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Abstract

Recent developments concerning the numerical simulation of solid objects and fluid flows in the field
of computer graphics have opened up a plethora of new possibilities in applications such as spe-
cial effect productions, animated movies, Virtual Reality (VR) applications, medical simulators, and
computer games. Despite various techniques for the simulation of solids and fluid flows exist, the
accurate incorporation of complex boundary geometries and interface models still poses a great chal-
lenge. Nevertheless, a robust handling of these interface descriptions is inevitable for a wide range of
applications. Besides other purposes, interface models are frequently used to represent the boundary
surfaces of solid objects, the layer between different materials, the boundary geometry of domains
trapping a fluid, or even to represent cuts, tears, or cracks separating the material within an object.
In order to be able to simulate even more complex phenomena and to enhance existing approaches,
advanced methods and new techniques for the efficient and robust numerical simulation of solids and
fluids with complex interfaces have to be developed.

The contributions of this thesis are organized into three parts. In the first part, two novel meth-
ods based on Finite Element (FE) discretizations for the simulation of brittle fracture and cutting of
deformable solids are presented. The first chapter in this part focuses on the physically motivated
generation of brittle fractures using an adaptive stress analysis. While this approach captures crack in-
terfaces by explicit remeshing and element duplication, the approach described in the second chapter
of the first part captures the interface implicitly by using enrichment functions that are directly embed-
ded into the FE discretization. The enrichment based technique is able to capture even highly complex
and finely structured cuts with high accuracy while any form of remeshing is completely avoided.

The second part of this thesis is concerned with a novel discretization approach for implicit inter-
face representations. An arbitrary surface in three-dimensional space can be represented as an isosur-
face of a signed distance function. In the first step, the novel approach discretizes the signed distance
function into a grid structure using piecewise polynomials. Subsequently, the initial discretization is
refined in order to improve the discretization accuracy. The presented method is the first approach that
not only refines the grid cells spatially but also varies the degree of the polynomial basis. With this
approach even highly complicated surfaces can be accurately discretized while keeping the memory
consumption to a minimum.

In the third and final part of this thesis a novel approach for the simulation of incompressible fluids
and a method to handle non-penetration boundary conditions using the novel concept of precomputed
density maps are presented. Building on the Navier-Stokes equations for isothermal incompressible
fluids the partial differential equation is spatially discretized using the Smoothed Particle Hydrodynamics
(SPH) formalism. Incompressibility is then ensured using a novel pressure solver that enforces both
a constant density field throughout the fluid and a divergence-free velocity field. In order to enforce
non-penetration an implicit representation of the boundary interface is constructed and a density map
is precomputed. Using the novel concept of density maps, non-penetration boundary conditions can
be handled using efficient lookups into the map with constant complexity while the requirement to
sample the boundary interface geometry with particles vanishes.
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Zusammenfassung

Aktuelle Methoden zur numerischen Simulation von Festkörpern und Fluiden in der Computergrafik,
eröffnen eine Vielzahl neuer Möglichkeiten für Anwendungen wie bspw. Spezialeffekten in Spielfil-
men, vollanimierten Filmen, VR-Anwendungen (VR := Virtuelle Realität), medizinischen Simulato-
ren und Computerspielen. Obwohl bereits viele Techniken zur Simulation starrer und deformierba-
rer Festkörper und Fluidströmungen existieren, stellt das Problem der Berücksichtigung komplexer
Berandungsgeometrien und Grenzflächenmodellen mit hoher Genauigkeit noch immer eine große
Herausforderung dar. Nichtsdestotrotz ist die Verwendung robuster Verfahren zur Berücksichtigung
der Grenzflächen für eine Vielzahl von Anwendungen unabdingbar. Neben anderen Verwendungen,
werden Grenzflächenmodelle häufig zur Repräsentation der Berandungsfläche von Festkörpern, der
Schicht zwischen aneinandergrenzenden Materialien, der Berandung von Behältern, die eine Flüssig-
keit einschließen, oder sogar zur Repräsentation von Schnitten, Rissen oder Brüchen, die das Material
im Innern eines Körpers separieren, eingesetzt. Um eine robuste Simulation noch komplexerer Phäno-
mene zu ermöglichen und bestehende Ansätze zu erweitern, besteht die Notwendigkeit verbesserte
Methoden und neue Techniken zur effizienten und robusten numerischen Simulation von Festkörpern
und Fluiden zu entwickeln.

