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Abstract

Photo-realistic face editing – an important basis for a wide range of applications in movie and game

productions, and applications for mobile devices – is based on computationally expensive algorithms

that often require many tedious time-consuming manual steps. This thesis advances state-of-the-art

face performance capture and editing pipelines by proposing machine learning-based algorithms for

high-quality inverse face rendering in real time and highly realistic neural face rendering, and a video-

based refocusing method for faces and general videos. In particular, the proposed contributions address

fundamental open challenges towards real-time and highly realistic face editing. The first contribution

addresses face reconstruction and introduces a deep convolutional inverse rendering framework that

jointly estimates all facial rendering parameters from a single image in real time. The proposed method

is based on a novel boosting process that iteratively updates the synthetic training data to better reflect

the distribution of real-world images. Second, the thesis introduces a method for face video editing

at previously unseen quality. It is based on a generative neural network with a novel space-time archi-

tecture, which enables photo-realistic re-animation of portrait videos using an input video. It is the first

method to transfer the full 3D head position, head rotation, face expression, eye gaze and eye blinking

from a source actor to a portrait video of a target actor. Third, the thesis contributes a new refocusing

approach for faces and general videos in postprocessing. The proposed algorithm is based on a new

depth-from-defocus algorithm that computes space-time-coherent depth maps, deblurred all-in-focus

video and the focus distance for each frame. The high-quality results shown with various applications

and challenging scenarios demonstrate the contributions presented in the thesis, and also show potential

for machine learning-driven algorithms to solve various open problems in computer graphics.
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Kurzzusammenfassung

Fotorealistische Gesichtsbearbeitung ist eine wichtige Grundlage für eine breite Palette von Anwen-

dungen in Film- und Spielproduktionen sowie für mobile Geräte. Sie basiert auf rechenintensiven

Algorithmen, die oft aufwändige manuelle Schritte erfordern. Diese Arbeit entwickelt moderne Pi-

pelines zum Erfassen und Bearbeiten von Gesichtern mittels auf maschinellem Lernen basierenden

Algorithmen, die ein qualitativ hochwertiges inverses Gesichtsrendering in Echtzeit, ein sehr reali-

stisches neuronales Gesichtsrendering und eine videobasierte Refokussierungsmethode für Gesichter

und allgemeine videos ermöglicht. Mit den vorgeschlagenen Beiträgen werden insbesondere grund-

legende Herausforderungen an die Echtzeitbearbeitung und hochrealistische Gesichtsbearbeitung

angesprochen. Der erste Beitrag befasst sich mit der Gesichtsrekonstruktion und führt ein CNN-

basiertes Rendering-Framework ein, das alle Gesichtsmodellparameter in Echtzeit aus einem einzigen

Bild schätzt. Das vorgeschlagene Verfahren basiert auf einem neuartigen Boosting-Prozess, der die

synthetischen Trainingsdaten iterativ aktualisiert, um die Verteilung der realen Bilder besser widerzu-

spiegeln. Zweitens führt die Dissertation eine Methode zur Gesichtsvideobearbeitung in bisher nicht

gekannter Qualität ein. Sie basiert auf einem generativen neuronalen Netzwerk mit einer neuartigen

Raum-Zeit-Architektur, die eine fotorealistische Re-Animation von Porträtvideos mithilfe eines Ein-

gabevideos ermöglicht. Es ist die erste Methode, die die vollständige 3D-Kopfposition, Kopfdrehung,

Gesichtsausdruck, Augenblick und -blinzeln von einem Ursprungsdarsteller auf ein Porträtvideo eines

Zieldarsteller übertragen kann. Drittens steuert die Dissertation einen neuen Ansatz für eine nachträg-

liche Refokussierung von Gesichtern und allgemeinen Videos bei. Der vorgeschlagene Algorithmus

benutzt Schärfentiefe, um räumlich-zeitkohärente Tiefenkarten, durchgängig scharfe Bilder sowie

den Fokusabstand für jedes Videobild zu berechnen. Die qualitativ hochwertigen Ergebnisse, die

mit verschiedenen Anwendungen und schwierigen Szenarien gezeigt werden, demonstrieren die in

der Dissertation vorgestellten Beiträge und zeigen auch das Potenzial für von maschinellem Lernen

gesteuerten Algorithmen zur Lösung verschiedener offener Probleme in der Computergrafik.
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Summary

A full digitization of the human face, body and potentially even behavior is a long-standing goal in

computer graphics and computer vision. The movie and game industries have harnessed computer

graphics technologies and brought computer-generated special effects into the mainstream. Nowadays,

the cutting-edge advances of computer graphics technologies allow us to digitize human characters

into a virtual 3D world, render them in new digital worlds, and apply various visual effects to the

digital characters for better storytelling in modern movies and games. Despite these advances, it is

still considered challenging to model human faces in terms of appearance and geometry. To improve

the photorealism of digital face models, the movie industry usually goes through several production

steps which involve computationally expensive 3D reconstruction algorithms in a studio setup and

tedious manual corrections by skilled artists in postproduction. Furthermore, most post-production

processes resort to model-based face editing methods that modify facial attributes with pre-defined

models of facial appearance and geometry. These models can scale across various face identities, but

usually fail to represent the complex individual details. It is known that we feel uncanny when looking

at the digital faces generated by such pre-defined models. Lens effects are another important factor

for us to accept synthesized videos as photorealistic. Recent computational methods that enable focus

editing of digital human models need to modify the hardware design of the camera and its optics, or

require additional hardware, which is inconvenient.

This thesis is motivated by the need for real-time and highly realistic 3D face modeling and editing, and

additional focus editing effects for faces in the visual effect pipeline. Particularly, the thesis addresses

the limitations of the current state-of-the-art methods, and develops robust algorithms that push the

boundaries further. As will be discussed later, each section presents the contributions step by step

starting from high-fidelity 3D face modeling in real time towards highly realistic facial animation and

focus editing. Note that the goal is ambitious and challenging due to the real-time and photorealism con-

straints that are essential for high-performance face editing pipelines. In a nutshell, the thesis presents a

learning-based framework in combination with a model-based method for real-time inverse rendering

from in-the-wild face images, highly realistic re-animation of portrait videos, and a video-based focus

editing method for faces as well as general scenes. These methods can potentially be integrated into

a unified framework to perform more advanced editing tasks for movie and mobile applications. As a

proof of concept, the proposed methods are applied on various real-world applications such as inverse

face rendering, face reenactment, visual dubbing of foreign language movies, interactive face editing,
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postproduction, video conferencing, refocusing, tilt-shift editing and dolly-zoom photography.

The technical contributions of this thesis can be divided into three main areas: inverse rendering, neural

rendering and focus editing.

Inverse Rendering In this area, we contribute a new method for real-time inverse face rendering

with high fidelity from in-the-wild monocular images. Chapter 3 introduces InverseFaceNet, a deep con-

volutional neural network framework that jointly estimates facial pose, shape, expression, reflectance

and illumination from a single face input image. The proposed framework benefits from a real-time

graphics pipeline that automatically generates a synthetic face database annotated with facial rendering

parameters at a large scale to train the neural network. To better reflect the distribution of real-world

imagery, a new boosting process is further proposed in the network training loop, which iteratively

updates the synthetic training dataset. With all the facial parameters estimated from a single input,

advanced editing possibilities, such as appearance editing and relighting, become feasible in real time.

Neural Rendering Chapter 4 presents a novel approach that enables highly realistic re-animation

of portrait videos using an input video. The approach is built upon a generative neural network with

a novel space-time architecture, that takes as input synthetic renderings of a parametric face model and

converts them into video frames with a high level of photorealism. Full control of the target face video

is achieved by feeding into the trained network the synthetic renderings of modified facial parameters.

Note that this framework automatically makes hair, body and background comply with the edited face

images. To the best of our knowledge, this is the first approach that shows the possibility of editing

portrait videos in all dimensions of full 3D head position, head rotation, face expression, eye gaze and

eye blinking with a high level of photorealism. The potential of the framework is demonstrated with

a large variety of video rewrite applications such as face reenactment, visual dubbing, postproduction,

gaze correction and video teleconferencing.

Focus Editing The contribution in this area is on focus capture and editing for faces in post-

production. Chapter 5 presents a new video-based depth-from-defocus algorithm that computes

space-time-coherent depth maps, deblurred all-in-focus video and the focus distance for each frame

from a commodity video camera. Unlike existing computational methods that directly capture depth

from light-field imaging or active RGB-D cameras, this framework only requires a video input in

which the focus plane is continuously moving back and forth during capture, and thus defocus blur

is provoked and strongly visible. With the ability to recover all the focus settings, all-in-focus video

and depth maps from a commodity video camera, many compelling video post-processing effects, in

particular aesthetic focus editing and refocusing effects, become feasible.

To summarize, the thesis presents integral and robust methods towards a highly realistic face editing

framework. In particular, each section in the thesis addresses the technical limitations of model-based

inverse face rendering and editing methods, and hardware-based focus editing frameworks, respec-
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tively. The main technical contributions advance the state of the art in monocular 3D face reconstruction

and editing, and video-based focus editing technologies. The results presented throughout various

application scenarios show great potential for real-time and highly realistic face editing in movie

production, home video editing and mobile applications.
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Chapter 1

Introduction

This chapter presents the motivation and the goal of the thesis, and explains how the thesis is outlined

to cover technical challenges. It also summarizes the technical contributions and the peer-reviewed

scientific papers that the thesis encompasses.

1.1 Motivation

Digital face editing is of importance to both professional and consumer-level media creation applica-

tions, as witnessed by VFX productions and the hundreds of hours of video footage that are uploaded

to online communities every minute. High-quality face reconstruction and editing frameworks have

facilitated a professional level of visual effects on 3D face models in the post-production process of

filmmaking. Recent advances that enhance the usability of face editing technologies have also led

non-expert users to create digital contents in home video and mobile applications with much less effort.

In the classical computer graphics pipeline, face modeling and editing are achieved by multiple stages:

face reconstruction, editing and compositing. The face reconstruction step recovers the high-quality

3D face models of actors in professional studios. In the second step, trained artists add visual effects

to the 3D face model by re-writing the facial appearance and geometry. Finally, the modified 3D face

model is rendered back to the image frame by compositing with other layers such as background

and illumination. Recently, many approaches [Thies et al. 2016; Averbuch-Elor et al. 2017; Suwa-

janakorn et al. 2017] for face editing have been introduced with promising results. These methods

first reconstruct and track the target face model which is represented as dense 3D points or a set of

sparse 2D landmarks. Face editing, e.g., expression change, is then applied, transferring the facial

expression of the source face model via modified rendering parameters [Thies et al. 2016] or dense 2D

motion fields [Averbuch-Elor et al. 2017]. Alternatively, a recurrent neural network can be employed

to synthesize mouth texture to match the input audio track [Suwajanakorn et al. 2017]. However, most

of the approaches consume a lot of computing resources to jointly or independently estimate all face

rendering parameters, i.e., facial pose, shape, expression, reflectance and illumination. In addition,

these methods can modify facial appearance and geometry only within the space of a coarser 3D face
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CHAPTER 1. INTRODUCTION 16

model. As a result, they only allow to modify the face interior, e.g., facial expressions. Moreover,

additional lens effects have been ignored in these methods.

Several open challenges require to be addressed to further improve computational efficiency as

well as visual realism in the state-of-the art face editing pipelines. First, the inverse rendering pro-

cess, i. e., the reconstruction of 3D face models from images and videos, has to be of high effi-

ciency, preferably real-time. The model-based face reconstruction methods often require 3D scan-

ning systems [Huang et al. 2004; Wang et al. 2004; Weise et al. 2009] or multiview camera setups

[Beeler et al. 2011; Beeler and Bradley 2014]. Such systems allow us to capture high-quality 3D

face model. However, it comes at a high cost and also demands high computational power to process

the captured data [Garrido et al. 2015; Thies et al. 2016]. Second, the level of detail that 3D face

models can represent has to be improved beyond the uncanny valley [Alexander et al. 2010]. Despite

the advances of computer graphics over decades [Blanz and Vetter 1999; Blanz et al. 2004; Suwa-

janakorn et al. 2015b; Averbuch-Elor et al. 2017], computer-generated face images still provide us with

a sense of repulsion or distaste. Third, camera lens effects have to be integrated in the final rendering

process. The lens effect, e.g., defocus blur, is an important cue that affects the human perception

of depth [Mather 1996; Held et al. 2010] and visual realism. Existing computational methods [Isak-

sen et al. 2000; Moreno-Noguer et al. 2007; Yu and Gallup 2014; Barron et al. 2015] often require to

employ light-field cameras [Ng et al. 2005] or modify the camera optics [Levin et al. 2007] in order

to apply lens effects to face models, which is cumbersome and inconvenient.

The thesis is motivated by the aforementioned open challenges concerning highly efficient and realistic

face editing frameworks. More precisely, we address several core limitations of the state of the art

in face reconstruction and editing, and focus editing technologies. In short, we facilitate machine

learning, in particular deep learning-based methods, in combination with computer graphics pipelines,

to jointly estimates all face rendering parameters from single images in real time, and also to enable

fully controllable face editing with a high level of photorealism. In addition, we develop a video-based

method that enables various focus editing effects from an unmodified commodity video camera.

1.2 Scope

The goal of the thesis is to develop efficient methods that capture and modify facial performances

and lens effects at high fidelity. This brings up several technical challenges, and therefore we make

certain assumptions to make our goal tractable. The input videos are assumed to contain no strong

cast shadows and illumination changes as it confuses face reflectance with lighting conditions. We

also assume that there are no fast and shaky motions in the input video to robustly track face models

and to separate a defocus blur from a motion blur.

With these assumptions, we make the technical contributions in the following areas: face reconstruc-

tion, face editing and focus modification. First, the contributions for face reconstruction include a

discriminative model of the inverse rendering process with convolutional neural networks, and a boost-
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ing framework to reduce the domain gap between synthetic and real face images using a large-scale

face dataset without annotation. This serves as the groundwork for efficient editing possibilities such as

appearance editing and relighting. Second, the advance in face editing is a novel rendering framework

that capitalizes on model-based 3D face reconstruction in combination with generative adversarial

networks to enable fully controllable face manipulation with a high level of photorealism. Finally,

an improvement on focus editing covers a video-based focus editing framework that recovers lens

models, space-time-coherent depth maps and all-in-focus video. The potential of the proposed methods

is demonstrated on various application scenarios such as single-shot inverse rendering, relighting,

face reenactment, visual dubbing, interactive face editing, postproduction, video teleconferencing,

refocusing, tilt-shift editing and dolly-zoom photography.

We structure the aforementioned contributions of the thesis according to the steps needed for face

capture and editing. This organization helps to better emphasize the contributions of the subtopics.

Moreover, it gradually shows the improvements made by each contribution, and illustrates the capa-

bilities of the proposed methods in various application scenarios.

1.3 Structure

We divide the thesis into six chapters to cover the main technical contributions. A brief overview is

given as follows.

Chapter 1 provides an introduction to the thesis topic, a statement of the goal and scope, an outline

of the thesis structure, a summary of the technical chapters, and an emphasis of the main technical

contributions.

Chapter 2 describes the fundamental principles and the mathematical notations that are used throughout

the thesis. These are mainly concerned with 3D face modeling, lens models and neural networks.

Chapters 3–5 present the main technical contributions. As mentioned earlier, these chapters are struc-

tured to emphasize the advances on the face editing pipeline. Improvements are discussed at the

end of each chapter and linked to subsequent chapters. Moreover, each chapter presents challenging

application scenarios that demonstrate the potential and capabilities of the contributions.

Chapter 6 summarizes the main contributions and results, and it briefly discusses future challenges

which are not explored in the thesis. Furthermore, it gives an outlook towards detection and verification

of face images modified with a high level of photorealism.

1.4 Summary of Technical Chapters

This section gives a more detailed overview of the technical chapters of the thesis.

Chapter 3 introduces InverseFaceNet, a deep convolutional inverse rendering framework for faces that
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jointly estimates facial pose, shape, expression, reflectance and illumination from a single input image.

By estimating all parameters from just a single image, advanced editing possibilities on a single face

image, such as appearance editing and relighting, become feasible in real time. Most previous learning-

based face reconstruction approaches do not jointly recover all dimensions, or are severely limited in

terms of visual quality. In contrast, the proposed method described in this chapter recovers high-quality

facial pose, shape, expression, reflectance and illumination using a deep neural network that is trained

using a large, synthetically created training dataset. It builds on a novel loss function that measures

model-space similarity directly in parameter space and significantly improves reconstruction accuracy.

A new boosting process is further proposed in the network training loop, which iteratively updates the

synthetic training dataset to better reflect the distribution of real-world imagery. Quantitative validations

demonstrate that this strategy outperforms completely synthetically trained networks. In addition,

comparisons to several state-of-the-art approaches and high-quality relighting results are provided.

Next, Chapter 4 presents a novel approach that enables highly realistic re-animation of portrait

videos using only an input video of a person. In contrast to existing approaches that are restricted to

modification of facial expressions only, this is the first to transfer the full 3D head position, head rotation,

face expression, eye gaze, and eye blinking from a source actor to a portrait video of a target actor. The

core of the approach is a generative neural network with a novel space-time architecture. The network

takes as input synthetic renderings of a parametric face model, based on which it predicts highly realistic

video frames for a given target actor. The realism in this rendering-to-video transfer is achieved by

careful adversarial training, and as a result, it can create modified target videos that mimic the behavior

of the synthetically-created input. In order to enable source-to-target video re-animation, it renders a

synthetic target video with the reconstructed head animation parameters from a source video, and feed

it into the trained network – thus taking full control of the target. With the ability to freely recombine

source and target parameters, it demonstrates a large variety of video rewrite applications without

explicitly modeling hair, body or background. For instance, it can reenact the full head using interactive

user-controlled editing, and realize high-fidelity visual dubbing, postproduction and gaze correction

for video teleconferencing. An extensive series of experiments and evaluations demonstrate the high

quality of our output, where for instance a user study shows that our video edits are hard to detect.

Finally, Chapter 5 addresses the problem of dynamic refocusing for faces and general scenes. Many

compelling video effects can be performed in post-processing if a video is given in the form of an

all-in-focus video with per-frame depth maps and focus distances. In particular, this enables a variety

of focus editing effects, such as video refocusing, which are important stylistic elements in video.

Recent computational methods that allow to capture such information in an easy and robust manner

modify the hardware design of the camera and its optics, or require additional hardware. Hence, they

are less practical and unavailable to normal users with commodity cameras. We therefore presents

an algorithm to capture all-in-focus RGB-D video of dynamic scenes with commodity video cameras

that are unmodified and need no special calibration. Our algorithm turns defocus blur – an effect

often regarded as an unwanted artifact – into a valuable signal. The input to our method is a video in

which the focus plane is continuously moving back and forth during capture, and thus defocus blur
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is provoked and strongly visible. This can be achieved by manually turning the focus ring of the lens

during recording. The core algorithmic ingredient is a new video-based depth-from-defocus algorithm

that computes space-time-coherent depth maps, deblurred all-in-focus video, and the focus distance for

each frame. Compelling video post-processing effects, such as different types of refocusing, illustrate

the effectiveness of the proposed method.

1.5 Technical Contributions

In the following, we provide a more detailed list of technical contributions that enable the methods

described above.

The main contributions of Chapter 3 are outlined as follows:

• A real-time and deep inverse face rendering network that estimates pose, shape, expression,

color reflectance and illumination from just a single input image in a single forward pass.

• A loss function that measures model-space distances directly in a modified parameter space.

• A boosting framework that reduces the domain gap between synthetic and real-world parameter

distribution.

The main contributions of Chapter 4 are summarized as follows:

• A rendering-to-video translation network that transforms coarse face model renderings into full

photo-realistic portrait video output.

• A novel space-time encoding as conditional input for temporally coherent video synthesis that

represents face geometry, reflectance, and motion as well as eye gaze and eye blinks.

• A comprehensive evaluation on several applications to demonstrate the flexibility and effective-

ness of our approach.

The main contributions of Chapter 5 are:

• A hierarchical alignment scheme between video frames of different focus settings and dynamic

scene contents.

• An approach to estimate per-frame depth maps and deblurred all-in-focus color images in a

spacetime coherent way.

• An image-guided algorithm for focus distance initialization, and an optimization method for

refining focus distances.



CHAPTER 1. INTRODUCTION 20

1.6 List of Publications

The methods presented in the thesis encompass peer-reviewed scientific papers published at confer-

ences and journals in the field of computer graphics and vision. These papers listed below independently

address the aforementioned technical challenges towards highly efficient and realistic face editing.

• H. Kim, C. Richardt and C. Theobalt. “Video depth-from-defocus”. In 3DV, 370–379, 2016.

• H. Kim, M. Zollhöfer, A. Tewari, J. Thies, C. Richardt and C. Theobalt. “InverseFaceNet: Deep

monocular inverse face rendering”. In CVPR, 4625–4634, 2018.

• H. Kim, P. Garrido, A. Tewari, W. Xu, J. Thies, M. Nießner, P. Pérez, C. Richardt, M. Zollhöfer

and C. Theobalt. “Deep video portraits”. In ACM TOG (Proc. SIGGRAPH), 37(4), 163:1–163:14,

2018.

• H. Kim, M. Elgharib, M. Zollhöfer, H.-P. Seidel, T. Beeler, C. Richardt and C. Theobalt. “Neural

style-preserving visual dubbing”. In ACM TOG (Proc. SIGGRAPH Asia), 38(6), 178:1–178:13,

2019.

The co-authored papers that address the problem of wide-baseline scene flow, face reconstruction with

a model-based autoencoder and a multi-layer model, and neural rendering for human actor videos are

listed below.

• C. Richardt, H. Kim, L. Valgaerts and C. Theobalt. “Dense wide-baseline scene flow from two

handheld video cameras”. In 3DV, 276–285, 2016.

• A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard, P. Pérez and C. Theobalt. “Mofa:

Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction”.

In ICCV, 3735–3744, 2017.

• A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim, P. Pérez and C. Theobalt. “Self-

supervised multi-level face model learning for monocular reconstruction at over 250 Hz”. In

CVPR, 2549–2559, 2018.

• L. Liu, W. Xu, M. Zollhöfer, H. Kim, F. Bernard, M. Habermann, W. Wang and C. Theobalt.

“Neural rendering and reenactment of human actor videos”. In ACM TOG (Proc. SIGGRAPH),

38(5), 139:1–139:14, 2019.

• A. Tewari, M. Zollhöfer, F. Bernard, P. Garrido, H. Kim, P. Pérez and C. Theobalt. “High-fidelity

monocular face reconstruction based on an unsupervised model-based face autoencoder”. In

IEEE TPAMI, 42(2), 357–370, 2020.



21 1.6. LIST OF PUBLICATIONS

• L. Liu, W. Xu, M. Habermann, M. Zollhöfer, F. Bernard, H. Kim, W. Wang and C. Theobalt.

“Neural human video rendering: Joint learning of dynamic textures and rendering-to-video

translation”. In IEEE TVCG, 2020.





Chapter 2

Basics

This chapter provides an overview of the technical background of the thesis. Each section discusses

the details about an advanced camera model with an optical lens, face-specific geometric models

represented as triangle meshes, and convolutional neural networks – the main mathematical tool for

the thesis.

