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Abstract 
We present a new 3D shape descriptor based on conformal geometry. Our descriptor is invariant under non-rigid 
quasi-isometric transformations, such as pose changes of articulated models, and is both compact and efficient to 
compute. We demonstrate the performance of our descriptor on a database of watertight models, and show it is 
comparable with state-of-the-art descriptors.  

 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry 
and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism 

 

 

1. Introduction 
As the number of available 3D models grows, the need for 
efficient shape indexing and retrieval has emerged. 3D 
models are usually represented in the simplest manner: a 
set of vertices and faces of a polygonal mesh. However, 
such a representation cannot be used for a direct compari-
son of two shapes, since it is not unique: the same shape 
can be represented by different sets of vertices and faces, 
with different resolutions. To reliably compare two shapes, 
search engines usually use a shape signature or descriptor, 
a numerical representation of the shape, invariant to the 
specific tessellation used to represent it as a polygonal 
mesh. In addition, shape descriptors should be invariant to 
rigid transformations and should produce "close" descrip-
tors for "similar" shapes. An important invariance property 
for a shape descriptor is invariance to pose changes. A 
pose-invariant shape descriptor should be able to identify 
different poses of the same 3D shape, such as a running, 
sitting or standing human.  

Pose changes are a quasi-isometric transformation of the 
3D mesh, in the sense that edge lengths do not change 
much as a result of the transformation. The Gaussian curva-
ture of a surface is invariant to isometric transformations, 
so it seems natural that some version of the Gaussian cur-

vature may be used as a pose-invariant shape descriptor. 
Unfortunately, the computation of the (discrete) Gaussian 
curvature on a discrete surface is noisy, and the resulting 
function is not useful in practice as a shape descriptor.   

In addition to Gaussian curvature, conformal geometry 
provides additional intrinsic measures for the surface ge-
ometry. The celebrated uniformization theorem (see 
[Abi81] for a modern proof) shows that any 2-manifold can 
be conformally mapped to a surface with the same topol-
ogy having constant Gaussian curvature. This mapping can 
be described by a scalar function on the surface – the con-
formal factor – which is invariant to isometric transforma-
tions. As we will show, this function is both efficient to 
compute, and considerably less noisy than the Gaussian 
curvature. Consequently, a histogram of this function may 
serve as a robust pose-invariant signature of a 3D shape. 

1.1. Previous work 
The body of research dedicated to shape descriptors is quite 
vast, and a survey of it is beyond the scope of this paper. 
We will focus here only on recent descriptors which are 
most relevant to our work. The interested reader is referred 
to [SMKF04, TV08, DBP06] for comprehensive surveys of 
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different shape descriptors and evaluations of their per-
formance. 

As we shall see later, our shape descriptor makes use of 
the discrete Laplace-Beltrami operator. Several pose-
invariant shape signatures based on this operator have been 
proposed recently. Reuter et al. [RWP05] use the spectrum 
(i.e. the eigenvalues) of this operator and Rustamov 
[Rus07] uses its eigenvectors. Xiang et al. [XHGC07] use 
the histogram of the solution to the volumetric Poisson 
equation ∇2U = -1 as a pose-invariant shape descriptor. 
This equation also involves the Laplace-Beltrami operator 
(∇2). Superficially similar to what we shall propose, it is 
different since it solves an equation on the volume of the 
shape, whereas we work on the boundary surface alone.  

Another spectral-related shape signature was introduced 
by Jain and Zhang [JZ07], who use the eigenvectors and 
eigenvalues of the geodesic distances matrix. A pose in-
variant descriptor based on histograms of surface functions 
is presented by Gal et al. [GSCO07]. They use two scalar 
functions on the mesh. The algorithm performs quite well, 
even on meshes which contain more than one connected 
component. This shape descriptor is, however, relatively 
heavy to compute. 

Some pose invariant shape descriptors are derived from 
geodesic distances on the mesh, which are invariant to 
isometric transformations. Elad and Kimmel [EK03] em-
bed these distances in Euclidean space, where two such 
embeddings can be compared as rigid objects. In a more 
recent work, Tung and Schmitt [TS05] use geodesic dis-
tances for building a multiresolution Reeb graph. The dis-
criminative power of such descriptors is usually very good, 
however this comes at the price of a high computational 
cost for computing the geodesic distances. 

