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Abstract

The problems of capturing real-world scenes with cameras and automatically an-
alyzing the visible motion have traditionally been in the focus of computer vision
research. The photo-realistic rendition of dynamic real-world scenes, on the other
hand, is a problem that has been investigated in the field of computer graphics. In
this thesis, we demonstrate that the joint solution to all three of these problems
enables the creation of powerful new tools that are beneficial for both research
disciplines.

Analysis and rendition of real-world scenes with human actors are amongst
the most challenging problems. In this thesis we present new algorithmic recipes
to attack them. The dissertation consists of three parts:

In part I, we present novel solutions to two fundamental problems of human
motion analysis. Firstly, we demonstrate a novel hybrid approach for marker-
free human motion capture from multiple video streams. Thereafter, a new algo-
rithm for automatic non-intrusive estimation of kinematic body models of arbi-
trary moving subjects from video is detailed.

In part II of the thesis, we demonstrate that a marker-free motion capture ap-
proach makes possible the model-based reconstruction of free-viewpoint videos
of human actors from only a handful of video streams. The estimated 3D videos
enable the photo-realistic real-time rendition of a dynamic scene from arbitrary
novel viewpoints. Texture information from video is not only applied to gener-
ate a realistic surface appearance, but also to improve the precision of the motion
estimation scheme. The commitment to a generic body model also allows us to re-
construct a time-varying reflectance description of an actor’s body surface which
allows us to realistically render the free-viewpoint videos under arbitrary lighting
conditions.

A novel method to capture high-speed large scale motion using regular still
cameras and the principle of multi-exposure photography is described in part III.

The fundamental principles underlying the methods in this thesis are not only
applicable to humans but to a much larger class of subjects. It is demonstrated
that, in conjunction, our proposed algorithmic recipes serve as building blocks for
the next generation of immersive 3D visual media.

Kurzfassung

Die Entwicklung neuer Methoden der optischen Erfassung und Analyse dynami-
scher Szenen ist eines der wichtigsten Ziele der computergestützten Bildverar-
beitung. Während sich die Bildverarbeitung auf den Analyseaspekt konzentriert,
richtet die Computergrafik ihr Augenmerk auf die fotorealistische Darstellung be-
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wegter Szenen. Im Rahmen dieser Dissertation wird veranschaulicht, dass es für
beide Forschungsdisziplinen von großem Vorteil ist, Erfassung, Analyse und Syn-
these bewegter Szenen nicht getrennt sondern gemeinsam zu erforschen.

Zu den wichtigsten und schwierigsten Problemen für beide Disziplinen ge-
hören die automatische Auswertung und die realistische künstliche Darstellung
menschlicher Bewegung. In dieser Dissertation beschreiben wir neue algorithmi-
sche Rezepte, umd diese schwierigen Aufgaben zu lösen. Die Arbeit besteht aus
drei Teilen.

In Teil I stellen wir neue Lösungsansätze für zwei Kernprobleme der mensch-
lichen Bewegungsanalyse vor, die Erfassung von mathematischen Bewegungspa-
rametern und die Erzeugung eines kinematischen Menschenmodells. Der erste
Lösunsgansatz ist ein neuartiges hybrides Verfahren zur Berechnung menschli-
cher Bewegungsparameter aus mehreren Videoströmen. Die zweite Methode er-
möglicht die vollautomatische Erzeugung eines kinematischen Skelettmodells für
beliebige sich bewegende Objekte aus Multivideodaten. Der Hauptvorteil beider
Algorithmen liegt darin, dass sie keine optischen Markierungen in einer Szene
benötigen.

Teil II dieser Dissertation beschreibt einen neuen modellbasierten Ansatz zur
Berechnung und Darstellung dreidimensionaler Videos von Menschen. Ein Be-
trachter kann die errechneten 3D Videos auf dem Computer in Echtzeit abspie-
len und interaktiv einen beliebigen neuen Blickwinkel auf die Szene auswählen.
Der Kernbaustein des Verfahrens ist ein Algorithmus zur markierungsfreien Form-
und Bewegungsanalyse aus Multivideodaten. Um der Person aus beliebigen neu-
en Blickwinkeln ein fotorealistisches Aussehen zu verleihen, wird mit Hilfe der
Bilddaten eine dynamische Oberflächentextur erzeugt. Da dieser 3D Video Al-
gorithmus auf einem generischen Körpermodell basiert, kann man noch einen
Schritt weiter gehen und die dynamischen Reflektionseigenschaften der Körpero-
berfläche abschätzen. Auf diese Weise können dreidimensionale Videos auch un-
ter neuen Beleuchtungsszenarien realistisch wiedergegeben werden.

Ein neues Verfahren zur optischen Analyse sehr schneller Bewegungen wird
in Teil III dieser Arbeit vorgestellt. Statt teurer und komplizierter Hochgeschwin-
digkeitskameras verwendet dieser Ansatz einfache digitale Fotokameras und das
Prinzip der Multiblitzfotografie.

Obwohl die hier vorgestellten Verfahren vornehmlich der Analyse und Dar-
stellung menschlicher Bewegungen dienen, sind die grundlegenden Prinzipien
auch auf andere dynamische Szenen anwendbar. In ihrer Gesamtheit bilden die
hier erläuterten Algorithmen wichtige Bausteine für die Entwicklung der näch-
sten Generation interaktiver dreidimensionaler Medien.
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Summary
In computer vision, it has always been a core research interest to develop algo-
rithms that enable optical capturing and automatic analysis of the visible motion
in a dynamic scene. Researchers in computer graphics, on the other hand, used
to focus on the inverse problem of generating photo-realistic virtual renditions of
dynamic scenes that resemble the real-world equivalent as closely as possible. In
recent years, a convergence between the fields has been observed. Ever more pow-
erful imaging technology and computing hardware make it feasible to reconstruct
photo-realistic models of real-world scenes from captured image data.

Amongst the most challenging scenes, both in terms of motion analysis and
realistic rendition, are scenes involving human actors. In this thesis, we develop
algorithmic solutions that enable the optical acquisition of these scenes, the auto-
matic analysis of the visible motion, and their realistic rendition. Furthermore,
we show that by integrating solutions to all three problems into one consistent
pipeline, novel immersive 3D renditions of humans in motion can be created.
This dissertation consists of three parts:

Part I begins with the description of a studio for recording multiple synchro-
nized video streams that we have designed and constructed. The multi-view video
material that we acquire in this facility serves as input to our video-based meth-
ods for motion analysis and free-viewpoint video reconstruction. Thereafter, two
novel solutions to fundamental problems of optical human motion analysis are
presented.

The first one is a hybrid method for marker-free full body human motion cap-
ture from multi-view video. It jointly uses dynamic shape-from-silhouette vol-
umes and locations of salient body features in the image planes to fit a sophisti-
cated body model to the motion.

The second method enables the fully-automatic reconstruction of kinematic
skeleton models of arbitrary moving subjects from multiple video streams. It
does with practically no a priori information about the structure of the actor and
does not require optical markings on the body. In order to infer the skeleton
structure, it analyzes the motion of primitive shapes that have been fitted to
dynamic shape-from-silhouette volumes.

In the second part of the thesis, we describe a model-based approach for re-
constructing free-viewpoint videos of human actors from only a handful of video
streams. The core component of the method is a silhouette-based analysis-by-
synthesis approach that enables us to shape-adapt a generic human body model,
and to capture the motion of the actor. A realistic time-varying surface appearance
of the actor is generated by texturing the model with the appropriately weighted
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input video frames. The method enables the photo-realistic rendition of the dy-
namic scene from arbitrary novel viewpoints in real-time.

In a first extension, we demonstrate that the texture information from camera
images can also be used to augment the precision of the motion capture method.

Furthermore, our commitment to a generic body model enables us to not
only reconstruct the time-varying scene geometry but also a dynamic surface
reflectance model from multi-view video. Our reflectance description comprises a
bidirectional reflectance distribution function (BRDF) for each surface point and
a time-varying normal field. By this means, 3D videos can be photo-realistically
displayed under arbitrary novel lighting conditions.

Standard video cameras are ideal for capturing scenes in which all elements
only move at moderate speed. For capturing rapid motion, however, specialized
expensive high-frame-rate video equipment would be needed. We have thus
developed a novel cost-effective method for capturing high-speed large scale
motion that is described in part III. It uses regular digital photo cameras and the
principle of multi-exposure photography. We show that this novel measurement
principle enables us to capture the rapidly changing articulated hand motion
parameters and the motion parameters of the flying ball during a baseball pitch.
The highly accurate motion data enable us to create renditions that give new
insights into the captured course of motion.

The fundamental principles of the methods described in this thesis are not only
applicable to humans but to a much larger class of subjects. Each algorithm can
be regarded as a solution to a particular sub-problem in image-based analysis of
dynamic scenes. However, we demonstrate that in particular their interplay in
larger systems enables innovative novel applications.
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Zusammenfassung
Die Entwicklung neuer Algorithmen zur optischen Erfassung und Analyse der
Bewegung in dynamischen Szenen ist einer der Forschungsschwerpunkte in der
computergestützten Bildverarbeitung. Während im maschinellen Bildverstehen
das Augenmerk auf der Extraktion von Informationen liegt, konzentriert sich die
Computergrafik auf das inverse Problem, die fotorealistische Darstellung beweg-
ter Szenen. In jüngster Vergangenheit haben sich die beiden Disziplinen kon-
tinuierlich angenähert, da es eine Vielzahl an herausfordernden wissenschaftli-
chen Fragestellungen gibt, die eine gemeinsame Lösung des Bilderfassungs-, des
Bildanalyse- und des Bildsyntheseproblems verlangen.

Zwei der schwierigsten Probleme, welche für Forscher aus beiden Disziplinen
eine große Relevanz besitzen, sind die Analyse und die Synthese von dynami-
schen Szenen, in denen Menschen im Mittelpunkt stehen. Im Rahmen dieser
Dissertation werden Verfahren vorgestellt, welche die optische Erfassung dieser
Art von Szenen, die automatische Analyse der Bewegungen und die realistische
neue Darstellung im Computer erlauben. Es wid deutlich werden, dass eine Inte-
gration von Algorithmen zur Lösung dieser drei Probleme in ein Gesamtsystem
die Erzeugung völlig neuartiger dreidimensionaler Darstellungen von Menschen
in Bewegung ermöglicht. Die Dissertation ist in drei Teile gegliedert:

Teil I beginnt mit der Beschreibung des Entwurfs und des Baus eines Studi-
os zur zeitsynchronen Erfassung mehrerer Videobildströme. Die im Studio auf-
gezeichneten Multivideosequenzen dienen als Eingabedaten für die im Rahmen
dieser Dissertation entwickelten videogestützten Bewegunsanalyseverfahren und
die Algorithmen zur Erzeugung dreidimensionaler Videos.

Im Anschluß daran werden zwei neu entwickelte Verfahren vorgestellt,
die Antworten auf zwei fundamentale Fragen in der optischen Erfassung
menschlicher Bewegung geben, die Messung von Bewegungsparametern und
die Erzeugung von kinematischen Skelettmodellen. Das erste Verfahren ist ein
hybrider Algorithmus zur markierungslosen optischen Messung von Bewe-
gunsgparametern aus Multivideodaten. Der Verzicht auf optische Markierungen
wird dadurch ermöglicht, dass zur Bewegungsanalyse sowohl aus den Bilddaten
rekonstruierte Volumenmodelle als auch leicht zu erfassende Körpermerkmale
verwendet werden. Das zweite Verfahren dient der automatischen Rekonstruktion
eines kinematischen Skelettmodells anhand von Multivideodaten. Der Algo-
rithmus benötigt weder optischen Markierungen in der Szene noch a priori
Informationen über die Körperstruktur, und ist in gleicher Form auf Menschen,
Tiere und Objekte anwendbar.

Das Thema das zweiten Teils dieser Arbeit ist ein modellbasiertes Verfahren
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zur Rekonstruktion dreidimensionaler Videos von Menschen in Bewegung aus
nur wenigen zeitsynchronen Videoströmen. Der Betrachter kann die errechneten
3D Videos auf einem Computer in Echtzeit abspielen und dabei interaktiv
einen beliebigen virtuellen Blickpunkt auf die Geschehnisse einnehmen. Im
Zentrum unseres Ansatzes steht ein silhouettenbasierter Analyse-durch-Synthese
Algorithmus, der es ermöglicht, ohne optische Markierungen sowohl die Form
als auch die Bewegung eines Menschen zu erfassen. Durch die Berechnung
zeitveränderlicher Oberflächentexturen aus den Videodaten ist gewährleistet,
dass eine Person aus jedem beliebigen Blickwinkel ein fotorealistisches Erschei-
nungsbild besitzt. In einer ersten algorithmischen Erweiterung wird gezeigt, dass
die Texturinformation auch zur Verbesserung der Genauigkeit der Bewegunsgs-
schätzung eingesetzt werden kann. Zudem ist es durch die Verwendung eines
generischen Körpermodells möglich, nicht nur dynamische Texturen sondern
sogar dynamische Reflektionseigenschaften der Körperoberfläche zu messen.
Unser Reflektionsmodell besteht aus einer parametrischen BRDF für jeden Texel
und einer dynamischen Normalenkarte für die gesamte Körperoberfläche. Auf
diese Weise können 3D Videos auch unter völlig neuen simulierten Beleuch-
tungsbedingungen realistisch wiedergegeben werden.

Teil III dieser Arbeit beschreibt ein neuartiges Verfahren zur optischen
Messung sehr schneller Bewegungen. Bisher erforderten optische Aufnahmen
von Hochgeschwindigkeitsbewegungen sehr teure Spezialkameras mit hohen
Bildraten. Im Gegensatz dazu verwendet die hier beschriebene Methode einfache
Digitalfotokameras und das Prinzip der Multiblitzfotografie. Es wird gezeigt, dass
mit Hilfe dieses Verfahrens sowohl die sehr schnelle artikulierte Handbewegung
des Werfers als auch die Flugparameter des Balls während eines Baseballpitches
gemessen werden können. Die hochgenau erfaßten Parameter ermöglichen es, die
gemessene Bewegung in völlig neuer Weise im Computer zu visualisieren.

Obgleich die in dieser Dissertation vorgestellten Verfahren vornehmlich der
Analyse und Darstellung menschlicher Bewegungen dienen, sind die grundlegen-
den Prinzipien auch auf viele anderen Szenen anwendbar. Jeder der beschriebenen
Algorithmen löst zwar in erster Linie ein bestimmtes Teilproblem, aber in Ihrer
Gesamtheit können die Verfahren als Bausteine verstanden werden, welche die
nächste Generation interaktiver dreidimensionaler Medien ermöglichen werden.
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Chapter 1

Introduction

Humans possess many senses to perceive their environment, but none of them is
such a rich source of information to them as the visual sense. The explanation for
this predominance can be found in evolution theory. Vision provides spatially ac-
curate information from a distance. It enables humans to efficiently recognize ene-
mies and to analyze their motion, as well as to track the movements of a prey. The
combination of eye and visual cortex in the the brain forms a very powerful system
for capturing and analyzing visual impressions of the environment [Palmer99].

However, from our own daily experience we know that the visual sense is not
only a powerful analytical tool but also a rich source of psychological stimuli. Joy,
sadness, or compassion are just a few feelings which can be induced by visual
impressions. Visual media, such as television or cinema, capitalize on this fact
that visual stimuli are the gate to the human fantasy. They can trigger the feeling
of immersion into a virtual environment exposed to the viewer.

Two disciplines of computer science, computer vision and computer graphics,
are dedicated to the visual sense. The former one intends to simulate and en-
hance the analytical capabilities of the human visual system through cameras and
computational image analysis. The latter one aims at generating photo-realistic
synthetic renditions of scenes that are visually indistinguishable from their real-
world equivalents. In recent years, researchers from both disciplines have learned
that the problems of optical scene capture, scene analysis and scene rendition
should not be treated separately. The advent of ever more powerful computers
and advanced imaging sensors has rendered it feasible to generate virtual models
of real-world scenes by reconstructing them from image data.

Amongst the most important real-world scenes, both for researchers work-
ing in computer vision and computer graphics, are scenes involving human ac-
tors. Here, the most challenging problem for the vision researcher is to estimate a
mathematical model of human motion from the captured image data. The graph-
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ics researcher is facing the problem of creating photo-realistic virtual humans that
can fool even the human eye which is not forgiving the slightest inaccuracy in
appearance. In this thesis we develop algorithmic solutions that enable the optical
acquisition of these scenes, the automatic analysis of the visible motion, and their
realistic rendition.

In principle, each of the methods that we propose can be regarded as a solution
to one of these sub-problems. However, in particular their interplay in larger
systems enables us to develop novel applications. To proof this, we show that
mathematical models of human motion and dynamic human appearance that have
been reconstructed from image data, can be used to generate novel free-viewpoint
renditions. The methods described in this thesis are tailored to scenes involving
human actors. However, the fundamental principles are applicable to a much
larger class of scenes, and we will elaborate more on this in the respective chapters
of this work.

1.1 Structure of the Thesis and Main
Contributions

In Chap. 2 we give some technical and theoretical background that is important
for the understanding of the chapters to follow. Chapters 3 through 10 are divided
in three parts according to their main focus. We conclude in Chap. 13 with a
description of future perspectives. The systems and algorithms that form the sci-
entific basis of this thesis have been published before in a variety of peer-reviewed
conference and journal articles. The main scientific contributions as well as the
appropriate references are briefly summarized in the following.

1.1.1 Part I: Marker-free Optical Human Motion Analysis

In Part I of the thesis, novel algorithmic solutions to two core problems of human
motion analysis from video are presented, motion capture and model estimation.
The former one is the problem of inferring a mathematical description of human
motion from image data. The latter one is the problem of automaticlly construct-
ing an appropriate virtual body representation.

In Chap. 3 we illustrate the importance of both problems, review related work
from the literature, and give theoretical and technical background information.
The nuts and bolts of a flexible and versatile studio that we have designed and
built in order to record synchronized multi-view video streams are described in
Chap. 4 [Theobalt03c]. The multi-view video (MVV) streams are the input data
to all algorithms that are described in Part I and Part II of this thesis.
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In Chap. 5 we present a novel hybrid approach to model-based marker-free
optical motion capture [Theobalt02a, Theobalt02b, Theobalt04e]. It jointly uses
real-time voxel-based visual hull reconstruction and feature tracking to estimate
the motion of a human skeleton from multiple video streams.

Human motion capture methods require a model of the body that represents
its shape and kinematic properties. We present a novel non-intrusive approach
to estimating a human body model from multiple synchronized video streams in
Chap. 6 [Theobalt04d, de Aguiar04]. It reconstrcuts a sequence of shape-from-
silhouette models and fills each volume with simple shape primitives. From their
motion over time a complete kinematic skeleton is reconstructed even though no a
priori information about the recorded subject is available. The method is equally
appropriate for estimating the kinematic structure of both human an animal sub-
jects.

1.1.2 Part II: Capturing Appearance and Motion - Free-
Viewpoint Video

Part II of this thesis illustrates that a motion capture approach can serve as the core
component of a model-based system for reconstructing free-viewpoint videos of
human actors. In Chap. 7 we describe the scope of 3D video in general and free-
viewpoint video in particular, and give some technical and theoretical background
information.

A novel model-based system for reconstructing and rendering free-
viewpoint videos of human actors from multi-view video is presented in
Chap. 8 [Carranza03, Theobalt04b, Magnor04]. The central element of the
method is a newly-developed silhouette-based analysis-by-synthesis approach.
This approach is used for customizing a generic body model such that it matches
its real-world equivalent, and for capturing the pose of the human at each time step
of a multi-view video sequence. This method also lends itself to a parallel imple-
mentation that exploits the compartmentalized nature of the pose determination
problem [Theobalt03b]. A realistic dynamic surface appearance of the human is
generated by projectively texturing the model with the appropriately blended in-
put camera views. The free-viewpoint videos can be rendered in real-time and the
virtual viewpoint can be arbitrarily changed.

In Chap. 9 we propose an augmented version of the original silhouette-based
motion capture method that incoporates texture information into the pose esti-
mation process [Theobalt03a, Theobalt04c]. We have developed a predictor-
corrector-scheme in which a 3D motion field is reconstrcuted from 2D optical
flows that enables the correction of pose inaccuracies after silhouette-fitting.

If virtual environments shall be augmented with 3D renditions of real-world
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people, one has to realistically display them under the novel virtual lighting condi-
tions. To serve this purpose, the surface reflectance properties have to be known.
We thus further enhance our free-viewpoint video approach in Chap. 10 such that
it is able to not only capture dynamic scene geometry but also dynamic surface
reflectance properties from multi-view video [Theobalt05]. To serve this purpose,
we have developed a dynamic reflectometry approach that allows us to capture a
bidirectional reflectance distribution function for each surface point, as well as a
time-varying normal field from only a handful of video streams. In order to opti-
mize the multi-view texture-to-model consistency prior to reflectance estimation
we have also developed a novel image-based warp-correction method. This way,
relightable 3D videos are generated that can be rendered in real-time on standard
graphics hardware.

1.1.3 Part III: High-Speed Motion Estimation - Exploring
the Limits of Photo Camera Technology

While the methods presented in the first two parts where dedicated to analyzing
and rendering human motion of moderate speed, in Part III we examine ways to
capture and visualize very rapid motions. In Chap. 11 we illustrate the importance
of high-speed motion capture in general and our approach in particular. Further-
more, some technical background is presented by reviewing related work in the
field.

A common way to capture image data of a high-speed event is to record
with an expensive high-frame-rate video camera. In Chap. 12 we present a novel
cost-effective principle to acquire high-speed motion that has a large spatial ex-
tent [Theobalt04a]. Our method employs the principle of multi-exposure pho-
tography using regular off-the-shelf digital photo cameras. We demonstrate the
performance of the principle by capturing both the parameters of motion of the
flying ball as well as the pose parameters of the pitcher’s hand during a baseball
pitch. Our data enable visualizations of the high-speed events from arbitrary novel
viewpoints.



Chapter 2

Preliminary Techniques and
Basic Definitions

In this chapter some general theoretical background is given and elementary tech-
niques are described that many of the projects in this thesis capitalize on.

We begin in Sect. 2.1 with a description of general principles of how to model
the shape, the appearance and the kinematics of a human in a computer. Although
we have developed customized body models in the course of each of the projects
described in this thesis, they all are based on common principles.

Video and photo cameras are the sensors with which we capture all the infor-
mation we need, in order to estimate body motion and to reconstruct 3D videos.
To us it is of fundamental importance to simulate the imaging process of the cam-
eras by means of a mathematical camera model. The correspondence between a
real camera and its computational equivalent, the process of camera calibration,
and the imaging geometry of camera pairs are outlined in Sect. 2.2.

We conclude this chapter in Sect. 2.3 with a description of image processing
techniques that are applied in several of the projects that form the basis of this
thesis.

2.1 The Human Body and its Digital
Equivalent

The human body is a highly complex system. Both its optical appearance as
well as its physical and kinematic properties are the result of the interplay of
many physiological components. Already the appearance of the skin, for exam-
ple, is the result of a non-trivial light interaction on the body surface, fine-grain
structural pigmentation, and the deformation of muscles and connective tissue.
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(a) (b)

Figure 2.1: (a) Anatomical skeleton of the human body (images taken
from [myd]). (b) A digital body model that mimics the geometry and the
kinematics of a human.

The kinematic properties of the human body are mainly determined by its bone
skeleton (Fig. 2.1a). It consists of 206 bones and more than 200 interconnecting
joints [Sobotta01]. Muscles that are attached to the bones via tendons are the actu-
ators of the body that move it into a certain stance. A realistic computational body
model has to comprise appropriate representations for the kinematics as well as
the appearance of the real human. Representation methods that serve this purpose
are described in the following two subsections.

2.1.1 Modeling the Kinematics of the Human Body

The equivalent of the human skeleton in a computational model is a kinematic
skeleton. It mathematically models a hierarchical arrangement of joints and
interconnecting bones. A kinematic skeleton follows the principle of the kine-
matic chain [Murray94]. A kinematic chain is a linear arrangement of connected
rigid body segments. The relative orientation between one segment and the
subsequent element in te chain is controlled via a rigid body transformation.
A rigid body transformation jointly describes a rotational and a translational
transformation between the local coordinate frames of adjacent rigid bodies. In
consequence, a kinematic chain is a hierarchical structure. Transformations at
a higher level of the hierarchy (i.e. closer to the initial element in the chain)
influence all segments on the succeeding hierarchy levels, but no segment on the
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preceding levels. The human skeleton is usually approximated by a collection of
kinematic sub-chains, e.g. the arm or the leg, which originate from a common
root joint located in the torso area. In Fig. 2.1b the skeleton of a body model
employed in the Chaps. 8, 9, and 10 is illustrated. To keep the model complex-
ity moderate only the most important joints in the human skeleton are represented.

We have seen that the pose of a human can be specified via rigid body trans-
formations. The space of all rigid body transformations in 3D is a group known
as the special Euclidean group SE(3). It is common practice to specify an ele-
ment of SE(3) as a linear transformation of homogeneous coordinates (i.e. as a
linear transformation in the projective space P

3, see [Hartley00] for a detailed
introduction to projective spaces). If p = (x,y,z)T is a point in three-dimensional
Euclidean space, then p = (x,y,z,1)T is its equivalent in homogeneous coordi-
nates. Vice versa a point p = (x,y,z,q)T is the homogeneous representation of
the Euclidean point p = (x/q,y/q,z/q)T . A 3D rigid body transform in projective
notation is a 4×4 matrix of the form

P =

[

R ~t
0 1

]

(2.1)

where ~t ∈ R
3 is the translational component, and R is a 3 × 3 matrix con-

trolling the rotational component. The space of 3 × 3 rotation matrices
SO(3) = {R ∈ R

3×3 | RRT = I, detR = ±1} forms a group under matrix mul-
tiplication.

If all the rigid body transformations in kinematic chain are known, the pose of
the chain is uniquely determined. Let’s consider the example of a kinematic chain
consisting of the three connected segments A,B and C, A being the root. Let the
point eC = (xC,yC,zC,1)T be defined in the local frame of segment C. Then its
coordinates eA = (xA,yA,zA,1)T with respect to the frame attached to segment A
evaluate to

eA = PABPBCeC (2.2)

PAB is the relative rigid body transformation between segments A and B, and PBC
is the relative rigid body transformation between segments B and C.

In a kinematic skeleton the translational components of rigid body transfor-
mations are implicitly represented by the bone lengths. The joints model the ro-
tational component. Since the bone lengths are constant, the pose of the skeleton
is fully-specified by the rotation parameters for each joint. Only for the root the
translation has to be set.

An element of SO(3) has at most three degrees of freedom, and thus there are
more compact ways to specify rotations than via the full matrix. The three most
widely-used rotation parameterizations are described in the following. They are
also applied in later chapters of this thesis:
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Euler angles Here, the idea is to parameterize the transformation as a product
of three rotations around specific coordinate axes. Most widely used are the ZYZ-
Euler angles in which the matrix R(α,β ,γ) is a product of a rotation around the
z-axis Rz(α) by an angle α , a rotation around the transformed y-axis Ry(β ) by an
angle β , and a rotation around the transformed z-axis Rz(γ) again by an angle γ:

R(α,β ,γ) =





cosα −sinα 0
sinα cosα 0

0 0 1









cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ









cosγ −sinγ 0
sinγ cosγ 0

0 0 1



 (2.3)

Euler angles are a local parameterization of SO(3) and thus singularities (com-
monly referred to as gimbal lock) can occur. Different sequences of rotation axes
are also feasible [Murray94].

Quaternions Quaternions give a global parameterization of SO(3). A quater-
nion is a generalization of complex numbers and represented as a vector quantity
of the form

q = q0 +q1i+q2j+q3k qi ∈ R, i = 0, . . . ,3 (2.4)

where q0 is the scalar component and ~q = (q1,q2,q3) is the vector compo-
nent. A convenient shorthand notation is q = (q0,~q). The set of quaternions
is a 4-dimensional vector space over the reals and forms a group with respect
to quaternion multiplication [Murray94]. Any rotation around a unit axis ~ω =
(ωx,ωy,ωz) by angle θ can be represented by a unit quaternion of the form

q = (cos(θ/2, ~ωsin(θ/2)) (2.5)

Combined rotations can be compactly expressed by quaternion multiplication.

Axis-angle An element of SO(3) can be parameterized via a unit rotation axis
~ω = (ωx,ωy,ωz) and an angle θ by which to rotate around this axis. The corre-
sponding rotation matrix is obtained via Rodriguez’ Formula as:

R = I+ sin(θ)Ŵ+(1− cos(θ))Ŵ2 with Ŵ =





0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



 (2.6)

Inferring the axis and angle parameters from the matrix R is a bit more involved
and described in detail in [Murray94].

It depends on the specific application which of the parameterizations is most
appropriate. They differ in mathematical properties, modeling power (local,
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global), memory consumption, and computational efficiency (see [Eberly02] for
an instructive comparative evaluation). Not all joints provide all three degrees of
freedom. Sometimes, such as in a hinge, only one degree of freedom is provided.
These constraints can be transformed into appropriate numerical constraints in the
parameter space.

In the course of this thesis we will develop several algorithmic solutions to the
problem of inferring transformation parameters for the human body from image
data. In the context of each of these methods we will describe which rotation
parameterization was found to be appropriate.

2.1.2 Modeling the Appearance of the Human Body
There are two main elements that contribute to the realistic appearance of a virtual
human, the geometry of the body and the texture of the surface. The surface geom-
etry of the body is typically modeled by means of a triangle mesh. The vertices of
the mesh are attached to the bones such that the moving skeleton moves the body
surface accordingly. There are single-skin and segmented surface representations.

In a segmented model, each body part is represented by a separate triangle
mesh. Each vertex is assigned to exactly one bone. The body model shown
Fig. 2.1b belongs to this category.

In a single-skin model, vertices that are in the spatial neighborhood of a joint
are weightedly assigned to either of the two adjacent bones. This way, skin defor-
mations due to joint bending can be represented, a technique commonly referred
to as vertex skinning [Fernando04].

One can even take one step further and model the skin deformations due to the
activity of the muscles in the human body [Kähler03].

The second component contributing to a realistic look of a virtual human is
the surface texture. One way of reproducing the appearance of a real person is
to reconstruct a consistent surface texture from photographs. A static texture,
however, cannot reproduce details, such as wrinkles, that change with the body
pose.

A dynamic surface texture that incorporates such time-varying details can
also be reconstructed from photographs if for each pose that the model strikes
multiple images are available (Chap. 8).

Even a dynamic surface texture can only faithfully reproduce the look of a
person under fixed illumination conditions. If one wants to render a person cap-
tured in the real world under arbitrary novel lighting conditions, a mathematical
description for the surface reflectance has to be derived (Chap. 10).

In the most general case, surface appearance must be phenomenologically
described by a twelve-dimensional function [Rusinkiewicz00]. Typically, how-
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ever, phosphorescence and fluorescence effects as well as subsurface scattering
can be ignored, which significantly reduces reflectance representation dimension-
ality. In most cases, a six-dimensional function suffices, known as the spatially-
varying bidirectional reflectance distribution function (BRDF) fr. It is defined
at all surface points ~x as the ratio of outgoing radiance Lo in hemispherical
direction v̂ = (ωo,θo) to incoming irradiance Li cosθi dωi arriving from direc-
tion l̂ = (ωi,θi):

fr(v̂,~x, l̂) =
dLo(~x, v̂)

Li(~x, l̂)cosθi dωi
(2.7)

While in its general form the BRDF describes any surface reflectance character-
istics, in computer graphics, real-world BRDFs are regularly represented using
parametric models that consist of diffuse object albedo and an analytical expres-
sion for the specular/glossy reflection component. By varying parameter values,
parametric BRDF models can represent a wide range of different reflectance char-
acteristics with the same mathematical expression.

Two parametric BRDF models will play a major role in our project on re-
lightable free-viewpoint video reconstruction (Chap. 10), the Phong model and
the Lafortune model. The empirical Phong model [Phong75] is an isotropic re-
flectance model that consists of diffuse object color and a specular lobe

f rgb
r (l̂, v̂,~x,ρ) = krgb

d +
krgb

s

n̂ · l̂
(~r(l̂) · v̂)ke (2.8)

Given the surface normal n̂, the reflection vector is defined as~r(l̂) = l̂ −2(l̂ · n̂)n̂.
For diffuse and specular color, we have to consider the red, green, and blue color
channel separately. Seven model parameters (krgb

d ,krgb
s ,ke) then describe diffuse

object color, specular color, and the Phong exponent which controls the size of
the specular lobe.

The Lafortune model [Lafortune97] is an extension of the Phong model.
It can additionally incorporate off-axis specular peaks, backscattering and even
anisotropy:

f rgb
r (l̂, v̂,~x,ρ) = krgb

d (2.9)

+ ∑
i
[Crgb

x,i (lxvx)+Crgb
y,i (lyvy)+Crgb

z,i (lzvz)]
ke,i

Besides diffuse color krgb
d , the model includes several specular lobes i

whose individual direction, specular albedo and directedness are defined by
(Crgb

x,i ,Crgb
y,i ,Crgb

z,i ,ke,i). The vectors ~l = (lx, ly, lz) and ~v = (vx,vy,vz) are the nor-
malized vectors corresponding to the hemispherical directions l̂ and v̂. We refer
the interested reader to [Lensch04] for a more detailed elaboration on reflectance
models.
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2.2 The Camera and its Mathematical
Equivalent

Figure 2.2: Illustration of the mathematical camera model that simulates the
imaging process of a real-world CCD camera.

A camera captures an impression of a 3D scene in the 2D image plane. A lens
collects the incident illumination and deflects light rays towards a focal point. The
deflected rays finally form an image of the observed scene in the image plane. In
analogue cameras a photographic material is employed to capture the image. In a
digital camera an array of photosensitive cells assembled in a CCD chip serve the
same purpose [Janesick01]. In order to incorporate the process of image forma-
tion into an algorithmic framework, a mathematical description for the mapping
between 3D world space and 2D image space is required.

2.2.1 A Mathematical Model of a CCD Camera
The image formation process of a CCD camera is modeled by means of a pinhole
camera model, which is mathematically described by a projective linear transfor-
mation [Hartley00]. Both the photo and video cameras employed in our research
feature a CCD imaging sensor. Let pworld = (px, py, pz,1)T be a point that is spec-
ified in the world coordinate frame. Then its projected location in the image plane
pim of the camera evaluates to:

pim = KOpworld =





αx 0 x0
0 αy y0
0 0 1





[

R −Rc
0 1

]

pworld (2.10)

R is the 3×3 rotation matrix that represents the orientation of the camera’s local
coordinate frame with respect to the world coordinate frame, and c ∈ R

3 are the
Euclidean world coordinates of the camera’s center of projection. The parameters
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of R and c are called the external parameters of the camera. The matrix K is
commonly referred to as the calibration matrix, its entries are called the intrin-
sic parameters of the camera. The principal point in the image plane, i.e. the
intersection of the optical axis with the image plane, is at position (x0,y0). The
coefficients αx = f mx and αy = f my represent the focal length of the camera in
terms of pixel dimensions in x and y direction respectively. f is the focal length of
the camera, and mx and my are the numbers of pixels per unit distance in image
coordinates in x and y direction respectively. Thus, a CCD camera model has 10
degrees of freedom.

The physical properties of lenses make the image formation process geomet-
rically deviate from the ideal pinhole model. Geometric deviations typically arise
in the form of radial or tangential image distortion artifacts [Jain95].

Radial distortion originates from the fact that a physical lens bents light rays
towards the optical center by more or less than the ideal amount. It’s effect in the
image plane can be modeled by a polynomial in the radial distance from the image
plane center.

Most off-the-shelf camera lenses are actually composed of several individual
lenses. Tangential distortion effects are due to the fact that the individual lenses
in an optical system of a camera do not properly align with respect to the overall
optical axis [Weng90].

2.2.2 Camera Calibration
In order to simulate the properties of a real camera, one needs to determine the
parameters of mathematical models that optimally reflect the geometric and pho-
tometric imaging properties of the real device. This process is termed calibration.

The most important calibration step is geometric calibration in which the pa-
rameters of the imaging model detailed in Sect. 2.2.1 are estimated. Most cali-
bration algorithms proposed in the literature [Tsai86, Heikkila96, Jain95] derive
the camera parameters from images of a calibration object with known physical
dimensions, such as a checkerboard pattern. An optimization method modifies
the model until the predicted appearance of the calibration object optimally aligns
with the captured images. In order to mimic the imaging properties of a phys-
ical camera in a rendering library like OpenGL one needs to transform the cal-
ibrated camera model into the mathematical camera framework applied by this
library. This conversion is applied in most of the projects in this thesis and, for
the OpenGL system, it is described in detail in [Li01].

If reconstruction from images is the goal, not only the geometric imaging
properties but also the photometric imaging properties of the imaging sensors have
to be calibrated. Most cameras don’t establish a linear relationship between in-
tensity values in the captured scene and pixel values in the image. A response
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curve of the camera can be estimated vie photometric calibration that enables us
to establish such a linear relationship in a post-processing step.

Furthermore, the tristimulus color values (e.g. RGB) recorded for a color
patch in the scene depend not only on the spectral reflectance of the patch, but
also on the spectrum of illumination and on the spectral response of the imaging
sensor. To ensure correct color acquisition under a given illumination setup, a
color calibration step has to be performed. The simplest color calibration proce-
dure is white balancing. White balancing computes multiplicative scaling factors
from an image of a purely white or gray object. A more detailed elaboration on
photometric and color calibration can be found in [Goesele04].

2.2.3 Camera Pairs

A pair of cameras whose viewing directions converge is commonly referred to
as a stereo pair. Stereo images of a scene can be used to derive 3D structural
information. If a stereo pair is fully-calibrated, i.e. the intrinsic and extrinsic
parameters for both cameras are known, the metric 3D position of a point p visible
in both cameras can be calculated via a procedure called triangulation (Fig. 2.3a).
The position p is estimated by computing the intersection point of two rays, r1
and r2. The ray r1 originates in the center of projection of camera 1, c1, and
penetrates the image plane in the position p1 to which the 3D point projects.
Ray r2 is constructed in the same way for camera 2. Due to measurement noise
the rays will most certainly not truly intersect, and thus it is common practice to
approximate the 3D position of a point by the point that has the smallest distances
to both rays.

The image formation process in a stereo pair of cameras is described by its
epipolar geometry (Fig. 2.3). It describes the fact that an image point p1 in one
camera view has a corresponding point p2 in the other camera view which lies
somewhere on a line e2 in the other image, the so-called epipolar line. The
epipolar geometry of a stereo pair is fully-specified by its fundamental matrix.
Given this matrix, the epipolar line e2 in camera 2 that corresponds to point p1
in camera 1 can be directly computed via simple matrix multiplication. This way,
the correspondence finding problem reduces to a one-dimensional search problem
along a line. In a fully-calibrated camera pair, the fundamental matrix is directly
available. However, it can also be inferred from 8 point correspondences between
two uncalibrated cameras. The concept of epipolar geometry and the derivation
of the fundamental matrix are detailed in [Faugeras93, Hartley00].
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(a) (b)

Figure 2.3: (a) Triangulation: The point of intersection of the two rays r1 and
r2 through the respective cameras’ centers of projection c1 and c2 and the re-
spective projected image plane positions p1 and p2defines the 3D position p
of the point. (b) Epipolar geometry: The point p2 in camera 2 that corre-
sponds to point p1 in camera 1 must lie on an epipolar line e1. The inverse
relation with flipped indices also holds.

2.3 Important Image Processing Algorithms

2.3.1 Background Subtraction
In all the research projects detailed in this thesis we pre-process the input im-
age and video data such that a person or an object in the scene foreground
is segmented from the scene background. We have decided to use a color-
based method originally proposed in [Cheung00]. This approach incorporates
an additional criterion which prevents shadows from being erroneously classi-
fied as part of the scene foreground. Our subtraction method employs per-pixel
color statistics for each background pixel that is represented by a mean image
Π = {~µ(x,y) | 0 ≤ x < width,0 ≤ y < height} and a standard-deviation image
Σ = {~σ(x,y) | 0 ≤ x < width,0 ≤ y < height}, each pixel value being a 3-vector
comprising all three color channels. In order to incorporate the natural variations
in pixel intensity due to noise and natural illumination changes into these statis-
tics, they are generated from several consecutive video frames of the background
scene without an object in the foreground.