2.1 Camera, Lens and Image Formation Models

In the thesis, 3D face models are rendered back to screen space through a camera model. We briefly

describe the mathematical relationship between a point in 3D space and its projection onto the image

plane. In addition, we provide preliminaries on a camera lens model which enables to add lens effects

to rendered images, and a reflection model used in the thesis.

2.1.1 Camera Model

A camera model allows a projection of the 3D geometry, for instance vertices of a mesh or a 3D point

coordinate, onto a 2D image space, as Figure 2.1 shows. For computational convenience, a 3D face

vertex v is fist represented in camera coordinates via a Euclidean transformation from a world space to

a camera space, i. e., 3D rotation and translation. A pinhole camera model [Forsyth and Ponce 2012],

commonly used in computer graphics and vision, then takes the 3D vertex along the optical ray converg-

ing at the camera center, providing its corresponding 2D projection p on a 2D image plane as follows:

p(K,R,t)=KΠ(Rv+t)=KΠ(v̂) , (2.1)

where [R|t]∈R3×4 is the camera extrinsic parameters describing the rigid transformation between the

3D object and camera coordinates. v̂ refers to the same 3D point represented with respect to the camera

coordinate system. A projection operator Π(·) takes the aligned 3D point v̂ onto the 2D image plane in a

normalized coordinate system. Camera intrinsics K, involving the focal length f and the principal point

23
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Figure 2.1: Camera model. A 3D point v̂ is projected onto the image plane at position p̂ with the camera
properties, i. e., the focal length f and the principal point c=[cx,cy]

>. Images from Garrido (2017).

c=[cx,cy]
>, represents a linear scaling and translation to map the normalized space into screen space:

K =

 f 0 cx

0 f cy

0 0 1

 . (2.2)

In practice, the principal point c is commonly assumed to lie at the image center, and the focal length

f is pre-calibrated [Bradski and Kaehler 2013; Zhang 2000]. In this thesis, homogeneous coordinates

[Forsyth and Ponce 2012] are employed for the camera model unless stated otherwise.

2.1.2 Lens Model

The pinhole camera model cannot explain the optical properties of a camera lens. A thin-lens model

is introduced to enable additional lens effects in face editing pipelines. We assume a standard video

camera with a finite aperture lens that produces a limited depth of field in which the image is sharply

focused only in a narrow depth range. According to the thin-lens model, which is illustrated in Fig-

ure 2.2, the amount of defocus blur is quantified by the diameter c of the circle of confusion [Potmesil

and Chakravarty 1982]:

c=
A f |D−F |
D(F− f )

=
f 2|D−F |

N f D(F− f )
, (2.3)

where A= f/N f is the diameter of the aperture, f is the focal length of the lens, N f is the f -number of

the aperture, D is the depth of a scene point and F is the focus distance. We assume that the aperture and

focal length are fixed in the input video, and that the focus distance F changes over time. Therefore, the

defocus blur of a 3D point only depends on its depth D and the focus distance F , which we express as

the point-spread function Φ(D,F) corresponding to the circle of confusion according to Equation 2.3.
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Figure 2.2: The thin-lens model and the circle of confusion c (‘coc’).

Then, we can model the color of a defocused image V at a pixel x by the following convolution:

V(x)=(Φ(D(x),F)∗I)(x), (2.4)

where I denotes the all-in-focus image. Note that Φ is spatially varying because each pixel x may have

a different depth value D(x). For brevity, we omit the pixel index x in the thesis unless stated otherwise.

2.1.3 Image Formation Model

An image formation model determines the color values for each projected 2D coordinate, taking

the reflection model with a face surface and a lighting condition into consideration. As commonly

used in the literature [Wu et al. 2011; Valgaerts et al. 2012; Garrido et al. 2013; Thies et al. 2015; Gar-

rido et al. 2016], we employ a Lambertian reflection model, i. e., an isotropic diffuse bidirectional

reflectance distribution function (BRDF) that reflects radiance equally into all directions, to represent

the face surface property. The intensity of the radiance is also proportional to the incident lighting

L(v̂,ω)∈R3 at a mesh vertex v̂ from an incoming light direction ω ∈R3. More formally, this process

is described with the rendering equation as follows [Kajiya 1986]:

B(v̂,ω)=c(v̂)◦
∫

Ω

L(v̂,ω)V (v̂)max(〈ω,n̂(v̂)〉,0)dω , (2.5)

where B(v̂,ω) is the irradiance at vertex v̂ from direction ω sampled on the hemisphere Ω. Here, c(v̂)
∈R3, n̂∈R3 and V ∈{0,1} denote the surface albedo, normal and the binary visibility map at vertex v̂
respectively. 〈·〉 represents the inner product while ◦ a point-wise multiplication. The lighting function

L(ω) is often modeled, as in [Wu et al. 2011; Valgaerts et al. 2012], using spherical harmonics (SH)

functions:

L(ω)=
j−1

∑
l=0

l

∑
m=−l

θ
[i],m
l Y m

l (ω)=
j2

∑
l=1

θ
[i]
l Yl(ω) , (2.6)

where Y m
l ∈ R, ∀l,m denote the SH functions with j bands, and l is the index of the band. θ [i] =
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Figure 2.3: Example of a blendshape model. (a) Neutral face. (b) Semantic shapes. From left to right : Frown,
mouth to the right, smile and “O”-like mouth shape. Images from Garrido (2017).

[θ [i],r,θ [i],g,θ [i],b]> balances the effect of the lighting at each color channel. Throughout the thesis,

illumination and environment maps are approximated by the SH functions, unless explicitly stated

otherwise.

2.2 Facial Geometry

Facial geometry is composed of shape (also referred to as identity) and expression. To efficiently

model the variations of each component, it is represented by a linear combination of an average face

model and displacement vectors mathematically. We provide backgrounds about parametric face

representation and blendshapes that are used to model facial geometry in the thesis.

2.2.1 Parameteric Face Representation

We represent facial shapes with a low-dimensional parametric model [Blanz and Vetter 1999]. In this

model, the geometric deformation of a 3D face model is achieved through an affine model v∈R3N

that stacks the per-vertex deformations of the underlying template mesh with N vertices, as follows:

v(θ [s])=a[g]+
Ns

∑
k=1

θ
[s]
k b[s]

k . (2.7)

Here, a[g]∈R3N and {b[s]
k }

Ns
k=1 represent the average facial geometry and the basis that is computed

by applying principal component analysis (PCA) to 200 high-quality face scans, respectively. The

low-dimensional parametric face model is employed throughout the thesis unless stated otherwise.

2.2.2 Blendshapes

We adopt a blendshape model [Lewis et al. 2014] in order to describe facial expression, which has been

widely used in the 3D facial animation literature due to its flexibility in face editing. Each blendshape

is a static face geometry that refers to a semantically meaningful deformation such as blink, smile and
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frown. To create in-between facial expression and animation, these deformations are linearly blended

with the weights that represent the strength of each deformation. Consequently, the blendshape model

provides an intuitive control of facial expression, allowing part-based 3D face editing.

Mathematically, the blendshape model is formulated with additive shape deformations on top of a

neutral face geometry, as Figure 2.3 shows. Let a[e]
0 be the neutral face and B={b[e]

1 ,...,b[e]
n } be the

set of n blendshapes. Here, b[e]
i ∈R3k,∀i represents column vectors of k vertices of 3D face geometry.

Facial expression e is then represented by a linear combination of the neutral face shape and its

per-vertex 3D displacements to each blendshape:

e=a[e]
0 +

n

∑
i=1

θ
[e]
i (b[e]

i −b[e]
0 )=b[e]

0 +
n

∑
i=1

θ
[e]
i d[e]

i =b[e]
0 +Bθ

[e] , (2.8)

where 0 ≤ θ
[e]
i ≤ 1, ∀i = 1 : n denote the linear weights. With θ

[e] = [θ [e]
1 , ... ,θ [e]

n ]> ∈ Rn and

B = [d[e]
1 | ··· | d[e]

n ] ∈R3k×n that are a stack of the linear weights and per-vertex 3D displacements

respectively, the linear combination can be also expressed in a matrix form.

Although it encourages semantics-preserving facial animation, each blendshape is not necessarily or-

thogonal to each other. Thus, the same facial expression can be found by different linear combinations

of the weights and blendshapes. Moreover, some blendshapes should not combined by certain weights

in order to avoid implausible facial expressions. As an example, adding semantically similar expres-

sions doubles the deformation, leading to unrealistic facial expressions or breaking anatomical facial

symmetry. To prevent such inconsistent blendshape combinations, additional constraints or a pairwise

activation of blendshapes [Lewis et al. 2014] or a sparsity of the blending weights [Bouaziz et al. 2013]

can be incorporated to restrict the activation of the blendshapes [Li et al. 2013a; Thies et al. 2015].

Despite the limitations, Equation 2.8 has been widely used in most 3D face modeling approaches in

the literature [Bouaziz et al. 2013; Li et al. 2010; Li et al. 2013b; Thies et al. 2015; Weise et al. 2011]

and commercial packages such as Blender and Maya to enable facial animation. In the thesis, we also

employ the same blendshape model unless stated otherwise.

2.3 Deep Learning

This thesis revisits the face reconstruction and editing in the context of deep learning. Recent advances

in the deep learning field, e.g., AlexNet [Krizhevsky et al. 2012] and Generative Adversarial Networks

(GANs) [Goodfellow et al. 2014] to name a few, have achieved human-level performance in many

challenging tasks such as image classification and generation. This has been made possible with

deeper neural networks (NNs) at high capacity, which are implicit functions flexible enough to

represent complex models with high accuracy. Especially, convolutional neural networks (CNNs)

[LeCun et al. 1995], a kind of NNs specially suited for many computer vision tasks, extract low- to high-

level image features in a hierarchical manner to better describe images as they go deeper through the
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Figure 2.4: Example of a convolutional neural network for image classification. It extracts high-level image
features using convolution, nonlinear activation and pooling operations. The feature map at the last convolutional
layer is translated to a corresponding class label via fully connected layers. The feature extraction and the label
mapping are optimized end-to-end. Images from Wikipedia.

network, as Figure 2.4 shows. When trained end-to-end over a large-scale dataset, CNNs outperform

most explicit model-based methods. In the thesis, we adapt deep learning-based methods and combine

them with model-based approaches in a new way with the goal of highly realistic face editing.

CNNs are composed by a series of layers: convolution, batch normalization, nonlinear activation,

dropout, pooling, fully connection and deconvolution. A general overview of each layer is briefly given

in the following. Convolutional layers use kernels (also referred to as filters) to extract low-level image

features such as corners and edges from an input, which are then used to build up high-level image

representations in the subsequent layers. Mathematically, a kernel performs convolution operation

in a sliding window manner over the whole input tensor, providing the feature map (also known as

a activation map) as an output rl
j:

rl
j =∑

k
wl

jkal−1
k +bl

j, (2.9)

where al−1
k is the response of the k-th hidden unit at the previous layer l − 1, and wl

jk and bl
j are

the convolution weight and bias term respectively. In this layer, the size of the kernel as well as a

stride – the step of a convolution operation, determine the receptive field over which CNNs aggregate

the kernel response. In general, the receptive field becomes wider across subsequent convolutional

layers, and this allows deeper CNNs to compute high-level image features with higher level of abstrac-

tion. The distribution of feature maps changes during training – the process of minimizing the loss

function parameterized by learnable variables of CNNs, leading to internal covariate shift [Ioffe and

Szegedy 2015]. To address this issue, batch normalization r̂l
j is commonly employed:

r̂l
j =

rl
j−µ

√
σ2+ε

, (2.10)

where µ and σ2 are the mean and variance of the feature response rl
j across the batch. ε is a small

constant to prevent a zero division error. A feature map is fed through an activation layer afterwards.
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This layer introduces nonlinearity to the feature map so that CNNs can approximate more complicated

functions:

al
j =φ(r̂l

j), (2.11)

where σ(·) is an element-wise nonlinear function. Among others, most popular choices include

rectified linear units (ReLU) [Nair and Hinton 2010], hyperbolic tangent (Tanh) and sigmoid functions.

The activation functions are applied element-wise to the feature map, for instance, truncating the

individual negative activations with ReLU. When the capacity of CNNs is large in comparison to

the complexity of training data, it is prone to statistical overfitting. To avoid this, dropout layers

[Srivastava et al. 2014] are often introduced. The idea behind dropout is simple yet effective. Dropout

nullifies a subset of activations randomly over training iterations. A dropout layer is not applied at test

time. Another layer often introduced between convolutional layers is a pooling layer, also sometimes

referred to as a downsampling layer. With max pooling being the most popular, it samples a maximum

value over each local neighborhood in an activation map. This provides CNNs with translation

invariance as well as less model complexity. Throughout the aforementioned layers, a deep image

representation which encodes low- and high-level features is obtained at the last nonlinear activation

layer. As a last stage, it is common that fully connected or transposed convolutional layers process

the rich image representation to derive class labels or images respectively. Fully connected layers –

full linear combinations of all responses between one and another layers, also known as dense layers,

are often exploited for classification and regression tasks to find the correlation of the feature maps

with labels. In contrast, transposed convolutional layers used in image generation and synthesis tasks

reverse the preceded convolution operations to recover an image output back from the response map.

The training process of CNNs, i.e., the optimization of a loss function with respect to the kernel

and the bias values in the convolutional and fully connected layers, is achieved by backpropagation

[LeCun et al. 1989]. For computational efficiency, backpropagation updates the kernel weights by

interleaving forward and backward passes. In the backward pass, the weight update is determined by

the gradient of a loss function, also considering a learning rate and a momentum term. In the thesis,

the aforementioned CNNs and the backpropagation algorithm are employed unless stated otherwise.





Chapter 3

Face Reconstruction
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Figure 3.1: The single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry,
reflectance and illumination estimate from just a single input image. InverseFaceNet jointly recover the facial
pose, shape, expression, reflectance and incident scene illumination. From left to right: the input photo, our
estimated face model, its geometry, and the pointwise Euclidean geometry error compared to Garrido et al.
(2016).

This chapter introduces InverseFaceNet, a deep convolutional inverse rendering framework for faces

that jointly estimates facial pose, shape, expression, reflectance and illumination from a single input

image (see Figure 3.1). By estimating all parameters from just a single image, advanced editing

possibilities on a single face image, such as appearance editing and relighting, become feasible in

real time. Most previous learning-based face reconstruction approaches do not jointly recover all

dimensions, or are severely limited in terms of visual quality. In contrast, we propose to recover

high-quality facial pose, shape, expression, reflectance and illumination using a deep neural network

that is trained using a large, synthetically created training corpus. Our approach builds on a novel loss

function that measures model-space similarity directly in parameter space and significantly improves

reconstruction accuracy. We further propose a self-supervised boosting process in the network training

loop, which iteratively updates the synthetic training corpus to better reflect the distribution of real-

31



CHAPTER 3. FACE RECONSTRUCTION 32

world imagery. The method and results presented in this chapter are based on Kim et al. (2018b).

3.1 Introduction

Inverse rendering aims to reconstruct scene properties such as geometry, reflectance and illumination

from image data. This reconstruction is fundamentally challenging, as it inevitably requires inverting

the complex real-world image formation process. It is also an ill-posed problem as certain effects,

such as low-frequency reflectance and illumination, can be indistinguishable [Ramamoorthi and

Hanrahan 2001b]. Inverse rendering, for example, enables relighting of faces by modifying the scene

illumination and keeping the face reflectance and geometry fixed.

Recently, optimization-based approaches for inverse face rendering were introduced with convincing

results [Garrido et al. 2016; Thies et al. 2016; Aldrian and Smith 2013; Li et al. 2014a; Kemelmacher-

Shlizerman and Seitz 2011]. One of the key ingredients that enables to disentangle pose, geometry (both

related to shape and facial expression), reflectance and illumination are specific priors that constrain

parameters to plausible values and distributions. Formulating such priors accurately for real faces is

difficult, as they are unknown a priori. The priors could be learned by applying inverse rendering to

a large dataset of real face images, but this is highly challenging without having the priors a priori.

We take a different approach to solve this chicken-and-egg problem. Instead of formulating explicit

priors, we directly learn inverse face rendering with a deep neural network that implicitly learns priors

based on the training corpus. As annotated training data is hard to come by, we train on synthetic

face images with known model parameters (geometry, reflectance and illumination). This is similar

to existing approaches [Richardson et al. 2016; Richardson et al. 2017; Sela et al. 2017], but the used

parameter distribution does not match that of real-world faces and environments. As a result, the

learned implicit priors are rather weak and do not generalize well to in-the-wild images.

The approach of Li et al. (2017b) introduces a self-augmented procedure for training a CNN to regress

the spatially varying surface appearance of planar exemplars. Our self-supervised boosting approach

extends their training strategy to handle unknown, varying geometry. In addition, we resample based

on a mean-adaptive Gaussian in each boosting step, which helps to populate out-of-domain samples,

especially at the domain boundary.

In contrast to many other approaches, InverseFaceNet also regresses color reflectance and illumination.

Our main technical contribution is the introduction of a self-supervised boosting step in our training

loop, which continuously updates the training corpus to better reflect the distribution of real-world face

images. The key idea is to apply the latest version of the inverse face rendering network to real-world

images without ground truth, to estimate the corresponding face model parameters, and then to create

synthetic face renderings for perturbed, but known, parameter values. In this way, we are able to

generate additional synthetic training data that better reflects the real-world distribution of face model

parameters, and our network therefore better generalizes to the real-world setting. Our experiments
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demonstrate that our approach greatly improves the quality of regressed face models for real face

images compared to approaches that are trained exclusively on synthetic data.

The main contribution of the chapter is InverseFaceNet – a real-time, deep, single-shot inverse face

rendering network that estimates pose, shape, expression, color reflectance and illumination from just

a single input image in a single forward pass, and is multiple orders of magnitude faster than previous

optimization-based methods estimating similar models. To improve the accuracy of the results, we

further propose a loss function that measures model-space distances directly in a modified parameter

space. We further propose self-supervised boosting of a synthetic training corpus based on real images

without available ground truth to produce labeled training data that follows the real-world parameter

distribution. This leads to significantly improved reconstruction results for in-the-wild face photos.

3.2 Related Work

Inverse Rendering (of Faces) The goal of inverse rendering is to invert the graphics pipeline, i.e.,

to recover the geometry, reflectance (albedo) and illumination from images or videos of a scene – or,

in our case, a face. Early work on inverse rendering made restrictive assumptions like known scene

geometry and calibrated input images [Yu et al. 1999; Ramamoorthi and Hanrahan 2001b]. However,

recent work has started to relax these assumptions for specific classes of objects such as faces. Deep

neural networks have been shown to be able to invert simple graphics pipelines [Nair et al. 2008; Kulka-

rni et al. 2015], although these techniques are so far only applicable to low-resolution grayscale images.

In contrast, our approach reconstructs full-color facial reflectance and illumination, as well as geometry.

Aldrian and Smith (2013) use a 3D morphable model for optimization-based inverse rendering. They

sequentially solve for geometry, reflectance and illumination, while we jointly regress all dimensions

at once. Thies et al. (2016) recently proposed a real-time inverse rendering approach for faces that

estimates a person’s identity and expression using a blendshape model with reflectance texture and

colored spherical harmonics illumination. Their approach is designed for reenactment and is visually

convincing, but relies on non-linear least-squares optimization, which requires good initialization and

a face model calibration step from multiple frames, while our approach estimates a very similar face

model in a single shot, from a single in-the-wild image, in a fraction of the time. Inverse rendering

has also been applied to face image editing [Lu et al. 2016; Shu et al. 2017], for example to apply

makeup [Li et al. 2014a; Li et al. 2015a]. However, these approaches perform an image-based intrinsic

decomposition without an explicit 3D face model, as in our case.

Face Models The appearance and geometry of faces are often modeled using 3D morphable models

[Blanz and Vetter 1999] or active appearance models [Cootes et al. 2001]. These seminal face models

are powerful and expressive, and remain useful for many applications even though more complex and

accurate appearance models exist [Klehm et al. 2015; Li et al. 2017a]. Recently, a large-scale para-

metric face model [Booth et al. 2018] was created from 10,000 facial scans, Booth et al. (2017) extend
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3D morphable models to “in-the-wild” conditions, and deep appearance models [Duong et al. 2016]

extend active appearance models by capturing geometry and appearance of faces more accurately

under large unseen variations. We describe the face model we use in Section 3.4.

3D Face Reconstruction The literature on reconstructing face geometry, often with appear-

ance, but without any illumination, is much more extensive compared to inverse rendering. We

focus on single-view techniques and do not further discuss multi-view or multi-image approaches

[Ichim et al. 2015; Suwajanakorn et al. 2014; Piotraschke and Blanz 2016; Klaudiny et al. 2017;

Roth et al. 2017]. Recent techniques approach monocular face reconstruction by fitting active ap-

pearance models [Duong et al. 2016; Alabort-i Medina and Zafeiriou 2017], blendshape models

[Cao et al. 2013; Garrido et al. 2013; Garrido et al. 2016; Thomas and Taniguchi 2016], affine

face models [Shi et al. 2014; Tran et al. 2017; Richardson et al. 2016; Crispell and Bazik 2017;

Dou et al. 2017; Schönborn et al. 2017; Guo et al. 2017; Tewari et al. 2017], mesh geometry [Richard-

son et al. 2017; Laine et al. 2017; Jiang et al. 2017; Roth et al. 2017; Sela et al. 2017], or volumetric

geometry [Jackson et al. 2017] to input images or videos. Shading-based surface refinement can extract

even fine-scale geometric surface detail [Cao et al. 2015; Garrido et al. 2016; Richardson et al. 2017;

Jiang et al. 2017; Roth et al. 2017; Sela et al. 2017]. Many techniques use facial landmark detectors for

more robustness to changes in the head pose and expression, and we discuss them in the next section.

A range of approaches use RGB-D input [Weise et al. 2011/e.g.; Li et al. 2013b; Thies et al. 2015], and

while they achieve impressive face reconstruction results, they rely on depth data which is typically

not available for in-the-wild images or videos.

Deep neural networks have recently shown promising results on various face reconstruction tasks. In a

paper before its time, Nair et al. (2008) proposed an analysis-by-synthesis algorithm that iteratively ex-

plores the parameter space of a black-box generative model, such as active appearance models (AAM)

[Cootes et al. 2001], to learn how to invert it, e.g., to convert a photo of a face into an AAM parameter

vector. We are inspired by their approach and incorporate a self-supervised boosting approach into

our training process (see Section 3.7) to make our technique more robust to unseen inputs, in our case

real photographs.

Richardson et al. (2016) use iterative error feedback [Carreira et al. 2016] to optimize the shape

parameters of a grayscale morphable model from a single input image. Richardson et al. (2017) build

on this to reconstruct detailed depth maps of faces with learned shape-from-shading. Sela et al. (2017)

learn depth and correspondence maps directly using image-to-image translation, and follow this with

non-rigid template mesh alignment. Dou et al. (2017) regress only the identity and expression com-

ponents of a face. All these approaches are trained entirely on synthetic data [Blanz and Vetter 1999].

