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3. Gutachter: Prof. Dr. Denis Zorin
Akademischer Mitarbeiter: Dr. Hendrik Lensch



Abstract

A surface parameterization is a smooth one-to-one mapping between the surface and a
parametric domain. Typically, surfaces with disk topology are mapped onto the plane and
genus-zero surfaces onto the sphere. As any attempt to flatten a non-trivial surface onto the
plane will inevitably induce a certain amount of distortion, the main concern of research on
this topic is to minimize parametric distortion. This thesis aims at presenting a balanced blend
of mathematical rigor and engineering intuition to address the challenges raised by the mesh
parameterization problem. We study the numerical aspects of mesh parameterization in the
light of parallel developments in both mathematics and engineering. Furthermore, we introduce
the concept of quasi-harmonic maps for reducing distortion in the fixed boundary case and
extend it to both the free boundary and the spherical case. Thinking of parameterization in a
more general sense as the construction of one or several scalar fields on a surface, we explore
the potential of this construction for mesh deformation and surface matching. We propose an
”on-surface parameterization” for guiding the deformation process and performing surface
matching. A direct harmonic interpolation in the quaternion domain is also shown to give
promising results for deformation transfer.

The increasing need for processing large amounts of geometric data delivered by modern acqui-
sition technology poses new challenges concerning robustness, efficiency, and solution accuracy.
This work makes the following contributions to the research effort towards addressing these chal-
lenges.
In mesh parameterization, we start with one of the most intuitive and promising approaches,
namely theangle based flattening, which attempts to flatten surfaces based on angular con-
straints in the parametric plane. The nonlinearity of the constraints gives rise to a challenging
but well posed optimization problem. We present and discuss several numerical approaches for
improving the convergence rate of this method. We take advantage of the structure of the system
matrix in order to decouple the problem making the matrix equations easier to solve. Also, the
use of a modified version of the Uzawa algorithm typically used in saddle point problems allows
for a better performance. Furthermore, close inspection of the problem reveals that it is possible
to approximate the nonlinear constraints by linear ones thus yielding for the first time a linear
version of the angle based parametrization. The latter can be solved in a straightforward manner
using the normal equation for underdetermined systems of linear equations.
An alternative way for preserving angles is based on the notion of conformal maps. We explore
the potential of differential geometry by analyzing several methods for constructing a discrete
version of such maps. In order to contribute to the understanding of the discretization schemes
of the continuous characterization, an overview of several existing methods in mesh processing
is given in the light of parallel developments in other fields. The influence of the discretization
on the parameterization is substantiated by a simple but conclusive benchmark.
We further rely on differential geometry for quantifying parametric distortion and propose ap-
propriate methods for reducing it. In this context, we introduce the concept of quasi-harmonic
maps which elegantly allows for handling distortion directly as a tensor thus allowing for direc-
tional as well as areal distortion to be taken into account under a variational framework. The
potential of quasi-harmonic maps is shown for the case of fixed boundary parameterization and
further extended to the free boundary case as well as spherical parameterization in curvilinear
coordinates.
Thinking of planar parameterization as the construction of two scalar fields on a given surface, it
seems natural to think of more general forms of parameterization arising from the construction



of one or several scalar fields on the surface. This leads to a more flexible notion which will
be called in this work ”on-surface parameterization”. The usefulness of this notion is substanti-
ated by applications such as mesh deformation and surface matching. We present an interactive
method for applying deformations to a surface mesh while preserving its global shape and local
properties. Two surface editing scenarios which conceptually differ in the specification of defor-
mations are discussed: Either interpolation constraints are imposed explicitly, e.g., by dragging
a subset of vertices, or, implicitly by mimicking the deformation of a reference surface. The
contribution of this work is a novel approach for interpolation of local deformations over the
manifold and for efficiently establishing correspondence to a reference surface from only few
pairs of markers. As a general tool for both cases, a harmonic field is constructed to guide the
interpolation of constraints and to find correspondence required for deformation transfer. We
show that our approach fits nicely in a unified mathematical framework, where the same type of
linear operator is applied in all phases.



Zusammenfassung

Eine Flächenparameterisierung ist eine globale bijektive Abbildung zwischen der Fläche und
einem zugeḧorigen parametrischen Gebiet. Gewöhnlich werden Fl̈achen mit scheibenförmiger
Topologie auf eine Kreisscheibe und Flächen mit Genus Null auf eine Sphäre abgebildet.
Das Hauptinteresse der Forschung an diesem Thema ist die Minimierung der parametrischen
Verzerrung, die unweigerlich bei jedem Versuch, eine nicht triviale Fläche über einer
Ebene zu parameterisieren, erzeugt wird. Diese Arbeit strebt zur Behandlung des Para-
metrisierungsproblems eine ausgeglichene Mischung zwischen mathematischer Präzision
und ingenieurwissenschaftlicher Intuition an. Wir behandeln dabei die numerischen Aspekte
des Parameterisierungsproblems im Hinblick auf die aktuellen parallelen Entwicklungen in
der Mathematik und den Ingenieurwissenschaften. Weiterhin führen wir das Konzept der
quasi-harmonischen Abbildungen ein, um die Verzerrung bei gegebenen Randbedingungen zu
verringern. Anschließend verallgemeinern wir dieses Konzept auf den sphärischen Fall und
auf den Fall mit freien Randbedingungen. Durch allgemeinere Betrachtung der Parameter-
isierung als Konstruktion eines oder mehrerer skalarer Felder auf einer Fläche ergibt sich
ein neuer Ansatz zur Netzdeformation und der Erzeugung von Flächenkorrespondenzen. Wir
stellen eine ”on-surface parameterization” vor, welche den Deformationsprozess leitet und
Flächenkorrespondenzen erstellt. Darüber hinaus zeigt eine direkte harmonische Interpolation
in der Dom̈ane der Quaternionen auch vielversprechende Resultate für die Übertragung von
Deformationen.

Die zunehmende Notwendigkeit große Mengen geometrischer Daten zu verarbeiten stellt eine
Herausforderung dar, um Faktoren wie Robustheit, Effizienz und Lösungsgenauigkeit zu erzie-
len. Diese Arbeit liefert folgende Beiträge zu den Forschungsbemühungen, die sich diesen Her-
ausforderungen widmen:
Bei der Behandlung des Flächenparameterisierungsproblems beginnen wir mit einem der intu-
itivsten und vielversprechendsten Ansätze, n̈amlich demangle based flattening, welches eine
Fläche parameterisiert, indem Winkelbedingugen in der parametrischen Ebene festgelegt wer-
den. Die Nichtlineariẗat der Bedingungen erzeugt ein schwieriges aber gut gestelltes Opti-
mierungsproblem. Wir stellen einige numerische Ansätze f̈ur die Verbesserung der Konver-
genzrate dieser Methode vor. Wir nutzen dabei die Struktur der Matrix, um das Problem zu
entkoppeln, welches die Lösung der Matrixgleichungen vereinfacht. Auch der Gebrauch einer
abgewandelten Version des Uzawa Algorithmus, der gewöhnlich in den Sattelpunktproblemen
verwendet wird, erlaubt eine Verbesserung der Leistung. Außerdem zeigte eine sorgfältige Kon-
trolle des Problems die M̈oglichkeit auf, die nichtlinearen durch lineare Bedingungen zu ap-
proximieren, so dass zum ersten Mal eine lineare Version der ”angle-based flattening” Para-
meterisierung formuliert wurde. Die Letztere kann in einer direkten Weise, basierend auf der
Normalengleichung des unterbestimmten Gleichungssystems, gelöst werden.
Eine andere Methode zur Winkelerhaltung ist durch die Verwendung konformer Diagramme
gegeben. Wir erforschen das Potential der differentialen Geometrie, indem wir einige Metho-
den f̈ur das Konstruieren einer diskreten Variante der konformen Diagramme analysieren. Um
zum Versẗandnis der Methoden zur Diskretisierung der kontinuierlichen Varianten beizutragen,
geben wir einenÜberblick über einige vorhandenen Methoden in der Netzbearbeitung unter
Berücksichtigung der Entwicklungen in anderen Gebieten. Der Einfluss der Diskretisierung auf
die Parametrisierung wird durch einen einfachen aber aufschlussreichen Test dargelegt. Des
weiteren nutzen wir die differentiale Geometrie um die parametrische Verzerrung zu quan-



tifizierenund schlagen geeignete Methoden vor diese zu reduzieren. In diesem Kontext stellen
wir das Konzept der Quasi- Harmonischen Abbildung vor, welches erlaubt, die Verzerrung ele-
gant als Tensor zu betrachten. Dadurch ist es möglich, in einem System sowohl die gerichtete
als auch die Fl̈achenverzerrung mit einzubeziehen. Das Potential der Quasi-Harmonischen Ab-
bildungen wird f̈ur Parametrisierungen mit festen Rändern dargelegt und erweitert für Para-
metrisierungen mit freien R̈andern und Kugelparametrisierungen mit krummlinigen Koordi-
naten.
Betrachtet man die planare Parametrisierung als Kombination aus zwei Skalarfeldern, so er-
scheint es natürlich, über allgemeinere Formen der Parameterisierung durch eine beliebige An-
zahl skalarer Felder nachzudenken. Dies führt zu einem flexibleren Begriff des Problems,
welches im weiteren Rahmen dieser Arbeit ”on-surface” Parametrisierung genannt wird. Die
Nützlichkeit dieser Definition wird des weiteren mit Anwendungen zur Netz-Verformung und
Flächenanpassung untermauert. Wir präsentieren eine interaktive Methode, um Verformungen
auf ein Fl̈achennetz anzuwenden, wobei zugleich dessen globalen Form und lokale Eigen-
schaften erhalten werden. Zwei Flächenbearbeitungs-Szenarien werden genauer dargelegt, die
sich konzeptuell in der Spezifikation der Verformung unterscheiden: Entweder werden Interpo-
lationsbedingungen explizit definiert, z.B. durch das Verschieben einer Untermenge der Netz-
Knoten, oder Verformungen eines Referenz-Netzes werden nachgeahmt. Der Beitrag dieser Ar-
beit ist ein neuer Ansatz zur Interpolation von lokalen Verformungenüber eine Fl̈ache und zur
effizienten Bildung einer Korrespondenz zu der Referenz-Fläche mit Hilfe einer kleinen Anzahl
von Markern. Als allgemeines Werkzeug für beide F̈alle wird ein harmonisches Feld berechnet,
welches zur Interpolation der Randbedingungen und zur Bestimmung der Korrespondenz für den
Verformungstransfer dient. Wir zeigen, dass unser Ansatz in einen einheitlichen mathematischen
Rahmen passt, in dem dieselbe Klasse eines linearen Operators für alle Phasen verwendet wird.
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1

Intr oduction

The notion of a mathematical and engineering approach as it is meant here, is
roughly as follows: Mathematical approach is fully deductive; the statements are
precise, using exactly formulated assumptions. Engineering approach is inductive;
relies on intuition and is heuristic. Neither the claims nor the assumptions are pre-
cise; nevertheless they are supported by extensive numerical experimentations on
benchmark problems of engineering importance.

I. Babǔska in [Bab94]

In the field of computer graphics in general and in geometry processing in particular the bound-
aries between mathematics and engineering are blurry. Sound mathematical theory is well appre-
ciated but has to compete or cooperate with heuristics for breeding efficient algorithms capable
of processing large data sets and producing results of high visual quality, if possible at interac-
tive rates. Surface parametrization is a peculiar problem where mathematical theory rules out
the existence of an ideal solution for general surfaces, more precisely, except for the case of
developable surfaces there is no bijective, distance preserving mapping, from the plane onto a
given surface. This lack of optimal solution brought forward several quantifications and defin-
itions of what is a good parameterization. Subsequently, except for a few methods which have
deeply rooted theoretical background, the majority of existing techniques are of heuristic nature.
Nonetheless, in most instances, visual inspection remains de facto the only reliable and tacitly
approved evaluation for parameterization quality.
The aim of this thesis is to present a balanced blend of mathematical rigor and engineering in-
tuition to address the challenges raised by the mesh parameterization problem as well as some
aspects of mesh editing. Our investigation begins with the fundamental problem in mesh para-
metrization which addresses the flattening of surfaces with disc-like topology onto the plane, as
illustrated in figure (1.1). For the parameterization to be valid it is imperative that the planar
representation does not fold onto itself. Surface parameterization has been known to map mak-
ers for a long time and the significant number of map projections they developed underscores
the difficulties raised by the problem, especially when attempting to achieve a flattening with
low distortion. In mesh processing the task is relatively more involved as the surfaces under
study exhibit generally a far more complex geometry than the spherical earth representation.
Furthermore, the discrete nature of the geometric data makes it not so straightforward to take
full advantage of available differential geometry tools. Ideally it would be preferable to establish
isometric parameterizations which preserve distances. However, the existence of such maps is
limited to the rarely encountered case of developable surfaces. Thus a parameterization cannot
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Figure1.1: A 3D surface and its 2D flattening.

beachieved without inducing a certain amount of area and angles distortion. The impact of an-
gle distortion on visual quality has steered the development of angle preserving parameterization
schemes. A direct approach along these lines consists of setting up the problem as a constrained
nonlinear optimization in terms of angles. We discuss the numerical aspects of this problem and
propose several schemes for improving its convergence properties. We further reformulate the
problem allowing for the first time for a linear version of angle based parameterization.
An alternative approach to preserving angles is based on the notion of conformal maps, which
in contrast to the previous approach stems from the continuous setting and is well studied in
differential geometry and complex analysis. The key element in this formulation is that the
problem can be stated as a variational problem and full advantage can be taken of existing dis-
cretization schemes of differential operators. In the current work we study a fair amount of these
schemes and discuss their suitability for mesh parameterization. Furthermore, as the field of
mesh processing has become sufficiently standardized, we touch upon relevant historic aspects
of the discretization problem to relate current research to parallel advances in mathematics and
engineering.
One of the major shortcomings of angle preserving maps is the lack of control over area distor-
tion, which in certain instances might be crucial to applications such as remeshing and texture
mapping. We build upon the variational framework for developing the concept of quasi-harmonic
parameterization in order to account for area distortion without compromising visual quality.
The potential of quasi-harmonic maps is shown for the case of fixed boundary parameteriza-
tion and is further extended to the free boundary case as well as spherical parameterization in
curvilinear coordinates. Thinking of planar parameterization as the construction of two scalar
fields on a given surface, it seems natural to think of more general forms of parameterization
arising from the construction of one or several scalar fields on the surface. This leads to a more
flexible notion which will be called in this work ”on-surface parameterization”. The usefulness
of such notion is substantiated by applications to mesh deformation and surface matching. As
it is generally desired to edit and deform surface meshes directly, we propose an ”on-surface
parameterization” for guiding the deformation process and also for surface matching throughout
the use of a generalized form of harmonic weights. Additionally, a direct harmonic interpolation
in the quaternion domain is also shown to give promising results for deformation transfer.

1.1 Related work

The recent technical advances in data acquisition make large data sets describing complex and
highly detailed geometries easily accessible to the research community and the general public.
The strive for efficient and reliable methods for processing this bulk of geometric information
fosters research on topics such as texturing, editing, and motion transfer. An exhaustive account
of the large body of literature on these subjects is well beyond the scope of this brief review.
In the following particular emphasis will therefore be placed on topics directly related to the
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presentwork.

Planar parameterization

Mesh parameterization has emerged within the last decade as an important tool in geometry
processing, a fact which is reflected by the significant amount of research on the topic. We
briefly overview the related work in the field and we refer to [FH05] for a more general sur-
vey. Parameterization methods generally map a surface (patch) onto a planar parameter do-
main. A common approach is the explicit minimization of a certain local distortion measure
to guide the parameterization process. The resulting numerical problems are often of a non-
linear type, e.g., [DMK03, HG00, SSGH01, SdS00, SCGL02, ZMT05, YBS04], and consid-
erable research effort is dedicated to increasing the efficiency of the related optimization pro-
cedures. On the other hand, [EDD+95, HAT+00, PP93, DMA02, LPRM02, GY03] offer an
elegant alternative which preserves angles and proceeds by solving the Laplace equation. Thus,
the resulting parameterization could be considered as a discrete version of conformal maps.
Variants of this linear setting propose alternative discretizations of the Laplace-Beltrami oper-
ator [Flo97, Gus02, SdS02, Flo03]. In general, the shape of the boundary in the parametric
domain has a significant influence on the overall distortion. Therefore it is crucial to take it
into account in the parameterization setup in order to reflect the geometry of the original surface
patch.
The most prominent approach to surface parameterization which features a freely evolving
boundary is the angle based flattening [SdS00]. It is primarily an angle preserving parameteriza-
tion, which formulates the problem as a constrained optimization fully specified in terms of the
inner angles of the planar representation. As the method is of nonlinear nature, a fair amount of
work has been devoted to the design and speeding up of appropriate numerical solvers, e.g., the
most recent [SLMB05] and the references therein.
The simplicity of linear methods based on the Laplace equation makes them generally more
attractive and several schemes for reducing their boundary distortion have been developed.
[LKL02] embed the surface patch in a larger one by heuristically growing a “virtual boundary”,
which to some extent absorbs distortion induced by the convex boundary setting. Similarly, the
nonlinear approach in [ZMT05] applies virtual boundaries in combination with “scaffolding
triangles”. Another interesting approach was proposed in [PB00] which attaches long springs
to the boundaries of the mesh and literally stretches out the mesh on the plane by appropriate
control of the stiffness of the strings. Alternatively, [DMA02, LPRM02] propose two powerful
methods which turn out to be mathematically equivalent although they start from different
setups. The former applies Neumann boundary conditions to the Laplace equation and the
later works directly on the Cauchy-Riemann equations. Both methods require fixing (at least)
two boundary vertices for the system to admit a solution. [SLMB05] note that in practice,
unsatisfactory results are often obtained for geometrically complex boundaries. [KGG05]
discuss the design of such boundary conditions in the presence of constraints.

Spherical parameterization

A direct extension of conformal planar parameterization to the spherical domain can be formu-
lated as a minimization problem of the Dirichlet energy over the surface subject to the constraint

||x||2 = 1

for all vertices. The nonlinearity of the constraints makes the spherical setting more involved
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thanits planar counterpart.
A straightforward way to solve this optimization problem is the Gauss-Seidel method, in which
each iteration uses a local relaxation step, e.g., tangential Laplacian relaxation, followed by back
projection onto the sphere. This type of solution was carried out in [Ale00, KVLS99]. The result
is used as a starting point for computing a minimal Möbius transform in [GWC+04, GY02]. A
principal problem is that a minimum can be reached for degenerate configurations, e.g., with
vertices slipping over the sphere until triangles collapse. Heuristic solutions to this issue such
as imposing stopping criteria or introducing additional boundary conditions fall short from pro-
viding satisfactory results in general. A more promising alternative is the careful analysis of the
discrete objective function which tries to account for the particularities of the spherical setting
and blends several measures for controlling distortion [FSD05].
A more theoretical study of the problem was carried out in [GGS03] and devises sufficient re-
quirements for generating provably bijective maps. An alternative constrained minimization
problem proposed in [SGD03] adapts the planar angle based flattening method to the spherical
setting. While theoretically interesting, both approaches are computationally too expensive to
be of general use in practice.
Methods based on the multi-resolution paradigm, which follow the original algorithmic frame-
works outlined in [EDD+95, HGC99, LSS+98], can also be applied to the spherical setting.
In particular the choice of the base mesh and the objective function can be tuned for spherical
parameterization as proposed in [Kan05, PH03].
Another breed of methods resorts to the existence of simple maps from the plane onto the
sphere. In [HAT+00], a triangle is cut from the mesh and then the whole mesh is mapped
into a triangular boundary. The resulting planar parameterizing is lifted to the sphere through
an inverse stereographic projection. Besides the high distortion, this method generally suffers
from foldovers. This is due to the fact that the boundary of the mesh in the planar domain is
considered to extend implicitly to infinity. In order to overcome such limitations, the method
of [SYGS05] cuts the mesh into two halves and maps each half to a circle. The resulting planar
embeddings are mapped onto the sphere and serve as starting point for subsequent nonlinear
optimization on the sphere with an appropriate distortion measure. The latter work is motivated
by [GGS03] and yields relatively faster computation time. Most related to the present work is
the method proposed in [BGK92] which first establishes an initial parameterization based on
curvilinear coordinates. This solution is further improved using a nonlinear optimization in the
spherical domain. However, the highly nonlinear nature of this optimization problem makes it
unstable for practical use. An improvement was proposed in [QBH+00] by using a hierarchical
implementation for speeding up convergence. However, the reported performance still penalizes
the approach as a whole.