Conformal geometry has been applied to shape retrieval 
in the past. Wang et al. [WWJ*06] propose to do face rec-
ognition using the 2D conformal maps of 3D shapes, in-
stead of comparing the 3D models directly. This method is 
applicable only to shapes which are a topological disc, 
since general shapes need to be cut (to form a boundary) 
before they can be embedded in 2D. As the cuts might not 
be compatible between different 3D shapes, the resulting 
2D parameterization might be very different even if the 
original 3D shapes were similar. Since a 2D parameteriza-
tion can be generated using the conformal scaling factor 
and the original 3D edge lengths [BGB08], using the con-
formal factor as a signature can be viewed as a generaliza-
tion of Wang et al.’s method to general 3D meshes. Gu et 
al. [GV04] and Wang et al. [WCT05] combine the confor-
mal factor with the mean curvature for shape matching in 
medical applications. However, since the mean curvature is 
an extrinsic measure dependent on the embedding, it is not 
invariant to isometric transformations. Recently, Jin et al. 
[JLYG07] suggested the use of the conformal class of a 
shape as a signature. Although the signature is invariant to 
isometries, it is not discriminative enough – for example, 
all closed genus zero surfaces belong to the same confor-
mal class.  

The rest of the paper is organized as follows. In the next 
section, we describe how the conformal factor is computed, 
and how the signature is generated and compared. In Sec-

tion 3 we experimentally evaluate the performance of our 
descriptor. We conclude with a short discussion and future 
directions in Section 4.  

2. The Shape Descriptor 

2.1 Conformal Geometry 
The celebrated uniformization theorem [Abi81] states that 
any 2-manifold surface can be conformally mapped to a
surface with the same topology having constant Gaussian 
curvature. Such a mapping can be achieved by defining a 
positive scalar function on the surface, and locally chang-
ing the surface metric (which can be thought of as scaling 
infinitesimal patches of the surface) using this function. 
The scaling function φ (also known as the conformal fac-
tor) that achieves this depends only on the Gaussian curva-
ture of the surface, hence is invariant to isometric transfor-
mations. In the continuous setting, conformal maps are 
well defined and understood, and φ is the solution to the 
non-linear partial differential equation: 

2
u= exp(2 )∇ φ κ − φ κ  

where κ is the Gaussian curvature of the surface, and κu is 
the (uniform) target Gaussian curvature.  

In the discrete setting, conformal maps are less straight 
forward. There are a number of definitions of discrete 
"conformal" maps, and a number of methods to compute 
such mappings. Recently, Ben-Chen et al. [BGB08] pro-
posed an efficient way of computing a conformal map us-
ing a discrete conformal scaling factor. This scaling factor 
is then used to scale the edges of the original mesh, to 
achieve edge lengths which induce the target curvature. For 
the sake of completeness, we repeat here the main algo-
rithmic steps for computing the conformal factor. 

2.2. The Discrete Conformal Factor 
A triangular mesh M is given by sets of its vertices, faces 
and edges, which we denote by V,F and E respectively. The 
boundary vertices of the mesh M is given by the set B. The 
discrete Gaussian curvature [MDSB02] of a vertex v in the 
mesh (sometimes referred to as the angle defect) is defined 
as: 
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where Fv is the set of faces in F which share the vertex v, 
and αf

v is the angle near the vertex v in the face f.  
The conformal factor φ is the solution to the following 

sparse set of linear equations: 
T origL K Kφ = −                      (1) 

where L is the discrete Laplace-Beltrami operator with 
cotangent weights [HPW06],  Korig is the Gaussian curva-
ture of the mesh, and KT is the target Gaussian curvature. In 
our case, the target is uniform Gaussian curvature, so we 
set: 

c© The Eurographics Association 2008.