Tran et al. (2017) train using a photo collection, but their focus lies on estimating morphable model

parameters to achieve robust face recognition. In contrast to these approaches, ours not only recovers

face geometry and texture, but a more complete inverse rendering model that also comprises color

reflectance and illumination, from just a single image without the need for iteration. Jackson et al.

(2017) directly regress a volumetric face representation from a single input image, but this requires a
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Figure 3.2: Our single-shot inverse face renderer regresses a dense reconstruction of the pose, shape,
expression, skin reflectance and incident illumination from a single photograph.

large dataset with matching face images and 3D scans, and does not produce an editable face model, as

in our case. Schönborn et al. (2017) optimize a morphable model using Bayesian inference, which is

robust and accurate, but very slow compared to our approach (taking minutes rather than milliseconds).

Tewari et al. (2017) learn a face regressor in a self-supervised fashion based on a CNN-based encoder

and a differentiable expert-designed decoder. Our self-supervised boosting approach combines the

advantages of synthetic and real training data, which leads to similar quality reconstructions without

the need for a hand-crafted differentiable rendering engine.

Face Alignment Many techniques in 3D face reconstruction, including ours, draw on facial land-

mark detectors for robustly identifying the location of landmark keypoints in the photograph of a face,

such as the outline of the eyes, nose and lips. These landmarks can provide valuable pose-independent

initialization. Chrysos et al. (2017) and Jin and Tan (2017) provide two recent surveys on the many

landmark detection approaches that have been proposed in the literature. Perhaps unsurprisingly, deep

learning approaches [Zhu et al. 2016; Bhagavatula et al. 2017] are again among the best available

techniques. However, none of these techniques works perfectly [Steger and Timofte 2016; Bulat and

Tzimiropoulos 2017]: facial hair, glasses and poor lighting conditions pose the largest problems. In

many cases, these problems can be overcome when looking at video sequences instead of single images

[Peng et al. 2016], but this is a different setting to ours.

3.3 Overview

We first detect a set of 66 2D facial landmarks [Saragih et al. 2011a], see Figure 3.2. The landmarks are

used to segment the face from the background, and mask out the mouth interior to effectively remove

the parts of the image that cannot be explained by our model. The masked face is input to our deep

inverse face rendering network (Section 3.6), which is trained on synthetic facial imagery (Section 3.5)

using a parametric face and image formation model (Section 3.4). Starting from this low-quality corpus,

we apply our self-supervised boosting approach that updates the parameter distribution of the training

set (Section 3.7) to generate a training corpus that better approximates the real-world distribution. This

leads to reconstructions of higher quality (Section 3.8). Finally, we discuss limitations (Section 3.9)



CHAPTER 3. FACE RECONSTRUCTION 36

and summarize (Section 3.10).

3.4 The Space of Facial Imagery

We parameterize face images using m=350 parameters:

θ =
(
R,θ [s],θ [e],θ [r],θ [i])∈Rm. (3.1)

Here, R specifies the global rotation (3 parameters), θ
[s] the shape (128), θ

[e] the expression (64), θ
[r]

the skin reflectance (128), and θ
[i] the incident illumination (27). Note that we do not include translation

as our network works on consistently segmented input images (see Figure 3.2 and Section 3.3).

3.4.1 Affine Face Model

We employ an affine face model to parameterize facial geometry F [g]∈R3V and reflectance F [r]∈R3V ,

where V is the number of vertices of the underlying manifold template mesh. The geometry vector

F [g] stacks the V 3D coordinates that define the mesh’s embedding in space. Similarly, the reflectance

vector F [r] stacks the RGB per-vertex reflectance values. The space of facial geometry is modeled by

the shape θ
[s]∈RNs and expression θ

[e]∈RNe parameters:

F [g](θ [s],θ [e])=a[g]+
Ns

∑
i=1

b[s]
i σ

[s]
i θ

[s]
i +

Ne

∑
j=1

b[e]
j σ

[e]
j θ

[e]
j . (3.2)

The spatial embedding is modeled by a linear combination of orthonormal basis vectors b[s]
i and b[e]

j ,

which span the shape and expression space, respectively. a[g]∈R3V is the average geometry of a neutral

expression, the σ
[s]
i are the shape standard deviations and the σ

[e]
j are the standard deviations of the

expression dimensions.

Per-vertex reflectance is modeled similarly using a small number of reflectance parameters θ
[r]∈RNr :

F [r](θ [r]) = a[r]+
Nr

∑
i=1

b[r]
i σ

[r]
i θ

[r]
i . (3.3)

Here, b[r]
i are the reflectance basis vectors, a[r] is the average reflectance and the σ

[r]
i are the standard

deviations.

The face model is computed from 200 high-quality 3D scans [Blanz and Vetter 1999] of Caucasians

(100 male and 100 female) using PCA. We use the Ns=Nr= 128 most significant principal directions

to span our face space. The used expression basis is a combination of the Digital Emily model [Alexan-

der et al. 2010] and FaceWarehouse [Cao et al. 2014b] (see Thies et al. (2016) for details). We use PCA

to compress the over-complete blendshapes (76 vectors) to a subspace of Ne= 64 dimensions.
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3.4.2 Image Formation

We assume the face to be Lambertian, illumination to be distant and smoothly varying, and there is no

self-shadowing. We thus represent the incident illumination on the face using second-order spherical

harmonics (SH) [Müller 1966; Ramamoorthi and Hanrahan 2001b]. Therefore, the irradiance at a

surface point with normal n is given by

B
(

n |θ [i])= b2

∑
k=1

θ
[i]
k Yk(n), (3.4)

where Yk are the b2 = 32 = 9 SH basis functions, and the θ
[i]
k are the corresponding illumination

coefficients. Since we consider colored illumination, the parameters θ
[i]
k ∈R3 specify RGB colors,

leading to 3·9=27 parameters in total.

We render facial images based on the SH illumination using a full perspective camera model

Π : R3→R2. We render the face using a mask (painted once in a preprocessing step) that ensures that

the rendered facial region matches the crops produced by the 66 detected landmark locations (see

Figure 3.2). The global rotation of the face is modeled with three Euler angles using R=Rotxyz(α,β ,γ)

that successively rotate around the x-axis (up, α), y-axis (right, β ), and z-axis (front, γ) of the camera-

space coordinate system.

3.5 Initial Synthetic Training Corpus

Training our deep inverse face rendering network requires ground-truth training data {Ii,θ i}N
i=1 in the

form of corresponding pairs of image Ii and model parameters θ i. However, training on real images

is challenging, since the ground-truth parameters cannot easily be obtained for a large dataset. We

therefore train our network based on synthetically rendered data, where exact ground-truth labels are

available.

We sample N=200,000 parameter vectors θ i and use the model described in Section 3.4 to generate the

corresponding images Ii. Data generation can be interpreted as sampling from a probability P(θ) that

models the distribution of real-world imagery. However, sampling from this distribution is in general dif-

ficult and non-trivial. We therefore assume statistical independence between the components of θ , i.e.,

P(θ)=P(R)P(θ [s])P(θ [e])P(θ [r])P(θ [i]). (3.5)

This enables us to efficiently generate a parameter vector θ by independently sampling each subset

of parameters.

We uniformly sample the yaw and pitch rotation angles α,β ∼U(−40◦,40◦) and the roll angle

γ∼U(−15◦,15◦) to reflect common head rotations. We sample shape and reflectance parameters from

the Gaussian distributions provided by the parametric PCA face model [Blanz and Vetter 1999]. Since

we already scale with the appropriate standard deviations during face generation (see Equations 3.2



CHAPTER 3. FACE RECONSTRUCTION 38

and 3.3), we sample both from a standard normal distribution, i.e., θ
[s],θ [r]∼N (0,1). The expression

basis is based on artist-created blendshapes that only approximate the real-world distribution of

the space of human expressions; this will be addressed by the self-supervised boosting presented

in Section 3.7. We thus uniformly sample the expression parameters using θ
[e]∼U(−12,12). To

prevent closing the mouth beyond anatomical limits, we apply a bias of 4.8 to the distribution of the

first parameter1. Finally, we sample the illumination parameters using θ
[i]∼U(−0.2,0.2), except

for the constant coefficient θ
[i]
1 ∼U(0.6,1.2) to account for the average image brightness, and set

all RGB components to the same value. The self-supervised boosting step presented in Section 3.7

automatically introduces colored illumination.

3.6 InverseFaceNet

Given the training data {Ii,θ i}N
i=1 consisting of N images Ii and the corresponding ground-truth

parameters θ i, we train a deep inverse face rendering network F to invert image formation. In the

following, we provide details on our network architecture and the employed loss function.

3.6.1 Network Architecture

We have tested several different networks based on the popular AlexNet [Krizhevsky et al. 2012] and

ResNet [He et al. 2016] architectures, both pre-trained on ImageNet [Russakovsky et al. 2015]. In

both cases, we resize the last fully-connected layer to match the dimensionality of our model (350

outputs), and initialize biases with 0, and weights∼N (0,0.01). These minimally modified networks

provide the baseline we build on. We propose more substantial changes to the training procedure by

introducing a novel model-space loss in Section 3.6.2, which more effectively trains the same network

architecture. The color channels of the input images are normalized to the range [−0.5,0.5] before

feeding the data to the network. We show a comparison between the results of AlexNet and ResNet-101

in Section 3.8.1, and thus choose AlexNet for our results.

Input Pre-Processing The input to our network is a color image of a masked face with a resolution

of 240×240 pixels (see Figure 3.2). We mask the face to remove any background and the mouth interior,

which cannot be explained by our face model. For this, we use detected landmarks [Saragih et al. 2011a]

and resize their bounding box uniformly to fit inside 240×240 pixels, to approximately achieve scale

and translation invariance.

Training We train all our inverse face rendering networks using the Caffe deep learning framework

[Jia et al. 2014] with stochastic gradient descent based on AdaDelta [Zeiler 2012]. We perform 75K

1The first parameter mainly corresponds to mouth opening and closing.
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batch iterations with a batch size of 32 for training our baseline approaches. To prevent overfitting,

we use an `2-regularizer (aka weight decay) of 0.001. We train with a base learning rate of 0.01.

3.6.2 Model-Space Parameter Loss

We use a weighted norm to define a model-space loss between the predicted parameters θ and
ground-truth θ g by taking the statistics of the face model into account:

L(θ ,θ g)=
∥∥θ−θ g

∥∥2
A (3.6)

=(θ−θ g)
> A︸︷︷︸

Σ
>

Σ

(θ−θ g). (3.7)

Here, Σ is a weight matrix that incorporates the standard deviations σ• of the different parameter

dimensions:
Σ=diag(ωR13,ωsσ

[s],ωeσ
[e],ωrσ

[r],ωi127)∈Rm×m. (3.8)

The coefficients ω• balance the global importance of the different groups of parameters, and 1k is

a k-dimensional vector of ones. We use the same values (ωR,ωs,ωe,ωr,ωi)= (400,50,50,100,20)

for all our results. Note that we do not scale the rotation and illumination dimensions individually.

Intuitively speaking, our model-space loss enforces that the first PCA coefficients (higher variation

basis vectors) should match the ground truth more accurately than the later coefficients (lower-variation

basis vectors), since the former have a larger contribution to the final 3D geometry and skin reflectance

of the reconstructed face in model space (see Equations 3.2 and 3.3). As shown in Section 3.8, this

leads to more accurate reconstruction results. The difference to Zhu et al. (2016) is the computation

of the weights, which leads to a statistically meaningful metric.

3.7 Self-Supervised Boosting

The real-world distribution of the model parameters θ is in general unknown for in-the-wild images Ireal.

Until now, we have sampled from a manually prescribed probability distribution P(θ), which does not

exactly represent the real-world distribution. The goal of the self-supervised boosting step is to make

the training data distribution better match the real-world distribution of a corpus R of in-the-wild face

photographs. To this end, we automatically update the parameters for the training corpus. Note that this

step is unsupervised and does not require the ground-truth parameters for images in R to be available.

3.7.1 Boosting

Boosting based on uniform resampling with replacement Ir∼P(I)=1/N cannot solve the problem

of mismatched distributions. Hence, we propose a domain-adaptive approach that resamples new

proposals from a mean-adaptive Gaussian distribution based on real images:

P(Ir(θ) |Ireal)∼θ(Ireal)+N (0,σ2), (3.9)
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Training Corpus Real World ImagesTraining Corpus
without Ground Truth       with Self-Supervised Boosting

Source Domain Boosting Domain Target Domain

Figure 3.3: Our approach updates the initial training corpus (left) based on real-world images without available
ground truth (right) using a self-supervised boosting approach. The generated new training corpus (middle)
better matches the real-world face distribution.

Algorithm 1 Self-Supervised Boosting
1: F ← train_network_on_synthetic_faces();
2: R ← corpus_of_real_images();
3: for (number of boosting steps Nboot) do
4: θ r← inverse_rendering(R , F ); . (step 1)
5: θ

′
r← resample_parameters(θ r); . (step 2)

6: R ′← {generate_images(θ ′r), θ
′
r}; . (step 3)

7: F ← continue_training(F , R ′); . (step 4)
8: end for

where Ir(θ) is the deterministic rendering process, we compute the inverse of the rendering process

θ(Ireal) using InverseFaceNet, and N (·) is a noise distribution. This shifts the distribution closer to

the target distribution of real images Ireal. Moreover, adding a non-zero variance σ2 >0 populates

out-of-domain samples especially at the domain boundary. Our approach takes the network of the last

boosting iteration as final output, instead of averaging the intermediate networks. This prevents from

being biased to the manually prescribed sampling distribution of earlier training stages.

3.7.2 Algorithm

Our self-supervised parameter boosting is a four-step process (see Algorithm 1). It starts with a deep

neural network F initially trained on a synthetic training corpus (see Section 3.5) for 15K batch

iterations. This guarantees a suitable initialization for all weights in the network. Given a set of images

from the corpus of real-world images R , we first obtain an estimate of the corresponding model

parameters θ r, i.e., θ(Ireal) in Equation 3.9, using the synthetically trained network (step 1). These

reconstructed parameters are used to seed the boosting. In step 2, we apply small perturbations to the

reconstructed parameters based on the noise distribution N (0,σ2). This generates new data around

the seed points in model space, and allows the network to slowly adapt to the real-world parameter

distribution. We use the following to resample the pose, shape, expression, reflectance and illumination

parameters, generating two perturbed parameter vectors for each reconstruction: α,β ,γ : U(−5◦,5◦),

θ
[s] : N (0,0.05), θ

[r] : N (0,0.2), θ
[e] : N (0,0.1), and θ

[i] : N (0,0.02). In step 3, we generate new

synthetic training images Ir based on the resampled parameters θ
′
r, i.e., θ(Ireal)+N (0,σ2). The result

is a new synthetic training set R ′ that better reflects the real-world distribution of model parameters.
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Figure 3.4: Model-space parameter loss (Equation 3.7) for the baseline and boosting approaches on a
synthetic test corpus with higher parameter variation than the used training corpus. While our domain-adaptive
boosting approach, based on a high-variation training corpus without available ground truth, continuously
decreases in loss, the baseline network fails to generalize.

Finally, the network F is fine-tuned for Niter=7.5K batch iterations on the new training corpus (step

4). In total, we repeat this process for Nboot= 8 self-supervised boosting steps.

Over the iterations, the data distribution of the training corpus adapts and better reflects the real-world

distribution of the provided in-the-wild facial imagery, as illustrated in Figure 3.3. We also evaluate

the parameter loss throughout boosting iterations in Figure 3.4, and observe a clear reduction with

our self-supervised boosting. This leads to higher quality results at test time, as shown in Section 3.8.

The variance σ2 could be adaptively scaled based on the photometric error of estimates. However, we

found empirically that our framework works well with a fixed variance.

3.8 Experiments and Results

We evaluate our InverseFaceNet on several publicly available datasets. We validate our design choices

regarding network architecture, model-space loss, and self-supervised boosting. We then show quan-

titative and qualitative results and comparisons on the datasets LFW (Labeled Faces in the Wild)

[Huang et al. 2007], 300-VW (300 Videos in the Wild) [Shen et al. 2015], CelebA [Liu et al. 2015],

FaceWarehouse [Cao et al. 2014b], Volker [Valgaerts et al. 2012] and Thomas [Garrido et al. 2013].

For more results, we refer to our supplemental document and video at the project website2.

Error Measures We compute the photometric error using the RMSE of RGB pixel values (within

the mask of the input image) between the input image and a rendering of the reconstructed face model.

An error of 0 is a perfect color match, and 255 is the difference between black and white (i.e. lower

is better). The geometric error measures the RMSE in mm between corresponding vertices in our

reconstruction and the ground-truth geometry. We quantify the image-space overlap of the estimated

face model and the input face image using the intersection over union (IOU) of face masks (e.g. see

2Project page: http://gvv.mpi-inf.mpg.de/projects/InverseFaceNet

http://gvv.mpi-inf.mpg.de/projects/InverseFaceNet/
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Figure 3.5: Qualitative comparison of ResNet-101 [He et al. 2016] and AlexNet [Krizhevsky et al. 2012] applied
to inverse face rendering, both with model-space loss (MSL): ResNet-101 produces lower geometric error (see
heatmap) while AlexNet has lower photometric error (also on average, see Table 3.1). AlexNet with MSL and
boosting clearly improves the reconstruction of reflectance and geometry, in all error categories.

‘contours’ in Figure 3.5). An IOU of 0% means no overlap, and 100% means perfect overlap (i.e. higher

is better).

3.8.1 Evaluation of Design Choices

Table 3.1 evaluates different design choices on a test dataset of 5,914 images (one shown in Figure 3.5)

from CelebA [Liu et al. 2015] using the error measures described earlier (using our implementation

of Garrido et al. (2016) as ground-truth geometry, up to blendshape level).

Network Architecture We first compare the results of the AlexNet [Krizhevsky et al. 2012] and

ResNet-101 [He et al. 2016] architectures, both with our model-space loss (see Section 3.6). Recon-

structions using ResNet-101 have smaller geometric errors, but worse photometric error and IOU than

AlexNet, which is exemplified by Figure 3.5. ResNet-101 is significantly deeper than AlexNet, so

training takes about 10× longer and testing about 5× longer. We thus use AlexNet for our inverse face

rendering network, which only requires 3.9 ms for the forward pass (on an Nvidia Titan Xp). Landmark

detection takes 4.5 ms and face morphing 1 ms (on the GPU). In total, our approach requires 9.4 ms.

Importance of Model-Space Loss Table 3.1 shows that our model-space loss improves on baseline

AlexNet [Krizhevsky et al. 2012] in all error categories, particularly the photometric error and IOU. As

our model-space loss does not modify the network architecture, the time for the forward pass remains
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Table 3.2: Quantitative evaluation of the geometric accuracy on 180 meshes of the FaceWarehouse
[Cao et al. 2014b] dataset.

Our approach Other approaches

Boosting Baseline
Garrido et al.

(2016)
Tewari et al.

(2017)
MonoFit (see

text)
Error 2.11 mm 2.33 mm 1.59 mm 2.19 mm 2.71 mm
SD 0.46 mm 0.47 mm 0.30 mm 0.54 mm 0.52 mm

the same fast 3.9 ms as before.

Importance of Self-supervised Boosting Our self-supervised boosting (see Section 3.7) signifi-

cantly improves the reconstruction quality and produces the lowest errors in all categories, as shown in

Table 3.1. This can also be seen in Figure 3.5, which shows plausible reconstruction of appearance and

geometry, the lowest geometric errors, and improved contour overlap for our network with boosting.

Note that the training time for self-supervised boosting includes all steps (see Algorithm 1), in par-

ticular reconstructing 100K face models (0.25 h), rendering 200K synthetic faces (2.8 h) and training

for 7.5K iterations (0.5 h) for each of the 8 boosting iterations (on an Nvidia GeForce GTX Titan).

AlexNet with boosting significantly outperforms ResNet-101 without boosting in reconstruction

quality, training time and test time. Note that our approach is better than Tewari et al. (2017) in terms

of geometry and overlap, and worse in terms of the photometric error on this test set.

3.8.2 Quantitative Evaluation

We compare the geometric accuracy of our approach to state-of-the-art monocular reconstruction tech-

niques in Figure 3.6. As ground truth, we use the high-quality stereo reconstructions of Valgaerts et al.

(2012). Compared to Thies et al. (2016), our approach obtains similar quality results, but without the

need for explicit optimization. Therefore, our approach is two orders of magnitude faster (9.4 ms vs

600 ms) than optimization-based approaches. Note that while Thies et al. (2016) run in real time for face

tracking, it requires significantly longer to estimate all model parameters from an initialization based

on the average model. In contrast to the state-of-the-art learning-based methods by Richardson et al.

(2016); Richardson et al. (2017), Jackson et al. (2017) and Tran et al. (2017), ours obtains a reconstruc-

tion of all dimensions, including pose, shape, expression, and colored skin reflectance and illumination.

In addition, we performed a large quantitative ground-truth comparison on the FaceWarehouse

[Cao et al. 2014b] dataset, see Table 3.2. We show the mean error (in mm) and standard deviation

(SD) for 180 meshes (9 different identities, each with 20 different expressions). As can be seen, our

boosting approach increases accuracy. Our approach is only slightly worse than the optimization-based

approach of Garrido et al. (2016), while being orders of magnitude faster. Boosting is on par with the

weakly supervised approach of Tewari et al. (2017), which is trained on real images and landmarks.

We also compare to a baseline network ‘MonoFit’ that has been directly trained on the monocular fits

of Garrido et al. (2016) on the CelebA [Liu et al. 2015] dataset. Our self-supervised boosting approach

obtains higher accuracy results.



45 3.8. EXPERIMENTS AND RESULTS

In
pu

t
G

ro
un

d 
Tr

ut
h

Ri
ch

ar
ds

on
17

O
ur

s

20
m

m

0m
m

O
ur

s (
co

m
pl

et
e 

m
od

el
)

2.
38

m
m

3.
30

m
m

m
ea

n 
er

ro
r:

Tr
an

17

2.
87

m
m

3.
27

m
m

Ja
ck

so
n1

7
Th

ie
s1

6

1.
85

m
m

Fi
gu

re
3.

6:
Q

ua
nt

ita
tiv

e
co

m
pa

ris
on

of
ge

om
et

ric
ac

cu
ra

cy
co

m
pa

re
d

to
Th

ie
s

et
al

.(
20

16
),

R
ic

ha
rd

so
n

et
al

.(
20

17
),

Ja
ck

so
n

et
al

.(
20

17
)a

nd
Tr

an
et

al
.(

20
17

)o
n

Vo
lk

er
[V

al
ga

er
ts

et
al

.2
01

2]
.T

he
he

at
m

ap
s

vi
su

al
iz

e
th

e
po

in
tw

is
e

H
au

sd
or

ff
di

st
an

ce
(in

m
m

)b
et

w
ee

n
th

e
in

pu
ta

nd
th

e
gr

ou
nd

-tr
ut

h.
Th

e
gr

ou
nd

-tr
ut

h
ha

s
be

en
ob

ta
in

ed
by

th
e

hi
gh

-q
ua

lit
y

bi
no

cu
la

rr
ec

on
st

ru
ct

io
n

ap
pr

oa
ch

of
Va

lg
ae

rt
s

et
al

.(
20

12
).



