisted
Surgery. Eurographics Italian Chapter, 2007

• Nico Pietroni, Miguel A. Otaduy, Bernd Bickel, Fabio Ganovelli, and Markus H.
Gross. Texturing internal surfaces from a few cross sections. Computer Graphics
Forum (Special Issue - Eurographics), 26(3),637-644, 2007

• Blazej Kubiak, Nico Pietroni, Fabio Ganovelli, and Marco Fratarcangeli. A robust
method for real-time thread simulation. Proceedings of the ACM Symposium on
Virtual Reality Software and Technology, ACM VRST, Newport Beach, California,
USA, November 5-7, 2007

• Giuseppe Turini, Nico Pietroni, Giuseppe Megali, Fabio Ganovelli, Andrea Pietra-
bissa, Franco Mosca New Techniques for computer-based simulation in surgical train-
ing International Journal of Biomedical Engineering and Technology IJBET special
issue on HOF 2007 conference, in press. 2008

• Matteo Dellepiane, Nico Pietroni, Nicolas Tsingos, Manuel Asselot, Roberto Scopigno
Reconstructing head models from photographs for individualized 3D-audio processing
Computer Graphics Forum (Special Issue - Pacific Graphics 2008), Volume 27,
Number 7, page 1719 - 1727 - 2008

• Nico Pietroni, Fabio Ganovelli, Paolo Cignoni, and Roberto Scopigno. Splitting
Cubes: a fast and robust technique for virtual cutting. The Visual Computer,
25(3):227-239, 2009.

132

Bibliography

[ADMT01] V. Ralph Algazi, Richard O. Duda, Reed P. Morrison, and Dennis M. Thomp-
son. Structural composition and decomposition of hrtfs. In Proc. IEEE WAS-
PAA01, pages 103–106, 2001.

[ARM06] Sven Andres, Niklas Röber, and Maic Masuch. Hrtf simulations through
acoustic raytracing. Technical report, Otto v. Guericke University of Magde-
burg, Germany, 2006.

[Ash01] Michael Ashikhmin. Synthesizing natural textures. In I3D ’01: Proceedings
of the 2001 symposium on Interactive 3D graphics, pages 217–226, New York,
NY, USA, 2001. ACM.

[Beg94] Durand R. Begault. 3D Sound for Virtual Reality and Multimedia. Academic
Press Professional, 1994.

[BG00] D. Bielser and M. Gross. Interactive simulation of surgical cuts. In Brian A.
Barsky, Yoshihisa Shinagawa, and Wenping Wang, editors, Proceedings of
the 8th Pacific Graphics Conference on Computer Graphics and Application
(PACIFIC GRAPHICS-00), pages 116–125, Los Alamitos, CA, October 3–5
2000. IEEE.

[BKF+96] T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, and W.K. Liu. Smoothing
and accelerated computations in the element free galerkin method. J. Comput.
Appl. Math., 74(1-2):111–126, 1996.

[Bla97] J. Blauert. Spatial Hearing : The Psychophysics of Human Sound Localization.
M.I.T. Press, Cambridge, MA, 1997.

[Bla06] Volker Blanz. Face recognition based on a 3d morphable model. In FGR
’06: Proceedings of the 7th International Conference on Automatic Face and
Gesture Recognition, pages 617–624, Washington, DC, USA, 2006. IEEE Com-
puter Society.

133

[BLG94] T. Belytschko, Y.Y. Lu, and L. Gu. Element-free galerkin methods. Internat.
J. Numer. Methods Engrg., (37):229–256, 1994.

[BLM04] Joel Brown, Jean-Claude Latombe, and Kevin Montgomery. Real-time knot-
tying simulation. The Visual Computer, 20(2-3):165–179, 2004.

[BMG99] Daniel Bielser, Volker A. Maiwald, and Markus H. Gross. Interactive cuts
through 3-dimensional soft tissue. Computer Graphics Forum, 18(3):31–38,
September 1999.

[BS01] Cynthia Bruyns and Steven Senger. Interactive cutting of 3D surface meshes.
Computers & Graphics, 25(4):635–642, 2001.

[BSS07] Volker Blanz, Kristina Scherbaum, and Hans-Peter Seidel. Fitting a mor-
phable model to 3d scans of faces. In IEEE ICCV 2007, pages 1–8, 2007.

