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Abstract
This paper presents an approach for 3D object retrieval, dedicated to partial shape retrieval in large datasets.
A word manipulation, i.e. quantized descriptors, as in the Bag-of-Words representation is employed, based on
the extraction of 3D Harris points and on a local description involving local manifold harmonic transform. By
adding ∆-TSR, a triangular spatial information between words, the richness and robustness of this representation
is reinforced. The approach is invariant to different geometrical transformations of 3D shape such as translation,
rotation, scale and robust to shape resolution changes. We have evaluated it in terms of quality of retrieval, facing
several state-of-the-art methods and on different public 3D benchmarks involving different contents and degrees
of complexity.

Categories and Subject Descriptors (according to ACM CCS): Modeling [Computer Graphics]: 3D Shape
Matching—Representations, data structures, and transforms

1. Introduction

Recently, we have seen an explosion in the number of tech-
niques for manipulating 3D objects. Many authors aim at de-
veloping 3DOR (3D Object Retrieval) systems that, given a
3D object query or a 2D image query, provide similar 3D ob-
jects. Most of the time, these objects are described in terms
of 3D shapes that are often represented as a surface, in par-
ticular by polygonal meshes. We know that 3D matching is
the process of determining how similar two 3D shapes are,
this is often done by computing a distance or a similarity
measure between two sets of features. Hence, one of major
challenges in the context of 3D data retrieval is to elaborate
a description of the object’s shape. Serving as a key for the
matching process, it decisively influences the relevance of
the results. Moreover, content-based retrieval of 3D shapes
necessitates the consideration of complex properties, such
as the discriminative power of the shape-based description
as well as its invariance/robustness under some geometric
transformations. A complementary process is indexing, i.e.
the process of building a data structure on the features, aim-
ing at speeding up the search in large volumes. Then the
whole retrieval process is the combination of description,
matching, indexing, searching and delivering of the results
from a given query, effectively and efficiently. Most of the

time, 3DOR approaches mainly focus on description and
matching, yet knowing that the indexing step should influ-
ence the system in terms of computational efficiency and of
effectiveness.

In this work, we propose an approach that combines a
quantized local description as in the Bag-of-Words (BoW)
description with a spatial representation of the words for
the 3D shape retrieval problem on objects represented with
polygonal meshes. Our contributions are double. Firstly, the
description, associated with 3D interest points quantized into
3D words, is computed from the projection of the local mesh
surface in frequency space by using the local manifold har-
monic transform over a large neighboring area of the fea-
ture point, differently from [Lav11] where the description is
built from the transformation of points’ coordinates in new
space. This description is very discriminative and moreover
quite robust to noise or connectivity changes. No informa-
tion about the object’s structure is considered, making the
approach also invariant to isometric deformations or topo-
logical changes. Secondly, we consider the geometry be-
tween the 3D words by extending the 2D triangular spa-
tial relationships approach of [HGBRM10] to 3D features.
The strengths of this approach are its invariance to several
geometrical transformations like translation, rotation, scale,
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non-rigid or local deformations and cropping, making it par-
ticularly efficient for partial shape retrieval, and also to con-
nectivity and shape resolution changes, making it robust to
3D models changes.

The paper is organized as follows: section 2 presents an
overview of state of the art approaches for 3DOR, includ-
ing those using BoW models. The pipeline of our proposal
is introduced in section 3. Here, we describe point descrip-
tor based on manifold harmonics transform in section 3.1,
present how to embed geometrical relationships information
into the local description in section 3.2 and how to compute
the similarity in section 3.3. Finally, we experiment and eval-
uate our approach facing state of the art in section 4, before
concluding in section 5.

2. Overview of 3D object retrieval methods

In this section, we revisit the existing works for 3DOR based
on shape description. We focus on the analysis of low-level
3D shape features, without any high-level semantic inter-
pretation like in [BJXX13]. We can classify the several ap-
proaches encountered in four principal groups:

• Statistic-based approaches such as shape distribu-
tion [OFCD02, ILSR02, OMT03, KBLB12, PBB∗13],
local features distribution [Lav11, TCF09, RABT13,
OBMMB09,RBB∗11], which propose to index the distri-
bution of descriptors under mathematic forms which char-
acterize the 3D object shape.