Mesh deformation

The design and deformation of smooth surfaces is a well-studied problem, and a multitude of
approaches exist in the literature. In the following, we focus on deformation preserving the local
detail of a shape which is modified on a global scale.
Multi-resolution techniques are well-known and probably exhibit the most prominent approach
to this problem, e.g., for surface modeling [ZSS97, KCVS98, GSS99, BK04]. Shape information
is decomposed encoding geometric detail relative to local frames [FB88] which are defined with
respect to a smooth base surface. After deformation of the smooth base, the local frames are
implicitly adapted (i.e., rotated) and detail is reintegrated into the reconstruction.
Alternative methods for various kinds of surface editing rely on a relative representation [Ale03]
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which captures local shape detail, namely Laplacian coordinates. However, the inherent lack of
rotation and scale invariance of the linear operator requires local transformation of the differen-
tial coordinates. To account for this, local rotations are estimated either from normal averaging
over an initial reconstruction [LSC+04] or from embedding a simultaneous least-squares opti-
mization for linear approximants to rotations and isotropic scales in the linear reconstruction
operator [SLC+04].
Here, we note that both of the latter approaches, multi-resolution methods and differential co-
ordinates, transform (rotate) their respective shape detail information in such a way that the
reconstruction consistently preserves local detail while the overall shape follows the global de-
formation. We can interpret this transformation as updating the mappings of local regions from
the source to the target shape – hence, as finding meaningful local deformations.
In fact, the recent work of [YZX+04] directly applies this notion: Generalizing the concept of
Poisson image editing [PGB03], local deformations [Bar84] are specified and then propagated
over the surface mesh. The resulting deformation field and additional conditions capturing
smoothness (including continuity) and local shape detail yield a linear system whose solution
defines the desired target shape.

Deformation transfer

So far, we discussed deformation for direct, interactive surface editing. Deformation transfer
[SP04] is a different metaphor applied to mimic a reference deformation of one triangulated
shape on another one. Here, local deformations of a target are sampled from the deformation
of a reference surface; given a corresponding deformation field, a linear operator is used for the
reconstruction similarly to the mesh editing approach discussed above. This process is steered by
pairs of corresponding markers which are used to establish meaningful correspondence between
the overall shapes using an iterated closest point algorithm to deform the target into the initial
reference geometry.
Sumner and Popović [SP04] point out that no bijective mapping is necessary for establishing
meaningful correspondence, in fact, a many-to-many mapping is generally obtained. While
this seems sufficient for deformation transfer, we remark that there exist techniques to construct
constrained bijective maps between surfaces [KS04, SAPH04], which provide a computationally
more expensive alternative.
In addition to explicit shape manipulation, we mention free form deformation methods [SP86,
Coq90] which achieve surface deformation by warping the surrounding 3-space. This space-
warp can possibly be defined using (local) rotational constraints [LKG+03] or weight functions
parameterized with respect to geodesic distances on the surface [BK03] for improving the prop-
agation of constraints. In the context of deformation transfer, as-rigid-as possible shape interpo-
lation [ACL00] defines a piecewise linear space-warp over a triangulated domain, corresponding
to deformation of the boundary.
Finally, we note that the advantageous properties of harmonic fields have been used most recently
for quadrilateral remeshing [DKG05].

1.2 Objectives of current work

The general objective of this work is to develop a complete solution to fundamental aspects of the
surface parameterization problem. This solution should allow for robust and efficient handling
of large data sets. In our investigation we start from a purely discrete method which is the angle
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basedparameterization. In fact this method does not have any continuous counterpart and does
not rely on any advanced differential geometry concepts. We then explore the potential of dif-
ferential geometry by analyzing several methods for constructing discrete conformal maps. We
further rely on differential geometry for quantifying distortion and propose appropriate methods
for reducing it in the planar and the spherical case. Using the same differential framework we
then develop practical tools for mesh editing and deformation transfer.
The key aspects addressed are

– the robust and efficient solution of the angle based parameterization problem

– the analysis of existing discrete conformal maps

– the quantification and reduction of parameterization distortion

– the efficient and robust solution of the spherical parameterization problem, and

– the investigation of ”on-surface parameterization” potential for mesh editing, shape match-
ing, and deformation transfer.

Research over the last two decades has touched upon these topics to a varying degree. However
robustness, efficiency and, solution accuracy remain generally hard to achieve. In this work
special attention is given to the reformulation of some existing problems and the introduction of
new concepts. In the light of a new representation of parameters, many involved problems turn
out to be more tractable and can be tackled in a straightforward manner. This aspect is illustrated
in the proposed solution to the angle based parameterization and the spherical parameterization
problems. In the effort of distortion reduction we introduce the concept of quasi-harmonic maps
which elegantly allows for handling distortion directly as a tensor. In this way, directional as
well as areal distortion are taken into account under a variational framework. Intimately related
problems to mesh parameterization are the interpolation of local deformations over manifolds
and the correspondence between meshes from only few pairs of markers. As a general tool for
both scenarios, a harmonic field is constructed to guide the interpolation of constraints and to
establish the shape matching for deformation transfer.

1.3 Overview

The remainder of this thesis is organized as follows:
Chapter (2) discusses several numerical procedures for solving the nonlinear angle based flatten-
ing problem. In chapter (3), the whole problem is reformulated as a system of linear equations
and appropriate solution methods are presented. In the context of conformal maps, a panoramic
view of existing discretizations of the Laplace operator is given in chapter (4) with emphasis on
historic aspects of their development. Quasi-harmonic maps are introduced in chapter (5) and
an extension to the free boundary parameterization is presented in chapter (6). Spherical para-
meterization is discussed in chapter (7). Applications of harmonic fields on surfaces for mesh
editing and deformation transfer are presented in chapter (8). A brief description of implemen-
tation strategies is given in chapter (9), and the conclusions drawn from the present work are
summarized in chapter ( 10).
Parts of this thesis have been previously published in these papers [ZRS03, ZRS04b, ZRS04a,
ZRS05a, ZRS05b, ZCKS05, ZRS06].



2

Numerical Aspects of Nonlinear Angle Based
Parameterization

Research on surface parameterization is handicapped by the fact that differential geometry rules
out the existence of isometric maps from the plane onto a given surface except for the special case
of developable surfaces, see e.g., [Kre91]. Considering the inexistence of an optimal solution to
the parametrization problem, an alternative goal which is not less attractive nor less challenging
is the construction of maps which preserve angles, better known as conformal maps.
In the effort of developing angle preserving maps, it seems natural to formulate the problem
directly in terms of the interior angles of the planar mesh. The first step into this direction in
modern mesh parametrization research was undertaken by Sheffer and de Sturler [SdS00] and is
known asangle based flattening(ABF). The ABF algorithm constructs such a parameterization
by minimizing an objective function which penalizes the angular distortion of the planar mesh
with respect to the angles of the original mesh. A set of linear and nonlinear equality constraints
on the planar angles guarantees the validity of the parameterization. These constraints have been
extensively studied in graph theory in [BV96] and have been also used for the construction of
geodetic triangulation since the 18th century. However, as these constraints affect only internal
angles, they do not prevent the boundary from having global self-intersection. The authors of
[SdS00] propose an additional post-processing approach to handle edge crossings at the bound-
ary. Each post-processing step first identifies the nodes causing intersections in the flat mesh,
then imposes additional constraints on the local configurations in order to avoid intersections.
The flat mesh is recomputed each time as a solution of the updated nonlinear system. The post-
processing algorithm is repeated until no more intersections are found.
The complexity of the constrained optimization arising from the ABF setup makes finding a
solution in reasonable time a challenging task. This has prompted the development of several
numerical schemes to speed up the convergence of the original algorithm [SdS00] by using
preconditioning [LdSS+01] and smoothing [SdS02] and most recently by combining a hierar-
chical approach along with an intelligent processing of the sub-matrices associated with problem
[SLMB05]. A common trait to these methods is that they target improving convergence rates
mainly at the level of the numerical solvers and do not alter the original nonlinear setup.
We approach this problem from a slightly different angle by identifying the main causes for poor
convergence within the setup of the constrained problem itself. First, the post-processing used
for handling global boundary intersections might be costly. Any detected global intersections
require incorporating new constraints and solving the whole nonlinear system as many times
as needed. We take advantage of a characterization of convex planar drawings of tri-connected
graphs to eliminate boundary intersections in the first place. This way we can steer or even avoid
post-processing. Furthermore, we note that the nonlinear equations in the ABF method lead to a
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densesparsity pattern of the Hessian matrix of the system which in turn weighs heavily on the
computational cost. We show how the convergence can be improved alternatively by a simple
yet effective transformation of the problem that relaxes the nonlinear equality constraints. In
fact, the Hessian becomes diagonal and its sparsity pattern becomes independent of the valences
of the vertices of the input mesh.
Along with these modifications to the original setup we discuss several numerical approaches
for efficiently handling the arising matrix equations. Previously, general iterative solvers which
do not take full advantage of the structure of the system matrix have been proposed in [SdS00,
SdS02, LdSS+01]. As the system of equations is symmetric we test the performance of several
iterative solvers specifically tailored for this type of systems. In order to further take advantage
of the matrix structure we propose two iterative approaches. The first approach is based on the
fact that decoupling the system equations yields easier matrix equations. The second approach
is based on the analysis of saddle point problems and relies on a modified Uzawa algorithm for
efficiently carrying out the numerical optimization. Lastly, we propose an experimental approach
which treats the optimization problem as an undetermined nonlinear system of equations.

2.1 Conventions

Throughout this work, we try to restrict ourselves to the essential amount of formalism. In this
chapter, the following notations are used:

– N is the total number of interior mesh angles.

– α∗i (i = 1, . . . , N ) denote the angles of theoriginal mesh.

– αi are the corresponding angles of theflat mesh. As these are the variables of the opti-
mization problem, then in this context, the more usual notationxi is used as an alternative.

– v denotes the central vertex in a centered drawing of awheel, i.e. of its 1-neighborhood.d
is the number of direct neighbors ofv or its valence.αj (j = 1, . . . , d) refer to the angles
at v, while βj andγj denote the opposite left and right angles of a face with central angle
aj , respectively. All faces are oriented counter-clockwise.

– Variables and functions without subscripts may refer to multivariate vectors as explained
by the context.

2.2 Characterization of drawings of planar angle graphs

Sheffer and de Sturler [SdS00] addressed the problem of the validity of the planar embedding by
requiring the following consistency condition on the set of positive angles of the planar mesh:

– Vertex consistency

For each internal vertexv, with central anglesα1, . . . , αd:

d∑
i=1

αi − 2π = 0 (2.1)
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Figure 2.1: Illustration of angle validity conditions. Vertex consistency (left) guarantees pla-
narity, and wheel consistency guarantees closed vertex rings.

– Triangle consistency

For each triangular face with anglesα, β, γ the face consistency:

α + β + γ − π = 0 (2.2)

– Wheel consistency

For each internal vertexv with left anglesβ1,..,βd and right anglesγ1, . . . , γd:

d∏
i=1

sin(βi)
sin(γi)

= 1 (2.3)

Condition (2.1) enforces the planarity of vertex rings whereas condition (2.3) enforces the
triangle sine rule over a vertex ring and guarantees the closedness of the ring. Failure to
satisfy this condition yields the situation illustrated in figure (2.1). These conditions guar-
antee the centered embedding of internal vertices without any overlapping of the interior
edges. However, they do not prevent the overlapping of boundary edges. This issue is a
well-studied in graph theory [BV96, Gar98]. Di Battista and Vismara provide a character-
ization of the convex planar straight line drawing of a tri-connected graph for a given set
of positive angles [BV96]. Their minimal constraints for the planarity of the graph impose
in addition to (2.1), (2.2), and (2.3) the following condition:

– Convex external face condition

For each external vertexv, with internal anglesα1, . . . , αd:

d∑
i=1

αi ≤ π. (2.4)

Condition (2.4) guarantees theconvexity of the boundaryand hence prevents boundary
overlapping. Note that the inequality (2.4) prevents local and global self-intersection si-
multaneously. So it does not only prevent adjacent boundary edges from overlapping, but
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(a) (b) (c) (d)

Figure 2.2: Flattening anα-shaped mode: (a) Original mesh. (b) The flattened mesh with
boundary control coefficientt = 2. (c) t = 1.1. (d) t = 1.03. (The views are scaled differently.)

it also guarantees that the boundary loop as a whole does not cross itself. For the local
configuration it would in fact be sufficient to require the following weakened condition to
hold:

– Adjacent boundary edges consistency
For each external vertexv, with internal anglesα1, . . . , αd:

d∑
i=1

αi ≤ 2π. (2.5)

This prevents adjacent boundary triangles from crossing each other. But, condition (2.5) is not
strong enough to globally enforce a valid mesh with no boundary intersections as shown in
figure (2.2.b).
For a better understanding and better control of the boundary behavior, we propose to multiply
the left hand side in (2.4) by a positive scalart, formally

d∑
i=1

αi ≤ tπ. (2.6)

The scalart can be interpreted asboundary control coefficientthat steers the convexity of the
boundary. A lower bound for this factor can be derived using discrete curvature measure. Con-
sider the angular defect of the flat mesh can be expressed as:

n∑
v=1

(π −Av) = 2π, (2.7)

whereAv is the sum of angles at vertexv andn is the number of boundary vertices. By a simple
calculation, we establish the lower bound

t0 = 1− 2/n.

The trivial case is a single triangle, its angles cannot be all smaller thanπ/3.
We experimented with different values fort, and summarize the following interpretations that
can be used as reference for choosing appropriate values fort:

– t > 2 results in the classic ABF method without. No adjacent edge overlapping or bound-
ary self-crossing is taken into consideration.
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– 1 < t ≤ 2 prevents adjacent edges from overlapping, but does not necessarily pre-
vent global self-intersections of the boundary loop. We experienced such cases only for
”boundary-heavy” (with respect to ratio of boundary to inner vertices, e.g. figure (2.2))
surfaces with non-trivial geometry.

– t = 1 globally prevents the boundary loop from self-intersection for any valid input mesh,
note that this suffices to induce a convex boundary .

– t0 < t < 1 forces the boundary to become concave.

Figures (2.2) and (2.3) illustrate the behavior of the boundary for different values oft. We can
take advantage of these facts in order to avoid an iterative post-processing and thus have better
control over the convergence of the constrained optimization problem. In the next sections we
show how this problem with the additional inequalities included can be solved efficiently.

(a) (b) (c)

(d) (e) (f)

Figure2.3: Effect of the boundary control coefficientt on the3-ballsmodel. (a) Original mesh.
(b) Flat mesh fort ≥ 2 (ABF). (c)t = 1.05. (d) t = 1 (convex boundary ABF). (e)t = 0.98. (f)
t = 0.968.

2.3 Constrained optimization problem

A general approach for establishing a surface parameterization consists of minimizing an objec-
tive functionf(x) that quantifies distortion with respect to certain quality criteria. As the validity
of the flat mesh is guaranteed by the angle constraints of section (2.2). A typical choice of such
functions is the weighted angle distortion [SdS00]

f(x) =
N∑

i=1

wi(xi − ai)2 (2.8)
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with the weightswi = 1
a2

i
. The variablesai represent theoptimal anglesof the flat mesh, which

are

ai =

{
α∗i

2πPd
i=1 α∗

i

aroundan interior vertex

α∗i around a boundary vertex.

We can now formulate the optimization problem as

minimize f(x)
subject to h(x) = 0

g(x) ≤ 0,

(2.9)

whereg andh are multivariate functions of the equality (2.1), (2.2), (2.11) and the inequality
constraints (2.6) respectively.
Large constrained optimization systems of the form (2.9) are still open problems in the field
of nonlinear optimization [BN98]. The adequacy of a minimization method depends on the
properties of the objective function as well as on the constraints.
In order to solve the optimization problem we use the method of Lagrange multipliers as it
guarantees the exact satisfaction of constraints. We handle the inequality constraints by means
of the so-calledactive setapproach, a variant of Newton-like methods. It transforms inequalities
to equalities, which are generally easier to handle.
The active set is defined as the set of indices for which the inequality constraint (2.4) is active.
Formally

A(x, µ) = {i|gi ≥ −µi

c
, i = 1, ..., r},

whereµi is the Lagrange multiplier associated withgi, andc is a fixed positive scalar.
The active set approach converts inequality constraints to equality constraints by altering the
Lagrange multipliers associated with them. If a constraint does not figure in the active set, its
associated multipliers are set to zero. Otherwise it is treated as an equality constraint. The
numerical advantage of this method is that as the iterates get closer to the solution, the active
set becomes more and more stable. A detailed description of the active set method can be found
in [Ber82].
In every Newton iteration the following system is solved ∇2

xxL JT
h JT

g

Jh 0 0
Jg 0 0


 ∆x

∆µh

∆µg

 = −

 ∇xL

h

g

 (2.10)

where the LagrangianL is given by

L = f(x) + µT
h h(x) + µT

g g(x).

In the classic ABF algorithm, the computation of the Hessian matrix∇2
xxL involves finding the

second derivatives of the products involved in condition (2.3). The resulting matrix is sparse,
but it still contains a considerable number of non-zero elements (cf. figure (2.4.a)). This number
depends largely on the valences of the input mesh vertices.
Instead, we propose to use amodified wheel condition(2.11). Since the angles are strictly posi-
tive we can safely rewrite condition (2.3) as

d∑
i=1

log (sin βi)− log (sin γi) = 0. (2.11)
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(a) (b)

Figure 2.4:System matrices of equation (2.10) generated from theearmodel using the (a) origi-
nal wheel condition. (b) simplified wheel condition. The Diagonal Hessian brought the number
of nonzero elements from 100044 down to 47607.

The virtue of this modification resides in the fact that it yields a diagonal Hessian matrix.

∇2
xxL = diag(f′′(xi) + mi

−1
sin2(xi)

),

wheremi is the linear combination of the Lagrange multipliers involved withxi in condition
(2.11). The amount of computation and effort by the iterative solvers is hence reduced consid-
erably. The Hessian can be computed efficiently as this reduction also avoids the estimation of
complex derivatives with all the floating error they may induce. Figure (2.4) illustrates the struc-
ture of a typical system matrix and the improvement induced by themodified wheel condition.

2.4 Solution of the matrix equation

2.4.1 Iterative solvers

Although the system matrix established in the previous section is not not necessarily positive-
definite, it still enjoys symmetry and a diagonal Hessian. We can exploit this structure by using
adequate iterative solvers such as MINRES or SYMMLQ both developed by Paige and Saun-
ders [PS75] for symmetric matrices, instead of the non-symmetric GMRES and BiCGStab that
were used in [SdS00, LdSS+01]. The latter solvers have higher cost per iteration and may suf-
fer from breakdowns or simply stagnate while MINRES and SYMMLQ have a relatively cheap
cost per iteration which is just 4 axpys1 higher than the iteration cost of the conjugate gradient
method. Another alternative, which is relatively inexpensive, is the CGNR algorithm introduced
by Hestens and Steifel [HS52]. A key benefit in our case is that there is no need to transpose the
system matrix as it is symmetric. The cost per iteration is just one matrix-vector multiplication
higher than the cost of the conjugate gradient method. A comparison of the convergence of these
iterative solvers for typical meshes is given in section (2.5).