[Buc98] John W. Buchanan. Simulating wood using a voxel approach. Comput. Graph.
Forum, 17(3):105–112, 1998.

[Bur83] Peter J. Burt. The laplacian pyramid as a compact image code. IEEE Trans-
actions on Communications, 31:532–540, April 1983.

[BV99] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3D
faces. In Alyn Rockwood, editor, Siggraph 1999, Computer Graphics Proceed-
ings, pages 187–194, Los Angeles, 1999. Addison Wesley Longman.

[BW98] David Baraff and Andrew P. Witkin. Large steps in cloth simulation. In
SIGGRAPH, pages 43–54, 1998.

[CB05] Hui Chen and Bir Bhanu. Contour matching for 3d ear recognition. In WACV-
MOTION ’05: Volume 1, pages 123–128, Washington, DC, USA, 2005.

[CB07] Hui Chen and Bir Bhanu. Human ear recognition in 3d. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(4):718–737, April 2007.

[CCCS08] Marco Callieri, Paolo Cignoni, Massimiliano Corsini, and Roberto Scopigno.
Masked photo blending: Mapping dense photographic data set on high-
resolution sampled 3D models. Computers & Graphics, 32(3):464–473, 2008.

[CDM+02] Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthias Müller, and
Robert Jagnow. A procedural approach to authoring solid models. ACM
Transactions on Graphics, 21(3):302–311, July 2002.

[CH02] Nathan A. Carr and John C. Hart. Meshed atlases for real-time procedural
solid texturing. ACM Transactions on Graphics, 21(2):106–131, April 2002.

134

[Cha74] G. Chaikin. An algorithm for high speed curve generation. Computer Graphics
and Image Processing, 3:346–349, 1974.

[CK02] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but responsive cloth. ACM
Transactions on Graphics, 21(3):604–611, July 2002.

[CRS98] Paolo Cignoni, C. Rocchini, and Roberto Scopigno. Metro: Measuring error
on simplified surfaces. Computer Graphics Forum, 17(2):167–174, 1998.

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang
tiles for image and texture generation. In Jessica Hodgins and John C. Hart,
editors, Proceedings of ACM SIGGRAPH 2003, volume 22(3) of ACM Trans-
actions on Graphics, pages 287–294. ACM Press, 2003.

[D’A01] N. D’Apuzzo. Human face modeling frommulti images. In Proc. of 3rd Int.
Image Sensing Seminar on New Dev. in Digital Photogrammetry, Gifu, Japan,
pages 28–29, 2001.

[DAA99] Richard O. Duda, Carlos Avendano, and V. Ralph Algazi. An adaptable ellip-
soidal head model for the interaural time difference. In Proc. IEEE (ICASSP),
pages II:965–968, 1999.

[dB97] J. S. de Bonet. Multiresolution sampling procedure for analysis and synthesis
of texture images. In SIGGraph-97, pages 361–368, 1997.

[DCA99] Hervé Delingette, Stephane Cotin, and Nicholas Ayache. A hybrid elastic
model allowing real-time cutting, deformations and force-feedback for surgery
training and simulation. In CA, pages 70–81, 1999.

[Del98] Herve Delingette. Towards realistic soft tissue modeling in medical simulation.
Technical report, Inria Rhône-alpes, Grenoble, France, September 1998.

[DEL+99] Julie Dorsey, Alan Edelman, Justin Legakis, Henrik Wann Jensen, and
Hans Køhling Pedersen. Modeling and rendering of weathered stone. In
Alyn Rockwood, editor, Proceedings of the Conference on Computer Graphics
(Siggraph99), pages 225–234, N.Y., August8–13 1999. ACM Press.

[DG01] Jean-Michel Dischler and Djamchid Ghazanfarpour. A survey of 3D texturing.
Computers & Graphics, 25(1):135–151, 2001.

[DGF98] J. M. Dischler, D. Ghazanfarpour, and R. Freydier. Anisotropic solid texture
synthesis using orthogonal 2D views. In David Duke, Sabine Coquillart, and
Toby Howard, editors, Computer Graphics Forum, volume 17(3), pages 87–95.
Eurographics Association, 1998.

135

[DKT95] Oliver Deussen, Leif Kobbelt, and Peter Tucke. Using simulated annealing
to obtain good nodal approximations of deformable objects. In Dimitri Ter-
zopoulos and Daniel Thalmann, editors, Computer Animation and Simulation
’95, pages 30–43. Eurographics, Springer-Verlag, September 1995.