• Structural approaches resting upon graph-based models
[CR01, ZTS02, TVD07, APP∗09, FMA∗10] or skeleton-
based models [SSGD03,IKL∗03]. These methods attempt
to describe the structure of 3D objects, e.g. a graph show-
ing how shape components are linked together.

• Transform-based approaches such as spherical harmonics
[KFR03], 3D Fourier transform [LBLL11], 3D Zernike
moments [NK03], etc., that are based on the transforma-
tion of the 3D shape from 3D Euclidean space to fre-
quency space. These approaches achieve rotation invari-
ance.

• View-based approaches such as multi-view-based ap-
proaches [CTSO03], Panorama [PPT08, PPTP10]. Here,
two 3D models are similar if they look similar from all
viewing angles representing projections of these objects
on different plans. A natural application of this paradigm
is the use of sketch-based query interfaces which allow to
define the query under different views. In this case, 3DOR
is similar to CBIR (Content-Based Image Retrieval).

In general, the earliest solutions introduced to tackle the
problem of 3DOR were based on global descriptors that de-
scribe the form of 3D object globally. More recent invariant
descriptors are based on some spectral embeddings by us-
ing eigenvalues of the Laplace-Beltrami operator or other
transformations. The limit of the global descriptors of 3D
objects is that they are hardly robust to rigid deformations

and not adapted to partial similarity retrieval. To face these
problems, some researchers turned their attention to local
descriptors associated with salient feature points, following
the successful CBIR approaches like SIFT [DJLW08]. In
the 3D case, however, scenes can undergo a variety of non-
rigid deformations such as variations in local scale, varia-
tion in the topology of the observed mesh, and even global
affine deformations or warping effects due. Furthermore, the
fact is that, in 3D shape of the most of cases, we do not
have any information like texture, color, then existing 2D re-
trieval techniques are difficult to adapt to 3DOR directly. In
the last years, based on the proposal of image feature detec-
tors, different 3D feature detectors were proposed: 3D Harris
point detector [SB11], multi-scale local descriptor [SOG09],
SHOT descriptor [TS10], another feature detector based on
an eigen decomposition of the Laplace-Beltrami operator
[RPSS09], and a detector related to surface protrusions that
creates and matches regions using a graph matching tech-
nique based on the Earth Mover’s Distance [APP∗09].

Following CBIR trends, some 3DOR techniques, resting
upon the BoW models, were also published. In [LGS10],
3D models are seen as a set of 2D views which are in-
dexed with 2D SIFT features. [LG09] and [LZQ06] pro-
pose BoW approaches based on Spin Images descriptors
computed from dense feature points. [TCF09] segments 3D
shapes into regions, then each region is associated with sev-
eral descriptors and thus several visual words. [Lav11] con-
siders a 3D object as an histogram of local feature points
detected by using a Voronoi distribution algorithm and clas-
sified as words, knowing that each point is associated with a
descriptor computed from the Fourier transformation of the
local area around it. In general, all these proposals provide
good retrieval results on the classical 3DOR benchmarks.
However, some recurring drawbacks can be mentioned: the
descriptors used are relatively poor, because encapsulating a
local and low-level information only. To address this prob-
lem, it is possible to encapsulate an information about the lo-
cal geometry between key points, such as in [Lav11] which
considers the spatial cooccurrences of couples of words. It
is also possible to improve the step of matching, such as
[RABT13] which exploits the game theory to improve reg-
istration of point sets and provide very good results on the
complex Gun benchmark.

3. Our approach

Our proposal can be classified as a statistic-based approach
(see section 2). Its pipeline, illustrated in Fig.1, is as fol-
lowing: each 3D object is considered as a collection of local
feature points that are detected with the 3D Harris detector
[SB11]. According to results from [DCG12], 3D Harris has
a global better performance facing other sparse detectors. It
delivers salient points robust to different transformation like
translation, rotation, scaling and resolution change. Then
each detected point is associated with a local area around it
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in the mesh ; its construction is described in appendix A. On
each neighboring area, we compute an improved descriptor,
presented in section 3.1 and based on the manifold harmonic
transform using the Laplace-Beltrami operator . Then these
3D point descriptions are classified as in a BoW representa-
tion, by using a scalable clustering algorithm such as hier-
archical k-means [NS06]. Hence, each object is finally de-
scribed by the corresponding distribution of involved words.
In section 3.2, we will enrich this representation by embed-
ding some spatial information between words and by index-
ing them into a dedicated access method. In section 3.3, we
present how to compute the similarity.