Background subtraction on a novel frame classifies an image pixel ~p(px, py)
at position (px, py) as follows. If the color of ~p(px, py) differs in at least one RGB
channel by more than an upper threshold Tu from the background distribution

| ~p(px, py)c −µ(px, py)c |> Tu ·~σ(px, py)c , c ∈ {r,g,b} (2.11)

it is classified as foreground. If its difference from the background statistics is
smaller than the lower threshold Tl in all channels, it is certainly a background
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(a) (b) (c)

Figure 2.4: Video frame after background subtraction (a) and the corre-
sponding silhouette (b). Shadows cast by the person onto the floor (blue)
are identified and correctly classified as scene background (c).

pixel. All pixels which fall in between these thresholds are possibly in shadow
areas. Shadow pixels are classified by a large change in intensity but only a small
change in hue. If ~p(px, py) is the color vector of the pixel to be classified, and
~µ(px, py) is the corresponding background pixel mean color vector, their differ-
ence in hue is

∆ = cos−1
(

~p(px, py) ·~µ(px, py)

‖~p(px, py)‖‖~µ(px, py)‖

)

(2.12)

If ∆ > Tangular the pixel is classified as foreground, else as shadow. Finally, a
0/1-silhouette mask image for the video frame is computed (Fig. 2.4).

2.3.2 Optical Flow
The optical flow is the projection of the 3D velocity field of a moving scene into
the 2D image plane of a recording camera. The determination of the 2D optical
flow from spatio-temporal intensity variations in images has been investigated in
Computer Vision for many years [Barron94].

A number of simplifying assumptions are typically made to compute the opti-
cal flow from the pixel intensities of two subsequent images. First, it is assumed
that the change in image intensity is due to translation in the image plane only
(intensity constancy constraint)

I(u, t) = I(u−~ot,0) (2.13)

where~o = (p,q)T is the optical flow at image point u = (u,v)T , I being the image
intensity at coordinates u and time t. From the Taylor expansion of (2.13) and
linearization, the optical flow constraint equation is derived as

∇I(u, t) ·~o+ It(u, t) = 0 (2.14)
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where It(u, t) is the temporal derivative of the image intensity. This is an equation
in two unknowns which cannot be solved at a single image plane position without
additional constraints. Hence, it is common practice to make additional assump-
tions about the smoothness of the optical flow field in a local spatial neighborhood
to make the problem well-posed.

In the optical flow approach by Lucas and Kanade [Lucas81], a weighted least-
squares fit to the local first-order constraints (2.14) is computed by minimizing the
functional

∑
u∈W

W 2(u)[∇I(u, t) ·~o+ It(u, t)]2 (2.15)

where W (u) defines a Gaussian neighborhood around the current position in the
image plane for which the optical flow is computed. It is also feasible to employ
a hierarchical variant of the Lucas-Kanade approach that incorporates flow esti-
mates from multiple levels of an image pyramid into its final result. In Chap. 9
we employ this method to compute optical flows from which 3D motion fields
for body pose update are reconstructed. In Chap. 10 the algorithm is used as a
component of an image-based warp-correction scheme.



Part I

Marker-free Optical Human
Motion Analysis





Chapter 3

Problem Statement and
Preliminaries

Video-based analysis of motion has always been a problem that attracted re-
searchers from computer vision and computer graphics. Amongst the most impor-
tant types of motion is the motion of humans. Video-based methods that extract
mathematical models of human motion are of great relevance in many application
scenarios:

The generation of life-like human characters is an important issue in the pro-
duction of today’s computer games and motion pictures. In order for a virtual
human to be convincing, not only its visual appearance but also its movements
have to comply with the real world equivalent. The eye of a human observer has
been trained to notice even the slightest unnaturalness in gait. A motion analy-
sis approach enables capturing all the fine details of human movements from real
persons.

Researchers in the field of biomechanics analyze the interplay of the human
bone and muscle system while the body is moving [Whittle96]. Thus they have
a strong interest in detailed models of human motion that were captured from
real world test subjects. Biomechanical motion analysis can also be a great help
for coaches in many sports disciplines. The analysis enables a much more de-
tailed impression of which parts of an athlete’s course of motion can be improved
[Calvert94].

Computer-based analysis of human motion also enables the automatic inter-
pretation of human gestures. It has for long been a goal of Artificial Intelligence to
create optical user interfaces that enables software systems to appropriately react
to a user’s behavior [Pavlovic97, Starner98, Malassiotis02].

The advent of ever more powerful computing and display hardware has paved
the trail for new visual media applications. The enormous amount of data that
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arises when these media are to be transmitted to the end-user make necessary ef-
ficient encoding schemes. Therefore, a trend in the picture coding community
can be observed to employ motion information also for the purpose of data re-
duction. Since many video sequences are centered around human actors, model-
based encoding schemes that transmit a 3D model of the person and its motion
parameters instead of the full video stream can help to significantly reduce the
required bandwidth [Eisert01, Grammalidis01, Weik99]. Hence, the latest video
standard by the ISO/OSI Motion Pictures Expert Group, MPEG-4, also provides
an algorithmic framework to encode video objects based on their motion parame-
ters [Capin99, ISO/IEC00].

The term human motion analysis denotes a superordinate concept which sub-
sumes many algorithmic subproblems that range from the actual estimation of
motion parameters to the interpretation of motion on a semantic level. In our
work we focus on two fundamental algorithmic challenges which are at the core
of human motion analysis, namely human motion capture and body model esti-
mation:

• Human Motion Capture
Human motion capture is the process of estimating a mathematical descrip-
tion that completely describes a sequence of motions that is performed by
a person in the real world. This mathematical representation has two com-
ponents. The first component is a theoretical model of the person’s body
structure and kinematic properties. The second component is a set of pa-
rameters that describe the subject’s motion in terms of this body represen-
tation (see Sect. 2.1). The task of a motion capture algorithm is to estimate
these parameters of motion. The derivation of an appropriate body model is
a separate problem.

• Body Model Estimation
Body Model Estimation is the process of automatically deriving a body rep-
resentation that models the shape and kinematic properties of a human actor.

A variety of different approaches have been described in the literature which
search for answers to these two algorithmic questions. They mainly differ in
the physical principle that is used to collect data of a moving subject. Mechan-
ical, electromagnetic, and sonar tracking devices have been developed, but by
far the most widely used systems employ image or video data. Unfortunately,
many of these approaches require some form of physical interaction with the
scene, for instance in the form of an exoskeleton, tracking sensors or optical bea-
cons [Menache95]. However, in many application scenarios any form of interfer-
ence with the scene in order to estimate motion or skeleton information is totally
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inappropriate. Optical surveillance of humans is only feasible if it can be done
without having to physically interact with the subject in a scene. Furthermore, if
one intends to not only estimate motion data but also appearance-related informa-
tion, such as texture data, any form of visual modification of the scene would be
obstructive. It is thus of great importance to develop methods that enable motion
estimation from raw video dat and that do not require optical markings on the
body.

In Part I of this thesis we describe our novel algorithms for marker-free motion
parameter estimation and marker-free body model reconstruction from multi-view
video. In Chap. 5 a novel hybrid approach for marker-free capture of human mo-
tion parameters from multiple synchronized video streams is detailed. It joins
the forces of a real-time feature tracking and a real-time volume reconstruction
method to fit a multi-layer kinematic skeleton to the motion data at interactive
frame rates. In Chap. 6 we describe the nuts and bolts of a method which enables
the automatic estimation of a kinematic body model from multiple video streams
of a moving person. The approach does with a minimum of a priori information
about the body structure of the recorded subject and is applicable to arbitrary mov-
ing subjects, including humans, animals and mechanical devices. The synchro-
nized video streams of a moving subject that we need as inputs to both algorithms
are recorded in our multi-view video acquisition studio (Chap. 4). The recording
facility is not only a fundamental component of our research on human motion
analysis but also an important building block in our work on free-viewpoint video
and reflectance estimation which is detailed in Part II of the thesis. Although the
silhouette-based motion capture algorithm developed there conceptually belongs
to Part I of this thesis, we prefer to describe it in the scope of the overall applica-
tion it was designed for (Chaps. 8,9, and 10).

The remainder of this chapter will briefly review and categorize algorithms
and systems from the literature that attack the problems of human motion capture
and body model estimation

3.1 Background

In the following subsections we will have a quick look at important related work
from the literature. While there are a variety of conceptually different approaches
for human motion capture, only very few methods for automatic body model es-
timation have been developed so far. Although the latter methods form a separate
algorithmic category, they are frequently presented in conjunction with a motion
estimation algorithm. We begin our review with an explanation of important tech-
nical categories of human motion capture methods (Sect. 3.1.1 to Sect. 3.1.3).
Thereafter, we briefly discuss algorithms for automatic optical estimation of body
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(a) (b) (c)

Figure 3.1: (a) MetamotionTM Gypsy exoskeleton with resistive bending an-
gle sensors. (b) Marker-based optical motion capture system from Vicon. (c)
Vicon motion capture camera with ring of LED light sources.

models. We conclude this chapter with a brief look at photo and video camera-
based image data acquisition facilities and compare them to the studio that we
have built (Sect. 3.1.5.

The following overview is not intended to be a complete review but shall point
out exemplary work. The interested reader who wants to explore the field more
deeply is referred to the review papers on the field [Gavrila99, Moeslund01,
Aggarwal99], as well as the paper by Gleicher et al. which elaborates on key
challenges in video-based motion capture [Gleicher02].

3.1.1 Non-optical Human Motion Estimation
In recent years, many different motion tracking systems have been developed that
employ quite different non-optical physical principles [Menache95, Moeslund00].
One category are the so-called inside-in-systems, in which the person is required
to wear a specially designed suite. This special type of apparel is equipped with
fibre-optic or resistance sensors that measure the joints’ bending angles. An exam-
ple of a tracking suite which is equipped with aluminum rods and potentiometers
is the Gypsy exoskeleton from MetamotionTM [Met] that is shown in Fig. 3.1a.

Electromagnetic body tracking systems employ multiple small sensors and an
external electromagnetic field generator. For human motion capture the sensors
are placed at several positions on the body and each sensor’s position and orienta-
tion is derived from its electromagnetic interaction with the external field [Pol].

Acoustic tracking systems either measure the time of flight of sound pulses
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sent between a sender and receiver station, or analyze the phase shift between
sent and received signal. Each tracking sensor typically provides position and
orientation data. The accuracy of acoustic tracking systems is usually very limited
and they are normally not used for tracking the whole body. An example for this
category of devices is the Red Baron Ultrasonic Head Tracker by Logitech [Log].

3.1.2 Video-based Motion Estimation using Optical
Markers

By far the most widely used commercial systems for human motion capture are
marker-based optical acquisition setups. They make use of the principle of mov-
ing light displays [Johannson73]. Optical markings, which are either made of
a retroreflective material or LEDs are placed on the body of a tracked subject.
Several special-purpose high-frame-rate cameras (often with specialized light
sources) are used to record the moving person. The locations of the markers in the
video streams are tracked and their 3D trajectories over time are reconstructed by
means of optical triangulation [Gleicher99, Herda00]. The main algorithmic prob-
lems that have to be solved are the unambiguous optical tracking of the markers
over time as well es the establishment of marker correspondences across multiple
camera views [Ringer02]. Before motion capture commences, the person stands in
a so-called t-pose, i.e. upright body with arms spread to the sides. From this pose,
correspondence between marker positions on the body and individual segments of
a hierarchical kinematic skeleton model are established. These correspondences
and the marker trajectories enable the estimation of each segment’s position and
orientation at each time step of a motion sequence. The segment-specific track-
ing data can be transformed into joint rotation parameters of the skeleton model.
Due to self-occlusions it happens frequently that markers on the body appear and
disappear in some camera views and wrong across-camera correspondences are
established. Thus a post-processing step is always necessary in which the motion
data are smoothed and problems due to marker occlusion are manually resolved.
In Fig. 3.1b a marker-based optical motion capture system manufactured by Vicon
is [Vic] is depicted. Fig. 3.1c shows the employed special-purpose camera with a
ring of LEDs. The markers on the body optimally reflect the light emitted from
these light sources.

In principle, marker-based systems can not only be used to track humans but
also animals and vehicles. The accuracy at which real-world positions and orien-
tations are tracked can reach sub-millimeter level. However, all these advantages
come at the cost of having to visually modify a recorded scene completely. In
consequence, it is impossible to derive appearance information, such as textures
or reflectance samples, from the captured video material.
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3.1.3 Marker-free Optical Motion Estimation

Marker-free optical estimation of human motion is a highly complex problem.
The problem of inferring the pose of a human from pure image data is, in principle,
a search problem in the parameter space of the employed model. There are several
factors which make this problem hard.

First, the human body is a very complex articulated system. Even the simplest
kinematic skeleton models employed already offer more than 30 degrees of free-
dom. This fact renders the exhaustive search for a correct body pose completely
illusive. It is thus inevitable to incorporate constraints into the search process.
Many different types of constraints have been considered. The most popular ones
are features in the image, such as edges [Drummond01] or silhouette informa-
tion [Carranza03], that correspond to certain features of the body model. It is also
feasible to employ dynamic models that mathematically describe human motion
and that allow for the prediction of the next body pose from the current one. Track-
ing robustness is increased if the dynamic model is integrated into a stochastic
tracking framework [Deutscher00, Sidenbladh00, Sidenbladh02]. Kinematic and
dynamic constraints of the real human body can also help to restrict the search
range [Herda04].

A second factor that contributes to the algorithmic complexity of marker-free
optical motion estimation is the fact that the mapping from the 3D space of
the human body to the 2D space of the image domain is not one-to-one. Many
different body configurations can theoretically result in the same image.

Existing approaches from the literature that attack the problem of non-
intrusive optical pose estimation can be categorized according to many algorith-
mic criteria. We have decided to distinguish between methods that only extract
2D motion information, and algorithms that recover the full complexity of human
motion in 3D. In the following, we describe what strategies are followed in the
different approaches in order to handle the problem’s complexity.

Estimation in 2D

One general approach to the analysis of human motion has been to bypass a
model-based pose recovery step altogether and to describe movements in terms
of simple 2D features in the image plane. The computational complexity of these
methods is often significantly lower than for approaches that employ a full 3D
body representation. Thus, they have been very popular until a couple of years
ago when the performance of commercially available computer hardware was still
a major bottleneck.

2D algorithms have been widely used for hand tracking and gesture represen-
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tation. The features employed are either shape information or movement/location
data within the image plane. Typical shape features are x-y shape images and
orientation histograms [Freeman96] or Zernike moments [Hunter95]. Trajectory
parameters of region centroids are also often used [Starner97, Davis93].

It is also possible to subdivide the image plane into a regular grid, and to use
features assigned to each tile to derive specific motion information, e.g. motion
periodicity. Typical tile features are the sum of normal flow [Nelson94] or the
pixel values themselves [Kjeldsen96, Darrell93].

Another line of search involves statistical shape models. Cootes et
al. [Cootes95] employ what they call Active Shape Models. These models are
learned in a training stage from example shapes that are described by known
feature point locations. A principal component analysis on feature locations is
applied to describe example shapes in a low parameter space. The learned model
can be used to track deformable objects such as hands (or humans). Baumberg
and Hogg [Baumberg94] employ Active Shape Models based on B-splines for
tracking the motion of pedestrians.

One step further take all those approaches which make use of some form of
a priori structural and kinematic information about the human body. Typically,
an explicit 2D shape model is used which is fitted to the observed motion by
identifying features in the image plane. The type of model strongly influences
what type of features can be used. One can distinguish methods using edge or
ribbon features, image regions (or blobs) or simple points. In the approach by
Geurtz [Geurtz93] body poses are inferred by fitting 2D ellipsoids to image data
by means of a hierarchical curve fitting scheme. Human silhouettes in space-
time volumes of video streams are identified and tracked with deformable contour
models in the method by Niyogi and Adelson [Niyogi94]. In [Guo94] human
motion is tracked in 2D by fitting a stick figure to the skeleton of the person’s
silhouette.

Ribbon features corresponding to the arms and feet are identified in the ap-
proach presented in [Chang96]. Leung and Young [Leung95] use a 2D model that
consists of many different elements such as five U-shaped ribbons for the extrem-
ities, a trunk, and various joints and midpoints. Moving edges are detected in the
silhouettes of a moving person and the model is fitted to these features.

The Pfinder system [Wren97] takes a region-based approach. Each image
region, also called blob, is described in statistical terms by Gaussian distributions
in position and color space. Each blob corresponds to one specific part of the
human body, such as the hand or the head. The actual tracking of the person
iterates between the prediction of the appearance of the blobs in the next frame,
an assignment of pixels to individual regions, and an update of the blob statistics.

It is also feasible to use point features along the medial axis of a person’s
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outline for tracking as it is shown in [Cai96]. A simple body model consisting of
a head and a trunk representation is fitted to the human motion by analyzing the
position and velocity of the point features.

In the W 4 system by Haritaoglu et al. [Haritaoglu98] a frame differencing
method is used to identify moving persons in monocular video sequences. Several
persons can be tracked at the same time. The motion of individual body parts can
also be followed. For this purpose a 2D card board body model is employed
whose individual components are fitted to the respective moving sub-regions in
the image plane.

Example-based approaches estimate the pose of a person by comparing an
image to a database of reference pose images for which the model parameters are
known [Sullivan02, Carlsson00].

Appearance-based methods build a body representation of the human from
the image data and use this for tracking it over time [Ramanan03]. Typically, the
human body is modeled as 2D articulated puppet whose limbs are represented
by little rectangular areas that are filled with texture from the actual image data
(Fig. 3.2a).

The approaches described in this section can at best extract a certain subset of
information about the full human motion. Thus, they are often used as components
of gesture recognition or surveillance systems for which it is sufficient to work
with a coarser motion representation. However, if the movements of a person
have to be captured in their full complexity more sophisticated approaches that
employ detailed 3D models are needed.

Estimation in 3D

The most detailed understanding of human movement is obtained through cap-
turing algorithms that estimate the motion parameters of a complete 3D kine-
matic body model. The employed body model typically consists of a linked
kinematic chain of bones and interconnecting joints (Sect. 2.1). The skeleton
is fleshed out with simple geometric primitives in order to model the physi-
cal outline of the human body. Commonly employed types of shape primitives
are ellipsoids [Cheung00, Mikić01], superquadrics [Sminchisescu03, Gavrila96,
Kakadiaris96], and cylinders [Sidenbladh00, Goncalves95]. A more sophisticated
body model that employs an implicit surface representation generated from a col-
lection of metaballs is presented in [Plaenkers03].

A multitude of different strategies to bring such a 3D body model into optimal
accordance with the pose of the human in one or multiple video streams has been
investigated.

One possibility is to use a divide and conquer strategy where the motion of
each individual body part is tracked separately and mathematical constraints en-
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(a) (b) (c)

Figure 3.2: (a) Example 2D models applied in the appearance-based ap-
proach by Ramananan et al. (taken from [Ramanan03]). (b) Body model
employed by Deutscher et al. in their particle-filter-based 3D approach
(taken from [Deutscher00]). (c) Tracking results with the visual-hull-based
approach by Mikić et al. (taken from [Mikić01]).

sure the connectivity of the body model on a global level. A very early example
of this principle is the approach presented in [Shakunaga91] where the angles be-
tween projected sub-parts are identified to solve the pose recovery problem and to
enforce the connectivity. In another method [Mittal03] silhouette data are iden-
tified in multiple video streams that show the same scene from different camera
views. The silhouette of a person in each view is automatically subdivided, in-
dividual parts are identified, and each part is separately tracked. Connectivity is
enforced in a separate step.

In the pioneering work by O’Rourke and Badler [O’Rourke80] a constraint
propagation principle is used to narrow the pose parameter search space. An ex-
plicit 3D kinematic model is employed. In the first frame, box-shaped regions in
the image plane that correspond to projected joint locations are marked. A con-
straint propagation scheme is applied based on known distances between the joints
in the body model. New body poses are recovered through an iterative refinement.
Constraint propagation methods are also employed in other work, e.g. [Chen92].

In [O’Rourke80] a general architectural framework for human motion track-
ing systems has been proposed which is still used in many marker-free capturing
methods. According to this principle, model-based tracking consist of a prediction
phase, a synthesis phase, an image analysis phase, and a state estimation phase.
In other words, at each time step of a motion sequence the capturing system first
makes a prediction of the current pose, then synthesizes a view with the model
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in that pose, compares the synthesized view to the actual image, and updates the
prediction according to this comparison. Different tracking systems differ in what
algorithmic strategy they employ at each stage.

Analysis-through-synthesis methods search the space of possible body config-
urations by synthesizing model poses and comparing them to features in the image
plane. The misalignment between these features and the corresponding features
of the projected model drives a pose refinement process [Grammalidis01, Koch93,
Martinez95]. In [Plaenkers03] a sophisticated body model consisting of a skele-
ton and a surface representation based on a collection of metaballs is employed.
It is fitted to the motion of a person by aligning it with silhouette and depth data
that is reconstructed from multiple camera views.

Physics-based approaches compute forces acting on the model which bring it
into optimal accordance with the video footage [Kakadiaris95]. In the algorithm
proposed in [Delamarre99] silhouette images of a person in multiple video streams
are generated. Forces are computed that are proportional to the misalignment
between the outer contours of the projected model and silhouetted in the video
footage. In conjunction, all partial forces move the model into the correct stance.

Another category of approaches tries to invert the non-linear measurement
equation that maps the state space of the model onto the space of images. One way
to invert that measurement equation is to apply inverse kinematics [Yonemoto00],
a process known from robotics which computes a body configuration that min-
imizes the misalignment between projected model and image data. Inverse
kinematics inverts the measurement equation by linearly approximating it. The
method in [Bregler98] fits a kinematic skeleton model fleshed out with cylindri-
cal limbs to one or several video streams of a moving person. A combination of
a probabilistic region model, the twist parameterization for rotations and optical
flow constraints from the image enable an iterative fitting procedure. An extension
of this idea is described in [Covelle00] where, in addition to the optical flow con-
straints, also depth constraints from real-time depth image streams are employed.

Some researchers have experimented with comparison-based approaches for
3D pose recovery. In [Log04] the pose of a kinematic skeleton is estimated from
monocular video footage. Each video frame is compared to a database of refer-
ence images of a person for which the correct body stance is known. The stance
corresponding to the optimally matching reference frame is used as a first estimate
of the body pose. Since the reference image and the example frame will not show
the exact same body pose, an iterative refinement is applied. A conceptually simi-
lar method is explained in [Shakhnarovich03]. Here, the main algorithmic novelty
is a parameter-sensitive hashing method that enables searching the database of ref-
erence frames in sub-linear time with respect to the database size.

Recently, the application of statistical filters in the context of human motion
capture has become very popular. Basically, all such filters employ a process
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model that describes the dynamics of the human body and a measurement model
that describes how an image is formed from the body in a certain pose. The pro-
cess model enables prediction of the state in the next time step and the measure-
ment model allows for the refinement of the predication based on the actual image
data. An important advantage of these tracking filters is that process and measure-
ment noise are implicitly taken care of. If the noise is Gaussian and the model
dynamics can be described by a linear model, a Kalman Filter can be used for
tracking [Mikić01]. However, the dynamics of the complete human body is non-
linear. A particle filter can handle such non-linear systems and enables tracking in
a statistical framework based on Bayesian decision theory [Deutscher00] (see also
Fig. 3.2b). At each time step a particle filter uses multiple predictions (body poses)
with associated probabilities. These are refined by looking at the actual image data
(the likelihood). The prior is usually quite diffuse, but the likelihood function can
be very peaky. In order to decide for the right peak (i.e. the best body pose) anneal-
ing the filter can be helpful [Deutscher00]. The performance of statistical frame-
works for tracking sophisticated 3D body models has been demonstrated in several
research projects [Drummond01, MacCormick00, Sidenbladh00, Sidenbladh02].

In another category of approaches that have recently become popular, dynamic
3D scene models are reconstructed from multiple silhouette views and a kinematic
body model is fitted to them. A system that fits an ellipsoidal model of a human
to visual hull volumes in real-time is described in [Cheung00]. The employed
body model is very coarse and approximates each limb of the body with only one
quadric. In [Mikić01] a system for off-line tracking of a more detailed kinematic
body model using visual hull models is presented (Fig. 3.2c). The method de-
scribed in [Bottino01] also reconstructs scene geometry from silhouettes. They
use a two-layer kinematic body model consisting of 15 segments. On the first
layer, each limb is represented by its bounding ellipsoid, on the second layer the
body surface is described by a closed triangle mesh. Pose recovery is performed
by running an optimization in the joint parameters such that the ellipsoids opti-
mally approximate the shape-from silhouette-volume. A refined fit is obtained
with the second layer of the body model. Cheung et. al also present an approach
for body tracking from visual hulls [Cheung03]. The algorithm we present in
Chap. 5 improves the performance of these volume-based methods by taking into
account additional information that has been obtained via 2D feature tracking.

3.1.4 Optical Estimation of Body Models
Most marker-based optical motion capture systems are delivered with a software
that allows for the automatic fitting of a template kinematic body model to the
person [Menache95, Herda00]. To achieve this the person has to stand in a
specific initialization pose. The software automatically establishes correspon-
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dences between markers on the body and virtual markers on the model. It also
rescales the bone lengths such that they match the real-world counterpart. While
this procedure can accurately recover the dimensions of the human skeleton it
cannot derive any information about the shape of the body surface. In [Allen02] a
method is described that captures the deformation of the upper body of a human
by interpolating between different range scans. The body geometry is modeled as
a displaced subdivision surface. A model of the body deformation in dependence
on the pose parameters is obtained by the method described in [Sand03]. A
skeleton model of the person is known a priori and the motion is captured with
a marker based system. Body deformation is estimated from silhouette images
and represented with needles that change in length and whose endpoints form the
body surface.

If no optical markers are allowed, the fully-automatic estimation of a kine-
matic model is a lot more difficult. In most marker-free optical motion capture
methods, one assumes that a body model is known beforehand. These a priori
models are adapted in shape and proportion to the person under consideration, a
process which often requires user interaction.

Only a few researchers have tried to estimate a body model fully-automatically
without relying on a priori knowledge about the tracked subject.

In the work by Cheung et al. [Cheung03], a skeleton is estimated from a se-
quence of shape-from silhouette volumes of the moving person. A special se-
quence of moves has to be performed with each limb individually in order to make
model estimation feasible. In the approach by Kakadiaris et al. [Kakadiaris95]
body models are estimated from multiple video streams in which the silhouettes
of the moving person have been computed. With their method too, skeleton re-
construction is only possible if a prescribed sequence of movements is followed.

We have thus decided to investigate the algorithmic ingredients of a more gen-
eral method that enables the fully-automatic estimation of kinematic body models
of arbitrary moving subjects from any kind of motion sequence. The result of this
effort is the method described in Chap. 6.

3.1.5 Acquisition Facilities for Multi-view Image and
Video Data

Today, many researchers in computer graphics and computer vision adhere to a
data-driven paradigm, which means that they reconstruct scene representations
from image or video data captured in the real-world. Three research areas can
be identified in which acquisition of high-quality image data is essential. In our
work, we research all three of these areas. Thus, we have to developed multi-
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view video acquisition studio that lives up to the requirements of all of them in
conjunction (Chap. 4).

One field of research in which high-quality image data are essential is image-
based reflectance estimation. There, surface reflectance models of real-world
objects are estimated from a series of images taken from different viewing di-
rections and under different incident illumination conditions. To serve this pur-
pose, different acquisition setups consisting of high-resolution still cameras and
a set of flexibly arrangeable light sources have been proposed in the litera-
ture [Goesele00, Ward92]. From the image samples the BRDF (bidirectional re-
flectance distribution function) of a test material is determined. In our studio we
provide the technological framework that enables us to extend the photo camera-
based reflection measurement approach into a method for dynamic reflectometry
from video data.

The second important field of research is video-based human motion capture
(Sect. 3.1.2 and 3.1.3). Commercial marker-based capturing systems apply several
special-purpose high-resolution video cameras that capture the scene at a high
frame rate. In order to cope with the immense amount of image data, customized
storage hardware is employed [Menache95].

Marker-free motion capture algorithms don’t rely on optical beacons in the
video footage. In [Cheung00] the volumetric visual hull [Laurentini94] of a per-
son is reconstructed from multiple camera views, and an ellipsoidal body model
is fitted to the moving subject. Video acquisition takes place in a 3D Room that
allows recording with up to 48 cameras [Kanade98]. A similar setup for mo-
tion capture using reconstructed volumes is proposed in [Luck02]. A different
multi-camera system for volume reconstruction that uses a custom-made PC clus-
ter for video processing is described in [Borovikov00]. Several similar video-
based human motion capture systems exist that use multi-view camera data as
input [Horprasert98, Gavrila96].

The third field of research is 3D video. Here, multi-view video streams are not
solely used to capture motion data but also to reconstruct time-varying shape and
appearance models of a scene. In a previous stage of their 3D Room, Narajanan
et. al. [Narayanan98] built a dome of over 50 cameras to reconstruct textured
3D models of dynamic scenes using dense stereo. To handle the huge amount
of image data, the video streams are recorded on video tape first and digitized
off-line. In [Matsuyama02] a multi-camera system is described to record a mov-
ing person for reconstruction of the polygonal visual hull in an off-line process.
The previous paper is an extension of the original work on polygonal [Matusik01]
and image-based visual hulls [Matusik00] in which a multi-camera system for
real-time 3D model reconstruction is employed. A system for recording and edit-
ing of 3D videos based on the image-based visual hull algorithm is described
in [Wuermlin02]. A system for acquisition of multi-view images of a person us-
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ing conventional digital cameras is described in [Weik01].
Our multi-view video studio concept and design differs from the acquisition

setups mentioned before in that it exhibits a higher flexibility to suit the needs of a
variety of different application scenarios. By relying on off-the shelf hardware, we
built an easily modifiable but still cost-effective system. Furthermore, our studio
allows for fully-digital processing of the video footage from the camera to the PC.



Chapter 4

Seeing the World through
Multiple Eyes - A Studio for
Multi-view Video Recording

All our video-based research projects, both in motion capture and free-viewpoint
video, require high-quality video footage as input. However, video data recorded
from just one camera perspective do not live up to our requirements. In con-
trast, our research demands multi-view video (MVV) streams, i.e. video ma-
terial captured from multiple frame-synchronized cameras. In order to record
these data, we have designed and constructed a special-purpose acquisition facil-
ity [Theobalt03c].

Our studio is designed as a flexible and versatile recording environment that
jointly meets the demands of a variety of research efforts undertaken in our group.
To illustrate the diversity of requirements that we are facing, the demands which
are characteristic to two of the projects presented in this thesis are briefly summa-
rized in the following:

• Volume-based Marker-free Motion Capture (Chap. 5)
For this application controlled lighting conditions are needed to enable ro-
bust background subtraction. Furthermore, sufficient network bandwidth
and CPU peformance are required to allow for simultaneous volume recon-
struction, data transmission and real-time motion analysis.

• Free-Viewpoint Video (Chaps. 8, 9,and 10)
In Free-Viewpoint Video it is important to acquire video material at high
frame rates and at a high image resolution. Since the video frames serve as
input both to texture reconstruction and silhouette-based motion estimation,
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the lighting conditions need to be controllable. This way, realistic estima-
tion of surface appearance and motion parameters becomes feasible. If it is
the goal to estimate surface reflectance properties as well, the camera sys-
tem has to deliver frames with high resolution, as well as with a high color
precision.

The requirement analysis of the different application scenarios leads us to a
general design concept of the studio. Our acquisition room is intended to be a
universal recording environment for different research projects in 3D video, sur-
round vision and video-based motion analysis. Thus, flexibility and versatility
with respect to camera placement, recording conditions and the way of process-
ing (online or off-line) are important design criteria. To keep the cost as well
as the administrative overhead moderate, off-the-shelf hardware is preferred over
special-purpose equipment. On the performance side, the requirements to the sys-
tem are challenging. The setup must be able to acquire and process video data
in real-time. At the same time it also has to provide the necessary storage capac-
ity and bandwidth for recording and saving of multi-video streams. Intermediate
storage of video data on analog media, such as video tapes, is not acceptable since
we want to keep the hardware and administrative costs low. Furthermore, we want
to prevent a deterioration of image quality due to the conversion into digital form.

The above concept has been put into practice in the individual components
of our studio, such as the layout of the room (Sect. 4.1), the camera system
(Sect. 4.2), the lighting equipment (Sect. 4.3), and the software library (Sect. 4.4).
We have been using the studio for more than three years in many projects. In
the course of time we have been constantly improving the camera system in or-
der to keep up with the progress in imaging technology. Our first set of CCD
video cameras, camera system - evolution I, represented the state-of-the-art at the
time of purchase (Sect. 4.2.1). It has been successfully employed in our research
on marker-free motion capture and free-viewpoint video. However, the demands
with respect to frame resolution and color quality that we were facing in our re-
search on joint motion and reflectance capture could not be met by the old camera
system. Thus, we moved to a new generation of acquisition hardware, camera
system - evolution II, whose imaging sensors fulfill our needs (Sect. 4.2.2).

4.1 Studio Layout
The spatial dimensions of the studio have to be large enough to enable multi-view
recording of dynamic scenes from sufficiently distant and widely-spaced camera
positions. In our choice of an appropriate room we were constrained by the cur-
rent availability situation at the MPII. We finally decided to install the studio in
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(a) (b)

Figure 4.1: (a) The control room of the studio. (b) Recording stage with
checkerboard calibration pattern, black curtains and mounting poles for the
cameras.

a terminal room of approximately 11 by 5 m in size. The ceiling has a height of
approximately 3 m. An area of around 1.5 m by 5 m in size at the end of the studio
serves as a control room in which all the computing hardware is installed. The
remaining area of the studio, which can optionally be surrounded by opaque black
curtains, is the stage used for multi-view recording. Unfortunately, the dimen-
sions of the room do not allow us to put cameras in an overhead position over the
recording area. In Fig. 4.1a,b the recording stage and the control room are shown.

4.2 Camera Systems

In the course of time we have employed two different camera systems in order
to keep up with the forefront of imaging technology. The technical properties of
each acquisition setup will be detailed in the following. Although both setups
significantly differ in the capabilities of the employed imaging sensors, they have
components in common. One of these components are the eight telescope poles
(ManfrottoTM Autopole [Manfrotto]) with attached 3-degree-of-freedom mount-
ing heads (ManfrottoTM Gear Head Junior [Manfrotto]) which we use as stands
for our cameras. These telescope poles are jammed between the floor and the ceil-
ing and enable us to reposition a camera within seconds to any arbitrary position
in the studio.
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(a) (b) (c)

Figure 4.2: (a) SonyTM DFW-V 500 IEEE 1394 camera on mounting pole.
(b) ImperxTM MDC1004 camera. (c) K5600TM Jokerbug 400 spot light with
daylight spectrum.

4.2.1 Camera System - Evolution I

Our first camera system consists of eight SonyTM DFW-V500 cameras which are
controlled via an IEEE 1394 connection (Fig. 4.2a). Their CCD sensors have a
frame resolution of 640x480 pixels. The maximal possible frame rate is 30 fps
if the internal trigger of the camera is employed. External synchronization via a
trigger pulse sent through a proprietary connector is also feasible. However, the
frame rate in external trigger mode is 15 fps at the most. For distributing a trigger
signal we constructed a device that broadcasts a pulse from the parallel port of a
PC to all cameras.

Each camera delivers frames in YUV:4:2:2 format. Since the image data are
readily available in digital form, a frame grabber board is not required. The cam-
eras provide a high number of adjustable parameters that determine the image
quality. Different parameter sets that were found to be optimal for different scenes
can be stored in internal memory channels.

The computing infrastructure behind the camera system consists of four stan-
dard Linux PCs featuring AMD Athlon 1.1 GHz CPUs, graphics board with
Nvidia GeForce 3 GPUs and 768 MB of memory. The PCs are used for camera
control, video data processing, and data storage. The IEEE1394 bus bandwidth
of 400 Mbit/s is sufficiently high to control two cameras from one host PC. Dif-
ferent project-specific software architectures can be easily implemented. All the
software for camera control and recording has been developed by ourselves.

Camera system evolution I has proven its applicability in our research on hu-
man motion capture (Chap. 5 and Chap. 6) and (non-relightable) free-viewpoint
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video (Chap. 8 and Chap. 9).

4.2.2 Camera System - Evolution II
In our second camera system we employ eight ImperxTM MDC1004 single chip
CCD cameras. Their imaging sensor has a resolution of 1004x1004 pixels and
provides a color depth of 12 bits per sensor cell. The chip is equipped with a
Bayer mosaic such that colored images can be reconstructed from the measured
intensities via an appropriate reconstruction filter. The CCD sensor is connected
to two controller chips. With both controllers activated the camera provides a
sustained frame rate of 48 fps at full resolution. In dual-chip mode the photometric
responses of the left and right half of the sensor do not comply such that an intra-
frame color adjustment step is necessary. With only one chip activated, 25 fps at
full resolution are feasible and no color balancing in the images is required.

The cameras are linked to a control PC which is equipped with 8 high-
performance frame grabber boards. Each frame grabber is connected to one of
the cameras through a Camera LinkTM interface. For maximal data throughput,
each capture card is equipped with an onboard SCSI interface which enables the
direct streaming of image data to a RAID system. In total we employ eight parallel
RAID systems which enable real-time storing of eight full-resolution full frame
rate video streams. The cameras are synchronized via a trigger pulse that is broad-
casted to each capture card. The system was ordered out-of-the box according to
our specifications. The manufacturer [Cos] also provided us with a custom-made
control software (VideoSavant Pro [Vid]).

The performance of this acquisition setup fully unfolds in our project on joint
motion and reflectance capture of dynamic scenes (Chap. 10).

4.3 Lighting Equipment
While the camera system is one factor that fundamentally influences the image
quality of MVV streams, the lighting equipment is the second one. In order to
establish the appropriate illumination conditions for different applications, it is
important that lighting installations can be easily modified. For our purposes it is
necessary that both an ambient scene lighting, as well as a more focused spot light
kind of illumination can be set up.

In order to achieve this flexibility we employ three types of light sources. The
first set of lamps are three rows of SitecoTM louver luminaire [Siteco] neon tubes
with attached reflectors that are positioned over the middle of the recording stage.
These lamps produce a very intense diffuse illumination of the whole scene which
produces only very smooth shadows. The same effect could have been reached
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with spot lights and diffusers, but due to their large mounting form they are not
suitable for installation in a room with a low ceiling. In case a more focused and
intense illumination is desired, we have three spot lights at our disposal that can
be mounted right below the ceiling using special clamps. Alternatively, a wooden
frame installed along the top rim of the walls can be applied to mount the cameras.

For our project on joint motion and reflectance capture we have purchased
an additional spot light (K5600 Jokerbug 400 [K56]) which emits light with a
daylight spectrum (Fig. 4.2c). Different lenses can be used to modify the shape of
the beam according to our needs.

In order to minimize the influence of light entering the room through the win-
dows, and to keep the impact of indirect illumination from the walls at a minimum,
the recording area can be completely surrounded by opaque black molleton. Op-
tionally, indirect illumination reflected off the floor, as well as the visual appear-
ance of cast shadows can be minimized by rolling out a black carpet.

4.4 Software Library and Algorithmic Toolbox

The standard software collection available on the computers in the studio provides
a standard set of tools and libraries that we have developed to control the hardware
components of our studio. A basic API provides the code for camera control of
camera setup-evolution I and network communication. Multiple tools are at our
disposition to perform basic image processing and camera calibration. In particu-
lar, our standard library provides implementations of the background subtraction
scheme and the optical flow methods that are described in Chap. 2 Sect. 2.3.1 and
Chap. 2 Sect. 2.3.2 respectively. The tools we employ to perform geometric and
color calibration of our multi-camera setup are explained in more detail in the
following.