Die wissenschaftlichen Beiträge dieser Dissertation sind in drei Teile gegliedert. Im ersten Teil wer-
den zwei neue Methoden basierend auf FE-Diskretisierungen (FE := Finite Elemente) zur Simula-
tion spröder Brüche und dem Zerschneiden deformierbarer Festkörper vorgestellt. Die erste Arbeit
beschäftigt sich mit der physikalisch-motivierten Generierung spröder Brüche mit Hilfe einer neuen
adaptiven Spannungsanalyse. Während diese erste Methode die Schnittflächengeometrie durch eine
explizite Neuvernetzung und Elementverdopplung erfasst, wird die Schnittfläche im zweiten Ansatz
durch eine direkte Einbettung sog. Enrichmentfunktionen in die FE-Diskretisierung implizit erfasst.
Mit Hilfe der Enrichment-basierten Technik können hochkomplexe Schnittflächen und feinstruktu-
rierte Schnitte exakt erfasst und robust simuliert werden, während jegliche Form der Neuvernetzung
vermieden wird.

Der zweite Teil dieser Arbeit beschäftigt sich mit einem neuen Diskretisierungsansatz für impli-
zite Repräsentationen von Grenzflächenmodellen. Eine beliebige Fläche im dreidimensionalen Raum
kann durch eine Isofläche einer vorzeichenbehafteten Distanzfunktionen repräsentiert werden. Der
neue Ansatz diskretisiert diese Distanzfunktion zunächst mit Hilfe eines Gitters unter Verwendung
abschnittsweise definierter Polynome. Anschließend wird die initiale Diskretisierung verfeinert, um
die Diskretisierungsgenauigkeit zu verbessern. Die neue Diskretierungsmethode ist der erste existie-
rende Ansatz, in dem Gitterzellen nicht nur räumlich unterteilt werden, sondern auch der Grad der
polynomiellen Basis lokal variiert wird. Mit Hilfe dieses Ansatzes können hochkomplexe Flächen mit
hoher Genauigkeit diskretisiert werden, während der Speicherverbrauch minimal gehalten wird.

Im dritten und letzten Teil dieser Dissertation werden ein neuer Ansatz zur Simulation inkompres-
sibler Fluide und eine neue Methode zur Behandlung von Durchdringungsrandbedingungen unter
Verwendung des neuen Konzepts der vorberechneten Dichtekarten vorgestellt. Aufbauend auf der
Navier-Stokes Gleichung für isothermale, incompressible Fluide, wird die partielle Differentialglei-
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chung mit Hilfe des SPH (SPH := Smoothed Particle Hydrodynamics) Formalismus räumlich diskre-
tisiert. Die Bewahrung der Inkompressbilität wird weiterhin durch einen neuen Drucklöser gewähr-
leistet, der sowohl einen konstantes Dichtefeld als auch ein divergenzfreies Geschwindigkeitsfeld im
gesamten Fluid erzwingt. Um eine Durchdringung des Fluids an der Berandung zu gewährleisten,
wird eine implizite Repräsentation der Berandung konstruiert und eine sog. Dichtekarte vorberech-
net. Mit Hilfe des neuen Konzepts der Dichtekarten können Durchdringungsrandbedingungen unter
Verwendung effizienter Zugriffe konstanter Komplexität in die Dichtekarten gehandhabt werden, oh-
ne dabei die Randgeometrie mit Partikeln samplen zu müssen.
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Chapter 1