Figure 1: Pipeline of our approach.

3.1. Robust description of 3D interest points

Spectral methods like Discrete Cosine Transform and Dis-
crete Fourier Transform are widely used for analyzing sig-
nals in image processing. It is well known that the eigenfunc-
tions of the Laplace-Beltrami operator (Manifold Harmon-
ics) define a function basis allowing for a generalization of

the Fourier Transform to manifolds. In [VL08], the authors
propose to use this operator in the Euclidean space for noise
reduction of 3D object representation. Based on this idea,
we observe that the use of the Manifold Harmonic Trans-
form (MHT) on a 3D shape can provide a robust description
for this last one. MHT is the transformation of each coor-
dinate in the initial geometry into frequency space by using
the Manifold Harmonics Basis (MHB). The new coordinates
are also called the spectral coefficients. There are only small
variations on the spectral amplitudes of a surface area which
can be distorted under noise addition according to [Lav11].
Our idea is to exploit the local spectral amplitudes on a sur-
face area around a given 3D interest point to describe this
one. The MHB is defined with a set of eigenvectors of the
discrete Laplacian-Beltrami ∆̄ expressed in the canonical ba-
sis:

1. Build ∆̄. It is a symmetric matrix, and its coefficients are
given by:

∆̄i j =−
cotβi j + cotβ′

i j√
|v∗i ||v∗j |

and ∆̄ii =−∑
j

∆̄i j (1)

where βi j and β′
i j are the two angles opposite to the edge

between vertices vi and v j (vi and v j are simply vertices
on given area), |v∗i | is the surface size computed from the
set of neighboring triangles around vertex vi. The eigen-
function and eigenvalue pairs (Hk;λk) of this operator
satisfy the following relationships: −∆Hk = λkHk.

2. Compute its eigenvectors Hk. The set of (Hk) vectors is
called the MHB. This vector is invariant to rotation and
scale of the 3D object.

The spectral coefficients x̃k (resp. ỹk, z̃k) are then calcu-
lated as the inner product between the initial geometry x
(resp. y,z) and the sorted eigenvectors Hk:

x̃k =
m

∑
i=1

xi|v∗i |Hk
i (2)

The kth spectral coefficient amplitude is then defined as
ck =

√
(x̃k)2 +(ỹk)2 +(z̃k)2. This coefficient ck is used in

the approach of [Lav11]. Hence, for a given area Ai around a
feature point pi having coordinates (xi,yi,zi), the descriptor
is the spectral amplitude vector Ci = [c1

i ; ..cnc
i ], with ck

i , the
kth spectral coefficient amplitude of Ai. The descriptor for
a given point is built from the nc first spectral coefficients
in order to limit the descriptor to more robust low/medium
frequencies. This descriptor has some theoretical robustness
properties: under a translation, only the first coefficient c0

is modified, hence the authors of [Lav11] do not consider
c0 in their descriptor and thus obtain translation robustness.
Meanwhile, a rotation in the Euclidean domain yields the
same rotation in the spectral domain (x̃, ỹ, z̃). Under a uni-
form scaling with a factor s, all the spectral coefficients will
be scaled by s2. Hence this descriptor is not robust to rotation
and to scaling, therefore, the 3D object has to be normalized
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to unit before processing, to ensure invariance to scale and
to rotation [Lav11].

To avoid normalizing the 3D shapes, knowing that this
processing adds a computation cost and may not be adapted
to partial retrieval scenarios where objects may be inserted in
complex scenes, we do not use classical spectral coefficient
amplitude like [Lav11] and prefer to do the projection of the
mesh surface information around the points in the new fre-
quency space. We simply define the coefficients amplitude
as:

ck =
m

∑
i=1

|v∗i |2Hk
i (3)

Each 3D Harris point vi is associated with a local area Ai for
which we compute description Ci (see appendix A). This de-
scription is robust to different transformations: a translation
or a rotation does not modify any coefficient ck. We know
that under a uniform scaling with a factor s, all the spectral
coefficients are scaled by s2. Hence, to be robust to scaling,
we normalize the whole description by dividing each ci by
c0, which has the lowest and less noisy frequency. Conse-
quently, unlike several other approaches , the normalization
of the object is not required to ensure robustness to scale
change, limiting thus the processing complexity and making
the description more robust to 3D deformations and partial
retrieval.