4.4.1 Geometric Camera Calibration

For determining the intrinsic and extrinsic parameters of our cameras (Chap. 2
Sect. 2.2), we have two methods at our disposal. Both tools employ images of a
calibration object of known structure and dimension to estimate parameters of a
mathematical camera model (Sect. 2.2). For determining the extrinsic parameters
of each camera, we typically apply the algorithm proposed by Tsai [Tsai86]. Our
software identifies the internal corner positions of this pattern (with known world
space position) in each of the camera views. A numerical minimization now tunes
the parameters of the mathematical camera until the measured and predicted cor-
ner positions in the image plane comply. The Tsai algorithm can also estimate the
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(a) (b)

Figure 4.3: (a) Small checkerboard used for intrinsic parameter estimation.
(b) Color pattern used for multi-view color adjustment.

camera’s intrinsic parameters (i.e. image plane origin, focal length, field of view
and first order radial lens distortion) from the same calibration image.

An even better estimate of the camera’s intrinsic properties is obtained from
an image of a smaller calibration pattern which is positioned in front of the camera
such that the whole field of view is covered (Fig. 4.3a).

An alternative approach for estimating internal and external camera parame-
ters is the algorithm by Heikkila et al. [Heikkila96]. This algorithm also jointly
estimates intrinsic and extrinsic parameters from images of a know calibration
object. In contrast to the Tsai method it models the lens aberrations much more
accurately by considering radial and tangential lens distortions up to second or-
der [Jain95].

We have implemented both calibration tools such that they agree on a common
file format for camera parameters. In our projects we frequently use Heikkila’s
method for the intrinsic parameters, undistort the calibration images accordingly,
and finally estimate camera position and orientation by means of the Tsai algo-
rithm.

4.4.2 Color Calibration and Multi-view Color Adjustment
To ensure a faithful color reproduction, all cameras are white-balanced before
recording commences.

If two different cameras of the same model are used to capture the exactly
same scene from the exactly same viewpoint they will, nonetheless, record images
that differ in their color values. The reasons for these discrepancies are the joint
result of noise and slight physical differences in the built-in camera components.
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From physics we know that, if the illumination is constant, a purely diffuse surface
in a scene will have the same color, no matter from what direction one looks at it.
In order to establish such a multi-view color consistency in a multi-camera system
a multi-view color adjustment has to be performed.

To this end, we estimate for each camera a trilinear transformation of the RGB
color values. The parameters of this transformation are estimated from images of
a diffuse calibration pattern which consists of an array of 237 uniformly colored
squares with purely lambertian reflectance. We have a large (around 1.5 m by
1 m) printed version of this pattern (Fig. 4.3b) as well as a small version at our
disposal. The color values for the latter one have been photometrically calibrated
with a spectral reflectometer (see Gretag MacBeth homepage for details [Gre]).

With the large pattern, we typically perform relative photometric calibration.
This means that we define one camera to be the reference camera. For each re-
maining camera, a color transformation is computed such that the color values
of the pattern in the reference view are reproduced. In our projects, we usually
employ this relative adjustment algorithm.

Absolute photometric calibration is also feasible if the small calibration pat-
tern is applied. In both cases, we estimate the transformation in a least-squares
sense.
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Marker-free Volumetric Motion
Capture from Video

In this chapter we explain the nuts and bolts of a novel hybrid approach for full-
body human motion capture from multi-view video streams that does not depend
on optical markings in the scene [Theobalt02a, Theobalt02b, Theobalt04e]. The
algorithm joins the forces of silhouette-based 3D scene reconstruction and 2D
feature tracking in order to fit a kinematic skeleton to the motion data. A sequence
of voxel-based 3D scene models is reconstructed from multi-view video footage
by means of a visual hull reconstruction. The information contained in the volume
data is enhanced by additional information on how salient features of the human
body move over time. The features’ motion is estimated by means of a color-
based tracking algorithm. In combination, the two types of information enable
fitting of a multi-layer kinematic skeleton to the motion data without having to
rely on optical beacons on the body. The sequence of recovered joint parameters
fully specifies the captured movements.

Recently, several approaches have been presented in the literature, that cap-
ture motion from visual hull sequences only (see Chap. 3 Sect. 3.1.3). However,
these methods typically cannot robustly handle motion sequences in which limbs
frequently move very close to the torso and merge with the torso geometry in the
visual hull. In contrast, due to the appliance of a feature tracking method, our
approach can handle these cases faithfully.

Our method introduces the following new scientific concepts:

• Joint employment of dynamic 3D scene reconstruction and feature tracking
for the estimation of human motion parameters.

• A multi-layer skeleton-model that is specifically tailored to needs of the
proposed algorithm.
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In the following the algorithmic components will be detailed and results we
obtained with a prototype implementation will demonstrate the performance of
the method.

5.1 Overview

Figure 5.1: System architecture of our prototype implementation.

The algorithmic concepts that form the basis of this chapter are implemented
in a prototype system whose components are illustrated in Fig. 5.1. The system
makes use of camera equipment 1 and the associated computing infrastructure in
our multi-view video studio (see Chap. 4).

Functionally, the system is partitioned into an online and an off-line compo-
nent. In the online component, the image data are acquired and segmented, and
sequences of voxel-volumes are reconstructed from silhouette images. In addition,
the 3D locations of the hand, the head and the feet are tracked in one dedicated
stereo pair of cameras. Once these data have been acquired and stored, a kinematic
body model is fitted to each time step of video in the off-line component.
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Using the software and hardware infrastructure of our multi-view acquisition
studio, we implement the online component as a distributed client-server system,
and run the off-line component on the server computer only.

In the online system, there are up to three clients, each of which is running
on a 1.1 GHz single processor AthlonTM PC. One client controls two SonyTM

DFW-V500 IEEE1394 video cameras that deliver color frames with a resolution
of 320x240 pixels. For our tests, we run the system with two client machines
and four cameras. In real-time, each client performs a background subtraction
(Sect. 5.3), as well as computes a partial shape-from-silhouette (visual hull) vol-
ume using the two client camera views only. In addition, the client controlling
the two front view cameras identifies and tracks the positions of hand, head and
feet at an interactive frame rate (see Sect. 5.3 and Sect. 5.4). The partial visual
hulls from both clients are transferred to the server PC which builds the complete
visual hull and optionally displays it. The server also distributes the trigger sig-
nals to the cameras for synchronization. Due to the employment of a hierarchical
client-server scheme the software architecture scales well to more cameras and
more clients. The data acquired in a recording session with the online system
(visual hull data, 3D feature locations) are stored to disk in real-time.

The off-line system which runs on a single PC applies these data in order to fit
a multi-layer kinematic skeleton model to the motion sequence. The multi-layer
skeleton model is adapted to the shape of the person using multi-view frames
of a dedicated initialization pose which the person strikes before motion capture
starts (Sect. 5.2). Thereafter, a two-layer kinematic skeleton model is fitted to the
volume and feature position data (Sect. 5.6).

Figure 5.2: Scene setup: Camera studio, four visible cameras are encircled
in red.

The person whose motion is captured is supposed to move inside a confined
volume of space. The cameras are arranged in a convergent setup around the
center of the scene. We require that the pair of cameras which tracks the body



44 Chapter 5: Marker-free Volumetric Motion Capture from Video

features is always observing the person from nearby positions in front (Fig. 5.2).
Tracking robustness is enhanced by having the person move barefooted. Due to
the functional separation of the cameras, the person is supposed to face the front
stereo pair of cameras, only allowing for limited rotations around the vertical body
axis.

5.2 Initialization

In the first frame of video, the person strikes an initialization pose, facing the
two front view cameras, with both legs next to each other and stretching the arms
horizontally away from the body at maximum extent (a pose commonly referred
to as the T-pose).

The bone lengths in the kinematic skeleton model need to be adjusted to the
body dimensions of its moving real-world counterpart. One possibility is to mea-
sure the bone lengths manually and load them into the application. Alternatively,
a semi-automatic procedure is feasible in which the user marks shoulder, hip, el-
bow and knee positions in the two front view images showing the person in the
initialization pose. The positions of the head, the hand and the feet in both of the
images are found via a structural analysis of the person’s silhouettes (Sect. 5.3).
Having the image plane locations of corresponding joints and features in a stereo
pair of images, their 3D positions are found via triangulation. The thicknesses of
the arms and legs are determined with user interaction.

5.3 Silhouette Subdivision

Each client in our prototype system performs a real-time color-based background
subtraction (see Chap. 2 Sect. 2.3.1) on each video frame to compute the silhouette
of the person. On two video frames that show the person in the T-pose and that
were captured with the front stereo pair of cameras a silhouette subdivision step is
performed. By means of this segmentation, the initial positions and color ranges
of the head, the hand, and the feet in the image planes are determined.

The two front-view silhouettes are subdivided into topological regions by
means of a Generalized Voronoi Diagram (GVD) decomposition (see Fig. 5.3).
This algorithm is commonly used to segment areas of free space in cognitive topo-
logical maps of mobile robots [Rowat79, Thrun98, Latombe91], a problem very
similar to ours. The Generalized Voronoi Diagram is the set of all points in the
silhouette which is equidistant to at least two silhouette boundary points. Hence,
it represents one way of computing a medial axis of the silhouette area.

The GVD point set is used to segment each silhouette into distinct topological
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regions by searching for critical points, i.e. points locally minimizing the clear-
ance to the silhouette boundary. These points mark the centers for separation lines
between adjacent regions in the silhouette. The separation lines pass through the
critical point and connect the two boundary pixels that are closest to it (Fig. 5.3a).
In the silhouettes of the initialization pose the boundaries to the head, the hands
and the feet are marked by constrictions. Thus, the five features appear as sepa-
rate topological regions in the silhouettes. The proposed decomposition scheme
subdivides a silhouette into many small regions (Fig. 5.3b). The connectivity of
the recovered silhouette regions can be represented by a graph connecting the re-
gion centers. In the case of the human silhouette in the initialization pose, the five
terminating nodes in the connectivity graph correspond to the head, the hands and
the feet of the person.

The advantage of a topological region identification is that it enables the dis-
covery of hands, head and feet of arbitrary color. This way a specific feature color
can be determined for each tracked subject and no a priori assumptions about
skin color have to be made. The specific feature color is thereafter used in our
color-based feature tracking algorithm (Sect. 5.4).

(a) (b)

Figure 5.3: (a) GVD with critical points. (b) Silhouette segmented by Gener-
alized Voronoi Diagram decomposition.

5.4 Tracking Selected Body Parts
To track the motion of selected body parts in the image plane, we employ a fast
color-based tracking scheme. We use a continuously adaptable mean-shift algo-
rithm which is capable of tracking the mean of dynamically changing probability
distributions in real-time. Originally the algorithm has been developed for face
tracking [Bradski98, Fukunaga90]. The workflow of the method is shown in
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Figure 5.4: Continuously-adaptable mean shift workflow. Some algorithmic
components in the diagram are visually illustrated by the images in the lower
part of the figure.

Fig. 5.4. It is capable of following the image plane location of a moving image
region which is specified by a range of colors of its member pixels.

For one time step of video, the algorithm works as follows. Assuming that an
approximate position of the image region is known, only a sub-window of the im-
age plane needs to be considered. For each pixel within this sub-window a proba-
bility of belonging to the tracked region is approximated by looking up its color in
the histogram of allowed region colors. The entry in the histogram bin associated
to the pixel color is an estimate of the pixels probability of belonging to the region
(after appropriate scaling; a process also known as histogram back-projection).
All pixel membership likelihoods are stored in a monochromatic probability im-
age. Now the core of the tracking method, the mean shift algorithm, is applied.
The mean shift performs the following steps iteratively:

1) Compute the mean of the probability distribution within a search window.

2) Re-center the search window at the detected mean.

3) Repeat from step 1 until convergence. The algorithm converges if the
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change in the mean position is below a threshold.

When the mean shift has terminated, the search window size is adapted before
the tracker proceeds to the next time step of video.

In our system, we apply the above algorithm in the following way: A separate
tracker is applied to follow the location of each body feature in both front camera
views. Each tracker only considers a sub-region of the image plane in the neigh-
borhood of every individual feature. The HSV color is the principal cue used for
tracking. Since the locations and extents of the head, the hands and the feet in
the image planes at time t are known, average colors for each region can be de-
rived. These values are used to define tolerance intervals in color space centered
at the mean color. For the colors in these intervals, color histograms are computed
based on the video frames with the person in initialization position. At time t = 0
each tracker’s search window is initialized at the mean positions of the head, hand
and feet regions that were found during silhouette subdivision. For all subsequent
time steps the algorithm proceeds in the way which is shown in Fig. 5.4. In our
implementation we modified the probability image computation step slightly. In
addition to the histogram back-projection we also provide the possibility to simply
feed a 0/1-silhouette mask image as probability image into the tracking scheme.
This image can be derived very efficiently from the overall silhouette image and
our experience shows that the coarse approximation of the probability distribution
does not significantly deteriorate the tracking quality. Fig.5.5 shows a screen-shot
of our system where the tracked body parts are encircled.

Figure 5.5: A screen-shot of the server application showing the visual hull (l)
and silhouettes with tracked feature locations (r).

This method is subject to some limitations that are typical to color-based fea-
ture tracking schemes. First, we implicitly assume that the colors of the head, the
hands and the feet are sufficiently different from the colors of the clothes that the
person wears. Requiring that the person moves barefooted is one feasible way to
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fulfill this constraint for most types of apparel. Furthermore, in situations where
the different tracked regions merge in the image plane, the trackers may be mis-
lead.

From their locations in the image planes of the front stereo pair the 3D posi-
tions of the body parts are computed via triangulation. We assume that the tracked
centroids of the hands correspond to the projected wrist joint locations, the cen-
troids of the feet to the ankle joint locations, and the centroid of the head to the
model root joint.

5.5 Volume Reconstruction

Figure 5.6: Visual hulls reconstructed from four camera views. The volumes
are rendered into a model of the acquisition room.

The second type of input data that we apply to infer a person’s motion pa-
rameters are volume data of the moving person which we reconstruct by means
of a shape-from-silhouette approach. From the silhouettes of the moving person,
we reconstruct a voxel-based approximation to what is commonly termed the vi-
sual hull [Laurentini94] by intersecting the back-projected silhouette cones from
each camera view (Fig. 5.7). Our implementation of visual hull reconstruction is
a voxel carving method and is similar to the algorithms presented in [Cheung00]
and [Luck01].
Our voxel carving approach carves the visual hull of the person out of a box in
space in which the person is allowed to move and which is subdivided into a reg-
ular grid of volume elements. From camera calibration, the camera matrices are
known. Thus, it is possible to compute the projected 2D image plane location of
every point in 3D in each camera view. The distributed voxel carving implemen-
tation in the online system classifies voxels as follows. On each client PC every
voxel in the grid is simultaneously projected into the views of the two cameras
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Figure 5.7: Illustration of the principle of visual hull reconstruction. The
visual hull is the intersection of all silhouette cones back-projected into the
scene from each camera’s center of projection. (Figure courtesy of Ming Li)

connected to it. If the volume element projects into the silhouettes of the person
in both views, it is classified as occupied space. Otherwise it is classified as empty.
This way, each client computes a partial visual hull from two camera views that it
controls. The partial hulls from each client i, Vi, are run-length-encoded and trans-
ferred to the server application. On the server, the complete visual hull Vcomplete is
constructed by intersecting the volumes, Vcomplete =

⋂

iVi. Visual hull reconstruc-
tion is significantly sped up by precomputing all projected voxel locations for the
whole volume grid and storing them in camera-specific lookup tables. Two exam-
ple visual hulls reconstructed with our system are shown in Fig. 5.6.

5.6 Skeleton Fitting

Given sequences of 3D locations of head, hands and feet and a sequence of visual
hull volumes, the skeleton fitting algorithm estimates a set of motion parameters
for each time step. This is achieved by fitting a two-layer hierarchical kinematic
skeleton to the motion data (Fig. 5.8).

For each time step of the input motion sequence, the skeleton fitting procedure
performs three subsequent steps. In a first step, the orientation of the torso seg-
ment is estimated. In a second step layer 1 of the skeleton model is fitted, and in
the third step, the pose parameters for the refined layer 2 skeleton are found. The
joint parameters for time t = 0 are known from the initialization pose. The fitting
procedure exploits temporal coherence by starting parameter estimation from the
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body pose estimated in the preceding time step. In the following the employed
multi-layer skeleton model is detailed. Thereafter, the three fitting steps are ex-
plained.

5.6.1 The Multi-layer Kinematic Skeleton

(a) (b) (c)

Figure 5.8: (a) Joint illustration of skeleton layer 1 and layer 2 with the at-
tached cylinder samples and the cylindrical torso area. Skeleton layer 1 (b)
and skeleton layer 2 (c) rendered into a model of the camera room after they
have been fitted to a body pose.

The human body is modeled as a two-layer kinematic skeleton. The first layer
of the model consists of a hierarchical arrangement of 10 bone segments and 7
interconnecting joints. Each joint defines a rigid body transformation represented
as a rotation matrix R between its parent segment and the subsequent kinematic
elements in the hierarchy. The translation of the model is specified with an addi-
tional translation vector. The root of the hierarchy is located at the head. Since
3 parameters are needed in each joint to define the rotation and 3 additional pa-
rameters are needed for the model translation, 24 degrees of freedom (DOFs) are
provided on skeleton layer 1.

The second layer enhances layer 1 by providing more detailed representations
of upper and forearms, as well as thighs and lower legs (Fig. 5.8). The volumet-
ric extents of the corresponding limbs are modeled by means of point samples
taken from cylindrical volumes centered around the bone axis, henceforth called
cylinder samples (Fig. 5.8). Thus, on layer 2 every limb is represented via a root
joint (shoulder or hip) and two bone segments that are connected via a 1-DOF
revolute joint (elbow or knee) (Fig. 5.9b). Although this parameterization is only
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an approximation to the full motion range of a human limb it can represent the
majority of possible actions with only 4 parameters. The lengths of the layer-2
limb segments, e.g. l f orearm and lupperarm for the arm in Fig. 5.9b, are constant
and known from initialization. The lengths of the attached layer-1 segments (e.g.
lwhole for the arm in Fig. 5.9b), i.e. the distance between the root joint of a limb
and the tip of the limb, may vary while the person is moving. The layer-1 limb
segment and the attached layer-2 bones form a triangle. The bending angle of the
middle joint (henceforth denoted by φ ) can be determined via the cosine theorem
(see Sect. 5.6.3). The rotational degree of freedom (henceforth denoted by ρ) of
the layer-2 arm and leg constructions around the corresponding layer-1 bone is
found via determining an optimal overlap between the visual hull and the volume
samples (Sect. 5.6.4).

Visual Hull (t) 3D feature skeleton
parameters (t−1)

Finding torso orientation

Fitting skeleton layer 1

parameters (t)
skeleton

position (t)

Fitting skeleton layer 2

(a) (b)

Figure 5.9: (a) Illustration of the interplay between the three skeleton fitting
steps. (b) Arm structure on model layer 2.

5.6.2 Step 1: Finding the Torso Orientation
Purely image-based optical tracking of the torso is difficult due to the lack of de-
tectable salient features. Fortunately, we can recover the torso orientation from
the volume data. We achieve this by fitting a cartesian coordinate system to the
torso voxels by means of a principal component analysis (PCA) [Jolliffe86]. The
positions of the torso voxel centers are interpreted as a set of 3-dimensional data
points whose coordinate origin is located in the center of gravity of the voxel set.
For this set a 3× 3 covariance matrix C is computed. The three eigenvectors of
the symmetric matrix C, the principal components (PCs), denote the directions of
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strongest variance in the data and are mutually orthogonal. If the data is limited
to the voxels corresponding to the torso of the person, the first principal compo-
nent lies parallel to the spine axis, the second one lies parallel to the connection
between the shoulder joints, and the third one is orthogonal to the other two (see
Fig. 5.10). We ensure that only torso voxels are used during PCA computation
by restricting the data set to those voxels which lie inside a cylindrical volume
around the spine bone of the skeleton (Fig. 5.8a).

Since, prior to PCA computation, the correct set of pose parameters for the
current time step is not known, we use the orientation of the bounding cylinder
found in the previous time step to classify the torso voxels. This approach is
feasible because it is valid to assume that the changes in torso orientation between
two subsequent body poses are marginal.

(a) (b)

Figure 5.10: (a) The principal components of all the voxels inside the torso.
(b) Aligning the skeleton with the recovered torso orientation.

5.6.3 Step 2: Fitting Skeleton Layer 1
The 2D feature tracking (Sect. 5.4) outputs sequences of 3D positions for the head,
the hands and the feet. In combination with the information on torso orientation,
this enables fitting the layer-1 skeleton. During initialization, the lengths of all
layer-1 bones have been determined. Apart from the 4 limb bones, their lengths
remain constant in time. To fit the layer-1 skeleton to the five body feature posi-
tions, we make a number of simplifying assumptions. The neck bone is assumed
to be upright at all time steps, so that the 3D location of the neck joint in world
coordinates is known from the 3D location of the head. The model’s root, located
at the head, is translated to match the triangulated 3D head position at each t.
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(a) (b)

Figure 5.11: (a) Illustration of layer-1 fitting using the left arm segment as an
example. (b) Sampling candidate values for rotation angles ρ between search
interval bounds (stippled lines).

The principal components of the torso voxels define the rotation of the neck
joint at time step t (Fig. 5.10). The rotation matrix Rneck is easily constructed
by using the PC vectors. The so created rotation makes the neck joint’s local
coordinate frame comply with the coordinate frame spanned by the PCs. To keep
the hip bones parallel to the floor level, the pelvis joint rotation is set to the inverse
neck rotation.

Now the 3D locations of shoulder and hip joint in world coordinates as well
as the locations of hands and feet are known. The distances between the left and
right shoulder and hand as well as the left and right hip and foot are computed,
and the lengths of the corresponding layer-1 segments are accordingly rescaled.

The rotations of the shoulder and the hip joints at the current time step t can
now be derived. The direction of each layer-1 arm segment has to comply with
the direction of the line connecting 3D shoulder joint and hand position. Using
an axis-angle representation, the corresponding rotation matrix can easily be con-
structed. The rotation axis is given by a vector orthogonal to the layer-1 bone
and the line connecting the hand and the shoulder. The rotation angle is the angle
between the two lines.

5.6.4 Step 3: Fitting Skeleton Layer 2

Once the pose parameters for the first skeleton layer are found, the additional
degrees of freedom of the second model layer are recovered by using the visual
hull information. For each limb, the side lengths of the triangle formed by the
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layer-1 segment and the attached two layer-2 segments are known. The cosine
theorem for triangles [Bronstein91] uniquely determines the angle φ (illustrated
for the arm in Fig. 5.9) of the revolute joint between the layer-2 segments.

In order to find the rotation angle ρ(t) of each layer-1 arm and leg segment
(see also 5.6.1), a maximal overlap between the set of cylinder samples attached
to the layer-2 model and the voxel data obtained from the visual hull is computed.
The search procedure works as follows, using the arm segment as an example:
We start with the rotation of the arm in the previous frame, ρ(t−1), and rotate the
arm segment to ν equidistant angles ξl in the interval [ρ(t −1)− s,ρ(t −1)+ s],
with s defining the search neighborhood size. For each such angle ξl a quality
measure for the overlap between the cylinder samples and the visual hull, matchl ,
is computed. The value of this quality measure is the larger the better the model
fits to the voxel set. To this end, for each cylinder sample, the corresponding voxel
of the visual hull that it currently overlaps with is computed. If n is the number of
visual hull voxels which overlap with at least one volume sample, then nk is the
overlap match score for the current configuration ξl . In our experiments we found
out that a value of k = 4 produces good results.
Using the set of ν match scores, the final rotation ρ(t) of the arm segment is
found by computing the center of mass of the weighted set Ξ = {ξl ×matchl |
l = 1, . . . ,ν}, the set of angles ξl which have been multiplied by their respective
match score. This particular match function is a heuristic which ranks the best
overlaps overproportionally high. The same procedure is applied to the leg seg-
ments. Although the difference between match scores for neighboring ξl can be
very small, this approach still allows us to recover small changes in rotation from
t−1 to t. Degradation of tracking quality due to the accumulation of model fitting
errors on layer 2 is prevented by searching for the best fit in a search interval at
every time step. Thus, erroneous fits in individual time steps due to noise in the
visual hull data do not propagate over time.

Faithful matching results can only be obtained if the respective knee or elbow
joint is at least slightly bent. If this is not the case, the rotation angle ρ(t−1) from
the previous time step is passed on as ρ(t).

5.7 Results and Discussion
The system has been tested on several sequences of a person performing gym-
nastics moves. Figure 5.14 shows the skeleton configurations that we found for
several body poses. Looking at the scene from different positions, one can see
that both layers of the skeleton have been correctly fitted to each stance. The
orientations of the shoulders and the torso are also correctly recovered.

In Fig. 5.12 the temporal evolution of the rotation angle ρ on layer 2 of the
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Figure 5.12: Plot of the rotation angle ρ in the arm on model layer 2 for a
sequence of time steps.

Figure 5.13: Comparison between layer-2 rotation angle ρ in both legs while
the person is prostrating.

arm is depicted. Fig. 5.13 shows a comparison plot of the same angle in the two
legs for a motion sequence in which the person is prostrating. While bending the
knees the legs were slightly rotating to the outside in opposite directions. This
fact is nicely visible in the plot.

The number and positions of the cameras are crucial for the quality of the
visual hull. Typical reconstruction errors produced by shape-from-silhouette ap-
proaches are visibility artifacts (also known as phantom volumes), which in our
case, may occur in the form of bulgy arms or legs. Despite this noise in the data,
our approach still recovers the correct arm and leg poses. A camera looking at the
scene from the top is advantageous but not required. Even with only four cameras
recording from lateral viewpoints robust fitting is possible.

The data obtained with feature tracking and volume reconstruction fruitfully
complement each other. The information on the correct head, hands and feet
positions enables robust model fitting even in cases that are problematic for pure
volume-based motion capture approaches [Cheung00, Bottino01]. For instance, if
the arms are very close to the chest the feature tracking prevents them from getting
stuck in the torso volume.
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We have measured the execution speeds of the different algorithmic compo-
nents using our reference prototype running on 3 Athlon 1.1 GHz PCs. The com-
bined visual hull reconstruction, background subtraction, feature tracking and vi-
sual hull rendering runs at approximately 6-7 fps for a 643 voxel volume using two
client computers and one server. Our measurements show that currently feature
tracking consumes over 30% of total computation time. Furthermore, we expe-
rience a network overhead in our current implementation, since the frame rate
of one client running independently can reach up to 19 fps. The performance of
the model fitting strongly depends on the chosen parameters, such as the number
of cylinder samples and angular search steps. On an average motion sequence it
takes around 0.5 to 1 s to fit both layers of the body model to one time step. Pose
determination for the layer-1 model only can be performed at acquisition frame
rate. The estimation of the motion parameters on layer 2 is computationally more
challenging. Higher frame rates can be achieved if less cylinder samples and less
search steps are used. With the faster PCs available today significantly higher
frame rates can be achieved.

Our approach is subject to a few limitations. The feature tracking in the online
system and constraints in the model parameterization currently limit the range
of movements which can be captured. The fitting method itself, however, allows
arbitrary rotations of the human actor around the vertical body axis. Furthermore,
it is feasible to extend the method to handle arbitrary body orientations by
pose-dependent switching between stereo camera pairs. There are also some
circumstances under which the quality of our color-based feature tracking will
deteriorate. This may happen, if the color of the hands or feet is very similar to
the color of the rest of the body. Furthermore, situations in which the motion
of individual body parts overlap in the image plane are hard to distinguish. One
possible solution to the latter problem would be the incorporation of a motion
prediction scheme into the tracking method.

Despite these limitations our results show that our hybrid approach to marker-
free human motion capture correctly estimates human body poses. The joint ap-
plication of volume data and feature positions enables use to robustly determine
pose parameters despite the noise in our measurements.



5.7 Results and Discussion 57

Figure 5.14: Skeleton fitted to visual hulls (rendered as small cubes) of a
moving person. For these results, the person has been recorded from four
camera views. In the middle row undersampling artifacts in the visual hull
arising as bulgy arms can be seen. Our motion capture method nonetheless
correctly recovers the body pose.
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Chapter 6

Marker-free Body Model
Estimation from Video

Chapter 5 presents a novel marker-free technique for estimating human motion pa-
rameters from multi-view video streams. In the same way as many related meth-
ods from the literature, this approach employs a kinematic human body model.
While an algorithm to estimate motion parameters based on a known body model
is a central component of each human motion capture system, a way to automati-
cally infer this body model is equally important. It has been demonstrated that, if
optical markings are employed, it is feasible to automatically estimate articulated
body structures [Silaghi98]. Despite its relevance, the problem of fully-automatic
marker-free skeleton estimation from video footage has hardly been considered up
to today. Only a handful of approaches have been published so far that try to solve
this problem. However, apart from only being applicable to specific prescribed
motion sequences, they also fall short of the general case of arbitrary moving
subjects.

In this chapter we introduce a novel method [de Aguiar04, Theobalt04d] that

• estimates the kinematic structure of the moving subject from multi-view
video without optical markings in the scene;

• does with no significant a priori knowledge;

• is applicable to arbitrary moving subjects, including humans and animals.

The inputs to our algorithm are sequences of voxel volumes that are recon-
structed from multi-view video streams by means of a shape-from-silhouette ap-
proach. At each time step the volumes are subdivided by fitting primitive shapes,
also referred to as approximators, to the voxel data. We have developed the al-
gorithmic frameworks for two types of shape primitives, ellipsoidal shells and
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superquadrics. Exploiting the temporal dimension, we can identify correspon-
dences between shape primitives over time and thus identify coherent rigid body
parts. Knowing the motion of the rigid bodies over time, a complete kinematic
skeleton model for the moving subject can be reconstructed. Optionally, we can
obtain a first estimate of the motion parameters based on the derived body repre-
sentation.

In this work we draw from ideas that have been developed in the fields of
shape classification and shape approximation. Characterizing 3D point clouds
by means of fitting primitive shapes is a common approach in 3D shape anal-
ysis (see [Loncaric98] for a survey) where it is typically applied to static data.
In [Chevalier03], multiple superquadric shapes are used to decompose 3D point
data into primitive sub-shapes. The same category of geometric primitives is
commonly used in computer vision for object recognition, range map segmen-
tation [Leonardis97], and analysis of medical data sets [Banégas01]. We extend
these ideas by fitting primitive shapes to time-varying data and deriving kinematic
information from their motion over time.

Most similar to the method presented in this chapter are the approaches by
Cheung et al. [Cheung03] and by Kakadiaris et al. [Kakadiaris95]. In the former
work a kinematic skeleton is estimated from a sequence of voxel volumes recon-
structed by means of a shape-from silhouette approach. The person is required to
perform a sequence of initialization moves with each limb separately. In the latter
work a kinematic body model is reconstructed from multiple video streams that
show the silhouette of the moving person from different camera positions. This
method prescribes a sequence of moves with individual limbs, too.

In contrast we present a more flexible approach which requires only a min-
imum of a priori knowledge about the observed subject. It can be applied to
moving humans, mechanical structures, and animals. Furthermore, it infers body
models from any arbitrary motion sequence. We demonstrate the performance of
our algorithm using both real and synthetic input data.

6.1 Overview
In Fig. 6.1 the algorithmic workflow of our method is illustrated. The system
expects a voxel volume V (t) for each time step t of video as input (Sect. 6.2).
In step 1, the Shape Primitive Fitting step, each V (t) is filled with either su-
perquadrics or ellipsoids by means of a split and merge approach (Sect. 6.3). The
result is a set of fitted approximators U(t) and a list of associated voxel subsets
S(t) for each time instant. The correspondences between quadric primitives at dif-
ferent time instants are established by means of a dynamic programming method
in step 2, the Shape Primitive Matching step (Sect. 6.4). The result of step 2 is a
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Figure 6.1: Visualization of the algorithmic workflow.

path for each primitive shape that describes its motion over time. All individual
paths are subsumed in the path set P. By analyzing their motion, the ellipsoids
or superquadrics are clustered into separate rigid bodies in step 3, the Body Part
Identification step (Sect. 6.5). After step 3, the motion of each rigid body over
time is known, and joint locations between neighboring bodies can be estimated
in step 4, the Skeleton Reconstruction step (Sect. 6.6). This step also enables ap-
proximative estimation of body motion parameters based on the derived skeleton
model. The final output is a complete kinematic skeleton model. Optionally, steps
1-3 may be iterated on subsets of the volume data (Sect. 6.7).

6.2 Input Data

We have tested the algorithm both on data acquired in the real world as well as on
synthetic data generated with a 3D animation package.

The video footage acquired in the real world was recorded in our multi-view
video studio using camera equipment-evolution 1 (Chap. 4). The eight synchro-
nized FireWireTM cameras were placed in a convergent setup around the center
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of the scene. For these experiments we operated the cameras at a resolution of
320x240 pixels and at a frame rate of 15 fps. The cameras were metrically cali-
brated into a common coordinate system. We record several motion sequences of
a test person who was performing simple gymnastic exercises.

We apply a space-carving approach to reconstruct high-quality time-varying
voxel models of the moving person [Kutulakos00]. We first reconstruct a plain
voxel-based visual hull at each time step of video by intersecting the reprojected
silhouette cones (see Chap. 5 Sect. 5.5). This coarse voxel-model still exhibits
artifacts which are due to the limitations of the visual hull approach, such as
incorrectly reconstructed concavities. The space-carving method eliminates many
of these artifacts by removing all those voxels from the visual hull which are not
photo-consistent in all camera views. A voxel is photo-consistent in multiple
camera views if the color values at the image plane locations to which a voxel
reprojects in each camera are identical (within a tolerance interval). The sequence
in which voxels are tested for photo-consistency has to take into account changes
in voxel visibility through the carving process. It has been proven [Kutulakos00]
that a correct order of consistency checks is achieved if a plane-sweeping
approach is employed. Multiple plane sweeps along the three main axes of the
voxel volume are typically necessary until the method terminates. Space carving
converges, if no more voxels are carved out of the volume. In the end we obtain a
set of surface voxels, also known as the photo-hull, for each time step of a motion
sequence.

We want to demonstrate that the proposed algorithm can also infer the body
configuration of moving subjects that are not human. Unfortunately, due to secu-
rity reasons and ethical concerns, it turned out to be difficult to find animals which
perform in front of our cameras. Thus, in order to complement the human motion
data that we recorded in our multi-camera studio, we chose the safer option and
created several synthetic data sets. The synthetic sequences were generated with
3D Studio MaxTM by placing animation skeletons into the surface meshes of a
bird, a snowman and a monster. Animations with these models were created via
key-framing. For each time frame of animation, a separate surface voxel set was
exported.

6.3 Shape Primitive Fitting

We have tested two types of shape primitives, simple ellipsoids and superquadrics.
While the former class of primitives can be fitted very efficiently to volume data, it
lacks the generality of superquadrics which can approximate a much larger range
of shapes more accurately. However, the additional flexibility of superquadrics
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comes with the cost of a more time-consuming fitting procedure. After briefly
describing the properties of either shape primitive individually, we will later refer
to an ellipsoid and a superquadric as a shape primitive or approximator U .

6.3.1 Ellipsoids
An ellipsoid is a closed surface defined as the solution to the implicit equation

F(x,y,z) = (
x
a1

)2 +(
y
a2

)2 +(
z

a3
)2 = 1 (6.1)

where a1, a2 and a3 are scaling factors along the three coordinate axes. F(x,y,z)
enables a simple test for deciding if a point (x,y,z) lies inside (F < 1), on the
surface of (F = 1), or outside (F > 1) the primitive shape. An ellipsoid in a gen-
eral position is described by three additional rotation parameters (Rx,Ry,Rz) and
three translation parameters (Tx,Ty,Tz) with respect to the world origin. Thus,
in order to fit an ellipsoid E to a set of N 3D points (in our case surface voxel
centers) such that its surface comes as close as possible to all points nine shape
parameters E = [a1,a2,a3,Rx,Ry,Rz,Tx,Ty,Tz] need to be determined. Using the
following procedure we can robustly and quickly fit ellipsoids while avoiding a
time-consuming numerical optimization. First, Tx,Ty,Tz are found as the 3D loca-
tion of the voxel set’s center of gravity. The six remaining parameters are found
via moment analysis [Cheung00], i.e. the directions of the main axes of variation
in the 3D voxel set are found as the eigenvectors of the point set’s covariance ma-
trix. The optimal radii a1,a2,a3 along the main axes are found as a j = 2 ·

√

λ j,
λ j being the eigenvalue corresponding to eigenvector j [Banégas01]. The initial
rotation parameters Rx,Ry,Rz are also derived from the directions of the eigenvec-
tors.

This procedure computes an ellipsoidal fit very quickly, but it does not provide
a direct measure of the fitting quality. Hence we calculate a fitting error (FE) D
that gives a numerical estimate of how well the ellipsoid approximates the point
data. The error function sums up the squared distance values d(E ,x,y,z) of voxel
centers to the ellipsoid surface:

D =

√
a1a2a3

N

N

∑
i=1

d(E ,xi,yi,zi)
2 (6.2)

with d(E ,xi,yi,zi) = ||Opi||rad · (F(xi,yi,zi)
1
2 −1)

In Eq. 6.2, O is the center of the ellipsoid. ||Opi||rad is the radial Euclidean
distance [Bardinet98] between the ith point in the data set pi and the intersec-
tion point of the line segment Opi with the ellipsoid surface. The penalty factor
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Figure 6.2: Different superquadric shapes obtained with different combina-
tions of the roundness parameters ε1 and ε2.

√
a1a2a3 is included in order to prevent a shape primitive from growing exces-

sively in one direction or uniformly in all directions.

6.3.2 Superquadrics

A superquadric is a closed curve defined as the solution of the implicit equation

F(x,y,z) = ((
x
a1

)
2

ε2 +(
y
a2

)
2

ε2 )
ε2
ε1 +(

z
a3

)
2

ε1 = 1 (6.3)

In Eq. 6.3 a1, a2 and a3 are the radii along the three main axes, and ε1 and ε2 are
roundness parameters. The same inside-outside test based on F as for ellipsoids
applies (Sect 6.3.1).

Depending on the roundness parameters, the shape of a superquadric shell
mediates between circular and rectangular, enabling a variety of intermediate rep-
resentations (see Fig. 6.2). Thus, it can approximate a large range of voxel set
geometries at a high accuracy.

A superquadric in general position is thus described by 11 parameters Q =
[a1,a2,a3,ε1,ε2,Rx,Ry,Rz,Tx,Ty,Tz]. (Rx,Ry,Rz,Tx,Ty,Tz) are the three rotation
and translation parameters with respect to the world origin, a1,a2,a3 are the radii
along the major axes. Thus, in order to fit an approximating superquadric Q to
a set of N 3D voxel centers, 11 shape parameters need to be determined. The
optimal parameters are found by numerically minimizing an error function that
measures the distance between the superquadric’s surface and the volume ele-
ments.

The choice of a good error function is essential for the quality of the final fit.
We have run experiments with several different distance measures and were most
satisfied with the following one:

D =
a1a2a3

N

N

∑
i=1

(F(xi,yi,zi)
ε1 −1)2 (6.4)
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Figure 6.3: Illustration of the split and merge procedure for superquadric
primitives using a synthetic data set of a snowman.

In Eq. 6.4 N is the number of voxels and d(Q,xi,yi,zi) = F(xi,yi,zi)
ε1 −1 is an

approximation to the distance of a volume element to the superquadric surface
as proposed in [Leonardis97]. The factor a1a2a3 is included in order to prevent
the shape primitive from growing excessively in one direction or uniformly in all
directions. In contrast to Eq. 6.2 this corresponds to a stronger penalization of
excessively grown shapes.