1The term axpy denotes the addition of a scalar multiple of a vector to a vector i.e. vector1+=scalar*vector2
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In order to guarantee that the resulting angles remain within the positive domain during the New-
ton iterations, we can reject negative iterates and append increased weights to the corresponding
angles in a similar fashion to [SdS00]. However, in our experiments we hardly ever run into this
situation.

2.4.2 Matrix decoupling based solutions

The current approach relies on the analysis of the structure of the system matrix in (2.10). Keep-
ing the modified wheel condition in mind, we take advantage of the underlying system structure
in order to decouple the system into two simpler matrix equations. The optimization problem at
hand can be restated as the following general matrix system

Ax + Btλ = f,

Bx = g.
(2.12)

In our ABF setting (2.10) the matrixA is the diagonal Hessian andB is the sparse Jacobian
matrix associated with the equality constraints. Then the system matrixS can be expanded as

S =

[
A 0
B I

][
A−1 0
0 M

][
A Bt

0 I

]
, (2.13)

whereM = BA−1Bt. According to Sylvester’s law of inertia the eigenvalues ofS are the same
as the eigenvalues ofA andM . This suggests that the system is highly indefinite as bothA and
M are not positive definite. The alternative approach to directly dealing withS is to decouple the
system equations in order to reduce the computational effort. In order to address this numerical
problem we propose two approaches:

MINRES

Since the matrixA is diagonal, its inverse can be easily obtained. The problem (2.12) now
reduces to solving the following system of equations

x = A−1(f −Btλ),
BA−1Btλ = BA−1f − g.

The matrixM = BA−1Bt is symmetric, but necessarily positive definite. This rules out the
existence of a unique solution as the matrix might be singular. The system can be solved using
the MINRES algorithm, which is the equivalent of the conjugate gradient method for general
symmetric matrices. The advantage of using MINRES over other existing iterative algorithms
resides in the fact that it converges for definite, indefinite or singular cases and avoids break-ups
or stagnation [PS75]. Since the matrix size might be large when dealing with large meshes, it is
not desirable to directly perform matrix-matrix multiplication unless an efficient matrix package
is accessible. The algorithm can be implemented without explicit computation of the matrixM ,
by only performing matrix-vector multiplication within the MINRES method especially that the
matrix A is diagonal. This method reduces the size of the matrix problem to a smaller matrix
problem of only approximately twice the number of triangles in the mesh.
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Modified Uzawa algorithm

In the following approach we rely on the similarity of the system equation (2.12) with general
saddle point problems. In saddle point problems, the matrixA is in general positive definite,
which is not the case in our setting. However, we have the advantage that the inverse ofA is
immediate. A widely used approach for solving saddle point problems relies on the Uzawa algo-
rithm [AHU58]. We cannot apply the Uzawa algorithm directly as it depends on the condition
number of the matrixM . As an alternative we take advantage of direct inversion of matrixA for
using the conjugate directions [Bra01]. This yields the modified Uzawa algorithm given below.
It should be noted that the matrix multiplications involving the diagonal matrixA should be
treated as element by element multiplication, the matrixA can be stored as a vector.

ModifiedUzawa algorithm

1. Initialize
x0 = A−1(f −Btλ),
d0 = Bu0 − g,q0 = −d0.

2. Repeat until convergence

– pk = Btdk, hk = A−1pk,

– αk = <qk,qk>
<pk,hk> ,

– λk+1 = λk + αkdk,

– xk+1 = xk − αkhk, qk+1 = g −Bxk+1

– βk = <qk+1,qk+1>
<qk,qk> ,

– dk+1 = −qk+1 − βdk

2.4.3 Underdetermined nonlinear system based approach

As the method of Lagrange multipliers is a local optimization method, the solution it provides is
a local minimum that is dependent on the initial guess. In other words it is the closest minimum
to the initial guess. Since the initial guess we provide is very close to the solution as only few
Newton iterations are needed for convergence. We can assume that any feasible point that is
close to the initial guess mentioned above gives a good estimate for the solution and would yield
a low angular distortion.
With this consideration in mind, the problem can be restated as how to get a feasible point.
The idea is to have a null objective function, i.e setf = 0. This means that we reduce the
problem to solving the underdetermined system of equality and inequality constraints. This
change leads to considerable speed up of convergence as there is no extra load from the objective
function. In the following, we call this solution the underdetermined solution and the one using
the angular distortion functional the minimization solution (literally speaking both solutions are
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(a) (b) (c) (d)

Figure 2.5:Comparison of underdetermined (a, c) and minimization (b, d) solutions.

(a) (b) (c)

Figure 2.6:Textured models: Clumpy (a) Large ear (b) and Mechanical part (c). Notice the
quasi-conformality of the parameterization.

just approximate solutions).
In general, the difference between the minimization and the underdetermined solution is hardly
noticeable. Figure (2.5) shows a comparison between such solutions. Table (2.1) shows the
numerical performance of the two methods.
Our experiments with several different initial starting guesses suggest that, if we are looking
only for a topological mapping of the mesh to the plane, we can get a very fast feasible solution
by setting the initial guess to zero or toπ3 and the objective function to zero. This solution does
not reflect the geometry of the mesh and might not be suited for texture mapping.
Another alternative method for finding a feasible point would be to use least squares methods for
solving underdetermined nonlinear problems. However, as these methods do not guarantee the
exact satisfaction of the constraints for large problems, they failed in general to produce valid
parameterizations.

2.5 Results and discussion

We applied the proposed algorithms to a set of different triangular meshes. Tables (2.1)
and (2.2) summarize the numerical results of the proposed methods, all timings were mea-
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CGNR SYMMLQ MINRES

Model minim. under. minim. under. minim. under.

3 Balls (10324) 66 1 21 2 7 2

Ear(17964) 159 3 44 9 11 7

Manhead (54204) > 900 26 292 69 126 56

Mech.part (79384) > 999 86 > 999 245 > 999 192

Large ear (249144) > 999 237 > 999 654 > 999 522

Table 2.1: Comparison of runtime (in seconds) of the full matrix based minimization and the
underdetermined system based method using different iterative solvers.

sured on a 1.7 GHz Intel Xeon CPU. The resulting parameterizations are shown in figures
(2.5), (2.6), and (2.7). The parameterization time depends on the number of triangles, on the
geometry as well as on the connectivity of the input mesh. Our measurements rely on a sim-
ple self-implemented matrix library, and we expect our algorithms to perform much faster using
highly optimized matrix packages.
We observe that the Uzawa algorithm outperforms the MINRES in our experiments. In general,
the decoupling of the system equations provides an efficient means for improving the conver-
gence.
Furthermore, the numerical data suggests that the underdetermined method in association with
the CGNR algorithm delivers high quality quasi-conformal parameterizations in very competi-
tive time. However, this method does not come with any guarantees and the approximation used
is completely heuristic. In the next chapter we show how to develop a well justified approxima-
tion and construct a method which overcomes most of the numerical difficulties encountered in
this chapter.

MINRES Uzawa

Ear(17964) 3 1

Manhead (54204) 26 18

twists(6K4) 2 1

Goldfeather(10K4) 16 7

Goldfeather(24K4) 74 31

foot (20K4) 346 115

Table 2.2: Runtime (in seconds) using different iterative solvers in the decoupled matrix case.
For most models, 3 to 4 Newton iterations were needed.
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Figure2.7: Textured implicit surfaces and their corresponding planar embedding obtained using
the modified Uzawa algorithm: From top to bottom: Goldfeather surface [GI04], ring cyclide,
twists.
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Linear Angle Based Parameterization

Once the mathematical equations governing a problem have been established, then
excepting very simple cases, they must be solved using an approximate method.
The type of approximation used is important as it affects the accuracy of the results
and the economy of the solution.

C. A. Brebbia and S. Walker in [BW80]

With the ever increasing computational power delivered by modern processors, it is possible to
address a wide range of nonlinear problems in a reasonable time. This sheer power still has
to deal with the increased size of data dictated by the strive for more detailed problem rep-
resentations. This brings forward the need for efficient and reliable numerical tools allowing
the redesign or reformulation of these problems in more tractable way. Angle based flattening
belongs to this category of nonlinear problem and the numerical experiments conducted in chap-
ter (2) suggest that the problem remains challenging. Recently, a combination of hierarchical
structure with an intelligent matrix decoupling approach was proposed in [SLMB05] allowing
for increased performance. Nevertheless most of the proposed approaches in the literature ad-
dress mainly numerical issues at the level of the arising matrix equation and do not touch upon
the setup of the original problem.
In this chapter, a new setup of the problem is laid out. The standard procedure adopted for
establishing the parametric representation is to set up the nonlinear optimization problem in
terms of the unknown planar angles and approximate the minimum of the Lagrangian using a
Newton based approach (see chapter (2)). Instead, the new proposed procedure addresses the
problem in terms of the angle error, more specifically the angle difference between the optimal
solution and the initial guess. In this setup the nonlinear constraints are approximated by linear
ones. This is well justified as the error induced by this linearization is quadratic in terms of
the error in angles. The windfall of this new representation is that the problem need not be
addressed as a constrained optimization but as an underdetermined system of linear equations.
The latter is equivalent to a weighted least norm problem and can be solved using the normal
equation. Alternatively a quadratic programming approach might be used as well for enforcing
error bounds.

3.1 Ancient technique, new problem

In this section, we propose an alternative formulation of the problem, that leads to a linearization
of the constraints. Linearization was already used in previous methods (e.g. ABF++). However,
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in our case, before linearizing the constraints, we carefully reformulate the problem in terms
of alternative variables, that will make this linearization so accurate that solving single linear
system will converge to the solution directly without requiring multiple Newton steps used in
previous work. In more details, our approach is based on the notion oferror adjustement, i.e. it
uses the relative error of estimation of the angles rather than their absolute values.
The idea of working with error in estimations is not new and goes back to the era of Gauss who
used the technique for predicting the position of the comet Ceres1. The problem of error adjust-
ment is known for fueling many quarrels between mathematicians such as Gauss and Legendre.
More importantly it is at the origin of the principle of least squares which marks a turning point
in the history of computing and statistical analysis. In the following the notion of estimation
error is used to reformulate the angle based parameterization problem.
Let us denote the ideal angles which solve the parametrization problem byα∗ and the initial
guess asα , the estimation error is then given by

α∗ = α + eα (3.1)

The variablesαi represent an initial estimation of the angles of the flat mesh and will be discussed
later in this chapter.
In this setup the constraints on the planar angles read :

– Vertex consistency

For each internal vertexv, with central anglesα1, . . . , αd:

d∑
i=1

ei = 2π −
d∑

i=1

αi (3.2)

– Triangle consistency

For each triangular face with anglesα, β, γ the face consistency:

eα + eβ + eγ = π − (α + β + γ) (3.3)

– Wheel consistency

Based on the logarithmic modification introduced in [ZRS04b], we have for each internal
vertexv with left anglesβ1,..,βd and right anglesγ1, . . . , γd:

d∑
i=1

log (sin βi + eβi
)− log (sin γi + eγi) = 0. (3.4)

The changes introduced so far do not affect the nature of the linear conditions. On the other
hand, the nonlinear expression in (3.4) looks as if it just got more complicated. However, the
Taylor expansion oflog(sin(α + e)) can be written as

log(sin(α + e)) = log(sin(α)) + cot(α) e

− 1
2
(1 + cot2(α)) e2

+ · · ·

(3.5)

1As of August 24, 2006, Ceres has been promoted to the status of a ’dwarf planet’ by the International Astronom-
ical Union.
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Inspectionof this series reveals that we can safely use the approximation

log(sin(α + e)) w log(sin(α)) + cot(α) e. (3.6)

The error induced by this approximation depends quadratically on the error in anglee. In other
words, for a small errore in the angle estimation, the error in the consistency constraint is even
smaller (e.g. an angle error of the order of10−3 induces an error of order10−6). This point is of
utter importance to the method and it is in fact similar to the linear approximation generally used
in finite elements for approximating potential energy as discussed in e.g. [Bra01]. Considering
that even in the most general case enforcing equality constraints amount to a minimization up to
a certain reasonable accuracy, our approximation is then well justified. We will also backup this
claim with numerical experiments in the results section.
In the light of this new approximation, the nonlinear equation (3.4) can be then replaced by
following linear variant

d∑
i=1

cot(βi) eβi
− cot(γi) eγi =

d∑
i=1

log(sin γi) − log(sinβi) (3.7)

The term on the right hand side measures the error in the wheel consistency condition induced
by the initial estimation. Similarly the right hand sides of equations (3.2), (3.3) measure triangle
consistency and the angular deficit respectively. In this way, given an angle estimationα, we
describe the error induced on the constraints as linear function of the estimation errore.

3.2 Numerical solution

At this stage a least norm solution to the resulting underdetermined system of linear equations
can be readily obtained through the normal equation. This setup however is evenhanded as it
treat all angles in the same way and at times, this may cause instabilities for very small and
very large angles. One straightforward approach consists of using additional bounds on the
error e and solving the system using standard techniques e.g. MatlabTMOptimization Toolbox.
However, as this work is geared towards simple implementation, it is more interesting to maintain
the new gains from the linearization of the constraints and associate an objective function with
the constraints which allows for introducing additional weights to control the errors in similar
fashion to the original ABF [SdS00]. The weighted objective function described in the following
subsection allows for a balanced treatment of angles by penalizing large angles and enforcing
smaller ones.

3.2.1 Normal equation setup

In this subsection, We aim at minimizing a weighted error objective function while enforcing
the equality constraint. In the light of the new representation in terms of the error, the objective
function

F (α) =
N∑

i=1

1
α2

i

(α∗i − αi)2, (3.8)

canbe stated as:

minimize
N∑

i=1

1
α2

i

e2
i subjectto Ae = b (3.9)
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Figure3.1: Parameterization of the fan disk model (13K∆). Solution runtime (0.15s).

usinga simple change of variables

ri =
ei

αi
(3.10)

In matrix notation this change of variables givese = Dα r, whereDα = diag(αi) is the
diagonal matrix with the angles as entries. Thus the angle parameterization problem reads as
simple as

minimize||r||2 subject toCr = b (3.11)

This is now clearly a least-norm problem. The size of the matrixC = A Dα is (nt + 2 ·
ni) × (3 · nt), wherent is the number of triangles andni is the number of internal vertices.
As the equality constraints are independent, the matrixC has full rank, and it ensures that the
least-norm problem has a unique solution (see e.g. [Lue69]) :

r = CT (C CT )−1b (3.12)

Thus, the problem can be solved by finding a solution to the normal equation

(C CT )x = b (3.13)

After solving this equation,r can be obtained asr = CT x. The angles of the mesh in the
parametric domain can be obtained by substituting back in equations (3.10) and (3.1).

3.2.2 Choice of initial estimation

In order to reduce error in the above presented method, the choice of the initial estimation is
very important as it directly affect the global error. For this purpose it is imperative that very
large and very small angles do not force the solution out of the(0, π) domain. Settingα equal to
the original angles of the mesh yields valid parameterizations in most cases. However, it is not
difficult to tailor cases which yield invalid angles. In order to enforce a valid solution for general
cases, we set a threshold on the error of fan angles of vertices and also on angles at the vicinity
of 0 andπ. When the error associated with a fan is large (e.g. spikes), we replace the original
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Figure 3.2: This teapot, with high Gauss curvature, is a numerical challenge for parameteriza-
tion methods. As can be seen, our linearization satisfies the constraints and produces a valid
parameterization, even in this difficult configuration.
angles by the angles obtained from an exponential map of the vertex one-ring. They are given in
terms of the original angles original anglesαo

i as

αi =

{
αo

i
2πPd

i=1 α0
i

around an interior vertex

αo
i around a boundary vertex

In practice for vertex rings with an angular deficit larger than1 it is recommendable to switch to
the angles obtained from the exponential map for that specific ring. For example, in the obtuse
case illustrated in figure (3.3), the angular deficit (4.56) is very large and triggers the threshold
switch.

3.3 Algorithmic outline

The algorithmic approach outlined in this chapter is simple and easy to implement. The whole
algorithm for setting up the normal equation system and solving for the angles spans around 30
lines of vectorized MatlabTMcode. The algorithmic flow can be summarized in the following
steps:

a. Establish the initial angle estimationα as explained in subsection (3.2.2)

b. Setup the constraints, i.e. vertex consistency (equations 3.2), triangle consistency (equation 3.3), and
linearized wheel consistency (equation 3.7), as a linear system,A eα = b

c. ComputeC = ADα, whereDα = diag(αi) is the diagonal matrix described in subsection( 3.2.1)

d. Solve forx in (CCT )x = b (equation 3.13)

e. Compute the estimation erroreα = DαCT x (equations 3.10 and 3.1)

f. Get the angle solution asα∗ = α + eα
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Figure3.3: The simple example shown here is known to make linear conformal parameterization
methods (LSCM [LPRM02], DNCP[DMA02]) generate an invalid parameterization. As shown
here, our linearized method generates the same (valid) result as ABF.

One can use two approaches for obtaining the uv coordinates from the angles. The first one is
a greedy reconstruction, which constructs the triangles one by one using a depth-first traversal.
The second one is an angle based least squares formulation which solves a set of linear equations
relating angles to coordinates [SLMB05].
In the greedy approach, the last triangle of a
fan is never explicitly constructed as two of
its edges must have already been constructed.
When reconstructing with non-optimal an-
gles, error accumulation may lead to degener-
ate meshes (see figure). Although our method
behaves generally well with the greedy ap-
proach (see figure), we recommend using the least squares reconstruction, since it better balances
the cumulative error, especially for large meshes. We used that approach for all our experiments.

3.4 Results

The current method was tested on a benchmark of nontrivial meshes. Table (3.1) shows typical
values of the error in angles induced by the original ABF++ and the current linearized version for
the models depicted in this chapter. The angular distortion measure we use is‖eα‖2 /3nt, where
nt denotes the number of triangles. Some of these meshes were made homeomorphic to a disk
by using Seamster [SH02]. To make sure that convergence comparison is accurate, we only used
the algebraic transform of ABF++ (and did not use the hierarchical+algebraic HABF++). No
difference is visually noticeable in the results. Timings are up to 27× faster than the algebraic
ABF++ (or up to 4× faster than HABF++).
The numerical examples confirm the validity of the approximation used in equation (3.6). This
is further illustrated in figures (3.1), (3.5), (3.6), and (3.7). Besides speed, the main advantage of
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model ]∆ timing timing F/3nt F/3nt

ABF++ linABF ABF++ linABF

obtuse 3 0.1s 0.05s 1.267 1.267

cow 5.8K 0.45s 0.1s 5.041e-3 5.256e-3

fandisk 13K 0.85s 0.15s 5.041e-3 5.256e-3

teapot 14K 3 s 0.3s 2.154e-3 2.282e-3

foot 20K 2 s 0.4s 1.867e-4 1.921e-4

gargo 20K 2.5s 0.4s 1.603e-3 1.604e-3

bull 34K 4 s 0.8s 5.323e-4 5.331e-4

bunny1 40K 5.5 0.9s 2.597e-4 2.593e-4

dino 48K 15s 1 s 1.363e-3 1.184e-3

kiss 48K 8 s 1 s 7.092e-4 7.109e-4

tweety 54K 8.6s 1.5s 1.5671e-4 1.5672e-4

bunny2 70K 13s 2 s 2.232e-4 2.243e-4

hand 73K 13s 2 s 1.191e-4 1.213e-4

camel 78K 23s 2.5s 5.896e-4 6.202e-4

horse 97K 34s 3 s 2.746e-4 2.906e-4

man 120K 36s 2.7s 5.293e-4 5.602e-4

head 128K 87s 3.5s 1.243e-4 1.240e-4

male 293K 272s 9.5s 3.577e-4 3.841e-4

isis 374K 250s 11.5s 4.834e-5 4.7941e-5

david 505K 355s 12s 5.776e-4 5.844e-4

Table 3.1: Timings and angular deviation.

ourapproach is that the setup of the problem is simplified to a great extent in comparison to pre-
vious work, that require both complex sparse matrix manipulation and a hierarchical mesh data
structure. In contrast, reproduction of our results is straightforward. This way the performance
of the angle based parameterization becomes comparable to the well established discrete ver-
sions of conformal maps (see [FH05]), while keeping the much better balance of deformations
achieved by ABF.
We experimented the method with a large number of complicated test cases, including surfaces
with high curvature (see Figure 3.2), and the example known to make linear conformal para-
meterization methods fail (’obtuse’ entry in Table 3.1 and Figure 3.3). Although this is not
guaranteed, for all these test cases, a valid parameterization was obtained. A failure case is
shown in Figure 3.4. In such a (very unlikely) configuration, one can use multiple iterations.
The angles computed at one iteration are constrained in[0, π] and used to define theα’s for the
next iteration. In other words, we use a constrained Newton method with an active set approach.
In terms of memory consumption, all the tests of our linearized method were conducted on a
computer with 1Gb of system RAM, whereas ABF++ required more than 2Gb for some meshes.

