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Abstract
In this paper, we explore the use of the diffusion geometry framework for the fusion of geometric and photometric
information in local shape descriptors. Our construction is based on the definition of a modified metric, which
combines geometric and photometric information, and then the diffusion process on the shape manifold is simu-
lated. Experimental results show that such data fusion is useful in coping with shape retrieval experiments, where
pure geometric and pure photometric methods fail. Apart from retrieval task the proposed diffusion process may
be employed in other applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Laplace-Beltrami
operator—, diffusion equation, heat kernel descriptors, 3D shape retrieval, deformation invariance

1. Introduction

The birth of the World Wide Web and the explosive growth
of text content has brought the need to organize, index, and
search text document, which in turn fueled the development
of text search engines. In the past decade, the amount of geo-
metric data available in the public-domain repositories such
as Google 3D Warehouse, has grown dramatically and cre-
ated the demand for shape search and retrieval algorithms
capable of finding similar shapes in the same way a search
engine responds to text queries. While text search methods
are sufficiently developed to be ubiquitously used, the search
and retrieval of 3D shapes remains a challenging problem.
Shape retrieval based on text metadata, like annotations and
tags added by the users, is often incapable of providing rele-
vance level required for a reasonable user experience.

Content-based shape retrieval using the shape itself as a
query and based on the comparison of geometric and topo-
logical properties of shapes is complicated by the fact that
many 3D objects manifest rich variability, and shape re-
trieval must often be invariant under different classes of
transformations. A particularly challenging setting is the
case of non-rigid shapes, including a wide range of transfor-
mations such as bending and articulated motion, rotation and
translation, scaling, non-rigid deformation, and topological
changes. The main challenge in shape retrieval algorithms

is computing a shape descriptor, that would be unique for
each shape, simple to compute and store, and invariant under
different type of transformations. Shape similarity is deter-
mined by comparing the shape descriptors.

A common paradigm used in computer vision [SZ03,
CPS∗07] is to start with local feature descriptors and aggre-
gate them into a global shape descriptor using the bag of
features approach [BBOG09, TCF09]. Popular examples of
local descriptors include spin images [ABBP07], shape con-
texts [ASR07], integral volume descriptors [GMGP05] and
radius-normal histograms [PZZY05].

Recently, a family of intrinsic geometric properties
broadly known as diffusion geometry has become growingly
popular. The studies of diffusion geometry are based on the
theoretical works by Berard et al. [BBG94] and later by
Coifman and Lafon [CL06]. Diffusion geometry offers an
intuitive interpretation of many shape properties in terms
of spatial frequencies and allows to use standard harmonic
analysis tools. Also, recent advances in the discretization of
the Laplace-Beltrami operator bring forth efficient and ro-
bust numerical and computational tools.

One of the first principled practical uses of these meth-
ods in the context of shape processing was explored by Lévy
[Lév06]. Several attempts have also been made to construct
feature descriptors based on diffusion geometric properties
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of the shape. Rustamov [Rus07] proposed to construct the
global point signature (GPS) feature descriptors closely re-
sembling a diffusion map [CL06]. Fang et al. [FSR11] define
a temperature distribution descriptor (TD), based on evalua-
tion of temperature distribution after applying a unit heat at
each vertex.

Sun et al. [SOG09a] introduced the heat kernel signature
(HKS), based on the fundamental solutions of the heat equa-
tion (heat kernels). Scale invariant [BK10], affine-invariant
[RBB∗11a, RBB∗], and volumetric [RBBK10] versions of
the HKS were subsequently proposed. By applying topol-
ogy persistence [ELZ00] algorithm on HKS descriptors at
some predefined scale, Dey et al. [DLL∗10] obtained robust
feature points, which are used for shape matching and re-
trieval. In [ASC11], another physically-inspired descriptor,
the wave kernel signature (WKS) was proposed as a rem-
edy to the excessive sensitivity of the HKS to low-frequency
information. In [Bro], a general family of learnable spectral
descriptors generalizing the HKS and WKS was introduced.
On existing methods for 3D shape retrieval interested reader
referred to a surveys [TV04, IJL∗05].

A major limitation of these methods is that, so far, only
geometric information has been considered. However, the
abundance of textured models in computer graphics and
modeling applications, as well as the advance in 3D shape
acquisition [YPS10, ZBH07] allowing to obtain textured 3D
shapes of even moving objects, bring forth the need for de-
scriptors also taking into consideration photometric informa-
tion.