2



M. Ben-Chen & C. Gotsman / Characterizing Shape Using Conformal Factors 
 

1 ( )
3

( )
vf FT

v i
i V

f F

area f
k

area f
κ ∈

∈
∈

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑
∑ ∑

 

This formula assigns to each vertex a portion of the total 
curvature. Although the target curvature is supposedly 
uniform, it is not uniformly distributed among the discrete 
vertices. Were this the case, the descriptor would not be 
tessellation invariant. Hence, the portion of the curvature 
assigned to a vertex is determined by the "influence area" 
of the vertex – a third of the area of the faces near the ver-
tex, divided by the total surface area of the mesh. This also 
guarantees that the sum of the target curvatures on all verti-
ces is identical to the sum of the original vertex curvatures. 

For a connected mesh, the Laplacian has co-rank 1, so 
the solution φ is defined only up to an additive constant. 
This is resolved by requiring φ to have zero mean. Since 
the Laplacian is sparse and symmetric, Equation (1) may be 
solved for φ very efficiently, e.g. with Matlab's mldivide 
operator, which uses the CHOLMOD package [Dav05] 

 
Figure 1: Color-coding of the conformal factor of two 
hand models and two dancer models from the 
AIM@SHAPE shape repository [http://shapes.aim-at-
shape.net/index.php] (normalized to the range [0,1]). 

Figure 1 shows the color coding of the conformal factor 
(normalized to the range [0,1]) computed for two dancer 
models, and two hand models from the AIM@SHAPE 
shape repository. As the figure demonstrates, the conformal 
factor identifies well the features of the shape - such as the 
fingers of the hand and the feet of the dancer. This is be-
cause the conformal factor represents how much local 
"work" is involved in globally transforming the model into 
a sphere (in the case of a genus zero model). Long extru-
sions such as the fingers and the feet require more "work", 
which is expressed as a larger conformal factor. 

2.3. The Signature 
Given the conformal factor we can now describe how to 
generate the signature of a given mesh, and how to com-
pare two signatures. 

As is commonly done when defining a shape descriptor 
based on a real function on the mesh [GSCO07, 
XHGC07,Rus07], we use the histogram of the conformal 
factor as our shape signature. Since the conformal factors 
are invariant to rigid transformations, so are their histo-
grams. To make the signature invariant also to the tessella-
tion of the mesh, we sample φ at 5|F| random points on the 
surface of the mesh. This is achieved by selecting a random
triangle with probability proportional to its area, and then 
randomly generating a point uniformly distributed in the 
triangle interior. The value of φ at this point is defined to be
the linear interpolation of φ at the vertices of the triangle. 
To this sample set we add the original mesh vertices, and 
compute the histogram of φ at all these points, which is 
now almost independent of the mesh' tessellation. Finally, 
we compute the histogram with 200 uniform bins spanning 
the range [-99,100], resulting in a signature with 200 val-
ues. See Figures 2 and 3 for some examples..  

To compare two signatures, S1 and S2 we use the L1 
norm: 

d(S1, S2) = ∑i| S1
i – S2

i| 

3. Evaluation of the Shape Descriptor 
In this section we evaluate the performance of our shape 
descriptor, from both a theoretical and experimental point 
of view. First we explain why it is indeed pose-invariant, 
and then we show some experimental results demonstrating 
its robustness to noise. Next, we evaluate its performance 
in retrieval from a shape database of a few hundred water-
tight models. Finally, we compare it to other state-of-the-
art shape descriptors, both pose-invariant and pose-
dependent.   

3.1. Pose Invariance 
Gaussian curvature is a good starting point for a pose-
invariant shape descriptor. Being an intrinsic measure, 
dependent only on the metric (i.e. the edge lengths) of the 
mesh, and not its embedding, it is invariant under isometric 
transformations - transformations which preserve edge 
lengths. Pose changes of articulated shapes are one exam-
ple of such transformations, but also non-articulated shapes 
exhibit such transformations. For example, unfolding a 
developable surface to a plane is an isometric transforma-
tion, and it indeed preserves the (vanishing) Gaussian cur-
vature during the transformation.  