CHAPTER 3. FACE RECONSTRUCTION 46

Input Ours Garrido13 Garrido16

Figure 3.7: Qualitative comparison to optimization-based approaches [Garrido et al. 2013; Garrido et al. 2016]
on Thomas [Garrido et al. 2013]. For more, see our supplemental document at the project website.

3.8.3 Qualitative Evaluation

We next compare our reconstruction results qualitatively to current state-of-the-art approaches. Fig-

ure 3.7 compares our reconstruction to optimization-based approaches that fit a parametric face model

[Garrido et al. 2016] or a person-specific template mesh [Garrido et al. 2013]. Our learning-based

approach is significantly faster (9.4 ms vs about 2 minutes [Garrido et al. 2016]), and orthogonal to

optimization-based approaches, since it can be used to provide a good initial solution.

In Figure 3.8, we also compare to the state-of-the-art deep-learning-based approaches by Richard-

son et al. (2016); Richardson et al. (2017), Sela et al. (2017), Jackson et al. (2017), Tran et al. (2017)

and Tewari et al. (2017). We obtain high-quality results in 9.4 ms. Most of the other approaches are

slower, do not estimate colored skin reflectance and illumination [Richardson et al. 2016; Richard-

son et al. 2017; Sela et al. 2017; Jackson et al. 2017], do not regress the facial expressions [Tran et al. 2017],

or suffer from geometric shrinking artifacts [Tewari et al. 2017]. Note, we compare to Richardson

et al.’s ‘CoarseNet’ [Richardson et al. 2017], which corresponds to their earlier method [Richard-

son et al. 2016], and estimates pose, shape and expression, followed by a model-based optimization of

monochrome reflectance and illumination. We also compare to Sela et al.’s aligned template mesh. We

don’t compare to ‘FineNet’ [Richardson et al. 2017] or ‘fine detail reconstruction’ [Sela et al. 2017]

as these estimate a refined depth map/mesh, and we are interested in comparing the reconstructed

parametric face models.

Figure 3.9 shows several monocular reconstruction results obtained with our InverseFaceNet. As can

be seen, our approach obtains good estimates of all model parameters.

3.9 Limitations

In this chapter, we propose a solution to the highly challenging problem of inverse face rendering

from a single image. Similar to previous learning-based approaches, ours has a few limitations. Our

approach does not perfectly generalize to inputs that are outside of the training corpus. Profile views

of the head are problematic and hard to reconstruct, even if they are part of the training corpus. Note

that even state-of-the-art landmark trackers often fail in this scenario. Handling these cases robustly
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Input Geometry Geometry

Richardson17
Sela17

Jackson17
Tran17

Tew
ari17

Ours State-of-the-arts

Figure 3.8: Comparison to a wide range of state-of-the-art learning-based approaches. From top to bottom:
Comparison to Richardson et al. (2017), Sela et al. (2017), Jackson et al. (2017), Tran et al. (2017) and
Tewari et al. (2017). We obtain high-quality results in 9.4 ms. Most other approaches are significantly slower,
do not estimate colored skin reflectance and illumination (empty box), do not regress facial expressions
(yellow arrow), or suffer from geometric shrinking (red arrow). Images from LFW [Huang et al. 2007], 300-VW
[Shen et al. 2015], CelebA [Liu et al. 2015] and FaceWarehouse [Cao et al. 2014b]. For more results, see our
supplemental document at the project website.

remains an open research question. Incorrect landmark localization might produce inconsistent input

to our network, which harms the quality of the regressed face model. This could be addressed by

more sophisticated face detection algorithms, or by joint learning of landmarks and reconstruction.

Occlusions of the face, such as hair, beards, sun glasses or hands, can also be problematic. To handle

these situations robustly, our approach could be trained in an occlusion-aware manner by augmenting

our training corpus with artificial occlusions, similar to Zhao et al. (2018).
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Input Geometry Contours

Figure 3.9: Qualitative results on LFW [Huang et al. 2007] and 300-VW [Shen et al. 2015]. Top to bottom:
input image, our estimated face model and geometry, and contours (red: input mask, green: ours). Our
approach achieves high-quality reconstructions from just a single input image. For more results, we refer to the
supplemental document at the project website.

3.10 Summary

In this chapter, we have presented InverseFaceNet – a single-shot inverse face rendering framework.

Our key contribution is to overcome the lack of well-annotated image datasets by self-supervised boost-

ing of a synthetic training corpus that captures the real-world distribution. This enables high-quality

face reconstruction from just a single monocular image. Our evaluation shows that our approach

compares favorably to the state-of-the-art. InverseFaceNet could be used to quickly and robustly

initialize optimization-based reconstruction approaches close to the global minimum.

In the next chapter, we show how monocular face reconstruction can be combined with neural face

rendering. The reconstructed facial rendering parameters will provide the basis for a rendering-to-video

translation network that transforms coarse face model renderings into realistic portrait video outputs

for a wide range of applications such as an interactive full head reenactment, visual dubbing and video

teleconferencing.



Chapter 4

Face Editing

Input Output

Figure 4.1: Unlike current face reenactment approaches that only modify the expression of a target actor in a
video, our novel deep video portrait approach enables full control over the target by transferring the rigid head
pose, facial expression and eye motion with a high level of photorealism.

This chapter presents a novel approach that enables photo-realistic re-animation of portrait videos using

only an input video. In contrast to existing approaches that are restricted to manipulations of facial

expressions only, we are the first to transfer the full 3D head position, head rotation, face expression,

eye gaze, and eye blinking from a source actor to a portrait video of a target actor. The core of our

approach is a generative neural network with a novel space-time architecture. The network takes as

input synthetic renderings of a parametric face model, based on which it predicts photo-realistic video

frames for a given target actor. The realism in this rendering-to-video transfer is achieved by careful

adversarial training, and as a result, we can create modified target videos that mimic the behavior of

the synthetically-created input. In order to enable source-to-target video re-animation, we render a

synthetic target video with the reconstructed head animation parameters from a source video, and feed

it into the trained network – thus taking full control of the target. With the ability to freely recombine

source and target parameters, we are able to demonstrate a large variety of video rewrite applications

49
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without explicitly modeling hair, body or background (see Figure 4.1). For instance, we can reenact

the full head using interactive user-controlled editing, and realize high-fidelity visual dubbing. The

method and results presented in this chapter are based on Kim et al. (2018a).

4.1 Introduction

Synthesizing and editing video portraits, i.e., videos framed to show a person’s head and upper body, is

an important problem in computer graphics, with applications in video editing and movie postproduc-

tion, visual effects, visual dubbing, virtual reality, and telepresence, among others. In this chapter, we

address the problem of synthesizing a photo-realistic video portrait of a target actor that mimics the ac-

tions of a source actor, where source and target can be different subjects. More specifically, our approach

enables a source actor to take full control of the rigid head pose, face expressions and eye motion of the

target actor; even face identity can be modified to some extent. All of these dimensions can be manipu-

lated together or independently. Full target frames, including the entire head and hair, but also a realistic

upper body and scene background complying with the modified head, are automatically synthesized.

Recently, many methods have been proposed for face-interior reenactment [Liu et al. 2001; Vla-

sic et al. 2005; Thies et al. 2015; Thies et al. 2016; Suwajanakorn et al. 2017; Olszewski et al. 2017].

Here, only the face expression can be modified realistically, but not the full 3D head pose, including a

consistent upper body and a consistently changing background. Many of these methods fit a parametric

3D face model to RGB(-D) video [Vlasic et al. 2005; Thies et al. 2015; Thies et al. 2016], and re-render

the modified model as a blended overlay over the target video for reenactment, even in real time

[Thies et al. 2015; Thies et al. 2016]. Synthesizing a complete portrait video under full 3D head control

is much more challenging. Averbuch-Elor et al. (2017) enable mild head pose changes driven by a

source actor based on image warping. They generate reactive dynamic profile pictures from a static

target portrait photo, but not fully reenacted videos. Also, large changes in head pose cause artifacts

(see Section 4.7.3 ), the target gaze cannot be controlled, and the identity of the target person is not

fully preserved (mouth appearance is copied from the source actor).

Performance-driven 3D head animation methods [Weise et al. 2011; Cao et al. 2014a; Cao et al. 2015;

Ichim et al. 2015; Li et al. 2015b; Olszewski et al. 2016; Cao et al. 2016; Hu et al. 2017] are related

to our work, but have orthogonal methodology and application goals. They typically drive the full

head pose of stylized 3D CG avatars based on visual source actor input, e.g., for games or stylized VR

environments. Recently, Cao et al. (2016) proposed image-based 3D avatars with dynamic textures

based on a real-time face tracker. However, their goal is full 3D animated head control and rendering,

often intentionally in a stylized rather than a photo-realistic fashion.

We take a different approach that directly generates entire photo-realistic video portraits in front of gen-

eral static backgrounds under full control of a target’s head pose, facial expression, and eye motion. We

formulate video portrait synthesis and reenactment as a rendering-to-video translation task. Input to our

algorithm are synthetic renderings of only the coarse and fully-controllable 3D face interior model of a
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target actor and separately rendered eye gaze images, which can be robustly and efficiently obtained via

a state-of-the-art model-based reconstruction technique. The input is automatically translated into full-

frame photo-realistic video output showing the entire upper body and background. Since we only track

the face, we cannot actively control the motion of the torso or hair, or control the background, but our

rendering-to-video translation network is able to implicitly synthesize a plausible body and background

(including some shadows and reflections) for a given head pose. This translation problem is tackled us-

ing a novel space-time encoder–decoder deep neural network, which is trained in an adversarial manner.

At the core of our approach is a conditional generative adversarial network (cGAN) [Isola et al. 2017],

which is specifically tailored to video portrait synthesis. For temporal stability, we use a novel space-

time network architecture that takes as input short sequences of conditioning input frames of head

and eye gaze in a sliding window manner to synthesize each target video frame. Our target and

scene-specific networks only require a few minutes of portrait video footage of a person for training.

To the best of our knowledge, our approach is the first to synthesize full photo-realistic video portraits

of a target person’s upper body, including realistic clothing and hair, and consistent scene background,

under full 3D control of the target’s head. To summarize, this chapter makes the following technical

contributions:

• A rendering-to-video translation network that transforms coarse face model renderings into full

photo-realistic portrait video output.

• A novel space-time encoding as conditional input for temporally coherent video synthesis that

represents face geometry, reflectance, and motion as well as eye gaze and eye blinks.

• A comprehensive evaluation on several applications to demonstrate the flexibility and effective-

ness of our approach.

We demonstrate the potential and high quality of our method in many intriguing applications, ranging

from face reenactment and visual dubbing for foreign language movies to user-guided interactive

editing of portrait videos for movie postproduction. A comprehensive comparison to state-of-the-art

methods and a user study confirm the high fidelity of our results.

4.2 Related Work

We discuss related optimization and learning-based methods that aim at reconstructing, animating

and re-writing faces in images and videos, and review relevant image-to-image translation work. For

a comprehensive overview of current methods we refer to a recent state-of-the-art report on monocular

3D face reconstruction, tracking and applications [Zollhöfer et al. 2018].

Monocular Face Reconstruction Face reconstruction methods aim to reconstruct 3D face models

of shape and appearance from visual data. Optimization-based methods fit a 3D template model, mainly
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the inner face region, to single images [Blanz and Vetter 1999; Blanz et al. 2004], unstructured image

collections [Kemelmacher-Shlizerman et al. 2011; Kemelmacher-Shlizerman 2013; Roth et al. 2017] or

video [Shi et al. 2014; Garrido et al. 2016; Thies et al. 2016; Suwajanakorn et al. 2014; Fyffe et al. 2014;

Wu et al. 2016; Cao et al. 2014b; Ichim et al. 2015]. Recently, Booth et al. (2018) proposed a large-scale

parametric face model constructed from almost ten thousand 3D scans. Learning-based approaches

leverage a large corpus of images or image patches to learn a regressor for predicting either 3D face

shape and appearance [Tewari et al. 2017; Tran et al. 2017; Richardson et al. 2016], fine-scale skin

details [Cao et al. 2015], or both [Richardson et al. 2017; Sela et al. 2017]. Deep neural networks have

been shown to be quite robust for inferring the coarse 3D facial shape and appearance of the inner face

region, even when trained on synthetic data [Richardson et al. 2016]. Tewari et al. (2017) showed that

encoder–decoder architectures can be trained fully unsupervised on in-the-wild images by integrating

physical image formation into the network. Richardson et al. (2017) trained an end-to-end regressor

to recover facial geometry at a coarse and fine-scale level. Sela et al. (2017) use an encoder–decoder

network to infer a detailed depth image and a dense correspondence map, which serve as a basis for

non-rigidly deforming a template mesh. Still, none of these methods creates a fully generative model

for the entire head, hair, mouth interior, and eye gaze, like we do.

Video-based Facial Reenactment Facial reenactment methods re-write the face content of a target

actor in a video or image by transferring facial expressions from a source actor. Facial expressions are

commonly transferred via dense motion fields [Liu et al. 2001; Suwajanakorn et al. 2015b; Averbuch-

Elor et al. 2017], parameters [Vlasic et al. 2005; Thies et al. 2016; Thies et al. 2018], or by warping

candidate frames that are selected based on the facial motion [Dale et al. 2011], appearance metrics

[Kemelmacher-Shlizerman et al. 2010] or both [Garrido et al. 2014; Li et al. 2014b]. The methods

described above first reconstruct and track the source and target faces, which are represented as a set

of sparse 2D landmarks or dense 3D models. Most approaches only modify the inner region of the

face and thus are mainly intended for altering facial expressions, but they do not take full control of a

video portrait in terms of rigid head pose, facial expression, and eye gaze. Recently, Wood et al. (2018)

proposed an approach for eye gaze redirection based on a fitted parametric eye model. Their approach

only provides control over the eye region.

One notable exception to pure facial reenactment is Averbuch-Elor et al.’s approach (2017), which

enables the reenactment of a portrait image and allows for slight changes in head pose via image

warping [Fried et al. 2016]. Since this approach is based on a single target image, it copies the mouth

interior from the source to the target, thus preserving the target’s identity only partially. We take

advantage of learning from a target video to allow for larger changes in head pose, facial reenactment,

and joint control of the eye gaze.

Visual Dubbing Visual dubbing is a particular instance of face reenactment that aims to alter

the mouth motion of the target actor to match a new audio track, commonly spoken in a foreign

language by a dubbing actor. Here, we can find speech-driven [Bregler et al. 1997; Chang and Ez-



53 4.3. OVERVIEW

zat 2005; Ezzat et al. 2002; Liu and Ostermann 2011; Suwajanakorn et al. 2017] or performance-driven

[Garrido et al. 2015; Thies et al. 2016] techniques. Speech-driven dubbing techniques learn a person-

specific phoneme-to-viseme mapping from a training sequence of the actor. These methods produce

accurate lip sync with visually imperceptible artifacts, as recently demonstrated by Suwajanakorn et al.

(2017). However, they cannot directly control the target’s facial expressions. Performance-driven

techniques overcome this limitation by transferring semantically-meaningful motion parameters and

re-rendering the target model with photo-realistic reflectance [Thies et al. 2016], and fine-scale details

[Garrido et al. 2015; Garrido et al. 2016]. These approaches generalize better, but do not edit the head

pose and still struggle to synthesize photo-realistic mouth deformations. In contrast, our approach

learns to synthesize photo-realistic facial motion and actions from coarse renderings, thus enabling the

synthesis of expressions and joint modification of the head pose, with consistent body and background.

Image-to-image Translation Approaches using conditional GANs [Mirza and Osindero 2014],

such as Isola et al.’s “pix2pix” (2017), have shown impressive results on image-to-image translation

tasks which convert between images of two different domains, such as maps and satellite photos. These

combine encoder–decoder architectures [Hinton and Salakhutdinov 2006], often with skip-connections

[Ronneberger et al. 2015], with adversarial loss functions [Goodfellow et al. 2014; Radford et al. 2016].

Chen and Koltun (2017) were the first to demonstrate high-resolution results with 2 megapixel res-

olution, using cascaded refinement networks without adversarial training. The latest trends show

that it is even possible to train high-resolution GANs [Karras et al. 2018] and conditional GANs

[Wang et al. 2018] at similar resolutions. However, the main challenge is the requirement for paired

training data, as corresponding image pairs are often not available. This problem is tackled by Cycle-

GAN [Zhu et al. 2017], DualGAN [Yi et al. 2017], and UNIT [Liu et al. 2017] – multiple concurrent

unsupervised image-to-image translation techniques that only require two sets of unpaired training

samples. These techniques have captured the imagination of many people by translating between

photographs and paintings, horses and zebras, face photos and depth as well as correspondence

maps [Sela et al. 2017], and translation from face photos to cartoon drawings [Taigman et al. 2017].

Ganin et al. (2016) learn photo-realistic gaze manipulation in images. Olszewski et al. (2017) syn-

thesize a realistic inner face texture, but cannot generate a fully controllable output video, including

person-specific hair. Lassner et al. (2017) propose a generative model to synthesize people in clothing,

and Ma et al. (2017) generate new images of persons in arbitrary poses using image-to-image transla-

tion. In contrast, our approach enables the synthesis of temporally-coherent video portraits that follow

the animation of a source actor in terms of head pose, facial expression and eye gaze.

4.3 Overview

Our deep video portraits approach provides full control of the head of a target actor by transferring

the rigid head pose, facial expression, and eye motion of a source actor, while preserving the target’s

identity and appearance. Full target video frames are synthesized, including consistent upper body pos-
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ture, hair and background. First, we track the source and target actor using a state-of-the-art monocular

face reconstruction approach that uses a parametric face and illumination model (see Section 4.4). The

resulting sequence of low-dimensional parameter vectors represents the actor’s identity, head pose, ex-

pression, eye gaze, and the scene lighting for every video frame (Figure 4.2, left). This allows us to trans-

fer the head pose, expression, and/or eye gaze parameters from the source to the target, as desired. In

the next step (Figure 4.2, middle), we generate new synthetic renderings of the target actor based on the

modified parameters (see Section 4.5). In addition to a normal color rendering, we also render correspon-

dence maps and eye gaze images. These renderings serve as conditioning input to our novel rendering-

to-video translation network (see Section 4.6) , which is trained to convert the synthetic input into photo-

realistic output (see Figure 4.2, right). For temporally coherent results, our network works on space-time

volumes of conditioning inputs. To process a complete video, we input the conditioning space-time

volumes in a sliding window fashion, and assemble the final video from the output frames. We evaluate

our approach (see Section 4.7) and show its potential on several video rewrite applications, such as

full-head reenactment, gaze redirection, video dubbing, and interactive parameter-based video control.

4.4 Monocular Face Reconstruction

We employ a state-of-the-art dense face reconstruction approach that fits a parametric model of face

and illumination to each video frame. It obtains a meaningful parametric face representation for the

source V s ={I s
f | f =1,...,Ns} and target V t ={I t

f | f =1,...,Nt} video sequence, where Ns and Nt

denote the total number of source and target frames, respectively. Let P •= {P •f | f = 1,...,N•} be

the corresponding parameter sequence that fully describes the source or target facial performance.

The set of reconstructed parameters encode the rigid head pose (rotation R•∈SO(3) and translation

t•∈R3), facial identity coefficients θ
[s]∈RNs (geometry, Ns=80) and θ

[r]∈RNr (reflectance, Nr =80),

expression coefficients θ
[e]∈RNe (Ne=64), gaze direction for both eyes e•∈R4, and spherical har-

monics illumination coefficients θ
[i]∈R27. Overall, our monocular face tracker reconstructs Np=261

parameters per video frame. In the following, we provide more details on the face tracking algorithm

as well as the parametric face representation.

Parametric Face Representation We represent the space of facial identity based on a paramet-

ric head model [Blanz and Vetter 1999], and the space of facial expressions via an affine model.

Mathematically, we model geometry variation through an affine model v∈R3N that stacks per-vertex

deformations of the underlying template mesh with N vertices, as follows:

v(θ [s],θ [e])=a[g]+
Ns

∑
k=1

θ
[s]
k b[s]

k +
Ne

∑
k=1

θ
[e]
k b[e]

k . (4.1)



CHAPTER 4. FACE EDITING 56

Diffuse skin reflectance is modeled similarly by a second affine model r∈R3N that stacks the diffuse

per-vertex albedo:

r(θ [r])=a[r]+
Nr

∑
k=1

θ
[r]
k b[r]

k . (4.2)

The vectors a[g] ∈R3N and a[r] ∈R3N store the average facial geometry and corresponding skin

reflectance, respectively. The geometry basis {b[s]
k }

Ns
k=1 has been computed by applying principal

component analysis (PCA) to 200 high-quality face scans [Blanz and Vetter 1999]. The reflectance

basis {b[r]
k }

Nr
k=1 has been obtained in the same manner. For dimensionality reduction, the expression

basis {b[e]
k }

Ne
k=1 has been computed using PCA, starting from the blendshapes of Alexander et al. (2010)

and Cao et al. (2014b). Their blendshapes have been transferred to the topology of Blanz and Vetter

(1999) using deformation transfer [Sumner and Popović 2004].

Image Formation Model To render synthetic head images, we assume a full perspective camera that

maps model-space 3D points v via camera space v̂∈R3 to 2D points p=Π(v̂)∈R2 on the image plane.

The perspective mapping Π contains the multiplication with the camera intrinsics and the perspective

division. We assume a fixed and identical camera for all scenes, i.e., world and camera space are the

same, and the face model accounts for all the scene motion. Based on a distant illumination assumption,

we use the spherical harmonics (SH) basis functions Yb :R3→R to approximate the incoming radiance

B from the environment:

B(ri,ni,θ
[i])=ri ·

B2

∑
b=1

θ
[i]
b Yb(ni). (4.3)

Here, B is the number of spherical harmonics bands, θ
[i]
b ∈R3 are the SH coefficients, and ri and ni

are the reflectance and unit normal vector of the i-th vertex, respectively. For diffuse materials, an

average approximation error below 1 percent is achieved with only B=3 bands, independent of the

illumination [Ramamoorthi and Hanrahan 2001a], since the incident radiance is in general a smooth

function. This results in B2=9 parameters per color channel.

Dense Face Reconstruction We employ a dense data-parallel face reconstruction approach to

efficiently compute the parameters P • for both source and target videos. Face reconstruction is based

on an analysis-by-synthesis approach that maximizes photo-consistency between a synthetic rendering

of the model and the input. The reconstruction energy combines terms for dense photo-consistency,

landmark alignment and statistical regularization:

E(θ)=wphotoEphoto(θ)+wlandEland(θ)+wregEreg(θ), (4.4)

with θ ={R•,t•,θ [s],θ [r],θ [e],θ [i]}. This enables the robust reconstruction of identity (geometry and

skin reflectance), facial expression, and scene illumination. We use 66 automatically detected facial

landmarks of the True Vision Solution tracker1, which is a commercial implementation of Saragih et al.