[DLTD08] Yue Dong, Sylvain Lefebvre, Xin Tong, and George Drettakis. Lazy solid
texture synthesis. Comput. Graph. Forum, 27(4):1165–1174, 2008.

[DMTB96] D.Organ, M.Fleming, T.Terry, and T. Belytschko. Continuous meshless ap-
proximations for nonconvex bodies by diffraction and transparency. Compu-
tational mechanics, 18(3):225–235, 1996.

[dPP07] Maurizio de Pascale and Domenico Prattichizzo. The haptick library: A
component based architecture for uniform access to haptic devices. IEEE
Robotics and Automation Magazine, 14(4):64–75, 2007.

[DPT+08] Matteo Dellepiane, Nico Pietroni, Nicolas Tsingos, Manuel Asselot, and
Roberto Scopigno. Reconstructing head models from photographs for indi-
vidualized 3d-audio processing. Computer Graphics Forum (Special Issue -
Pacific Graphics 2008 Proc.), 27(7):1719–1727, 2008.

[DSB99] Mathieu Desbrun, Peter Schröder, and Alan Barr. Interactive animation of
structured deformable objects. In Graphics Interface, pages 1–8, June 1999.

[EF01] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis
and transfer. In Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, pages 341–346. ACM Press / ACM
SIGGRAPH, 2001.

[EGS03] Olaf Etzmuss, Joachim Gross, and Wolfgang Strasser. Deriving a particle
system from continuum mechanics for the animation of deformable objects.
IEEE Transactions on Visualization and Computer Graphics, 9(4):538–550,
October/December 2003.

[EL99] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling.
In ICCV, pages 1033–1038, 1999.

[EMP+94] David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin, and Worley. Tex-
turing and Modeling: A Procedural Approach. Academic Press, October 1994.

[EP94] I. M. Elfadel and R. W. Picard. Gibbs random fields, cooccurrences, and
texture modeling. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 16:24–37, 1994.

136

[EWS96] Bernhard Eberhardt, Andreas Weber, and Wolfgang Strasser. A fast, flexi-
ble particle-system model for cloth draping. IEEE Computer Graphics and
Applications, 16(5):52–59, September 1996 1996.

[Fer04] Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks
for Real-Time Graphics. Pearson Higher Education, 2004.

[FKN80] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a
priori tree structures. volume 14, pages 124–133, July 1980.

[FLCB95] Kurt W. Fleischer, David H. Laidlaw, Bena L. Currin, and Alan H. Barr.
Cellular texture generation. In SIGGRAPH, pages 239–248, 1995.

[Flo03] Michael S. Floater. Mean value coordinates. Computer Aided Geometric
Design, 20(1):19–27, 2003.

[FOT04] Kouta Fujimura, Yasuhiro Oue, and Tomoya Terauchi. Improved 3d head
reconstruction system based on combining shape-from-silhouette with two-
stage stereo algorithm. In ICPR ’04: Volume 3, pages 127–130, Washington,
DC, USA, 2004.

[FTP03] Matthies Hermann-Georg Fries Thomas-Peter. Classification and overview of
meshfree methods. Technical Report 2003-03, TU Brunswick, Germany, 2003.

[Gan01] F. Ganovelli. Animating cuts with on-the-fly re-meshing. In EUROGRAPH-
ICS 2001 Short paper session, 2001.

[Gar84] Geoffrey Y. Gardner. Simulation of natural scenes using textured quadric
surfaces. In Hank Christiansen, editor, Computer Graphics (SIGGRAPH ’84
Proceedings), volume 18, pages 11–20, July 1984.

[Gar85] G. Y. Gardner. Visual simulation of clouds. In B. A. Barsky, editor, SIG-
GRAPH ’85 Conference Proceedings (San Francisco, CA, July 22–26, 1985),
pages 297–303, 1985.

[Gar05] W.G. Gardner. Spatial audio reproduction: Towards individualized binaural
sound. National Academy of Engineering, 2005.

[GCMS00] Fabio Ganovelli, Paolo Cignoni, Claudio Montani, and Roberto Scopigno. A
multiresolution model for soft objects supporting interactive cuts and lacera-
tions. Comput. Graph. Forum, 19(3), 2000.