In this paper, we extend the diffusion geometry frame-
work to include photometric information in addition to its
geometric counterpart. This way, we incorporate important
photometric properties on the one hand, while exploiting
a principled and theoretically established approach on the
other. The main idea is to define a diffusion process on
a manifold in a higher dimensional combined geometric-
photometric embedding space, similarly to methods in im-
age processing applications [KMS00, LJ05]. As a result, we
are able to construct local descriptors (heat kernel signa-
tures) that incorporate both geometric and photometric data.
The proposed data fusion can be useful in coping with differ-
ent challenges of shape analysis where pure geometric and
pure photometric methods fail.

Preliminary results of this study introducing photometric
HKS descriptors with Euclidean metric on the photometric
space have been published in [KBBK11]. Here, we consider
a more generic affine-invariance metric, which is invariant to
many important photometric transformations.

2. Background

Throughout the paper, we assume the shape to be modeled
as a two-dimensional compact Riemannian manifold X (pos-
sibly with a boundary) equipped with a metric tensor g. Fix-

ing a system of local coordinates on X , the latter can be ex-
pressed as a 2×2 matrix gµν, also known as the first funda-
mental form. The metric tensor allows to express the length
of a vector v in the tangent space TxX at a point x as gµνvµvν,
where repeated indices µ,ν = 1,2 are summed over follow-
ing Einstein’s convention.

Given a smooth scalar field f : X → R on the mani-
fold, its gradient is defined as the vector field ∇ f satisfying
f (x+ dx) = f (x)+ gx(∇ f (x),dx) for every point x and ev-
ery infinitesimal tangent vector dx ∈ TxX . The metric tensor
g defines the Laplace-Beltrami operator ∆g that satisfies∫

f ∆ghda = −
∫

gx(∇ f ,∇h)da (1)

for any pair of smooth scalar fields f ,h : X→R; here da de-
notes integration with respect to the standard area measure
on X . Such an integral definition is known as the Stokes iden-
tity. The Laplace-Beltrami operator is positive semi-definite
and self-adjoint. Furthermore, it is an intrinsic property of X ,
i.e., it is expressible solely in terms of g. In the case when the
metric g is Euclidean, ∆g becomes the standard Laplacian.

The Laplace-Beltrami operator gives rise to the heat equa-
tion, (

∆g +
∂

∂t

)
u = 0, (2)

which describes diffusion processes and heat propagation on
the manifold. Here, u(x, t) denotes the distribution of heat at
time t at point x. The initial condition to the equation is some
heat distribution u(x,0), and if the manifold has a boundary,
appropriate boundary conditions (e.g. Neumann or Dirich-
let) must be specified. The solution of (2) with a point initial
heat distribution u0 (x) = δ(x,x′) is called the heat kernel
and denoted here by kt(x,x′).

By virtue of the spectral theorem, there exists an or-
thonormal basis on L2(X) consisting of the eigenfunctions
φ0,φ1, . . . of the Laplace-Beltrami operator (i.e., solutions to
∆gφi = λiφi, where 0 = λ0 ≤ λ1 ≤ . . . are the correspond-
ing eigenvalues). This basis can be interpreted analogously
to the Fourier basis, and the eigenvalues λi as frequencies.
Consequently, the heat kernel can be represented as [JMS08]

kt(x,x′) = ∑
i≥0

e−λit
φi(x)φi(x). (3)

Since the Laplace-Beltrami operator is intrinsic, the diffu-
sion geometry it induces is invariant under isometric defor-
mations of X (incongruent embeddings of g into R3).

3. Fusion of geometric and photometric data

The main idea of this paper is to create a modified diffusion
operator that combines geometric and photometric proper-
ties of the shape by means of definition of a new metric
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tensor (and hence the Laplace-Beltrami operator). In mod-
ified diffusion process the heat will flow proportionally to
changes of color. For this purpose, let us further assume that
the Riemannian manifold X is a submanifold of some man-
ifold E (dim(E) = m > 2) with the Riemannian metric ten-
sor h, embedded by means of a diffeomorphism ξ : X → E .
A Riemannian metric tensor on X induced by the embed-
ding is the pullback metric (ξ∗h)(r,s) = h(dξ(r),dξ(s)) for
r,s ∈ TxX , where dξ : TxX → Tξ(x)E is the differential of
ξ. In coordinate notation, the pullback metric is expressed
as ĝµν = (ξ∗h)µν = hi j∂µξ

i
∂νξ

j , where the indices i, j =
1, . . . ,m denote the embedding coordinates.