Unfortunately, standard discrete Gaussian curvature 
measures are too noisy to allow comparison using a simple 
histogram descriptor, since they are computed locally for 
each vertex. The conformal factor, on the other hand, de-
spite being derived directly from the Gaussian curvature, 
depends also on the metric of the mesh (through the 
weights of the Laplacian matrix), Since the conformal fac-
tor is the result of a global computation on the entire mesh, 
it is much smoother than the discrete Gaussian curvature, 
and hence can be easily used in a simple histogram descrip-
tor. Since the Gaussian curvature is invariant under isomet-
ric transformations, so is the conformal factor. 

Figure 2 shows the conformal factors and their histo-
grams, computed as described in the previous section, for c© The Eurographics Association 2008.
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three models in different poses. Evidently the same model 
in different poses results in very similar histograms, and 
different models have quite different histograms – both in 
shape, and in the range of the values the conformal factor 
achieves. 

 
Figure 2: Color-coding of conformal factors and histo-

grams of the conformal factors, for three model classes in 
various poses (the values are normalized to the range [0,1] 
for the color-coding). 

 
Figure 3: Color coding of conformal factors, and the his-
tograms of the conformal factors of three springs. The two 
springs of the same length have similar histograms. The 
shorter spring has a histogram with the same shape, but 
different range of values. 

 
Figure 3 shows the discriminative power of the confor-

mal factor. The conformal factor tends to be positive on 

long extrusions - the longer the extrusion, the larger the 
conformal factor. This means that similar objects, which
are not isometric transformations of each other – for exam-
ple two springs of different length – will have similar-
shaped histograms, but with different ranges of values. 
Hence, two springs of different length will be considered 
different. Normalizing the conformal factor to the range 
[0,1] will result in shapes with the same number of extru-
sions, but different extrusion lengths to be considered simi-
lar. This can be useful in certain cases, for example, for the 
springs from the watertight shapes benchmark 
[VtH07,GBP07], as can be seen in Figure 4. Unfortunately, 
for most models, normalizing the conformal factor may 
have undesirable effects. For example, chairs and humans 
might be considered similar, as they have more or less the 
same number of extrusions. Empirically, we have noticed 
that the un-normalized conformal factor performs better on 
most models. 

 

 
Figure 4: Shape retrieval results from the watertight 
shapes benchmark [VtH07,GBP07] using the conformal 
factor (upper two rows) and the conformal factor normal-
ized to [0,1] (lower two rows). In both cases the first model 
on the upper left is the query model. The database contains 
exactly 20 springs. 

3.2 Robustness to Noise  
An important property of any shape descriptor is the ability 
to match similar shapes even in the presence of noise. 
Since our descriptor is based on Gaussian curvature, which 
is notorious for being sensitive to noisy geometry, verify-
ing that our descriptor is robust is a major concern. 

 
Figure 5: Color-coded conformal factors (values normal-
ized to the range [0.1]), and histograms of the conformal 
factors, for a spring model, and a noisy version of it. 

We contaminated the geometry of one of the springs 
from the watertight benchmark with Gaussian noise with σ 
= 0.01, which is about 20% of the mean edge length of the 
model. We then computed the conformal factor and its 
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histogram on the noisy spring, and compared it to the orig-
inal. Figure 5 shows the results of this comparison – both 
the histogram and the color coding show that the difference 
between the signature of the original model and the noisy 
model is minor.  

3.3 Sensitivity to Topology 
A drawback of our descriptor is that it is sensitive to small 
topological differences. Since the descriptor is based on the 
conformal mapping to a surface with uniform curvature of 
the same genus, mapping between shapes of different gen-
era is possible, but not necessarily successful. For example, 
the watertight shapes benchmark [VtH07,GBP07] contains 
two versions of the teapot, one of genus 0, and the other 
genus 1. 
 

 
Figure 6: The conformal factor for two similar models with 
a small topological difference. 

As Figure 6 shows, the distributions of the conformal 
factor of these models are quite different (as are their histo-
grams). In this case, a simple visual-based descriptor (such 
as the light field descriptor [COTS03] for example) will do 
a better job. Of course, those two surfaces are not isometric 
transformations of each other. It remains to be seen wheth-
er this descriptor can be modified to be invariant to such 
genus changes. 