Introduction

In our natural environment we interact with solid objects and fluids on a daily basis. What seems
natural and intuitive to us is actually the result of complex physical phenomena, such as turbulent
flow, large deformations, fracturing etc. In the last decades technology has evolved rapidly and ap-
plications for the purpose of mimicking nature in a digital environment are on the rise. This does not
only include the generation of realistic visual images but also the physically accurate simulation of
the dynamic movement of solid objects and fluids to mirror natural phenomena as closely as possible.
Examples for these applications, just to mention a few, are special effect productions for feature films,
fully animated movies, virtual prototyping, Virtual Reality (VR) applications, medical simulators, or
computer games. Consequently, there is a steadily increasing demand for sophisticated techniques for
the physics based simulation of solids and fluids in virtual environments.

In recent years, the computer graphics research community has greatly contributed to the devel-
opment of novel techniques to simulate solids and fluids in a physically plausible way. While the vast
majority of the developed methods focuses on the simulation of effects within homogeneous materials,
the demand for simulations of even more complex phenomena is growing continuously. Several phys-
ical phenomena can be described by extending existing mathematical models by interface models. An
interface is a two-dimensional surface embedded in three-dimensional space that acts as a separation
layer. Examples for applications of interfaces as separation layers are: the surface of a fluid or a solid
object, a sudden transition between different materials, or even the location and propagation of cuts,
cracks, and tears within solid materials.

Consider the examples illustrated in Figure 1.1. The leftmost image depicts a hand punching into
a pool of water causing splashes. In this scenario three physical entities are interacting: the solid hand
exerts forces on the water, the water displaces and creates complex splashes that interact with the
surrounding air. In order to mathematically model this effect, the interfaces representing the surface
of the hand, and the free surfaces of water and air have to be modeled. Moreover, the water might
be contained in a basin restricting the domain in which the water can move. This boundary of the
basin might then also be interpreted as a physical interface separating the water from the basin’s solid
material. The second image in Figure 1.1 depicts a thick slice of meat. While the steak can be classified
as a single solid object, it has a highly non-homogeneous structure. It is rather composed of several
layers of organic material, i.e., muscle tissue, fat tissue and bones, each having individual physical
properties, e.g., density, stiffness, etc. The transitions between the layers are extremely sudden and can
therefore be idealized as interface surface of infinitesimal thickness. The last image (Figure 1.1, right)
shows a cracked window. Although, the material can be assumed to be homogeneous, the physical
behavior of the glass changes significantly due to the material failures scattered across the window.
Again, providing a suitable interface description of the crack surfaces is inevitable for mathematical
modeling.
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Figure 1.1: Interface phenomena in nature. Left1: Water interacts with air and a hand. Interfaces can
be used to describe the layers separating the matter. Middle2: T-bone steak consists of several organic
materials adhering to each other. Right3: Cracks in a glass window separate individual shards from
another.

Explicit and Implicit Interface Representations

For the numerical simulation of interface problems, suitable representations to model the geometry of
an interface have to be identified. In general, there are two major strategies to describe an interface
surface, namely explicit and implicit representations. Let Ω ⊂ R2 be a domain that contains all points on
the two-dimensional surface in a local frame. Then, an explicit representation implies that the interface
geometry is represented as a parametric surface, i.e., a function f : Ω → R3 that maps a point on the
surface to a certain point in the three-dimensional world space. As it is often practically impossible to
represent a complex interface resulting from real world problems using a single analytical expression,
the parametric surface is frequently decomposed into a piecewise definition. In practice such a piece-
wise definition can, for example, be realized as a triangle mesh, where each triangle represents a local
parametrized bounded planar region on the surface. In contrast, interfaces can also be represented
implicitly. In this case, the interface surface is defined as the zero contour of a function Φ : R3 → R, i.e.,
f(Ω) = {x | Φ(x) = 0}. Again, it is practically impossible to find an analytic expression for arbitrary
interface geometries. For that reason the implicit description is often discretized using a volumetric
mesh or a point sampling.