We have evaluated several non-linear optimization schemes on test voxel sets
to identify the most appropriate minimizer. We achieved the best results with the
LBFGS-B method [Byrd95], which is a quasi-Newton algorithm that permits the
specification of bound constraints on the parameters. Results with other numeri-
cal optimization schemes such as Amoeba (a downhill-simplex variant), Powell’s
method (a direction set method), and the often used Levenberg-Marquardt opti-
mizer were significantly worse (see [Press02] for information on these methods).
This is mainly due to the fact that these methods don’t allow the specification of
constraints in the parameters, and thus it may happen that irregular superquadrics
with negative roundness parameters are produced. A good initial set of parameters
to start the minimization with is found by fitting a regular ellipsoid to the voxel
data (strictly speaking a regular ellipsoid is a superquadric with ε1 = ε2 = 1).

6.3.3 Split and Merge
Using the method described in Sect. 6.3 for each time step, we fill the voxel vol-
umes with shape primitives such that their total number and fitting error are as
small as possible. We achieve this by applying a hierarchical split and merge
approach [Chevalier03]. The procedure starts with a split stage, approximating
the whole voxel volume first with one U , which is subdivided into two instances
in case D is greater than some threshold (Fig. 6.3). The split stage recursively
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processes each newly created approximator in the same way, thereby producing
a hierarchical decomposition of the voxel set. The split stage is applied to each
voxel volume V (t) individually.

The merge stage follows the split stage and improves the fitting result by merg-
ing pairs of neighboring primitives into one. It is performed only for the voxel
volume V (1) of the first time step.

In the following the individual steps of both stages are detailed.

Split Stage

For each V (t):

1 The whole set of 3D voxels V (t) is approximated by one shape primitive
U .

2 If the fitting error D of U is less than some threshold Tsplit , the procedure
stops. Otherwise, it proceeds to step 3.

3 The set of 3D voxels is split into two subsets S1 and S2 along the plane P

orthogonal to the major axis of elongation of the voxel set (Note that P

contains the centroid of the set).

4 S1 and S2 are approximated individually by one shape primitve each. For
each subset, the procedure is repeated from step 2.

We obtain a set of primitives Usplit(t) and a set of corresponding voxel sub-
sets Ssplit(t) that approximate the voxel model V (t). After a sufficient number of
subdivisions (in our case typically 7), there is a high likelihood that all points in
one voxel subset belong to the same rigid body of the tracked subject’s kinematic
skeleton. Nonetheless, it is still possible that more than one approximator is fit-
ted to one rigid body (e.g. four ellipsoids to the upper arm), or that an ellipsoid
was fitted to a position on the boundary between two adjacent rigid bodies (e.g.
centered on the knee joint). In the latter case the voxel subset associated with the
shape primitive would belong to two different kinematic elements.

Merge Stage

For V (1) only:

1 For each subset of voxels Si ∈ Ssplit , we determine the list Ki = {Sn1, ..,Snk}
of neighboring voxel subsets (Sn1, ..,Snk ∈ Ssplit).
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2 For each possible pairing of the voxel set Si and one neighboring voxel set
S j ∈ Ki, a merged voxel set M j is created. A novel shape primitive is fitted
to each M j and a fitting error D j is computed. From all paired primitives
whose D j is smaller than the sum of fitting errors of the approximators it
was created from, the one with the lowest D j is chosen to replace the two
primitives it emerged from.

3 A new set of approximators is obtained. The procedure is repeated from
step 1. It terminates when no further reduction of the fitting error is possible.

We perform the merging step only on the first voxel volume V (1). If we were
considering voxel volumes from different time steps independently and would
merge approximators only due to structural criteria, it would not be possible to
prevent erroneous merges across rigid body boundaries. The resulting set of shape
primitives is the starting point for the matching step (Sect 6.4) which exploits the
temporal dimension to prevent merging across boundaries of separate bodies.

The result of the split and merge process is a set of approximators U(t) and a
set of voxel subsets S(t) for each V (t).

6.4 Shape Primitive Matching
After subdividing each voxel volume using primitive shapes, a set of correspon-
dences C(t, t + 1) between each pair of approximator sets U(t) and U(t + 1) at
subsequent time steps is computed. The set of correspondences describes for each
shape primitive in U(t) to which member of U(t +1) it is related. In other words,
the correspondences indicate from which 3D location at t to which position at
t +1 a primitive shape moves.

The correspondence finding procedure processes each pair of sets U(t) and
U(t + 1) at subsequent time instants separately. It is important to note that the
number of shape primitives in the sets U(t) and U(t + 1) may differ. If we can
reorganize the approximators such that their number at each time step is the same,
the motion in space of each primitive from beginning to end of an input sequence
can be estimated. We employ a two-stage procedure to establish the correspon-
dences and to reorganize the approximators. This way we establish a bijective
correspondence mapping between approximating shapes at subsequent time steps.
Technically, the correspondences from t to t + 1 are established by searching for
correspondences from t +1 to t which are, in the end, inverted.

In the first stage, a correspondence for each individual shape primitive is es-
tablished to an approximator at the preceding time instant by means of a dynamic
programming approach [Sniedovich92]. The error function used in this optimiza-
tion procedure is the Euclidean distance between the primitives’ centers.
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After the first stage, two cases of degenerate correspondences may occur that
need to be corrected in a second stage in order to establish a bijective mapping.

The first case, the unmatched shape primitive (Fig. 6.4a), occurs if there exists
an approximator U1 at time t to which no approximator from t + 1 is connected.
To solve this problem, the shape U2 ∈U(t +1) closest to U1 according to the Eu-
clidean distance is selected. The voxel subset associated to U2 is split in two and
two new approximators U3 and U4 are fitted to the newly created voxel subsets.
U3 inherits the original correspondence to time t from U2, U4 establishes a new
correspondence to U1.

The second case, the multi-match (Fig. 6.4b), arises if more than one shape
primitive from U(t +1) is assigned the same partner in U(t). We solve this prob-
lem by merging all the approximators at t + 1 which have been assigned to the
same partner from t. This is achieved by merging all the associated voxel subsets
and fitting a new shape primitive.

The two degenerate cases are corrected subsequently. After stage two of
the correspondence finding, the correspondence directions are inverted. By this
means, for each primitive in U(t) exactly one partner from U(t +1) is found.

After all time steps have been processed in this way, each set of approximators
contains the same number of shapes as the set U(1). Note that in order to establish
correct correspondences C(t, t +1) the superquadric sets are modified as well. For
each shape primitive in U(1) a complete motion path for the whole sequence can
be built by linking subsequent correspondences. The so-created set of paths P
contains for each Qi ∈ Q(1) a path Pi, Pi being an ordered set of 3D coordinates
Pi = {(xi(t),yi(t),zi(t)) | t valid time step} of the primitive shape’s center at time
t. Fig. 6.5a,b shows example paths of individual approximators.

6.5 Body Part Identification
The paths of P provide all necessary information we need to identify separate rigid
bodies in the kinematic skeleton of the moving subject. In case we are analyzing
volume data of a human, this means that the paths enable us to identify, for ex-
ample, the upper arm segment or the lower leg segment. Implicitly, we make the
simplifying assumption that individual kinematic elements can be represented as
rigid structures that do not undergo strong deformations.

In order to identify individual rigid bodies, we make use of the fact that the
mutual Euclidean distance between any two points on the same body does not
change while the skeleton is moving. Thus, if the mutual distance between the
motion paths of two approximators over time is subject to significant variations, it
is most likely that the two primitives do not lie inside the same rigid body.

This criterion gives us a procedure at hand which enables clustering individual
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(a) Unmatched Shape Primitive

(b) Multi-match

Figure 6.4: Handling of degenerate cases during correspondence finding.

shape primitives into separate kinematic elements of the whole body. We employ a
voting-based test that analyzes the curve of Euclidean distances between the paths
of the approximators over time. The value of the distance curve di, j(t) between
the paths of two primitives Ui ∈ U(1) and U j ∈ U(1) at time t is defined as the
Euclidean distance between their respective positions on the paths at t. In order to
decide if Ui and U j lie on the same rigid body we check for the presence of two
features in the distance curves:

The first feature are those parts of the distance curve in which the absolute
value of the first derivative is large. These parts indicate those time instants in
which the individual rigid bodies possibly drift away from each other or move
closer to each other. For each t at which | d ′

i, j(t) |> Tderiv, Tderiv being a derivative
threshold, a voting counter vc(i, j)deriv is increased by one.

The second feature arises at every time step for which the value of the distance
curve differs by more than a threshold from the initial distance value di, j(1). Thus,
for each t with | di, j(t)− di, j(1) |> Tdi f f , Tdi f f being a difference threshold, a
second voting counter vc(i, j)di f f is increased by one.

The final vote vc(i, j) is the sum of the two previously mentioned voting coun-
ters vc(i, j) = vc(i, j)deriv + vc(i, j)di f f . If this final vote is larger than a threshold
Tvote, the distance curve fails the test and the approximators are considered to
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(a) (b)

(c) (d) (e)

Figure 6.5: (a) Rendered motion paths of two ellipsoidal approximators (radii
reduced for better visibility) in the forearm and upper arm of a human test
subject respectively (a). (b) Motion paths of ellipsoids (left) and detected rigid
bodies (right) shown as larger ellipsoid in the human body. (c) Motion of
superquadrics that were fitted to the snowman model. Rigid bodies detected
in the synthetic bird (d) and monster (e) data sets.

reside on different rigid bodies.
To eliminate spurious peaks in a distance curve due to noise, a median filter is

applied to it before applying the distance criterion. By means of our voting-based
scheme and appropriate thresholds (found through experiments) it is possible to
perform robust path comparison even in the presence of measurement noise. We
apply the voting-based test to classify individual rigid bodies as follows:

1 A seed primitive Useed ∈U(1) is selected and a distance curve dseed,k with
each superquadric Uk ∈U(1)\{Useed} is computed.

2 For each Uk the voting-based test is applied to dseed,k, and Uk is classified
as lying on the same rigid body if the test succeeds.
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3 The procedure iterates by restarting from step 1 and selecting a new seed
from all approximators that have not yet been assigned to a rigid body.

The seed Qseed in the first iteration is the primitive nearest to the center of
gravity (COG) of the voxel set V (1). In the subsequent iterations, the selected
seed is the primitive nearest to the COG of the body part that was found in the
preceding iteration. This seed selection criterion is a heuristics which enables the
construction of a hierarchy of rigid bodies in the moving character. The rigid body
detected first is considered to be the root of the skeleton hierarchy. Each subse-
quently detected rigid body is considered to be on the next lower hierarchy level,
and to be connected to the root. The whole classification procedure is recursively
applied to each individual rigid body on the next lower hierarchy level, thereby
further refining the set of detected body parts.

In case of a human subject this strategy leads to the identification of one rigid
body for the torso and one for each arm, each leg and the head in the first iteration.
Now the procedure is repeated for each limb which produces the final correct
subdivision into body parts.

For each V (t) it is now known which voxel subsets form a rigid body and how
the rigid bodies move over time. Figs. 6.5b,d,e show rigid bodies that were found
in some of our test data.

6.6 Skeleton Reconstruction

In the final step we use the detected rigid bodies and their motion to estimate
the 3D locations of joints in the skeleton hierarchy. For estimation of the joint
locations one has to agree on a reference time instant. For the pose that the subject
struck in this time instant, the skeleton structure is estimated. Usually we regard
the body model reconstructed for the first time instant as the reference model. The
rigid body hierarchy, and thus the information which rigid bodies are connected,
has already been determined in the Body Part Identification step (Sect. 6.5). We
assume that all discovered joints provide three rotational degrees of freedom.

The goal is to identify a joint location for each pair of adjacent rigid bodies Ba
and Bb that are connected. We have tested two different methods to achieve this
goal.

The first method, skeleton reconstruction 1 or SR1, estimates a joint location
based on the boundary voxels between the voxel subsets that are associated to
Ba and Bb. The boundary voxel set contains all those volume elements from Ba
that have at least one neighbor from Bb, and all voxels from Bb that have at least
one adjacent voxel from Ba. The joint position is at the center of gravity of the
boundary voxel set.
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Figure 6.6: Optional iterative model estimation: After the first iteration the
torso voxels (left) are identified and eliminated from each voxel set. The split
and merge, the shape primitive matching, and the body part identification
steps are then recursively applied to each remaining isolated voxel subset
(right).

The second method, skeleton reconstruction 2 or SR2, performs a simple col-
lision test between approximators that have been fitted to Ba and Bb. Rays are
shot along the three major axes of both neighboring primitives. The rays originate
from the center of an approximator. An intersection test is performed between
each ray (positive and negative direction) and the surface of the respective other
shape primitive. From all intersecting rays the one with the smallest distance be-
tween ray origin and intersection point is found. The intersection point of this ray
is considered to be the joint position.

The primary goal of our approach is to reconstruct a kinematic skeleton model.
Nonetheless, since we are able to build such a model for each time step of a motion
sequence, approximate motion tracking of the moving subject is also feasible.
The application of our joint localization scheme to each time step of video is no
tracking in a strict sense since the skeleton models may differ. However, it is still
possible to obtain a preliminary estimate of the motion parameters.

6.7 Results and Discussion
We have evaluated the performance of our system using synthetic and real data
sets. The real input data were recorded in our multi-view video studio and show
a person that performs simple gymnastic moves such as knee bends. Volume
representations for each time step of video were obtained using space carving
(Sect. 6.2). The volume data were carved out of blocks of 2563 volume elements.
In the case of the real input data, one volume consists of approximately 22000
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(a) (b)

(c)

(d)

Figure 6.7: (a) Ellipsoids fitted to different body poses. (b) Discovered rigid
bodies rendered as ellipsoidal shells inside the voxel volumes. (c) Skeletons
estimated for different stances using SR1. Voxel sets belonging to different
rigid bodies are drawn in different colors. (d) Input voxel set, discovered
rigid bodies, and reconstructed skeleton if the person only moves the upper
extremities. In this experiment superquadrics and SR2 were applied.
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(a)

(b)

Figure 6.8: (a) Left to right: Monster with 3D Studio skeleton, animated
joints are shown as spheres; motion of individual body parts; estimated skele-
ton, joints are shown as (blue) spheres, bones are shown in white. (b) Left to
right: Bird with 3D Studio skeleton; estimated body parts and their motion;
reconstructed skeleton.

voxels.
In Fig. 6.7a individual voxel volumes that have been approximated with el-

lipsoidal primitives are depicted. Fig. 6.7b shows individual rigid bodies that
have been identified and to which ellipsoidal shells have been fitted for better
visualization. In Fig. 6.7c different human skeletons are shown that have been
reconstructed from a gymnastics sequence. Our method faithfully reconstructs
body models for different body poses. The bone and joint layout comply with the
skeleton of the real human.

In Fig. 6.7d some results are shown that we obtained after processing a mo-
tion sequence of around 40 frames in which the person only moves the upper
extremities, i.e. the arms, and the head. For these tests we employed superquadric
primitives. These images nicely illustrate the working principle of our approach.
Since the lower extremities were not moving at all they could not be identified as



6.7 Results and Discussion 75

separate kinematic chains and were therefore considered to be part of the torso.
Little inaccuracies in the detected locations of the elbow joints can be observed.
This is mainly due to the fact that the sequence is very short and that the person
wears comparably wide clothes. It is obvious that the algorithm can only dis-
criminate two separate bodies if at any point there is a noticeable relative motion
between them. In contrast to previous methods from the literature we can iden-
tify individual bodies, no matter at what point in time this relative motion was
observed.

Our results demonstrate that our method performs well despite the presence of
noise in the volume data. Although the space carving approach eliminates most of
the typical visibility artifacts in shape-from-silhouette volumes, bulky arms and
legs still occur sometimes.

We found out that an iterative implementation of our algorithm in which the
steps 1-3 (see Fig. 6.1) are repeated, is beneficial if the noise level in the data is
high. After each iteration, the largest rigid body is identified and, before the next
iteration, all voxels belonging to this rigid body are eliminated from all volume
data sets V (t). Subsequently, steps 1-3 are applied in the same way to each newly
found isolated voxel set. In the case of a human subject, this means that the first
iteration identifies the torso segment, and in subsequent iterations, the algorithm
proceeds with the arms, the legs and the head. The working principle of the
iterative version of our algorithm is shown in Fig. 6.6.

The synthetic data sets we used were the moving snowman (about 8000 voxels
per time step), the bird (about 11000 voxels per time step), and the monster (about
14000 voxels per time step). Animated voxel sequences with these models were
created in 3D Studio MaxTM using hand-crafted skeletons. One major advantage
of the synthetic data is that the ground truth skeleton structure is available for
comparison.

The bird sequence is a study of the wing beat, as well as the tail and the head
motion of a bird in flight. We animated 4 joints of a kinematic skeleton, one at the
neck, one at the tail and two at the roots of the wings. Fig. 6.8a shows the body
structure that we estimated using superquadrics and SR1. The skeleton nicely
complies with the ground truth kinematic model that we used for the animation.

Our most complex data set was the monster, a lizard-like four-legged creature.
In total, we used 15 joints for animating its body, 2 in the tail, 3 in each leg and
1 at the neck. We created a walking animation in which the monster imitates
the walking style of iguanas. While moving, the lizard’s head as well as its tail
slightly oscillate from left to right. The skeleton of the creature that we estimated
is shown in Fig. 6.8b. The motion paths of individual rigid bodies over time are
depicted as well. The kinematic structure of the head, the tail and the legs has
been learned correctly. However, it was hard to identify the feet as separate rigid
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(a) (b)

Figure 6.9: (a) Snowman skeleton. (b) Plot of reconstructed (dashed) against
ground truth y-coordinate of one joint in the snowman for a sequence of 200
frames. On the abscissa the time is plotted, the ordinate is the y-coordinate
in internal dimensionless size units (bounding box size of snowman=2000).

bodies since their motion relative to the lower leg was only very marginal.
The simplest synthetic data set was the snowman sequence. The snowman

model was animated using one point of articulation at the neck. The derived skele-
ton and the correctly detected two body parts are shown in Fig. 6.9a. Fig. 6.9b
shows a plot in which one coordinate of the neck joint position is plotted against
the corresponding coordinate of the ground truth joint location, and skeleton re-
construction is performed for each time step individually. With the exception of
some outliers, the coordinate difference is small (mostly below 2% with respect
to the maximal bounding box side length, 5% in the worst case).

The timings for the individual system components and different algorithmic
options are summarized in Table 6.1. We measured the runtimes on a Pentium IV
3GHz.

The time ranges represent the lower and upper bounds of average runtimes
that we measured when analyzing our synthetic and real test data. For evaluat-
ing the split and merge performance we have exhaustively subdivided the volume
up to level 7. Due to the simpler fitting method, the split and merge for ellip-
soidal shapes is significantly faster than for superquadric shapes. The execution
speed of the superquadric split and merge steps are dominated by the runtime of
the LBFGS-B optimizer. Typically, in order to obtain a similar shape approxima-
tion quality as with superquadrics, many more subdivision levels with ellipsoidal
approximators are necessary. Depending on the data set, the longer runtimes of
superquadric fitting may be justified.
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split using ellipsoids (7 levels) 2-4 s (per time step)
merge using ellipsoids 9-13 s (per time step)
split using superquadrics (LBFGS-B, 7 levels) 120-160 s (per time step)
merge using superquadrics (LBFGS-B) 250-1000 s (first time step)
Correspondence Finding 7-19 s (per time step)
Body part identification 3-6 s (per time step)
Skeleton reconstruction 1 (SR1) 0.3-0.5 s (per time step)
Skeleton reconstruction 2 (SR2) 0.3-0.4 s (per time step)

Table 6.1: Measured runtimes of individual system components.

The execution speeds of the two alternative methods we use to infer the
skeleton structure after the body parts have been identified are almost identical.
Nonetheless, we found that SR1 usually estimates joint positions more accurately
than SR2. Furthermore, the performance of SR2 depends more strongly on how
accurately shape primitives have been fitted to the volumes (in particular in terms
of correct orientation). For SR1 this dependency is not as strong making it more
robust against measurement noise.

The proposed body model estimation algorithm is subject to a couple of
limitations. Even though we don’t prescribe an initialization motion, two
different adjacent rigid body segments can only be discriminated if at least once
in a sequence a relative motion between them can be observed. We consider
this a principal problem of a non-informed motion analysis approach and not a
limitation that is specific to our method. Furthermore, we expect that the system’s
performance will deteriorate if voxels of individual rigid bodies merge frequently
with the rest of the volume (e.g. if the arms are often kept tight to the torso).

Even though, our results show that our method is capable of inferring the
kinematic structure of arbitrary moving subjects at a high accuracy. Our method
achieves this without resorting to optical markings and without relying on a priori
structural information about the observed subject.
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Part II

Capturing Appearance and
Motion - Free-Viewpoint Video





Chapter 7

Free-Viewpoint Video -
Problem Statement and

Preliminaries

The field of computer graphics has always been guided by the aim to develop
algorithms that enable the photo-realistic rendition of real world scenes in a com-
puter. One possibility to fool the eye of the beholder is to design geometric scene
and computational lighting models from scratch that resemble the real thing as
closely as possible. Another possibility that has gained much attention recently is
to reconstruct computational models from video footage that was acquired in the
real world. The ongoing technical advancement in computer and imaging sensor
technology has rendered this novel paradigm of computer graphics feasible. If
a visually pleasing computational scene model is to be derived from image data,
geometry, appearance and reflectance models have to be automatically inferred.

This new video-based paradigm in Computer Graphics has paved the trail
for an exciting novel field of research that aims at lifting the traditional two-
dimensional medium video onto a novel three-dimensional immersive level.
The general idea is to reconstruct three-dimensional video content from two-
dimensional video data of a real world scene. This novel video format allows
a viewer to look at a scene from a novel viewpoint that no physical camera has
actually recorded.

The term 3D video subsumes many technological approaches that vary in the
range of possible novel viewpoints they can generate, in the kind of display tech-
nology they employ, or the kind of scene model they reconstruct. Free-viewpoint
video is one 3D video category in which the viewer is given the greatest free-
dom. There, he is allowed to change his viewpoint to an arbitrary novel position
in virtual 3D space.
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The number of possible applications for free viewpoint video technology is
enormous. While in today’s feature films the viewer is bound to follow the cam-
era path plotted by the director, the viewer of a 3D video can create his own
personal camera flight. TV broadcasts of sports events will gain a new dimension
by providing sports enthusiasts with new forms of visualization. For instance, The
motion of the basketball player jumping to the basket could be frozen and a virtual
camera flight around the scene could be created. The motion of a track and field
athlete could be shown from an arbitrary novel perspective that has not been seen
by any physical camera.

Human actors are the central elements of motion pictures. Over millions of
years the human eye has been trained to notice even the slightest inaccuracies in
visual appearance and movements of virtual actors. It is thus a great challenge to
create a visually convincing virtual copy of real world person within a 3D video.

In this part of the thesis we demonstrate how it is possible to reconstruct and
render high quality free-viewpoint videos of human actors. We base our approach
on the principals of marker-free optical motion capture that have been detailed in
part I.

In Chap. 8 we describe the algorithmic components of a model-based system
for the reconstruction and rendering of free-viewpoint videos of human actors.
The inputs to our method are multi-view video streams that we recorded in our
acquisition room (Chap. 4). We employ a marker-free model based optical hu-
man motion capture approach to estimate the motion of a person. The capturing
method analyzes the overlap between the reprojected virtual model and the sil-
houettes of the person in each camera view in order to determine the optimal
pose parameters at each time step of video. During playback of the 3D video the
model is rendered in the sequence of acquired body poses and realistic surface
textures are generated by blending and reprojecting the input video images onto
the model. This way a realistic time-varying surface appearance of the virtual
actor is achieved that captures even subtle details, such as wrinkles in clothing.
While the dynamic 3D scene is rendered the viewer can interactively change its
viewpoint to an arbitrary position in space.

In Chap. 9 we present an extended version of the original free-viewpoint video
system in which we add a new processing step to the motion capture approach.
While a purely silhouette-based capturing method can robustly estimate human
motion on a large scale, slight pose inaccuracies, e.g. for the head, may still
occur. We solve this problem by incorporating texture information into the pose
estimation process. We compute corrective 3D flow fields from 2D optical flows
that enable us to update the stance estimated in the silhouette step. This way we
achieve a multi-view texture consistent posture of the body model for each time
step.

The methods described in Chap. 4 and Chap. 9 enable the photo-realistic ren-
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dition of real world scenes from arbitrary novel viewpoints. However, the visual
appearance is only captured under the illumination conditions that prevailed in the
studio while the scene was recorded. In Chap. 10 we present an extension of our
original approach that allows us to not only capture the motion but also dynamic
surface reflectance of a person from multi-view video streams. The reflectance
model we estimate consists of a per-texture element parametric BRDF model and
time-varying normal maps. With the so-created relightable free-viewpoint videos
any virtual environment can be augmented with three-dimensional dynamic scene
content that has been captured in the real world.

In the remainder of this chapter we will briefly review some work from the
literature that is related to our free-viewpoint video approach.

7.1 Related Work
In the computer vision and computer graphics literature, many conceptually differ-
ent approaches to scene reconstruction from image data and novel view synthesis
have been proposed. They greatly differ in terms of functional and performance
criteria, e.g. the range of novel viewpoints that can be generated, their run-times,
or the employed type of image data. For this review, however, we find it more in-
structive to categorized the related work based on the employed general principle
of scene reconstruction.

We begin with methods that take a purely image-based approach to scene re-
construction (Sect. 7.1.1). Thereafter we present methods that additionally recon-
struct geometric scene models to generate novel views and compare them to the
former class of methods (Sect. 7.1.2). After this, we briefly review approaches
that aim at handling the whole pipeline ranging from acquisition to rendering in
real-time (Sect. 7.1.3). Our research adds an additional dimension to the idea
of 3D video by enabling us to reconstruct also surface reflectance models from
multi-view video. We therefore also briefly review related work on image-based
reflectance measurement (Sect. 7.1.4). The algorithmic solutions presented in part
II of this thesis also capitalizes on the related work on marker-free video-based
human motion capture which is discussed in Chap. 3

7.1.1 Purely Image-based Novel View Synthesis
Image-based rendering (IBR) techniques are a class of algorithms in computer
graphics that do not employ explicit geometry models to render novel views but
rather generate them from a collection of images [Kang00].

One type of IBR methods is based on the concept of the 7D plenoptic func-
tion [Adelson91] that describes the intensity of light rays passing through each
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point in space, at every possible angle, and for every wavelength at every time.
This function is far too complex to be reconstructed in its full complexity. Fur-
thermore its storage requirements make it totally inappropriate for novel viewpoint
rendering. Thus researchers have dropped some of the variables to reduce its com-
plexity. In [McMillan95], the time and wavelength variable were dropped, and
the obtained 5D function used for view synthesis. The simplest plenoptic func-
tion is a 2D panorama, where the viewpoint is fixed and only the direction can
be changed [Szeliski97]. The light-field [Levoy96] and lumigraph [Gortler96] ap-
proaches make use of the fact that, if one stays out of the convex hull of an object,
the 5D plenoptic function can be reduced to 4D. Typically, this lower-dimensional
function is parameterized by two parallel planes of the object’s bounding box. An
alternative form of light field parameterization that also enables the realistic re-
construction of depth of field effects with a changing virtual camera focal plane
is described in [Isaksen00]. In [Aliaga01] a light-field based approach that can
create interactive walkthroughs of virtual environments is presented. It stitches
together plenoptic functions that have been reconstructed from images of a mov-
ing panoramic camera. Important issues in all purely images-based approaches are
the proper selection of image samples and the reconstruction from them [Chai00].

Another class of approaches makes use of simple implicit geometry informa-
tion that is not directly available. In view interpolation, arbitrary novel views can
be synthesized from reference images. However, the results will only be pleasing
if the reference views are close to the novel virtual view. The method by Chen and
Williams [Chen93] computes a dense optical flow field between reference images
and from this creates intermediate views. A related approach is the view morph-
ing algorithm presented in [Seitz96]. Intermediate views along the line linking to
cameras views can be generated. Other approaches make use of the trifocal ten-
sor [Hartley00] that mathematically describes the relation between three camera
views to generate novel views from two reference images [Avidan97].

Some IBR methods make use of explicit 3D scene information, either in the
form of per-pixel depth information or 3D coordinates. In 3D warping, per-pixel
depth data are used to generate novel views of an image from nearby camera po-
sitions. To achieve this, the image data are back-projected to their correct 3D
locations and then projected into the virtual camera view [McMillan97]. The
problem with 3D warping is that due to insufficient visibility, occlusion and dis-
occlusion artifacts arise if the novel view is too different from the reference view.
A solution to this problem is provided by layered depth images which store not
only one depth value per pixel but multiple depth values for each occluded sur-
face [Shade98].
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7.1.2 Novel View Synthesis via Image-based Geometry
Reconstruction

The algorithms presented in this section exploit information on scene geometry
that is automatically inferred from input video streams. This has two important
advantages over purely image-based approaches. First, the number of recording
cameras can be significantly reduced. Second, despite the lower number of record-
ing imaging sensors, a large range of novel virtual viewpoints can be synthesized.

One prominent type of approaches employs stereo reconstruction from multi-
ple video streams to estimate a 3D model of the recorded scene. In [Narayanan98],
an approach is presented that can reconstruct dynamic 3D scene geometry using
dense stereo reconstruction algorithm. For recording, a hemispherical dome of
51 cameras is used. In [Zitnick04] a novel system is presented that reconstructs
dynamic 3D scenes using stereo. The results in their paper were generated with a
prototype system that features a few cameras in a closely spaced semi-circular ar-
rangement. The authors present a novel algorithm to reconstruct low-noise depth
maps and address the problem of ghosting artifacts at the silhouette boundaries of
objects in the scene foreground. Stereo-based algorithms have been very popular
in telepresence applications. The geometry of the person at one side of the com-
munication channel is reconstructed and transferred to the other end where it is
rendered [Mulligan00]. In stereo-based approaches no a-priori knowledge about
the scene geometry is required. Nonetheless, several other factors limit their ap-
plicability. In the first place, stereo methods can only robustly reconstruct diffuse
objects. Secondly, novel viewpoints onto the scene only look plausible if they are
close to the input camera views. In consequence, full virtual flyarounds are only
feasible if a very high number of tightly packed cameras are used for recording.

A second very popular category of approaches are algorithms that recon-
struct scene geometry from multi-view silhouette images, so-called shape-from-
silhouette methods. The overall idea is to reproject silhouette cones from the
camera positions into the scene and to intersect them. This way, the so-called
visual hull [Laurentini94] of the object in the scene is obtained (see Chap. 5
Sect. 5.5). In [Moezzi97] a system is described that reconstructs voxel-based
visual hulls of dynamic scenes from multi-view video. It is also possible to recon-
struct textured polyhedral models from multi-view silhouette footage and render
them in real-time from any arbitrary novel viewpoint [Matsuyama02, Matusik01].
In [Matusik00, Wuermlin02] an alternative approach to visual hull reconstruction
is presented that does not explicitly estimate 3D geometry but reconstructs a novel
output view from multiple video streams using only image-space constraints. The
method presented in [Gross03] uses point primitives that are a generalization of
2D pixels into 3D for reconstructing dynamic scenes from video streams.

Shape-from silhouette approaches are subject to a couple of limitations. The
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visual hull is only a coarse approximation to the true shape of an object. Concavi-
ties in the surface cannot be faithfully reconstructed by only employing silhouette
information. Thus the renditions of the reconstructed scenes wil often look unnat-
ural, in particular if texture information from the images is reprojected to incor-
rect geometry. Furthermore, if only few input cameras are available, the under-
sampling artifacts lend the shape-from-silhouette geometry an awkward facetted
look.

Several methods have been proposed to overcome these limitations. In space-
carving [Kutulakos00] a multi-view color consistency criterion is used to improve
the visual hull geometry (see also Chap. 6 Sect. 6.2). It has also been shown that
the employment of view-dependent opacity maps that control the transparency of
the visual hull geometry can significantly improve the natural look of the approxi-
mate shape [Matusik02]. A hybrid method that improves the visual hull geometry
by additionally considering stereo information is presented in [Li02].

An approach that renders smooth transitions between shape-from silhouette
volumes available at discrete time steps is presented in [Vedula02]. The authors
achieve this by computing 3D optical flows between subsequent volume models
and rendering the views with a spatio-temporal ray-casting approach.

In contrast we propose in part II of this thesis a model-based approach to free-
viewpoint video reconstruction. The commitment to a generic geometry model
enables us to generate highly realistic novel viewpoint renditions of moving hu-
man actors although we only apply a handful of recording video cameras. Fur-
thermore, the complete dynamic scene description consisting of the time-varying
geometry and the dynamic surfaces textures can be stored in a very compact for-
mat.

7.1.3 Scene Recording and Novel Viewpoint Rendering
in Real-time

Trying to handle the full pipeline from scene recording to interactive scene ren-
dition in real-time is a very demanding undertaking. The time-constraint renders
complicated reconstruction algorithms inappropriate. In consequence, compro-
mises with respect to rendering quality and freedom of interaction with the con-
tent are inevitable. Although many ideas stem from the two previously reviewed
categories, we find it instructive to consider real-time systems separately.

It has been shown in several papers that shape-from silhouette approaches,
such as visual hull reconstruction, can perform in real-time [Matsuyama02,
Matusik01, Li04b, Li04a]. However, all these approaches can only reconstruct the
dynamic geometry of selected objects in the scene foreground. In recent years, the
term 3D TV has emerged for systems that reconstruct and display 3D content of
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entire scenes in real-time. Today, different researchers have different understand-
ings of what 3D TV is supposed to achieve.

An approach which extends the existing 2D TV infrastructure with 3D infor-
mation is described in the ATTEST project by the European Union [Redert02].
Here, the idea is to transmit per-pixel depth data in addition to the actual 2D TV
images. On the receiver side, one can employ these data to render a stereoscopic
view of the scene, which, in combination with an appropriate stereoscopic display
device, provides a depth impression to the viewer [Fehn04].

In [Matusik04] a slightly different prototype of a 3D TV system is presented.
It records a scene with multiple cameras, and transmits the video streams over a
network to multiple projectors that illuminate a specially coated projection screen.
The screen features a micro-structure that assures that the image projected by
one projector is only reflected in a narrow angle in space. If the viewer laterally
changes his viewpoint he always sees a 3D impression that is reconstructed from
those cameras that are closest to his virtual viewpoint in the real scene. Currently,
the viewer is allowed to move his head in a very limited range parallel to the
screen since only this range is covered by the input cameras. Within these limits
nice rendering results with a head-motion dependent depth parallax are obtained.
A light-field algorithm is used for display.

So far, real-time approaches can, in terms of rendering quality and freedom of
viewpoint change, not compete with most non-real-time algorithms.

7.1.4 Image-based Reflectance Estimation and Photo-
metric Shape Reconstruction

For realistic rendering of the appearance of real world models under arbitrary
lighting conditions, a mathematical model of the light interaction at the surface of
the object is required. Typically, the physics of light interaction is described by
means of a bi-directional reflectance distribution function or BRDF (see Chap. 2).
For a detailed review on different models of light interaction we would like to
refer the interested reader to [Rusinkiewicz00] or [Lensch04].

In image-based reflectance estimation, the camera serves as a measuring sen-
sor that samples the radiance outgoing from an object’s surface under different
illumination situations. Many systems that follow this line of thinking have
been proposed in the literature. Typically, a single point light source is used
to illuminate an object of known 3D geometry. One common approach is to
take HDR images of a curved object, yielding a different incident and outgo-
ing directions per pixel and thus capturing a vast number of reflectance samples
in parallel. Quite often the parameters of an analytic BRDF model are fitted
to the measured data [Sato97, Lensch03] or a data-driven model [Matusik03]
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is used. Reflectance measurements of scenes with more complex incident il-
lumination can be derived by either a full-blown inverse global illumination
approach [Yu99, Gibson01, Boivin01] or by representing the incident light
field as an environment map and solving for the direct illumination component
only [Yu98, Ramamoorthi01, Nishino01].

Instead of explicitly reconstructing a mathematical reflectance model it has
also been tried to take an image-based approach to relighting. In [Hawkins04]
a method to generate animatable and relightable face models from images taken
with a special light stage is described. Using deformable geometry, the face is
rendered under novel illumination by reconstructing from a large database of im-
ages that show the face under different incident illumination directions, different
viewing directions and with different expressions. For our 3D video scenario, we
prefer a more compact scene description based on parametric BRDFs that can be
reconstructed in a fairly simple acquisition facility.

Reflection properties together with measured photometric data can also be
used to derive geometric information of the original object [Zhang99]. Rush-
meier et al. estimate diffuse albedo and normal map from photographs with varied
incident light directions [Rushmeier97, Bernardini01]. A linear light source is
employed by Gardner et al. [Gardner03] to estimate BRDF properties and surface
normal. In [Georghiades03, Goldman04], reflectance and shape of static scenes
are simultaneously refined using a single light source in each photograph.

Carceroni and Kutulakos present a volumetric method for simultaneous mo-
tion and reflectance capture for non-rigid objects [Carceroni01].

In contrast, in Chap. 10 we propose a model-based approach that captures
shape, motion parameters and dynamic reflectance of the whole human body
at high accuracy. In our approach we will approximate the incident illumina-
tion by multiple point light sources and estimate BRDF model parameters tak-
ing only direct illumination into account. We have also developed a photometric
stereo method that reconstructs time-varying changes in surface geometry from
reflectance samples.



Chapter 8

Model-based Free-Viewpoint
Video of Human Actors

This chapter presents a novel model-based algorithm for reconstructing and
rendering free-viewpoint videos of human actors. It applies synchronized
multi-view video footage of an actor’s performance to estimate motion pa-
rameters and to interactively re-render the actor’s appearance from any view-
point [Carranza03, Theobalt03b, Theobalt04b]. We achieve this by employing
a model-based analysis-by-synthesis method.
The actor’s silhouettes are extracted from synchronized video frames via back-
ground segmentation and then used to determine a sequence of poses for a 3D
human body model. Prior to motion estimation, the body model is automatically
adapted in shape and proportions to its real world counterpart. By employing
multi-view texturing during rendering, time-dependent changes in the body sur-
face are reproduced in high detail. The motion capture subsystem runs offline,
is non-intrusive, yields robust motion parameter estimates, and can cope with a
broad range of motion. The rendering subsystem runs at real-time frame rates us-
ing ubiquitous graphics hardware, yielding a highly naturalistic impression of the
actor.

Our model-based free-viewpoint video approach has many advantages over
3D video approaches that explicitly extract the scene geometry from the video
footage:

• Since the type of object in the scene is known in advance we can design a
generic model and use a powerful marker-free motion capture approach to
estimate its movements.

• We achieve highly convincing novel-viewpoint renderings even though free-
viewpoint videos are only reconstructed with a handful of cameras.
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• High-quality rendering is possible even with slightly inexact geometry.

• The temporal change in scene geometry can be parameterized by only 35
pose parameters. Thus, our free-viewpoint video format is ideal for trans-
mission over bandwidth-limited network channels.

• The number of input cameras necessary is very low.

• Our model-based analysis-by-synthesis approach exploits graphics hard-
ware, and thus solves a computer vision problem by means of computer
graphics technology.

• The hierarchical structure of the motion estimation problem can be ex-
ploited to efficiently solve sub-problems in parallel.

8.1 Overview

In Fig. 8.1 the interplay of the algorithmic ingredients in our model-based free-
viewpoint video system is shown. Inputs to our system are multi-view video
streams that are recorded in our acquisition studio (Sect. 8.2). The video frames
are postprocessed in order to segment the person in the foreground from the scene
background by means of a color-based background subtraction (Chap. 2). We rep-
resent the 3D dynamic scene content with a generic human body model that can be
adapted in shape and proportions to the dimensions of its real world counterpart
(Sect. 8.3). For estimating the time-varying appearance of the actor in a scene we
employ a model-based analysis-by-synthesis scheme. The principle clue that we
use to fit the model to the scene content is the overlap between the image silhou-
ettes and the silhouettes of the projected model in each camera view (Sect. 8.4).
We transform this criterion into a numerical error function which is efficiently
evaluated in graphics hardware. Using multiple camera views of the actor stand-
ing in an initialization pose, the geometry of the body model as well as as its
skeleton dimensions are automatically customized by means of a numerical mini-
mization in shape parameter space (Sect. 8.5). The shape parameters of the model
remain fixed throughout the whole 3D video sequence. The central component of
our analysis-by-synthesis scheme is a silhouette-based marker-free motion cap-
ture approach (Sect. 8.6). For each time step of video it performs an optimization
search for an optimal set of pose parameters for the model. The energy function
guiding this search is the previously mentioned silhouette-overlap. The hierarchi-
cal structure of the human body makes the pose determination problem a compart-
mentalized one, i.e. individual sub-problems can be solved independently from
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each other. We profit from this fact and exploit this parallelism in both silhouette-
match computation (Sect. 8.7.1) and pose parameter search (Sect. 8.7.2). Scene
recording, model initialization and pose estimation run offline.