3.4 Curvature Error 
The discrete conformal factor computed by the linear me-
thod from [BGB08] is only an approximation of the true 
continuous conformal fac-
tor, and is accurate only for 
small curvature changes. 
Therefore, it is interesting 
to check the distribution of 
the error in the conformal 
factor over the mesh, and 
how it affects our shape 
descriptor. To test this, we 
computed the curvature 
error, as |KT – KR|, where 
KT is the target curvature 
we wanted to obtain, as 
defined in section 2.2, and KR is the obtained curvature, 
computed after scaling the original edge lengths with the 
computed conformal factor. The inset figure shows the 
distribution of this color-coded error over one of the mesh-
es from the watertight shapes benchmark [VtH07,GBP07]. 
The average curvature error on all the mesh, defined as ||KT 
– KR||/|V| is 1.8e-5π. As the figure shows, the error is close 
to zero on most of the mesh, and is localized in areas where 
the difference between the original and target curvatures 
were relatively high. Hence, in practice, the error in the 

conformal factor resulting from the discretization will not 
have much effect on our shape descriptor. 

3.5 The Watertight Shapes Benchmark 
We tested our conformal factor (CF) descriptor on a large 
database of watertight meshes [VtH07,GBP07], and com-
pared its performance with that of two state-of-the-art de-
scriptors which are not pose-invariant: the spherical har-
monics (SH) descriptor [KFR03] and light field (LF) de-
scriptor [COTS03]. We also compared to the global point 
signature (GPS) - a more recent pose-invariant descriptor 
[Rus07], and to the augmented multiresolution Reeb graph 
(aMRG) – a pose invariant descriptor [TS05] which won 
the SHREC 2007 competition on the database of watertight 
meshes [VtH07,GBP07].  

The implementations of SH and LF were taken from the 
respective Web sites of the authors. The comparison with 
GPS was based on the simulated search engine at the au-
thor's Web site. The comparison with aMRG was based on 
the results published in [GBP07].  

The database contains 20 classes of objects, each con-
taining 20 models. Some classes, e.g. the "ants" class, con-
tain models which are indeed a result of quasi-isometric 
transformations. In these cases, our CF descriptor performs 
better than the non pose-invariant descriptors SH and LF, 
and almost as good as the pose-invariant GPS. On almost 
all classes however, the aMRG descriptor outperforms our 
descriptor. This superior retrieval performance comes with 
a price, as the aMRG descriptor is graph-based, and rela-
tively computationally heavy both to compute and to com-
pare. For example, the authors state [GBP07] that the com-
putation time for the aMRG for a model containing 15,000 
vertices is about 20 seconds on a 1.6GHz laptop. In con-
trast, computing our CF descriptor for the same model 
takes about 0.9 seconds on a 1.4GHz laptop. Hence, our 
descriptor can be efficiently computed even for relatively 
large meshes. Comparing two signatures is also much more 
efficient using our descriptor, as it is vector based, and 
requires only the computation of a simple L1 sum.  

To quantitatively compare the performance of our de-
scriptor with other shape signatures, we used a standard 
measure: the precision/recall graph [SMG83]. This de-
scribes the relationship between precision and recall in a 
ranked list of matches. For each query model in the class 
and any number k of top matches, “recall” (the horizontal 
axis) represents the ratio of models in the class returned 
within the top k matches, while “precision” (the vertical 
axis) indicates the ratio of the top k matches that are mem-
bers of the class. A perfect retrieval result produces a hori-
zontal curve (at precision = 1.0), indicating that all the 
models within the query object’s class are returned as the 
top ranked matches. In general, curves that stay close to the 
precision 1.0 mark represent superior retrieval results. Dif-
ferent points on the graph represent different values of k. 

Figure 7 shows the precision/recall graph for the ants 
class of CF versus aMRG, SH and LF. Since the compari-
son with GPS was based on the results from the simulated 
search engine, this particular descriptor is not shown in the 
precision/recall graph. As discussed before, for the ants 

c© The Eurographics Association 2008.