There is no correct answer to the question which representation strategy is utterly superior. The
best choice rather depends on the specific application and its requirements. Let us discuss two exam-
ples in which each of the two strategies is more useful. Imagine an interface is used to describe the
free surface of a fluid. Due to the movement of the fluid, the surface deforms strongly and undergoes
frequent topological changes. In this case the usage of an implicit description can be highly beneficial
as the discretization values of the implicit function can simply be advected following physical laws
to displace the zero contour. In this way topological changes can be directly captured without any
additional effort. In contrast, tracking a fluid surface explicitly is a tedious task as the discrete rep-
resentation has to be adapted frequently. This usually also involves numerous intersection tests and
moreover requires optimization techniques to maintain a good discretization quality.

1"Making a splash" by RhiPh0tography is licensed under CC BY-NC-ND 2.0
2"Beef Loin Porterhouse Steak" by Artizone is licensed under CC BY-NC-ND 2.0
3"Shattered glass" by DaveBleasdale is licensed under CC BY 2.0
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For the second example, consider rendering an image using a raytracer. Raytracing requires the
computation of countless intersection tests between rays and an object’s boundary surface. These tests
are efficient and simple when the surface is represented using an explicit triangle mesh as the eval-
uation is equal to computing the intersection points between several planes and a line. In contrast,
computing intersections between rays and implicit surfaces is complex due to the fact that each inter-
section test is a root finding problem and thus typically inefficient. Please note that in certain cases an
explicit tracking of free fluid surfaces or an implicit surface representation for ray tracing might still
be beneficial depending on the specific problem.

The pure representation of surfaces is not the only challenge simulators for physical interface prob-
lems are facing. Further challenges include the coupling with existing discretization techniques, the
numerical integration over domains intersected by the interface, or the computation of fluxes transmit-
ted through the interface. However, approaches to tackle these challenges are highly dependent on the
simulation method and also very specific to certain applications. In this regard, this thesis proposes
novel techniques for the simulation of interface phenomena with solids and fluids using both explicit
and implicit interface representations. Furthermore, a novel technique for an efficient generation of
discrete implicit interface representations is proposed.

1.1 Outline

This thesis is structured as follows. Chapter 2 describes the foundations of solid and fluid modeling on
the basis of continuum mechanics. The term continuum, kinematic laws, local and global balance laws,
the concept of stress, constitutive models for solids and fluids and specific boundary value problems
tailored to specific problems are introduced. The remainder of the thesis is organized into three parts.
The first part is dedicated to the simulation of cutting and fracture in deformable solids and covers
Chapters 3 and 4. In Chapter 3, a novel method for the physically based simulation of brittle fracture
using a stress analysis based on adaptive tetrahedral meshes is presented. A novel robust method
to simulate cutting of deformable objects using the extended finite element method is proposed in
Chapter 4. The second part – Chapter 5 – describes a novel method to discretize signed distance fields
using an adaptive hexahedral grid in combination with higher-order polynomials of variable degree.
The third and final part covering Chapters 6 and 7 is dedicated to the simulation of incompressible
fluids using the ”Smoothed Particle Hydrodynamics” formalism. Chapter 6 presents a novel method
to enforce incompressibility using a solver that ensures that the density field is constant throughout
the fluid and that maintains a divergence-free velocity field. In Chapter 7 an approach for handling
non-penetration boundary conditions using the novel concept of implicit density maps is presented.
Finally, Chapter 8 draws conclusions from the work discussed in the preceding chapters and discusses
potential directions for future work.

1.2 Contributions

The contributions presented in this thesis are summarized in the following. Please note that all work
has been published at refereed conferences or in peer-reviewed journals. In consideration of PromO § 5
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Abs. 3 of RWTH Aachen University I would like to affirm that all listed contributions are my original
work and were only supported by my colleagues and supervisors unless stated otherwise.