[GD95] D. Ghazanfarpour and J. M. Dischler. Spectral analysis for automatic 3-D
texture generation. Computers & Graphics, 19(3):413–422, May 1995.

137

[GD96] Djamchid Ghazanfarpour and Jean-Michel Dischler. Generation of 3D texture
using multiple 2D models analysis. Computer Graphics Forum, 15(3):311–324,
August 1996. ISSN 1067-7055.

[GG92] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer, 1992.

[GH97] M. Garland and P. Heckbert. Surface simplification using quadric error met-
rics. Proceedings of SIGGRAPH’97, pages 209–215, 1997.

[GM97] Sarah F. F. Gibson and Brian Mirtich. A survey of deformable modeling in
computer graphics. Technical report, Mitsubishi Electric Research Laborato-
ries, November 1997.

[GSX00] Baining Guo, Harry Shum, and Ying-Qing Xu. Chaos mosaic: Fast and mem-
ory efficient texture synthesis. Technical Report MSR-TR-2000-32, Microsoft
Research (MSR), April 2000.

[HA04] R. Hassanpour and V. Atalay. Delaunay triangulation based 3d human face
modeling from uncalibrated images. Computer Vision and Pattern Rec. Work-
shop, pages 75–75, 2004.

[Hag90] C Hagwood. A mathematical treatment of the spherical stereology. NISTIR
4370, 1990.

[HB95] D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In
ICIP, pages III: 648–651, 1995.

[HJO+01] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David
Salesin. Image analogies. In SIGGRAPH, pages 327–340, 2001.

[HS88] N. J. Higham and R. S. Schreiber. Fast polar decomposition of an arbi-
trary matrix. Technical Report 88-942, Computer Science, Cornell University,
Ithaca, NY 14853, 1988.

[HSO03] Kris K. Hauser, Chen Shen, and James F. O’Brien. Interactive deformation
using modal analysis with constraints. In Graphics Interface, pages 247–256.
CIPS, Canadian Human-Computer Commnication Society, A K Peters, jun
2003.

[HTK98] Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko. Generation of crack
patterns with a physical model. The Visual Computer, 14(3):126–137, 1998.

[Ian89] A. Iannarelli. Ear identification. Paramount Publishing Company, Freemont,
California, 1989.

138

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching
interface for 3D freeform design. In SIGGRAPH, pages 409–416, 1999.

[ITF04] Geoffrey Irving, Joseph Teran, and Ron Fedkiw. Invertible finite elements
for robust simulation of large deformation. In Proceedings of the 2004 ACM
SIGGRAPH Symposium on Computer Animation (SCA-04), pages 131–140,
2004.

[J.D98] I.Sinclair J.Demers, J.Boelen. Freedom 6s force feedback hand controller MPB
technologies inc. IFAC Workshop on Space Robotics., 1998.

[JDR04] Robert Jagnow, Julie Dorsey, and Holly Rushmeier. Stereological techniques
for solid textures. ACM Transactions on Graphics, 23(3):329–335, August
2004.

[JDR08] Robert Jagnow, Julie Dorsey, and Holly Rushmeier. Evaluation of methods for
approximating shapes used to synthesize 3D solid textures. ACM Transactions
on Applied Perception, 4(4), January 2008.

[JHY+05] D.L. Jiang, Y.X. Hu, S.C. Yan, L. Zhang, H.J. Zhang, and W. Gao. Efficient
3d reconstruction for face recognition. J. of Pattern Recogn., 38(6):787–798,
June 2005.

[JLSW02] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of
Hermite data. ACM Transactions on Graphics, 21(3):339–346, July 2002.

[JM06] E. Jeges and L. Mate. Model-based human ear identification. World Automa-
tion Congress, 2006. WAC ’06, pages 1–6, 24-26 July 2006.

[KAG+05] Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip Dutré,
and Markus Gross. A unified lagrangian approach to solid-fluid animation.
In Marc Alexa, Szymon Rusinkiewicz, Mark Pauly, and Matthias Zwicker,
editors, Symposium on Point-Based Graphics, pages 125–133, Stony Brook,
NY, 2005. Eurographics Association.

[Kat01] B. Katz. Boundary element method calculation of individual head-related
transfer function. part I: Rigid model calculation. Journal Acoustical Soc.
Am., 110(5):2440–2448, 2001.