1http://truevisionsolutions.net

http://truevisionsolutions.net
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(2011b), to define the sparse alignment term Eland. Similar to Thies et al. (2016), we use a robust

`1-norm for dense photometric alignment Ephoto. The regularizer Ereg enforces statistically plausible

parameter values based on the assumption of normally distributed data. The eye gaze estimate e• is

directly obtained from the landmark tracker. The identity is only estimated in the first frame and is kept

constant afterwards. All other parameters are estimated every frame. For more details on the energy

formulation, we refer to Garrido et al. (2016) and Thies et al. (2016). We use a data-parallel implemen-

tation of iteratively re-weighted least squares (IRLS), similar to Thies et al. (2016), to find the optimal

set of parameters. One difference to their work is that we compute and explicitly store the Jacobian

J and the residual vector F to global memory based on a data-parallel strategy that launches one thread

per matrix/vector element. Afterwards, a data-parallel matrix–matrix/matrix–vector multiplication

computes the right- and left-hand side of the normal equations that have to be solved in each IRLS step.

The resulting small linear system (97×97 in tracking mode, 6 DoF rigid pose, 64 expression parameters

and 27 SH coefficients) is solved on the CPU using Cholesky factorization in each IRLS step. The recon-

struction of a single frame takes 670 ms (all parameters) and 250 ms (without identity, tracking mode).

This allows the efficient generation of the training corpus that is required by our space-time rendering-

to-video translation network (see Section 4.6), Contrary to Garrido et al. (2016) and Thies et al. (2016),

our model features dimensions to model eyelid closure, so eyelid motion is captured well.

4.5 Synthetic Conditioning Input

Using the method from Section 4.4 , we reconstruct the face in each frame of the source and unmodified

target video. Next, we obtain the modified parameter vector for every frame of the target sequence, e.g.,

for full-head reenactment, we modify the rigid head pose, expression and eye gaze of the target actor.

All parameters are copied in a relative manner from the source to the target, i.e., with respect to a neutral

reference frame. Then we render synthetic conditioning images of the target actor’s face model under

the modified parameters using hardware rasterization. For higher temporal coherence, our rendering-

to-video translation network takes a space-time volume of conditioning images {C f−o |o=0,...,10}
as input, with f being the index of the current frame. We use a temporal window of size Nw=11, with

the current frame being at its end. This provides the network a history of the earlier motions.

For each frame C f−o of the window, we generate three different conditioning inputs: a color rendering,

a correspondence image, and an eye gaze image (see Figure 4.3). The color rendering shows the

modified target actor model under the estimated target illumination, while keeping the target identity

(geometry and skin reflectance) fixed. This image provides a good starting point for the following

rendering-to-video translation, since in the face region only the delta to a real image has to be learned.

In addition to this color input, we also provide a correspondence image encoding the index of the

parametric face model’s vertex that projects into each pixel. To this end, we texture the head model

with a constant unique gradient texture map, and render it. Finally, we also provide an eye gaze image

that solely contains the white region of both eyes and the locations of the pupils as blue circles. This
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Diffuse Rendering Correspondence Eye and Gaze Map
Figure 4.3: The synthetic input used for conditioning our rendering-to-video translation network: (1) colored
face rendering under target illumination, (2) correspondence image, and (3) the eye gaze image.

image provides information about the eye gaze direction and blinking to the network.

We stack all Nw conditioning inputs of a time window in a 3D tensor X of size W×H×9Nw (3 images,

with 3 channels each), to obtain the input to our rendering-to-video translation network. To process

the complete video, we feed the conditioning space-time volumes in a sliding window fashion. The

final generated photo-realistic video output is assembled directly from the output frames.

4.6 Rendering-to-Video Translation

The generated conditioning space-time video tensors are the input to our rendering-to-video translation

network. The network learns to convert the synthetic input into full frames of a photo-realistic target

video, in which the target actor now mimics the head motion, facial expression and eye gaze of the

synthetic input. The network learns to synthesize the entire actor in the foreground, i.e., the face for

which conditioning input exists, but also all other parts of the actor, such as hair and body, so that

they comply with the target head pose. It also synthesizes the appropriately modified and filled-in

background, including even some consistent lighting effects between foreground and background.

The network is trained for a specific target actor and a specific static, but otherwise general scene

background. Our rendering-to-video translation network follows an encoder–decoder architecture

and is trained in an adversarial manner based on a discriminator that is jointly trained. In the following,

we explain the network architectures, the used loss functions and the training procedure in detail.

Network Architecture We show the architecture of our rendering-to-video translation network in

Figure 4.4. Our conditional generative adversarial network consists of a space-time transformation

network T and a discriminator D. The transformation network T takes the W×H×9Nw space-time

tensor X as input and outputs a photo-real image T(X) of the target actor. The temporal input enables

the network to take the history of motions into account by inspecting previous conditioning images.

The temporal axis of the input tensor is aligned along the network channels, i.e., the convolutions in the

first layer have 9Nw channels. Note, we store all image data in normalized [−1,+1]-space, i.e, black

is mapped to [−1,−1,−1]> and white is mapped to [+1,+1,+1]>.

Our network consists of two main parts, an encoder for computing a low-dimensional latent rep-

resentation, and a decoder for synthesizing the output image. We employ skip connections [Ron-
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Figure 4.4: Architecture of our rendering-to-video translation network for an input resolution of 256×256:
The encoder has 8 downsampling modules with (64,128,256,512,512,512,512,512) output channels. The
decoder has 8 upsampling modules with (512,512,512,512,256,128,64,3) output channels. The upsampling
modules use the following dropout probabilities (0.5,0.5,0.5,0,0,0,0,0). The first downsampling and the last
upsampling module do not employ batch normalization (BN). The final non-linearity (TanH) brings the output to
the employed normalized [−1,+1]-space.

neberger et al. 2015] to enable the network to transfer fine-scale structure. To generate video frames with

sufficient resolution, our network also employs a cascaded refinement strategy [Chen and Koltun 2017].

In each downsampling step, we use a convolution (4×4, stride 2) followed by batch normalization and

a leaky ReLU non-linearity. The upsampling module is specifically designed to produce high-quality

output, and has the following structure: first, the resolution is increased by a factor of two based on

deconvolution (4×4, upsampling factor of 2), batch normalization, dropout and ReLU. Afterwards,

two refinement steps based on convolution (3×3, stride 1, stays on the same resolution) and ReLU are

applied. The final hyperbolic tangent non-linearity (TanH) brings the output tensor to the normalized

[−1,+1]-space used for storing the image data. For more details, please refer to Figure 4.4.

The input to our discriminator D is the conditioning input tensor X (size W×H×9Nw), and either

the predicted output image T(X) or the ground-truth image, both of size W×H×3. The employed

discriminator is inspired by the PatchGAN classifier, proposed by Isola et al. (2017). We extended

it to take volumes of conditioning images as input.

Objective Function We train in an adversarial manner to find the best rendering-to-video translation

network:

T∗=argmin
T

max
D

EcGAN(T,D)+λE`1(T). (4.5)

This objective function comprises an adversarial loss EcGAN(T,D) and an `1-norm reproduction loss

E`1(T). The constant weight of λ =100 balances the contribution of these two terms. The adversarial
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Input OursNearest Neighbor
Figure 4.5: Comparison to a nearest-neighbor approach in parameter space (pose and expression). Our
results have higher quality and are temporally more coherent (see supplemental video at the project website).
For the nearest-neighbor approach, it is difficult to find the right trade-off between pose and expression. This
leads to many results with one of the two dimensions not being well-matched. The results are also temporally
unstable, since the nearest neighbor abruptly changes, especially for small training sets.

loss has the following form:

EGAN(T,D)=EX,Y
[
logD(X,Y)

]
+EX

[
log
(
1−D(X,T(X))

)]
. (4.6)

We do not inject a noise vector while training our network to produce deterministic outputs. During

adversarial training, the discriminator D tries to get better at classifying given images as real or syn-

thetic, while the transformation network T tries to improve in fooling the discriminator. The `1-norm

loss penalizes the distance between the synthesized image T(X) and the ground-truth image Y, which

encourages the sharpness of the synthesized output:

E`1(T)=EX,Y
[
‖Y−T(X)‖1

]
. (4.7)

Training We construct the training corpus T ={(Xi,Yi)}i based on the tracked video frames of the

target video sequence. Typically, two thousand video frames, i.e., about one minute of video footage, are

sufficient to train our network (see Section 4.7). Our training corpus consists of Nt−(Nw−1) rendered

conditioning space-time volumes Xi and the corresponding ground-truth image Yi (using a window size

of Nw=11). We train our networks using the TensorFlow [Abadi et al. 2015] deep learning framework.

The gradients for back-propagation are obtained using Adam [Kingma and Ba 2015]. We train for

31,000 iterations with a batch size of 16 (approx. 250 epochs for a training corpus of 2000 frames) using

a base learning rate of 0.0002 and first momentum of 0.5; all other parameters have their default value.

We train our networks from scratch, and initialize the weights based on a Normal distribution N (0,0.2).

4.7 Results

Our approach enables full-frame target video portrait synthesis under full 3D head pose control. We

measured the runtime for training and testing on an Intel Xeon E5-2637 with 3.5 GHz (16 GB RAM)
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Figure 4.7: Quantitative evaluation of the photometric re-rendering error. We evaluate our approach quantita-
tively in a self-reenactment setting, where the ground-truth video portrait is known. We train our rendering-
to-video translation network on two thirds of the video sequence, and test on the remaining third. The error
maps show per-pixel Euclidean distance in RGB (color channels in [0,255]); the mean photometric error of the
test set is shown in the top-right. The error is consistently low in regions with conditioning input, with higher
errors in regions without conditioning, such as the upper body. Obama video courtesy of the White House
(public domain). Putin video courtesy of the Kremlin (CC BY). May video courtesy of the UK government (Open
Government Licence).

and an NVIDIA GeForce GTX Titan Xp (12 GB RAM). Training our network takes 10 hours for a

target video resolution of 256×256 pixels, and 42 hours for 512×512 pixels. Tracking the source actor

takes 250 ms per frame (without identity), and the rendering-to-video conversion (inference) takes

65 ms per frame for 256×256 pixels, or 196 ms for 512×512 pixels.

In the following, we evaluate the design choices of our deep video portrait algorithm, compare to

current state-of-the-art reenactment approaches, and show the results of a large-scale web-based user

study. We further demonstrate the potential of our approach on several video rewrite applications, such

as reenactment under full head and facial expression control, facial expression reenactment only, video

dubbing, and live video portrait editing under user control. For more results, we refer to our supplemen-
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tal video at the project website2. In total, we applied our approach to 14 different target sequences of 13

different subjects and used 5 different source sequences; see Section 4.8 for details. A comparison to

a simple nearest-neighbor retrieval approach can be found in Figure 4.5 and in the supplemental video

at the project website. Our approach requires only a few minutes of target video footage for training.

4.7.1 Applications

Our approach enables us to take full control of the rigid head pose, facial expression, and eye motion

of a target actor in a video portrait, thus opening up a wide range of video rewrite applications. All

parameter dimensions can be estimated and transfered from a source video sequence or edited manually

through an interactive user interface.

Reenactment under full head control Our approach is the first that can photo-realistically transfer

the full 3D head pose (spatial position and rotation), facial expression, as well as eye gaze and eye blink-

ing of a captured source actor to a target actor video. Figure 4.6 shows some examples of full-head reen-

actment between different source and target actors. Here, we use the full target video for training and the

source video as the driving sequence. As can be seen, the output of our approach achieves a high level of

realism and faithfully mimics the driving sequence, while still retaining the mannerisms of the original

target actor. Note that the shadow in the background moves consistently with the position of the actor in

the scene, as shown in Figure 4.6 (second row). We also demonstrate the high quality of our results and

evaluate our approach quantitatively in a self-reenactment scenario, see Figure 4.7. For the quantitative

analysis, we use two thirds of the target video for training and one third for testing. We capture the

face in the training and driving video with our model-based tracker, and then render the conditioning

images, which serve as input to our network for synthesizing the output. For further details, please refer

to Section 4.7.2. Note that the synthesized results are nearly indistinguishable from the ground truth.

Facial Reenactment and Video Dubbing Besides full-head reenactment, our approach also en-

ables facial reenactment. In this experiment, we replace the expression coefficients of the target actor

with those of the source actor before synthesizing the conditioning input to our rendering-to-video

translation network. Here, the head pose and position, and eye gaze remain unchanged. Figure 4.8

shows facial reenactment results. Observe that the face expression in the synthesized target video nicely

matches the expression of the source actor in the driving sequence. Please refer to the supplemental

video at the project website for the complete video sequences.

Our approach can also be applied to visual dubbing. In many countries, foreign-language movies are

dubbed, i.e., the original voice of an actor is replaced with that of a dubbing actor speaking in another

language. Dubbing often causes visual discomfort due to the discrepancy between the actor’s mouth

motion and the new audio track. Even professional dubbing studios achieve only approximate audio

2Project page: http://gvv.mpi-inf.mpg.de/projects/DeepVideoPortraits

http://gvv.mpi-inf.mpg.de/projects/DeepVideoPortraits/
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Figure 4.8: Facial reenactment results of our approach. We transfer the expressions from the source to the
target actor, while retaining the head pose (rotation and translation) as well as the eye gaze of the target actor.
For the full sequences, please refer to the supplemental video at the project website. Obama video courtesy of
the White House (public domain). Putin video courtesy of the Kremlin (CC BY). Reagan video courtesy of the
National Archives and Records Administration (public domain).

alignment at best. Visual dubbing aims at altering the mouth motion of the target actor to match the

new foreign-language audio track spoken by the dubber. Figure 4.9 shows results where we modify

the facial motion of actors speaking originally in German to adhere to an English translation spoken by

a professional dubbing actor, who was filmed in a dubbing studio [Garrido et al. 2015]. More precisely,

we transfer the captured facial expressions of the dubbing actor to the target actor, while leaving the

original target gaze and eye blinks intact, i.e., we use the original eye gaze images of the tracked target

sequence as conditioning. As can be seen, our approach achieves dubbing results of high quality. In

fact, we produce images with more realistic mouth interior and more emotional content in the mouth

region. Please see the supplemental video at the project website for full video results.

Interactive Editing of Video Portraits We built an interactive editor that enables users to reanimate

video portraits with live feedback by modifying the parameters of the coarse face model rendered
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Figure 4.9: Dubbing comparison on two sequences of Garrido et al. (2015). For visual dubbing, we transfer the
facial expressions of the dubbing actor (‘input’) to the target actor. We compare our results to Garrido et al.’s.
Our approach obtains higher quality results in terms of the synthesized mouth shape and mouth interior. Note
that our approach also enables full-head reenactment in addition to expression transfer. For the full comparison,
we refer to the supplemental video at the project website.

Figure 4.10: Interactive editing. Our approach provides full parametric control over video portraits (by controlling
head model parameters in conditioning images). This enables modifications of the rigid head pose (rotation
and translation), facial expression and eye motion. All of these dimensions can be manipulated together or
independently. We also show these modifications live in the supplemental video at the project website. Obama
video courtesy of the White House (public domain).
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Reference Identity Change
Figure 4.11: Identity modification. While not the main focus of our approach, it also enables modification of the
facial shape via the geometry shape parameters. This shows that our network picks up the correspondence
between the model and the video portrait. Note that the produced outputs are also consistent in regions that
are not constrained by the conditioning input, such as the hair and background.

Figure 4.12: Video Teleconferencing. From left to right: Original camera view and synthesized image with
head pose corrected. A traditional system for video teleconferencing often breaks the eye contact between
participants due to cameras located on top of monitors. Our method enables head pose and gaze corrections,
leading to a more natural conversation.

into the conditioning images (see our live demo in the supplemental video at the project website).

Figure 4.10 shows a few static snapshots that were taken while the users were playing with our editor.

Our approach enables changes of all parameter dimensions, either independently or all together,

as shown in Figure 4.10. More specifically, we show independent changes of the expression, head

rotation, head translation, and eye gaze (including eye blinks). Please note the realistic and consistent

generation of the torso, head and background. Even shadows or reflections appear very consistently

in the background. In addition, we show user edits that modify all parameters simultaneously. Our

interactive editor runs at approximately 9 fps. While not the focus of this chapter, our approach also

enables modifications of the geometric facial identity, see Figure 4.11. These combined modifications

show as a proof of concept that our network generalizes beyond the training corpus.

Video Teleconferencing Our method can also be applied to a video teleconferencing system. A

common problem in video teleconferencing is an arrangement of cameras located on top of monitors,

which results in breaking the eye contact between participants. With our approach, we can modify
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the head pose and gaze to restore the eye contact as shown in Figure 4.12. Another interesting aspect

of our method regarding video teleconferencing is model-based video coding. Instead of compressing

whole video, we can send model parameters, which only requires a bandwidth of 31 KB/s. In contrast,

Skype’s h.264 video streaming requires a bandwidth of around 192 KB/s, which is 6 times more.

Note that this requires to transfer the trained network beforehand. As a proof of concept, this shows

a potential of video teleconferencing for the future.

4.7.2 Quantitative Evaluation

We performed a quantitative evaluation of the re-rendering quality. First, we evaluate our approach in

a self-reenactment setting, where the ground-truth video portrait is known. We train our rendering-to-

video translation network on the first two thirds of a video sequence and test it on the remaining last third

of the video, see Figure 4.7. The photometric error maps show the per-pixel Euclidean distance in RGB

color space, with each channel being in [0,255]. We performed this test for three different videos and

the mean photometric errors are 2.88 (Vladimir Putin), 4.76 (Theresa May), and 4.46 (Barack Obama).

Our approach obtains consistently low error in regions with conditioning input (face) and higher

errors are found in regions that are unexplained by the conditioning input. Please note that while the

synthesized video portraits slightly differ from the ground truth outside the face region, the synthesized

hair and upper body are still plausible, consistent with the face region, and free of visual artifacts. For

a complete analysis of these sequences, we refer to the supplemental video at the project website.

We evaluate our space-time conditioning strategy in Figure 4.13. Without space-time conditioning,

the photometric error is significantly higher. The average errors over the complete sequence are 4.9

without vs. 4.5 with temporal conditioning (Barack Obama) and 5.3 without vs. 4.8 with temporal

conditioning (Theresa May). In addition to a lower photometric error, space-time conditioning also

leads to temporally significantly more stable video outputs. This can be seen best in the supplemental

video at the project website.

We also evaluate the importance of the training set size. In this experiment, we train our rendering-to-

video translation network with 500, 1000, 2000 and 4000 frames of the target sequence, see Figure 4.14.

As can be expected, larger training sets produce better results, and the best results are obtained with

the full training set.

We also evaluate different image resolutions by training our rendering-to-video translation network

for resolutions of 256×256, 512×512 and 1024×1024 pixels. We evaluate the quality in the self-

reenactment setting, as shown in Figure 4.15. Generative networks of higher resolution are harder to

train and require significantly longer training times: 10 hours for 256×256, 42 hours for 512×512,

and 110 hours for 1024×1024 (on a Titan Xp). Therefore, we use a resolution of 256×256 pixels for

most results.
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Figure 4.13: Quantitative evaluation of the influence of the proposed space-time conditioning input. The error
maps show the per-pixel distance in RGB color space with each channel being in [0,255]; the mean photometric
error is shown in the top-right. Without space-time conditioning, the photometric error is higher. Temporal
conditioning adds significant temporal stability. This is best seen in the supplemental video at the project
website. Obama video courtesy of the White House (public domain). May video courtesy of the UK government
(Open Government Licence).

4.7.3 Comparisons to the State-of-the-Art

We compare our deep video portrait approach to current state-of-the-art video and image reenactment

techniques.

Comparison to Thies et al. (2016) We compare our approach to the state-of-the-art Face2Face

facial reenactment method of Thies et al. (2016). In comparison to Face2Face, our approach achieves

expression transfer of similar quality. What distinguishes our approach is the capability for full-head

reenactment, i.e., the ability to also transfer the rigid head pose, gaze direction, and eye blinks in

addition to the facial expressions, as shown in Figure 4.16. As can be seen, in our result, the head

pose and eye motion nicely matches the source sequence, while the output generated by Face2Face

follows the head and eye motion of the original target sequence. Please see the supplemental video

at the project website for the video result.

Comparison to Suwajanakorn et al. (2017) We also compare to the audio-based dubbing approach

of Suwajanakorn et al. (2017), see Figure 4.17. Their AudioToObama approach produces accurate

lip sync with visually imperceptible artifacts, but provides no direct control over facial expressions.

Thus, the expressions in the output do not always perfectly match the input (box, mouth), especially

for expression changes without an audio cue. Our visual dubbing approach accurately transfers the

expressions from the source to the target. In addition, our approach provides more control over the
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Figure 4.14: Quantitative evaluation of the training set size. We train our rendering-to-video translation network
with training corpora of different sizes. The error maps show the per-pixel distance in RGB color space with
each channel being in [0,255]; the mean photometric error is shown in the top-right. Smaller training sets have
larger photometric errors, especially for regions outside of the face. For the full comparison, we refer to the
supplemental video at the project website. Obama video courtesy of the White House (public domain). May
video courtesy of the UK government (Open Government Licence).

target video by also transferring the eye gaze and eye blinks (box, eyes) and the general rigid head pose

(arrows). While their approach is trained on a huge amount of training data (17 hours), our approach

only uses a small training dataset (1.3 minutes). The differences are best visible in the supplemental

video at the project website.

Comparison to Averbuch-Elor et al. (2017) We compare our approach in the full-head reenact-

ment scenario to the image reenactment approach of Averbuch-Elor et al. (2017), see Figure 4.18. Their

approach does not preserve the identity of the target actor, since they copy the teeth and mouth interior

from the source to the target sequence. Our learning-based approach enables larger modifications of
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Figure 4.15: Quantitative comparison of different resolutions. We train three rendering-to-video translation
networks for resolutions of 256×256, 512×512 and 1024×1024 pixels. The error maps show the per-pixel
distance in RGB color space with each channel being in [0,255]; the mean photometric error is shown in the
top-right. For the full comparison, see our video. May video courtesy of the UK government (Open Government
Licence).

the head pose without apparent artifacts, while their warping-based approach significantly distorts

the head and background. In addition, we enable the joint modification of the gaze direction and eye

blinks; see supplemental video at the project website.

4.7.4 User Study

We conducted two extensive web-based user studies to quantitatively evaluate the realism of our

results. We prepared short 5-second video clips that we extracted from both real and synthesized

videos (see Figure 4.19), to evaluate three applications of our approach: self-reenactment, same-

person-reenactment and visual dubbing. We opted for self-reenactment, same-person-reenactment

(two speeches of Barack Obama) and visual dubbing to guarantee that the motion types in the evaluated

real and synthesized video pairs are matching. This eliminates the motion type as a confounding

factor from the statistical analysis, e.g., having unrealistic motions for a public speech in the synthe-

sized videos would negatively bias the outcome of the study. Our evaluation is focused on the visual

quality of the synthesized results. Most video clips have a resolution of 256×256 pixels, but some

are 512×512 pixels. In our user study, we presented one video clip at a time, and asked participants

to respond to the statement "This video clip looks real to me" on a 5-point Likert scale (1–strongly

disagree, 2–disagree, 3–don’t know, 4–agree, 5–strongly agree). Video clips are shown in a random

order, and each video clip is shown exactly once to assess participants’ first impression. We recruited

135 and 69 anonymous participants for our two studies, largely from North America and Europe.
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Figure 4.16: Comparison to the state-of-the-art facial reenactment approach of Thies et al. (2016). Our
approach achieves expression transfer of similar quality, while also enabling full-head reenactment, i.e., it also
transfers the rigid head pose, gaze direction, and eye blinks. For the video result, we refer to the supplemental
video at the project website. Obama video courtesy of the White House (public domain).