Discussion

As in previous constrained optimization based methods, in this work, the constraints are satisfied
up to a certain precision. In Newton-based approaches, each step improves the approximation
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by linearizing the gradient of the (non-linear) Lagrangian. In our work, we perform a Taylor
expansion at the level of the non-linear constraints, thus avoiding non-linear optimizations in the
first place.

Figure3.4: An example that makes our 1-iteration method fail. An additional iteration fixes the
problem.

We tested our method on a representative benchmark of meshes. No triangle flips were detected
on the results. As shown in Figure 3.4, it is possible however to engineer specific situation
where a single iteration may fail. This would happen for example when a single one ring is
brought to have an obtuse solid angle and sheared triangles. However, such a situation is seldom
encountered in practice, and can be fixed by using our method with an active set approach.

3.5 Conclusion

We presented a complete reformulation of the angle based parameterization problem. Working
directly with the approximation error instead of angles we developed a linearized version of the
challenging nonlinear constraints associated with this type of parameterization. In the light of
this new representation, the planar angles can be obtained as a solution to a least norm problem.
The approximations used in our framework are well justified and lead to easier implementation
and faster solution in comparison to previous nonlinear formulations.
Furthermore, an even faster method may be obtained by combining our linearization with the
hierarchical acceleration technique used by ABF++. We plan also to investigate incorporat-
ing global non-intersection boundary constraints in our framework as well as properly handling
meshes with holes.
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Figure3.5: Parameterization of the Isis (374K∆), David (505K∆), and man (120K∆) mod-
els. Quadrangular remeshing and texture mapping reflect the quality of the parameterization.
Respective runtimes are (11.5s), (12s), and (2.7s).

Figure3.6: Flattening of several animal models. Model sizes and runtime are given in table(3.1).
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Figure3.7: Parameterization results of the head, tweety, foot, and hand models.
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Discrete Conformal Parameterization

The parameterization approach discussed so far works directly on the mesh angles for generating
angle preserving maps. Thus it could be considered as a purely discrete method. Alternatively,
another way for constructing angle preserving maps would be to establish a characterization
of these maps in the continuous setting and then derive an equivalent characterization for the
discrete case. In the continuous setting, angle preserving functions are well studied in complex
analysis and in differential geometry and are known as conformal maps, see e.g. [Arf85]. Thus
a large amount of surface parameterization research has been dedicated to generating a discrete
version of conformal maps over the last two decades. As the field has got more and more
standardized, there is increasing need to relate to parallel developments in much older disciplines
such as mathematics and engineering. Describing this relation is generally a difficult task and
remains beyond the scope of this work. On the other hand, viewing recent advances in the light
of similar ones in other fields may help us understand the historic development of certain ideas
not for the sake of history itself but for building new prospects upon them and not dispersing
valuable research time and effort.
The development of a discrete version of conformal maps is in essence the discretization of
the functions which characterize their continuous counterpart. While the central aspects of this
process are differential equations (calculus) and their associated matrix equations (linear alge-
bra), it is worthwhile to consider some related physical problems for fixing the ideas and for
gaining the physical intuition behind certain principles. In the pursuit of a solution of those con-
tinuous problems many approaches have been proposed which rely on surface discretization as
an approximation tool for building solutions which in the limit should coincide with the solution
of the underlying continuous problems.
A closely related problem to surface parameterization is the construction of minimal surfaces
spanning a given contour. Radó, in his famous treatment of this problem back in 1930, used a
discretization of the unit circle into a finite set of curvilinear triangles which are brought into
conformal correspondence with a given polyhedron spanning the boundary to establish one of
the first successful proofs of existence for minimal surfaces. Long before that, Schellbach in his
treatment of the same problem used a discretization using linear functions on triangles which he
curiously called ”triangle elements”. The striking resemblance to the setup of modern surface
parameterization incites a closer look at some aspects of the minimal surface problem, especially
the notion of Dirichlet energy, also called potential energy. We capitalize on the relation of this
energy and the Laplace operator to introduce several possible discretization approaches for es-
tablishing a discrete form of harmonic maps. Furthermore, we discuss and evaluate the influence
of these discretizations on the quality of the results.
In the rest of this chapter, we introduce the notion of Dirichlet or potential energy through the
membrane equilibrium problem and then address the problem of minimal surfaces. As the
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Laplaceoperator is of importance to both problems, we give an account of several possible
discretizations of this operator, some of which have been already used in the parameterization
literature. We start with the simplest discretization on the regular grid and gradually cover more
general discretizations. This coverage is far from being comprehensive and more aspects of
discretization history can be found in e.g. [Tho01]. Finally we compare the results of several
discretization on a simple mesh parameterization benchmark.

4.1 Related topics

4.1.1 Membrane equilibrium

We consider the case of a thin elastic membrane stretched over a planar frame enclosing a region
D. The potential energy of the membrane and the change of membrane area are proportionally
related by the membrane tension [Cou50]. The equilibrium of the membrane can be modeled as
the deformation of the membrane form its rest state. Under the assumption that the transverse
membrane deflectionu(x, y) is small, the membrane area∫∫

D
(1 + u2

x + u2
y)

1
2 dx dy (4.1)

can be approximated by ∫∫
D

(1 +
1
2
(u2

x + u2
y)) dx dy. (4.2)

Thus the potential energy up to a constant is then given by

1
2

∫∫
D

(u2
x + u2

y) dx dy. (4.3)

The equilibrium of the membrane can be characterized as a variational problem: the displace-
mentu(x, y) in equilibrium position is the function which minimizes the potential energy (4.3),
which is equivalent to the solution of the Laplace equation with prescribed boundary conditions.

4.1.2 Minimal surfaces

The relation of minimal surfaces problem to modern parameterization was pointed out in many
papers on surface parameterization. For example, the authors of [DMA02], emphasize the im-
portance of Dirichlet energy minimization to the computation of conformal maps as well as
conformal invariants (the later will not be addressed here). As the problem of minimal surfaces
is a vast topic and stretches far beyond the scope of the current work, the rest of this section
will address only the aspects that relate to the modern surface parameterization problem and the
reader is referred to the lucid presentation of [Cou50] or the more recent [PP93].
The problem of constructing minimal surfaces has fascinated generations of mathematicians
since its initial formulation by the Belgian physicist Plateau more than two centuries ago. In
the original statement of the problem the aim is to find the surfaceS of least area which spans
a given boundary contourΓ in R3. The first successful general existence proofs of minimal
surfaces were first established independently by Radó [Rad30] and Douglas [Dou31]. Courant
analyzed the relation of both solutions to the Dirichlet principle and gave a general overview
over the underlying theory in [Cou37].
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Assumingthe candidate surface is represented asX(u, v) with the parameters spanning a given
domainB (e.g. unit disc) bounded by a curveC (e.g. unit circle). The problem consists of
constructing a surface of least area bounded by given contourΓ in R3. Analytically this translates
to the minimization of

A(X) =
∫∫

(E G − F 2)
1
2 du dv, (4.4)

where
E = ||Xu||2; G = ||Xv||2; F = Xt

u Xv. (4.5)

This requires the mappingX to takeC ontoΓ, to be continuous onB + C, and to have piecewise
continuous second derivatives inB.
The integral (4.4) is independent of the choice of the parametersu andv. In the case whenu and
v correspond to a conformal mapping of the surface on the parametric plane i.e.

E − G = 0; F = 0, (4.6)

then

Ac(X) =
1
2

∫∫
(E + G) du dv. (4.7)

Ac is in fact the Dirichlet energy and of course it attains a minimum, given prescribed boundary
values. When the conformal condition on the parametersu andv breaks, then we still have

A(X) =
∫∫

(E G)
1
2 du dv ≤ Ac(X). (4.8)

Equality is attained if and only if condition (4.6) is satisfied. Thus a minimum of the Dirichlet
energy is attained only for conformal mappings. Again the minimization ofAc is equivalent to
solving the Laplace equation

∆ X = 0. (4.9)

4.1.3 Surface parameterization

In surface parameterization, the aim is to establish mappings to a parameter domain given pre-
scribed boundary conditions. One way to take upon this task is to minimize the Dirichlet energy
of the mapping which then yields a conformal parameterization. In the continuous setting the
theory is well grounded, however, in the discrete setting of modern surface parameterization
certain objections should be addressed. The transition from continuous to discrete is not al-
ways a straightforward task. In fact, conformal maps in the strict Riemann sense preserve angle
measures continuously. This is clearly impossible in a discrete setting as the simple case of a
non-planar 1-ring can easily reveal.
We note that many existing parameterization methods rely on the notion of weighted averages
which satisfy certain qualitative properties. As these weighting schemes are generally derived in
completely different ways the comparison of their quality for surface parameterization is in gen-
eral not systematic. This leads to the following question, what properties should any arbitrary
set of weights satisfy in order to generate good parameterizations at least visually? To address
this question we recall the well known property that conformal maps preserve Laplace’s equa-
tion. So instead of looking for practically non-existent conformal maps in the discrete sense, the
idea is to restrict the search to mappings which preserve the Laplace equation locally. This is
in fact the idea behind a whole line of weight-based parameterization methods aspiring to pre-
serve angles. Thus the quality of any weighting scheme should be measured by how accurately
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it approximates the Laplace operator on an arbitrary grid. Finally, we note that given the lack
or consensus on valid definition for conformal maps in the discrete sense many authors define
such maps asdiscrete conformal,discrete harmonic, orshape preservingmaps to mention just a
few. These methods in fact differ only in the way they construct the discrete form of the Laplace
equation and specify the boundary conditions.

4.2 The Laplace equation

The Laplace equation belongs to the class of elliptic partial differential equations. The problems
governed by this kind of PDEs are said to be equilibrium problems. Thus it is not surprising that
numerous problems in engineering, physics and mathematics involve this equation either fully or
partially. In this class of equations the value of the solution at any interior point of the domain is
determined completely by the specified boundary conditions. The boundary conditions generally
depend on the nature of the problem at hand. In practice, two types of boundary conditions can be
singled out, namely the Dirichlet boundary conditions and the Neumann boundary conditions:
Dirichlet conditions are simply specified values for the solution on the boundary; Neumann
conditions are specified values for the normal derivative of the solution on the boundary. By
simple physical similarity the velocity is the gradient of the solution. The normal component
of velocity is the normal derivative of the solution. Thus, Neumann conditions are equivalent to
specifying the normal velocity at the boundary.
For a set of special cases solutions to this equation can be obtained analytically, e.g., using
separation of variables. Unfortunately, this privilege does not extend to cover the wealth of
problems encountered in practical applications. In the majority of cases a solution can only be
sought through numerical approximation.

4.3 Finite difference Laplacian

Finite difference is one of the oldest and simplest approaches for discretization of differential
equations. On a planar regular grid, the Laplacian operator can be discretized by replacing the
second partial derivatives by finite differences. The Taylor series expansion in two variables
reads

u(x + h, y) = u(x, y) + ux(x, y)h + uxx(x, y)
h2

2!
+ . . . (4.10)

u(x− h, y) = u(x, y)− ux(x, y)h + uxx(x, y)
h2

2!
+ . . . (4.11)

This yields

uxx(x, y) =
1
h2

[u(x + h, y) + u(x− h, y)− 2u(x, y))] . (4.12)

Applying the same procedure to the y variables we get

∇2u =
1
h2

[u(x + h, y) + u(x− h, y)− 2u(x, y))] +
1
k2

[u(x, y + k) + u(x, y − k)− 2u(x, y))]
(4.13)

when the grid is uniform i.e.h = k = r

∇2u |i =
1
r2

4∑
i=1

(uj − 4ui), (4.14)
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Figure 4.1:Regular grid.

wherej spansthe four neighbors of central vertexi. This expression is well in accordance with
the intuitive meaning of the Laplace equation, which says thatu is always equal to the average
of its neighbors.

4.4 Chord length Laplacian

Bearing in mind the above mentioned averaging property of the Laplace operator it seems natural
to work with local coordinates of the neighboring vertices with respect to the central vertex. The
multivariate Taylor series expansion in two coordinates is given by

u(x, y)− u0 = x ux|0 + y uy|0 + x y uxy|0 +
1
2!

(x2 uxx|0 + y2 uyy|0) + . . . (4.15)

Settingx = r cos(θ) andy = r sin(θ) and integrating over the circle we get∫ 2π

0
(u(r, θ)−u0) dθ w 0 +0 +0 +

1
2!

r2

[
uxx|0

∫ 2π

0
(cos2(θ) + uyy|0

∫ 2π

0
sin2(θ))dθ

]
,

(4.16)
which gives us

(uxx|0 + uyy|0) w
4
r2

1
2π

∫ 2π

0
(u(r, θ)− u0) dθ (4.17)

w
4
r2

(u(r, θ)− u0), (4.18)

where the upper bar denotes the mean. The above approximation is similar to the finite difference
derived earlier. The only advantage is that it can be applied directly to regular or n-gonal grids,
e.g. hexagonal. In this case the edge lengths and angles are all equal and the Laplacian can be
written as

∇2u |0 w
4
r2

1
n

n∑
j=1

(u(r, θ)− u0). (4.19)

An extension of this expression for rings with regular angles and irregular distance could be
achieved by adding virtualuv

i points at the intersection of the circle of radiusr′ with the edges
[Hui91]. Simple linear interpolation over the line yields

uv
i = u0 +

r′

ri
(ui − u0), (4.20)
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whichcan be directly plugged into 4.19. The resulting approximation is then given as

∇2u |0 w
4
r′

1
n

n∑
j=1

1
rj

(u(r, θ)− u0). (4.21)

For consistency with the finite difference approximationr′ should be taken as the mean of edge
lengths. While this extension reveals to be instructive, it is however still restrictive as we are
looking for an approximation that would apply to unstructured meshes with irregular angles and
distances.

4.5 Mean value weights

For the general case when the angles and distances are irregular, see figure (4.2), we borrow
from the derivation proposed in [Hui91]. An alternative derivation was carried out in [Flo03].
Given is a pointq(r′, α) inside a triangle(i, j, j + 1). By simple projection over the adjacent
edges the vectorpiq can be represented as a linear combination ofpipj andpipj+1

piq = λ pipj + µ pipj+1. (4.22)

The interpolation coefficientsλ andµ are given by the sine law

λ =
r′

rj

sin(θi − α)
sin(θj)

, µ =
r′

rj+1

sin(α)
sin(θj)

. (4.23)

This interpolation applies also to the values of the functionu on the mesh.
Going back to the Taylor expansion established earlier in equation (4.17), and assuming that the
the pointq(r′, α) describes a circle of radiusr′ we get

∆u|0 =
4
r2

1
2π

n∑
j=1

∫ θj

0
(u(r′, α)− u0) dα

=
4
r′2

1
2π

n∑
j=1

∫ θj

0

[
r′

rj

sin(θj − α)
sin(θj)

(uj − ui) +
r′

rj+1

sin(α)
sin(θj)

(uj+1 − ui)
]

dα.

(4.24)

A simple integration and rearrangement of terms yield the mean value coordinates.

∆u|0 =
4
r′

1
2π

∑
j

[
1− cos θj

sin θj
+

1− cos θj+1

sin θj+1

]
(uj+1 − ui)

rj+1
= 0 . (4.25)

The exact value forr′ can be obtained by requiring consistency with the uniform grid case. When
the Laplacian is set equal to zero we get the well known mean value coordinates.

4.6 Generalized finite differences

One of the earliest and successful derivations of the generalized finite differences on unstruc-
tured grids goes back to the late1940’s. MacNeal [Mac49, Mac53] proposed the use of a dual
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Figure4.2: Integration domains for the mean value, median dual and barycenteric dual.

meshfor the derivation of generalized finite differences by using analogy to electrical networks.
The approach proceeds by applying Gauss’s theorem to the weak form of the Laplacian, see
section (4.7)

1
2

∫
|∇u|2ds =

∫
∇u · ndr. (4.26)

The discretization amounts then to approximating the boundary integral above.
Taking the integration domain as the one defined by the bisector dual of the polygon see fig-
ure (4.2), the integration is then done over the boundary segments and for a single segment we
have ∫ qj+1

qj

∇u · ndr = |qjqj+1| ∇u · n (4.27)

= |qjqj+1|
uj+1 − ui

|pj+1pi|
(4.28)

By simple geometric argument it is possible to show that

|qjqj+1|
|pj+1pi|

= cot αj + cot αj+1 (4.29)

using a different integration domain, namely the barycenteric dual, see figure (4.2),
Winslow [Win66] derived a similar expression. While both, MacNeal and Winslow were aware
that the approximation fails when the mesh does not satisfy the Delaunay condition, it was only
Winslow who proposed a mesh generator that takes care of the problem. An extensive analysis
of both schemes which falls in the category of what is called box integration methods can be
found in [Hei87]. Interestingly enough, the expression (4.29) can also be obtained through a
finite element derivation.