Here, we use the structure of E to model joint geomet-
ric and photometric information. Such an approach has been
successfully used in image processing [KMS00]. When con-
sidering shapes as geometric object only, we define E = R3

and h to be the Euclidean metric. In this case, ξ acts as a
parametrization of X and the pullback metric becomes sim-
ply (ξ∗h)µν = ∂µξ

1
∂νξ

1 + . . .+ ∂µξ
3
∂νξ

3 = 〈∂µξ,∂νξ〉R3 .
In the case considered in this paper, the shape is endowed
with photometric information given in the form of a field
α : X → C, where C denotes some colorspace (e.g., RGB or
Lab). In the following, when required, we tacitly assume that
α is sufficiently smooth.

This photometric information can be modeled by defin-
ing E = R3 ×C and an embedding ξ = (ξg,ξp). The em-
bedding coordinates corresponding to geometric informa-
tion are as before ξg = (ξ1, . . . ,ξ3), and the embedding co-
ordinate corresponding to photometric information are given
by ξp = (ξ4, . . . ,ξ6) = η(α1, . . . ,α3), where η≥ 0 is a scal-
ing constant. In addition to trading off between geometry and
photometry parts, the scaling constant η has another role of
resolving ambiguities of new isometry group, as discussed
later in Section 3.3. The Laplace-Beltrami operator ∆ĝ as-
sociated with such a metric gives rise to diffusion geometry
that combines photometric and geometric information.

3.1. Euclidean color metric

The invariance to different classes of photometric transfor-
mations is obtained by selecting the structure of the col-
orspace C. In the simplest case, we assume C to have a Eu-
clidean structure.

While being the simplest choice, the Euclidean metric is
known to be perceptually meaningful in some colorspaces
such as the “color opponent” CIE Lab space intended to
mimic the nonlinear response of the eye [Jai89]. The photo-
metric coordinates ξp = (L,a,b) in this colorspace represent
lightness and color differences: a varies from green to red,
and b varies from blue to yellow. Isometries with respect to
the Euclidean metric in the Lab colorspace are shifts (result-
ing in lightning and hue transformations) and rotations,

ξp = Rξp + c, (4)

where R denotes a 3×3 rotation matrix, and c is a 3×1 shift

vector. Such transformations capture many natural color
changes the shape can undergo (in Figure 2 two brightness
transformations, hue and equi-affine transformations are like
this).

The joint metric in this case boils down to (ξ∗g)µν =
〈∂µξg,∂νξg〉R3 +η〈∂µξp,∂νξp〉R3 .

3.2. Affine-invariant color metric

A more generic class of photometric transformations can be
expressed as affine transformations in the Lab colorspace
ξp = Aξp + c, where A is an invertible 3× 3 matrix. In par-
ticular, the transformation is called equi-affine if det(A) = 1.

Raviv et al. [RBB∗11a,RBB∗] showed a construction of a
metric that is invariant to equi-affine transformations. In our
setting, let us be given some parametrization φ(u1,u2) : U ⊆
R2 → X ⊂ R3 of the shape; the composition of α ◦ φ gives
us a parametrization of the texture. First, allowing some re-
laxed notation, we denote by gX (u1,u2) = (〈∂uµ ,∂uν

〉) and
gα(X)(u1,u2) = (〈dα(∂uµ),dα(∂uν

)〉) the first fundamental
forms of X and α(X), respectively in matrix representations
at point φ(u1,u2) in our parametrization. Here, dα is the dif-
ferential of α and dα(∂uµ) =

∂

∂uµ
(α ◦ φ). Second, construct

an equi-affine pre-metric tensor [Soc01, RBB∗]

(ḡX (u1,u2))µν = g̃µνdet−1/4(g̃), (5)

where g̃µν = det(dα(∂u1),dα(∂u2),(α◦φ)uµuν
). Such a nor-

malization tacitly implies that the Gaussian curvature is non-
vanishing, otherwise the pre-metric tensor is not defined.
Finally, the metric tensor is obtained by forcing g̃ to have
positive eigenvalues. For additional details about deriva-
tion and proof of affine invariance, we refer the reader to
[RBB∗11a, RBB∗, ARK11, RK12].