[KB07] B. Katz and D.R. Begault. Round robin comparison of HRTF measure-
ment systems: preliminary results. In Proc. 19th Intl. Congress on Acoustics
(ICA2007), Madrid, Spain, 2007.

139

[KBSS01] Leif Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel. Fea-
ture sensitive surface extraction from volume data. In SIGGRAPH, pages
57–66, 2001.

[KEBK05] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture op-
timization for example-based synthesis. ACM Transactions on Graphics,
24(3):795–802, July 2005.

[KFCO+07] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischin-
ski, and Tien-Tsin Wong. Solid texture synthesis from 2d exemplars. ACM
Trans. Graph., 26(3):2, 2007.

[KLTW07] Vivek Kwatra, Sylvain Lefebvre, Greg Turk, and Li-Yi Wei. Example-based
texture synthesis. In ACM SIGGRAPH Course Notes, 2007.

[KN06] Y. Kahana and P.A. Nelson. Numerical modelling of the spatial acoustic
response of the human pinna. Journal of Sound and Vibration, 292(1-2):148–
178, 2006.

[KPGF07] Blazej Kubiak, Nico Pietroni, Fabio Ganovelli, and Marco Fratarcangeli. A
robust method for real-time thread simulation. In Aditi Majumder, Larry F.
Hodges, Daniel Cohen-Or, and Stephen N. Spencer, editors, VRST, pages
85–88. ACM, 2007.

[KSE+03] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick. Graph-
cut textures: Image and video synthesis using graph cuts. ACM Transactions
on Graphics, SIGGRAPH 2003, 22(3):277–286, July 2003.

[Lar01] Véronique Larcher. Techniques de spatialisation des sons pour la réalité
virtuelle. Thèse de doctorat, Université Paris 6 (Pierre et Marie Curie), Paris,
2001.

[LC87] W. Lorensen and H. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. Computer Graphics, 21(4):163–169, 1987.

[LD04] Yi-Je Lim and Suvranu De. On the use of meshfree methods and a geometry
based surgical cutting in multimodal medical simulations. In HAPTICS, pages
295–301. IEEE Computer Society, 2004.

[Lew87] J. P. Lewis. Generalized stochastic subdivision. TOG, 6:167–190, 1987.

[LH05] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthesis.
ACM Transactions on Graphics, 24(3):777–786, July 2005.

140

[LH06] Sylvain Lefebvre and Hugues Hoppe. Appearance-space texture synthesis.
ACM Transactions on Graphics, 25(3):541–548, July 2006.

[LLH04] Yanxi Liu, Wen-Chieh Lin, and James Hays. Near-regular texture analysis
and manipulation. ACM Transactions on Graphics, 23(3):368–376, August
2004.

[LLY04] Tong-Yee Lee, Ping-Hsien Lin, and Tz-Hsien Yang. Photo-realistic 3d head
modeling using multi-view images. In ICCSA (2), pages 713–720, 2004.

[LMGC02] J. Lenoir, P. Meseure, L. Grisoni, and C. Chaillou. Surgical thread simula-
tion. volume 12, pages 102–107. Modelling and Simulation for Computer-aided
Medecine and Surgery (MS4CMS), 2002.

[LMT98] Won-Sook Lee and Nadia Magnenat-Thalmann. Head modeling from pictures
and morphing in 3d with image metamorphosis based on triangulation. In
CAPTECH, pages 254–267, 1998.

[LS81] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares
methods. Mathematics of Computation, 37(155):141–158, July 1981.

[MBF04] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for
changing mesh topology during simulation. ACM Transactions on Graphics,
23(3):385–392, August 2004.

[McG08] Tim McGraw. Generalized reaction-diffusion textures. Computers & Graphics,
32(1):82–92, 2008.

[MHHR07] M. Muller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position based dynam-
ics. Journal of Visual Communication and Image Representation, 18(2):109–
118, April 2007.

[MHTG05] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross.
Meshless deformations based on shape matching. ACM Transactions on
Graphics, 24(3):471–478, July 2005.

[MK97] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and
Extensions. Wiley series in probability and statistics. JohnWiley and Sons,
1997.

[MKB+08] Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus
Gross. Polyhedral finite elements using harmonic basis functions. Computer
Graphics Forum [Proceedings SGP], 27(5), 2008.

141

[MKN+04] Matthias Muller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus Gross,
and Marc Alexa. Point based animation of elastic, plastic and melting objects.
In Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Ani-
mation (SCA-02), pages 141–152, 2004.