4.7 Finite element linear triangle

It is hard to clearly date the origins of the finite element method. According to [Bab94, Bra01,
Ode87], the earliest appearances of the world ”triangular element” is in the work of Schell-
bach [Sch52] who used piecewise linear functions on a triangular mesh for the minimization
of the deformation energy for solving a special case of the plateau problem. In mathematics,
Courant’s paper [Cou43] is generally considered to be at the origin of the method while the term
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”finite element” itself was first coined in engineering by Clough in 1960 and most of the early
successful codes were developed by engineers.
The principle of minimum potential energy requires that the potential distribution on a surface
must be such as to minimize the stored filed energy per unit surface. The energy can be expressed
as

E(u) =
1
2

∫
|∇u|2ds. (4.30)

Theminimum energy principle is mathematically equivalent to Laplace’s equation in the sense
that a potential energy which satisfies the Laplace equation will also minimize the energy, and
vice-versa. Therefore an alternative approach to direct discretization of the Laplace operator as
performed above could be replaced by a suitable approximation of the stored energyE(u) by as-
suming the potentialu to be given by a simple combination of suitably chosen simple functions
with as yet underdetermined coefficients. The minimization of the energy then determines the
coefficients, and thereby implicitly determines an approximation to the potential energy. Virtu-
ally all finite element methods follow this approach or adaptations of it.
Let us suppose thatu(x, y) minimizes the true solution to the Dirichlet problem for the Laplace
equation and consider some sufficiently differentiable functionh(x, y) taking zero values at
boundary points where the value ofu is prescribed. This way for a scalarε the prescribed values
of (u+ εh) are the same as the prescribed values ofu. The energy associated withE(u+ εh) is

E(u + εh) = E(u) + ε

∫
∇u · ∇hds +

1
2

∫
|∇h|2ds. (4.31)

Green’s theorem reveals that∫
∇u · ∇h ds =

∮
c

h ∇u · n ds−
∫

h ∇2u ds. (4.32)

The last term on the right hand side vanishes becauseu satisfies the Laplace equation. The first
term also vanishes since at each boundary point, eitherh or the normal derivative ofu vanish.
We have then

E(u + εh) = E(u) + ε2
∫

E(h). (4.33)

This equality reveals two important facts.E(u) is the minimum energy as the last term in the
right hand side is always positive. This minimum is reached forε = 0 for any admissible function
h. Admissibility here is understood as the fulfilment of two properties. First,h must vanish at
the boundary points whereu is prescribed and second,h must be at least once differentiable.
Inspection of the last equation reveals that the energy error depends quadratically onε. In other
words, for a small errorepsilon in the estimation ofu, the error in the estimation of the en-
ergy is even smaller. This point is of utter importance to most applications where the energy
computation is much more important than the potential.
The essence of the finite element discretization lies first in approximating the potentialu within
each triangle in a standard fashion and then interrelating the potential distributions in the various
elements so as to constrain the potential to be continuous across the triangle boundaries.
Within a typical triangular element, it will be assumed that the potential can be adequately ap-
proximated by the expression

u = a + bx + cy . (4.34)

The true solution is thus replaced by a piecewise linear function. From this setup it becomes
clear that the potential along any triangle edge is the linear interpolate between its two vertex
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values, so that if two triangles are adjacent, the potential will be continuous along the shared
edge. The approximate solution is piecewise linear but continuous everywhere.
The coefficientsa, b andc can be readily obtained by solving the linear system u1

u2

u3

 =

 1 x1 y1

1 x2 y2

1 x3 y3


 a

b

c

 . (4.35)

Substitution of the solution in equation (4.34) yields

u =
(

1 x y
) a

b

c

 =
(

1 x y
) 1 x1 y1

1 x2 y2

1 x3 y3


−1 u1

u2

u3

 . (4.36)

Expanding and rearranging the above expression we can rewrite

u =
3∑
1

λi ui, (4.37)

where

λi =
1

2A
[(xjyk − xkyj + (yj − yk)x + (xk − xj)y)] . (4.38)

In this equation,A represents the area of the triangle andλ is clearly linear in position. An
interesting property of these bilinear functions is that they vanish at all vertices but one where
they have unit value.
The potential gradient within an element triangle can be found from equation (4.34)

∇u =
3∑

i=1

ui ∇λi. (4.39)

Now we have all the ingredients necessary to determine the energy contribution associated with
a single triangular element. The integration area here is the triangle itself.

E(u) =
1
2

∫
|∇u|2 ds =

1
2
U t S U (4.40)

where u is given byU = [u1 u2 u3 ]t, and the3x3 matrix S is given in terms of the triangle
anglesθ1, θ2, andθ3 as

S =
1
2

 cot θ3 + cot θ2 − cot θ3 − cot θ2

− cot θ3 cot θ3 + cot θ1 − cot θ1

− cot θ2 − cot θ1 cot θ2 + cot θ1

 . (4.41)

4.8 Linearity-preserving weights

The linearity-preserving weighting scheme was first proposed by Holmes and Connell
in [HC89]. This approach takes advantage of the local averaging property of the Laplacian
to generate the weighting scheme. The idea consists of perturbing the weights from unit weights



4.9 Least squares weights 38

andminimize the sum of squares of the perturbation subject to the null Laplacian condition for
linear data. Interestingly enough the constrained system can be solved explicitly. Assuming the
Laplacian can be written as

∇2u =
n∑

i=1

wi(ui − u0) (4.42)

and the perturbed weights as
wi = 1 + εi. (4.43)

Which reflects that weights should be as close to unity as possible similarly to the finite differ-
ence case where the weights are exactly one as shown in section (4.3).
The aim is then to minimize the cost function

n∑
i

ε2i (4.44)

under the linearity constraints conditions

n∑
i=1

wi(xi − x0) = 0, (4.45)

n∑
i=1

wi(yi − y0) = 0. (4.46)

Using Lagrange multipliers, the weights can be expressed as

wi = 1 +
Ixy Ry − Iyy Rx

Ixx Iyy − I2
xy

(xi − x0) +
Ixy Rx − Ixx Ry

Ixx Iyy − I2
xy

(yi − y0), (4.47)

where the moments are given by

Ixx =
∑

i

(xi − x0)2 (4.48)

Iyy =
∑

i

(yi − y0)2 (4.49)

Ixy =
∑

i

(xi − x0) (yi − y0) (4.50)

Rx =
∑

i

(xi − x0) (4.51)

Ry =
∑

i

(yi − y0). (4.52)

4.9 Least squares weights

In general, the finite difference Laplacian of a functionu on an unstructured grid at a certain node
P0 of valencem can be expressed as the linear combination of a weighted sum of the values of
the function over the 1-ring ofP , i.e.

∇2u =
m∑

i=1

wi(ui − u0). (4.53)
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We assume here that the vertexP is the center of coordinates(0, 0) for simplicity of the notation.
For numerical stability the weights are required to be strictly positive although convergence can
be achieved without guarantees for negative weights, as positivity is only a sufficient but not
necessary condition.
Using the two-dimensional Taylor expansion of our function at each vertex in the 1-ring around
P we have

ui − u0 = xi∂xu + yi∂yu + xiyi∂xyu +
1
2
x2

i ∂
2
xu +

1
2
y2

i ∂
2
yu + ... (4.54)

A straightforward substitution of (4.54) in (4.53) yields the following expression

∇2u =
m∑

i=1

wi [xi∂xu + yi∂yu] +
m∑

i=1

wi

[
xiyi∂xyu +

1
2
x2

i ∂
2
xu +

1
2
y2

i ∂
2
yu

]
+ ... (4.55)

Fromthe above equation, it comes clear that to have an accurate approximation of the Laplacian
operator, the following set conditions should hold

n∑
i=1

wixi = 0, (4.56)

n∑
i=1

wiyi = 0, (4.57)

n∑
i=1

wix
2
i − 2 = 0, (4.58)

n∑
i=1

wiy
2
i − 2 = 0, (4.59)

n∑
i=1

wixiyi = 0. (4.60)

It is easy to check that these conditions yield the well known uniform Laplacian on regular
grids and also the edge weighted Laplacian on grids with regular angles and irregular distances.
It should be also noted that for valences larger than five the least squares solution is unique
although not necessarily positive. When valence is less then five a least norm solution is used.
While this approximation is mathematically sound, it may yields negative weights in certain
instances. In order to guarantee the positivity of the weights it seems natural to treat the problem
as an optimization problem. If we seek a zero degree accuracy Laplacian it is sufficient to satisfy
conditions (4.56) and (4.57), however, it is also desirable to have a consistency of these solutions
over the whole mesh. This can be achieved by considering the weights as extrema of a certain
penalty functionf(w) such that

wi > 0.
m∑

i=1

wixi = 0.

m∑
i=1

wiyi = 0. (4.61)
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Onepossible choice forf(w) would be the sum of logarithms of weights, in this way the Lapla-
cian operator would be similar to the one established by Shontz et al. [SV03]. The results
achieved using this 0-accuracy Laplacian in surface parameterization are surprisingly similar to
the shape preserving weights [Flo97] and to the linearity preserving weights by Holmes and
Connell [HC89]
In order to achieve a 1-degree accuracy approximation of the Laplacian the condi-
tions (4.58), (4.59), and (4.60) should be incorporated. A possible approach for forcing the
positivity of the weights consists of solving the following optimization problem

minimize (
∑m

i=1 wix
2
i − 2)2 + (

∑m
i=1 wiy

2
i − 2)2 + (

∑m
i=1 wixiyi)2.

such that wi > 0.∑m
i=1 wixi = 0.∑m
i=1 wiyi = 0. (4.62)

The local optimization problem can be solved using the Lagrange multipliers approach, see
[Ber82].
In order to generates higher accuracies it is clear that similar equations can be derived by us-
ing higher order Taylor expansion, however, the satisfaction of all constraints becomes highly
difficult and costly.

4.10 A simple benchmark

In this very restrictive overview of discretization schemes we are far from covering the wealth of
the literature on this broad topic, we briefly mention some of the additional weighting schemes
that have been used in the mesh parameterization literature. The shape preserving weights were
proposed by Floater in [Flo97], The rational basis function were introduced by Wachspress in
[Wac71], and the natural neighbor [Sib81] by Sibson.
In order to evaluate the performance of the different approximation, a simple benchmark con-
sisting of a half sphere, see figure (4.3), is used and simple visual inspection reveals how great
circle arcs (geodesics) on the sphere are transformed onto the plane. A comparison of some of
the mentioned Laplacian approximations can also be found in [Hui91].
From the benchmark it seems that the linear triangle and the least squares based weights per-
form better as their approximation of the Laplacian operator is more accurate. Furthermore the
simplicity of and ease of implementation of the linear triangle makes very attractive for surface
parameterization. In addition the mean value weights merit attention in that, they remain always
positive and are comparable in their simplicity to the linear triangle.
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(a) Hemisphere (b) Uniform (c) Shape preserving

(d) Accuracy 0. (e) Holmes-Connel (f) mean value

(g) Intrinsic (h) Huiskamp (i) accuracy-1.

Figure 4.3:Half a sphere parameterized using different methods.
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Quasi-Harmonic Maps

The mappings addressed thus far do not preserve measures other than angles. As a typical
observation, the area distortion tends to grow as one moves away from the boundary – the more
complicated the geometry of the mesh, the more significant the distortion. Figure (5.3) illustrates
this situation. Given the scarcity of isometric maps which preserve angles and areas at the same
time, a good direction of investigation is to establish smooth blends of both kinds – authalic (area
preserving) and conformal parameterizations.
Our approach to the problem stems from the following question: Given a mapg from the plane
to a surface mesh, can we find a mappingf from the plane onto itself that has the same properties
as the initial map (see figure (5.2)). Finding such a map would yield an optimal parameterization
that mimics the original mapping, but this time from the plane into itself. In the following we
define the required properties of such maps, and we propose a method for establishing them. In
brief, the basic approach can be overviewed as follows:

1. Provide an initial mapg, e.g., a discrete conformal parameterization. (Any non-degenerate
setting will work, e.g., a reasonable projection.)

2. For every triangle estimate the Jacobian matrixC of the mapf from the first fundamental
form of g. (Section (5.2))

3. Building upon our discretization of the quasi-harmonic equation, compute weightswij

and set up a linear system. (Sections (5.3) and 5.4)

4. Solve the arising linear system. The same boundary condition as in step (1) are used.

5. If required, iterate restarting from step 2.
(Note that our method stabilizes after few iterations and would not degenerate.)

5.1 Motivation

The inspiring idea behind the approach outlined in this chapter stems from simple physical con-
siderations. Let us consider the steady state heat equation on a quadrangular plate. In a first stage
we treat the surface as a homogenous domain in the sense that the heat conductance is constant
over the whole surface. The heat distribution can be obtained by solving a laplace equation with
prescribed conditions. In this example, we apply Dirichlet conditions to the top and bottom sides
and Neumann boundary conditions to the right and left sides as illustrated in figure (5.1-left).
On the other hand if we impose specific conductance values for the circular and rectangular sub-
domains inside the plate, the standard laplace equations is not suitable anymore for modeling the



5.2 Quasi-harmonic maps 43

Figure 5.1:Heat distribution on a homogenous (left) and inhomogeneous (right) plate, modeled
using the Laplacian operator and the quasi-harmonic operator respectively.

heat distribution and we have to rely on the so called quasi-harmonic equation which incorporates
the conductance terms and is therefore sensitive to the inhomogeneous nature of the plate. The
heat distribution in this setup is depicted in figure (5.1-right).
This example illustrates how simple scalar conductance values can alter the heat distribution
on a simple domain. We capitalize on this observation for controlling the distortion in surface
parameterization not only using scalar distortion values but we present the more general setup
where the distortion is quantified in tensorial form.

5.2 Quasi-harmonic maps

In order to motivate the ensuing discussion and fix the ideas let us consider the following prob-
lem: Given a single triangle of a surface mesh and a mapg that carries the triangle into a
corresponding triangle in the planar domain. Solely from the properties of the mapg, we can
establish a second mapf that reproduces exactly the initial triangle on the plane from the second
triangle. Formally, the problem can be coined as follows: Recalling basic theory of differential
geometry (see e.g. [Kre91]), the deformation of the initial mapping is given by

dX = JdU , (5.1)

where the JacobianJ is a3x2 tensor. Taking the norm we get

‖dX‖2 = dU>J>JdU . (5.2)

In this expression, we already recognize the first fundamental formI = J>J . In general, a
mapping is locally characterized by the first fundamental form, which tells how distances (and
hence angles and area) measured in the parametric domain are transformed to distances on the
surface. Hence, all information on the distortion is captured by this tensor. An ideal mapping
in the plane, which exactly mimics the behavior of the initial mapping, would induce the same
distortion of lengths as this initial mapping, i.e.

‖dx‖2 = dU>IdU , (5.3)
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Figure5.2: g maps the planar domain to the surface, andf is a mapping of the plane onto itself.

wherex denotes a displacement in the plane. Now, we would like to derive an expression similar
to (5.1) – this time in the plane – i.e.

dx = KdU . (5.4)

Here, the JacobianK of the new mapping is a2× 2 matrix which should satisfy

I = K>K . (5.5)

Since the first fundamental form is symmetric positive definite, the matrixK can be found as
the square root ofI. For a concise formulation of the square root of a2 × 2 matrix we refer to
[Lev80]. This derivation of the JacobianK is original compared to existing parameterization
methods where emphasis is solely on the eigenvalues and the related norms.
So far we illustrated the basic idea and considered only a single triangle. In the case of a surface
mesh, the question arises, whether we can compute the vertex positions of the new mesh from the
Jacobian matrices of the transformations defined over each triangle. It turns out that the problem
is generally overdetermined and may not have a solution at all. This does not come as a surprise
due to the fact that isometric mappings exists only for the special case of developable surfaces.
Excluding a direct approach to the problem, we propose an alternative to account for the Jacobian
matrix. Recalling that harmonic maps minimize the Dirichlet energy∫

Ω
‖∇g‖2 , (5.6)

our approach attempts to recover the geometry of the original mesh by minimizing the following
energy functional ∫

Ω
(C∇f) · (∇f) , (5.7)

whereC = K−1, and can be computed explicitly asK is only 2x2. The partial differential
equation associated with this energy is the following quasi-harmonic equation

div(Cgradf) = 0 . (5.8)
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Thisequation and its many variants are typically used for modeling many steady state problems
in mechanics and electromagnetism (see e.g. [Zie71]). Say, the distribution of vertices is given
by f , the flux of the distributionf is given byC gradf , and due to conservation law this type
of problem conforms to solving the two-dimensional elliptic steady state equation (7.1). Con-
sequently this guarantees that our solution will show the same qualitative behavior as general
elliptic problems. In particular the solution will not show jumps but will vary smoothly.
Under mild conditions the solution to the problem exists and is unique, see [Glo84], especially
their Appendix I for a detailed analysis of the convergence properties. In our case the symmetric
nature of the tensorC and given that it does not stem from a degenerate initial parameterization(
triangle collapsing to one point) guarantees that a solution to the quasi-harmonic equation exists
and is unique.
Moreover, we note that our setup is a special case of the Leray-Lions equation [IS01]. A geo-
metric interpretation of such maps can be found in [AN02].

5.3 Discretization

In the following we solve the variational problem associated with the quasi-harmonic equa-
tion (7.1). We refer to vertices and triangles as explained in figure (5.4.a).
In dealing with equations of this type, it is much more advantageous to tackle the integral form
rather then the partial differential equation itself. This is not fortuitous as the Gauss divergence
theorem yields a much easier expression to handle∫

A
div(Cgradf)dA =

∮
∂A

(Cgradf) · n dl = 0 . (5.9)

Hence, the integral form of the quasi-harmonic equation obtained by integrating over some non-
overlapping regions reduces to a simple integration of the gradient over their boundaries. We
define the non-overlapping areas for the integration as the dual mesh defined by the centroids of

Figure5.3: Texturing a cow head model (6K∆) using a discrete conformal map ([LPRM02,
DMA02]; left) and a quasi-harmonic map (right).
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thetriangles and the midpoints of the edges over every 1-ring neighborhood (see figure (5.4.b)).
We remark that this dual has exactly the same area as the mesh.

(a) (b)

Figure5.4: (a) Indexing of direct neighborsj and associated triangles in the 1-ring of the center
vertexi, angles are indexed per trianglej. As all derivations are local to the 1-ring, we avoid
double indices, so implicitlyTj = Ti,j,j+1. (b) The integration area for the discretization of (5.9)
is given by the dual mesh. For the mean value coordinates the integration area is a circle.

Figure5.5: The two triangles adjacent to edge(i, j). The outward vectorsx⊥ correspond to the
respective edges rotated bypi

2 .

Thegradient on a triangle{i, j, j + 1} associated with the edge{i, j + 1} is given by

gradT (fj,j+1) =
x⊥i,j+1

2AT
,

wherex⊥i,j denotesthe edge vector rotated byπ2 (seefigure (5.5)).
Equation (5.9) involves only the normal to the boundary of the ring, which is just the normalized
boundary edge rotated byπ2 . So given an edge and its two adjacent trianglesT1 = {i, j − 1, j}
andT2 = {i, j, j + 1}, the weight associated the edge can be written in the following form

wij =
x⊥j−1,iCj−1 · x⊥j,j−1

4Aj−1
+

x⊥j+1,jCj · x⊥i,j+1

4Aj
. (5.10)

In the discrete setting, the tensor fieldC is defined piecewise per triangle. When the piecesCj−1

andCj are both equal to the identity, this expression simplifies to the well-known cotangent
weights, which are widely used for the computation of the discrete Laplacian operator. We note
that in this special case the initial mapping is isometric, and hence the solution will be identical
to the initial map.
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Figure5.6: Self-correction and convergence for a regular half-sphere model. An ill-shaped ini-
tial map (top right) is chosen. The series on the bottom show the quasi-harmonic maps obtained
from the 1st to 5th iteration.

5.4 Mean value coordinates extension

A sufficient condition for guaranteeing the validity of the approach is the positivity of the weights
in equation (5.10), formally expressed as the discrete maximum principle. For solving the
Laplace equation based on the cotangent weights, the Delaunay criterion should hold for all
internal vertices while all angles facing boundary edges should be acute. Given appropriate
boundary conditions this condition is sufficient to guarantee the construction of a valid map-
ping. However, it is not necessary in general and in many instances the arising system may have
a valid solution even in the presence of negative weights. For the quasi-harmonic setting de-
scribed above, the Delaunay condition is no longer sufficient. In fact, the validity is guaranteed
only if all angles are acute.
One way to satisfy this condition (or at least the Delaunay criterion) is, for instance, to apply
Rivara’s edge bisection algorithm [Riv84], which is guaranteed to keep angles away from0 and
π.
Another way is to use alternative weights. A promising class of weights are themean value
coordinates[Flo03, Hui91], as they guarantee positivity regardless of the interior angles of the
triangle mesh.
In the following, we will show how to derive a new class of discrete quasi-harmonic maps that
are based on the mean value coordinates. Here, we note that for a general tensorC, rather
complicated trigonometric expressions have to be integrated over circular regions resulting in a
comparatively complicated formula for the weights. To fix the ideas with minimal formalism,
we restrict ourselves at a first stage to the case whereC is a scaled unit tensor, formallyC = κI.
(In fact, this is the special case of a scalar version of the approach, for example,κ can be taken
as the per triangle ratio of the initial map and the original mesh.) Note that all our numerical
examples are computed with general tensors, for which we state at then of this section for the
general formula.
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We proceed similarly to [Hui91, Flo03], however, we discretize the quasi-harmonic equation
again starting from the divergence theorem. For this purpose, we first compute the gradient:
Given a triangleTj = (i, j, j + 1) with vertex positionsui, uj , uj+1 and a functionf defined
over this triangle, the following relations hold for a pointu = (u, v) in the triangle. Letγj

denote the angle atui. In local polar coordinates

u− ui = r (cos γ, sin γ)> , (5.11)

and forf
f(u)− f(ui) = gradf · (u− ui) ,

where the gradient is given by
gradf = HT (u− ui) .