The modified geometry and photometry metric tensor
with the equi-affine-invaraint photometric component is de-
fined in matrix representation with respect to (u1,u2) on X
as

ĝ(u1,u2) = gX (u1,u2)+ηgα(X)(u1,u2). (6)

It is possible to use other metrics on the color coordinates
(Fig 1). In [ARK11] the authors presented a scale invariant
metric by normalizing the induced Euclidean metric accord-
ing to the Gaussian curvature. This approach provides a new
intrinsic distance measurement, which is different than the
Euclidean one, but is invariant to local (piecewise linear)
scaling. Motivated by [ARK11] the authors of [RK12] de-
tached the scale normalization from the metric, and showed
that the equi-affine invariant metric can be further improved
and cope the affine group of transformations (similarity and
equi-affine) while remaining invariant to non-rigid transfor-
mations.

The Gaussian curvature is defined by the ratio between the
determinants of the second and the first fundamental forms
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Figure 1: The influence of metric selection. First row:
three photometric transformations of a textured shape. Sec-
ond and third rows: the value of the heat kernel diagonal
ht(x,x) at three different points (marked with red, green,
and blue on the shape) for different transformations (solid
line: null, dashed: affine, dotted: equi-affine). The heat ker-
nel is constructed using Euclidean and equi-affine-invariant
and affine-invariant metrics in the colorspace. The more the
curves coincide, the better is invariance.

and is denoted by K. [RK12] showed that it is possible to
compute the Gaussian curvature of the equi-affine invariant
metric, and construct a new metric by multiplying the met-
ric elements by |K|. Specifically, consider the surface (X , g̃),
where g̃i j is the equi-affine invariant metric, and compute
the Gaussian curvature K(X ,g̃)(x) at each point. The affine
invariant metric is defined by

gi j =
∣∣∣K(X ,g̃)(x)

∣∣∣ g̃i j. (7)

3.3. Invariance of the joint diffusion process

The joint metric tensor ĝ and the diffusion geometry it in-
duces have inherent ambiguities. Let us denote by Isog =
Iso((ξ∗g h)µν) and Isop = Iso((ξ∗ph)µν) the respective groups
of transformation that leave the geometric and the photomet-
ric components of the shape unchanged. We will refer to
such transformations as geometric and photometric isome-
tries. The diffusion metric induced by ĝ is invariant to joint
isometry group Isoĝ = Iso((ξ∗g h)µν + η

2(ξ∗ph)µν). Ideally,
we would like Isoĝ = Isog× Isop to hold. In practice, Isoĝ
is bigger: while every composition of a geometric isometry

with a photometric isometry is a joint isometry, there exist
some joint isometries which cannot be obtained as a compo-
sition of geometric and photometric isometries.

An example of such transformations is uniform scaling of
(ξ∗g h)µν combined with compensating scaling of (ξ∗ph)µν.

It is possible to overcome the ambiguity problem by con-
sidering metrics with different values of the scaling factor
η. This rules out the compensating scaling situation and en-
sures that the shapes appear isometric for all values of η only
if their geometric and photometric components are isomet-
ric.

4. Photometric heat kernel signatures

Sun et al. [SOG09b] and independently Gebal et al.
[GBAL09] proposed using the heat propagation properties
as a local descriptor of the manifold. The diagonal of the
heat kernel,

kt(x,x) = ∑
i≥0

e−λit
φ

2
i (x), (8)

referred to as the heat kernel signature (HKS), captures the
local properties of X at point x and scale t. The descriptor
is computed at each point as a vector of the values p(x) =
(kt1(x,x), . . . ,ktn(x,x)), where t1, . . . , tn are some time val-
ues. The resulting n-dimensional descriptor is deformation-
invariant, easy to compute, and provably informative.

Ovsjanikov et al. [BBOG09] employed the HKS local de-
scriptor for large-scale shape retrieval using the bags of fea-
tures paradigm [SZ03]. In this approach, the shape is consid-
ered as a collection of “geometric words” from a fixed “vo-
cabulary” {p1, . . . , pq} ⊂ Rn and is described by the distri-
bution of such words, also referred to as a bag of features or
BOF. The vocabulary is constructed offline by clustering the
HKS descriptor space. Then, for each point x on the shape,
the HKS p(x) is replaced by the nearest vocabulary word by
means of vector quantization,

θ(x) = (θ1(x), . . . ,θq(x)) =
e−‖p(x)−pi‖2

2/2σ
2

∑
q
i=1 e−‖p(x)−pi‖2

2/2σ2 , (9)

where σ controls the “softness” of quantization. The BOF is
constructed as

bX =
∫

X
θ(x)da (10)

and can be considered as the frequency of different geo-
metric words. The similarity of two shapes X and Y is then
computed as the distance between the corresponding BOFs,
d(X ,Y ) = ‖bX −bY ‖.