At the end of this step, we quantize all the descriptions
obtained, as in BoW representations, which provides a set
of 3D words per object. The construction of the dictionary
is made scalable by using a hierarchical k-means [NS06].
In the following, this representation of the object is called
Harris_MHB.

3.2. Spatial relationship description

Traditionally, most of the BoW representations do not encap-
sulate any information about the spatial layout of the words.
We propose to describe the spatial relationships between 3D
words by extending approach ∆-TSR [HGBRM10], origi-
nally designed for CBIR, to 3D objects. By extension, each
3D object O is represented by a set ∆-TSR(O) containing
the description S of all the triangular relationships between
triplets of 3D points (Ei,E j,Ek) such as:

∆-TSR(O) = {S(Ei,E j,Ek)/Ei,E j,Ek ∈ O;
i, j,k ∈ [1,NO]; Li ≥ L j ≥ Lk}

(4)

with NO the number of points in O and (Li,L j,Lk) the Har-
ris_MHB word’s labels associated to the triplets of points.
S can encapsulate several kinds of information, such as
the geometrical relationships between the points. As in
[HGBRM10], we keep information on the angles of the tri-
angle formed by (Ei,E j ,Ek). In addition, we consider an ori-
entation of the point by using the concave-convex measure
at point location, based on curvature analysis. From these
attributes, O can be represented by a set of 5-dimensional

description called ∆-TSR5D(O). Each triplet description,
called So, presents the triangular relationships of triangle
(Ei,E j,Ek) and its symmetric such as:

So(Ei,E j,Ek) = (K1,K2,K3,K4,K5) (5)

with


K1 = (Li −1)nw

2 +(L j −1)nw +(Lk −1)
K2 = ai;K3 = a j; K2,K3 ∈ [0◦,180◦]
K4 = oi

ok
; oi,o j,ok ∈ [0◦,360◦]

K5 =
o j
ok

;

nw is the size of the dictionary. K1 is the unique coding of
word’s labels from the vocabulary. ai, a j are the angles of
vertices Ei, E j respectively. K4 and K5 represent the rela-
tive orientation of Ei and E j with respect to Ek, in order to
maintain invariance to rotation. We build the orientation in-
formation based on principal curvatures. Let denote oi, o j
and ok the orientation information of Ei, E j and Ek know-
ing that o = |λmax − λmin|, λmax and λmin are the direction
of the largest principal curvature and the smallest princi-
pal curvature respectively passing through interest point E
(see [ASWL11]).

To be more robust to partial retrieval, as in [HGBRM10],
only the smallest triangles in ∆-TSR are kept, which involve
triplets of points located close to each other in the 3D ob-
ject: for each interest point p, we build only the triangles
between p and other interest points that are the neighbors of
p (see appendix A). Similarly, the step of retrieval of nearest
neighbors of So is performed optimally by using the index
structure B-tree with composite keys.

3.3. Similarity measure associated with ∆-TSR

The similarity between two 3D objects can be established by
the ratio of similar triangle descriptions between them. Thus,
the 3DOR problem is essentially the problem of matching
between descriptions So(TQ) and So(TO) of a query trian-
gle TQ and a database triangle TO. The associated similarity
measure between two triangle descriptions, called sim, is the
same as the one originally proposed in [HGBRM10]:

sim =


simo(So(TQ),So(TO))

if K1(TQ) = K1(TO)
and So(TO) validates the tolerance
interval δo

0 otherwise

(6)

where:

simo(., .) =
1
2
[ f (TQ,TO,2,δa)+ f (TQ,TO,4,δo)] (7)

f (T,T ′, i,δ) =
{

1 if δ = 0
1
2 ∑i+1

t=i (1−
|Kt (T )−Kt (T ′)|

δ ) if δ ̸= 0
(8)

δa and δo are tolerance thresholds used to define the simi-
larity between components K{2,3,4,5} in the two descriptions
compared [HGBRM10]. The sim measure varies in interval
[0,1] and increases with the similarity.
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4. Experiments and evaluation

In the following sections, we evaluate the relevance of the
local description Harris_MHB proposed in section 3.1 as
well as of the description of spatial relationships ∆-TSR pre-
sented in section 3.2.

We consider different public benchmarks to evaluate our
approach facing several state-of-the-art approaches. Given
the length limit of the paper, in this section we present only
the results obtained on the following two public 3D bench-
marks:

• The collection SHREC’07†, called "Shape Retrieval Con-
test of 3D Face Models" [BV07], consists of 1500 differ-
ent instances of 3D face models (see examples in the first
row of Fig.2).