[MMD+02] Matthias Müller, Leonard McMillan, Julie Dorsey, Robert Jagnow, and Bar-
bara Cutler. Stable real-time deformations. In Stephen N. Spencer, editor,
Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Anima-
tion (SCA-02), pages 49–54, New York, July 21–22 2002. ACM Press.

[MMO00] J.C. Middlebrooks, E.A. Macpherson, and Z.A. Onsan. Psychophysical cus-
tomization of directional transfer functions for virtual sound localization.
Journal Acoustical Soc. Am., 108(6):3088–3091, 2000.

[MS94] C. Montani and R. Scopigno. Using marching cubes on small machines. Graph-
ical Models and Image Processing, 56(2):182–183, March 1994.

[MZD05] Wojciech Matusik, Matthias Zwicker, and Frédo Durand. Texture design using
a simplicial complex of morphable textures. ACM Transactions on Graphics,
24(3):787–794, July 2005.

[Nie03] Han-Wen Nienhuy. Cutting in deformable objects. PhD thesis, May 2003.

[NMK+05] Andrew Nealen, Matthias Muller, Richard Keiser, Eddy Boxerman, and Mark
Carlson. Physically based deformable models in computer graphics. Euro-
graphics State of the Art Report, Computer Graphics Forum, 25(4):809–836,
2005.

[OBH02] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. Graphical mod-
eling and animation of ductile fracture. In John Hughes, editor, SIGGRAPH
2002 Conference Proceedings, Annual Conference Series, pages 291–294. ACM
Press/ACM SIGGRAPH, 2002.

[OFTB96] D. Organ, M. Fleming, T. Terry, and T. Belytschko. Continuous meshless
approximations for nonconvex bodies by diffraction and transparency. Com-
putational Mechanics, (18):225–235, 1996.

[OH99] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and animation
of brittle fracture. In SIGGRAPH, pages 137–146, 1999.

[ONNI03] Shigeru Owada, Frank Nielsen, Kazuo Nakazawa, and Takeo Igarashi. A
sketching interface for modeling the internal structures of 3d shapes. In In
Proceedings of the 4th International Symposium on Smart Graphics (2003,
pages 49–57. Springer-Verlag, 2003.

142

[ONOI04] Shigeru Owada, Frank Nielsen, Makoto Okabe, and Takeo Igarashi. Volumet-
ric illustration: designing 3D models with internal textures. ACM Transac-
tions on Graphics, 23(3):322–328, August 2004.

[PB81] S. M. Platt and N. I. Badler. Animating facial expressions. ACM Computer
Graphics, 15(3):245–252, August 1981.

[Pea85] D. R. Peachey. Solid texturing of complex surfaces. In B. A. Barsky, edi-
tor, SIGGRAPH ’85 Conference Proceedings (San Francisco, CA, July 22–26,
1985), pages 279–286, 1985.

[Per85] K. Perlin. An image synthesizer. Computer Graphics, 19(3):287–296, July
1985.

[Per91] P. Perona. Deformable kernels for early vision. In Proceedings IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 222–227, 1991.

[PFH00] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Sheila
Hoffmeyer, editor, Proceedings of the Computer Graphics Conference 2000
(SIGGRAPH-00), pages 465–470, New York, July 23–28 2000. ACMPress.

[PGCS09] Nico Pietroni, Fabio Ganovelli, Paolo Cignoni, and Roberto Scopigno. Split-
ting cubes: a fast and robust technique for virtual cutting. The Visual Com-
puter, 25(3):227–239, 2009.

[PK08] M. Botsch M. Gross P. Kaufmann, S. Martin. Flexible simulation of de-
formable models using discontinuous galerkin fem. In ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, pages 105–115, Dublin,
Ireland, 2008. Eurographics Association.

[PKA+05] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus Gross, and
Leonidas J. Guibas. Meshless animation of fracturing solids. ACM Transac-
tions on Graphics, 24(3):957–964, July 2005.

[PKKG03] Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross. Shape mod-
eling with point-sampled geometry. In Jessica Hodgins and John C. Hart,
editors, Proceedings of ACM SIGGRAPH 2003, volume 22(3) of ACM Trans-
actions on Graphics, pages 641–650. ACM Press, 2003.

[pla] planetside. Terragen: Photorealistic schenery rendering software, more info
on: http://www.planetside.co.uk/terragen/.