Using the proposed approach, we define the color heat
kernel signature (cHKS), defined in the same way as HKS
with the standard Laplace-Belrami operator replaced by the
one resulting from the geometric-photometric embedding.
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The photometric information is represented in the Lab col-
orspace with the Euclidean, equi-affine or affine-invariant
metric.

As discussed in Section 3.3, in order to avoid ambiguities
related to the joint metric, we have to compute the cHKS de-
scriptor with multiple values of the scaling parameter η, each
value producing a different set of cHKS descriptors pη(x)
and corresponding bags of features bX ,η. This set of BOFs
can be compared e.g. as

d(X ,Y ) = ∑
η∈H

η‖bX ,η−bY,η‖. (11)

5. Numerical implementation

Let {x1, . . . ,xN} ⊆ X denote the discrete samples of the
shape, and ξ(x1), . . . ,ξ(xN) be the corresponding embed-
ding coordinates (three-dimensional in the case we consider
only geometry, or six-dimensional in the case of geometry-
photometry fusion). We further assume to be given a trian-
gulation (simplicial complex), consisting of edges (i, j) and
faces (i, j,k) where each (i, j),( j,k), and (i,k) is an edge
(here i, j,k = 1, . . . ,N).

A function f on the discretized manifold is represented
as an N-dimensional vector ( f (x1), . . . , f (xN)). The discrete
Laplace-Beltrami operator can be written in the generic form

(∆̂ f )(xi) =
1
ai

∑
j∈Ni

wi j( f (xi)− f (x j)), (12)

where wi j are weights, ai are normalization coefficients, and
Ni denotes a local neighborhood of point i. Different dis-
cretizations of the Laplace-Beltrami operator can be cast into
this form by appropriate definition of the above constants:
a widely-used method is the cotangent scheme [WMKG08,
DMSB99], Belkin’s et al. [BSW09b] Mesh Laplacian dis-
cretization.

For computation of the spectrum of Laplace-Beltrami op-
erator the finite elements methods (FEM) may be adopted
as well. This approach is more suitable for our calcula-
tions, since we work with metric tensors, and the spectrum is
sufficient for further processing. Considering the FEM, the
eigenvalue problem is formulated in weak form [Dzi87]:

∆X φX = λφX (13)

〈∆X φX ,h〉L2(X ,R) = λ〈φX ,h〉L2(X ,R) (14)

for all h ∈ L2(X ,R). Assume h(x) = c1α1(x) + c2α2(x) +
...+cmαm(x), where {αi(x)}m

i=1 is a basis of some subspace
of L2(X ,R) (for example, a set of some linearly independent
polynomials). Substituting this into Equation 14 we get:

m

∑
j=1

c j
〈
∆X α j,h

〉
L2(X)

= λ

m

∑
j=1

c j
〈
α j,h

〉
L2(X)

(15)

Taking h = αr(x), r = 1, ...,m we obtain the r equations:

m

∑
j=1

c j
〈
∆X α j,αr

〉
L2(X)

= λ

m

∑
j=1

c j
〈
α j,αr

〉
L2(X)

(16)

The above linear system of equations can be written as a
generalized eigenvalue problem

Ac = λBc (17)

where A and B are m×m matrices with elements ar j =
〈∆X α j,αr〉L2(X ,R) and br j = 〈α j,αr〉L2(X ,R).

For heat kernel approximation a few eigenvalues are re-
quired, since the coefficients in the expansion of ht (8) decay
as O(e−t).

For non-triangulated meshes other different methods may
be adopted [BSW09a, GLS∗10].