During playback of the reconstructed 3D video, the model is displayed in the
sequence of captured body poses. We create a photo-realistic surface appearance
of the model by projectively texturing it with the input video frames (Sect. 8.8).
In order to generate an artifact-free surface appearance despite only approximate
model geometry, we have developed a special texture blending (Sect. 8.8.1) and
visibility pre-processing scheme (Sect. 8.8.2).

Our free-viewpoint video renderer provides the actual interface to the viewer.
It enables him to freely navigate through 3D space while the dynamic scene con-
tent plays back in real-time. In Sect. 8.9 we demonstrate the very high visual
quality that we can achieve with our algorithm for even as complex scenes as
human ballet dance.

8.2 Input Data Acquisition
The video sequences used as inputs to our system are recorded in our multi-view
camera studio (Chap. 4). To generate the results presented in this chapter we ap-

Figure 8.1: Illustration of the algorithmic workflow of our free-viewpoint
video recording and rendering System.
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Figure 8.2: Illustration of one semi-circular camera arrangement that we
used for our experiments. Red spheres denote camera positions, the arrows
indicate their viewing directions.

plied camera setup - evolution I. For recording we placed our eight video cameras
in a semi-circular arrangement around the center of the scene (Fig. 8.2). Hardware
limitations allow us to to record frame-synchronized multi-view video footage at
a frame rate of 15 fps and a resolution of 320x240 pixels only. At the higher
frame rate of 640x480 pixels the I/O overhead limits the frame rate to 10 fps (see
Chap. 4). All cameras are calibrated into a common coordinate system and the
effects of first order lens distortion are eliminated. To establish multi-view color
consistency, all cameras are relatively color-calibrated.

The inputs to both motion parameter estimation and model initialization are
silhouette images of the person in the foreground. We calculate these silhou-
ette images by applying our color-based background subtraction scheme. Isolated
holes in the silhouettes can be filled via morphological dilate and erode opera-
tions [Jain95].

8.3 The Adaptable Human Body Model
While 3D object geometry can be represented in different ways, here, a triangle
mesh representation is used because it offers a closed and detailed surface de-
scription, and, even more importantly, it can be rendered very fast on graphics
hardware. Since the model must be able to perform the same complex motion
as its real-world counterpart, it is composed of multiple rigid-body parts that are
linked by a hierarchical kinematic chain (c.f. Chap. 2). The joints between seg-
ments are suitably parameterized to reflect the object’s kinematic degrees of free-
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dom. Besides object pose, also the dimensions of the separate body parts must be
kept adaptable (within reasonable bounds) as to be able to match the model to the
object’s individual stature.

As geometry model, a publicly available VRML geometry model of a human
body is used, Fig. 8.3a. The model consists of 16 rigid body segments, one for
the upper and lower torso, neck, and head, and pairs for the upper arms, lower
arms, hands, upper legs, lower legs and feet. In total, more than 21000 triangles
make up the human body model. A hierarchical kinematic chain connects all body
segments, resembling the anatomy of the human skeleton. 17 joints with a total of
35 joint parameters define the pose of the virtual character. Different joints in the
body model provide different numbers of rotational degrees of freedom the same
way as the corresponding joints in an anatomical skeleton do. Furthermore, we
have employed a special parameterization of each limb that is particularly suited
for application in our pose estimation process. For global positioning, the model
provides three translational degrees of freedom which influence the position of the
skeleton root. The root of the model is located at the pelvis. The kinematic chain
is functionally separated in an upper body half and a lower body half. The initial
joints of both kinematic sub-chains spatially coincide with the model root.

In Fig. 8.3a individual joints in the body model’s kinematic chain are drawn
and the respective joint color indicates if it is a 1-DOF hinge joint, a 3-DOF ball
joint, or a joint being part of our custom limb parameterization. Each limb, i.e.
complete arm or leg, is parameterized via four degrees of freedom. These are the
position of the tip, i.e wrist or ankle, in local coordinates, and the rotation around
an axis connecting root and tip (Fig. 8.3b). This limb parameterization was chosen
because it is particularly well-suited for an efficient grid search of its parameter
space which we describe in Sect. 8.6. The head and neck articulation is specified
via a combination of a 3-DOF ball joint and a 1-DOF hinge joint. The wrist offers
three degrees of freedom and the foot motion is limited to a 1-DOF hinge rotation
around the ankle. In total, 35 pose parameters fully specify a body pose.

Starting with a generic body model, the initial geometry does not have the
same proportions as the human which it currently is meant to represent. Thus,
in addition to the pose parameters, the model provides anthropomorphic shape
parameters that control the bone lengths as well as the structure of the triangle
meshes defining the body surface.

Each of the 16 body segments features a scaling parameter that scales the
bone as well as the surface mesh uniformly in all three coordinate directions (in
the local coordinate frame of the segment). This parameter provides control over
the bone length but does not give sufficient control of the mesh geometry.

In order to match the geometry more closely to the shape of the
real human each segment features four one-dimensional Bézier curves
B+x(u),B−x(u),B+z(u),B−z(u), which are used to scale individual coordinates of
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each vertex in the local triangle mesh. In the local coordinate system a bone is
aligned with the y-axis. For each direction orthogonal to the bone direction, i.e.
+x,-x and +z,-z one scaling curve is applied. A novel vertex coordinate in one of
the orthogonal directions is obtained by multiplying its default position with the
value of the appropriate scaling curve. The correct curve parameter u is obtained
by transforming the local y-coordinate of the vertex to the range [0,1] with respect
to the bone length (Fig. 8.3c). Each Bézier curve is defined via four control values,
making it an additional 16 shape parameters for each body segment. This surface
deformation scheme gives a good control over the segment geometry while only
requiring comparably few parameters.

(a) (b) (c)

Figure 8.3: (a) Surface model and the underlying skeletal structure. Spheres
indicate joints and the different parameterizations used; blue sphere - 3 DOF
ball joint, green sphere - 1 DOF hinge joint, red spheres (two per limb) - 4
DOF. The black/blue sphere indicates the location of three joints, the root of
the model and joints for the upper and lower half of the body. (b) The upper
figure shows the parameterization of a limb, consisting of 3 DOF for the wrist
position in local shoulder coordinates (shown in blue) and 1 DOF for rotation
around the blue axis. The lower right figure demonstrates an exaggerated
deformation of the arm that is achieved by appropriately tweaking the Bézier
parameters. (c) Schematic illustration of local vertex coordinate scaling by
means of a Bézier scaling curve for the local +x direction.
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8.4 Silhouette Matching
The challenge in applying model-based analysis for free-viewpoint video recon-
struction is to find a way how to automatically and robustly adapt the geometry
model to the subject’s appearance as it was recorded by the video cameras. Since
the geometry model is suitably parameterized to alter, within anatomically plausi-
ble limits, its shape and pose, the problem consists of determining the parameter
values that achieve the best match between the model and the video images. This
task is regarded as an optimization problem.

Etienne de Silhouette, Louis XV.’s financial minister, realized that the outline
of a man’s head, while inexpensive to acquire, comprises enough characteristic
information about the depicted subject to enable recognizing the person. To save
money, he ordered silhouette drawings to be made of all civil servants, instead of
oil paintings, as was customary before his time.

250 years later, silhouette renderings are cheap to display on modern graph-
ics hardware. The subject’s silhouettes, as seen from the different camera view-
points, are used to match the model to the video images (an idea used in similar
form in[Lensch01]): The model is rendered from all camera viewpoints, and the
rendered images are thresholded to yield binary masks of the model’s silhouettes.
The rendered model silhouettes are then compared to the corresponding image sil-
houettes. As comparison measure, the number of silhouette pixels is determined
that do not overlap. Conveniently, the exclusive-or (XOR) operation between the
rendered model silhouette and the segmented video-image silhouette yields those
pixels that are not overlapping. The sum of remaining pixels in all images is the
mismatch score, with zero denoting an exact match.

This matching function can be evaluated very efficiently on graphics hardware
(Fig. 8.4): Each input image silhouette is packed into one bitplane of a byte sized
buffer. That buffer is transferred into the OpenGL stencil buffer, and successive
drawings of the model compute the XOR in each bit plane. The stencil buffer
stores 8-bit values which can be modified through a number of simple operations
on a per-fragment basis. To compute an XOR in the stencil buffer, the model is
rendered from each camera perspective into the bitplane that corresponds to this
camera. The stencil buffer settings are chosen such that each fragment which
passes the depth test is told to invert the bit at its corresponding pixel position. In
order to prevent multiple fragments from inverting a single pixel more than once,
the camera’s projection matrix is modified so that all vertices project into z=0
plane. With the depth test properly set to reject all fragments with a z-value larger
or equal to the value in the depth buffer, at most one inversion occurs per pixel.
Once the XOR has been computed for all 8 cameras, the stencil buffer that con-
tains in each of its bit-planes one binary XOR image (Fig. 8.5) is transferred back
to the CPU. In software the total number of set bits is counted which is at the same
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Figure 8.4: Hardware-based analysis-by-synthesis for free-viewpoint video:
To match the geometry model to the multi-video recordings of the actor, the
image foreground is segmented and binarized. The model is rendered from
all camera viewpoints. The boolean XOR operation is executed between the
foreground images and the corresponding model renderings, and the number
of remaining pixels in all camera views serves as matching criterion. Model
parameter values are varied via numerical optimization until the XOR result
is minimal. The numerical minimization algorithm runs on the CPU while
the energy function evaluation is implemented on the GPU.

time the numerical value of our energy function. An Nvidia GeForce3TM graphics
card performs more than 100 of such matching function evaluations per second.
Currently, the main limiting factor is the overhead generated by the read-back
from the graphics board. To adapt model parameter values such that the mis-
match score becomes minimal, a standard numerical optimization algorithm, such
as Powell’s method [Press02], runs on the CPU. For each new set of model pa-
rameter values, the optimization routine invokes the matching function evaluation
routine on the graphics card.

One valuable benefit of model-based analysis is the low-dimensional param-
eter space when compared to general reconstruction methods: The parameter-
ized model provides only a few dozen degrees of freedom that need to be deter-
mined, which greatly reduces the number of potential local minima. Furthermore,
many high-level constraints are implicitly incorporated, and additional constraints
can be easily enforced by making sure that all parameter values stay within their
anatomically plausible range during optimization. Finally, temporal coherence is
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straight-forwardly maintained by allowing only some maximal rate of change in
parameter value from one time step to the next.

(a) (b)

Figure 8.5: (a) Binary XOR images for a single camera view at different
times steps. In a single time step, the energy function sums up the numbers
of set pixels in all input views. (b) The content of the stencil buffer after one
evaluation of the silhouette-XOR energy function. Each bitplane contains one
XOR image for one of the input cameras. Gray values have been enhanced
in order to make the content better visible.

8.5 Model Initialization
To apply the silhouette-based model pose estimation algorithm to real-world
multi-video footage, the generic geometry model must first be initialized, i.e. its
proportions must be adapted to the subject in front of the cameras. To achieve
this we run a numerical minimization in the scaling parameter space of the model
using the silhouette XOR energy function. The model provides one scaling and
16 Bézier deformation parameters per body segment that control the shape and
proportions of the model. This way, all segment surfaces can be deformed until
they closely match the actor’s stature.

During model initialization, the actor stands still for a brief moment in a pre-
defined pose to have his silhouettes recorded from all cameras. The generic model
is rendered for this known initialization pose, and without user intervention, the
model proportions are automatically adapted to the individual’s silhouettes. First,
only the torso is considered. Its position and orientation is determined approx-
imately by maximizing the overlap of the rendered model images with the seg-
mented image silhouettes. Then the pose of arms, legs and head are recovered
by rendering each limb in a number of orientations close to the initialization pose
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(a) (b) (c)

Figure 8.6: (a) template model geometry; (b) model after 5 iterations of pose
and scale refinements; (c) model after adapting the Bézier scaling parame-
ters.

and selecting the best match as starting point for refined optimization. This step
is identical to the optimization which we perform for pose determination (see
Sect. 8.6). Following the model hierarchy, the optimization itself is split into sev-
eral sub-optimizations in lower-dimensional parameters spaces. After the model
has been coarsely adapted in this way, the uniform scaling parameters of all body
segments are adjusted. For selected body segments (e.g. arm and leg segments)
we found it advantageous to scale their dimension only in the bone direction, and
to leave the control of the triangle mesh shape orthogonal to this direction to the
Bézier parameters. The algorithm then alternates between optimizing joint param-
eters and segment scaling parameters until it has converged to the error function’s
minimum. Through experiments we have found that five to ten iterations are typ-
ically sufficient. An adaptive approach that terminates when the changes in error
function become minor is also feasible. Now that body pose and proportions have
been established, the Bézier control parameters of all body segments are opti-
mized in order to fine-tune each segment’s outline such that it complies with the
recorded silhouettes. For the hands and the feet we do not optimize the Bézier
parameters. To speed up the initialization process, deformed model is rendered
by means of a vertex program on the GPU. This way, deformation parameters
can be efficiently altered on-the-fly. In Fig. 8.6 the initial model shape, its shape
after five iterations of pose and scene optimization, and its shape after Bézier scal-
ing are shown. For numerical minimization we employ the direction set downhill
optimization method by Powell (see also Sect. 8.6).

Obviously, an exact match between model outline and image silhouettes is
not attainable since the parameterized model has far too few degrees of freedom.
Thanks to advanced rendering techniques (Sect. 8.8) an exact match is neither
needed, nor is it actually desired: Because the recorded person may wear rela-
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tively loose, flexible clothes, the silhouette outlines can be expected to be inac-
curate, anyway. By not being dependent on exact image silhouette information,
model-based motion analysis is capable of robustly handling also non-rigid object
surfaces.

The initialization procedure takes only a few seconds, after which the seg-
ments’ scaling parameter values and Bézier surface deformation values are known.
These are kept fixed from now on. During motion capture, only the 35 joint pa-
rameters are optimized to follow the motion of the dancer.

8.6 Motion Parameter Estimation

The human body is capable of a very large range of complex motions. Given
the relatively small set of 35 joint parameters, only a subset of all possible body
poses can be reproduced. Fortunately, modeling the 17 most important joints of
human anatomy suffices to capture gross motor skills faithfully and to realistically
reproduce even such expressive movements as ballet dance.

The individualized geometry model automatically tracks the motion of the
human dancer by optimizing the 35 joint parameters for each time step. The
appropriate pose parameters are found via a silhouette-based marker-free motion

Figure 8.7: From eight image silhouettes per time step, model-based analysis
automatically captures the complex motion of a ballet dance performance.
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(a) (b) (c)

Figure 8.8: (a) Silhouette XOR; (b) body model; (c) textured body model
from same camera view.

capture approach that does not expect the person to wear any specialized apparel.
This is a necessary pre-condition for free-viewpoint video reconstruction, since
only if motion is captured completely passively can the video imagery be used for
texturing. The model silhouettes are matched to the segmented image silhouettes
of the actor so that the model performs the same movements as the human in front
of the cameras, Fig. 8.7 and Fig. 8.8.

At each time step an optimal stance of the model is found by performing a
numerical minimization of the silhouette XOR energy functional in the space of
pose parameters.

The numerical optimization of the multi-dimensional, non-convex matching
functional can potentially result in sub-optimal fitting results. A straightforward
approach would be to apply any standard numerical minimization method to opti-
mize all pose-related degrees of freedom in the model simultaneously. This sim-
ple strategy, however, exhibits some of the fundamental pitfalls that make global
optimization infeasible. In the global case, the energy function reveals many erro-
neous local minima. Fast movements between consecutive time frames are almost
impossible to track since it may happen that no overlap between the model and
the image silhouette occurs that guides the optimizer towards the correct solution.
A different problem arises if one limb moves very close to the torso. In this case,
it is quite common for global minimization method to find a local minimum in
which the limb penetrates the torso.

One of the major issues in marker-free pose estimation is therefore the ques-
tion of how to constrain the search space of possible pose parameters. Many
different ways to formulate these constraints have been presented in the litera-
ture (see Chap. 3). Here, we present a method that enables us to use a standard
direction set minimization scheme to robustly estimate pose parameters. We ef-
fectively constrain the search space by exploiting structural knowledge about the
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human body, knowledge about feasible body poses, temporal coherence in motion
data and a grid sampling preprocessing step.

To efficiently avoid local minima, the model parameters are not all optimized
simultaneously. Instead, the model’s hierarchical structure is exploited. Model
parameter estimation is performed in descending order with respect to the indi-
vidual segments’ impact on silhouette appearance and their position along the
model’s kinematic chain, Fig 8.9. First, position and orientation of the torso is
varied to find its 3D location. Next, arms, legs and head are considered. Finally,
hands and feet are regarded.

Temporal coherence is exploited by initializing the optimization for one body
part with the pose parameters found in the previous time step. Optionally, a simple
linear prediction based on the two preceding parameter sets is feasible.

Due to the limb parameterization described in Sect. 8.3, fitting an arm or leg
is a four-dimensional optimization problem. In order to cope with fast body mo-
tion that can easily mislead the optimization search, we precede the numerical
minimization step with a regular grid search. The grid search samples the four-
dimensional parameter space at regularly-spaced values and checks each corre-
sponding limb pose for being a valid pose. Using the arm as an example, a valid
pose is defined by two criteria. Firstly, the wrist and the elbow must project into
the image silhouettes in every camera view. Secondly, the elbow and the wrist
must lie outside a bounding box defined around the torso segment of the model.
For all valid poses found, the error function is evaluated, and the pose that exhibits
the minimal error is used as starting point for a direction set downhill minimiza-
tion. The result of this numerical minimization specifies the final limb configu-
ration. The parameter range from which the grid search draws sample values is
adaptively changed based on the difference in pose parameters of the two preced-
ing time steps. The grid sampling step can be computed at virtually no cost and
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Figure 8.9: For motion capture, the body parts are matched to the images
in hierarchical order: the torso first, then arms, legs and head, finally hands
and feet. Local minima are avoided by a limited regular grid search for some
parameters prior to optimization initialization.
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significantly increases the convergence speed of the numerical minimizer.
Optionally, the whole pose estimation pipeline can be iterated on for single

time step. The numerical minimizer we employ throughout our free-viewpoint
video system is Powell’s downhill minimization procedure [Press02]. It is both
used for motion capture and model initialization. As a direction set method it
always pertains a number of candidate descend directions in parameter space.
The optimal descend in one direction is computed using Brent’s line search
method. Our algorithm shows that with the appropriate combination of con-
straints even such a standard minimizer can perform as well in human body track-
ing as a more complicated statistical optimization schemes, such as condensa-
tion [Deutscher00]. Our method does not require the estimation of statistical pro-
cess models, and is general enough to be used with a large range of differently
structured body models.

8.7 Accelerating Motion Capture

We have demonstrated in the preceding section that by following the hierarchi-
cal structure of the human skeleton, the pose determination problem for the whole
body can be decomposed into multiple smaller problems on kinematic sub-chains.
It is important to note that several of these sub-problems can be solved indepen-
dently from each other. We can exploit this compartmentalized nature of the prob-
lem to speed up two time-critical algorithmic components of the motion capture
system, the evaluation of the energy function and the optimization search for the
pose parameters [Theobalt03b]. Firstly, the energy function evaluation speed can
be significantly increased by only considering sub-windows in the image plane.
Secondly, the rendering overhead for energy function evaluation can be reduced
by selectively rendering only those body parts that are currently optimized. Fi-
nally, the motion capture algorithm lends itself to a parallel implementation that
jointly uses several CPUs and GPUs.

8.7.1 Accelerated Silhouette Matching

Variable Window Size

The partitioning of the motion parameter estimation process into a number of sub-
optimizations of specific body parts implies that only the motion of one body part
is considered at a time. The energy function evaluation can thus be restricted
to that region of the image plane in which the body part projects. This body
part may take up only a small portion of the overall silhouette. An arm or leg is
much smaller than a person’s torso, and a hand or foot is much smaller than an



8.7 Accelerating Motion Capture 103

Figure 8.10: Global energy function (center) and smaller sub-windows
(128x128 pixels) used to optimize the arm positions (shown for one camera
view only).

arm or leg. Therefore, there is no need to transfer the entire silhouette image to
the GPU. For each body part in the hierarchy and each camera view, a window
with a fixed size is selected. When that body part’s pose is being estimated, only
these sub-windows of the input silhouettes are transferred to and from the GPU.
In each camera view, the window is centered at the projected position of the body
part’s center of mass from the preceding time step (Fig. 8.10). Consequently, the
window locations, and thus the silhouette data sent to the GPU, do not change for
a given time instant.

A reduced window size allows for rapid evaluation of the energy function
for small body parts. As such, the choice of window sizes is critical to both
performance and accuracy. The projected size of a body part can vary greatly
depending on position. Obviously, in some extreme cases (for example the person
holds his face directly in front of a certain camera), a body part may exceed the
window size in a specific camera. However, it is worth noting that with our camera
setup and reasonable window sizes, even if the projection of a body part exceeds
the window of a certain camera, it will certainly fall entirely within the window
of several other cameras, and thus its pose still be reliably estimated. Regardless
of this fact, we choose our window size very conservatively (128x128 pixels for
arms and legs, 64x64 pixels for head, hands and feet).

While optimal pose parameters for the torso are searched the pose of the whole
body model is influenced. The model silhouette varies over a large region in im-
age space making it impossible to identify a sub-window of significantly reduced
dimensions. However, we have found that the torso and its linked body parts are
large enough to be reliably tracked with silhouette images at half the input resolu-
tion, i.e. 160x120 pixels.
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mask corrected stencil
bufferstencil buffer

Figure 8.11: Body part pre-rendering: During the motion parameter estima-
tion of a kinematic sub-chain, only the geometry of this sub-chain is rendered.
To correct for errors in the XOR energy function, a mask is pre-computed be-
fore the optimization starts. A bitwise AND between the mask and the stencil
buffer is computed to get the final value of the energy function. The same
process applies to all bit-planes of the stencil buffer, i.e. all camera views.

Body Part Pre-rendering

The energy function evaluation rate can be further sped up by reducing the num-
ber of geometric primitives that need to be rendered in one iteration. During
optimization of a limb, for example, the pose parameters of all the other body
parts are not modified, hence their projection into all the camera views does not
change. The energy function evaluation speed can therefore be greatly improved
by only rendering the geometry of those body parts that are currently optimized.
The problem with this approach is that it adds a wrong contribution to the XOR
energy function. During computation of the XOR in the stencil buffer the bits are
set in those regions where there are pixels from the image silhouettes, but where
no body part projects to, since it was excluded from rendering. To eliminate this
erroneous contribution to the energy function, an additional pre-rendering step
needs to be performed which creates (for each camera view) a mask that corrects
the error function on the CPU. This mask contains a 0-bit for each pixel to which
a body part projects that does not change during optimization, and a 1-bit for all
other pixels. The masks are generated by setting the stencil buffer configuration
appropriately and rendering the model without the body parts that are currently
optimized from each camera view. The energy function error is corrected on the
CPU by computing a pixel-wise AND between the stencil buffer bit-planes and all
camera masks before counting the set bits. Fig. 8.11 illustrates the modified error
function evaluation for one of the camera views contributing to its final value.
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(a) (b)

Figure 8.12: (a) Illustration of which components of the distributed model-
based motion analysis system are responsible for the pose of which body part.
(b) After torso position and orientation have been determined, the pose of
each extremity is estimated on a separate PC.

8.7.2 Parallel Pose Estimation

The compartmentalized nature of the problem suggests that a distributed compu-
tation approach is feasible. The optimization of a specific body part is primarily
dependent on the optimization of body parts which are higher in the hierarchy and
relatively independent of any other body parts. For example, the correct position
for the left arm is unaffected by the position of the right arm and legs.

While the enhanced version of the energy function minimizes the amount of
information travelling across the GPU bus, running a distributed computation
model effectively increases the bandwidth of a single "virtual"bus. In our dis-
tributed implementation, motion parameter estimation is concurrently executed
on five computers (Fig. 8.12). A single computer, designated as the server, is
responsible for estimating the position of the torso and head, while each of the
four clients’ task is to estimate the position of one limb and attached hand or foot.
The computers are connected over standard 100 MBit/s network connections and
communicate with a very basic protocol over TCP/IP.

Motion parameter estimation at each time step begins at the server which packs
the input silhouettes into a single buffer and then transfers this information to the
clients. The server optimizes the position and rotation of the torso and then sends
the resulting model pose to the clients. At this point, each client begins estimating
the motion parameters for its respective limb and extremity (Fig. 8.12), while the
server estimates the pose parameters of the head. In this way 29 out of the 35
parameters are estimated concurrently over 5 GPUs. Once each client completed
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its pose estimation, its results are transferred back to the server. The server, after
receiving all results, initiates a further iteration of the complete parallel motion
capture pipeline in order to refine the estimate, or it proceeds to the next time
step.

Certainly, other models for distributed computation exist. It would also be
feasible to employ several GPUs even during pose estimation of a single body
part. However, we chose our way of implementation because of its proper bal-
ance of speed, simplicity, and hardware requirements. Introducing the additional
complexity of several computers per body part would provide relatively minor
speed improvements in comparison to the speed improvements of using a single
computer versus five.

The motion capture results that we obtain with the distributed system are as
accurate as the ones obtained with the single PC implementation. With some rare
exceptions, the estimates obtained for each limb or extremity are completely in-
dependent of that of other limbs. This can be explained by the fact that, for a large
majority of poses, the limbs are distinct from each other in at least one camera
view. The situation one would expect to be problematic for distributed motion
parameter estimation, namely where there is no distinction between two limbs
in any camera view, is a fundamental problem for any silhouette based method.
Fortunately, such poses (for example a person in the fetal position) are quite un-
common.

8.8 Rendering
A high-quality 3D geometry model is now available that closely matches the dy-
namic object in the scene over the entire length of the sequence. To display the
object photo-realistically, the recorded video images are used for texturing the
model surface.

Since time-varying video data is available, model texture doesn’t have to be
static. Time-varying cloth folds and creases, shadows and facial expressions are
faithfully reproduced, lending a very natural, dynamic appearance to the rendered
object. At 264 MBytes/sec AGP standard transfer bandwidth, the available eight
images of 225 KBytes each are uploaded to the graphics card at rates faster than
the available 15 frames per second in the input video data.

Modern graphics hardware supports projective texturing to apply the images as
texture to the triangle-mesh model. To attain optimal rendering quality, however,
the video textures need to be processed offline prior to real-time rendering: Since
the available texture consists of multiple images taken from different viewpoints,
the images need to be appropriately blended in order to appear as one consistent
object surface texture.
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(a) α = 0 (b) α = 3 (c) α = 15

Figure 8.13: Texturing results for different values of the control factor α .

Also, local visibility must be taken into account, and any adverse effects due
to the inevitable small differences between model geometry and the true 3D object
surface must be countered effectively.

8.8.1 Blending
Most surface areas of the model are seen from more than one camera. If the model
geometry corresponded exactly to that of the recorded object, all camera views
could be weighted according to their proximity to the desired viewing direction
and blended without loss of detail. However, the generic geometry model has
been adapted to the recorded actor using only a comparatively small number of
available parameters. Furthermore, the subject is being modeled as consisting
of rigid body elements, which may be only a coarse approximation, e.g. if the
person wears loose clothes. As a result, the model surface locally deviates from
the true geometry. Blending multiple image projections from different angles thus
causes blurred texture, and texture interpolation introduces inconsistencies when
the viewpoint is moving.

If surface reflectance can be assumed to be approximately Lambertian, view-
dependent reflection effects play no significant role, and high-quality, detailed
model texture can still be obtained by blending the video images cleverly. Let
θi denote the angle between a vertex normal and the optical axis of camera i.
By emphasizing for each vertex individually the camera view with the smallest
angle θi, i.e. the camera that views the vertex most head-on, a consistent, detail-
preserving texture is obtained. A visually convincing weight assignment has been
found to be

ωi =
1

(1+max
j

(1/θ j)−1/θi)α (8.1)
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where the weights ωi are additionally normalized to sum up to unity. The parame-
ter α determines the influence of vertex orientation with respect to camera viewing
direction and the impact of the most head-on camera view per vertex (Fig 8.13).
Singularities are avoided by clamping the value of 1/θi to a maximal value.

Although it is valid to assume that most types of apparel have purely Lam-
bertian reflectance, in some cases the reproduction of view-dependent appearance
effects may be wanted. To serves this purpose, our method provides the possibility
to compute view-dependent rescaling factors, ρi, for each vertex on-the-fly while
the scene is rendered:

ρi =
1
φi

(8.2)

where φi is the angle between the direction to the outgoing camera and the direc-
tion to input camera i.

8.8.2 Visibility

Projective texturing on graphics hardware has the disadvantage that occlusion is
not taken into account, so hidden surfaces get also textured. The z-buffer test,
however, allows determining for every time step which object regions are visible
from each camera.

Due to the use of a parameterized geometry model, the silhouette outlines in
the images do not correspond exactly to the outline of the model. When project-
ing video images onto the model, a texture seam belonging to some frontal body
segment may fall onto another body segment farther back, Fig. 8.14a. To avoid
such artifacts, extended soft shadowing is applied: For each camera, all object
regions of zero visibility are determined not only from the camera’s actual posi-
tion, but also from several slightly displaced virtual camera positions (Fig. 8.14b).
Each vertex is tested whether it is visible from all camera positions, actual as well
as virtual. A triangle is textured by a camera image only if all of its three vertices
are completely visible from that camera.

While too generously segmented silhouettes do not affect rendering quality,
too small outlines can cause annoying untextured regions. To counter such ren-
dering artifacts, all image silhouettes are expanded by a couple of pixels prior to
rendering. Using a morphological filter operation, the object outlines of all video
images are dilated to copy the silhouette boundary pixel color values to adjacent
background pixel positions (Fig. 8.15).
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(a) (b)

Figure 8.14: (a) Small differences between object silhouette and model out-
line cause erroneous texture projections. (b) By projecting each video cam-
era’s image onto the model also from slightly displaced camera positions,
regions of dubious visibility are determined (purple) which are then not tex-
tured by the camera.

8.8.3 Real-time Free-Viewpoint Rendering

With the processed video textures, the dynamic model is rendered interactively
from any arbitrary viewpoint. Prior to display, the geometry model as well as
the video cameras’ calibration data is transferred to the graphics card. During
rendering, the user’s viewpoint information, the model’s updated pose parameter
values, the current video images, as well as the visibility and blending coefficients
νi,ωi for all vertices and cameras i are continuously transferred to the graphics
card.

The color of each rendered pixel c( j) is determined by blending all l video

Figure 8.15: Morphologically dilated segmented input video frames that are
used for projective texturing.
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Figure 8.16: Capturing a smile: Texture detail is preserved. Block artifacts
are due to the limited camera resolution.

images Ii according to

c( j) =
l

∑
i=1

νi( j)∗ρi( j)∗ωi( j)∗ Ii( j) (8.3)

where ωi( j) denotes the blending weight of camera i, ρi( j) is the optional view-
dependent rescaling factor, and νi( j) = {0,1} is the local visibility. During texture
pre-processing, the weight products νi( j)ρi( j)ωi( j) have been normalized to en-
sure energy conservation. Expression (8.3) is evaluated for each fragment by a
fragment program on the graphics board. The rasterization engine interpolates the
blending values from the triangle vertices.

8.9 Results
Our free-viewpoint video reconstruction and rendering approach has been tested
on a variety of test scenes, ranging from simple walking motion over karate per-
formances to complex and expressive ballet dance. The sequences are between
100 and 400 frames long and were recorded from eight camera perspectives.

Ballet dance performances are ideal test cases as they exhibit rapid, complex
motion. The motion capture subsystem demonstrates that it is capable of robustly
following human motion involving fast arm motion, complex twisted poses of the
extremities, and full body turns (Fig. 8.21). Certainly, there are extreme body
poses such as the fetal position that cannot be reliably tracked due to insufficient
visibility. To our knowledge, no non-intrusive system has demonstrated that it is
able to track such extreme positions. In combination with our texture generation
approach convincing novel viewpoint renditions cab be generated, as it is also
shown in Figs. 8.18 and 8.19. Subtle surface details, such as wrinkles in clothing,
are nicely reproduced in the renderings. In Fig. 8.20 snapshots from a freeze-and-
rotate sequence, in which the body motion is stopped and the camera flies around
the scene, are depicted. In Fig. 8.17, the original input images are compared to
our rendering results from the same camera perspective. This comparison shows
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Figure 8.17: For comparison, segmented input images (small) and the re-
sulting rendered views corresponding to the same perspective (large) are de-
picted.

that the original appearance of the dancer is nicely reproduced even though the
body geometry does not fully match. Different facial expressions of the actor are
also faithfully reproduced (Fig. 8.16).

The free-viewpoint renderer can easily replay dynamic 3D scenes at the orig-
inal captured frame rate of 15 fps. The maximal possible frame rate is signifi-
cantly higher. Standard TV frame rate of 30 fps can easily be attained even with a
GeForceTM 3 GPU.

For measuring the execution speeds of individual algorithmic components of
our reconstruction method we have 5 PCs at our disposition, each of which fea-
tures an Intel XEON 1.8 GHz CPU, 512 MB RAM, and a graphics board with an
Nvidia GeForceTM 3 GPU.

First, we have a look at the execution speed of the motion capture subsystem.
In our current implementation, model fitting time is dependent on the speed of
the actor’s motions. For slow motions, the limb parameter grid search can be
confined to a narrow search space, and during subsequent downhill optimization
a minimum is found very quickly.

We have measured the time needed to estimate one body pose with the single
PC implementation (no parallelism) on two different input sequences. In sequence
A (dancer wears blue shirt, Fig. 8.18) the motion is a lot slower than in sequence
B (dancer wears red “15” shirt, Fig. 8.17) where the dancer shows very expressive
twists and turns. For set A the minimum fitting time is 1.46s with an average fit-
ting time of 6.81s per time step. For set B the lowest fitting time is 3.46s with an
average of 11.73s. Due to the efficient implementation of the energy function in
graphics hardware, approximately 100 energy function evaluations can be com-
puted per second.

The exploitation of the compartmentalized nature of the pose estimation prob-
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Figure 8.18: Novel viewpoints are realistically synthesized. Two distinct time
instants are shown on the left and right with input images above and novel
views below.

lem during energy function evaluation and optimization search (Sect. 8.7) leads to
dramatic speed-ups. To illustrate the speed gains we have run tests with one very
simple walking scene (Seq. C) and another very fast and expressive ballet dance
sequence (Seq. D, Fig. 8.21).

In Tab. 8.1 the impact of a variable rendering window size on the evaluation
speed of the silhouette XOR energy function is illustrated. As expected, the XOR
energy function can be computed significantly faster if a smaller window size is
used. It is also evident that as the window dimensions are reduced, rendering
the model geometry becomes the major bottleneck. The method labeled XORPR
uses the XOR energy function in combination with pre-rendering of unchanging

Window Size XOR XORPR
320x240 (full) 95.9 95.5
160x120 (half-res) 131.1 131.2
128x128 (arm) 133.7 433.1
64x64 (head) 144.9 855.4

XOR - original method
XORPR - XOR with pre-rendering

Table 8.1: Energy function evaluations per second for different stencil win-
dow sizes on a single computer.
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Seq. C Seq. D
XOR 7.98 14.1

Single Client 3.30 10.1
Distributed 1.16 1.76

XOR - original method with single computer
Single Client - XORPR with single computer

Distributed - XORPR with 5 computers

Table 8.2: Average per-frame fitting times in seconds for different algorith-
mic alternatives.

body parts. One can observe that the XORPR method performs overproportionally
better than pure XOR (without pre-rendering) especially for smaller window sizes.
This is explained by the fact that during the optimization of the arms (128x128
window) or the head (64x64 window) most of the model geometry is excluded
from rendering.

Table 8.2 shows the average fitting time for one time step of each sequence
using the standard single PC implementation with standard full-frame XOR eval-
uation, a single PC implementation with enhanced energy function evaluation
(XORPR), and a distributed implementation with enhanced energy function eval-
uation (XORPR). While the proposed methods to exploit parallelism already lead
to a significant speed-up if only one computer is used for motion estimation, the
parallel implementation leads to even faster fitting times. With the next generation
of GPUs pose estimation at interactive frame rates will be feasible.

The method presented in this chapter is subject to a few limitations. First, the
motion estimation process is done offline, making the system unsuitable for live

Figure 8.19: Free-viewpoint video of the dancer rendered into a virtual model
of the acquisition room.
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Figure 8.20: Conventional video systems cannot offer moving viewpoints of
scenes frozen in time. However, with our free-viewpoint video system freeze-
and-rotate camera shots of instable body poses are possible (bottom row).

broadcast applications. However, it is foreseeable that the ongoing performance
advancement of graphics hardware will make this feasible in a few years time.
The appearance of the actor cannot be faithfully represented if he wears very loose
apparel. In the system presented in this chapter silhouette information is the only
clue used for pose determination. However, the image data contain much more
features, such as texture information which can be used to even further improve
the accuracy of the free-viewpoint video reconstruction (Chap. 9)

A further limitation is that we can currently only reproduce the appearance of
the actor under the illumination conditions that prevailed at the time of recording.
For photo-realistic insertion into a novel virtual environment, however, the
model has to be realistically rendered under new incident illumination. We ad-
dress the problem of reconstructing relightable free-viewpoint videos in Chap. 10.

Even though our approach exhibits these limitations, our results show that our
method enables high-quality reconstruction of free-viewpoint videos. Convincing
novel viewpoint renditions of human actors can be generated in real-time on off-
the-shelf graphics hardware. We achieve such a high rendering quality although
we record the real-world scene only with a handful of cameras.
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Figure 8.21: Top row: input camera views; second row: corresponding sil-
houette XOR; third row: fitted mode; fourth row: textured body model in
the free-viewpoint video renderer.
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Chapter 9

Enhanced 3D Video
Reconstruction Using Texture

Information

In Chap. 8 we have described the nuts and bolts of a system to reconstruct and
render free-viewpoint videos of human actors. The central algorithm employed
to reconstruct dynamic scene descriptions is a marker-free human motion cap-
ture method. So far, only silhouette information has been exploited to estimate
pose parameters of the model from multi-view video streams. While silhouette-
based analysis robustly captures large-scale movements, in some cases the body
pose cannot be resolved unambiguously from object silhouettes alone. Especially
small-scale motions may be unresolvable because at limited image resolution, and
small protruding features, such as nose or ears, may not be discernible in the sil-
houettes. In a free-viewpoint video system inaccuracies in recovered body pose
inevitably lead to rendering artifacts when the 3D videos are displayed. To resolve
ambiguities as well as to refine silhouette-estimated model pose, we enhance our
original analysis-by-synthesis approach such that the object’s surface texture is
considered in addition [Theobalt03a].

Since a-priori object texture may be hard to acquire, instead, the difference
between predicted object appearance and the actual image recordings is used to
reconstruct a correction vector field for the model. The corrective 3D motion field
is reconstructed from 2D optical flows between predicted model appearance and
the captured appearance of the actor in all camera views. We present a method
for extracting hierarchical rigid body transformations from this motion field and
show that it is used best in conjunction with, and not in place of, silhouette-based
motion tracking. We demonstrate that this new hybrid method improves motion
parameter estimation within our model-based free-viewpoint video approach, and
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that it has a positive impact on the rendering quality of the reconstructed 3D video
sequences.

The chapter continues with an overview of our method in Sect. 9.1. There-
after, in Sect. 9.2 we describe a procedure to reconstruct 3D motion fields from
2D optical flow. In Sect. 9.3 we employ this motion field reconstruction method
to develop a predictor-corrector scheme for enhanced motion capture. The chap-
ter concludes with a presentation of results and a discussion of the method in
Sect. 9.4.