[PLK02] Jeff M. Phillips, Andrew M. Ladd, and Lydia E. Kavraki. Simulated knot
tying. In ICRA, pages 841–846. IEEE, 2002.

143

[POB+07] Nico Pietroni, Miguel A. Otaduy, Bernd Bickel, Fabio Ganovelli, and
Markus H. Gross. Texturing internal surfaces from a few cross sections. Com-
put. Graph. Forum, 26(3):637–644, 2007.

[PP93] K. Popat and R. W. Picard. Novel cluster-based probability model for tex-
ture synthesis, classification, and compression. In Massachusetts Institute of
Technology, Media Lab, 1993.

[Pro95] Xavier Provot. Deformation constraints in a mass–spring model to describe
rigid cloth behavior. In Graphics Interface ’95, pages 147–154, May 1995.

[PS00] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint
statistics of complex wavelet coefficients. International Journal of Computer
Vision, 40(1):49–70, October 2000.

[PW89] A. Pentland and J. Williams. Good vibrations: Modal dynamics for graphics
and animation. ACM Computer Graphics, 23(4):215–222, 1989.

[QY05] X. J. Qin and Y. H. Yang. Basic gray level aura matrices: Theory and its
application to texture synthesis. In ICCV, pages I: 128–135, 2005.

[QY07] Xuejie Qin and Yee-Hong Yang. Aura 3D textures. IEEE Trans. Vis. Comput.
Graph, 13(2):379–389, 2007.

[RJ07] Alec R. Rivers and Doug L. James. FastLSM: fast lattice shape matching for
robust real-time deformation. ACM Trans. Graph, 26(3):82, 2007.

[RT01] Mark A. Ruzon and Carlo Tomasi. Edge, junction, and corner detection using
color distributions. IEEE Trans. Pattern Anal. Mach. Intell, 23(11):1281–
1295, 2001.

[Sch88] H. G. Schuster. Deterministic chaos: An introduction. VCH, Weinheim, 1988.

[SDF07] Eftychios Sifakis, Kevin G. Der, and Ronald Fedkiw. Arbitrary cutting of de-
formable tetrahedralized objects. In Michael Gleicher and Daniel Thalmann,
editors, Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA 2007, San Diego, California, USA, August 2-4,
2007, pages 73–80. Eurographics Association, 2007.

[SF95] E. P. Simoncelli and W. T. Freeman. The steerable pyramid: A flexible
architecture for multi-scale derivative computation. In ICIP, pages III: 444–
447, 1995.

[SFAH92] E P Simoncelli, W T Freeman, E H Adelson, and D J Heeger. Shiftable multi-
scale transforms. IEEE Trans Information Theory, 38(2):587–607, March
1992. Special Issue on Wavelets.

144

[SHGO02] Chen Shen, Kris K. Hauser, Christine M. Gatchalian, and James F. O’Brien.
Modal analysis for real-time viscoelastic deformation. In SIGGRAPH ’02:
ACM SIGGRAPH 2002 conference abstracts and applications, pages 217–217,
New York, NY, USA, 2002. ACM.

[SHGS06] Denis Steinemann, Matthias Harders, Markus Gross, and Gabor Szekely. Hy-
brid cutting of deformable solids. In IEEE VR 2006. IEEE, 2006.

[SKvW+92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli.
Fast shadows and lighting effects using texture mapping. Computer Graphics
(SIGGRAPH ’92 Proceedings), 26(2):249–252, July 1992.

[SL04] S.Li and W.K. Liu. Meshfree Particle Methods. Springer, 2004.

[SOG06] Denis Steinemann, Miguel A. Otaduy, and Markus Gross. Fast arbitrary split-
ting of deforming objects. In Marie-Paule Cani and James O’Brien, editors,
ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pages
63–72, Vienna, Austria, 2006. Eurographics Association.

[ST07] J. Spillmann and M. Teschner. CORDE: Cosserat rod elements for the dy-
namic simulation of one-dimensional elastic objects. In Dimitris Metaxas and
Jovan Popovic, editors, Symposium on Computer Animation, pages 63–72,
San Diego, California, United States, 2007. Eurographics Association.

[ST08] Jonas Spillmann and Matthias Teschner. An adaptive contact model for the
robust simulation of knots. Comput. Graph. Forum, 27(2):497–506, 2008.