The results in Table 4.1 show that only 80% of participants rated real 256×256 videos as real, i.e.,

(strongly) agreeing to the video looking real; it seems that in anticipation of synthetic video clips,

participants became overly critical. At the same time, 50% of participants consider our 256×256

results to be real, which increases slightly to 52% for 512×512. Our best result is the self-reenactment

of Vladimir Putin at 256×256 resolution, which 65% of participants consider to be real, compared

to 78% for the real video. We also evaluated partial and full reenactment by transferring a speech by

Barack Obama to another video clip of himself. Table 4.2 indicates that we achieve better realism

ratings with full reenactment comprising facial expressions and pose (50%) compared to transferring
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Figure 4.17: Comparison to Suwajanakorn et al. (2017). Their approach produces accurate lip sync with
visually imperceptible artifacts, but provides no direct control over facial expressions. Thus, the expressions in
the output do not always perfectly match the input (box, mouth), especially for expression changes without
audio cue. Our visual dubbing approach accurately transfers the expressions from the source to the target.
In addition, our approach provides more control over the target video by also transferring the eye gaze and
eye blinks (box, eyes), and the rigid head pose (arrows). Since the source sequence shows more head-pose
variation than the target sequence, we scaled the transferred rotation and translation by 0.5 in this experiment.
For the full video sequence, we refer to the supplemental video at the project website. Obama video courtesy
of the White House (public domain).

only facial expressions (38%). This might be because full-head reenactment keeps expressions and

head motion synchronized. Suwajanakorn et al.’s speech-driven reenactment approach (2017) achieves

a realism rating of 64% compared to the real source and target video clips, which achieve 70–86%.

Our full-head reenactment results are considered to be at least as real as Suwajanakorn et al.’s by 60%

of participants. We finally compared our dubbing results to VDub [Garrido et al. 2015] in Table 4.3.

Overall, 57% of participants gave our results a higher realism rating (and 32% gave the same rating).

Our results are again considered to be real by 51% of participants, compared to only 21% for VDub.

On average, across all scenarios and both studies, our results are considered to be real by 47% of

the participants (1,767 ratings), compared to only 80% for real video clips (1,362 ratings). This

suggests that our results already fool about 60% of the participants – a good result given the critical

participant pool. However, there is some variation across our results: lower realism ratings were given

for well-known personalities like Barack Obama, while higher ratings were given for instance to the

unknown dubbing actors.



73 4.7. RESULTS

O
ur

s
A
ve

rb
uc

h-
El
or
17

In
pu

t

Figure 4.18: Comparison to the image reenactment approach of Averbuch-Elor et al. (2017) in the full-head
reenactment scenario. Since their method is based on a single target image, they copy the mouth interior from
the source to the target, thus not preserving the target’s identity. Our learning-based approach enables larger
modifications of the rigid head pose without apparent artifacts, while their warping-based approach distorts the
head and background. In addition, ours enables joint control of the eye gaze and eye blinks. The differences
are most evident in the supplemental video at the project website. Obama video courtesy of the White House
(public domain).

Figure 4.19: We performed a user study to evaluate the quality of our results and see if users can distinguish
between real (top) and synthesized video clips (bottom). The video clips include self-reenactment, same-
person-reenactment, and video dubbing. Putin video courtesy of the Kremlin (CC BY). Obama video courtesy
of the White House (public domain). Elizabeth II video courtesy of the Governor General of Canada (public
domain).
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Table 4.1: User study results for self-reenacted videos (n=135). Columns 1–5 show the percentage of ratings
given about the statement "This video clip looks real to me" , from 1 (strongly disagree) to 5 (strongly agree).
4+5=‘real’.

Real videos Our results
res 1 2 3 4 5 ‘real’ 1 2 3 4 5 ‘real’

Obama 256 2 8 10 62 19 81% 13 33 11 37 6 43%
Putin 256 2 11 10 58 20 78% 3 17 15 54 11 65%
Eliabeth II 256 2 6 12 59 21 80% 6 32 20 33 9 42%
Obama 512 0 7 3 49 42 91% 9 35 13 36 8 44%
Putin 512 4 13 10 47 25 72% 2 20 15 44 19 63%
Eliabeth II 512 1 7 4 55 34 89% 7 33 10 38 13 51%
Mean 256 2 8 10 60 20 80% 7 27 15 41 9 50%
Mean 512 2 9 6 50 34 84% 6 29 12 39 13 52%

Table 4.2: User study results for expression and full head transfer between two videos of Barack Obama
compared to the input videos and Suwajanakorn et al.’s approach (n=69, mean of 4 clips).

Ratings
1 2 3 4 5 ‘real’

Source video (real) 0 8 6 43 42 86%
Target video (real) 1 14 14 47 23 70%
Suwajanakorn et al. (2017) 2 20 14 47 17 64%
Expression transfer (ours) 9 37 17 29 9 38%
Full head transfer (ours) 3 31 16 37 13 50%

Table 4.3: User study results for dubbing comparison to VDub (n=135).

Garrido et al. (2015) Our results
1 2 3 4 5 ‘real’ 1 2 3 4 5 ‘real’

Ingmar (3 clips) 21 36 21 20 2 22% 4 21 25 42 8 50%
Thomas (3 clips) 33 36 11 16 4 20% 7 25 17 42 9 51%
Mean (6 clips) 27 36 16 18 3 21% 6 23 21 42 9 51%

4.8 Dataset

This section describes all the used datasets, see Table 4.4 (target actors) and Table 4.5 (source actors).

4.9 Discussion

While we have demonstrated highly realistic reenactment results in a large variety of applications

and scenarios in this chapter, our approach is also subject to a few limitations. Similar to all other

learning-based approaches, ours works very well inside the span of the training corpus. Extreme target

head poses, such as large rotations, or expressions far outside this span can lead to a degradation of

the visual quality of the generated video portrait, see Figure 4.20 and the supplemental video at the

project website. Since we only track the face with a parametric model, we cannot actively control
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Table 4.4: Target videos: Name and length of sequences (in frames). Malou video courtesy of Louisa Malou
(CC BY). May video courtesy of the UK government (Open Government Licence). Obama video courtesy
of the White House (public domain). Putin video courtesy of the Kremlin (CC BY). Reagan video courtesy
of the National Archives and Records Administration (public domain). Elizabeth II video courtesy of the
Governor General of Canada (public domain). Reagan video courtesy of the National Archives and Records
Administration (public domain). Wolf video courtesy of Tom Wolf (CC BY).

Ingmar Malou May Obama1 Obama2
3,000 15,000 5,000 2,000 3,613

Putin Elizabeth II Reagan Thomas Wolf
4,000 1,500 6,984 2,239 15,000

DB1 DB2 DB3 DB4
8,000 18,138 6,500 30,024

the motion of the torso or hair, or control the background. The network learns to extrapolate and

finds a plausible and consistent upper body and background (including some shadows and reflections)

for a given head pose. This limitation could be overcome by also tracking the body and using the

underlying body model to generate an extended set of conditioning images. Currently, we are only

able to produce medium-resolution output due to memory and training time limitations. The limited

output resolution makes it especially difficult to reproduce fine-scale detail, such as individual teeth,

in a temporally coherent manner. Yet, recent progress on high-resolution discriminative adversarial

networks [Karras et al. 2018; Wang et al. 2017] is promising and could be leveraged to further increase

the resolution of the generated output. On a broader scale, and not being a limitation, democratization

of advanced high-quality video editing possibilities, offered by our and other methods, calls for

additional care in ensuring verifiable video authenticity, e.g., through invisible watermarking.
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Table 4.5: Source videos: Name and length of sequences (in frames). Obama video courtesy of the White
House (public domain).

Obama3 David1 David2 DB5 DB6
1,945 4,611 3,323 3,824 2,380

Figure 4.20: Our approach works well within the span of the training corpus. Extreme changes in head pose far
outside the training set or strong changes to the facial expression might lead to artifacts in the synthesized video.
This is a common limitation of all learning-based approaches. In these cases, artifacts are most prominent
outside the face region, as these regions have no conditioning input. May video courtesy of the UK government
(Open Government Licence). Malou video courtesy of Louisa Malou (CC BY).

4.10 Summary

In this chapter, we presented a new approach to synthesize entire photo-real video portraits of target

actors in front of general static backgrounds. It is the first to transfer head pose and orientation, face

expression, and eye gaze from a source actor to a target actor. The proposed method is based on a

novel rendering-to-video translation network that converts a sequence of simple computer graphics

renderings into photo-realistic and temporally-coherent video. This mapping is learned based on a

novel space-time conditioning volume formulation. We have shown through experiments and a user

study that our method outperforms prior work in quality and expands beyond their possibilities. It thus

opens up a new level of capabilities in many applications, like video reenactment for virtual reality

and telepresence, interactive video editing, and visual dubbing. We see our approach as a step towards

highly realistic synthesis of full-frame video content under control of meaningful parameters. We hope

that it will inspire future research in this very challenging field.

The algorithmic improvements proposed in this chapter can be considered as a big step towards highly

realistic facial manipulation from unconstrained monocular video input, e. g., YouTube and legacy

video clips. We anticipate that the method proposed in this chapter will be particularly beneficial for

more sophisticated facial editing applications such as visual dubbing in the movie industry and video

teleconferencing in consumer applications. To allow various application scenarios such as refocusing,

tilt-shift videography and dolly zoom, we often require dynamic lens effects in the face reconstruction



77 4.10. SUMMARY

and editing pipelines. Improvements in this direction are presented next in Chapter 5.





Chapter 5

Focus Editing

Video Capture

continuous
focus change
continuous

focus change

Focus Sweep Video All-In-Focus RGB-D Video Focus Editing & Other Applications

Scene Reconstruction

Video Refocusing
(e.g. from far to near)

Tilt-Shift Videography

Figure 5.1: We capture focus sweep videos by continuously moving the focus plane across a scene, and then
estimate per-frame depth maps and all-in-focus images, i.e., all-in-focus RGB-D videos. This enables a wide
range of video editing applications, in particular video refocusing.

Many compelling video effects can be performed in post-processing if a video is given in the form of an

all-in-focus video with per-frame depth maps and focus distances. In particular, this enables a variety of

focus editing effects, such as video refocusing, which are important stylistic elements in video. Recent

computational methods that allow to capture such information in an easy and robust manner modify

the hardware design of the camera and its optics, or require additional hardware. Hence, they are less

practical and unavailable to normal users with commodity cameras. Chapter 5 therefore presents an

algorithm to capture all-in-focus RGB-D video of dynamic scenes with commodity video cameras

that are unmodified and need no special calibration. Our algorithm turns defocus blur – an effect often

regarded as an unwanted artifact – into a valuable signal. The input to our method is a video in which the

focus plane is continuously moving back and forth during capture, and thus defocus blur is provoked and

strongly visible. This can be achieved by manually turning the focus ring of the lens during recording.

The core algorithmic ingredient is a new video-based depth-from-defocus algorithm that computes

space-time-coherent depth maps, deblurred all-in-focus video, and the focus distance for each frame

(see Figure 5.1). The method and results presented in this chapter are based on Kim et al. (2016).

79
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5.1 Introduction

A wide range of appealing video effects that would normally require specific camera control during

video capture can be algorithmically produced in post-processing if per-frame scene depth is available

in addition to color (RGB-D video). In particular, many widely used video effects created by cine-

matographers involve some form of focus manipulation like depth-of-field control. Examples are the

famous dolly-zoom effect, tilt-shift imaging, or general refocusing (‘focus pulling’) to direct the visual

attention of the viewer. The ability to control these effects during post-processing is in high demand

by professional users and consumers alike, and becomes feasible if depth, all-in-focus video and focus

distances at all frames are known. In order to capture video and depth in general, and specifically

to enable post-capture focus effects, several methods were proposed that use specialized camera

hardware, such as active depth cameras with special illumination [Richardt et al. 2012], light field

cameras [Ng et al. 2005], or cameras with optical modifications like coded apertures [Levin et al. 2007].

We follow a different path and propose one of the first end-to-end approaches for depth estimation

from – and focus manipulation in – videos captured with an unmodified commodity consumer camera.

Our approach turns an often unwanted artifact, defocus blur, into a valuable signal. In a camera lens,

light falls through an aperture onto the imaging sensor. In theory, smaller apertures produce sharp

images for scenes covering a large depth range. When using a larger aperture, only scene points close

to a certain focus distance project to a single point on the image sensor, and thus appear in focus. Scene

points at other distances are imaged as a circle of confusion [Potmesil and Chakravarty 1982]. This

produces a limited region of sharp focus around the focus distance that is known as depth of field, and

outside of which the increasing defocus blur provides an important depth cue [Mather 1996].

The problem is that once a video is recorded with specific camera and lens settings, its depth of field

is fixed and cannot easily be modified. Changing a focus effect would require recapturing of the scene.

The input to our approach is a video with a continuously changing focus in which temporally changing

defocus blur is purposefully provoked. This means the focus plane repeatedly sweeps across the scene,

e.g., by changing lens focus manually. At first glance, this means each frame has a different unchange-

able focus setting, and no frame is entirely in focus. However, we can use the information contained

in the blurred video to perform space-time coherent depth, all-in-focus color, and focus distance

estimation at each frame. Our approach aligns the input video frames to each other using a new defocus-

preserving warping strategy that results in a focus stack video with a focus stack at each video frame.

We next compute depth maps from each focus stack using a new depth-from-defocus formulation, and

all-in-focus images by deconvolving the input video frames with the optimal depth-dependent defocus

blur kernel at each pixel. Finally, we can render the video with a new depth of field corresponding to

arbitrary camera and focus settings, which gives the user complete freedom in refocusing the input

video, showing it all in focus, or applying other effects benefiting from RGB-D video.

In a nutshell, the contributions of this chapter are:

• an end-to-end system for depth estimation and focus control of videos captured with a regular
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camera in post based on:

• a new hierarchical alignment scheme between video of different focus setting and dynamic

scene content,

• an approach to estimate per-frame depth maps and deblurred all-in-focus color image in a

space-time coherent way,

• an image-guided algorithm for focus distance initialization,

• and an optimization method for refining focus distances.

We extensively validate the individual steps of our approach and compare against related work. We

show high-quality refocusing, dolly-zoom and tilt-shift results on a variety of videos captured with

different cameras.

5.2 Related Work

RGB-D Video Acquisition There are many approaches for capturing RGB-D videos, but currently

they all require some sort of special hardware or multiple captures from the same or different viewpoints.

Active stereo sensors like the original Kinect use structured light, while time-of-flight cameras use

time-modulated light, each with a collocated color camera [Richardt et al. 2012]. Moreno-Noguer et al.

(2007) show how a projected dot pattern can also be used to infer scene depth from the defocus blur

and attenuation of the dots.

Coded apertures enable single-shot RGB-D image capture. Levin et al.’s classic approach (2007)

uses a coded aperture optimized to be distinctive at different defocus levels. Bando et al. (2008) use

a colored aperture for stereo correspondence between the displaced color channels for estimating

depth maps. And concentric circular apertures with different transmission spectra [Chakrabarti and

Zickler 2012; Martinello et al. 2015] for example block infrared light in the outermost ring, which

results in different depth-of-field in the RGB and IR color channels.

Stereo correspondence [Barron et al. 2015] or multi-view stereo approaches [Yu and Gallup 2014] re-

quire multiple views, for instance by exploiting shaky camera motions. Shroff et al. (2012) instead shift

the camera’s sensor along the optical axis to change the focus within a video. They align consecutive

video frames using optical flow to form a focus stack, and then apply depth from defocus to estimate

depth maps and all-in-focus images. Our approach is similar, but unlike all mentioned approaches,

it works with a single commodity video camera, and does not require any custom hardware.

There are also single-view techniques based on non-rigid structure-from-motion [Russell et al. 2014],

which require clear (in particular out-of-plane) motion cues interpreted under strong scene pri-

ors, and learning-based depth estimation techniques [Hoiem et al. 2005; Saxena et al. 2009; Srivas-

tava et al. 2009; Eigen and Fergus 2015].
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Depth from Focus/Defocus Focus stacking combines multiple differently focused images into

a single all-in-focus (or extended depth of field) image [Pertuz et al. 2013]. However, focus stacks

can also be used for computing depth maps using depth-from-(de)focus techniques, which exploit

(de)focus cues within the focus stack. Focus stacking is particularly popular in macro photography,

where the large lens magnification of macro lenses results in a very small depth of field. By sweeping

the focus plane across a scene or an object, each part of it will be sharpest in one photo, and these sharp

regions are then combined into the all-in-focus image. Depth from focus additionally determines the

depth of a pixel from the focus setting that produced the sharpest focus [Grossmann 1987; Nayar and

Nakagawa 1994]; however, this requires a densely sampled focus stack and a highly textured scene for

computing accurate depth maps. Depth from defocus, on the other hand, exploits the varying degree of

defocus blur of a scene point in each image for computing depth from just a few defocused images [Pent-

land 1987; Subbarao and Surya 1994]. The all-in-focus image is then recovered by deconvolving the

input images with the spatially-varying point spread function of the defocus blur. It should be obvious

that these techniques relying on focus stacks only work well for scenes without camera or scene motion.

Suwajanakorn et al. (2015a) proposed a hybrid approach that stitches an all-in-focus image using

motion-compensated focus stacking, and then optimizes for the depth map using depth-from-defocus.

Their approach is completely automatic and even estimates camera parameters (up to an inherent

affine ambiguity) from the input images. However, their approach is limited to reconstructing a single

frame from a focus stack, and cannot easily be extended to videos, as this requires stitching per-frame

all-in-focus images. Our approach is tailored for videos, not just single images.

Refocusing Images and Videos Refocusing images – and even videos – has been a long-standing,

challenging problem that has seen many creative solution attempts. The defocus blur is an important

depth cue that affects the perception of distances and sizes [Mather 1996; Held et al. 2010], so changing

the defocus blur by refocusing is a powerful, appearance-altering effect. However, just like RGB-D

video capture, all approaches suitable for refocusing videos require some sort of custom hardware,

such as special lenses [Ng et al. 2005; Miau et al. 2013], coded apertures [Levin et al. 2007 etc.] or

active lighting [Moreno-Noguer et al. 2007], while the remaining approaches suitable for refocusing

images are difficult to extend to videos as they rely on multiple captures from the same view, for

example, for depth from (de)focus [Suwajanakorn et al. 2015a].

Light field cameras capture a larger subset of the plenoptic function than a normal camera [Ng et al. 2005;

Veeraraghavan et al. 2007], which enables virtual refocusing of a single light field image [Isak-

sen et al. 2000; Ng 2005]. However, capturing multiple views reduces the effective image resolution

per view, which severely limits the resolution of refocused images. Miau et al. (2013) instead use a

deformable lens between the camera sensor and lens to quickly and repeatedly sweep the focus plane

across the scene, and record the resulting video at 120 Hz. They achieve a video refocusing effect by

simply selecting appropriate frames from the recorded video.

All remaining image and video refocusing approaches first capture or estimate an all-in-focus RGB-D
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image or video, and then virtually refocus it, for example using depth-dependent image blurring (see

references in Lee et al., 2010). However, images captured by a physical camera with a finite aperture

only produce a finite depth of field. These images are therefore generally not focused perfectly every-

where, but smaller apertures result in larger depth of field, and so an all-in-focus image is theoretically

achieved with a pinhole aperture. Unfortunately, small apertures have poor luminous efficiency as they

block most of the light before it can reach the imaging sensor, which results in noisy, poorly exposed

images. 5 Some refocusing techniques choose a small aperture that is a reasonable trade-off between

defocus blur and imaging noise. The remaining just-noticeable blur can still be detected and used for

estimating a depth map [Shi et al. 2015a], or it can be removed entirely [Shi et al. 2015b].

Focus information is useful in many applications that go beyond refocusing. McGuire et al. (2005) use

differently focused cameras for video matting with general backgrounds. Bae and Durand (2007) mag-

nify the defocus to simulate the shallow depth of field achieved by professional lenses with large aper-

tures. Defocus deblurring is also related to motion deblurring [Cho et al. 2012/e.g.; Hu et al. 2014; Wulff

and Black 2014]: both seek to remove a spatially varying blur. However, defocus and motion blur have

different sources and characteristics; motion blur, for example is mostly depth-independent.

5.3 Overview

We developed a practical approach for computing coherent per-frame scene depth, all-in-focus video,

and focus distances from video captured with a commodity video camera. Figure 5.2 shows an

overview of our approach. Our algorithm enables a variety of compelling focus editing effects during

post-processing, and its ability to capture RGB-D video serves a variety of other video effects that

require RGB+depth as input. The camera lens model that we use in this chapter has been introduced

in Chapter 2.

The input to our approach is a focus sweep video of a static or dynamic scene recorded with a standard

video camera. In this video, the focus plane is swept repeatedly across the scene, for example through

simple manual focus change on the lens during recording. Each input video frame therefore observes

the dynamic scene at a different time and focus distance, as well as a different, purposefully provoked

depth of field and defocus blur. We first segment the input video into multiple focus ramps, where the

focus plane sweeps across the scene in one direction. The first stage of our approach (Section 5.4.1)

then constructs a focus stack video for each of them. Focus stack videos consist of a focus stack at

each video frame, by aligning adjacent video frames to the current frame using a defocus-preserving

warping technique. At each frame, the focus stack video comprises multiple images with a range of

approximately known focus distances (see Section 5.4.5), which are used to estimate a depth map in

the second stage (Section 5.4.2) using depth-from-defocus with filtering-based regularization. The

third stage (Section 5.4.3) performs spatially varying deconvolution to remove the defocus blur and

produce all-in-focus images. And the fourth stage of our approach (Section 5.4.4) further minimizes

the remaining error by refining the focus distances for each frame, which significantly improves the
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Figure 5.2: Overview of our approach, which estimates spatio-temporally coherent depth maps, all-in-focus
images, and focus distances from a focus sweep video. For each video frame, we first align neighboring frames
to it to construct a focus stack. We then estimate spatially and temporally consistent depth maps from the
focus stacks, and compute all-in-focus images using non-blind deconvolution using the depth map. Finally, we
refine the focus distances for all frames. We perform these steps in a coarse-to-fine manner and iterate until
convergence.

estimated depth maps and visual quality of the all-in-focus images in the next iteration of our pipeline.

Our method requires no sophisticated calibration process for focus distances, which allows it to work

robustly in practical scenarios.

Video Recording The input to our approach is a video in which the focus distance is continuously

changing, with the resulting change of per-frame depth of field and defocus blur. The user can simply

do that by manually adjusting the focus setting of the lens so as to roughly follow a sinusoidal focus

distance curve while the camera is recording, and thus to obtain several focus ramps (see Figure 5.2).