9.1 Overview
In Fig. 9.1, an overview of the novel augmented algorithmic pipeline for the
model-based free-viewpoint video approach is shown (see Fig. 8.1 in Chap. 8).
The multi-view video acquisition procedure, the projective texture generation al-
gorithm as well as the real-time free-viewpoint video rendering method remain
unmodified. The algorithmic enhancement is the novel hybrid motion capture
algorithm that we employ in our model-based analysis-by-synthesis approach.

Our novel hybrid motion estimation algorithm is a two-step predictor-corrector
scheme. Considering an arbitrary time step t + 1, the augmented motion capture
algorithm works as follows: Starting with a set of 35 body pose parameters Pt that
were found to be optimal for time step t, the system first computes an estimate of
the pose parameters P′

sil,t+1 at time t + 1 by employing the silhouette-based mo-
tion estimation scheme (see Chap. 8 Sect. 8.6). In a second step, estimate P′

sil,t+1
is augmented by computing a 3D corrective motion field from optical flows. The
model that is standing in pose P′

sil,t+1 and that is textured with the video images
from time t is rendered into all camera views. The images of the back-projected
model form a prediction of the person’s appearance at t + 1. The optical flows
are computed for each pair of back-projected model view and corresponding seg-
mented video frame at time t +1. From camera calibration, the camera matrix of
each recording imaging sensor is known. Since, in addition, the geometric struc-
ture of the body model is available, for each model vertex corrective flow vectors
in 3D can be computed from the corrective 2D optical flows in all camera views.
The end-point of each motion vector is the position at which the respective vertex
should be in order for the whole model to be in a stance that is photo-consistent
with all camera views. This information has to be translated into pose update pa-
rameters for the model’s joints that bring the model into the photo-consistent con-
figuration. We compute the differential pose update, Pdiff,t+1, in a least-squares
sense and apply it to the model after P′

sil,t+1 in order to obtain the final pose es-
timate Pt+1 for time t + 1. The final pose parameter estimate serves as a starting
point for the pose determination in the next time step.
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Figure 9.1: Overview of the algorithmic workflow of the free-viewpoint video
system with augmented motion capture sub-system.

9.2 Reconstructing a 3D Motion Field from 2D
Optical Flow

The optical flow observed by a camera (Chap. 2) is a 2D-projection of a 3D mo-
tion field in the real world. The goal of motion capture is the recovery of the
parameters of three-dimensional motion. A reconstructed 3D motion field from
optical flows in multiple camera views can be used to compute these parameters.
The reconstruction of the 3D motion field, also know as the scene flow, from the
2D optical flows is possible using a technique described in [Vedula99].

If correspondences in the image plane are known, i.e. it is known to which
image coordinates 3D points project in each camera view, the scene flow can be
reconstructed by solving a linear system of equations. In our free-viewpoint video
approach, the correspondences are known for each vertex because we have an
explicit body model, and the projection matrices Pi for each recording camera
i have been determined via calibration. The projection matrix Pi describes the
relationship between a 3D position of a vertex and its projection into the image
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Figure 9.2: 3D motion (scene flow) of a surface point and the corresponding
observed optical flows in two camera views.

plane of the camera i, ui = (ui,vi)
T .

The differential relationship between the vertex x with coordinates (x,y,z)T

and ui is described by the 2×3 Jacobian matrix Ji = ∂ui
∂xi

:

oi =
dui

dt
= Ji

dx
dt

(9.1)

In other words, the Jacobian describes the relationship between a small change in
3D position of a vertex, and the change of its projected image in camera i. The
term dui

dt is the optical flow oi observed in camera i, dx
dt is the corresponding scene

flow of the vertex (Fig. 9.2). Having a mathematical camera model, the Jacobian
can be computed analytically (see [Vedula99]).

If a vertex is visible from at least two camera views, an equation system of the
form Bdx

dt = U can be formulated, whose solution is the scene flow of the vertex.
The matrix B and the vector U evaluate to:
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(9.2)

N is the number of camera views. A least-squares solution to this equation system
can be found via singular value decomposition (SVD) [Press02].
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9.3 Texture-enhanced Silhouette-based
Motion Capture

For acquiring a three-dimensional representation of the human actor, we employ a
model-based analysis-by-synthesis approach (see Chap. 8). The shape-adaptable
generic human body model we employ consists of 16 body segments that are
connected via a kinematic skeleton featuring 17 interconnecting joints. After the
model has been customized in shape and proportion to the appearance of its real-
world counterpart, in our original approach, we have employed a silhouette-based
marker-free motion capture algorithm to make the model attain the same pose
as the actor does at each time step of video. The accuracy at which body poses
are captured directly influences the visual quality of the rendered free-viewpoint
videos. If the model’s geometry is not correctly aligned with the person in the real
world, our texture generation algorithm (Chap. 8 Sect. 8.8) projects input video
frames onto incorrect geometry. This, in turn, leads to ghosting artifacts in the
final renderings.

Our silhouette-based motion capture approach faithfully captures even fast and
complex body poses. However, slight inaccuracies in the measured poses may ex-
ist, which are mainly due to the limited image resolution and the lack of salient
shape features on some body parts. The texture information which is available
at no additional processing cost helps to correct these pose inaccuracies. In the
first step of a predictor-corrector scheme, a set of pose parameters is computed
by means of the original silhouette-base pose determination method. In a second
step, a corrective 3D motion field is computed by comparing the predicted model
appearance to the real video footage (Sect. 9.3.1). From this motion field, cor-
rective pose parameters are computed that are used to update the silhouette-fitted
model pose (Sect. 9.3.2).

9.3.1 A Predictor-Corrector Scheme for Hybrid Pose Es-
timation

Many assumptions in optical flow algorithms, such as the brightness constancy
assumption, and the assumption that the visibility does not change in subsequent
images, often break down if the motion in the scene is very fast. In rapidly mov-
ing scenes, illumination changes may cause strong differences in the appearance
of identical surface elements in two subsequent video frames, and occlusions or
disocclusions of parts of a scene are very likely to occur. We concede that a
purely motion-field based tracking system is suitable for a slowly moving subject
only. However, by jointly analyzing optical flow and silhouette information in a
predictor-corrector algorithm, it becomes possible to bypass some of the limita-
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tions of optical flow reconstruction and capture complex, fast motions of the body.
A motion field describes the motion of a scene between two time instants. In con-
trast, our corrective motion field describes the corrective motion between a first
pose estimate at one time instant obtained via silhouette based tracking and the
correct pose for the same time instant if texture information is taken into account.
These motions are small translations and rotations which properly align the model
with the input video footage.

Let I j,t be the j-th input camera view at time t, and Pt be the model pose at
time t. Then our predictor corrector scheme consists of the following steps:

• With Pt as the starting point, use silhouette fitting to compute P′
sil,t+1, which

is an estimated pose for time t +1.

• Generate I′j,t+1 by rendering the model from camera j in pose P′
sil,t+1 with

texture from time t.

• Computation of corrective motion field D: For each model vertex

– Determine the projection of the vertex into each camera’s image plane.

– Determine vertex visibility in all cameras by comparing the projected
z-coordinate to the OpenGL z-buffer value.

– If a vertex is visible from camera j, compute the optical flow between
images I′j,t+1 and I j,t+1 by means of the hierarchical Lucas-Kanade
approach (see Chap. 2 Sect.2.3.2).

– If a vertex is visible in at least three camera views (more robust recon-
struction than with minimum number of two views), compute a 3D
corrective motion vector via the method described in Sect. 9.2.

• Update P′
sil,t+1 to conform with motion field to yield Pt+1.

The computed corrective 3D motion field D describes vertex position updates
that correct slight inaccuracies in the result of the silhouette step.

9.3.2 Differential Pose Update from 3D Motion Fields
The corrective motion field D can be used to compute differential pose parameter
updates for each limb of the body model. For the root, which is located in the
torso segment, three differential rotation and three differential translation param-
eters are computed. All other joints are purely rotational. This includes 3-DOF
rotations for the shoulders, hips, and neck, and a 1-DOF rotation for the elbows
and knees. Wrist and ankle joints are currently not considered.
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Figure 9.3: Body model showing the separate hierarchy levels.

By adding each vector in D to the current 3D position of its corresponding
vertex, a set of goal positions is defined for each model vertex. The goal is to
find the set of differential joint parameters of the body model that optimally align
the vertices with these positions. The idea is to compute the differential pose
parameter updates for every joint only from the goal positions of the vertices of
the attached body segment, e.g. using the upper arm goal positions to find the
shoulder parameters.

Both our artificial body model and the real human body are hierarchical
kinematic chains. We estimate optimal differential pose parameters for one level
of the model’s hierarchy at a time, proceeding from top to bottom (level 1 being
the highest level, see Fig. 9.3). After the pose updates for all body parts one level
are found, the model’s pose is updated accordingly and the method proceeds with
the next lower hierarchy level.

So far we have not answered the question how the corrective rigid body trans-
formation is computed for one individual body segment. Finding a pose update
for a joint corresponds to finding a coordinate system transformation between two
point sets, a problem know as the absolute orientation problem in photogram-
metry [Horn86]. For each joint, one point set consists of the current 3D vertex
positions of the attached body segment. The second point set defines the goal
locations for each vertex in 3D space.

Horn [Horn87] describes a closed form solution to the absolute orientation
problem, henceforth referred to as the registration method. In his work, Horn
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(a) (b)

(c) (d)

Figure 9.4: (a) Silhouette-only model pose with 3D motion field (little ar-
rows). (b) The model after correction on the first hierarchy level, the second
(c) and then the third level (d). The lengths of the motion field vectors are
exaggerated.
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uses quaternions to parameterize rotations. All transformations are computed with
respect to the centers of gravity of both point sets. Let x1,i and x2,i, i = {1, . . . ,n}
be corresponding points from two point sets. Then the least-squares solution the
absolute orientation problem are the rotation R and translation c that minimize the
error function

n

∑
i
‖ x2,i −Rx1,i − c ‖2 (9.3)

It has been shown that the optimal translation c is defined by the difference be-
tween the centroid of set 2 and the rotated centroid of set 1. To find the optimal
rotation, the coordinates of the points in both point sets are defined relative to
their center of gravity, respectively. It can be shown that the optimal rotation in
the sense of (9.3) can be found by maximizing

n

∑
i

x2,iRx1,i (9.4)

The maximal solution to (9.4) can efficiently be computed in closed-form using
a quaternion parameterization q of the rotation (Chap. 2). Using quaternions, the
sum (9.4) can be transformed into the form

qT Nq (9.5)

The matrix N contains entries that are only made up of products of coordinates
of corresponding points in the two point sets that need to be registered. Formally,
it is computed from the entries of the scaled covariance matrix M. Let X1 =
{(x1,i,y1,i,z1,i) | i = 1, . . . ,n} and X2 = {(x2,i,y2,i,z2,i) | i = 1, . . . ,n} be two point
sets, then M is defined as follows:

M =





Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz



 (9.6)

with

Sxy =
n

∑
i=1

x1,iy2,i (9.7)
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The entries in N are built via arithmetic operations on elements of M:

N =
[

N1 N2 N3 N4
]

N1 =









(Sxx +Syy +Szz)
Syz −Szy
Szx −Sxz
Sxy −Syx









, N2 =









Syz −Szy
(Sxx +Syy +Szz)

Sxy +Syx
Szx +Sxz









,

N3 =









Szx −Sxz
Sxy +Syx

(−Sxx +Syy −Szz)
Syz +Szy









, N4 =









Sxy −Syx
Szx +Sxz
Syz +Szy

(−Sxx −Syy +Szz)









The rotation that maximizes the sum (9.5) is derived from the eigenvector that
corresponds to the largest eigenvalue of the symmetric 4 × 4-matrix N. The
final solution quaternion q is a unit vector in the same direction as this eigenvector.

We apply the registration method to compute differential pose updates as fol-
lows: The adjustment starts at hierarchy level 1 with the root of the model. To find
the corrective model update of the root joint, a differential rotation and translation
is computed using the start and end positions of the vertices in the torso segment
that have been computed from D.

On the second level of the hierarchy, only differential rotation parameters for
3-DOF shoulder, hip, and head joints need to be computed.

On hierarchy level 3, there are four 1-DOF joints (the elbows and the knees).
The body model is designed in such a way that the rotation axis for each of these
joints coincides with the x-axis of the local coordinate system. The optimal ro-
tations are found using the same procedure as on hierarchy level 2. The 1-DOF
constraint is incorporated by projecting the start and goal vertex positions into the
local yz-planes.

It is important to note that for corrective pose update we do not employ the 4-
DOF limb parameterization (Chap. 8 Sect. 8.3) as it is used during the silhouette-
fitting step. The pose update scheme we employ here considers the shoulder/hip
and elbow/knee joints to be on different levels of hierarchy.

In Fig. 9.4 the step-by-step pose correction on different hierarchy levels of the
model is illustrated.

9.4 Results and Discussion
The performance of our augmented free-viewpoint video approach has been tested
on two multi-view video sequences that were recorded with 8 cameras at a res-
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(a) (b)

Figure 9.5: Body model with corrective motion field (green arrows) before (a)
and after (b) pose update.

olution of 320x240 pixels and a frame rate of 15 fps. The sequences show sim-
ple gestures that exhibit a large amount of head motion which cannot be accu-
rately recovered using only the silhouette step. All test PCs feature 1.8 GHz
PentiumTMIV Xeon CPUs with 512 MB of main memory and are equipped with
Nvidia GeForce3TM GPUs. For the different sub-components of the motion cap-
ture algorithm we obtained the following timing results:

On our two test sequences, the silhouette matching takes between 3s and 5s
for a single time step if a single PCs is used. If the parallel implementation with
five PCs is applied, per-frame fitting times significantly below one second are
achieved.

The run time of the texture-based pose enhancement algorithm is dominated
by the time needed to compute the optical flows in all camera views. The hier-
archical Lucas Kanade optical flow algorithm takes, on average, 45s for the pro-
cessing of one set of 8 input views if four levels of an image pyramid and a 20x20
Gaussian window are used. These numbers apply if the algorithm is configured to
compute one scene flow vector for each vertex of the model geometry, i.e. one 2D
optical flow vector in each camera view that sees a vertex. Speed-ups are gained
by reducing the number of image pyramid levels and the size of the Gaussian
neighborhood. For only one level in the pyramid and a 10x10-neighborhood, the
optical flows in 8 camera views can be computed in about 8s, but the quality of
the computed flow field is potentially reduced.

A further acceleration is achieved by computing the scene flows only for a
subset of the model’s vertices. However, since our focus lies on producing the
maximal possible visual quality, we run the scene flow computation at the highest
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level of detail. The reconstruction of a three-dimensional corrective motion field
from eight 2D optical flow fields takes, on average, 0.34s.

The results we obtain when applying our augmented free-viewpoint video
pipeline to both test sequences show that the motion field update step can no-
ticeably improve the quality of the reconstructed 3D videos. In Fig. 9.5a the com-
puted corrective motion field is shown and it is illustrated how the body pose is
updated according to it. The two pairs of images in Fig. 9.7 show the textured and
untextured body model side-by-side. The top pair shows the result that is obtained
with pure silhouette-based motion capture, the bottom pair of images shows the
result with the enhanced algorithm. It is clear that the improved visual quality of
the textured model, notably in the face, is due to the more accurate body pose.

Fig. 9.6 shows three comparisons between novel viewpoint renderings that
were created from 3D videos that were reconstructed with and without activated
motion field correction respectively. As we expected, the most obvious improve-
ments are visible in the face and on the torso. The silhouette step often cannot

Figure 9.6: The top images show screen-shots of 3D videos that were recon-
structed without motion field correction. The bottom images show renditions
from the same virtual camera perspective if the texture-based pose enhance-
ment has been applied during reconstruction. Improvements in rendering
quality, in particular on the head and the torso, are clearly visible.
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Difference in Avg. Max. Difference

sequence 1 0.33 dB 0.81 dB

sequence 2 0.35 dB 0.93 dB

Table 9.1: Differences in PSNR measurements between free-viewpoint videos
that were reconstructed with and without motion field correction.

exactly recover the head orientation. Texture information enables our system to
automatically correct these errors. Slight changes in torso orientation are also
discovered more robustly if the motion field correction step is applied.

In order to validate the visual improvements inflicted by the motion field step
quantitatively we employ a quality measure widely used in research on video en-
coding. For each time step of video we compute the peak signal-to-noise-ratio
(PSNR) [Bhaskaran99] in the luminance channel between the 3D video rendered
from the input camera perspectives and the segmented recorded input views. On
both test sequences, the PSNR is computed for the 3D videos with and without
the corrective motion field step.

The difference in the average PSNR between the corrected and uncorrected
free-viewpoint videos as well as the maximal observed difference for one single
time step of video are summarized in Tab. 9.1. The difference in the average PSNR
over all video frames is a measure of reconstruction quality. A positive difference
characterizes an improvement of rendering quality with respect to the original
video frames. We obtained positive differences between the average PSNRs for
both sequences. For one single time step of video the improvements can even be
more significant as it is expressed in the values for the maximal observed PSNR
difference.

It is interesting to observe that, after only small differences at the beginning,
the PSNR differences are larger towards the end of both sequences. This confirms
our original assumption that the correction step improves model fitting over time
by reducing the impact of propagated pose errors.

In conclusion, we have presented a novel augmented motion capture algorithm
for 3D video reconstruction that jointly employs silhouette and texture data for
pose determination. It enables us to reconstruct free-viewpoint videos of human
actors at very high precision. Subtle pose inaccuracies in the purely silhouette-
fitted body poses, which may lead to texturing artifacts in the final renderings, are
robustly resolved.
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(a) (b)

(c) (d)

Figure 9.7: Top row: Textured (a) and untextured (b) body model in a pose
that has been estimated via silhouette-fitting only. Bottom row: Textured
(c) and untextured (d) body model if the motion field correction has been
applied during reconstruction. The improvement in rendering quality due to
an improved pose estimate is clearly visible.



Chapter 10

Joint Motion and Reflectance
Capture: Relightable 3D Video

While the ability to realistically display dynamic events from novel viewpoints
(Chaps. 8 and 9) has already a number of intriguing applications, the next step
is to use such real world-captured objects for augmenting virtual scenes. To im-
port a real-world object into surroundings different from the recording environ-
ment, however, its appearance must be adapted to the new illumination situa-
tion. Otherwise, the object will have an artificial, “pasted-in” look. To do so,
the bi-directional reflectance distribution function (BRDF) must be known for all
object surface points. Data-driven [Debevec00, Matusik03] as well as model-
based [Marschner98, Lensch03] methods have been proposed to recover and rep-
resent the BRDF of real-world materials (see also Chap. 7 Sect. 7.1.4). Unfor-
tunately, these methods cannot be directly applied to dynamic objects exhibiting
time-varying surface geometry and constantly changing local illumination.

We present an augmented version of our free-viewpoint video approach that
simultaneously captures the time-varying scene geometry as well as the BRDF
parameters on the body model of a moving actor [Theobalt05]. As input to our
algorithm we require only a handful of calibrated and synchronized video record-
ings. The algorithm automatically returns subject-adapted 3D geometry, anima-
tion parameters, diffuse texture, per-texel BRDF model parameter values, as well
as time-varying surface normals. PC graphics hardware-assisted rendering then
allows us to photo-realistically visualize recorded people at interactive frame rates
in changing lighting conditions and from arbitrary perspective. We present results
for several subjects wearing different clothes made of non-diffusely reflecting fab-
rics, and we show how to augment virtual environments with real world-recorded
people.

The following algorithmic contributions are introduced by our novel aug-
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mented free-viewpoint video pipeline:

• An algorithm to warp-correct input video images in order to guarantee
multi-view photo-consistency in conjunction with inexact object geometry,

• Dynamic reflectometry, i.e.

– per-texel, per-time step BRDF parameter estimation from multi-view
video footage,

– reconstruction of time-varying normal maps to capture small, variable
detail of surface geometry (e.g., wrinkles in clothing), and

• the integration of the recording facilities, the motion capture method, the
reflectance estimation approach and the renderer into one working system.

10.1 Overview

Figure 10.1: Algorithmic workflow joining the individual components of our
method.

Fig. 10.1 illustrates the algorithmic workflow within our system for relightable
free-viewpoint video reconstruction and rendering. For every person for whom
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we reconstruct a relightable 3D video we record two types of multi-view video
sequences from eight synchronized video cameras (Sect. 10.2). The reflectance
estimation sequence (RES) is used to estimate surface reflectance properties. Ar-
bitrary human motion is captured in the dynamic motion sequences (DSS), and
these sequences are later visualized and relit. In both types of sequence, the per-
son wears identical clothes. The respective data paths for both input sequences
are shown in Fig. 10.1. Our generic body model is adapted to match the shape
and proportions of the recorded person (Chap. 8 Sect. 8.5). Subsequently, hu-
man pose parameters are computed for all time frames in both RES and DSS
by means our silhouette-based marker-free motion capture approach (Chap. 8
Sect. 8.5). To store all per-surface element data needed during reflectance estima-
tion in texture space, we make use of a texture atlas as surface parameterization
of the body model (Sect. 10.3.1). Multi-view video (MVV) textures are gener-
ated by transforming each input video image into the texture domain. To correct
for photo-inconsistencies due to inexact body geometry, the input images can be
warp-corrected prior to MVV texture generation (Sect. 10.3.2). From the RES
video data, BRDF model parameter values are estimated for each surface element
(texel) of the geometry model individually (Sect. 10.4.1). The recovered local
reflectance properties then allow us to estimate the time-varying surface normal
field in the DSS sequences (Sect. 10.4.2). The moving body model, its spatially-
varying reflectance, and the time-varying normal field enable us to interactively
render and instantaneously relight the DSS sequences from arbitrary viewpoint
and illumination direction (Sects. 10.5 and 10.6).

10.2 Acquisition

As input to our system, we record multi-view video (MVV) sequences in our
studio (Chap. 4). Since we estimate both motion and reflectance properties, we
have strict requirements concerning the spatial, temporal, and color resolution
of our imaging devices. Only recently, suitable production-line video cameras
have become available that meet our requirements. Facing these technological
demands, we have decided to upgrade our previously employed IEEE1394 camera
setup to a novel setup with more advanced imaging devices. The technical details
of evolution II of our camera system are given in Chap. 4 Sect. 4.2.2 but its main
features shall be repeated here. The novel setup consists of eight ImperxTMMDC-
1004 cameras that feature a 1004x1004 CCD sensor with linear 12 bits-per-pixel
resolution. We run the cameras in single-chip mode which means that they provide
a sustained frame rate of 25 fps. For the sequences recorded in the course of
this project we have placed the cameras in a semi-circular arrangement around
the center of the scene (Fig. 10.2). The camera arrangement has to be suitable



134 Chapter 10: Joint Motion and Reflectance Capture: Relightable 3D Video

Figure 10.2: Illustration of camera arrangement (red), lighting setup 1
(white) and lighting setup 2 (white+yellow).

both for motion and reflectance estimation. Our semi-circular arrangement is a
compromise we found to be suitable for both of these purposes. The cameras are
calibrated, and radial and tangential lens distortions are corrected up to second
order.

The lighting conditions in our studio are fully controllable. No exterior light
can enter the recording area, and the influence of indirect illumination is mini-
mized by covering up all the walls and the studio floor with black cloth and car-
pet. Two different lighting setups are used. Lighting setup 1 (LS1) illuminates
the scene with only one K5600TMJokerbug 400 spot light. In lighting setup 2
(LS2), additional light sources on the ceiling are used in order to illuminate the
set more evenly. In our simulations we approximate the contribution of the single
spot light with one point light source and the illumination from the ceiling light
with two additional point light sources, Fig.10.2. Light source positions, inten-
sities and color response of the cameras are calibrated offline. Color consistency
between multiple camera views is established (Chap. 4 Sect. 4.4.2).

We successively record three MVV sequences for each person and each type
of apparel. A short sequence of the scene background recorded with illumination
setup LS2 later facilitates color-based background subtraction of the motion se-
quences. The second sequence, referred to as the reflectance estimation sequence
(RES), serves as input to the BRDF estimation algorithm. While BRDF parameter
value estimation works best if the scene is illuminated by only one light source
(LS1), robust motion capture is practically impossible if large parts of the subject
are in shadow. To resolve the conflict, the RES is acquired in single-shot mode.
The person strikes the initialization pose, Fig.10.3, and turns between shots by
approximately 5◦ until having completed a full 360◦-circle. At each orientation
step, a set of eight images is captured for lighting setup 1, and a second set of
images is recorded for setup 2, Fig.10.3. The first set is used for BRDF esti-
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Figure 10.3: Three pairs of RES images recorded in lighting setup 2 (left) and
lighting setup 1 (right).

mation, the second set for recovering body pose. Prior to reflectance estimation
we fit our geometry model to each body pose in the RES. For each point on the
model’s surface, the RES contains as many different appearance samples as there
are images depicting the respective point. Over time, the surface element normal
points in various directions, and we obtain a large number of reflection samples
for our large-scale moving object. While surface normal orientation varies freely,
our static camera and lighting setup allows for only a limited number of half vec-
tor directions~h = l̂ · v̂ j/2, i.e., angular separations between spot light l̂ and camera
directions v̂ j. By placing the cameras non-symmetrically with respect to the spot
light, we gather samples for up to eight different light-to-camera angles, which we
found sufficient to robustly fit our isotropic BRDF models (Sect. 10.4.1).

Finally, the dynamic scene sequences (DSS) capture the motion sequences
from which the actual relightable 3D videos are generated. The scene is now
illuminated using lighting setup 2. From the DSS we also reconstruct a time-
varying surface normal field (Sect. 10.4.2).

10.3 Texture Generation

Our silhouette-based model fitting approach (Chap. 8) provides us with an appro-
priately rescaled human body model as well as a set of pose parameters for each
time step of the RES and every DSS. Using a model-based approach, we can find
a static surface parameterization that allows us to convert the input video images
into textures (Sect. 10.3.1). Although our rescaled model is an accurate approx-
imation to the true body geometry of the actor, small discrepancies between the
projected model outline and the person’s appearance in the video frames still exist.
In order to prevent multi-view inconsistencies when the video frames are trans-
formed into texture maps, we resample and align the input streams using a novel
warp-correction technique (Sect. 10.3.2).
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10.3.1 Texture Parameterization

Each body segment is parameterized separately over a planar rectangular domain
using patches of minimal distortion. For the geometry of one body segment our
parameterization method works as follows: First a seed triangle is selected from
the mesh that initiates a novel patch. Triangles neighboring to the triangles cur-
rently contained in the patch are added to it until all remaining insertion candidates
show too strong a deviation from a plane fitted to the patch in a least-squares sense.
If no further triangle can be added the patch is projected orthographically onto
the least-squares plane thereby generating its layout in the 2D texture domain.
The procedure continues with a novel see triangle or terminates if all of them
have been assigned to a patch. The planar patch layouts for each of the sixteen
body segments are finally assembled into one texture atlas for the complete model
(Fig. 10.4). This way, we obtain a pose-independent bijective 3D-to-2D mapping
between a surface element and a texel in the texture domain. All data related to
surface elements (normals, light vectors, visibility etc.) can now be conveniently
stored as textures. Throughout our experiments, we use 1024x1024-texel texture
maps.

The graphics hardware is used to transform each video camera image into
the texture domain. For each video time step, eight so-called multi-view video
textures (MVV textures) are created.

(a) (b)

Figure 10.4: (a) Color-coded body segments. (b) Corresponding patch layout
in the texture domain obtained with our surface parameterization approach.
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Figure 10.5: MVV texture generation for camera 0: The color information
for each surface point on the body model is not looked up in the original
input video frame recorded from camera 0. Instead the texel color is taken
from an image that has been obtained by reprojecting the model that has
been textured with camera image 0 into the camera view that sees the surface
point most head-on.

10.3.2 Image-based Warp-Correction

Although the body model initialization procedure yields a good approximation
to the person’s true geometry, small inaccuracies between the real human and its
digital counterpart are inevitable. Due to these geometry inaccuracies, pixels from
different input views may get mapped to the same texel position in different MVV
textures, even though they do not correspond to the same surface element of the
true body geometry. This, in turn, can lead to errors during reflectance estimation.

One common strategy to enhance photo-consistency is to deform the geometry
until an overall photo-consistency measure is maximized. Geometry deformation-
based optimization, however, tends to give unstable results, e.g., due to sudden
visibility changes.

We take an alternative approach. Instead of moving surface elements to their
correct locations in 3D, we move the image pixels within the 2D input im-
age planes until they all become photo-consistent given the available geometry.
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The following example illustrates our modified MVV texture generation scheme
(Fig.10.5):

Let’s assume we want to assemble an MVV texture from the video image
Iy(t) seen by camera Y at time t. For texel K in the MVV texture, we find out
which camera sees it best by searching for the minimal deviation between camera
viewing vectors and the surface element normal. If the camera that sees the
surface point best is Y , the texel color is taken from IY (t). In case camera X 6= Y
sees the point best and it is not occluded, we regard the video image Ix(t) as
the reference image. The model at time t is projectively textured with IY (t) and
rendered into camera view X . The image of the reprojected textured model is
warped such that it is optimally aligned with the reference image. The color of K
is taken from the warped image. This way, all texel color values stem from the
same physical camera image. The texel color, however, is always taken from a
version of that camera image that has been brought into optimal registration with
the camera view that sees the corresponding surface element most head-on.

Warped images are precomputed for all possible combinations of X and Y .
In our case this corresponds to 56 warping computations for each time step. To
establish per-pixel correspondences, the warping operation itself is based on the
optical flow between the reference image and the image of the reprojected textured
model, Fig. 10.6. For one pair of a reference image IR and a reprojected image
of the textured model IM the warping operation works as follows: A regular 2D
triangle mesh T with n vertices {v1, . . . ,vn} is superimposed on IM. The optical
flow between the reference image and the reprojected model image is computed
by means of the Lucas-Kanade technique (Chap. 2 Sect. 2.3.2). The so-created
flow field describes a displacement for each pixel in IM that brings it into optimal
overlap with its corresponding pixel in IR. From the per-pixel displacements we
compute a globally consistent warping for IM that brings it into photo-consistent
registration with respect to IR. In order to do this for each vertex vi in T a 2D
displacement vector ~ri is estimated performing a weighted average on all flow
vectors in a rectangular pixel neighborhood around the position of vi. The triangle
mesh is then deformed to globally adapt to the per-vertex displacements by means
of a Laplace interpolation (see e.g. [Farin99, Lipman04]). The new mesh config-
uration approximately satisfies the displacement constraints and also preserves a
smooth geometry. Formally, the deformation of the mesh is found by solving the
Laplace equation

Lx = 0 (10.1)

where x ∈ R
n are the vertex positions and the n × n-Matrix L is the discrete
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Laplace operator [Meyer02] with

Li j =











4 if i inner vertex and i = j,
−1 if i inner vertex and j in its 4-neighborhood,

0 else.
(10.2)

The matrix L is singular, and we hence need to add suitable boundary conditions
to Eq. 10.1 in order to solve it. We reformulate the problem as

min
((

L
K

)

x−
(

0
d

))2

(10.3)

This equation is solved in each of the 2 image plane coordinate directions sepa-
rately. The n×n matrix K and d ∈ R

n impose the interpolation conditions which
will be satisfied in least-squares sense. K is a diagonal matrix with

Ki j =











wi if a displacement is specified for i,
wi if i is a boundary vertex,

0 else.
(10.4)

The elements of d are

di =











wi · (xik +~rik) if a displacement is specified for i,
wi · xik if i is a boundary vertex,

0 else.
(10.5)

The values wi are constraint weights, xik is the k-th position coordinate of vertex
i before deformation, and~rik is the k-th coordinate of the displacement for vertex
i. The least-squares solution to Eq. 10.3 corresponds to the solution of the linear
system

(

L
K

)T (

L
K

)

x = (L2 +K2)x =

(

L
K

)T

d. (10.6)

Appropriate weights for the displacement constraints are straightforwardly found
through experiments.

Finally, the warped reprojected image, IM,warped , is created on the GPU by
rendering the deformed mesh into a floating point buffer using texture and texture
coordinates from the unwarped image IM. Sometimes better results are obtained
by recursively applying the warping procedure. Typically, after three iterations a
convergence is achieved.

The warping-based MVV texture assembly is an optional step that is acti-
vated if geometry inaccuracies are apparent. The difference images shown in
Figs. 10.11a,b proof that the image-based warp-correction yields a better
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Figure 10.6: Illustration of the individual warp-correction steps for one pair
of reference image and reprojected model (textured with one input image
only). First, the optical flow between reference and reprojected image is
computed. Thereafter, per-vertex displacements for the mesh’s vertices are
computed and it is globally warped to align with the constraints. The final
warped reprojected image of the model is generated on the GPU.
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registration between the model and the image data without having to resolve to
an error-prone deformation of the model geometry. One might argue that optical
flow is based on the assumption that all surfaces in the scene are diffuse. For
reflectance estimation, though, we deliberately generate specular highlights in the
images. Our experiments show that the method nonetheless produces good results
since in most input frames the diffuse reflectance is predominant.

10.4 Dynamic Reflectometry

Our reflectance estimation approach consists of two steps. In the first step we
determine BRDF parameter values per texel from the reflectance estimation se-
quence. An iterative estimation process enables us to handle geometry inconsis-
tencies between the real object and the much smoother human body model. In
the second step we compute even time-varying normal maps per frame to capture
surface detail such as wrinkles in clothing whose shape and extend depend on
the current pose of the person. The underlying technique is similar to [Lensch03]
which we have extended in order to cope with multiple light sources, time-varying
data, and inter-frame consistency.

10.4.1 BRDF Estimation

We estimate a set of spatially-varying BRDFs for each person and each outfit from
the respective reflectance estimation sequence (RES) explained in Sect. 10.2. The
pose parameters for the RES have been determined beforehand. The goal is to
estimate a separate parametric reflectance model for each surface element that is
able to faithfully reproduce the appearance in each camera view and at each time
step of the multi-video sequence. For each surface element, the BRDF repre-
sentation consists of an individual diffuse color component that is specific to the
surface point, and a set of specular parameters that are shared by all surface points
belonging to the same material. Our framework is flexible enough to incorporate
any parametric reflectance model. However, in the majority of our experiments
we employ the parametric BRDF model proposed by Phong [Phong75]. We have
also tested our method with the model proposed by Lafortune [Lafortune97], us-
ing two specular lobes (see also Chap. 2 Sect. 2.1.2).

In general, our estimation of BRDF parameters and later the estimation of the
time-varying normals is based on minimizing for each surface point ~x the error
E(~x,ρ(~x)) between the current model ρ(~x) and the measurements for this point
from all cameras c at all time steps t:
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E(~x,ρ(~x)) =

N

∑
t

8

∑
c

κc(t)
(

Sc(t)− [
J

∑
j

λ j(t)( fr(l̂(t), v̂c(t),ρ(~x)) (10.7)

· I j(n̂(t) · l̂(t)))]
)2

.

The term is evaluated separately in the red, green and blue color channel. Sc(t) de-
notes the measured color samples at~x from camera c, and I j denotes the intensity
of light source j. For BRDF estimation the number of light sources equals one
(lighting setup 1). More light sources are used when the same energy functional is
employed during time-varying normal estimation (Sect. 10.4.2). The hemispher-
ical viewing directions v̂c(t) and light source directions l̂ j(t) are expressed in the
point’s local coordinate frame based on the surface normal n̂(t). Visibility of the
surface point with respect to each camera is given by κc(t) and with respect to the
light sources by λ j, both being either 0 or 1. fr finally evaluates the BRDF. All
information that is relevant for one texel thus can be grouped into an implicit data
structure we called dynamic texel or dyxel:

Dyx(~x, t) =[S1(t), . . . ,S8(t), v̂1(t), . . . , v̂8(t),

n̂(t), l̂(t),κ1(t), . . . ,κ8(t),λ1(t), . . . ,λJ(t)].

Using a non-linear optimization this formula in principle could be used to deter-
mine a full BRDF and the surface normal at the same time. However, we applied
an iterative approach and carefully designed the reflectance estimation sequence
to obtain a much more stable optimization. For example we use only a single
light source during the RES. The subsequent steps of our iterative BRDF estima-
tion scheme are material clustering, first BRDF estimation, normal estimation and
refined BRDF estimation, as depicted in Fig. 10.7.

Instead of determining the specular part of the BRDF per pixel we assume that
there is only very little variation of the specular part within the same material, e.g.
skin, hair or the different fabrics. By combining the measurements of multiple
surface points exhibiting the same material we increase the number of samples
and more importantly the variation in viewing and lighting directions in order
to obtain a more faithful specular estimate. The clustering step determines to
what material a surface element, i.e., each texel in the texture atlas, belongs. The
number of materials is determined a priori. We employ a straightforward color-
based clustering approach that considers the raw texel color values. The clustering
output is a material texture map in which each texel is assigned a material label,
Fig. 10.7.
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Figure 10.7: Subsequent steps to derive per-texel BRDF.

During the first BRDF estimation, an optimal set of per-texel BRDF param-
eters is determined while the normals are taken from the default geometry. The
estimation itself consists of a non-linear minimization of Eq. 10.7 in the BRDF pa-
rameters. For optimization, we make use of a Levenberg-Marquardt minimization
scheme [Press02] in the same manner as [Lensch03]. First, we find an optimal
set of parameter values for each material cluster of texels. To quantify the esti-
mation error per material cluster, we sum the error term in Eq.10.7 for all surface
elements that belong to the cluster. Given the average BRDF for each material,
we can render the model by applying only average specular reflectances. By sub-
tracting this specular component from each sample, we generate new dyxels that
contain purely diffuse reflectance samples. Using these purely diffuse samples, an
individual diffuse component is estimated for each surface element (texel) by min-
imizing Eq.10.7 over the diffuse color parameter. The output of the first BRDF
estimation is then a set of spatially-varying BRDF parameters ρ f irst .

The default normals of the human body model cannot represent subtle de-
tails in surface geometry, such as wrinkles in clothing. In a normal estimation
step, we make use of the first set of estimated BRDF parameters ρ f irst in order
to reconstruct a refined normal field via photometric stereo. In order to make this
reconstruction tractable, we implicitly assume that the local normal directions do
not change while the person is rotating in place. We found that normal estimation
robustness is improved if the error function (Eq. 10.7) is extended into

Enormal(~x,ρ(~x)) = αE(~x,ρ(~x))+β∆(n̂)γ . (10.8)



144 Chapter 10: Joint Motion and Reflectance Capture: Relightable 3D Video

The additional term ∆(n̂) penalizes angular deviation from the default normal of
the body model. The terms α and β are weighting factors summing to one, the
exponent γ controls the penalty impact. Appropriate values are found through
experiments. Normal estimation robustness is further improved if only those color
samples in a dyxel are used that come from the two best camera views. For each
texel, the modified error function is now minimized by varying the local normal
direction n̂.

The refined normal field is used for a second BRDF estimation. The same
computations as for the first BRDF estimation, ρ f irst , are performed, but now
with the more accurate normal field. By this means, we obtain the final set of
per-texel BRDF parameters ρ f inal .

The results are stored in parameter texture maps. For the Phong model, we
obtain one texture map containing the per-texel diffuse component, and two tex-
ture maps that store the per-material specular colors and exponents. In case of the
Lafortune model, the number of specular parameter maps depends on the number
of specular lobes.

10.4.2 Time-varying Normal Map Estimation
The BRDF reconstructed in the previous step enables us to relight any dynamic
scene in which the person wears the same apparel as in the respective RES. To
generate a visually compelling rendition, however, we found that we need not
only accurate reflectance, but also a representation of the small surface geometry
details that appear and disappear while a person is moving. We are able to capture
these geometry details by estimating a time-varying surface normal field for each
DSS via photometric stereo.

Motion parameters for the DSS are found by means of our silhouette-based
tracking approach. The video frames show the scene illuminated by lighting setup
2. During the estimation, we approximate the incident illumination with three
point light sources,

The Time-varying normal direction is estimated for each surface point individ-
ually. We assume that the transverse motion of the cloth on the body is negligible,
and, in consequence, that over time an MVV texel always corresponds to the exact
same cloth surface point. The estimation procedure is a non-linear minimization
of the regularized energy function, Eq. 10.8, in the normal direction. During op-
timization, the BRDF parameters for each surface element are taken from the
parameter textures estimated from the corresponding RES.