• The collection SHREC’13‡, called "Large-Scale Par-
tial Shape Retrieval using Simulated Range Images"
[SMB∗13], consists of 20 object classes with 18 models
per class and 7200 queries (see examples in the second
row of Fig.2)

Harris_MHB is compared with state of the art in sec-
tion 4.1 on the benchmark SHREC’07. Sections 4.2 com-
pare Harris_MHB including the spatial relationships to the
two other approaches submitted to benchmark SHREC’13.
In our technical report [HGB14], we present more experi-
ments on 5 public benchmarks, facing other approaches.

Figure 2: Some examples from SHREC’07 and SHREC’13
benchmarks.

Harris_MHB is based on two principal parameters: the
dictionary size nw and the number of coefficients nc of the
spectral descriptor. The descriptor is almost independent of
the neighborhood size while nc is smaller than the number of
neighborhood points. Indeed, the descriptor is build from nc
lowest frequency amplitudes. In our experiments, the neigh-
borhood size is 10% of the object size. Before comparing

† http://ensor.labs.cs.uu.nl/shrec/shrec2007
‡ http://dataset.dcc.uchile.cl

our approach with state of the art, we varied these two pa-
rameters on 3D benchmarks to choose the best configura-
tions (see more detail in [HGB14]). We obtained, nc = 40
and nw = 2000 the best parameter on thees benchmarks. The
following experiments are done with these parameters.

4.1. Comparison of different descriptions

Now, we examine the performance of several 3D point local
descriptions on the 3D database SHREC’07: Harris_MHB,
our implementation of the approach of Lavoué [Lav11] (in
its version with the best configurations of the author and
without the description of spatial relationships), the one
of Toldo et al. [TCF09] (public authors implementation),
which are all three based on BoW representations, and
our implementation of the global description based on 3D
Zernike moments [NK03]. Note that we do not consider
any spatial relationship information in these approaches.
Fig. 3 presents the Precision/Recall curves obtained. The
two methods of [Lav11] and [TCF09] present quite com-
parable performances, however [Lav11] is slightly better:
its MAP (Mean Average Precision) is 0.682 and the one
of [TCF09] is 0.615. On this 3D database, the global de-
scription 3D Zernike cannot show its relevance because it in-
volves a global description not sufficiently discriminative on
this benchmark of faces where global shapes are very simi-
lar; its MAP is only 0.393. Harris_MHB globally proves its
efficiency, with a MAP of 0.707, except for very large recalls
where [Lav11] becomes better.

Figure 3: Precision/Recall curves for different descriptions
on SHREC’07.

On this benchmark where the global shapes are very sim-
ilar, we have observed that the use of a spatial relationship
description ( i.e. Harris_MHB+∆-TSR and the full version
of [Lav11]) improves the quality of retrieval only slightly;
see the corresponding curves in [HGB14].
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4.2. Other comparison

In this section, we compare our full proposal,
Harris_MHB+∆-TSR, to two recent methods submit-
ted in the SHREC’13 Track:

• Range Scan-Based 3D Model Rettrieval by Incorporating
2D-3D Alignment ( [LLJ12, BBF12]). For abbreviation,
this method is called as Li-Lu-Johan.

• Partial Shape Retrieval with Spin Images and Signature
Quadratic Form Distance ( [SB12]). For abbreviation, this
method is called as Sipiran-Bustos.

The comparison is realized on the regular measures used
in [SMB∗13]: MAP, NN (Nearest Neighbor), FT (First Tier)
and ST (Second Tier). Fig. 4 depicts the precision-recall plot
and Tab.1 summarizes the results with other performance
metrics. From the precision-recall plot, we note the superior
performance of our method. This can be also evidenced by
the results of performance measures in Table 1.

According to [SMB∗13], the performance difference of
the Li-Lu-Johan method in regards to the Sipiran-Bustos
method can be explained by two reasons. On one hand, the
Li-Lu-Johan method obtains a set of 81 views for each model
in the target set. Therefore, the probability of similarity be-
tween the partial query and a sampled view is high. On the
other hand, the computation of spin images of the Sipiran-
Bustos method in partial views shows some inconvenience,
many keypoints are located close to the boundary of a par-
tial query image which affects the computation of the local
descriptors. Our method does not depend on the view pro-
jection of 3D object. The distribution of interest point is al-
most homogeneous. Movover, with ∆-TSR, the information
on triangular spatial relationships and on orientation of 3D
points reinforces the object description from partial query
image. It demonstrates its power of description facing other
approaches, its MAP is 0.3434.