Here, the value ofHT can be found by applying a simple linear interpolation over the triangle
T , we get

HT =
sin(γj − γ)
r rj sin γj

(f(uj)− f(ui)) +

sin(γ)
r rj+1 sin γj

(f(uj+1)− f(ui)) .

Whererj andrj+1 denote the length ofui−uj andui−uj+1 respectively. Now substituting this
expression in (5.9), and keeping in mind that the gradient and the outward normal to the circle
are collinear, we obtain the following expression∫ 2π

0
κ gradf · ndγ =

∑
j

∫ γj

0
κjHTj r dγ , (5.12)

and expanding the right hand side we obtain∑
κj

∫ γj

0

sin(γj − γ)
rj sin γj

(f(uj)− f(ui)) +

sin(γ)
rj sin γj

(f(uj+1)− f(ui)) .

(Noticethat ther term was simplified.) After integration and reassembly of the term, we get the
following ∑

j

[
1− cos γj

sin γj
κj +

1− cos γj+1

sin γj+1
κj+1

]
(f(uj)− f(u))

rj
= 0 . (5.13)

If κ is constant over the mesh, we can recognize the mean value coordinates in the above expres-
sion. We note that for this derivation, the dual mesh can be used as circles around the vertices
(see equation (5.11)), and since the arising equations are independent of the radii of the circles,
we conjecture a possible connection to circle packing. Consequently, the integration area is
smaller than the total area of the mesh. This explains the loss of conformality accumulated by
this discretization method, which is here traded for robustness.
In the above, we simplified the discretization of the quasi-harmonic equation (7.1) effectively to

the scalar case. Now given a general (symmetric) tensorC =

[
a c

c b

]
, the integral (5.12) can be
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written in the following form again using local polar coordinates∫ 2π

0
C gradf · ndγ =

∑
j

∫ γj

0
rHTjC

(
cos(γ)
sin(γ)

)
·

(
cos(γ)
sin(γ)

)
dγ ,

and we obtain the weights associated with each edgej as

wj =
1

3rj

[
(aj + 2bj + 2cj sin γj) tan γj

2

+ (aj − bj) sin γj

]
+

1
3rj+1

[
(aj+1 + 2bj+1) tan γj

2

+ 2cj+1 sin γ2
j+1

+ (aj+1 − bj+1) sin γj+1 cos γj+1

]
,

where again indices denote edges and associated triangles.
It is easy to see that the above expression simplifies to (5.13) ifa = b andc = 0, and conse-
quently if in this casea is constant over the mesh, we obtain the standard mean value coordinates.

5.5 Discussion

This approach accounts for directional as well as areal distortion. This is due to the newly
introduced planar Jacobian that mimics the reference Jacobian. In fact, this means that we can
start from any initial parameterization, possibly suffering from high distortion, as the use of
the geometric tensor defined over the mesh implicitly yields a self-correcting scheme. This is
illustrated by a small example in figure (5.6). For real models, we can even start from a projection
(eventually forcing a convex boundary) onto a least-squares plane – ignoring foldovers. All the
examples were computed in this manner, showing the robustness to high-distortion for complex
data.
Successive solutions of weighted linear systems have been used for surface parameterization in
[YBS04]. According to the authors, their method degenerates after few iterations. We observe
that our method does not degenerate while iterating, rather it stabilizes after few iterations (3-5
in the examples). We believe that this difference arises from the fact that although the spring
analogy gives a physical interpretation of differential equations, it is not always intuitive to
derive accurate discretizations, like for the discrete conformal parameterization, solely based on
this analogy.
It is worthwhile to note that taking powers of the tensorC extends the range of possible map-
pings.

5.6 Results

We applied our parameterization method to a variety of reasonably complex, non-trivial geo-
metric models, for the planar setting. The figures (5.7), (5.8), (5.9), and (5.12) show examples,
where the map is visualized either by mapping a regular checker texture, or the planar image is
rendered with the original shading. The solution of the linear system within one iteration is in
the order of seconds as it is typical for solving this class of problems on current hardware. Three
to five iterations have been used as described above.
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Figure 5.7:Texturing a camel head model (11K∆) using a discrete conformal map ([LPRM02,
DMA02]; left) and a quasi-harmonic map (right).

Figure 5.8: The tensorial discrete quasi-harmonic map of thevenusmodel is visualized by
applying a checker board texture.

Figure (5.11) compares the distortion of angles and triangle areas of discrete conformal
maps([LPRM02, DMA02]), stretch minimization using [YBS04], and quasi-harmonic map for
themannequin headmodel depicted in (5.10). In the graphs, the distortion on the horizontal axis
is plotted over the sequence of mesh elements, showing a peak for every triangle. The optimal
ratio is 1. The figure shows that the quasi-harmonic map preserves conformality to a great extent
while the area distortion is effectively reduced.
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Figure5.9: Quasi-harmonic map of thetweetymodel (97K∆) with a hole (red boundary) cut in
its bottom.

Figure5.10: The figure compares results obtained for themannequin headusing [YBS04] (left)
with the tensorial quasi-harmonic map (right).



5.6 Results 52

Figure5.11: Distortion of angles and triangle areas for themannequin headmodel. Red: dis-
crete conformal map ([LPRM02, DMA02]). Green: stretch minimization using [YBS04], blue:
quasi-harmonic map.
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Figure 5.12: Maps of a sculpture (89K∆). Left: Mean value coordinates. Right: Quasi-
harmonic map. The mesh was obtained from a range scan of the wooden sculptureFreezing
Old Woman(Frierende Alte, 1937) by the German expressionist sculptor Ernst Barlach (1870-
1938).
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Compounded of Many Simples: A Differential
Approach to Free Boundary Parameterization

In the previous chapter the notion of quasi-harmonic maps was introduced in order to address one
of the major shortcomings of conformal mapping methods. The characterization of deformation
as a tensor allowed us to recover much of the initial area distortion. However, the initial shape of
the boundary still has considerable impact on the quality of the parameterization. In this chapter
we take upon the task of allowing the parametric representation to evolve freely on the planar
domain withoutanyfixed boundary vertices. So far conformal mapping based methods need to
pin at least two boundary vertices, where the choice of vertices is not obvious in practice and may
affect the result to a large extent especially for surfaces with geometrically complex boundaries.
Based on geometric distortion tensors and general elliptic partial differential equations, we lay
out the theoretical foundation of our approach and derive the ensuing linear optimization prob-
lems. The results reflect a fair balance between high-quality parameterization and computational
efficiency.

6.1 Motivation

Our approach has been motivated by the following two questions:

– How can we quantify the geometric distortion induced by a convex boundary discrete
conformal map?

– How can we use this information for establishing a boundary-free parameterization?

We show that a fixed boundary conformal map has all the information necessary for allowing a
flat mesh to evolve freely in the plane towards a configuration exhibiting less boundary distortion.
Our method proceeds in a series of simple steps, each involving the solving of a linear problem.
We can briefly summarize these steps as follows:

1. For a surfaceS compute an initial parameterizationP0, preferably a conformal map with
fixed boundary (figure (6.2), center left).

2. Establish a new parameterizationP1 such thatP0 → P1 is a conformal map, where the
image boundary tends to roughly mimic the original boundary ofS (figure (6.2), center
right).

3. To further improve the shape of the boundary such that geometric details of the original
are captured and to reduce distortion, construct a new mapP2, based on a variant of quasi-
harmonic maps (figure (6.2), right).
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4. Inan optional step,P2 can be further improved by fixing its current boundary and applying
discrete tensorial quasi-harmonic maps.

The core of this framework consists of steps 2 and 3, which allow the boundary to evolve freely
without any constraints. This is achieved by combining distortion tensors with Poisson equations
in a manner that treats all – inner and boundary – vertices the same way.

(a)

Figure 6.1: Poisson setting on a 1-ring: Starting from the 3D surface, a prescribed convex
boundary discrete conformal map is established. The tensor fieldC is computed from this map
and then applied to the linear pieces of the flat configuration. The triangles of the discontinuous
setting show less distortion and are used to setup the right hand side of the Poisson equation.
The solution is a (continuous) boundary-free conformal map.

Figure6.2: Boundary-free parameterization of a human model (66K4). From left: surface
mesh with cut highlighted, initial discrete conformal map, boundary-free conformal map, and
boundary-free quasi-harmonic map.
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6.2 Conformal maps

In this section we concisely characterize the different types of maps used as basic tools in our ap-
proach. We start with conformal maps and continue with quasi-harmonic maps in section (6.3).

6.2.1 Prescribed-boundary conformal maps

For the mapping function from the surface to the plane we have

∇2u = div(Id gradu) = 0 . (6.1)

Given appropriate Dirichlet conditions on the boundary, the resulting parameterization is guaran-
teed to be a one-to-one mapping. The parameterization depends closely on the choice of weights
used for the discrete operator in equation (6.1) as shown in chapter (5). In practice, the cotangent
weights or the mean value coordinates are used with a fixed convex boundary, e.g., the boundary
is fixed to a circle.

6.2.2 Boundary-free conformal maps

Solving the Laplace equation with Dirichlet boundary conditions is an extremely efficient way to
establish a conformal map from the plane to the surface. The fixed boundary however does not
necessarily respect the geometry of the original mesh as illustrated, e.g., in figure (6.2), center
left. In order to improve the boundary shape, [DMA02, LPRM02] fix a small(≥ 2) number
of boundary points and impose certain local equations on the rest of the boundary. [LPRM02]
derive an alternative formulation of these equations from the Cauchy-Riemann equations. Al-
though most boundary vertices are “free”, the solution is sensitive to the choice of the fixed
vertices. For geometrically simple boundaries, satisfactory results are obtained. For more com-
plex boundary shapes, the results may suffer from considerable distortion or the solution might
even be invalid as the flat mesh does not unfold correctly (see e.g. [SLMB05], who partially
motivate their non-linear ABF++ method by this fact). Virtual boundary methods [LKL02] al-
low for additional degrees of freedom and provide an interesting alternative but do not seem to
always provide a satisfactory solution due to the limited effect of padding with virtual vertices
(see also [KGG05]).
Our approach is motivated by the Poisson equation. So instead of letting boundary conditions
dictate the behavior of the whole solution, we aim at specifying the same type of conditions over
the whole mesh. Hence, all vertices are treated in a similar manner, and boundary distortion is
reduced simultaneously with the overall distortion.
For modeling this problem, we have to correctly specify the right hand sideb of the Poisson
equation (8.2). More formally, we are looking for a suitable vector fieldF , which can be used
as a guidance field for the partial differential equation

∇2u = divF . (6.2)

We note that unlike the Laplace equation, here, the right hand side is specified forall vertices
including boundary points as well. We refer to [PGB03, YZX+04] for a discussion of this type
of equation in the context of computer graphics.
The solution of equation (6.2) is very sensitive to the guidance fieldF and thus a meticulous
setup of this field is de rigueur. Since our aim is to reduce the distortion of the planar con-
figuration, it seems natural to characterize the right hand side in terms of an initial prescribed
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boundaryconformal map. In the previous chapter, we introduced a piecewise constant tensor
field that locally mimics the Jacobian of the map from a given planar configuration to the surface
in 3D. This tensor comes in handy as it is a key ingredient for our Poisson equation setup.
Given an initial conformal map, we define such2 × 2 tensorsCj per trianglej ∈ K. We refer
to chapter (5) for details on the derivation of the tensor fieldC. In contrast to the latter weapply
the tensor field heredirectly to the planar configuration.
So for every triangle we getT ′j = Cj Tj , i.e., this intermediate step can be imagined as split-
ting mesh triangles apart resulting in a geometrically fragmented mesh whose vertices are three
times the number of triangles of the original. Figure (6.1) illustrates the local situation for a
1-ring. Considering the new coordinates as scalar fields over the initial parameterization, we
obtain the right hand sideb := divF of (6.2) as follows: We compute the gradient per triangle
on the discontinuous mesh using the discretization (5.3). The divergence of this gradient field is
summed at vertices shared between triangles according to the original mesh connectivity, yield-
ing the right hand side vectorb. In other words, the Laplacian of the fragmented mesh is first
computed and then applied to the coordinates of the fragmented mesh. The resulting coordinates
are summed according to the original connectivity, which provides the per-vertex components of
b.

6.3 Quasi-harmonic maps

Quasi-harmonic maps are the second tool used in our approach. This type of maps has been
introduced for prescribed boundary parameterization in the previous chapter, and here we take
advantage of their properties for our boundary-free setting.

6.3.1 Prescribed-boundary quasi-harmonic maps

Discrete tensorial quasi-harmonic maps can account for distortion away from the boundary. The
approach attempts to reduce the distortion by minimizing the quasi-harmonic energy functional∫

Ω
(C∇f) · (∇f) ,

where the tensor fieldC is defined as in section (6.2.2). The partial differential equation associ-
ated with this energy is the quasi-harmonic equation

div(C gradf) = 0 . (6.3)

Quasi-harmonic maps establish planar maps which mimic the original three dimensional shape
not only in angles but also in area asC captures the properties of the Jacobian of the initial map.

6.3.2 Boundary-free quasi-harmonic maps

So far, quasi-harmonic maps have only been applied to fixed boundaries. Building upon the
Poisson setting of section (6.2.2), we can easily extend the method to completely boundary-free
parameterization.
Starting from boundary-free conformal maps, we aim to further improve it. This can be achieved
by applying a variant of the quasi-harmonic maps but in the more general Poisson setting. Here,
we solve the following differential equation

div(C gradu) = divF . (6.4)
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This formula differs from (7.1) only in the right hand side, which is computed similarly to the
Poisson setting (6.2). Hence, we have now all tools necessary to set up the linear systems for the
boundary-free maps.

6.4 Overall method

In the previous sections, we described all ingredients required for our approach. Now putting it
all together, the overall method reads simply as sketched in section (6.1). We proceed in several
steps, each step corresponds to one of the previously described differential settings.
In the first step, an initialprescribed-boundary conformal map(figure (6.2, center left)) is con-
structed in the standard way by solving the Laplace equation with fixed convex boundary, e.g.,
using a circle.
To let the boundary evolve freely, aboundary-free conformal map(figure (6.2, center right)) is
established as a second step. Here, the guidance tensor field for the setup of the Poisson equation
(6.2) is obtained from the Jacobian of the initial mapping.
The resulting planar configuration is generally non-convex and tends to roughly mimic the shape
of the 3D boundary, however, it fails to capture completely the full detail of the original surface
boundary. In order to further improve it, aboundary-free quasi-harmonic mapis constructed
from equation (6.4), see figure (6.2, right), this time the tensor field is computed based on the
previous boundary-free conformal parameterization. The boundary of the consequent parame-
terization resembles its 3D counterpart much more closely.
Optionally, the result can be further improved by fixing the boundary and solving equation (7.1)
for aprescribed-boundary quasi-harmonic map, which is exactly the formulation of discrete ten-
sorial quasi-harmonic maps. We note that in this last step the role of the tensor field is restricted
compared to the previous steps.
Finally, we note that there is no loop or iteration in this process, each step is carried out once,
solving only one single sparse symmetric linear system. We refer to [BBK05] for a recent
overview on efficient solving strategies for these type of linear problems. In particular, the fol-
lowing properties can be exploited: The two initial (discrete conformal) steps apply the same
linear operator∇2, i.e., one can easily reuse for instance a Cholesky factorization of the sys-
tem matrix and hence obtain the second map simply by back-substitution. Note that this is not
possible for the subsequent (quasi-harmonic) steps, as different tensor fields are applied. How-
ever, one still can take advantage of a symbolic factorization, which depends only on the mesh
connectivity, over all the four steps.

6.5 Results and discussion

We applied our approach to a variety of surface meshes with non-trivial boundaries. In fact,
most models were cut explicitly to make any parameterization method feasible. Results are
shown in Figures (6.3), (6.5), (6.6), (6.8), (6.10), some with the cuts highlighted for the 3D
surfaces. The maps are visualized as flat meshes rendered with the original shading and/or
as texture maps. In all our tests, the resulting maps are valid, i.e., bijective with no triangle
foldovers. Some of the models contain holes, they were processed as is with no special treatment
necessary. The size of the models is indicated for every example, and it is generally in the
order of tens of thousands of triangles. Note that the mapping is inherently independent of the
particular tessellation and resolution. The runtime for solving the linear systems is in the order of
a few seconds for all examples, we refer to the previous section for remarks on efficient solution
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strategies. Furthermore, for these kind of problems multi-grid methods are well-understood and
readily available as standard tools to process even very large input. The current results neither
require nor apply a supporting hierarchy. In addition, we remark that the implementation of
our method is straightforward. Any existing implementation of linear parameterization can be
extended with only little effort to confirm our results.
As mentioned before, linear methods with Neumann-type boundary conditions do not always
lead to valid solutions [SLMB05], in particular this applies to many of the surfaces shown
here. However, we note that with careful choice of (eventually more than two) fixed vertices
the method often produces good results solving a single linear system. It is hard to quantify this
aspect as the approach is sensitive to this choice as illustrated for a simple model in figure (6.9).
(A non-linear alternative based on Green’s functions remedies this problem for small boundaries
[DMA02].)
We therefore compare our approach to non-linear angle based flattening (ABF) [SdS00,
SLMB05]. Figure (6.4) compares the distortion of angles and triangle areas (vertical axis) plot-
ted over the sequence of faces as they appear in the data set (horizontal axis), i.e., distortion on
every triangle is visualized. The optimal ratio indicating no distortion is 1.
The diagram shows that ABF produces high quality maps as expected, and that we come close.
Note that for both methods the results depend largely on boundaries or choice of cuts, respec-
tively. For the horse model (figure (6.3)), we use the original cut of [SLMB05], and our result
is still competitive. Of course, there must be tradeoffs between the efficiency and simplicity of
our linear setting against the high quality of the non-linear ABF. We think, that our approach
provides a fair balance between the computational efficiency of establishing discrete conformal
maps and the free boundary ABF.
As mentioned before, the boundary path resulting from cutting surfaces to disk-like patches af-
fects parameterization methods. For all our cuts we used simple Dijkstra shortest paths joining a
set of marked vertices. Where indicated in the examples, we use the cuts from from [SLMB05].
Our method depends largely on the initial prescribed boundary conformal map. If there are
nearly degenerate triangles (very small area) in the flat mesh, then there might be an overreaction
in the subsequent steps, i.e., these triangles may end up having large areas in the boundary-free
maps. This may happen for long cuts traversing a relatively small surface area (or more figura-
tively, volume). In fact, for the initial arc-length parameterization of the fixed boundary over the
circle, such triangles will cover a large perimeter and will be extremely distorted. Figure (7.7)
shows an example, the tail of the camel ends up having an area comparable to the legs. This
situation could be greatly improved by optimizing the cut or using a suitable re-parameterization
of the initial convex boundary curve.
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Figure6.3: Comparing maps of the horse model (40K4, original cut of [SLMB05]). Left: ABF.
Right: Our method.

Figure6.4: Distortion of angles (center column) and triangle areas (right column, log-scale) for
the mech-part and the horse model using the original cut of [SLMB05]. Blue: ABF. Red: our
method.

Figure6.5: Maps of the mech-part (8K4). Left: ABF. Right: Our method.
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Figure6.6: Subsequent maps of the gargoyle model (20K4). From left: prescribed boundary
conformal map, boundary-free conformal-map, boundary-free quasi-harmonic, improvement by
prescribed boundary quasi-harmonic maps.

Figure6.7: Mapping the camel model (4k4, original cut of [SLMB05]). Left: ABF. Right: Our
method. For the tail, the system overreacts due to extreme distortion for the initial prescribed
boundary conformal map.