In order to robustly perform photometric stereo and to minimize the influence
of measurement noise, a sufficient number of samples has to be collected for each
surface point. To serve this purpose, we assume that changes in local normal
direction within a short window in time can be neglected. This way, all samples
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Figure 10.8: 2D illustration of robust time-varying normal map estimation.
Top: The sequence subdivided into short chunks. For each chunk, one best-
matching normal is derived per texel which is assigned to the chunk’s center
time step (white). Intermediate time steps are interpolated (bottom).

for a surface point that are taken from a chunk of subsequent time steps in the input
footage can be applied to infer a single normal direction. The input sequence of
length N is therefore split into C subsequent chunks of odd length d, the last chunk
being allowed a different length. Typically, the chunk size is d = 5 time steps. For
every point ~x on the body surface we fit an optimal normal n̂ to each chunk of
video individually. After the time-varying normals have been estimated at this
coarse scale, the normal directions between subsequent chunks are interpolated
via spherical linear interpolation, Fig.10.8.

This way, a normal field is generated that represents a compromise between
smoothness in the temporal domain and local normal accuracy. It faithfully mod-
els subtle details in surface structure, and it exhibits no normal discontinuities
at chunk boundaries that would appear as flickering in the final renditions of the
3D video. The results we obtain with this approach confirm that it is permis-
sible to assume that during a sufficiently small time period the local normal di-
rection does not change dramatically. A comparison to the video footage shows
that we are able to capture even the subtle wrinkles that are due to limb bending,
Fig. 10.12a,b,c.

10.5 Rendering

The output of our approach is a relightable dynamic object description that con-
sists of the animated geometry and the material properties. The geometry is com-
prised of the 3D body model mesh, the underlying skeleton and the joints’ mo-
tion parameters. The material properties consist of the time-independent BRDF
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(a) (b)

Figure 10.9: (a) Person rendered with Phong (left) and Lafortune (right)
model while being illuminated by one light source. (b) Only specular compo-
nent rendered for Phong (left) and Lafortune (right) model under the same
lighting conditions.

textures and the dynamic normal maps. The number of BRDF data parameters
depends on the employed reflectance model. In the case of Phong we store a
floating point diffuse component, a specular component, and a specular exponent
for all color channels in each texel. The normal maps are represented as vectors
in the tangent space of the triangles, where (0,0,1) represents an unaltered triangle
normal (see Fig. 10.12a ).

For the rendering we extend the human animation system in [Carranza03]. Af-
ter reading the customized human character model and preparing the static BRDF
textures, real-time rendering can commence. For each time step, we now read the
pose parameters from the stream and apply the respective rigid transformations to
the body model. The player also loads the fitting normal map. The final outlook
is now determined by the shader programs, which use similar techniques as in
[Fernando04] to perform per-fragment lighting computations with BRDF textures
and normal maps. On a 3.0 GHz Pentium 4 and an Nvidia GeForceTM 6800 graph-
ics board, we achieve 25 fps sustained rendering frame rate at 1024×1024-pixel
resolution while illuminating the scene with three moving light sources.

To better demonstrate relighting effects while articulated body motion is per-
formed in the scene, we have decided to illuminate the 3D video with point lights,
so that the viewer can see the light source positions and corresponding shadows
on the floor. Since we use high-level Cg shaders [Mark03], our system can be
switched to different parametric reflectance models with low effort. We currently
can demonstrate Phong and Lafortune model implementations. A comparison be-
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Figure 10.10: Dynamic reclothing.

tween renderings with a two-lobe Lafortune model and the Phong model is shown
in Fig. 10.9. The results shown in Figs. 10.10, 10.11c,d and 10.12 have been
generated using Phong reflectance.

Figs.10.12a show that wrinkles in the apparel are faithfully identified and rep-
resented in the normal maps. Under varying illumination, the wrinkles are realis-
tically rendered, Figs.10.12b. Figs.10.12c show rendered images of the trousers at
three consecutive time steps, illustrating the dynamic nature of the normal maps
employed by the renderer. Small rendering artifacts are noticeable that are due to
texture resampling.

10.6 Results and Discussion

For validation, we have five different sequences of a male and a female subject
available. Each sequence is between 50 and 250 frames long. Unfortunately,
ground truth BRDF data and normal maps are not at our disposal. Thus, we assess
the estimation accuracy in both cases by means of visual comparison to the actual
video footage. We found that our method is capable of nicely reproducing the
appearance of the actor in the video frames.

Our BRDF estimation approach captures surface reflectance characteristics
of different materials simultaneously, as seen in the renderings of Figs.10.12d,e.
The animated male and female models are accurately relit for illumination condi-
tions very different from the recording setup. The approach reliably discriminates
between diffuse and specular reflectance. The realistically reproduced specular
reflection of the trousers of the male model is shown in the accompanying video.

Once we have estimated the BRDF for one type of clothing, we can also use
the surface appearance description to change the apparel of a person even for mo-
tion sequences in which the person was originally dressed differently. Fig.10.10
depicts an example of dynamic reclothing.
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The entire estimation process including motion capture and reflectance esti-
mation takes approximately three minutes per time step. Optional input frame
warping takes around 10 seconds for one pair of reference image and reprojected
image. We assess the multi-view warping quality by comparing the image differ-
ences between reference views and reprojected model views before and after the
warp. Typically, we achieve an average reduction in absolute image difference
in the range of 6% over a whole sequence (Fig. 10.11a,b). The local registration
improvements in single image pairs lead to a global improvement in multi-view
texture-to-model consistency. In Fig. 10.11c,d the texture registration improve-
ment due to the warp-correction step is demonstrated. However, in some rare
cases local deteriorations in the final texture can be observed despite an improve-
ment on the global level. The decision if the warp-correction is applied is thus left
to the user.

Our method is subject to a couple of limitations: First, our method is based on
the assumption that interreflections on the body surface can be neglected. In the
RES, interreflections potentially play a role between the wrinkles in clothing. To
prevent this effect from degrading the estimation accuracy, we have taken care to
minimize the number of wrinkles in the RES.

Another limitation of our approach is that visual quality deteriorates if the
fabric shifts substantially across the body. Furthermore, we cannot account for
loose apparel whose surface can deviate almost arbitrarily from the body model.

For some body poses, rendering artifacts due to undersampling may occur.
Especially the lower side of the arms sometimes can not be seen by any of the
cameras and thus the true normal directions cannot be inferred. Additional appro-
priately positioned imaging sensors would solve this problem.

Finally, we intend to employ a single-skin surface model instead of our current
segmented one in the future. With the current body representation, occlusions of
parts of the surface geometry in the RES complicate the reflectance and normal
estimation processes. If a surface point on the model is never seen by any camera,
we cannot reconstruct its reflectance. In that case, we interpolate missing parts
in the BRDF textures from neighboring regions. However, discontinuities in
the texture when frequently occluded surface patches suddenly appear may still
be visible. Alternatively, recording the person in more than one body pose can
solve that problem already during acquisition. Moreover, if the face geometry
of the template model is too different from the shape of the real actor’s face,
blurring artifacts occur in the final rendering. One possibility to solve this would
be to precede the reflectance estimation with a face model reconstruction from
high-resolution images of the head. We’d like to emphasize that all limitations
inflicted by our specific body geometry are not principal limitations of our method.

Our results demonstrate that we have developed an effective novel method
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(a) (b) (c) (d)

Figure 10.11: (a),(b): Absolute difference image between reference view and
reprojected textured model before (a) and after (b) warp-correction. The
darker a pixel, the lower the difference. It is clearly visible that, after warp-
correction, the match of reprojected model and reference is much better.
Larger gray areas that are still visible stem from those parts of the body that
have not been seen by the one camera used for texturing the model. They are
not due to erroneous registration.
(c),(d): Magnification of the lower leg of the rendered person. (c) Result
without warp-correction prior to reflectance estimation - ghosting due to mis-
alignments along the stripes of the trousers are visible. (d) Result with warp-
correction - ghosting artifacts have been significantly reduced due to better
multi-view consistency. Block artifacts are due to limited texture resolution.

for simultaneous capture of dynamic scene geometry, per-texel BRDFs and time-
varying normal maps from multi-view video. The acquired scene description en-
ables realistic real-time rendition of 3D videos under arbitrary novel lighting con-
ditions. This way, we can convincingly implant virtual people into arbitrary novel
surroundings. Joint motion and reflectance capture can be applied not only to hu-
mans but to any dynamic object whose motion is described by a kinematic chain
and for which a suitably parameterized geometry model is available. For BRDF
parameter recovery, the proposed algorithm currently assumes that the subject is
illuminated by one point light source. While this setup has been chosen to max-
imize observed reflection variations, the approach can be extended towards more
general illumination configurations captured, e.g., via HDR environment maps.
To overcome the fixed relationship between light and camera direction, alterna-
tively, a number of spotlights may be applied that are switched on and off during
acquisition to illuminate the person sequentially from different directions.
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(a) (b)

(c) (d)

(e)

Figure 10.12: (a) Color-coded normal map in local coordinates (left) and
corresponding input video frame (right). The default normal in the tangent
frame is the vector (0,0,1) which translates into a purely blue pixel in the local
normal map. Normals deviating from the default one, e.g. due to wrinkles,
appear in a different color. (b) Wrinkles on T-shirt rendered under differ-
ent illumination conditions. (c) Rendered time-varying wrinkles in pants.
(d) Single pose relit with different light positions. (e) Person rendered from
different viewpoints and illuminations (colored dots: light source positions,
colors are light source colors).
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Chapter 11

Capturing High-Speed Scenes
for Immersive 3D Media

In parts I and II of this thesis, we have described algorithmic solutions to the prob-
lems of full-body human motion analysis and free-viewpoint video reconstruction
from image data. We have demonstrated that our algorithms can serve as building
blocks in the development of novel immersive 3D media, which offer more to a
viewer than a plain 2D depiction of a real world scene. All the methods presented
so far have employed standard video cameras to acquire the input image mate-
rial. However, there exists a limit to the speed in a moving scene above which no
faithful reconstruction is feasible with standard imaging equipment.

Visual perception of very rapid events, e.g. the motion of a ball in tennis or
baseball, or the motion of a bullet, is far beyond the capabilities of the human
visual system and standard video cameras. Nonetheless, many application areas
exist, in which exact knowledge about such rapid motion is of high importance.
As an example, a sports coach who exactly knows how an athlete hit a ball with
a racket can decide much more effectively on how the motion cycle can be im-
proved. But also the sports enthusiast at home can profit from novel forms of
visualization that become possible after an exact 3D reconstruction of the rapid
dynamic scene has been performed. The previous two examples are just two out of
a variety of application areas which demonstrate that systems and algorithms for
accurate capture of rapid motion are also an important component that contributes
to the creation of the next generation of visual media.

The problem of developing methods for capturing images of high-speed real
world scenes for analysis of the underlying dynamics has attracted the attention of
researchers already decades ago. Back in 1878, Eadweard Muybridge conducted
his famous experiments to create serial images of fast motion [Muybridge87]. A
setup of twelve cameras was used to capture different stages of a galloping horse.
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One of the photographs indeed showed the horse with all of its hooves off the
ground, corroborating the hypothesis that had led to these experiments. In the
1930’s, Harold E. Edgerton at MIT perfected the use of stroboscope photography
to create multi-exposure images of high-speed motion, see for instance [Bruce94].
However, the acquisition process is usually constrained to actions taking place in a
very limited spatial domain for which decent illumination conditions can be set up
easily. Today high frame rate video cameras are available that enable recording
at several hundred frames per second. Nonetheless, the practical application of
these cameras is very cumbersome due to technical limitations and high costs.
Recording with a high frame rate imaging device produces an immense amount
of data which renders the acquisition of video clips of more than a few seconds of
duration virtually impossible. The application of these specialized video devices
is further complicated by the very short exposure times. Usable image data can
only be recorded under very intensive scene illumination. This lighting constraint
makes recordings on a larger set very challenging, if not impossible.

In this part of the thesis, we present our answer to the question if it is possible
to optically estimate motion data of large-scale high-speed scenes without having
to resort to specialized high frame rate cameras. In Chap. 12, we present a novel
principle for capturing motion data in such a type of scene [Theobalt04a]. It is
based on low-cost commodity still cameras and the principle of multi-exposure
photography. In addition to keeping the costs low, the application of off-the-
shelf digital cameras enables us to take advantage of their high-resolution imaging
sensors. Furthermore, the data handling overhead for processing still images is
marginal compared to the overhead necessary for the huge data streams obtained
through high-speed video recordings. Our novel algorithmic framework is a gen-
eral recipe that can be applied to a variety of scenes. However, for demonstrating
its applicability and accuracy we have applied it to capture important motion data
during a baseball pitch. Besides the popularity of baseball, there are several rea-
sons for our choice. First of all, the underlying motion is very fast and extends
over a large area of space: the speed of a pitched baseball can reach 80 mph and
above, and the distance from the pitcher mound to the home base is 60.5 feet
(18.44 meters). In addition, there are many different motion parameters that we
would like to measure simultaneously for a variety of pitches:

• 3D positions along the trajectory of the flying ball;

• initial flight parameters of the ball: norm and direction of initial velocity,
rotation axis, spin frequency;

• Poses of the pitcher’s hand before, at, and after releasing the ball.

Finally, it is possible to use a physically based model to analyze the consistency
of the acquired data: if the ball’s initial parameters and flight positions are recon-
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structed with high accuracy, they should match the results from a physically based
model that predicts the flight trajectory of a spinning ball traveling through air. In
summary, both the pitching and flight of a baseball turn out to be a challenging
and adequate type of motion for our motion capture approach alike.

In the remainder of this chapter, we will give some background that aids in un-
derstanding the next chapter. We begin with a quick look at general optical acqui-
sition principles for high velocity scenes in Sect. 11.1.1. Thereafter, in Sect. 11.1.2
we briefly review approaches from the literature for automatic video-based anal-
ysis of sports events . We then describe different algorithmic approaches from
the literature for capturing and anlyzing hand motion in Sect. 11.1.3. The chapter
concludes with a primer on the technical elements of baseball and the physics of
a ball flying through the air in Sect. 11.1.4.

11.1 Background

11.1.1 High-speed Imaging and the Principle of Multi-
Exposure Photography

Optical acquisition of very rapid events is a very challenging problem. However,
image and video data of high-speed scenes are important sources of information in
many areas of application since they enable to analyze the kinematic and dynamic
nature of a scene. One example is the analysis of car accidents where detailed in-
formation about the deformation of the car’s body and the strain on the occupants
during the impact is eventually used to improve the car’s overall security. A sec-
ond example is the biomechanical analysis of athletic motion. A detailed insight
into an athlete’s movements or the motion of a a ball that he is playing can assist
the coach in making the right suggestions for improvements. While it is already
far beyond the capabilities of the human eye to perceive such fast events, also the
technical limits of standard photo and video cameras are exceeded.

Today, high-speed video cameras are commercially available that are capa-
ble of recording high-speed motion events at frame rates of up to 10000 fps
(e.g. [wei]). This high temporal sampling rate comes at the cost of a very short
exposure time for each video frame. At a frame rate of 10000 fps the the shutter
of the camera can at best be open for 0.1 ms per frame. Unfortunately, this theo-
retical value is never reached in reality since in each frame a service time interval
for reading out the image sensor needs to be allocated. For capturing useable im-
ages, it is thus of significant importance that the recorded scene is illuminated by
a very intensive light source. Typically, appropriate illumination conditions can
only be created in a very confined volume in space, a fact which makes recordings
on larger sets a difficult undertaking. Although a longer integration makes the
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(a) (b)

(c)

Figure 11.1: (a),(b): Two (non-subsequent) frames of a high-speed video de-
picting a motorcycle crash [wei]. (c): Open flash photograph by Richard
Burlington showing a bullet that penetrates a marshmallow.

generation of appropriate lighting conditions easier, it also leads to motion blur
that may smear out important details in the image plane. Hence, it is often a very
tedious task to find camera settings that lead to a decent compromise between im-
age brightness and blurriness. A few example frames recorded with a high frame
rate video camera are shown in Fig. 11.1a,b.

In some cases it is not necessary to have a sequence of images documenting
the whole course of action, but it is sufficient to have an image of one particular
time instant. In this case, one can take advantage of high-speed photography
which allows capturing one single image of a rapidly moving scene. To this end, a
photo camera and a light source have to be triggered at the exact same moment in
time. A common technique used in high-speed photography is the so-called open
flash [hiw]. When taking an open flash photograph, the environment lighting is
completely dimmed and the shutter of the camera is kept open for a long period.
At the exact moment in time a high intensity short-impulse flash light illuminates
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the scene. Typically, the flash is triggered by a light barrier or by a sound detector.
In Fig. 11.1c an example of an open flash photograph is shown.

A high-speed photograph cannot document the temporal evolution of dy-
namic event, but another photographic technique can achieve this. In the 1930’s,
Harold E. Edgerton at MIT brought the use of the electronic flash as an artificial
light source for still image photography to perfection [Bruce94]. Edgerton en-
hanced the original electronic flash into a device called stroboscope that can emit
many short light pulses at a high frequency. He demonstrated that this novel light
source enables capturing several snapshots of a very rapid event in one single im-
age frame. The idea is to use a photo camera which is set to a very long exposure
time and illuminate the scene with the stroboscope. This way, a so-called multi-
exposure image is created that shows several time instants of the moving scene
superimposed in a single frame. Example photographs taken by Harold Edgerton
are shown in Fig. 11.2. In addition to the artistic value that many people attribute
to these pictures, they also contain a large amount of information about the motion
in the scene.

Unfortunately, up to now multi-exposure photographs have hardly been con-
sidered as input data for a motion capture method. The algorithm presented in
Chap. 12 bridges this gap.

11.1.2 Image-based Analysis and Interpretation of
Sports Events

Today, novel high-speed video technology in combination with ever faster com-
puting hardware makes detailed video- or image-based analysis of sports events
feasible [Wang03]. For athletes and their coaches, as well as for the sports en-
thusiast watching a sports broadcast on TV, this novel technology means a great
benefit. For the coaches it is highly interesting to obtain technical support in tac-
tical analysis, and the analysis of the athlete’s movements. Furthermore, optical

Figure 11.2: Multi-exposure photographs taken by Harold Edgerton.
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motion analysis of sports events enables the delivery of entirely new forms of
visualization to the viewer at home via TV.

Each sports discipline possesses its characteristic athletic elements, and thus
individual tracking solutions need to be developed for each of them. Some of
the world’s most popular sports are ball games, and hence it is no wonder that
the problem of tracking the path of a ball from video images has gained a lot of
attention in the research community. Different ball games differ in the way how
the ball is played, what size and shape the ball has, and how rapidly and how
far the ball typically moves. In consequence, there is not a single multi-purpose
tracking scheme for ball motion, but specific solutions need to be developed for
each case individually.

One of the most popular sports worldwide is soccer, and there has been a great
ambition from the computer vision community to develop ball identification and
tracking solutions. In [D’Orazio02] a novel method for identifying the soccer ball
in images is presented. It uses a modified version of the Circular Hough Trans-
form (CHT) [Ballard81] to find the position of the ball in the image plane. The
authors have designed an adaptive kernel for their matching filter which enables
the identification of the ball even if it is partially occluded.

In [Yu03] multiple candidate regions in the image plane are tracked and the
decision which of them corresponds to the ball is taken based on a trajectory
analysis. This way, the authors try to circumvent classical problems that make
ball identification in soccer videos hard, such as the frequent occlusions or the
merging with other objects. The algorithm first estimates the center ellipse of the
soccer field and the goal mouth. Ball region candidates are identified by looking
at salient features such as color, roundness, or the distance to other objects in the
image plane. A set of candidate trajectories is obtained, each of which is classified
using a trajectory plausibility criteria. The candidate trajectory with the highest
plausibility value is considered the ball trajectory.

Another very popular sports is tennis. Here, ball identification in video streams
turns out to be very difficult since the ball moves at a high velocity and, at video
resolution, only covers a few pixels in the image plane. The LucentVision sys-
tem [Pingali00] enables real-time tracking of the players’ positions and the ball
trajectory from video images. Three pairs of video cameras are positioned around
the tennis court. The ball’s position in each camera view is tracked by performing
frame differencing and color-based region identification. The ball’s 3D positions
are reconstructed via triangulation from stereo.

Primarily in the United States and several countries in Asia, baseball is among
the most popular sports. It is a combination of many technically very different
and challenging athletic elements. Pitching is the central most important part of
the game. Here, the baseball moves very rapidly and it is thus very difficult to
obtain detailed measurements of its motion with purely optical means. Alaways
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examined in his PhD thesis [Alaways98] the aerodynamics of a curve ball (see
Sect. 11.1.4). He used a system with ten high-speed video cameras operating at
240 Hz to capture the ball’s flight path. For measuring initial flight parameters,
i.e. spin axis and frequency, a marker-based method was employed. During the
Summer Olympics 1996 in Atlanta, Alaways used two 120 Hz high-speed video
cameras to track ball positions along the flight trajectory [Alaways01].

The K-Zone system [Gueziec03, Gueziec02] is technically similar and de-
signed to track the trajectory of a baseball from multiple video streams in real-time
using color information and a Kalman filter.

The measurement accuracy of most of the methods presented in this section
is constrained by the limited image resolution of the employed video cameras.
In contrast, the algorithm presented in Chap. 12 provides a very high spatial re-
construction accuracy since it capitalizes on the high resolution CCD sensors of
modern digital photo cameras.

11.1.3 Hand Motion Tracking
The kinematics of a human hand can be described by means of a hierarchical
skeleton structure in a similar way as the full human body (Chap. 2 Sect. 2.1).
Hence, many approaches that have originally been designed for human full-body
tracking are also applicable to pose estimation of the human hand (see also Chap. 3
Sect. 3.1.3). Nonetheless, many methods have been specifically developed for the
latter task.

Nowadays, a variety of non-optical systems are commercially available that
require the user to wear a glove with a built-in set of sensors that enables the
determination of the bending angles of all finger joints. A glove with built-in
touch, bend and inertial sensors is described in [Grimes83]. The DataGlove sys-
tem [Zimmermann87] uses a set of optical fibers along the back of the fingers
that attenuate the light they transmit if they are bent. The Dexterous Hand Mas-
ter [Eberman93] is a mechanical exoskeleton that can measure the bending angles
of finger joints by using Hall-effect sensors.

Optical systems employ one or several video cameras to record the moving
hand and to infer parameters of motion. Marker-based systems require optical
beacons made of retro-reflective [Vic] tape or LEDs [sel] to be placed on the
hand. The 3D trajectories of the markers are tracked and articulated joint motion
parameters are estimated. The discrimination between different markers in the
image plane is facilitated if each marking is assigned a unique color [Dorner93].
The main advantage of marker-based approaches is that they enable pose determi-
nation at a very high accuracy. Another advantage of these optical methods is that
the tracked subject does not need to wear cumbersome devices.

However, there are applications in which no attachment to the hand can be
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tolerated, not even visual markings. In this case, marker-free optical methods can
be employed. Here, one can distinguish between methods that perform pose or
gesture analysis purely in 2D, and more sophisticated methods that capitalize on
a full 3D hand model.

Not all systems for hand motion estimation perform motion capture in the
strict sense, i.e. the estimation of joint motion parameters of a hand skeleton
model. For instance, some algorithms perform a purely appearance-based classi-
fication to discriminate between different hand gestures. A classification scheme
for sign language based on the hand location and the hand shape is described
in [Tamura88]. The system uses a dynamic programming method to discriminate
signs based on a polygonal approximation of the hand silhouette. A system for
real-time sign language recognition based on trajectory analysis of the hand is
presented in [Charapayphan92]. A different option is to perform a correlation es-
timation between recordings of hand gestures and a database of shape templates
in order to discriminate between different hand signs [Darrell93]. An appearance-
based approach is presented in [Athitsos03] where single hand poses are identified
via an edge-feature-based comparison to a database of rendered hand models.

One step further than appearance-based methods take those approaches which
perform a full estimation of hand motion parameters in 2D. One such algorithm is
presented in [Wu01], where a 2D cardboard hand representation is used for pose
determination.

The most detailed representation of human hand motion is obtained with tech-
niques that employ an explicit 3D model. Different 3D model types have been
applied for this task. In [Heap96], a point distribution model is used to track hand
motion. However, since they resemble the real anatomy of the human hand most
closely, kinematic models are applied frequently. They model the human hand as
a linked kinematic chain of bones and interconnecting joints. The hand pose is
completely determined by the rotation parameters of each joint and the translation
of the root. The physical extent of the hand is modeled by some form of surface
representation for the palm and the fingers.

In [Stenger01] a kinematic model consisting of quadric segments is employed
to determine hand configurations from video. A Kalman filter based track-
ing framework enables robust pose determination. A kinematic model with a
spline-based surface representation is used in [Kuch94] for hand posture recog-
nition. Other types of geometric primitives, such as cylinders or superquadrics,
are also commonly used as parts of hand representations for 3D hand motion
capture [Davis99, Shimada98]. Physical hand shape models emphasize the de-
formation of the hand shape under the action of various forces. In [Vogler98] a
deformable hand model is used for video-based gesture recognition.

Visual tracking of articulated hand motion is complicated by the fact that self-
occlusions of the fingers occur frequently. An explicit 3D hand model can support
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the motion capture algorithm in detecting such visibility ambiguities and thereby
facilitate robust tracking. Most systems that make use of a 3D hand model employ
the analysis-by-synthesis principle. Here, the idea is to project the 3D model into
the image plane of each recording camera and to iteratively alter its configuration
until the projection optimally conforms with the image data. In each iteration
an error measure that assesses the matching quality is evaluated. Common error
measures compare specific features of the projected model (e.g. silhouettes, edges
or texture patches) and their equivalents in the images. For instance, the fingers
are salient features that can robustly be identified in video footage. The knowledge
of their positions in 3D space in combination with appropriate constraints on the
finger motion enables inferring simple hand poses [Lee95].

A highly-detailed kinematic hand model with 27 degrees of freedom and cylin-
ders for representing finger segments is used in the Digiteyes system [Rehg94].
For tracking, the edges of truncated cylinders are projected into the image plane
and compared to edges features that are extracted from the images themselves.
Finger tips are identified as well. The difference between measured and predicted
joint and finger tip locations is minimized by means of a non-linear optimization
scheme. A prototype implementation runs at a sustained frame rate of 10 Hz, but
unfortunately it cannot properly resolve self-occlusions. The latter problem has
been addressed in a follow-up publication [Rehg95].

The method proposed in [Wu99b] estimates the global hand pose prior to de-
termining the pose of the fingers. The hand pose is found by solving a least median
squares problem. The parameters of motion for the fingers are inferred via inverse
kinematics.

In [Delamarre98] a stereo-based approach for hand tracking is pursued. A
stereo correlation algorithm is employed to obtain a dense 3D scene reconstruc-
tion. A physically motivated force field is applied to attract the hand model to the
reconstructed depth maps.

A data-glove has been used to learn constraints on articulated hand motion in
the work presented in [Wu01]. The constraints enable reducing the dimensionality
of the 27-dimensional pose space into a union of linear manifolds in 7-dimensional
space via PCA. 28 basis configurations turned out to be sufficient such that each
hand pose can be represented as a linear combination between two base poses. An
importance sampling algorithm is used for tracking.

For more detailed elaboration of the subject we would like to refer the reader
to one of the respective survey papers, e.g. [Wu99a].
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Figure 11.3: The pitcher (in the background) throws the ball towards the
batter (in the foreground) such that it enters the strike zone (red box).

11.1.4 A Primer on Baseball Pitching and the Physics of
a Flying Ball

Baseball is amongst the most popular sports in the United States and many coun-
tries in Asia. Due to its variety of different athletic elements it is technically very
challenging. The pursuit of athletic perfection in baseball already starts in the
minor leagues and has lead to the publication of many textbooks on specific tech-
nical aspects [Stewart02, House00]. One of the most important technical parts
in the game is pitching. In pitching, two actors play the leading part. One actor
is the pitcher of one team who is throwing the baseball towards the batter of the
opponent team (Fig. 11.3). The batter is supposed to hit the ball with a club and
return it as far as possible into the field. The batter stands exactly 18.44 m (60 ft
6 in) away from the pitcher. In order to prevent the batter from hitting the ball,
the pitcher is throwing it in such a way that its flight trajectory is as unpredictable
as possible. While the flight shall be unpredictable, the rules of the game define a
ball only as being valid if it arrives in a virtual box-shaped volume of space close
to the batter, the so-called strike zone. The speed at which a world-class baseball
player throws the ball can reach up to 100 mph.

In the long history of baseball, a variety of baseball pitches have been de-
veloped that differ in the way how the ball flies towards the batter [Stewart02,
House00]. The differences in the ball’s flight behavior originate from different
initial conditions, i.e. different rotation axes, spins and velocities, that the ball was
given by the pitcher. Each characteristic combination of initial conditions makes
the ball’s flight curve deviate in a specific way from its ideal flight parabola, i.e.



11.1 Background 163

(a) (b) (c)

Figure 11.4: Characteristic hand and finger poses for a 2-seam fastball (a), a
slider (b), and a curveball (c) [Courtesy of Popular Mechanics magazine].

the parabola that it would fly along if it was thrown in a pure vacuum where aero-
dynamic effects play no role. Four popular pitching techniques are the fastball,
the slider, the curve-ball and the change-up. In our experiments in Chap. 12 we
analyze these four different pitches that are all thrown as three-quarter deliveries,
ı.e. with a release point above and to the right of the head. The characteristics of
these pitches are as follows:

• The fastball is the fastest pitch. It has fast back spin and, depending on
whether it rotates over four or only two of its seams, the ball is called a
4-seamer or a 2-seamer. It flies above the ideal flight trajectory.

• The change-up also exhibits back spin but has a lower velocity and spin
frequency.

• The curveball is released with forward spin which makes the ball descend
faster during the last phase of its flight.

• The slider is thrown with as spin that makes the ball turn to one side towards
the end of the flight.

The pitcher controls the initial conditions by means of the articulated hand
and finger motion at the release point of the ball. Characteristic hand and fin-
ger poses for three pitches are shown in Fig. 11.4. The physical origins of the
initial-condition-dependent flight trajectories lie in the fact that the ball is travel-
ing through the streaming medium air and not a vacuum. Different initial con-
ditions lead to different strengths of the aerodynamic forces that act on the ball
while it is moving [Adair02, Alaways98]. In addition to the aerodynamic forces,
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(a) (b)

Figure 11.5: Illustration of the effect of the Magnus force on a spinning ball
(a); the aerodynamics of a non-spinning ball in comparison (b).

the gravitational force has the strongest influence on the ball’s flight behavior.
The most important aerodynamic forces are the drag force and the lift forces. The
drag force acts in a direction which is opposite to the ball’s motion vector. The
lift forces are all forces that act in orthogonal directions to the drag force. Several
component forces contribute to the overall lift effect, the most dominant one being
the Magnus force (Fig. 11.5). It is responsible for the effect that a spinning ball
flying through air is laterally deviating from its ideal flight curve. The origins of
the force are air pressure differences close to the ball’s surface in lateral positions
with respect to the heading direction.

Other lift forces are the cross force, whose strength is influenced by the seam
orientation of the ball, and the viscous shear force (for details on both forces
see [Alaways98]). The latter force is the origin of a phenomenon called spin rate
decay which makes the spinning frequency of a flying ball decrease over time.
Compared to the Magnus force, the latter two forces only have a minor influence
on the flight behavior. In our work presented in Chap. 12, we have developed a
physically based mathematical model of the flight of a baseball, that takes into
account the gravity, the Magnus force and the drag force acting on the ball.



Chapter 12

Estimating High-Speed Motion
with Multi-Exposure

Photography

In this chapter, we present a novel and cost-effective principle for capturing high-
speed large-scale motion which does not rely on specialized high frame rate video
equipment [Theobalt04a]. Instead, it employs standard off-the-shelf digital still
cameras, stroboscopic light sources, and the principle of multi-exposure photog-
raphy. The algorithms and principle design issues detailed here are applicable to
a large range of dynamic scenes. We have decided to demonstrate the strength of
the novel method and its high accuracy by capturing the articulated hand motion
of the pitcher and the flight of the ball during a baseball pitch. We further show
that the acquired motion data can be used to generate instructive and, at the same
time, entertaining visualizations of the captured events. The framework presented
in this chapter introduces the following main scientific contributions:

• an approach for capturing high-speed motion using multi-exposure images
obtained with low-cost commodity still cameras and stroboscopes;

• an algorithm to automatically compute the 3D positions and the initial flight
parameters of a baseball from multi-exposure images;

• a procedure to reconstruct articulated hand motion from multi-exposure im-
ages;

• validation of the approach by means of a physically based model of the
flight of a baseball;

• visualization methods for creating renditions of hand and ball motion that
can highlight selected technical aspects.
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Recording with multi-flash photography has some appealing advantages over
recording with high-speed video equipment. To begin with, the acquisition pro-
cess is a lot cheaper since consumer-grade hardware can be used. Secondly, it is
possible to take advantage of the multi-million pixel CCD sensors of digital photo
cameras. Finally, the data size of the recorded footage is significantly smaller
since the temporal evolution of the dynamic scene is captured in one single image
frame.

We proceed with a description of our recording setup in Sect. 12.1. Subse-
quently, we describe how the motion of the baseball is captured, and flight pa-
rameters are estimated in Sect. 12.2.1 through Sect. 12.2.4. We then outline how
a physically based model of the ball’s flight is used to validate the accuracy of
the measured motion parameters, and how it serves as a building block in the
generation of renditions, Sect. 12.2.5. The multi-flash recording of the pitcher’s
articulated hand motion, as well as the algorithmic framework to infer motion pa-
rameters from the images, are described in Sect. 12.3.1 through Sect. 12.3.3. The
chapter concludes with an evaluation of results and a discussion in Sect. 12.4.

12.1 Setup
We use a flexible setup to robustly acquire different types of motion data under
real-world conditions. To analyze flight trajectories of different pitches, we need
to acquire image data that allows us to reconstruct the ball’s initial flight parame-
ters (i.e. norm and direction of its velocity, direction of its rotation axis, and spin)
as well as the 3D positions of the ball along its trajectory. In addition, we want
to capture the motion of the pitcher’s hand and fingers before, during, and after
releasing the ball.

Acquiring this type of information is very challenging since the involved
speeds are considerable and the entire trajectory extends over a relatively wide
area. To complicate things even further, high spatial accuracy is essential in both
flight analysis and hand motion capture.

To obtain simultaneously high spatial as well as temporal resolution, we apply
stroboscope photography (Chap. 11 Sect. 11.1.1). We capture images of the high-
speed scene in a darkened room using regular digital still cameras that were set to
long exposure times. The scene is illuminated with a stroboscope light that emits
short light pulses at a suitable frequency. The resulting images depict, superim-
posed, the dynamic scene at different, closely-spaced time instants. The temporal
sampling frequency is equal to the pulse frequency of the stroboscope. High spa-
tial accuracy is easily achieved by using recent commodity digital cameras with
multi-million pixel resolution.

To capture an entire baseball pitch, we set up our acquisition gear in a base-
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(a) (b)

Figure 12.1: Ball acquisition setup. (a) A stereo pair of cameras (encircled
in magenta) facing the black curtain on the right is capturing the ball’s ini-
tial flight parameters. The ball is illuminated by a stroboscope (cyan). (b)
A second stereo pair of cameras (magenta) and a strobe light (cyan) facing
towards the black carpet in the back are responsible for capturing the ball’s
trajectory close to the “home base”.

ment room which has a central free space area of approximately 25 m length, 4 m
height, and 5 m width. This is sufficient to house the complete pitching corridor
(18.44 m in length) as well as to put up the camera and lighting equipment. As
imaging devices we employ consumer-market OlympusTM Camedia C5050 still
image cameras that provide a frame resolution of 2560x1920 pixels. This camera
model features a large-aperture zoom lens that can be set to a comparatively wide
angle. We use four cameras of this type in our setup. Recording software was
developed enabling us to control the settings of all four cameras from a single PC
and to trigger all camera shutters simultaneously.

Since we intend to record a fairly wide-area scene, we need a sufficiently
luminous stroboscope light source that can illuminate a large volume at high fre-
quencies. In our setup, we use two high-output strobe flashes which have an
intensity of 5000 Lux each at a distance of 0.5 m from the lamp. At full intensity,
the 20 µs-long flashes can be triggered at up to 80 Hz which is sufficiently fast for
our purpose.

During recording the floor and walls are covered with black carpet and cloth
to facilitate foreground object segmentation and automatic marker tracking. Pri-
marily, however, the dark material absorbs most light that has not hit foreground
objects, preserving contrast and preventing quick saturation of the multi-exposure
images. Finally, a heavy dark carpet hanging down from the ceiling at the end of



168 Chapter 12: Estimating High-Speed Motion with Multi-Exposure Photography

Figure 12.2: Two stereo pairs of cameras (magenta) and a strobe light (cyan)
are placed in a semi-circular arrangement around the pitcher to capture the
hand motion of different pitches. The object used for extrinsic camera cali-
bration is shown in the center.

the flight corridor absorbs the impact of the ball.
In our recordings, four simultaneously triggered cameras look at the scene

from different positions. Two different arrangements of imaging sensors and light
sources are needed to record either initial flight parameters and ball positions (see
Fig. 12.1) or the hand motion of the pitcher (see Fig. 12.2).

To record the baseball in flight, two stereo pairs of cameras and two strobo-
scopes are used to capture the initial and final phase of the ball flight, respectively
(Fig. 12.1). Details about the setup for acquisition of ball motion are given in
Sect. 12.2.2.

For recording the hand motion, the four cameras and one light source are
placed in a semi-circular arrangement looking at the pitcher from behind and
above, see Fig. 12.2 and Sect. 12.3.2 for further details on this step.

A crucial and—for a large setup like ours—challenging task is the accurate
calibration of the cameras. Fortunately, we can take advantage of the algorith-
mic toolbox for camera calibration that is available in our multi-view video studio
(Chap. 4). We apply a camera model for short focal length cameras [Heikkila96].
Intrinsic camera parameters are estimated from images of a planar checkerboard
pattern. Radial and tangential lens distortion are modeled up to second or-
der [Jain95]. Each multi-exposure image is distortion-corrected prior to any fur-
ther processing. Extrinsic camera parameters are estimated using images of our
3D calibration object, see Fig. 12.2. Camera position and orientation are metri-
cally calibrated.
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Finally, we rely on our professional baseball pitcher who, as we have verified,
performs different pitches with great faithfulness. This allows us to correlate our
measurements of hand motion with the measurements of initial flight parameters
and flight trajectory.

12.2 Tracking the Ball

The estimation of motion parameters for the flying baseball demands a tracking
method that does not have any influence on its flight characteristics. An optical
capturing approach that does not require any structural modifications of the ball’s
surface is thus our method of choice. One possibility would be a tracking approach
based on salient features on the ball’s outer coating.

However, the outer layer has a very uniform texture and the seams are not
significant enough to allow for their robust identification in the photographs. Fur-
thermore, the contrast of a single baseball depiction in a multi-flash photograph is
rather low. This is due to the fact that, because of its motion, multiple exposures
of the scene background are overlaid with only a single exposure of the ball in the
foreground.

We have thus decided to employ colored optical markings on the ball to fa-
cilitate parameter estimation. The markings are painted with colored pens, and
therefore the aerodynamic properties of the leather coating are not altered.

12.2.1 Preparation of the Ball

Four different types of markers are used which differ in color and shape (red
square, blue ring, green triangle, black circle). Over the entire surface of the ball,
each marker type is used three times. Eight markers are arranged in the ball’s
equatorial plane, in 30◦-pairs and with 60◦ inter-pair separation. The remaining
four markers are located in a second, orthogonal plane at 30◦ distance from the
poles. Marker types are assigned such that at least two different markers are vis-
ible from any viewpoint. In addition, the (fixed) coordinate system of the ball
can be determined from the marker positions for an arbitrary viewing direction.
Fig. 12.3 shows the original baseball used in our experiments and the positions of
the markers in the coordinate system of the ball.