6. Results

In order to evaluate the proposed method, we used the
SHREC 2010 robust large-scale shape retrieval benchmark
methodology [BBC∗10]. The query set consisted of 560
real-world human shapes from 5 classes acquired by a 3D
scanner with real geometric transformations and simulated
photometric transformations of different types and strengths,
totalling in 95 instances per shape (Figure 2). Geometric
transformations were divided into isometry+topology (real
articulations and topological changes due to acquisition im-
perfections), and partiality (occlusions and addition of clut-
ter such as the red ball in Figure 2). Photometric transfor-
mations included contrast (increase and decrease by scaling
of the L channel), brightness (brighten and darken by shift
of the L channel), hue (shift in the a channel), saturation
(saturation and desaturation by scaling of the a,b channels),
and color noise (additive Gaussian noise in all channels),
equi-affine (rotation and scaling channels L and a,b s.t. the
scaling matrix will have determinant 1), affine (multiplying
by matrix A of determinant value according to strength).
Mixed transformations included isometry+topology trans-
formations in combination with two randomly selected pho-
tometric transformations, and Mixed-EaAff and Mixed-Aff,
with the same isometry-topology transformation and applied
on it equi-affine and affine photometry transformation re-
spectively (the geometry is constant through all strength,
only photometry transformation changes). In each class, the
transformation appeared in five different versions numbered
1–5 corresponding to the transformation strength levels. One
shape of each of the five classes was added to the queried
corpus in addition to other 85 shapes used as clutter.

Retrieval was performed by matching 475 transformed
queries to the 85 null shapes. Each query had exactly one
correct corresponding null shape in the dataset. Performance
was evaluated using the precision-recall characteristic. Pre-
cision P(r) is defined as the percentage of relevant shapes in
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the first r top-ranked retrieved shapes. Mean average preci-
sion (mAP), defined as mAP = ∑r P(r) · rel(r), where rel(r)
is the relevance of a given rank, was used as a single measure
of performance. Intuitively, mAP is interpreted as the area
below the precision-recall curve. Ideal retrieval performance
results in first relevant match with mAP=100%. Performance
results were broken down according to transformation class
and strength.

Figure 2: Examples of geometric and photometric shape trans-
formations used as queries (shown at strength 5). First row, left to
right: null, isometry+topology, partiality, two brightness transfor-
mations (brighten and darken), two contrast transformations (in-
crease and decrease contrast). Second row, left to right: two satu-
ration transformations (saturate and desaturate), hue, color noise,
mixed; Figure 1 illustrates equi-affine and affine transformations.

We compared purely geometric and joint photometric-
geometric descriptors. As a purely geometric descriptor,
we used bags of features based on HKS according to
[BBOG09]; as joint photometric-geometric descriptors, we
used bags of features computed with the proposed color
HKS (cHKS) resulting from different fusion processes.

For the computation of the bag of features descriptors, we
used the Shape Google framework with most of the settings
as proposed in [BBOG09]. More specifically, HKS were
computed at six scales (t = 1024,1351.2,1782.9,2352.5,
and 4096). Soft vector quantization was applied with
variance taken as twice the median of all distances be-
tween cluster centers. Approximate nearest neighbor method
[AMN∗98] was used for vector quantization. The Laplace-
Beltrami operator spectrum was computed using the FEM
approach discussed in Section 5, [RBB∗11b]. Heat kernels
were approximated using the first 200 eigenpairs of the dis-
crete Laplacian. The vocabulary size in all the cases was set
to 48.

In cHKS, in order to avoid the choice of an arbitrary value
η, we used a set of three different weights (η = 0,0.1,0.2)
to compute the cHKS and the corresponding BoFs. The
distance between two shapes was computed as the sum of
the distances between the corresponding BoFs for each η,
weighted by η, and 1 in case of η = 0, d(X ,Y ) = ‖BoF0

X −
BoF0

Y ‖2
1 +∑η η‖BoFη

X −BoFη

Y ‖
2
1.

Tables 1–3 summarize the results of our experiments. Ge-

ometry only descriptor (HKS) [BBOG09] is invariant to
photometric transformations, but is somewhat sensitive to
topological noise and missing parts; the recognition rate of
the shapes underwent geometry transformation in the mixed
transformation is 75% (Table 1). The fusion of the geomet-
ric and photometric data using Euclidean metric for color
embedding (Table 2) does not improve the results (even we
see small reduction for isometry+photometry), whereas em-
ploying our approach with Affine metric for color embed-
ding gives improvement in Mixed type of transformations.
Figure 3 visualizes a few examples of the retrieved shapes
ordered by relevance, which is inversely proportional to the
distance from the query shape.