5



M. Ben-Chen & C. Gotsman / Characterizing Shape Using Conformal Factors 
 

class, our descriptor performs better than the non pose in-
variant descriptors, but worse than the aMRG descriptor. 
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Figure 7: Precision/recall graphs of various shape de-
scriptors applied to the ants class in the watertight shapes 
benchmark [VtH07,GBP07]. 

Figure 8 shows the query result for a specific ant using 
CF, GPS, LF and SH. The aMRG descriptor was not com-
pared using query results. As each class contains exactly 20 
models, showing the first 20 results of the query is quite 
informative.  

 
Global point signature (GPS)  

 
Spherical harmonics (SH) 

 
Light field (LF) 

 
Conformal factor (CF) 

 
Figure 8: Comparison of the retrieval of an ant in the wa-
tertight shapes benchmark [VtH07,GBP07]. The query 
model is in the upper left corner, followed by the retrieved 
shapes in decreasing order of similarity. 
 

The GPS descriptor manages to retrieve all the ants in 
the class, achieving a perfect precision/recall ratio of 1.0. 
Our CF retrieval is very similar (all ants except one were 
retrieved), yet the CF descriptor is much simpler to com-
pute, requiring only the solution of a sparse symmetric 
linear system, instead of an eigenvector problem..  

For most of the other classes, the results are not that clear 
cut. For example, in the armadillo class, our CF descriptor 
finds most of the deformations of the armadillo, which do 
not include missing parts. This is natural, since severing 
parts of a surface is not an isometric deformation. The 
aMRG descriptor, however, achieves the best performance 
on almost all the classes. Figures 9 and 10 show the preci-
sion/recall graph and the retrieval results for a representa-
tive model using the four descriptors, for the armadillos 
and heads classes.  
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Figure 9: Precision/recall graph, and the retrieval of a 
single model in the watertight shapes benchmark 
[VtH07,GBP07] for the armadillo class. 

 
Figure 11 shows some more precision/recall graphs for 

other classes. Figure 12 shows the results of sample que-
ries, one query per each model class. Correct retrieval re-
sults (results from the same class as the query model) are 
colored green, and incorrect results are colored orange. 
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4. Conclusions and Discussion 
We have presented a new shape descriptor, based on con-
formal geometry, which is invariant to isometric transfor-
mations. The descriptor is simple and very easy to compute 
and compare. It is based on solving a sparse linear set of 
equations, and does not require complex computations, 
such as computation of geodesic distances, solution of 
eigenvalue problems, or computing a Reeb graph. It per-
forms comparably to state-of-the-art shape descriptors, 
both pose-dependent and pose-invariant. 

Our descriptor has a few drawbacks. The most important 
is probably that the descriptor is applicable only to a mani-
fold mesh. Otherwise, discrete geometric notions – such as 
the Laplace-Beltrami operator and the discrete curvature – 
are not well defined. As the majority of models available 
on the web are not manifolds, it is important to make this 
descriptor robust to non-manifold meshes. Another robust-
ness issue is the problem of instability under local genus 
changes. As we conformally map between surfaces of the 
same genus, similar meshes of different genus might have a 
different signature.  

A natural extension would be to use the conformal factor 
for full and partial shape matching. As the color coded 
meshes show, similar parts of shapes – for example the 
fingers of the armadillo model – match on different defor-
mations of the mesh. We believe that the conformal factor, 
together with other intrinsic measures, may be a useful tool 
for such applications. 
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Figure 11: Precision/recall graphs for some more classes 
from the watertight shapes benchmark [VtH07,GBP07]. 

 

Figure 12:  Retrieval results for some query shapes, one from each class of the watertight shapes benchmark. Each row is 
the result of a single query. The leftmost shape (highlighted in purple) is the query image. Shapes highlighted in green are 
shapes from the correct class (the same as the class of the query shape). Shapes highlighted in orange are shapes from wrong 
classes.  

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

Class Precision:PLIERS

aMRG
CF
LF
SH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

Class Precision:BIRDS

aMRG
CF
LF
SH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

Class Precision:CUPS

aMRG
CF
LF
SH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

Class Precision:HANDS

aMRG
CF
LF
SH

c© The Eurographics Association 2008.

8