Ideally, one would like to calibrate the focus distance for each frame of the video, which is not possible.

Another option would be to read out the focus distance from the camera for every frame; however, in

practice, this is difficult and may require low level modification of the firmware. We use the Magic

Lantern1 software for Canon EOS digital DSLR cameras to record timestamped lens information

during video capture at the maximum rate of about 4 Hz. In practice, this unfortunately means that

focus distance values are not measured for most frames, the timestamps may not be exactly aligned

with the time of frame capture, and the recorded focus distances are quantized and so may also not be

fully accurate. Furthermore, people cannot be expected to reproduce an exact curve of focus distance

changes, so there is natural variation in the focus distance ramps. Therefore, our algorithm (Section 5.4)

uses the sparsely recorded lens information only as a guide and explicitly optimizes for the dense

correct focus distances at every frame (Section 5.4.4).

5.4 All-In-Focus RGB-D Video Recovery

Given a video V with frames {Vt}t∈T containing one or more focus sweeps, we formulate our algo-

rithm as a joint optimization framework that seeks the optimal depth maps Dt , all-in-focus images

It , and focus distances Ft for all video frames t∈T . Let us assume that Ws→t(·) is a warping function

that spatially aligns an image at time s with the image at time t while preserving its original defocus

1http://www.magiclantern.fm

http://www.magiclantern.fm
http://www.magiclantern.fm
http://www.magiclantern.fm
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Figure 5.3: Two input frames at full resolution compared to their downsampled versions below. The downsam-
pling effectively reduces the difference in defocus blur, which helps in correspondence finding.

blur (we explain how we compute Ws→t in Section 5.4.1). Then, we can construct a focus stack at each

frame t by warping all input video frames to it using {Ws→t(Vs)}s∈T (in practice, we only warp a few

keyframes, as explained later). We seek the optimal depth map Dt and all-in-focus image It at frame

t, and focus distances {Ft}t∈T which best reproduce the focus stack at frame t with the defocus model

in Equation 2.4. Dt , It and Ft , for t∈T , are the unknowns our algorithm needs to compute. Therefore,

the core ingredient of our joint optimization of all unknowns is a data term that penalizes the defocus

model error of the focus stack at all frames:

Edata=∑
t∈T

∑
s∈T

wt,s‖Φ(Dt ,Fs)∗It−Ws→t(Vs)‖2. (5.1)

Here, we introduce a weighting term wt,s to give lower weights to pairs of frames that are further

apart, and which hence need warping over longer temporal distances. In our implementation, we use a

Gaussian function wt,s=exp(−|t−s|2/2σ2
w)with σw set to 85 percent of the length of each focus ramp.

Simultaneously estimating depth, deblurring the input video and optimizing focus distances from

such purposefully defocused and temporally misaligned images is highly challenging, and many

widely used matching criteria or invariance assumptions made by traditional correspondence finding

approaches break down in this case. To solve this joint optimization problem efficiently, and to cope

with the aforementioned challenges, we decompose the optimization for all the unknowns into four

subproblems or stages that we solve iteratively: defocus-preserving alignment (Section 5.4.1), depth

estimation (Section 5.4.2), defocus deblurring (Section 5.4.3), and focus refinement (Section 5.4.4).

Each subproblem requires solving for a subset of the unknowns by means of minimizing a cost

functional of the form given in Equation 5.1, with additional regularization terms explained in the

following. We adopt a multi-scale, coarse-to-fine approach. At each resolution level, we perform

three iterations of the four stages, each of which is solved for the entire length of the input video. The

multi-resolution approach improves convergence, but more importantly, any focus difference between
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Figure 5.4: Comparison of focus stack alignment approaches, from near to far focus (see Figure 5.3). Without
refocusing images to match their blur levels, both optical flow and PatchMatch fail. With refocusing, PatchMatch
produces a visually better alignment than optical flow, as used by Shroff et al. (2012).

two video frames is reduced when the images are downsampled in the pyramid (see Figure 5.3).

As illustrated in Figure 5.3, this insight enables us to compute reliable initial correspondence fields

with less influence from different defocus blurs. Once all parameters are estimated at a coarse level,

the higher level of the pyramid uses them as initialization for its iterations. The solutions to these

subproblems – henceforth also called stages – are explained in detail in the following subsections.

5.4.1 Patch-Based Defocus-Preserving Alignment

The goal in this section is to construct a focus stack for each frame of the input video, which we achieve

using patch-based, defocus-preserving image alignment. The result are the warping functions Ws→t

for pairs (s, t) of frames, while all other unknowns (I, D and F) are assumed to be constant in this step.

Two frames in the focus sweep video, Vs and Vt , generally differ in defocus blur and maybe scene

or camera motion. The main challenge of the defocus-preserving alignment is therefore to compute a

reliable spatial per-pixel correspondence field between them, which is robust to both complex motion

as well as defocus changes between the frames.

Using standard correspondence techniques, such as optical flow, to directly warp the input video frame

Vs to Vt is prone to failure, because the different defocus blurs in the two images are not modeled

by standard matching costs. Optical flow will try to explain differences in defocus blur using flow

displacements, which produces erroneous correspondences. Figure 5.4 shows an example of how the

motion alignment with optical flow fails due to the different defocus blur.

The solution is to compensate any focus differences before computing correspondences [Shroff et al. 2012].

We therefore refocus the target frame Vt to match the focus distance Fs of the source frame s using
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Correspondences for the BOOK dataset
(from the �rst frame to the last frame).

Figure 5.5: Correspondence fields.

the refocusing operator

R(Vt ,Fs)=Φ(Dt ,Fs)∗It . (5.2)

In the first iteration at the coarsest resolution level, the refocusing operator simply returns the input

frame Vt unchanged, as the downsampling in the pyramid has already removed most of the defocus

blur. In subsequent iterations, the refocusing operator uses the current estimates of frame t’s depth

map Dt and all-in-focus image It to perform the refocusing. The embedding of this focus difference

compensation and alignment process into the overarching coarse-to-fine scheme enables reliable focus

stack alignment even for large scene motions and notable defocus blur differences.

In our framework, we use PatchMatch [Barnes et al. 2009] to robustly compute the warping function

Ws→t between the source frame Vs and the refocused target frame R(Vt ,Fs). The main benefit of

PatchMatch is that it can easily handle complex motions and is fairly robust to the remaining focus

differences, while traditional optical flow techniques tend to fail in such cases. PatchMatch correspon-

dences are not always geometrically correct as shown in Figure 5.5, as they exploit visually similar

patches from other regions of the image which have similar defocus blur (note the yellow and purple

regions on the left, which indicate vertical motion along the edge of the books). In our case, this is

an advantage, as it improves the warping quality while preserving defocus blur. At the coarsest level

of the pyramid, we initialize the PatchMatch search using optical flow [Sun et al. 2014] between the

downsampled input frames Vt and Vs; at this level focus-induced appearance differences are minimal

and the flow result can be used as a guide for the finer levels. We also constrain the size of the search

window to find the best matches around the initial correspondences. This encourages the estimated

correspondence field to be more spatially consistent. Since the warping is computed by refocusing

the target frame, the defocus blur in the source frame is preserved, which is crucial for constructing

valid focus stacks from a dynamic focus sweep video.

We apply the estimated defocus-preserving warping operators Ws→t to create a focus stack video with

per-frame focus stacks, as illustrated in Figure 5.6. However, we do not warp all frames to all others,
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Figure 5.6: Defocus-preserving alignment. We refocus the input frame Vt (center) to match the focus distances
of neighboring frames Ft±1 (red arrows), and then compute correspondences (green arrows) between the
neighboring frames, Vt±1, and the corresponding refocused image R(Vt ,Ft±1).

to prevent artifacts that may be introduced by aligning temporally distant videos frames in which

the scene may have drastically changed. Instead, we first segment the input video into one or more

contiguous focus ramps (see Figure 5.2), Ti⊂T for i∈R, which contain only temporally close frames.

For each input video frame t, we then create a focus stack by warping the other frames in its ramp to it

using our defocus-preserving alignment. This reduces the computational complexity of the alignment

stage from O(|T |2) for warping all pairs of frames, to O(|T |2/|R|) for warping all pairs of frames

within each ramp to each other.

5.4.2 Filtering-Based Depth Estimation

In the second stage of our approach, we estimate spatially and temporally consistent depth maps Dt

for all focus stacks, while keeping all other variables constant. At this point, we assume that the focus

distances Ft for each frame t are known, either from the initialization (Section 5.4.5) or from focus

refinement in the previous iteration of our optimization (Section 5.4.4). In this case, our data term Edata

from Equation 5.1 measures how well the estimated depth maps fit to the defocus observations in all

focus stacks, which is equivalent to depth from defocus [Pentland 1987], applied per video frame.

Depth from defocus computes depth maps from differently focused images with given focus distances

by optimizing for matching defocus blur in all images. This step requires the pixel-wise alignment

across each focus stack that we computed in the previous stage, to measure the fitting error. Since this

error is individually penalized at each pixel, it can lead to spatial inconsistencies in the depth map.
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To avoid this issue, we introduce a long-range linear Potts model. In contrast to the pairwise Potts

model which compares depth values only between immediately adjacent pixels, our version performs

long-range comparisons which benefit globally consistent depth estimation, yet prevents erroneous

smoothing of actual features in the depth map:

E spatial
smoothness=∑

t∈T
∑
x

∑
y6=x

min(α(x,y)|Dt(x)−Dt(y)|,τd), (5.3)

where τd is the truncation value of the depth difference. We use the bilateral weight α between two

pixels x and y,

α(x,y)=exp

(
−‖x−y‖2

2σ2
s
−‖I(x)−I(y)‖2

2σ2
r

)
, (5.4)

to encourage consistent depth estimation between nearby pixels with similar colors, where σs

and σr denote the standard deviation for the spatial and range terms, respectively. We use σs =

0.075×the image width, and σr =0.05.

In addition, we want the depth maps to be temporally coherent across all frames. We minimize the

discrepancy between depth maps using

E temporal
smoothness=∑

t∈T
∑

s∈T\t
‖Dt−Ws→t(Ds)‖2, (5.5)

which encourages temporal consistency over extended depth map sequences. The total cost function

for depth map estimation is defined by combining the data term from Equation 5.1 and the terms from

Equations 5.3 and 5.5:

argmin
D

Edata+λssE
spatial

smoothness+λtsE
temporal

smoothness, (5.6)

where λss=1 and λts=0.2 are balancing weights.

The direct minimization of Equation 5.6 requires global optimization with respect to all depth images,

which is computationally expensive; instead, we solve an efficient approximation of the global op-

timization problem. We pose the minimization task as a labeling problem, and first estimate spatially

consistent depth maps for all frames by applying the filtering-based inference approach by Krahenbuhl

and Koltun (2011), and then refine the per-frame depth computation to enforce temporal consistency

[Lang et al. 2012].

We start by computing per-frame depth maps Dt in three steps. First, we evaluate the data term (Equa-

tion 5.1) for a range of n pre-defined, uniformly spaced depth layers, and store the error for each pixel

x and depth label d in the cost volume C(x,d). As in previous depth-from-defocus techniques [Pent-

land 1987], we perform this evaluation in the frequency domain, where convolution can be efficiently

computed using element-wise multiplication. In the second step, we apply fast joint-bilateral filtering
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Figure 5.7: Comparison of temporal smoothing approaches. Our keyframe-based smoothing approach
produces temporally more consistent depth than local smoothing of adjacent frames. (Note that the considered
pixel should have constant depth in this scene.)

[Paris and Durand 2009] on each depth-cost slice individually, to minimize the long-range spatial

smoothness term in Equation 5.3. We use the all-in-focus image It as the guide image for computing the

range term of the bilateral weight α in Equation 5.4. As in the previous section, we take the estimated

all-in-focus image It from the previous iteration, and assume It =Vt in the first iteration of the coarsest

resolution level. This process is similar to the message-update step in the filtering-based inference

approach by Krahenbuhl and Koltun (2011). In the third step, we select the spatially optimal depth

for each pixel using Dt(x)=argmind C(x,d).

After computing depth maps independently from each focus stack, we apply temporal smoothing to

make the depth maps consistent over time. For efficiency, we use a keyframe-based approach with a

sliding temporal window. For each frame t, we align the depth maps of the previous and following two

keyframes to the current depth map Dt using our warping operator Ws→t computed on the all-in-focus

images. The updated depth map Dt is the Gaussian-weighted mean of aligned depth maps, with higher

weight given to temporally closer frames. The used keyframes are not restricted to be from the same

focus ramp as the frame t, so that temporal consistency is also enforced across focus ramp boundaries.

In Figure 5.7, we show that our approach successfully produces temporally coherent depth maps,

compared to the unfiltered input depth maps and also the simpler local filtering of immediately adjacent

frames, as some bias remains due to the short temporal range of the filtering.

5.4.3 Defocus Deblurring

Now that we have computed the depth maps Dt , we estimate the all-in-focus images It using non-blind

deconvolution with the estimated, spatially varying point spread function (PSF) corresponding to

the depth-dependent circle of confusion (Equation 2.3). While the disc shape of the PSF is a good

approximation of the actual shape of the camera aperture, in practice, its sharp boundary causes ringing

artifacts in the deconvolution process due to zero-crossings in the frequency domain [Levin et al. 2007],

see Figure 5.8. We therefore adopt the smoothness term introduced by Zhou et al. (2011) to prevent
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Input Frame (crop) Without Deconvolution Prior With Deconvolution Prior

Figure 5.8: Deconvolution can result in ringing artifacts, which are successfully suppressed by our deconvolu-
tion smoothness prior.

ringing artifacts:

E all-in-focus
smoothness =∑

t∈T
‖H∗It‖2, (5.7)

where H is an image statistics prior.

The main idea of the smoothness term is to exploit a learning approach to capture natural image

statistics. We first take sample images at the same resolution as the input image from a database of

natural images, and then apply the Fourier transform to the samples in order to compute the frequency

distribution of the image statistics. The final image statistics of the natural image dataset H is obtained

by averaging the squared per-frequency modulus of all sample distributions. The smoothness term

Equation 5.7 enforces the all-in-focus image It to follow a similar frequency distribution as the learned

one in H. The image statistics prior H only needs to be computed once for each video resolution to

be processed, and can then be reused for new videos. For the details of the smoothness term, we refer

the reader to Zhou et al. (2011).

The total cost function of the defocus deblurring is expressed as a combination of the data term in

Equation 5.1 and the learned smoothness term in Equation 5.7:

argmin
I

Edata+λasE all-in-focus
smoothness , (5.8)

where λas = 10−3 balances the two cost terms. We compute the optimal all-in-focus image It by

performing Wiener deconvolution independently on a range of n depth layers, each with a fixed, depth-

dependent point spread function, and then composite the sub-images to obtain the all-in-focus image It .

5.4.4 Focus Distance Refinement

Equations 5.6 and 5.8 solve for the optimal depth maps D and all-in-focus images I for the given

focus distances F , and this step further refines the focus distances to reduce the cost functional Edata

(Equation 5.1). As explained in Section 5.3, we can at best read out temporally sparse focus distance
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Figure 5.9: We refine focus distances by refocusing input frames to each frame t, and minimizing the difference
to the frame Vt warped to each of the refocused input images (Equation 5.9).

values from the camera which are moreover subject to inaccuracies. To overcome this difficulty, we

refine the focus distances for all frames in the final stage of our approach. By rearranging the terms

associated with the focus distance Ft in Equation 5.1, we define the focus refinement subproblem as:

argmin
Ft

∑
s∈T

ws,t‖R(Vs,Ft)−Wt→s(Vt)‖2, (5.9)

where ws,t is the same weighting parameter as in Equation 5.1. This equation minimizes the defocus

model error (Equation 2.4) at all frames by finding the optimal focus distance Ft .

We optimize Equation 5.9 by gradient descent. Since the cost function has a highly nonlinear form

in terms of Ft , we compute the gradient numerically by examining the costs for focus distance Ft±δ

with δ =5 mm. This process in practice refocuses each source frame Vs to the focus distance Ft±δ ,

and compares it to the aligned target frame Wt→s(Vt) (see Figure 5.9). We then update the focus

distance Ft to the value corresponding to the new minimum cost. This computation can be performed

independently for each target frame t. Once the focus distances F of all frames are refined, we use

them in the next iteration of our algorithm.

We demonstrate the performance of our focus distance refinement in Figure 5.10. It improves the depth

estimation as well as visual quality of the all-in-focus images by suppressing excessive edge contrasts.

Because this strategy frees us from requiring artificial patterns or special hardware for the accurate

calibration of focus distances, it allows for our flexible and simple acquisition of the focus sweep video.
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Without Focus Distance Re�nement With Focus Distance Re�nement

Figure 5.10: Focus distance refinement improves depth maps (top) by reducing texture copy artifacts. This
also removes halos in the all-in-focus images (middle). The refined focus distances on the right also correctly
reflect that the focus distance was in fact kept constant for a few frames at the beginning and end of the video.

5.4.5 Initialization and Implementation

The input to our video refocusing approach is a radiometrically linearized video with temporally

changing focus distances containing one or more focus ramps, but with otherwise constant camera

settings. We assume that we know camera properties such as the focal length, aperture f -number, sensor

size, as well as temporally sparse readings of the camera’s focus distances for some video frames.

Focus Distance Initialization Before the start of our algorithm in Section 5.4, we compute an

initial set of temporally dense focus distance values. We use the sparse timestamped focus distance

readings from the Magic Lantern firmware as starting point, see Section 5.3. We then solve for the

per-frame focus distances F using an energy minimization with the recorded focus data as data term,

and additional smoothness and focus-consistency regularization terms:

argmin
F

E focus
data +λfsE focus

smoothness+λfocusEfocus. (5.10)

The recorded focus distances F rec
t are available only for some frames t ∈Trec, so we constrain the

unknown focus distances Ft at those frames to lie close to them:

E focus
data = ∑

t∈Trec

‖Ft−F rec
t ‖

2. (5.11)
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Figure 5.11: Focus distance initialization yields a smooth initial focus curve from sparse Magic Lantern data.
Similar images according to st,s (Equation 5.14) enforce consistent focus distances.

As the focus is assumed to change smoothly over time, we enforce this by penalizing the second

derivative of the focus distances:

E focus
smoothness=∑

t
‖Ft−1−2Ft+Ft+1‖2. (5.12)

The focus-consistency term exploits the observation that similar focus distances result in similar

depth-of-field and hence similar images, so if video frames appear very similar, then their focus

distances should also be similar (see Figure 5.11):

Efocus=∑
t
∑
s6=t

st,s‖Ft−Fs‖2, (5.13)

where st,s measures the (symmetric) similarity of the input video frames Vt and Vs, so that more similar

frames enforce consistency constraints more strongly. We compute the similarity using

st,s=min(0,1−min(dt,s,ds,t)/τsim) (5.14)

based on the image dissimilarity dt,s which we compute using the RMSE between input frame Vt

and Vs warped to Vt using low-resolution (160×90) optical flow to compensate for camera and scene

motion. The similarity threshold τsim determines which pairs of input frames result in consistency

constraints and how strongly they are enforced. Typical parameter values are λfs=
√

10, λfocus=0.1

and τsim∈ [0.01,0.05].
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Implementation of Video Depth-From-Defocus Algorithm To implement the method from Sec-

tion 5.4, we use a multi-resolution approach with three levels to improve the convergence and visual

quality of our results, as image defocus is more similar at coarser image resolutions. At each pyramid

level, we perform three iterations of the stages described in Section 5.4.1, Section 5.4.2, Section 5.4.3

and Section 5.4.4. At the coarsest level, we start the first iteration assuming that the all-in-focus image

It is the input video frame Vt , as mentioned earlier, and also initialize our PatchMatch correspondences

using optical flow to provide a good starting point for our alignment computations. Between pyramid

levels, we bilinearly upsample the all-in-focus images It , depth maps Dt and all computed flow fields.

We use scale-adjusted patch sizes for PatchMatch, using 25×25 pixels at the finest level and 7×7 at

the coarsest.

Computation Times Our all-in-focus RGB-D video estimation approach processes 30 video frames

at 854×480 resolution in 4 hours on a 30-core 2.8 GHz processor with 256 GB memory. This runtime

breaks down as follows, per video frame: 8.6 minutes for defocus-preserving alignment, 19 minutes

for depth estimation, 2.4 minutes for defocus deblurring, and 5 seconds for focus distance refinement.

Our MATLAB implementation is unoptimized, but parallelized over the input video frames. We believe

an optimized, possibly GPU-assisted implementation would yield significant speed-ups.

5.5 Results and Evaluation

Here, we thoroughly evaluate our proposed video depth-from-defocus approach for reconstructing all-

in-focus RGB-D videos. We first show qualitative results on natural, dynamic scenes with non-trivial

motion, captured with static and moving video cameras. We then compare our approach against the

two closest approaches, by Shroff et al. (2012) and Suwajanakorn et al. (2015a). We further evaluate

the design choices made in our processing approach with an ablation study on a ground-truth dataset.

Lastly, we evaluate the benefit of our focus refinement optimization.

We show all-in-focus images and depth map results on a range of datasets in Figure 5.12, and in

our video. Our depth maps capture the gist of each scene, including the main depth layers and their

silhouettes, and the depth gradients of slanted planes with sufficient texture. As shown in the results,

our approach works for dynamic scenes, and handles a fair degree of occlusions, dis-occlusions and

out-of-plane motions. It also properly reconstructs the depth and all-in-focus appearance of small

objects, like the earrings in sequence TALKING2 (Figure 5.12), which is highly challenging. Note that

our approach also works if scene and camera are rather static, where approaches requiring notable

disparity for depth estimation, would fail, even on unblurred footage. Similar to previous depth-from-

(de)focus techniques, our approach works best for textured scenes that are captured in a full focus stack.

Although our depth maps are not perfect, they are temporally coherent and enable visually plausible

refocusing results, as we show in Section 5.6.
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Figure 5.12: RGB-D video results. We show reconstructed all-in-focus images and depth maps for six focus
sweep videos with various combinations of scene and camera motion. The image crops (top: input frame
cropped, bottom: all-in-focus images cropped) focus on regions at the near, middle and far end (from left to
right) of the scene’s depth range. Note that each input frame is in focus in only one of the three crops, while our
all-in-focus images are in focus everywhere.
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Comparison to Shroff et al. (2012) This work moves a camera’s sensor along the optical axis to

compute all-in-focus RGB-D videos in an approach similar to ours. However, our approach improves

on theirs in several important ways: (1) we use a commodity consumer video camera that does not

require any hardware modifications like in their approach, (2) our defocus-preserving alignment finds

more reliable correspondences than optical flow, (3) our depth maps are more detailed and temporally

coherent, and (4) our all-in-focus images and hence refocusing results improve on theirs.

We simulate their focus stack alignment approach by replacing PatchMatch in our implementation with

optical flow [Sun et al. 2014]. Figure 5.4 shows that our approach for defocus-preserving alignment

achieves a visually better alignment result than using optical flow. This demonstrates that PatchMatch

is more suitable for finding reliable correspondences, in particular for complex or fast motions that are

common in practical scenarios. Kalantari et al. (2013) showed that a similar technique is also effective

for robust correspondence finding in dynamic video for HDR video reconstruction.