Figure6.8: Mapping another (four-fingered) human model (20K4) and a pig (4K4) model to
the plane. For both, the eyes are holes, which do not require any special treatment.
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Figure6.9: Mapping the balls model (top left, 13004), using [DMA02] fixing different boundary
vertices depicted in red. We compare to the results of ABF (bottom center) and our method
(bottom right).
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Figure6.10: More maps computed with our method: The head model (16K4) self-intersects in
3D, the flat mesh shows no foldovers. Dinosaur (48K4). Double torus (2K4). Holes like the
windows of the beetle model (2K4) do not require any special treatment. Santa (114K4).
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Spherical Parameterization

In theory any higher genus model can be described as a union of patches through an atlas. The
discontinuities induced by this segmentation render it unattractive, especially in the particular
case of genus-zero surfaces for which the sphere is the most natural domain. The fact that many
of the available geometric models are indeed homeomorphic to a sphere makes spherical para-
meterization an appealing geometry processing tool. The past and recent research interest in
this topic echoes its relevance to applications and reflects the demand for efficient algorithms for
establishing low-distortion spherical maps. Despite the recent advances in the field, the construc-
tion of spherical maps still raises theoretical and numerical challenges. The spherical setting is
much more complex than the planar one, and any robust method to solve this problem cannot
solely rely on simple modification or extension of traditional planar methods as pointed out in
e.g., [FSD05]. Furthermore, the additional spherical constraints and the ever increasing need for
processing large input data raise challenging theoretical issues such as convergence guarantees
and validity, along with practical ones, associated with finding robust numerical schemes and
efficient custom solvers. Currently, methods with the most sound theoretical foundation are not
in measure of addressing even moderately sized problems numerically [GGS03].
In this work, we present a novel approach to spherical parameterization, where computation time
is dominated by solving only linear systems. Our method relies on setting the problem in a curvi-
linear coordinates system, hence reducing it to a two-dimensional problem. The singularities of
this coordinate system are effectively addressed by removing the poles and introducing a date
line connecting the poles. This way an initial harmonic map can be established following the
outline in [BGK92]. In general, this initial map suffers from unacceptable distortion. As a novel
contribution we undertake further steps to improve distortion. The merit of our new method is
that we perform the crucial distortion improvement of the initial map in curvilinear coordinates
as well, based on a variant of quasi-harmonic maps. This way we benefit from guarantees on
validity as well as the availability of highly efficient and robust solving strategies, while at the
same time the overall algorithm and its implementation are conceptually simple. In a final step,
we apply a local distortion improvement on a small sub-patch along the date line in order to
account for the unavoidable distortion induced from the Dirichlet boundary conditions.
Our results on non-trivial and considerably large input meshes show high-quality maps with a
fair balance between angle and area distortion. Computation times are significantly lower than
those of preexisting methods.

7.1 Initial parameterization

In order to solve the spherical parameterization problem we need to pose the problem in a com-
putationally tractable way. This involves adopting one of the many possible characterizations of
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(a) (b) (c) (d)

Figure 7.1: Curvilinear spherical parameterization in brief: (a) The poles are identified on the
shape by the user (or automatically). The path from pole to pole constitutes the date line along
which the mesh is cut open. (b) The poles are removed and an initial solution in curvilinear
coordinates is obtained on the remaining mesh. This initial map suffers from unacceptably high
distortion. (c) Therefore it is improved in a second step taking into account spherical distortion.
Both, the initial and second step operate in the curvilinear domain with fixed boundaries. (d)
The secondary solution is then lifted back onto the sphere. The poles are restored, and a local
spherical relaxation is performed in a region along the date line. The runtime for the mannequin
head model with 23K∆is 3 seconds (3.2GHz P4 laptop).

the sphere as a mathematical object. In Euclidean space, a natural description of point locations
on the sphere is achieved through the curvilinear or polar coordinates represented by the angles
(θ, φ). In this orthogonal coordinate system only two parameters are needed to characterize
point positions on the sphere. Certainly, this representation is more compact than its Cartesian
counterpart where three parameters are required.
In curvilinear coordinates, the spherical parameterization problem reduces to defining two ap-
propriate scalar fields over the surface, the azimuthal angleθ ∈ (0, 2π) also known as longitude,
and the polar angle or latitudeφ ∈ [0, π]. Although this setup simplifies the problem to a great
extent, it exhibits clear limitations which are, in fact, inherent to the coordinate system itself:
The first one is thepole singularity— the longitude spans the whole range at the poles. The
second one is theperiodicityof the longitude range. The pole singularity can be addressed by
first excluding the north and south poles from the problem setup and then reinserting them at the
end of the optimization process. On the other hand, the periodicity ofθ requires the construction
of a date line which connects the poles and marks the beginning and the end of the range. The
date line can be efficiently setup, e.g., as shortest path between poles (see also section (7.4)).
The mesh resulting from cutting along the date line and removing the poles is topologically
equivalent to a disk, and we can readily profit from existing techniques developed for planar
parameterization. A first attempt along these lines was proposed by [BGK92]. Their method
proceeds by solving the Laplace equation for the pair(θ, φ) over the domain[0, 2π] × (0, π).
The north and south pole are assigned theφ-values0 andπ, respectively. Technically the domain
of φ can be represented as[ε1, π− ε2] whereε1 andε2 are very small. In our implementation we
used a value of0.02 for both, however, the method as a whole is insensitive to the chosen value
as we will see in section (7.3). The solution to the Laplace equation can be efficiently carried out
using either the cotangent weights or the mean value coordinates discretization of the Laplacian
operator. Vertex positions on the sphere are then given by the usual polar-to-cartesian mapping

x = cos θ sinφ, y = sin θ sinφ, z = cos φ .

A simple computation of the first fundamental form of this mapping from polar to cartesian coor-
dinates reveals that it is neither conformal nor equal-area. Consequently, the resulting composite
map from the surface onto the sphere enjoys neither properties. This is not a limitation in itself as
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Figure 7.2: Comparison of the initial (center) and the secondary map (right) for the Homer
model. The view puts emphasis on the extremities, only after improvement the left arm and leg
develop adequately.

the results from this initial parameterization reflect well behaved maps, see figure (7.2), although
they may suffer from unacceptable high area distortion as noted also in [BGK92]. Furthermore,
there exist no single conformal map from a finite planar domain onto the whole sphere. On the
other hand aiming only for a conformal mapping may yield in general results which exhibit high
area distortions, see figures (7.9) and (7.11). Our aim is to establish a mapping which fairly
balances angle and area distortion, a desirable property for the spherical case as also discussed
in [FSD05]. Furthermore, we wish to be able to process large meshes efficiently. So in order
to avoid a costly non-linear optimization over the sphere we wish to perform the optimization in
the plane and reduce it to a linear problem.

7.2 Secondary parameterization

In chapter (5) we introduced tensorial quasi-harmonic maps for improving the distortion of pla-
nar parameterization. In the same spirit we develop a method for improving the initial spherical
parameterization by incorporating a measure for spherical distortion. Arguably the most natural
choice to quantify such distortion is the Jacobian of the mapping. However, it is not obvious how
to incorporate this3 × 3 tensor into the current two-dimensional curvilinear coordinate setting.
Here, we restrict ourselves to the determinant of the Jacobian of the spherical mapping which
quantifies area distortion. On each triangleT of the input meshM we define

κT =
(∑

Ti∈MA(Ti)∑
Ti∈MA′(Ti)

)
A′T
AT

,

whereA′T measures the area ofT on the sphere, andAT corresponds to the area on the initial
surface.
The secondary mapping can be then obtained as the solution of the the scalar quasi-harmonic
equation

div(κ grad U) = 0
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Figure 7.3: Local configuration for an edge(i, j). The coefficientsκj andκj+1 are associated
with the trianglesTj andTj+1.

in terms of the pair(θ, φ) with similar boundary conditions as for the initial mapping. In our
discrete setting, where the support of the Laplacian operator is restricted to the 1-ring of a vertex,
the parameterization problem reduces to solving the following equation for all internal vertices∑

j∈Ni

wij(Uj −Ui) = 0 .

A direct discretization based on defining linear basis function over the triangles, see chapter (5),
yields

1
2

∑
j

(κj cot αj + κj+1 cot βj+1)(Uj −Ui) = 0 .

Where scalarsκ are defined per triangle, i.e.,κj corresponds to triangleTj . In the above expres-
sion we can recognize the cotangent weights generally associated with the discretization of the
Laplacian whenκ is constant over the mesh as discussed in chapter (4).

Alternatively, for the mean value coordinates, we have from chapters (4) and (5)∑
j

[
κj tan

γj

2
+ κj+1 tan

γj+1

2

] (Uj −Ui)
rj

= 0 .

If the functionκ is constant over the mesh, the above expression reduces to the mean value
coordinates. The later coordinates are insensitive to the quality of the triangulation in the sense
that they are guaranteed to be positive.
In this framework, the resulting solution can be further improved by reiterating the same process
until convergence. For all our results two to three iterations revealed to be largely sufficient.

7.3 Local domain distortion reduction

As our spherical mapping stems from lifting a quadrilateral patch onto the sphere, the result is
expected to have a higher distortion around the poles and along the date line (see figure (7.4)).
In order to overcome such artifacts, we define a sub-patch around the date line by choosing, e.g.,
third to fifth order neighborhood (five rings are used in our implementation), and we perform
tangential Laplacian relaxation only on the sub-patch. Then the algorithm reads as simple as

1. For each vertexi of the sub-patch
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(a) (b) (c)

Figure 7.4: Effect of local distortion reduction along the date line. The highlighted region
shows a five-neighborhood of the date line for the original model (a), before (b) and after (c)
local improvement (close-ups in bottom row). Only this region with fixed boundary is used for
relaxation.
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– xi := xi + [L(xi)− 〈L(xi),xi〉xi] (update)

– xi := xi/||xi|| (back projection)

2. Repeat step (1) until convergence.

In all our experiments three iterations were sufficient. A simple choice ofL(·) would be to use
the uniform tangential Laplacian operator. However, such operator ignores the geometry of the
mesh and may cause features to fade out along the sub-patch. Since the positivity of weights is
crucial for the tangential Laplacian, the mean value based operator seems to be more appropriate
in this step.
Furthermore, since the boundary of the sub-patch is fixed, there isno riskof slippage or folding
and collapsing of the mesh onto one region of the sphere. Such limitations are in fact common to
spherical parameterization methods based solely on the tangential Laplacian operator, and they
do not apply here.

7.4 Results and discussion

We conducted experiments on a variety of meshes. The implementation of our method needs
only a simple modification of existing planar mesh parameterization methods. All results are
bijective maps and reflect a good balance between area and angle distortion as illustrated in
figures (7.1), (7.5), (7.6), and (7.7). Since our method is based on a composition of several maps,
the validity of each of them guarantees the validity of the whole map. In theory, our extended
mean value based weights are all positive and thus ensure a bijective map. Furthermore, our
tangential relaxation on the sphere is only local and thus there is no risk of mesh slippage.
This way, all our intermediate maps are valid and thus the resulting map is guaranteed to be
bijective. Typical timings of our method are in the order of a few seconds for meshes with tens
of thousand of triangles. This confirms that our approach is significantly more efficient than
preexisting methods.
We compare our results to the results of tangential relaxation methods (which lack convergence
guarantees in practice) in figure (7.9), and to the practical approach of [SYGS05] in figure (7.8).
We second the visual inspection of the figures with numerical charts comparing their respective
area and angle distortion, see figures (7.10) and (7.11). We compute the angle distortion as
the ratio of angles of the result to the input. The area distortion is computed similarly and
scaled accordingly by the ratio of total areas. In the polar charts, the values are placed using the
distortion value as the radius and the triangle or angle index as the polar angle.
At the current stage, the choice of the poles is not automatic. We do not see this as limitation as
it can be useful for aligning spherical maps. In the following, we provide simple guidelines for
defining the date line. The poles and the date line should in general reflect the symmetry of the
models when they exhibit symmetry traits. The date line should be as straight as possible and
the poles should have sufficient distance to allow the surface to evolve correctly but not too far
away to cause additional stretch. For all our examples, we used the Dijkstra algorithm for the
computation of shortest paths.
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Figure7.5: Spherical parameterization of the gargoyle2 model (50K∆), runtime 7s.

Figure 7.6: Different views of the turtle model (38K∆), and its spherical parameterization
viewed from the front, the side, and the back.
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Figure7.7: Features such as the long legs of the camel model (78K∆) and the legs and horns
of the cow model (23K∆) are extreme challenges for most spherical parameterization methods.
Our method efficiently embeds the models on the sphere.
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Figure 7.8:Comparison of spherical parameterization results for the skull model 40K∆. Center:
using [SYGS05]. Right: our method. Overall runtimes are 132 and 5s, respectively.

Figure7.9: Comparison of spherical parameterization results for the gargoyle model (20K∆).
Center: [KVLS99, Ale00] using mean value discretization. Right: our method.
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Figure7.10: Comparison of the distortion induced by the method of [SYGS05] in red and our
method in blue for the skull model. The quality of a map is based on how well distortion values
localize around the optimal solution (green). Left: Area distortion and a zoom-in on the optimal
region. Right: Angle distortion and a zoom-in.
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Figure7.11: Comparison of the distortion induced by tangential relaxation [KVLS99, Ale00]
in red and our method in blue for the gargoyle model. The quality of a map is based on how
well distortion values localize around the optimal solution (green). Left: Area distortion and a
zoom-in on the optimal region. Right: Angle distortion and a zoom-in.
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Mesh Deformation

One of the widely adopted representations of 3D objects by the computer graphics community
is the 2-manifold mesh. In recent years, many digital geometry processing algorithms operating
on such mesh structures were developed. These methods generally deform the surface geometry
and/or alter the mesh connectivity.
In many applications it is important to preserve the local shape properties under global changes
of the surface mesh. The best-known example is probably surface editing: A user selects and
drags a subset of vertices to a new location in space, and within a region of influence the shape
should follow this manipulation in a natural way. This means that the overall shape follows the
specified global deformation while geometric details like, e.g., folds and wrinkles, are locally
deformed in a way that their characteristic appearance persists. To be useful in practice, such an
editing tool must be intuitive and provide interactive response.
In this chapter, we describe interactive surface deformation tools based on a linear framework.
We identify the propagation of local transformations over the surface as a key technique: This
interpolation plays a vital role because it ensures that the overall deformation looks natural and
that the required geometric detail is preserved. We establish smooth harmonic scalar fields over
the mesh to guide this process.
In addition, we consider a different surface editing scenario: deformation transfer. In this sce-
nario, manipulation of a reference model is transferred and applied on a target model, e.g.,
copying an animation sequence of an object to another similar object. Instead of the explicit
specification of complex deformation, the user provides only a small number of corresponding
markers on the two models. These are used for establishing correspondence which essentially
guides the transfer of local deformations. As a result, the target object mimics the global defor-
mations of the reference object.
As basic technique, we apply harmonic fields, this time for efficiently finding correspondence.
We show that this second contribution fits nicely in the overall framework, despite the conceptual
difference of this second surface deformation scenario. Harmonic guidance provides a natural
and efficient tool for interactive and intuitive surface deformation: the required scalar fields
provide inherent smoothness, and they are constructed at virtually no extra cost. This is because
all required computational ingredients are available in form of the linear reconstruction operator
necessary for applying the deformations.

8.1 Overview

We construct harmonic fields over a manifold and apply them to guide local deformations for
surface editing and to establish correspondence for deformation transfer. We show that both
problems can be addressed by a unified mathematical framework, where the same linear operator
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is applied in all stages: decomposition, propagation of local deformations, correspondence, and
detail preserving shape reconstruction.
The aim here is not to present a completely new shape deformation technique. Instead, we pro-
pose our novel interpolation as a natural ingredient to [YZX+04], which provides a basic mesh
editing framework. Here, the propagation of local deformations is an essential stage for sur-
face manipulation, as the linear reconstruction operator alone cannot account for local rotations
and scaling. To achieve fair and efficient propagation, we propose harmonic fields, which are
smooth scalar functions in the manifold (section (8.3)). We believe that this construction is nat-
ural, we show that it is efficient. Also, we remark that it avoids an approximation of – generally
non-smooth – geodesic distance fields for (uniform, linear, or Gaussian) blending.
Deformation transfer requires an additional phase for establishing correspondence between ref-
erence and target shape. We propose to use harmonic fields in a novel approach: Inspired by
the notion of barycentric coordinates, we establish a family of – not necessarily independent
– coordinate functions over the manifold. The partition of unity property of these coordinates
provides a convex combination setting, which is used to match corresponding pairs of triangles
(section (8.4)).
Our method is very different from the iterative deformation process in [SP04]. Working entirely
in the 2D manifold, it does not depend on absolute coordinates, which makes it less sensitive
to the initial alignment of the shapes, in general a prerequisite for such iterated closest point
algorithms. Also, we are not applying a non-linear optimization process, and in particular no
user parameters are required for appropriate blending of an energy functional.
Our results confirm that we find good correspondence efficiently using relatively few markers,
hence few user interaction. Again, we apply only additional back-substitution, using the same
linear operator as within all phases of the whole deformation process.
Finally, we show as an additional contribution, that reasonable transfer can be achieved differ-
ently and even more efficiently by harmonic guided interpolation of deformations at the markers
(section (8.5)).

8.2 General differential setting

In the following sections, we will consider the steady-state elliptic equation

∇2u = f , (8.1)

with appropriate boundary conditions. For a non-null functionf , this setting is called thePoisson
equation.
We consider piecewise linear functions over triangulated manifolds, which can be scalar fields
or multi-dimensional vector fields. The discretization of this setting is well-known and leads to
a sparse linear system

Lu = b, (8.2)

where the matrixL represents the discrete Laplace-Beltrami operator matrix.
Equation (8.1) and the associated linear system (8.2) are the basic tools applied throughout this
work. The same system will be solved for different right hand sides, in the sense of either the
Laplace equation or the Poisson equation. This means effectively that the matrixL is decom-
posed only once and subsequent solutions are obtained from back-substitution alone.
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Figure8.1: A simple edit: The visualized harmonic field is used as guidance for bending the
cactus (left). Here, the field is defined by one source (red) at the tip of the left arm and one sink
(blue) below the middle of the trunk. The result is shown in the center image. Notice the different
propagation of the rotation compared to the edit on the right, where three sources on all arms
were chosen (without picture).

8.3 Surface editing along harmonic fields

For intuitive surface editing, the user interacts only with a small number of vertices, while the
system automatically places all other vertices within the selected region of interest in a natural,
detail preserving way. Hence, the editing tool acts on a submesh of interest, whose vertices are
classified as fixed, edited, or free. The last class includes the majority of vertices, whose new
positions are to be determined. Fixed vertices just stay in place and impose boundary constraints.
Edited vertices are positioned by the user, and the relocation of a region of such vertices defines
a deformation. Alternatively, a deformation can be directly prescribed for the vertex, e.g., for
twisting.
In this section, assume that the same deformation is defined for all edited vertices, i.e., a sin-
gle rigid mesh region is repositioned, as is the case for the majority of manipulations. In sec-
tion (8.5), we show how multiple local deformations can be interpolated simultaneously.
Given this local deformation for the edited vertices, it should be interpolated in a natural way
over the whole (ROI) manifold in order to compute the global shape edit. We achieve this by
using harmonic fields for deformation guidance.
A harmonic functionh satisfies the Laplace equation∇2h = 0. For discrete scalar harmonic
fields, we prescribe the value1 as boundary conditions for the edited vertices acting as sources,
and0 for fixed vertices, which we denote sinks. Solving forLh = 0, with respect to these
boundary conditions, the resulting harmonic functions smoothly blend between0 and1 with no
local extrema other than sources and sinks. As before,L denotes the discrete Laplace-Beltrami
operator. Due to the chosen discretization the gradient flow of the fields respects the intrinsic sur-
face geometry, and it is independent of the particular tessellation of the surface. Figure (8.1, left)
visualizes a harmonic field over a simple surface mesh using a color table.
We decompose the local deformation into scaling and rotation, the last represented by unit
quaternions. At each vertex, the value of the harmonic field is used to blend between the source
deformation with the identity fixed at sinks. The result is a smooth deformation field over the
manifold.
For the reconstruction of the globally edited surface from this deformation field we follow the
approach in [YZX+04] based on solving the discrete Poisson equation (see also [PGB03]). By
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Figure 8.2: The harmonic field on the Happy Buddha model, visualized left, guides the bending
and twisting edit. This is the largest mesh used with220K triangles, two sinks at the feet and
one source on the head were applied.

sampling the deformation field at the barycenters of the triangles, we obtain a piecewise constant
field, i.e., deformations per triangle. Then each triangle is deformed separately, which yields a
deformed but fragmented, discontinuous mesh. For integration of the right hand side of the
Poisson equation, we compute the gradients for the deformed triangles. The divergence of this
gradient field is summed at vertices shared between triangles according to the original mesh con-
nectivity, yielding the right hand side vectorb. The solution of the associated Poisson equation
Lx = b provides the new vertex positionsx.