[TDLD07] Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre, and Matteo Dellepi-
ane. Instant sound scattering. In Proc. of the Eurographics Symposium on
Rendering, 2007.

[THK98] A. Tanaka, K. Hirota, and T Kaneko. Virtual cutting with force feedback. In
the Virtual Reality Annual International Symposium, p. 71. IEEE Computer
Society, Washington, DC, USA (1998), page 71, 1998.

[THM+03] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross. Opti-
mized spatial hashing for collision detection of deformable objects. In T. Ertl,
B. Girod, G. Greiner, H. Niemann, H.-P. Seidel, E. Steinbach, and R. West-
ermann, editors, Proceedings of the Conference on Vision, Modeling and Vi-
sualization 2003 (VMV-03), pages 47–54, Berlin, November 19–21 2003. Aka
GmbH.

[TO99] G. Turk and J. F. O’Brien. Variational implicit surfaces. Technical report,
Georgia Institute of Technology, 1999.

145

[TOII08] Kenshi Takayama, Makoto Okabe, Takashi Ijiri, and Takeo Igarashi. Lapped
solid textures: filling a model with anisotropic textures. ACM Trans. Graph.,
27(3):1–9, 2008.

[Tur91] Greg Turk. Generating textures on arbitrary surfaces using reaction-diffusion.
In SIGGRAPH ’91 Proceedings, pages 289–298, 1991.

[Tur01] Greg Turk. Texture synthesis on surfaces. In SIGGRAPH, pages 347–354,
2001.

[Und70] E. E. Underwood. Quantitative stereology. 1970.

[Van98] Allen Van Gelder. Approximate simulation of elastic membranes by triangu-
lated spring meshes. Journal of Graphics Tools: JGT, 3(2):21–41, 1998.

[Vis05a] VisualComputingLab. Interactive deformable objects library. more info on:
http://idolib.sf.net. 2005.

[Vis05b] VisualComputingLab. Visualization and computer graphics library. more info
on: http://vcg.sf.net. 2005.

[WAKW93] E. Wenzel, M. Arruda, D. Kistler, and F. Wightman. Localization using
non-individualized head-related transfer functions. J. Acoustical Soc. Am.,
94(1):111–123, 1993.

[Wat87] K. Waters. A muscle model for animating three-dimensional facial expression.
ACM Computer Graphics, 21(4):17–24, July 1987.

[WBD+05] Fei Wang, Etienne Burdet, Ankur Dhanik, Tim Poston, and Chee Leong Teo.
Dynamic thread for real-time knot-tying. In WHC, pages 507–508. IEEE
Computer Society, 2005.

[WBG07] Martin Wicke, Mario Botsch, and Markus Gross. A finite element method on
convex polyhedra. Computer Graphics Forum, 26(3):355–364, 2007.

[Wei02] Li-Yi Wei. Texture synthesis by fixed neighborhood searching. PhD thesis,
Stanford University, 2002.

[Wei03] Li-Yi Wei. Texture synthesis from multiple sources. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Sketches & Applications, pages 1–1, New York, NY, USA,
2003. ACM.

[Wei04] Li-Yi Wei. Tile-based texture mapping on graphics hardware. In HWWS
’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 55–63, New York, NY, USA, 2004. ACM.

146

[WK91] Andrew Witkin and Michael Kass. Reaction-diffusion textures. volume 25,
pages 299–308, July 1991.

[WL00] L. Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector
quantization. In SIGGraph-00, pages 479–488, 2000.

[WL01] L. Y. Wei and M. Levoy. Order-independent texture synthesis. Technical
report, 2001.

[WMW86] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft
objects. The Visual Computer, 2(4):227–234, August 1986.

[Wor96] Steven P. Worley. A cellular texture basis function. In Holly Rushmeier,
editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 291–294. ACM SIGGRAPH, Addison Wesley, August 1996. held in
New Orleans, Louisiana, 04-09 August 1996.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus H. Gross.
Surface splatting. In SIGGRAPH, pages 371–378, 2001.

[ZPvBG02] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross.
EWA splatting. IEEE Transactions on Visualization and Computer Graphics,
8(3):223–238, 2002.

[ZZV+03] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo, and Heung-Yeung Shum.
Synthesis of progressively-variant textures on arbitrary surfaces. ACM Trans.
Graph., 22(3):295–302, 2003.

147