To gain insight into the behavior of the proposal, a class-
by-class evaluation of our approach is shown in Tab.2. The
detail of class-by-class evaluation of two other approaches
can be found also in [SMB∗13]. In this table, we show a
more detailed evaluation of our approaches from the point
of view of the effectiveness in each class of the benchmark.

Table 1: Performance measures on SHREC’13 benchmark.
The best results are shown in bold type.

Li-Lu-Johan Sipiran-Bustos ∆-TSR
NN 0.3444 0.3108 0.3501
FT 0.2116 0.2043 0.2976
ST 0.1675 0.1576 0.2994
MAP 0.2247 0.1978 0.3434

5. Conclusion

In this paper, we have proposed an efficient approach for 3D
object retrieval, dedicated to partial shape retrieval and large
datasets. A BoW representation is employed, based on the

Figure 4: Precision/Recall curves for the different ap-
proaches on SHREC’13 benchmark.

Table 2: Performance measures of ∆-TSR by class on
SHREC’13 benchmark.

NN FT ST MAP
Bird 0.1667 0.2974 0.2876 0.3269
Fish 0.5556 0.3137 0.2974 0.3382
Insect 0.2778 0.2712 0.2794 0.3323
Biped 0.5556 0.2876 0.2778 0.3421
Quadruped 0.4444 0.3366 0.2892 0.3470
Bottle 0.3333 0.3039 0.3186 0.3602
Cup 0.2778 0.2876 0.2761 0.3231
Mug 0.3333 0.3039 0.3023 0.3574
Floorlamp 0.3889 0.2876 0.2958 0.3320
Desklamp 0.3889 0.3137 0.3105 0.3709
Cellphone 0.2222 0.2614 0.2876 0.3197
Deskphone 0.3333 0.2810 0.2843 0.3321
Bed 0.4444 0.3235 0.3105 0.3789
Chair 0.3333 0.2843 0.2941 0.3268
Wheel Chair 0.2778 0.2745 0.2680 0.3113
Sofa 0.2222 0.2614 0.2565 0.3139
Biplane 0.2778 0.3235 0.3154 0.3490
Monoplane 0.5556 0.3072 0.3219 0.3553
Car 0.2778 0.2843 0.2876 0.3269
Bicycle 0.3333 0.3137 0.3464 0.3740
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extraction of 3D Harris points and on a local description in-
volving local Fourier descriptors both fast to compute and
discriminative. By adding a triangular spatial information
between words, the robustness of this representation is rein-
forced. The experimental evaluations performed on two pub-
lic 3D benchmarks involving different contents and degrees
of complexity, facing several state-of-the-art techniques (ad-
ditional experiments are presented in [HGB14]), have pro-
vided encouraging results in terms of quality of retrieval.
To improve the quality of retrieval even more, especially on
complex datasets, it could be interesting to combine our ap-
proach with the one of [RABT13] which focuses on robust
point sets matching. Here, the main challenge would be to
adapt it in order to reduce its complexity and then maintain
scalability.

Appendix A: Selection of neighboring points

The selection of neighboring points around a given 3D point
(vertex) v in a mesh is necessary to compute derivatives as
well as to provide an area for point description. There are
different solutions: it is possible to select the number of rings
around v if the object tessellation is uniform, this method
is called k-ring selection. For a given vertex v in the set of
vertices V , its k-ring neighborhood is defined as

ringk(v) = {w ∈V |shortest_path_size(w,v)<= k}

For irregular and complex meshes, an adaptive neighbor-
hood selection may be more efficient. In this case, a clas-
sical k-ring may provide a very large or a very small area
around v. It is possible to collect the neighborhood points by
adding a condition based on distances between points in the
mesh. The distance on surface from a point v to w is defined
as: ds(v,w) = shortest_path_len(v,w). Finally, we prefer to
choose the neighboring points around vertex v as:

η(v) = {w ∈ ringk(v) | k <= K ∧ds(v,w)<= λ}

where K and λ are parameters; for example, λ can be a frac-
tion of the diagonal of the object bounding rectangle.
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