Figure8.3: Edit of the twirl object with sharp features.

We note that in contrast to [LSC+04, SLC+04] L represents the Laplacian matrix without any
changes, in particular all constraints are incorporated into the right hand side.
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Figure8.4: Left: The head of the cow is rotated and scaled. Right: Head and fin of the turtle
(top) are bent.

8.4 Harmonic fields for shape matching and deformation
transfer

The main goal of this section is to present an approach for finding correspondence between two
surfaces. This correspondence is vital for deformation transfer, a tool for mimicking deformation
of the reference on the target shape [ACP03, SP04]. Certainly, meaningful correspondence can
only be achieved if there exists a semantic correlation between shapes, like between several
models of four-legged animals.
To establish correspondence, the user marks a few pairs of corresponding points on the reference
and target surfaces. This interaction establishes the semantic correlation between models and
will guide the whole process. Hence, it is essential to carefully select markers so that good cov-
erage of the reference deformation is obtained. At the same time, the number of markers should
be kept low to minimize interaction. The usual procedure is a corrective loop, where the user
iteratively specifies new markers or updates old ones, and recomputes the deformation transfer
until satisfying results are achieved. For this reason, efficiency for finding correspondence and
its quality directly account for user-friendly interaction.
The correspondence maps each triangle of the target mesh to one face of the reference. Note
that we do not understand correspondence as a bijective mapping and do not solve a cross-
parameterization problem [KS04, SAPH04], which in general applies constraint non-linear op-
timization.
In fact, for deformation transfer a non-bijective mapping is sufficient as stated by Sumner and
Popovíc [SP04] and verified by our experiments (see also figure (8.5)). However, it is vital for the
mapping that it respects semantic correspondence, and that it is independent of the tessellation or
resolution of the model. Furthermore, it should be established efficiently to allow quick response
for fine tuning. Based on such mapping, we decide on match or mismatch between target and
reference triangles, for matches local deformations are transferred.
We use harmonic fields to guide the correspondence. Motivated by the notion of shape functions
for linear triangles1 presented in chapter (4), we propose a generalization to manifold meshes.
Given a triangle, we can associate with it three functions with values1 at one vertex and0 at
the two opposite vertices. These shape functions define a set of basis functions over the triangle,
well-known as the barycentric coordinates, which can be used for linear interpolation over the
triangle. We aspire to establish a generalization of such characterization to manifold meshes,
usable for deformation transfer.
Given a set of markers{m1, . . . ,mk}, we associate with it a family of “shape functions” defined
over a mesh. For each markermi, we define one harmonic fieldhi with Dirichlet boundary

1Formally, shape functions for triangular Lagrangian finite elements of degree1.
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conditionsby setting its value to1 atmi and to0 at all other markersmj , i 6= j. This family of
functions defines ank-dimensional vector field over the entire manifold, assigning each vertex a
vector(h1, . . . , hk).
We remark that this family is in general not independent and does not form a basis. However,
they satisfy the partition of unity property

∑
1≤ i ≤k hi ≡ 1. This stems from the principle of

superposition and the fact that there is no dissipation of the harmonic field. This property is of
crucial interest for our approach, and we exploit it for finding correspondence.
For two surface meshes with clear semantic correspondence and a set of correspondence markers,
we expect that the harmonic fields will be similar and hence correspond. Our experiments verify
this observation. Correspondence between triangles is then achieved by matching the vector
field of each target triangle (given by the barycentric average) to a triangle of the reference mesh
which yields the closest field value. Here, we define closeness in terms of the 2-norm ofh.
We remark that due to our experiments this can be reduced to taking into account only then
maximal vector components for each value ofh, where3 ≤ n ≤ k. This way we transfer local
deformations to the target from matching reference triangles. Analog to editing, the solution of
the Poisson equation provides the new target mesh, which mimics the deformed reference shape.

8.5 Harmonic interpolation in quaternion domain for editing
and deformation transfer

In this section, we show how to interpolate multiple deformations simultaneously, which can be
regarded as blending between several sources, each of which propagates a different deformation.
We remark that this can be directly applied to the editing setting of section (8.3). Here, we
discuss the interpolation in another context: we explore the possibility of direct deformation
transfer without establishing any correspondence other than the markers. In other words, local
deformations of the reference surface are sampled at the markers. On the target surface, they are
used as constraints for harmonic interpolation.
Given correspondence between marked triangles on the reference and target surface, we can
compute the deformation on each of these triangles, using a virtual tetrahedron as in [SP04]. The
deformations are converted into unit quaternion form. The four components of the quaternion
(plus a scaling component if required, see figure (8.4.b)) are considered as separate scalar fields
in the manifold. We consider the propagation of the deformations over the surface corresponds as
establishing harmonic functions, i.e., we find a solution to the Laplace equation, which satisfies
all given deformations independently in every component. Once the solution is obtained, the
Poisson scheme is used to apply the deformation.
Despite the simplicity of this approach, it works surprisingly well, it is extremely efficient, and
it provides a natural propagation at no extra cost. However, the approach is limited by its nature:
First, all local deformations which are obtained from the interpolation are within the convex
hull of the given deformations at the markers. The scheme cannot synthesize deformations in
between, which have not been captured. Second, the interpolation assumes a smooth variation
of deformations relative to the surface domain. It cannot predict and react on strong variations
of the target surface which are not reflected in the reference. Hence, if the two surfaces locally
differ too much, the interpolated deformations may not be meaningful. Of course, both issues
can be addressed by placing additional markers, in particular near geometric detail.
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8.6 Results

Figures (8.1), (8.3), (8.4), (8.2), and (8.8) show several edits of models with varying complexity
and shape detail. The linear framework enables edits at interactive rates. The Laplacian matrices
are decomposed only once after a region of influence is selected, the factors can be reused for
efficient back-substitution for reconstruction after every single change of the deformation. The
time for decomposition and initial solution when editing the entire Happy Buddha model at a
resolution220K triangles is in the order of few seconds on current hardware.
Surface deformation is a very broad topic, and we believe there is no single solution to the variety
of editing problems anticipating the needs and desires of modelers and designers. So obviously,
the proposed methods within this work are limited and target only some specific problems. While
the method is in general robust to triangle foldovers, there are no guarantees on mesh self-contact
and penetration.
Figure (8.6) shows the transfer of the lion poses to the cat, correspondence was established
using68 markers for the upper left pair of models. (The correspondence map is illustrated in
Figure (8.5).) The models are taken from [SP04], but we reverse their transfer: the reference

Figure8.5: Illustration of a non-bijective correspondence map: The cat as target surface is
color coded. For deformation transfer from the lion, the cat triangles are mapped onto the lion,
shown in the bottom visualization using the same color code. Indeed the lion is not fully covered,
however, the good match in colors indicates a meaningful transfer of deformations, i.e., the left
front legs correspond.
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Figure8.6: Harmonic guided deformation transfer from the lion onto the cat (top left pair). The
models are taken from [SP04], we reverse their transfer (see also section (8.6)).

deformation sequence was given for the lion, in fact, we are using their output of their algorithm
as input. We consider this as a hard but fair test for our correspondence computation, and the
ideal result would be to recover the original manually animated cat sequence. The results confirm
that our mapping is good. Certainly, artifacts in the input reproduced but rarely amplified. The
deformed cat gets close to the original sequence, we observe most problems with the deformation
of the tail and inevitable surface self-intersections. We emphasize that the correspondence was
established only from the solution of a linear system, in particular, no non-linear optimization
was applied.
Figure (8.7) shows a similar test: using120 markers, the deformation sequence is transferred
back onto the original horse model only by harmonic interpolation. For each pair of images,
the left one shows the manually animated model (from [SP04]), while the right one shows the
original horse deformed according to the result of the interpolation. In an ideal setting, the
second one should reproduce the first one. The results show, that this is nearly the case, and
it confirms the harmonic interpolation of local deformations in general. Certainly, for the plain
harmonic interpolation method more markers are needed for achieving good results.
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Figure 8.7: Testing the harmonic interpolation by transferring the horse animation (from
[SP04]) onto the horse (see also section (8.6)).

Comparing Figure (8.6) and (8.7) and the approaches of sections (8.4) and (8.5), respectively,
we observe that for the first approach approximately the same number of markers as for [SP04]
is sufficient while we require no additional user parameters and only applications of the linear
operator and simple searches over the harmonic coordinates in contrast to non-linear minimiza-
tion. However, this process is still not quite interactive. Our second approach using harmonic
interpolation requires more markers in general. It eliminates matching and hence greatly reduces
computational cost, which are independent of the number of markers. In brief, our two approach
balance number of markers versus more efficiency and interactiveness.
Discussing limitations, we would like to emphasize that the matching relies heavily on the se-
mantic similarity of the models at hand. In fact the method would not yield convincing results
for models with different semantics (e.g., very short legs versus very long legs). The number of
markers used in our method is of the same order of magnitude as the ones used in [SP04]. We
note that it is possible to establish a matching with less markers especially when dealing with
very simple poses, however, the current number of markers is reasonable given that poses of the
cat and lion are rather extreme.
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Furthermore,a judicious placement of markers in order to better capture deformations can al-
ways reduce the number of needed markers. On the other hand for the harmonic interpolation
usually more markers are needed as the solution tends to have a slight “rubbery” behavior es-
pecially around the joints (see figure (8.7)). This is in part due to the elliptic nature of the
interpolation, so more markers are needed around the joints in order to maintain a good ap-
proximation of the the deformations. However, in practical applications one might prefer this
interactive approach using more markers which can be added and readjusted on the fly yielding
immediate response.

Figure8.8: A complex edit of the reference horse model.
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Some Remarks on Data Structure and
Implementation

In digital geometry processing there exist several data structures for storing mesh connectivity
information, see e.g.[CKS98, Ket99]. These data structures, e.g., half-edge, enhance the orig-
inal mesh and offer possibilities such as circulating around vertices and faces for getting their
one-ring neighbors or fans. While these structure are generally suitable for problems which
exhibit a combinatorial nature, it turns out that for problems of variational nature this leads to
redundant computations especially that in many instances, the ultimate goal is to setup system
matrices describing the governing equations. Generally a matrix data structure and a combina-
torial geometric structure are used together for handling this kind of problems. Our approach
consists of working directly on the original vertex and face lists without constructing any inter-
mediate representations. The key ingredient is to use the sparse matrix structure, e.g. [GMS92]
for extracting geometric information as well as performing numerical operations. This way the
implementation is generally concise and lends itself to vectorization.
For example, the construction of the connectivity matrix f a mesh(V, T ) whereV is a nV x3
array of vertex positions andT is nTx3 array describing the triangulation can be as simple as
the following matlab code

A = sparse(T ([1 2 3], :), T ([2 3 1], :), 1, np, np). (9.1)

The construction of a uniform Laplacian from this matrix is straightforward. Additionally the
same idea can be used for constructing different discretizations of the Laplacian by changing the
third field of the sparse function to the desired vector valued function, e.g., cotangent weights.
Most of the methods presented in this work have been developed as vectorized MatlabTMcode
except for a few cases where the highly combinatorial nature of some problems did not allow for
an intuitive vectorization and processing with matrices. Directly operating on sparse matrices
allows for a transparent transition between geometric processing operations and the setup of
matrix equations which usually arise in practical problems.

85
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Conc lusion

All solvable problems are trivial, all nontrivial problems are unsolvable.

G. Santayana in [BLM00]

The objective of this work was to develop efficient methods for surface parameterization and
editing. In order to simplify implementation and guarantee efficiency, special emphasis was
placed on working with sparse matrix data structures. Building upon this platform, several con-
tributions to mesh parameterization and mesh editing have been proposed. This includes lin-
earization of the angle based flattening, introduction of quasi-harmonic maps, curvilinear spher-
ical parameterization and several applications of harmonic fields for mesh editing, shape match-
ing, and deformation transfer. In following, a summary of the key points of these contributions
is given.

Angle based mesh parameterization

Conformal mesh parameterization has received extensive attention from the graphics community.
The research effort in this direction has been shaped by the strive for increased efficiency for
nonlinear methods and improved discretization schemes of differential operators. This work
contributes to these efforts first by addressing numerical aspects of one of the most promising
but challenging nonlinear problems in mesh parameterization namely, the angle based flattening,
and second by surveying some of the recent developments of weighting schemes in the light of
development in other disciplines.
For the angle based flattening problem, we presented and discussed several numerical approaches
for addressing the arising nonlinear constrained optimization problem. Advantage was taken of
the structure of the system matrix in order to decouple the problem making the matrix equations
much easier to solve. The use of a modified version of the Uzawa algorithm typically used in
saddle point problems allowed for a better performance. Furthermore, close inspection of the
problem revealed that it was possible to approximate the nonlinear constraints by linear ones
thus yielding for the first time a linear version of the angle based parametrization. The latter can
be solved in a straightforward manner based on the normal equation of underdetermined linear
systems of equations.
In order to contribute to the understanding of the discretization schemes of the governing equa-
tions in discrete conformal maps, an overview of some of the existing methods is given along
with some of the parallel developments in other fields. The influence of the discretization on the
parameterization is substantiated by a simple but conclusive benchmark.
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Quasi-harmonic maps

The main concern of conformal parameterization is the reduction of angular distortion regardless
of how distorted other measures such as area or length might be affected. Many applications,
however, require a parameterization to have low area distortion. This requirement opens the door
to a more difficult problem and also rises the question of how a ”good parameterization” should
look like. The contribution of this work is a new low-distortion surface mesh parameterization
method based on solving a discrete quasi-harmonic equation. For developing the method, we
introduce new linear operators, which capture the metric properties of the surface. The varia-
tional nature of the approach ensures the smoothness of the resulting map. The parameterization
method is robust and insensitive to possible ill configurations of the initial map. In fact, for most
cases the method converges from a simple projection on the least squares plane even for complex
models.
As an extension for these fixed boundary harmonic maps, a boundary-free parameterization
method consisting of few simple steps was presented. The overall process is controlled us-
ing suitable guidance tensor fields reflecting the intrinsic surface geometry. The arising linear
systems are symmetric and of similar structure, i.e., the maps can be computed robustly and
efficiently.
Our results confirm that despite their simplicity, methods based purely on linear settings have the
potential to produce high-quality boundary-free parameterizations, a goal that was only partially
met by prior linear methods. We cannot claim the optimality of our results, however, we observe
a fair compromise between quality and efficiency and hope that this work will stimulate more
research towards pushing the limits of linear parameterization.

Spherical parameterization

For surfaces with a zero genus the natural parameterization domain is the sphere. This change
of domain from plane to sphere brings with it more challenges as the parametric coordinates are
constrained to lay on the unit sphere. In order to avoid this constraint we presented an efficient
approach for solving the spherical parameterization problem based on a curvilinear coordinates
representation. The essence of the approach is to look for a solution in the curvilinear coordi-
nate system without requiring the additional spherical constraints usually needed in Cartesian
formulations. This setup allows us to take full advantage of some existing techniques originally
developed for planar parameterization. Our results substantiate the efficiency of the method and
confirm its robustness. Meshes of non-trivial geometry with tens of thousands of triangles are
processed in a few seconds, always yielding bijective maps. This computational achievement
bridges a so far wide gap in performance between spherical and planar parameterization.

Mesh editing

The planar parameterization of a surface mesh can be regarded as the construction of two scalar
fields on the surface which satisfy some quality requirement. Based on the same principle it is
possible to construct more general parameterizations by constructing one or many scalar fields on
the mesh. These fields can be used as guidance fields for performing different mesh processing
tasks on the surface. As proof of concept we presented a surface deformation framework for
shape editing and deformation transfer. As a central tool we apply harmonic fields to guide
the deformations, i.e., to interpolate of local deformations over the manifold and to establish
correspondence for deformation transfer. Our unified approach is elegant and natural: the same
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mathematicalbuilding blocks, solving the discrete Laplace and Poisson equations, are applied in
all stages. Inherent smoothness is provided, and nonlinear minimization of energy functionals is
avoided. In fact, the use of linear operators render the approach efficient, the same sparse linear
system is solved multiple times per problem instance. Hence, only a single matrix decomposition
is required. Our results confirm effectiveness and efficiency of the approach. Harmonic fields
offer a practical framework for surface editing and they proved to yield promising results in
surface resampling [DKG05]. We see potential use for them in other areas of computer graphics
such as mesh segmentation and motion planning.

Future research prospects

As a follow up to the presented work, the following research venues are considered:
Most of the parameterization machinery developed in this thesis is geared towards solving gen-
eral, but fundamental, aspects of the problem. An interesting direction for future work is to tune
the proposed methods for specific application purposes. For instance, texture mapping remains
one of the most relevant applications of mesh parameterization, a natural extension would be to
couple image processing techniques with geometric methods for addressing problems such as
seams along patch boundaries and hard positional constraints in the texture domain. Another
direction is the automatic update of parameterization for dynamic models. As there is increasing
interest in dynamic scenes, it is desirable to tailor efficient algorithms for handling the additional
temporal dimension. The challenge here is to cope with the changes in the model geometry over
time and update the parameterization coordinate without solving the whole parameterization
problem for every frame.
In depth investigation of the potential of sparse matrices data structure in geometry processing
operations is an other interesting research direction. While many operations such as smoothing,
deformation, and parameterization can readily take advantage of this framework, devising matrix
operations capable of describing more combinatorial applications such as, for instance, mesh
simplification remains an interesting and challenging topic.
In the realm of mesh deformation, most of the existing work relies on simple discretizations
which generally fall short from accurately describing deformation behavior or incorporating me-
chanical material properties in the model description. An interesting venue of future research
is to investigate the potential of more elaborate discretizations for editing surface meshes. For
instance building upon shell theory for describing the deformation of surface meshes and de-
veloping intuitive tools for fulfilling designers needs received so far only little interest from the
community and exploring this direction would fill the gap between engineering simulation and
mesh editing.
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tiresolution adaptive parameterization of surfaces.Computer Graphics (Proc. SIG-
GRAPH), 32:95–104, 1998.

[Lue69] David G. Luenberger.Optimization by vector-space methods. Wiley-Interscience,
1969.

[Mac49] R. H. MacNeal.The solution of partial differential equations by means of electrical
networks. PhD thesis, California Institute of Technology, January 1949.

[Mac53] R. H. MacNeal. An asymmetrical finite difference network.Quart. Math. Appl.,
11:295–310, 1953.

[Ode87] T. Oden. Some historic comments on finite elements. InProceedings of the ACM
Conference on History of Scientific and Numeric Computation, pages 125–130,
New York, NY, USA, 1987. ACM Press.

[PB00] D. Piponi and G. Borshukov. Seamless texture mapping of subdivision surfaces by
model pelting and texture blending. InProc. SIGGRAPH, pages 471–478, 2000.
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