Strength
Transformation 1 ≤2 ≤3 ≤4 ≤5
Isom+Topo 86.67 80.00 76.51 72.80 76.24
Partial 79.17 59.49 52.52 54.35 52.43
Contrast 100.00 100.00 100.00 100.00 100.00
Brightness 100.00 100.00 100.00 100.00 100.00
Hue 100.00 100.00 100.00 100.00 100.00
Saturation 100.00 100.00 100.00 100.00 100.00
Noise 100.00 100.00 100.00 100.00 100.00
EqAff 100.00 100.00 100.00 100.00 100.00
Aff 100.00 100.00 100.00 100.00 100.00
Mixed 75.00 75.00 75.00 75.00 75.00
Mixed-EqAff 75.00 75.00 75.00 75.00 75.00
Mixed-Aff 75.00 75.00 75.00 75.00 75.00

Table 1: Performance (mAP in %) of BOFs with purely geometric
HKS descriptors.

Strength
Transformation 1 ≤2 ≤3 ≤4 ≤5
Isom+Topo 83.33 73.10 69.84 70.30 71.24
Partial 79.17 60.54 53.21 55.39 53.27
Contrast 100.00 100.00 100.00 100.00 100.00
Brightness 100.00 100.00 100.00 100.00 100.00
Hue 100.00 100.00 100.00 100.00 100.00
Saturation 100.00 100.00 100.00 100.00 100.00
Noise 100.00 100.00 100.00 100.00 100.00
EqAff 100.00 100.00 100.00 100.00 100.00
Aff 100.00 100.00 100.00 100.00 100.00
Mixed 75.00 75.00 75.00 75.00 75.00
Mixed-EqAff 75.00 75.00 75.00 75.00 75.00
Mixed-Aff 75.00 75.00 75.00 75.00 75.00

Table 2: Performance (mAP in %) of BOFs with multiscale Eu-
clidean metric cHKS descriptors.

7. Conclusions

In this paper, we explored a way to fuse geometric and pho-
tometric information in the construction of shape descrip-
tors. Our approach is based on heat propagation on a mani-
fold embedded into a combined geometry-color space. Such
diffusion processes capture both geometric and photomet-
ric information and give rise to local and global diffusion
geometry (heat kernels and diffusion distances), which can
be used as informative shape descriptors. The choice of the
metric in the joint geometric-photometric space gives rise to
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HKS BoF [BBOG09] cHKS multiscale BoF Affine-cHKS multiscale BoF

Figure 3: Retrieval results using different methods. First column: query shapes, second column: first three matches obtained with HKS-based
BoF [BBOG09], third column: first three matches obtained using cHKS-based multiscale BoF, fourth column: first three matches obtained with
the proposed method (Affine-cHKS-based multiscale BoF). Shape annotation follows the convention shapeid.transformation.strength; numbers
below show distance from query. Only a single correct match exists in the database (marked in green), and ideally, it should be the first one.

Strength
Transformation 1 ≤2 ≤3 ≤4 ≤5
Isom+Topo 86.67 80.33 76.73 72.96 74.37
Partial 79.17 60.54 53.41 55.01 52.55
Contrast 100.00 100.00 100.00 100.00 100.00
Brightness 100.00 100.00 100.00 100.00 100.00
Hue 100.00 100.00 100.00 100.00 100.00
Saturation 100.00 100.00 100.00 100.00 100.00
Noise 100.00 100.00 100.00 100.00 100.00
EqAff 100.00 100.00 100.00 100.00 100.00
Aff 100.00 100.00 100.00 100.00 100.00
Mixed 86.67 86.67 86.67 86.67 86.67
Mixed-EqAff 86.67 84.17 85.00 85.42 85.67
Mixed-Aff 86.67 86.67 86.67 86.67 86.67

Table 3: Performance (mAP in %) of BOFs with multiscale Affine
metric cHKS descriptors.

different invariance properties both to geometric and photo-
metric transformations. We showed experimentally that the
proposed descriptors outperform other geometry-only and
photometry-only descriptors, as well as state-of-the-art joint
geometric-photometric descriptors. In the future, it would
be important to formally characterize the isometry group in-
duced by the joint metric in order to understand the invari-
ant properties of the proposed diffusion geometry, and possi-
bly design application-specific invariant descriptors, testing
them on database with a wide variety of shapes with multiple
classes.
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