Comparison to [Suwajanakorn et al. 2015a] This recent depth-from-focus technique targeted for

mobile phones computes a single depth map with all-in-focus image from quick focus sweeps of

around 30 photos of static scenes with little camera motion. Their approach first reconstructs the

all-in-focus image by aligning the input photos and stitching together the sharpest regions. This will

fail for videos, as dynamic scenes break their alignment strategy of concatenating the optical flows

between pairs of adjacent photos. Dynamic scenes also have occlusions and disocclusions that can

cause stitching artifacts in the per-frame all-in-focus images. Finally, any estimated per-frame depth

maps are most likely not temporally coherent. Our approach, on the other hand, is designed to compute

temporally coherent all-in-focus RGB-D videos of dynamic scenes with larger camera motions. It

is our robust defocus-preserving alignment (Section 5.4.1) that enables us to construct per-frame

focus stacks for dynamic scenes (moving scene and camera), and hence to compute per-frame depth

maps and all-in-focus images. On top, we implement keyframe-based temporal consistency filtering

(Section 5.4.2) to remove any flickering and jitter from the resulting depth maps. We visually compare

the results of our approach to Suwajanakorn et al.’s approach on one of their datasets in Figure 5.13, and

show additional comparisons in our video. In our approach, we use their provided camera parameters

without further focus distance refinement (Section 5.4.4).

Validation of Design Choices We performed a quantitative ablation study to analyze the influence

of the design choices in our algorithm. For this, we synthetically defocus 10 frames from the MPI-Sintel

dataset ‘alley_1’ [Butler et al. 2012] using two focus ramps, and apply additive Gaussian noise with

σ =3/255 to simulate camera imaging noise. We then process the resulting video using our framework

while disabling or replacing individual components of our approach. In Figure 5.14, we evaluate the ac-

curacy of the estimated depth maps and all-in-focus images using the root-mean-squared error (RMSE)

compared to the ground truth. Our full approach produces overall the best results. One can clearly see the

importance of each component in our approach, as leaving them out significantly degrades the quality of

the estimated depth maps or all-in-focus images, or both. We also evaluate how accurately each alterna-
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Figure 5.13: Comparison of our approach to Suwajanakorn et al.’s (2015a) on their dynamic dataset. Top: Input
focus stack, focused near (left) to far (right), and Suwajanakorn et al.’s estimated depth map for the last frame
only. Bottom: We reconstruct all-in-focus images and depth maps for all frames of this dynamic sequence.

tive explains the input defocus images when refocusing the all-in-focus image using the estimated depth

map. Only disabling the temporal smoothing produces refocused images with lower RMSE than our

full approach, but the images completely lack temporal consistency, which is not measured by RMSE.

Focus Distance Refinement Here, we investigate the contribution of the focus distance refinement

(Section 5.4.4) to estimating better all-in-focus images and recovering from inaccurate initial focus

distances. For this, we process the synthetically refocused ‘alley_1’ dataset with initial focus distances

perturbed by varying degrees of additive Gaussian noise (but without imaging noise), with and without

our focus distance refinement, and compare the all-in-focus images and estimated focus distances to

the ground truth. Figure 5.15 shows that our focus distance refinement consistently reduces the errors

in estimated focus distances. This in turn leads to better refocusing results for our defocus-preserving

alignment (Section 5.4.1), which produces cleaner all-in-focus images and improves the overall

performance of our approach.

Limitations Our approach relies on aligning all frames of a focus ramp to each other. This works

well for focus ramps of up to around 30 frames, but it becomes more difficult for long ramps of around

100 frames, as more motion can happen in that time, which hence needs to be compensated. This is

significantly more difficult than for example the alignment required for HDR video reconstruction



99 5.5. RESULTS AND EVALUATION

1.2 1.4 1.6 1.8

Our full approach

Without pyramid

Without refocusing

Without spatial smoothness
Single-image deconvolution

Without deconvolution prior
Without temporal smoothing

RMSE of Estimated Depth Map

0 0.02 0.04 0.06 0.08

Our full approach

Without pyramid

Without refocusing

Without spatial smoothness
Single-image deconvolution

Without deconvolution prior
Without temporal smoothing

RMSE of All-In-Focus Images

0 0.02 0.04

Our full approach

Without pyramid

Without refocusing

Without spatial smoothness
Single-image deconvolution

Without deconvolution prior
Without temporal smoothing

RMSE of Refocused Images

Figure 5.14: Validation of design choices for our video depth-from-defocus approach using an ablation study
(lower RMSE is better). Our approach is best overall, but each components is required for achieving the best
results.

[Kalantari et al. 2013], which only needs to align three subsequent frames instead of 30–100. While

our alignment approach produces good results within a ramp, even for long ramps, the consistency

between ramps becomes more difficult to enforce at the boundary between long focus ramps. This may

sometimes lead to subtle popping artifacts in the all-in-focus video for our long sequences TALKING1

and TALKING2.

Large occlusions are also problematic as the focus stack alignment degrades in quality when part

of the scene is not visible during a focus ramp, for example at the image boundaries. Similar to

depth-from-defocus methods for static scenes, we also assume that the appearance of objects remains

constant, at least within a certain time window, and in particular that lighting is not drastically changing

in the same timespan. Additionally, untextured regions are harder to reconstruct than textured regions,

and may show some temporal flickering, similar to previous depth-from-defocus methods but also

passive image-based depth reconstruction approaches in general.

We employ a comparably simple defocus blur model, which uses a spatially varying convolution with

a point spread function. This approach degrades near depth boundaries, as it may blur across them,
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Figure 5.15: Focus distance refinement improves the focus estimates and all-in-focus images when the initial
focus distances are noisy. Top: Plot of noise level versus RMSE of focus distances compared to the ground
truth; note that refinement consistently reduces the error. Bottom: Crops of a single frame for noise level
σ =10 cm. Without refinement, the all-in-focus images are distorted and lack details, with refinement, the
image is close to the ground truth.

which can create halos in the depth maps (see discussion in Lee et al., 2010). A possible solution are

more sophisticated, multi-layer defocus blur models [Kraus and Strengert 2007], but they are harder to

integrate into our optimization. Our depth maps are plausible, and enable video focus post-processing

at very good quality using a standard video camera. But they may not match the quality of depth maps

obtained with specialized RGB-D cameras.
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5.6 Applications

Video Refocusing Given the all-in-focus images and depth maps estimated in Section 5.4, we

can now freely refocus the original input video according to the user’s wishes by simply rendering

the appropriate defocus blur in a post-process. For this, we use the same thin-lens defocus model as

in Section 5.3, and blur each pixel’s neighborhood with the blur kernel K(D(x),F) corresponding

to its depth D(x) and the focus distance F of the virtual lens [Riguer et al. 2003]. This approach

provides complete freedom, as the camera’s aperture, focal length and focus distance can be changed

independently and arbitrarily. The user can for example change the aperture, while keeping the original

focus settings, to reduce or magnify the defocus blur (see Figure 5.16), similar to Bae and Durand

(2007), but for videos. The focus can also be fixed on an object of interest or follow it through the video

using a ‘focus pull’, or the focus can be interactively controlled by the user using a ‘focus-follow’

function that keeps the region under the user’s mouse pointer in focus. The reconstructed focus settings

can also be smoothed to correct auto-focus failures and produce a more professional-looking result.

Tilt-Shift Videography The tilt-shift effect is created by tilting the camera’s lens relative to its image

plane which results in a slanted focus plane with a wedge-shaped depth of field that produces the iconic

miniature look [Held et al. 2010]. (The purpose of lens shift is to correct for perspective distortions like

converging parallel lines; however, it does not affect the focus plane or depth of field.) While the lens

in most view cameras can be tilted and shifted freely thanks to the flexible bellows between lens and

film, most lenses in modern cameras are fixed to be parallel to the image sensor, which prevents this

effect. There are some special-purpose tilt-shift lenses for modern camera, e.g., from Canon, Nikon

or Lensbaby, which can be expensive, but the tilt-shift look is baked into the recorded footage and

cannot be modified after capture. We show virtual tilt-shift videography in Figure 5.16 and our video

by refocusing with a tilted virtual lens [Merklinger 2010]. This provides ultimate flexibility as the

desired look can be modified and tweaked interactively.

Dolly Zoom Depth maps also enable other applications such as limited novel-view synthesis. When

combined with the video refocusing presented earlier, this provides the two ingredients required for

a dolly zoom (or ‘Hitchcock Zoom’): a camera on a virtual dolly that moves towards or away from the

scene, and a carefully controlled virtual camera zoom that keeps an object of interest at constant size

(see supplemental video at the project website). Assuming thin-lens optics, this is achieved by varying

the focal length f and object-to-lens distance u such that the magnification M= f/(u− f ) remains

constant for the selected object.
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Magni�ed DefocusInput Video Frame Refocusing Virtual Tilt-Shift E�ect Depth-of-Field for Tilt-Shift

Figure 5.16: Video refocusing results. We first synthetically refocus the input video, then increase the defocus
blur by increasing the aperture (smaller f -number), and finally apply a virtual tilt-shift effect, which results in a
slanted focus plane. Please see our video for full results.

5.7 Summary

In this chapter, we have presented the first algorithm for space-time coherent depth-from-defocus from

video. It enables reconstruction of all-in-focus RGB-D video of dynamic scenes with an unmodified

commodity video camera. It takes a different view on RGB-D video computation by turning defocus

blur – an effect often regarded as an unwanted artifact – into a valuable signal. From an input video

with purposefully provoked defocus blur, e.g., by simply turning the lens, it enables the computation

of space-time-coherent depth maps, deblurred all-in-focus video, and the focus distance for each video

frame. Our end-to-end video depth-from-defocus method relies on several algorithmic contributions,

including an alignment scheme robust to strongly varying focus settings, an image-based method

for accurate focus distance estimation, and a space-time coherent depth estimation and deblurring

approach. We have extensively evaluated our method and its components, and showed that it enables

compelling focus post-processing, such as video refocusing, tilt-shift and dolly-zoom refocusing.

The algorithmic contributions proposed in this chapter greatly advance the-state-of-the-art in dynamic

depth-from-defocus and allow focus editing on faces in dynamic scenes. We believe that, when

combined with the contributions presented in the previous chapters, it will allow a complete facial

reconstruction and editing even including additional lens effects using monocular video clips, e. g.,

captured on set or on mobile devices, downloaded from YouTube, or from existing videos missing

focus data. There still remain some challenges concerning the highly realistic facial manipulation

that need to be addressed first to generalize to face images in the wild, that is to say face images

which were unseen in the training dataset. In addition, a facial manipulation technology with a high

level of photorealism leads to the question how to detect and prevent malicious use of such creative

applications. Chapter 6 will give an outlook to future directions in this regard.
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Conclusion

Digital face capture and editing technologies are essential to achieve various visual effects on virtual

humans in movies. Thanks to cutting-edge advances in computer graphics and machine learning

fields, modern face editing technology has become more sophisticated and photo-realistic. In practice,

however, state-of-the-art production systems resort to computationally heavy model-based methods,

in-studio controlled setups and skilled artists to obtain high-quality visual effects on digital face models.

Therefore, improving face editing pipelines in terms of computational efficiency still remains impor-

tant. Another limitation that comes with model-based face editing methods is lack of visual realism

in modified face images, and thus it often requires tedious manual corrections by skilled artists in post-

production. In addition, there has been less awareness about applying lens effects on faces and general

scenes to face editing pipelines, which also plays an important role to better perceive visual effects.

The thesis has presented state-of-the-art algorithms to advance face reconstruction and editing pipelines

towards the following goals: Real-time inverse face rendering, face editing with a high level of pho-

torealism, and various focus editing effects. For inverse face rendering, the thesis has presented a deep

convolutional neural network and a boosting framework that jointly estimates all facial rendering

parameters from a single face input in real time. For face editing, the thesis has introduced a novel

rendering-to-video translation neural network that enables re-animation of portrait videos with a high

level of photorealism. For dynamic lens effects, the thesis has presented a video-based depth-from-

defocus algorithm that computes space-time-coherent depth maps, deblurred all-in-focus video and

the focus distance for each frame from a commodity video camera. As a proof of concept, the thesis

has demonstrated the proposed methods on various challenging real-world application scenarios such

as face reenactment, visual dubbing, interactive face editing, postproduction, video teleconferencing,

refocusing and dolly-zoom photography.

In the following, we conclude by shortly reiterating and summarizing the contributions presented

throughout the thesis, and also discuss general directions of future works. In addition, we discuss some

open challenges and questions about detection and verification of modified face images and videos.
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6.1 Summary and Discussion

Chapter 3 presents a real-time inverse face rendering method to recover facial rendering parameters and

thus high-fidelity 3D face models directly from single images. Unlike common model-based methods

that fit a parametric face model to image or videos through analysis-by-synthesis optimizations, the

proposed method exploits a large-scale synthetic face database annotated with rendering parameters,

and finds a direct mapping function that describes the complex relationship between facial images

and the rendering parameters using a deep convolutional neural network. The main idea behind this

method is to update the training images with real-world face images on the fly to close the domain

gap and better reflect the real-world distribution. This process is formulated in a statistical boosting

framework. The reconstructed 3D face models provide the basis for advanced face editing.

Chapter 4 goes beyond model-based facial animation and presents a novel data-driven approach that

enables highly realistic facial re-animation of portrait videos. To the best of our knowledge, this is, in

the computer graphics community, the first that successfully modifies portrait videos in all dimensions

of full 3D head position, rotation, face expression, eye gaze and eye blinking with a high level of

photorealism, and thereby builds important foundations for a wide range of applications such as face

reenactment, visual dubbing, interactive face editing, postproduction and video teleconferencing.

The core of this approach is a novel generative neural network with a space-time architecture, that

transforms synthetic renderings of a parametric face model into photo-realistic portrait videos under

full control. Note that the proposed approach automatically synthesizes natural-looking hairs, an upper

body and even cast shadow in the background given the target head motion and facial expression.

Finally, Chapter 5 addresses a problem that received less attention but is important for highly realistic

visual effects. It introduces a video-based depth-from-defocus algorithm that computes space-time-

coherent depth maps, deblurred all-in-focus video and the focus distance for each frame of a regular

video camera recorded with smoothly varying focus. The main contribution of this method is hierar-

chical correspondence field computation in the presence of strong defocus blur. This method allows

for various focus editing effects such as refocusing, tilt-shift editing and dolly-zoom photography in

postproduction without requiring complex computational cameras.

Discussion Accurate 3D face modeling from single images is a challenging problem and an im-

portant step for the remaining processes of photo-realistic face editing pipelines as stated in Chapter 1.

The inverse face rendering framework presented in Chapter 3 employs an off-the-shelf face landmark

detector in the preprocessing step to achieve high-quality 3D face reconstruction. Strong occlusions

and profile views of faces are problematic and hard to reconstruct as even state-of-the-art face landmark

trackers often fail in this case.

The thesis aims to achieve highly realistic face editing that goes beyond traditional model-based

approaches as stated in Chapter 1. To this end, Chapter 4 proposes a learning-based method that

takes synthetic renderings as a conditional input, and translates them into highly realistic images.
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Figure 6.1: The proposed model-based deep convolutional face autoencoder [Tewari et al. 2017] enables
unsupervised learning of semantic pose, shape, expression, reflectance and lighting parameters. The trained
encoder predicts these parameters from a single monocular image, all at once.

Since the proposed method only constrains the face area in the synthetic renderings, it cannot actively

control the motion of an upper body and hairs, or the background. In addition, it is able to produce

a medium-resolution output due to the limitations of GPU memory and training time. The remaining

challenges such as upper body editing and low-resolution output as well as detection of modified face

images are further discussed in Section 6.3.

Focus editing with high optical accuracy is a challenging goal to achieve in postproduction as it

requires special camera setups. The advances presented in Chapter 5 enable capturing and editing

lens models of commodity video cameras. The proposed method employs a comparably simple focus

blur model for computational efficiency. This model, however, degrades near depth boundaries, as it

may blur across different depth layers, which can create halos in the estimated depth maps. Section 6.3

provides a possible solution to overcome the limitation of the simple focus model.

6.2 Alternatives

This section provides a brief summary of the two co-authored papers concerning face reconstruction,

and also discusses their relevance to the proposed methods in the thesis.

6.2.1 Model-based Face Autoencoder

The deep inverse face rendering network proposed in the thesis is trained by minimizing a facial

parameter loss. Alternatively, the parameter space loss can be replaced with an image-based loss. The

co-authored work [Tewari et al. 2017] integrates this idea into a model-based deep convolutional autoen-

coder that reconstructs a 3D human face from a single in-the-wild image as shown in Figure 6.1. To this

end, an expert-designed model-based decoder is introduced. The decoder takes as input a learned pa-

rameter vector by the preceded encoder, which encodes all face rendering parameters, and reconstructs

an output image. In this way, the proposed autoencoder framework leads us to train on unlabeled real-

world data at a large scale. The proposed decoder is also differentiable and can be trained end-to-end in

an unsupervised manner. Due the loss function which is based on the pixel-wise difference of images,

this method could potentially improve accuracy and robustness of the inverse face rendering framework.
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Figure 6.2: The proposed monocular reconstruction approach [Tewari et al. 2018] estimates high-quality facial
geometry, skin reflectance including facial hair and incident illumination at over 250 Hz. A trainable multi-level
face representation is learned jointly with the feed forward inverse rendering network. End-to-end training is
based on a self-supervised loss that requires no dense ground truth.

6.2.2 Multi-level Face Model

The proposed neural rendering method represents highly realistic face models with generative ad-

versarial networks. The co-authored work [Tewari et al. 2018] takes a different approach to model

realistic face geometry and appearance as shown in Figure 6.2. Unlike other 3D face modeling ap-

proaches which resort to a strong prior in the form of a parametric face model learned from small scale

datasets, the proposed method introduces a corrective layer into a model-based deep convolutional

autoencoder framework [Tewari et al. 2017] to learn out-of-space geometry and appearance models

over a large-scale real-world dataset. This approach is comparable to the state-of-the-art methods in

terms of reconstruction quality, however better generalizes to diverse identities and face shapes seen

in real-world face images, and even runs at over 250 Hz.

6.3 Future Work and Outlook

This section discusses other remaining aspects and open challenges which are not covered in this thesis

in detail. This includes strong occlusions by head poses, upper body editing, low-resolution outputs

and simple focus models. In addition, we discuss detection and verification of face images modified

with a high level of photorealism.

6.3.1 Challenges

The proposed method for face reconstruction assumes no severe occlusions in face areas to make

the initial face tracking step tractable and robust. However, faces in real-world images often exhibit

occlusions, for instance due to head poses, hairs, beards, hands and glasses. As a consequence, it could

fail accurate face tracking and thus the whole face editing pipeline. This issue could be addressed by

further improving face landmark detection algorithms. A recent work by Zhao et al. (2018) shows that

the accuracy of occluded face tracking can be improved by an additional neural network trained on

the dataset augmented with artificial occlusions. This alternative solution could be applied even to

the proposed face editing method that does perform less well on occluded faces.

The proposed neural rendering framework based on conditional generative adversarial networks

excludes the synthetic rendering of an upper body from conditioning inputs. Even though it is capable

of generating plausible results by the correlation between head poses and an upper body, full control
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over the upper body could be achieved by providing the synthetic renderings of the upper body as an

additional conditioning input. With the same principle, individual editing of hairs and backgrounds

could become feasible.

Similar to most deep learning-based methods, the proposed method for face editing is only able to

produce medium-resolution images due to the limitations of GPU memory and training time. A naive

approach that changes the size of the convolution kernels to produce high-resolution images leads to

blurry outputs or lack fine-scale details. Recently, promising approaches for high-resolution outputs

are proposed based on hierarchical neural network models [Wang et al. 2017; Karras et al. 2018]. This

could be leveraged to further increase the resolution of the generated output.

The halo artifacts across depth boundaries presented in some of the focus editing applications need to

be improved as well. As already discussed by Lee et al. (2010), a possible solution would be to apply

a more sophisticated multi-layered defocus blur model [Kraus and Strengert 2007] to the proposed

focus editing framework.

6.3.2 Detection and Verification

Besides many creative use cases and its great potential, face editing technology could be misused and

applied to modified videos with malicious intent. This raises a question about the authenticity of video

contents that people consume every day, especially when there is no proof of origin, and asks for a

lot more attention to develop verification systems to help us to spot such modifications.

It is important to note that the understanding of the algorithms and principles behind state-of-the-art

video editing tools, as the thesis conducts it, is also the key to develop the detection and verification

technologies. The methods for video editing rest on very similar principles to detect video modifications.

The face editing approach introduced in Chapter 4 is based on a conditional generative adversarial

network that consists of two subnetworks: a generator and a discriminator. These two networks

are jointly trained for opposing objectives. The goal of the generator is to produce videos that are

indistinguishable from real images. On the other hand, the goal of the discriminator is to spot the

synthetically generated video. During training, the aim is to maintain an equilibrium between both

networks, i. e., the discriminator should only be able to win in half of the cases, and thus both networks

become more sophisticated at their tasks. Note that detection, which can be formulated as a binary

classification problem, is in general an easier problem than image generation, which means that it will

always be possible to train a highly accurate detector given any specific image forgery approach. Despite

the fact that the video modifications become increasingly imperceptible to the human eye, the thesis also

conducted several experiments along those lines that show an algorithm can always train very effective

discriminators to detect such modifications. An example of such a network that is able to clearly detect

such modifications using the principles of the proposed method in Chapter 4 is shown in Figure 6.3.

Many techniques for video authentication already exist, and should be continuously improved along-

side new video editing tools. We believe that, in research communities, the development of new editing
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Figure 6.3: Detection of modified images: A neural network can reliably detect the images modified by the
proposed face editing method. The modified areas, which are detected by the neural network, are highlighted
in red.

technologies has to be flanked by detection and verification techniques.

6.4 Closing Remarks

The state-of-the-art approaches used for face reconstruction and editing in movie and game productions

are computationally expensive and require tremendous efforts to achieve photorealistic visual effects.

To address the limitations, the thesis has made scientific contributions that enable real-time inverse

face rendering at high fidelity, highly realistic face editing, and various focus editing effects from a

single video input throughout Chapters 3–5.

Despite the advances, there are still many challenges that need to be addressed as discussed in Sec-

tion 6.3. Among others, detection and verification of digitized face models have recently drawn the

attention from the computer graphics and machine learning communities. Interesting works have

already been carried out by training on a large-scale corpus of real and modified images using a

convolutional neural network [Rössler et al. 2018], or analyzing the frequency of eye blinking using

recurrent neural networks [Li et al. 2018]. The contributions of the thesis can be potentially extended

in this direction, generating a high-quality training dataset to improve such detection and verification

systems. More importantly, a methodical insight should be provided into the development of creative

and advanced face editing technologies to root such misuse out.

We hope that the thesis motivates further research on learning-based face reconstruction and edit-

ing frameworks, as well as detection and verification of modified face images. We also believe that

the thesis will inspire other computer graphics areas to approach open challenges with machine

learning-based algorithms [Kim et al. 2019; Liu et al. 2019].
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