12.2.2 Recording the Flight of the Ball

In our experiments, we focus on the fastball, the curveball, the slider, and the
change-up (see also Chap. 11 Sect. 11.1.4), all of them performed as three-quarter
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(a) (b)

Figure 12.3: (a) Baseball equipped with optical markers in pitcher’s glove.
(b) Illustration of the ball’s local coordinate system. Markers are depicted as
small colored spheres on the ball.

Figure 12.4: Schematic illustration of the flight measurement setup (view
from above).
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Figure 12.5: Multi-exposure image of the ball used to estimate its initial flight
parameters. Automatically detected markers are shown as colored dots. In-
set, left to right: magnified image region, result after background subtrac-
tion, detected ball silhouette and predicted center point, fitted circle and final
center point (see Sect. 12.2.3).

deliveries, i.e. with a release point above and to the right of the head. Each of
these pitches was recorded multiple times.

To acquire information about the flight of a baseball, two pairs of cameras are
used that focus on different aspects of the ball’s trajectory (Fig. 12.4). The front
two cameras take multi-exposure pictures of the first 5 m of the flight path right
after the ball has left the pitcher’s hand. The cameras are placed 3.5 m away from
the trajectory and are vertically aligned with a baseline of approximately 0.8 m,
see Fig. 12.1a. One strobe light is placed close to the cameras and illuminates
the scene such that the ball silhouette appears as a circular shape in the images.
In both cameras’ multi-exposure image, the ball is seen at several subsequent
positions and orientations, flying from left to right in Fig. 12.5. The number of
visible ball positions is determined by the pulse frequency of the stroboscope. At
a strobe light frequency of 80 Hz, 6–10 ball positions are captured, depending on
the speed of the pitch.

The stereo camera pair in the back part of the setup records the last third of the
flight trajectory where the most interesting variations between different pitches
occur. The cameras are placed approximately 2.8 m high and 4 m apart on either
side of the flight corridor, see Fig. 12.1b and Fig. 12.4. A second stroboscope
is located below the right camera and illuminates the ball at 50 Hz. This lower
frequency is chosen to better spatially separate the ball’s depictions in the multi-
exposure images. In contrast to the camera setup in the front, the illumination
direction in the back setup causes partially illuminated ball silhouettes as shown
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Figure 12.6: Multi-exposure image taken by one of the back cameras. The
half-moon shape of the balls is due to the lateral position of the stroboscope
illuminating the flight path. The inset shows the same processing steps as
those in Fig. 12.5.

in Fig. 12.6. We compensate for this before reconstructing 3D ball positions, see
Sect. 12.2.3.

During recording, the shutters of the front cameras are open for 1 s, while the
shutters of the back cameras expose for 1.3 s. All cameras are triggered simulta-
neously. As a trade-off between image noise and brightness, we run each camera
with ISO 200 sensitivity.

From the ball centers in both stereo pairs, the 3D positions of the ball in flight
are recovered via triangulation, see Fig. 12.9b. In addition, from the marker po-
sitions in the front images the orientation of the ball’s coordinate frame is com-
puted. This information is used to determine the ball’s rotation axis and spin
frequency, see Fig. 12.9a. The frequency at which we sample the ball’s flight
is sufficiently high to enable faithful reconstruction of flight parameters. The
Nyquist-Shannon [Nyquist28, Shannon49] sampling theorem tells us that the cor-
rect reconstruction of a signal from sample points is only possible if the sam-
pling frequency is at least twice the highest frequency in the signal. According
to [Adair02], the highest rotation frequencies commonly observed on a baseball
are in the range of 1600 rpm, i.e. around 26.7 Hz. Having our first stroboscope
run at 80 Hz, we are on the save side since our sampling frequency is more than
twice as high as the rotation frequency of even the fastest spinning ball.
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Figure 12.7: Algorithmic steps employed to reconstruct 3D ball positions
along the trajectory. The workflow is illustrated using images of one of the
cameras positioned in the front part of the setup as examples.

12.2.3 Reconstructing Ball Positions on the Trajectory

In each image that was captured for reconstructing the flight, the ball’s outlines are
separated from the background by means of a color-based background subtraction
method (Chap. 2 Sect. 2.3.1). Since the acquisition setup is static, those parts
of the scene which do not change over time can be masked out. Only parts of
the images that potentially show the flying ball are subject to the ball silhouette
identification procedure.

From the front and back stereo pair of images, the positions of the flying ball
in 3D space are computed as follows (see Fig. 12.7 for an overview). The ball’s
silhouettes form connected components in the binary images that are identified us-
ing a contour finding algorithm from the OpenCV library [Intel02]. This algorithm
detects the outer contour points of each connected component in the foreground.
Smaller noise regions are eliminated by imposing a threshold on the region size.
The outer contour of each region is approximated as a polygon using a Douglas-
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Figure 12.8: Principle of the Circular Hough Transform illustrated. Each
point in the image plane that lies on the circle generates one vote for the
current combination of circle parameters.

Peucker approximation [Douglas73]. To correct small concavities at the silhouette
boundaries that originate from errors in the background subtraction, we compute
the convex set of the vertices of each boundary polygon [Slansky70].

A first estimate of the centers of the projected balls is obtained by finding
the center of an ellipse that is fitted to the convex hulls of each of the silhou-
ette boundaries in either stereo image. Based on these first center estimates in
the image plane, an approximate reconstruction of the ball centers in 3D becomes
feasible. To this end, the correspondences between silhouette centers in both cam-
era views need to be established. From epipolar geometry of stereo camera pairs
it is known that each image point in one camera view has a corresponding point
in the other camera view which lies somewhere along a line in the image, the
so-called epipolar line [Faugeras93, Hartley00]. Hence, we establish correspon-
dences by finding for each ellipse center in one image the ellipse center closest to
the respective epipolar line in the other image.

The 3D positions of the ball are computed via triangulation. This first estimate
is further improved by fitting circles to the convex hull points of the silhouettes in
the images using a Circular Hough Transform [Ballard81]. The Circular Hough-
Transform (CHT) is a method to fit a circle which is specified via its implicit
equation to a set of points in the image plane. A circle is fully defined by three
parameters, two for its center in the image plane and one for its radius. The CHT
fits a circle by accumulating votes in a three-dimensional array structure. The
accumulator array has one cell for each combination of the three implicit circle
parameters out of a limited search interval. A vote is added to an accumulator cell
if one of the points in the image plane fulfills the implicit circle equation up to a
threshold (Fig. 12.8). Parameter combinations are exhaustively sampled, and the
one which obtained the highest number of votes determines the optimal fit.

Since the 3D position of the ball is known approximately and the ball’s di-
mensions have been measured beforehand, the radius of the reprojected balls in
either view can be predicted. The three-dimensional search space of the Circular
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(a) (b)

Figure 12.9: Reconstructed initial flight parameters (a) and flight positions
(b). Distances of the balls from the ground are shown in green, the rotation
axes are shown in magenta, and the initial velocity direction is depicted in
yellow.

Hough Transform is thereby reduced to two dimensions (image coordinates of the
circle’s center). The circle centers form our new estimates of the projected ball
centers, and the refined ball center positions in 3D are found via triangulation.

The insets of Fig. 12.5 and Fig. 12.6 show the results of the individual fitting
steps for the front and back cameras, respectively. One can clearly see that the
procedure to determine the ball centers in the image plane also robustly handles
the case of partially visible silhouettes.

An estimate of the accuracy of this automatic approach is given by the av-
erage Euclidean distance between estimated ball centers in the images and the
reprojected reconstructed ball center locations. For the front stereo pair this error
is on average less than two pixels if the ball silhouettes have a diameter of 70 pix-
els. For the back images the reprojection error is less than 3 pixels. Ball positions
that are very distant from the light source in the back part of the scene are difficult
to detect since the contrast in the images becomes very low. Nonetheless, we still
manage to detect up to 11 ball positions in the back part as shown in Fig. 12.9b.

12.2.4 Reconstructing Initial Flight Parameters

After the 3D ball positions in the front and back part of a trajectory have been
reconstructed, the initial flight parameters for that data set, i.e. velocity, rotation
axis, and spin frequency, are determined (Fig. 12.9a). Fig. 12.10 gives a brief
overview of the employed technique: from the reconstructed 3D marker positions,
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(a) (b) (c)

Figure 12.10: Stages of the fitting process. (a) to (c): position of markers,
result of prediction, and result of final fitting.

an initial guess for the flight parameters is extrapolated, which is then refined using
the ball model from Fig. 12.3b.

First, we reconstruct the 3D positions of the markers on the ball from their
projections in the two front camera views. For each of the four marker colors in
either camera we define an interval in RGB space. For each marker color, can-
didate pixels in the images after background subtraction are identified via thresh-
olding. In the segmented image, candidate marker positions form connected com-
ponents. Noisy pixels are eliminated via morphological operations, and (possibly
erroneous) small connected components are discarded. We approximate the pro-
jected location of a marker’s center as the center of mass of the marker region in
the image plane.

To triangulate the 3D marker positions the correspondences between the
marker projections in both camera views are established via the previously de-
scribed epipolarity constraint. After their 3D positions have been reconstructed,
the isolated marker positions need to be assigned to the correct ball positions. We
do this by assigning each marker to the closest ball center position in 3D.

From the sequence of orientations of the ball’s coordinate system immediately
after release of the ball, its initial spin frequency and rotation axis are derived.
In theory, it is sufficient to know the 3D positions of the ball’s center and of
two uniquely identified markers to determine its orientation. Unfortunately, it is
impossible to decide from the color of a marker alone which one of the three
instances of this marker type on the ball this is. In addition, we need to take into
account that our measurements are subject to noise which may lead to wrongly
classified, wrongly located, or missed out markers in the images. Physics tells us
that the orientation of the rotation axis and the spin frequency of an ideal flying
ball do not change over time. Considering the above, we determine the initial
flight parameters by means of the following numerical optimization scheme:
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The algorithm processes the n subsequent ball positions at the beginning of
the trajectory separately and in their temporal order. The orientation of the ball
at position k with respect to the world coordinate system can be represented as a
rotation matrix R(αk,βk,γk), where (αk,βk,γk) are the ZYZ Euler angles (Chap. 2
Sect. 2.1.1). Our goal is to find for each subsequent pair of 3D ball positions
at k− 1 and k the rotation axis ~ωk−1,k and rotation angle δk−1,k that correspond
to the relative rotation transformation Rk−1,k between R(αk−1,βk−1,γk−1) and
R(αk,βk,γk).

At position k, the algorithm exploits temporal coherence by predict-
ing the orientation of the ball R(αpred,βpred,γpred) by rotating orientation
R(αk−1,βk−1,γk−1) further by δk−2,k−1 around axis ~ωk−2,k−1. Starting from this
parameter set (αpred,βpred,γpred), the algorithm uses Powell’s method [Press02] to
find parameters (αk,βk,γk) that minimize the energy function:

E(αk,βk,γk) = a1E1 + a2E2

= a1 ∑
i∈Mk

(∆m(i,αk,βk,γk))
2 + (12.1)

a2 ∑
j∈{x,y,z}

(∆ax( j,αk,βk,γk,αpred,βpred,γpred))
2

with a1 and a2 being weighting factors. Mk is the set of detected markers at ball
position k, ∆m(i,αk,βk,γk) is the angular distance between reconstructed marker i
and the closest marker of the same type in the ball model in the current orientation.
∆ax( j,αk,βk,γk,αk,βk,γk,αpred,βpred,γpred) is the angular distance between the
local coordinate axis j ∈ {x,y,z} of the ball in orientation R(αk,βk,γk) and the
same axis in orientation R(αpred,βpred,γpred).

From the optimal orientation R(αk,βk,γk) and the one from the previous time
step R(αk−1,βk−1,γk−1), the rotation axis ~ωk−1,k and the rotation angle δk−1,k are
computed by transferring the relative transform Rk−1,k to axis-angle representa-
tion using the technique described in [Murray94].

From the sequence of rotation angles and the stroboscope frequency fs, the
spin frequency f is computed as

f = ‖~ω‖ =
fs

n
·

n

∑
i=1

δi−1,i (12.2)

In our method, we do not strictly enforce the constancy of the rotation axis and
spin frequency, but instead introduce this criterion as a weighted regularization
term E2. The energy function permits variations in the axis since they might be
necessary to compensate for measurement errors. In addition, by this means we
can make allowance for the fact that our ball is potentially not an ideal ball. It
may exhibit slight material inconsistencies that may lead to a small precession
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of the rotation axis. In our experiments, we weight the influence of E1, which
assesses the overlap with the measured marker positions, higher than the one of
E2 (a1 = 0.9, a2 = 0.1). We assume that the initial rotation axis is constant, but
that there possibly are measurement errors. Thus, we minimize the impact of
erroneous measurements on our results by computing the rotation axis at several
ball positions and averaging afterwards.

The direction of the initial velocity vector coincides with the direction of the
connecting line between the first two ball positions, its magnitude is computed
from the strobe frequency and the Euclidean distance of the first two ball positions.

The above method relies on robustly measured marker positions and rotation
axes for the first pair of ball positions. For these positions, we run the optimization
with a2 = 0 in Equation (12.1). If this initialization fails due to too few or badly
located markers, a manual initialization is feasible.

In our experiments, we were still able to recover valid initial flight parameters
even if for some balls none or just one marker was reconstructed due to the fact
that some markers are more reliably detected in the images than others. The black
markers were detected in almost 100 % of cases, red markers were correctly found
in 90 % of cases. The blue and green markers were more difficult to find. In
a comparative experiment, it turned out that a different color scheme with more
luminous marker colors significantly increases the robustness of marker detection.
Marker-detection robustness is further enhanced if the pixel noise is reduced via a
dark-frame subtraction.

12.2.5 Validation and Visualization

For the ball flight data (3D positions and initial parameters), no ground truth in-
formation is available. To validate our acquisition setup and tracking algorithms,
we show that the data obtained through our measurements and processing are con-
sistent with the prediction of a physically based model that takes into account the
dominating forces acting on a spinning ball traveling through air (see Sect. 11.1.4).
In accordance to [Adair02] and [Alaways01], we compute the velocity ~v(t) of a
baseball with mass m using the first-order ordinary differential equation

m~̇v(t) = ~FG + ~FD(~v(t)) + ~FM(~v(t)) (12.3)
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pitch type εavg εmax ^(~vref
0 ,~v0) ‖~vref

0 ‖ ∆(‖~vref
0 ‖,‖~v0‖) ^(~ω ref, ~ω) ‖~ω ref‖ ∆(‖~ω ref‖,‖~ω‖)

fastball (2 seams) 18 mm 39 mm 1.3◦ 63.2 mph 1.9 mph 0.4◦ 1596 rpm 22 rpm

fastball (4 seams) 18 mm 41 mm 2.5◦ 64.2 mph 0.8 mph 0.1◦ 1612 rpm 17 rpm

curveball 19 mm 39 mm 0.7◦ 61.9 mph 1.4 mph 0.3◦ 1623 rpm 7 rpm

slider 15 mm 25 mm 3.8◦ 65.7 mph 0.7 mph 0.4◦ 1491 rpm 13 rpm

change-up 13 mm 35 mm 1.4◦ 60.6 mph 1.1 mph 0.3◦ 1258 rpm 32 rpm

Table 12.1: Comparison of our measurements with reference trajectories obtained from a physically based model
(Sect. 12.2.5). For a variety of pitches, the average error εavg and the maximum error εmax between the reference
trajectory and our measured ball positions are given (Euclidean distance between trajectory and center of ball).
The precision of our measured initial flight parameters is specified by: ^(~vref

0 ,~v0) (angle between reference and
measured velocity direction), ∆(‖~vref

0 ‖,‖~v0‖) (difference between reference and measured initial speed), ^(~ωref, ~ω)
(angle between reference and measured spin axis direction), and ∆(‖~ωref‖,‖~ω‖) (difference between reference and
measured spin frequency). Absolute values of reference initial speed ‖~vref

0 ‖ and spin frequency ‖~ωref‖ are given for
the sake of completeness.
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with the gravitational force ~FG, the drag force (or air resistance) ~FD, and the
Magnus force~FM defined as:

~FG = m ·~g ,

~FD(~v(t)) = −1
2
·CD(~v(t)) ·ρ ·A · ‖~v(t)‖2 · ~v(t)

‖~v(t)‖ ,

~FM(~v(t)) =
1
2
·CL(~v(t), ~ω) ·ρ ·A · ‖~v(t)‖2 · ~ω ×~v(t)

‖~ω ×~v(t)‖

The vector ~ω represents the spin axis of the ball, which is assumed to be constant
during the flight1. In our computations, we use the following constants:

mass of baseball m = 0.145 kg
radius of baseball r = 0.0369 m
cross-sectional area of baseball A = 4.2776·10−3 m2

magnitude of gravity ‖~g‖ = 9.80665 m s−2

air density ρ = 1.225 kg m−3

air viscosity µ = 1.8369·10−5 kg m−1 s−1

Values for air density and air viscosity are given for 20◦ C at sea level. To com-
pute the drag coefficient CD(~v(t)), we have fitted a polynomial curve to the data
presented in [Adair02] and [Alaways01]. We first compute the Reynolds number

Re(~v(t)) = 2 · r · ‖~v(t)‖ · ρ
µ

which is then used to evaluate the drag coefficient

CD(~v(t)) = 2.23 −
0.28342 ·10−4 ·Re(~v(t)) + 0.13179 ·10−9 ·Re(~v(t))2 −
0.25083 ·10−15 ·Re(~v(t))3 + 0.17083 ·10−21 ·Re(~v(t))4

In [Adair02], the values of the drag coefficient are plotted against the velocity of
the ball for a very smooth ball, a new baseball, and a rough baseball. We have
decided to fit our polynomial curve to the data given for the rough ball which
leads to a slightly lower drag coefficient compared to an ideal baseball. There
are two reasons for this: Firstly, after many experiments the outer coating of
the ball exhibited already many scratches and fissures. Secondly, [Alaways98]
suggests that in our velocity range below 70 mph the real drag coefficient can vary
substantially between different pitches and pitchers. In fact, for slower velocities

1For a perfectly homogeneous ball, the spin axis does not change. In practice, a small preces-
sion might occur due to the inhomogeneous density of natural materials used for baseballs.
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the real drag coefficient is tendentially lower than indicated by the curve for the
ideal ball given in [Adair02].

According to [Alaways01], the lift coefficient CL can be computed as

CL(~v(t), ~ω) = 1.5 · r · ‖~ω‖
‖~v(t)‖

For the special case of a fastball across two or four seams, better approximations
of CL can be obtained from the diagrams in [Alaways01].

To compute the position~p(t) of the flying ball at any time t, we need to know
the initial position ~p0 =~p(0), the initial velocity~v0 =~v(0), and the spin axis ~ω
with the spin frequency f encoded in its length: f = ‖~ω‖. With ~v(t) being the
solution of the ODE (12.3), the position~p(t) is computed as:

~p(t) = ~p0 +
∫ t

0
~v(τ)dτ (12.4)

We employ a numerical integration scheme to solve the ODE (12.3). Very good
and stable results have been obtained using the Runge-Kutta-Fehlberg method
DOPRI5 from [Hairer93].

Using Equation (12.4), we can compute the reference trajectory of a baseball
for a given set of initial flight parameters ~p0, ~v0, and ~ω , and compare it to our
measurements. Since the trajectory computed from the ODE (12.3) is quite sensi-
tive w.r.t. variations in the initial flight parameters, we search for an exact solution
of (12.3) that minimizes the error both for the measured ball positions and for the
measured initial flight parameters using Powell’s optimization method [Press02].
The resulting optimal reference trajectory is then used to compute the error of our
measurements. Table 12.1 lists this error for a variety of different pitch types. In
Fig. 12.11 several flight trajectories of the ball that were obtained by fitting the
physically based model to the measured data are visualized.

The comparatively low average speed of the pitches is due to the high number
of pitches per recording session which exceeded the usual training pensum of a
baseball professional by far. All the same we tried to manage with as few sessions
as possible so as not to keep the pitcher from his regular training too often.

We employ the physically based flight model not only to assess the accuracy
of our approach but also to predict the state of the ball in those sections of the
flight trajectory for which we have not taken any measurements. This allows us to
create impressive novel visualizations of the ball’s inflight behavior that give new
insight into the art of pitching. For instance, the complete flight parabola of the
ball can be visualized from any arbitrary virtual viewpoint. At the same time, the
speed of the ball can be virtually slowed down in order to better visualize its spin.
In Fig. 12.17 and Fig. 12.20 examples of such novel visualizations can be seen.
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(a) (b)

(c)

Figure 12.11: Visualization of measured and fitted flight curves of the ball
for a change-up (a), a fastball 2-seam (b), and a curveball (c). Measured
ball positions and measured rotation axes are shown in red. The blue ball
positions lie on the fitted flight trajectory according to the physically-based
model.

12.3 Tracking the Hand

We estimate the hand poses of the pitcher in the most essential phase of the pitch-
ing motion from multi-exposure photographs by means of a marker-based optical
tracking approach. Constraints similar to those that already guided the algorith-
mic design decisions in ball motion capture also apply to the case of hand motion
capture with multi-exposure images. The tracking method must work without any
modification of the pitcher’s hand that could possibly handicap him. Ideally, one
would want to resort to a marker-free algorithm. However, the low contrast, the
small size of the hand in the image plane, as well as the frequently occurring
self-occlusions of the fingers suggest that a marker-based approach is the better
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alternative. The kinematics of the hand is modeled by means of a detailed kine-
matic skeleton model. Motion parameters are estimated from the 3D locations of
optical markers on the hand that are reconstructed from the images. The technical
and algorithmic aspects of the approach are detailed in the following.

12.3.1 Preparation of the Pitcher’s Hand

In order to determine the locations of the finger joints in the recorded images, we
have to mark them on the pitcher’s hand. The pitcher wears a thin, transparent
rubber glove onto which colored markers made of reflective tape are glued, see
Fig. 12.16a. The markers are placed on the joint positions, on the finger nails,
and on three distinct positions on the back of the hand. Four different marker
colors are distributed such that the distance between any two markers of the same
color is maximized. In total 18 positions on the hand are tagged and assigned
a unique position label. To facilitate identification of the markers in the multi-
exposure images, the skin underneath the glove is painted with black make-up.
During recordings the pitcher wears black clothes and a black face mask to prevent
misclassifications (Fig. 12.13). In preliminary tests we have made sure that the
pitcher is not handicapped by the attachments to the hand.

12.3.2 Recording the Hand Motion

For acquisition of hand motion, all four cameras and one stroboscope are po-
sitioned in a semi-circular arrangement behind the pitcher, see Fig. 12.12 for a
schematic illustration and Fig. 12.2 for a photograph. In front of the pitcher, the
walls and the floor of the flight corridor are covered with black cloth. All cameras
are focused on the region where the pitcher releases the ball. The camera posi-
tions are chosen in such a way that two cameras observe the hand motion from the
left and two from the right side of the pitcher’s location. This way, occlusions of
the hand markers during the complex pitching movement are minimized and suf-
ficiently separated exposures of the hand in the images are obtained. The strobe
light is located directly behind and above the pitcher such that the focus of illumi-
nation coincides with the release position of the ball. During our recordings, the
stroboscope operates at 75 Hz, a frequency that leads to a high number of visible
hand positions sufficiently separated in the images for all pitch types. All four
cameras are triggered synchronously with an exposure time of one second. We
have recorded the same four pitches as for the trajectory measurements. Again,
all pitches were performed as three-quarter deliveries.
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Figure 12.12: Schematic illustration of the hand acquisition setup (view from
top).

(a) (b)

Figure 12.13: Photograph of the measurement setup with the pitcher in the
center (a). Under measurement conditions the light is dimmed down and the
pitcher wears black garment (b).
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Figure 12.14: Multi-exposure image of one camera recording the hand mo-
tion during pitching. Inset: reconstructed hand marker positions for two
hand poses.

12.3.3 Reconstructing 3D Positions of Hand Markers

The first step in deriving the motion parameters of the hand is the reconstruction
of the 3D positions of the markers that were attached to the back of the hand.
The algorithmic workflow of the marker reconstruction procedure is illustrated in
Fig. 12.15, its individual steps are detailed in the following:

The input to the procedure are the four calibrated multi-exposure images. In
a first interactive step, a rectangular region of interest (ROI) in each image is
defined. The ROI contains that part of an image which shows the three to four
hand poses close to the ball’s release point. The subsequent image processing
operations are only applied to the ROI subregions.

After the ROIs have been defined, the projected marker locations in each cam-
era view are determined. The marker identification procedure is identical to the
ball marker identification procedure that is described in Sect. 12.2.4. For each
marker color (green, yellow, blue and pink), a separate iteration of the marker
identification procedure is performed. An interval of allowable pixel colors is de-
fined for each type of marker. Connected image regions above a minimum size
whose pixels fall into one of the intervals are considered as projected marker lo-
cations. The projected centers of the markers are approximated as the centers of
mass of the marker regions. Since all irrelevant parts of the scene are colored
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black, the reflective markers emerge very clearly in the images, see Fig. 12.14.
Technically, the four cameras work as two separate stereo pairs. One pair

consists of the cameras looking at the pitchers hand from right and above, the
second pair consists of the cameras looking at the scene from the left. In order
to reconstruct the 3D marker locations, the correspondences between projected
marker locations in both cameras have to be established for either stereo pair. This
is achieved by exploiting the epipolarity constraint for stereo cameras (Chap. 2
Sect. 2.2.3). Given a marker position in camera 1, its corresponding marker po-
sition in camera 2 lies along an epipolar line in camera 2. Since the cameras are
fully-calibrated, this line can be directly computed if the image plane location of
the marker in camera 1 is known. Given the marker position in camera 1 and the
epipolar line in camera 2, all marker depictions in camera 2 are assessed accord-
ing to their orthogonal distance d to the epipolar line (Fig. 12.15). This way, a list
D of marker locations in camera 2 which is sorted according to their distance to
the epipolar line is obtained. The marker which is closest to the line is assumed
to be the best match. Due to self-occlusions or slight calibration inaccuracies, the
correct correspondence may not have been established. A plausibility check can
identify inconsistent matches. The plausibility check reconstructs the 3D marker
location with the current correspondence. If the reprojection of the estimated 3D
marker position does not coincide with the originally determined image plane
locations, the correspondences have been established wrongly. In this case, the
method proceeds with the next match from D. It iterates until a correct match is
found or the distance to the epipolar line is larger than a threshold.

Once the correspondences are established, each stereo pair reconstructs the
marker locations in 3D. At this point, our method currently requires the interaction
with the user. The user is asked to assign to each reconstructed marker the label of
its equivalent on the anatomical hand model. If a marker was reconstructed from
both stereo pairs, its 3D location is averaged. The result of this step is a set of
labeled isolated marker positions.

Currently, every contingent cluster of markers in 3D space is regarded as one
hand position. Automatic identification of hand positions via simple k-means
clustering [Mitchell97] is feasible. A fully-automatic approach that, in addition to
identifying the clusters, also assigns the correct labels by taking into account the
colors of the neighboring markers is also feasible and left to future work.

12.3.4 Motion Parameter Estimation and Hand
Visualization

For motion reconstruction, we limit ourselves to those hand positions in which the
three markers on the back of the hand are visible in at least two cameras. Only
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Figure 12.15: Algorithmic workflow connecting the individual steps in 3D
hand marker reconstruction.

then are the position and orientation of the hand root fully determined. Our setup
is arranged such that this condition is fulfilled for an average of four hand positions
around the release point. These hand positions are also the most interesting ones
in terms of their motion characteristics since they represent that part of the motion
cycle in which the hand and finger movements determine the specific rotation axes
and spin frequencies of the ball. For some pitches it is not possible to reconstruct
the position of all finger joints in each reconstructed hand position. This can
happen for those pitch types where a finger is required to be ahead of the ball
shortly before it is released such that it is occluded from all cameras.

For representing the movements of hand and fingers, we use an animatable
hand model. In particular, our hand model is composed of a skin mesh and the
underlying bone structure, see Fig. 12.16b. The hand’s kinematics are defined
via a hierarchical kinematic chain consisting of the finger bones and the intercon-
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necting joints. The root of the chain, located at the wrist joint, provides three
translational and three rotational degrees of freedom. Each metacarpophalangeal
joint (at the root of the finger) provides two degrees of freedom, and each re-
maining finger joint features one degree of freedom. Animation of the complete
hand model is controlled by specifying temporally varying joint parameters for
the skeleton. We employ a physics-based approach to compute the deformation
of the skin tissue for a given configuration of the bones inside the hand. The skin
mesh is identified with a mass-spring network with biphasic stiffness coefficients
computed according to [Van Gelder98]. For the sake of brevity, we refer to the
approach presented in [Albrecht03] for a detailed description of this physically
based animation technique. We have to make sure that it matches the pitcher’s
hand in size and proportions. To this end, we apply a radial basis warping function
as described in [Albrecht03] to create a “personalized” hand model that matches
the size and proportions of the pitcher’s hand. The warped model is then equipped
with markers at the same positions as on the glove, cf. Fig. 12.16b.

The customized hand model is employed to determine a set of pose parameters
for each hand position for which a sufficient number of 3D marker positions has
been determined. We achieve this by arranging the hand model in such a way that
the 3D positions of the virtual markings on the model optimally comply with the
3D marker positions reconstructed from the image data. First, the global position
and orientation of the hand is determined. The three rotational and translational
degrees of freedom of the wrist joint are computed by searching for the transfor-
mation that optimally aligns the three reconstructed markers on the back of the
hand and their equivalent virtual markers on the model. This transformation is
estimated in a least squares sense by employing the point set registration scheme
that has already been employed in Chap. 9 Sect. 9.3.2 [Horn87]. After the global
hand orientation is computed, the finger joint parameters are estimated. We se-
quentially determine the parameters for each finger joint separately, following the
skeleton hierarchy of each finger from the root to the tip. On each hierarchy level,
a rotation transformation that minimizes the distance between a marker on the suc-
ceeding joint and its reconstructed position in 3D space can be directly inferred.
After traversing each finger up to its tip, all joint rotations are specified.

The pose determination method provides us with a set of parameters for three
to four key poses close to the ball’s release point. Our detailed hand model puts us
in the position to photo-realistically render the complete hand motion in-between
the key frames. Intermediate time steps are reconstructed via key frame interpo-
lation. The physically based flesh simulation assures plausible skin deformation.
Example renditions can be seen in Fig. 12.19 and Fig. 12.18.
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(a) (b)

Figure 12.16: (a) Markers for tracking are attached to the pitcher’s hand. (b)
Corresponding marker positions on the personalized hand model.

12.4 Results and Discussion

Through experiments we were able to demonstrate that the proposed novel frame-
work for high-speed motion analysis works with very high accuracy, and is equally
well suited for ball motion and hand motion capture. On the one hand the captured
motion data enable a detailed numerical analysis of different athletic elements of
baseball pitching. On the other hand these motion data enable us to take one step
further and create renditions of the captured events that are both instructional and
entertaining.

For validation of our acquisition setup and tracking algorithms, we have per-
formed the consistency check described in Sect. 12.2.5. As a result, we conclude
that our measurements are very accurate. Average errors between the measured
3D ball position and the predicted flight trajectory are as low as 13–19 mm, which
corresponds to about 18–25 % of the diameter of the baseball.

The calibration error for the camera setup (evaluated based on the distances
between the measured image positions of the markers on the calibration object
and their simulated image positions) was on average below one pixel. This assures
a high-accuracy 3D reconstruction of the ball and the hand markers.

For the ball, the average distance between a measured feature in the image
plane and its reprojected 3D location is below two pixels. The reprojection error
for the center of the ball is about one pixel. The discrepancies between measured
and predicted marker positions potentially originate from slight inaccuracies dur-
ing feature localization in the image plane.

Due to the lack of ground truth data for the hand motion we cannot assess
the estimated motion parameters directly. However, we can perform a multi-view
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(a) (b)

Figure 12.17: (a) Simulated flight of the baseball through the measured initial
ball positions. The magenta arrows show the measured rotation axis, the
spin direction is also visualized. (b) “Ballycam”: Virtual flight behind the
baseball.

plausibility check in the same way as it is done for the ball. The reprojection
errors of the reconstructed hand markers are equally small as those obtained for
the ball measurements.

The high-quality motion data we acquired for different baseball pitches per-
mit new ways of visualization that provide interesting feedback to the athlete, the
coach, and the sports enthusiast alike. The flight of the baseball can be visualized
from any camera perspective, see Fig. 12.20. In particular, the ball’s initial flight
parameters and their relation to the flight trajectory can be rendered into instruc-
tive sequences. It is even possible to virtually fly behind the ball along its flight
parabola and take a closer look at its in-flight behavior, Fig. 12.17.

The visualization of the hand’s movements during release of the ball in
slow motion provides a new type of visual feedback for the performing pitcher.
Fig. 12.19 depicts two snapshots of such an animation. The multi-exposure im-
ages acquired for tracking the hand motion show both the hand poses and the ball
markers. We have thus reconstructed hand motion and flight parameters from the
same set of stroboscope photographs. This way, it is possible to visualize the in-
fluence of finger motion on the flight parameters of the ball. In Fig. 12.18, the
characteristic finger motion that adds the necessary spin to a slider is clearly vis-
ible. In particular, the middle finger exerts high pressure on the ball to build up
high spin. Due to the acceleration of the middle finger during the pitch, this finger
moves further than the other fingers after release of the ball. The rotation of the
ball in Fig. 12.18 is consistent with the movement of the fingers.
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Our approach is subject to a couple of limitations. The duration of a motion
sequence that can be captured via multi-exposure photography is naturally lim-
ited by the recording principle. Furthermore, under some circumstances it might
be difficult to establish appropriate environmental conditions prior to recording.
However, these limitations apply to high-speed video acquisition in the same way.

In conclusion, we have presented a novel accurate and cost-effective algo-
rithm to capture rapid motion. We don’t see it as a replacement of traditional
motion capture technology but as a supplement which can be used in cases when
traditional techniques fail. The baseball pitch is just an example for the applica-
tion scenarios we have in mind. Other possible scenarios are tennis serves or the
athlete’s motion in several track and field events such as javelin or discus. Tennis
players, for instance, would benefit from a precise analysis of the correlation be-
tween the movement of their racket, speed and spin of the ball, and the resulting
ball trajectory during a serve. The acquired high-precision motion data enable the
creation of 3D visualizations of athletic movements from arbitrary novel view-
points. This novel form of 3D visualization can eventually add a new feeling of
immersion to the experience of the sports enthusiast at home who is enjoying a
TV broadcast. In the future, we plan to extend our framework to enable capturing
of human full-body motion.

Figure 12.18: Visualization of ball and hand motion obtained from multi-
exposure images. The hand motion during release of the baseball is captured
and shown together with the resulting flight characteristics of the ball.
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Figure 12.19: Visualization of hand and fingers during and after release of
the ball. In this change-up pitch, the ball is spinning backwards around a
rotation axis orthogonal to the flight direction. This can be seen by comparing
the direction of the axes of the ball’s local coordinate frame.

Figure 12.20: Visualization of a change-up trajectory in a stadium. The yel-
low path shows the reference trajectory obtained from the physical model.
The average offset of the measured ball positions to this reference path is as
low as 13 mm.



Chapter 13

Conclusions and Outlook
to the Future

This thesis has presented novel techniques for optically capturing, analyzing
and rendering dynamic real-world scenes involving human actors. In the course
of this work, we have presented novel algorithmic solutions to each of these
three sub-problems. Furthermore, we have demonstrated that by treating them in
conjunction and not in separation, novel forms of immersive visual media, such
as free-viewpoint video, can be created. The methods outlined in this work have
been originally designed to capture and visualize moving humans. However,
many of the fundamental principles are applicable to a much broader range of
real-world scenes.

In part I of this thesis, we have first described the technical components of
our multi-view video acquisition studio, Chap. 4. It has proven its flexibility and
versatility in many of our research projects. The technical descriptions may also
serve as a practical guide for other researchers in the field who want to build a
similar facility. The remainder of part I detailed novel techniques for solving
two fundamental problems in video-based human motion analysis, marker-free
motion capture and automatic non-intrusive model estimation. In Chap. 5, we
have shown that our hybrid marker-free motion capture approach robustly fits
a sophisticated skeleton to human motion data. It effectively combines motion
estimation from dynamic voxel models and feature tracking to compensate
for weaknesses of each individual technique. Our fully-automatic body model
reconstruction approach described in Chap. 6 enables the estimation of kinematic
skeleton models of arbitrary moving subjects from multi-view video streams. No
a priori information about the object in the scene is required. Our experiments
have shown that it is capable of reliably inferring skeleton structures of humans
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and animals. In conjunction, the methods from Chap. 5 and Chap. 6 form
the building blocks of a complete pipeline for automatic marker-free motion
estimation. In future, we therefore plan to integrate both methods into a single
framework. We also intend to combine the automatic skeleton estimation
procedure with a method to learn a model of the body surface.

In part II, we have described the evolution of a system for reconstructing and
rendering free-viewpoint videos of human actors. The core component of the ap-
proach is a novel model-based marker-free motion capture method based on image
silhouettes, Chap. 8. It enables the reconstruction of the time-varying 3D appear-
ance of a human actor from only a handful of video cameras. Only by means of
our newly developed non-intrusive method it becomes possible to use the same
video footage for motion estimation and texture reconstruction. The rendered
free-viewpoint videos photo-realistically reproduce the appearance of a human in
the real world. The motion as well as time-varying details in surface texture are
realistically visualized. Even complex human ballet dance can be convincingly
rendered from arbitrary virtual camera perspectives.

Since the video footage is not modified, we can employ texture information not
only for modeling the surface appearance but also for making motion estimation
more robust, Chap. 9. Our enhanced motion capture approach is based on scene
flow reconstruction and robustly corrects pose inaccuracies that may exist in the
silhouette-fitted poses. Free-viewpoint videos reconstructed with the enhanced
approach exhibit an improved model-to-texture registration.

In Chap. 10, a further advantage of our model-based approach comes into
play. We have demonstrated that our commitment to an a priori human body
model enables us to reconstruct even time-varying surface reflectance properties
of the moving actors from multi-view video. This way, 3D videos can be
realistically rendered under illumination conditions very different from the time
of recording. With our research on free-viewpoint video, we have shown that
a marker-free motion estimation method has actually made dynamic geometry
reconstruction and reflectance estimation from few camera views feasible. In
the future, we want to further capitalize on our compact free-viewpoint video
format and investigate ways for the efficient transmission of the data via network
channels with strongly limited capacity. Furthermore, we plan to replace the
current segmented body model with a single-skin representation which will
alleviate some rendering artifacts that are inflicted by the specific geometry
representation we employ. Today, free-viewpoint video reconstruction is still a
very young research field and many fundamental algorithmic questions have not
been answered yet. With our work we have contributed to the advancement of the
field by demonstrating that it is feasible to create convincing virtual actors even
with a fairly moderate hardware overhead.
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In part III of the thesis, we have introduced an alternative cost-effective
approach for capturing high-speed motion with high precision. The algorithm is
based on the principle of multi-exposure photography with regular still cameras.
We have demonstrated the performance of the novel approach by capturing
motion parameters of the ball and even pose parameters for the pitcher’s hand
during a baseball pitch. The visual and numerical validations of the measured data
show that our method enables us to capture even large-scale high-speed events at
high accuracy. Furthermore, in combination with appropriate shape and motion
models for the ball and the hand, instructive and entertaining novel visualizations
of the captured events have been rendered. We have thus once more demonstrated
that the joint solution to the problems of acquisition, analysis and rendering
enables a more detailed understanding and visualization of real-world events.
We believe that this approach can be extended to full-body human motion capture.

We are convinced that the algorithmic solution presented in this thesis are a
practical proof of our hypothesis that the joint investigation of computer vision and
computer graphics problems paves the road for fascinating novel applications. In
particular the creation of the next generation of immersive 3D visual media will
only be feasible if the problems of scene acquisition, scene reconstruction, and
scene rendering are considered in conjunction. The methods presented in this
thesis are a collection of algorithmic recipes that put this important insight into
practice.
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