• Adaptive tetrahedral meshes for brittle fracture simulation, [KOSCHIER et al. 2014]: A novel, reversible
spatially adaptive finite element discretization for linear elasticity based on tetrahedral meshes
for the simulation of brittle fracture is presented. Dynamic objects are treated as rigid bodies until
they encounter a collision. Subsequently, a stress analysis is performed and the underlying mesh
is successively adapted guided by a stress-based criterion in order to accurately determine highly
stressed regions. The adaption scheme is designed to preserve the quality of the input mesh to a
large extent. Moreover, it has the advantages that it does not alter the boundary geometry such
that geometric features are maintained and that it is exclusively based on topological operations.
The method is the first to perform a spatially adaptive stress analysis on tetrahedral meshes for
the physically based simulation of brittle fracture in the context of computer graphics.

• Robust cutting simulation using extended finite elements, [KOSCHIER et al. 2017a]: A robust remesh-
ing-free algorithm for the simulation of cutting of deformable objects on the basis of the eXtended
Finite Element Method (XFEM) with fully implicit time integration is presented. Using this formu-
lation it is possible to capture a cut modeled by a discontinuity in the solution of the underlying
Partial Differential Equation (PDE) without the requirement to perform any modifications on the
discretization mesh. One of the biggest challenges for implementations of the XFEM in combina-
tion with discontinuous enrichment functions is the evaluation of integrals over discontinuous
integrands on tetrahedral domains. The presented cutting algorithm includes the construction
of specialized quadrature rules to approximate the integrals with high accuracy. Using the novel
approach, even highly complex fine-structured cuts can be simulated in a robust manner.

• hp-adaptive generation of discrete signed distance fields, [KOSCHIER et al. 2016; KOSCHIER et al.
2017b]): An algorithm for the adaptive generation of discrete higher-order polynomial Signed
Distance Fields (SDFs) on axis-aligned hexahedral grids is presented. Using an orthonormal poly-
nomial basis, the functions are efficiently fit to the input signed distance function on each cell.
The novel error-driven construction algorithm is globally adaptive and iteratively refines the
Signed Distance Fields (SDFs) using either spatial subdivision (h-refinement) following an octree
scheme or by cell-wise adaption of the polynomial approximation’s degree (p-refinement). The
results produced with this technique demonstrate that the method is able to construct more ac-
curate Signed Distance Fields (SDFs) at significantly lower memory consumption compared to
previous approaches.

• Simulation of incompressible fluids using SPH, [BENDER and KOSCHIER 2015; BENDER and KO-
SCHIER 2017]: A novel method for the simulation of incompressible fluids based on the semidis-
cretization technique Smoothed Particle Hydrodynamics (SPH) is presented. Using a combination of
two novel implicit pressure solvers both a low volume compression as well as a divergence-free
velocity field can be ensured in order to maintain incompressibility. While a compression-free
fluid is essential to produce a realistic physical behavior, a divergence-free velocity field drasti-
cally reduces the number of required solver iterations and increases the stability of the simula-
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tion significantly. In this way the method can handle larger time steps than previous approaches
resulting in a substantial performance gain.

Please note that this work was a collaboration and was not first-authored by myself. However, the extent of
my contributions to this project was significant which can be attested by the first author. The contributions
not only concern coauthoring the articles but also include the development of the established techniques
and the software implementation. Moreover, I would like to affirm that the work has not been published
elsewhere and has not been used in a thesis before.

• Density Maps for improved SPH boundary handling, [KOSCHIER and BENDER 2017]:

The novel concept of density maps for robust handling of static and dynamic boundaries in fluid
simulations based on SPH is presented. In contrast to the vast majority of existing approaches
the presented method uses an implicit discretization for a continuous extension of the density
field throughout solid boundaries. Using the novel representation the accuracy of density and
density gradient evaluations in boundary regions are enhanced and the computational efficiency
is improved using efficient lookups into the density maps. This strategy not only removes the
necessity to sample boundary surfaces with particles, but also decouples the particle size from
the number of sample points required to represent the boundary. Several comparisons show
that the representation is more accurate than particle samplings, especially for smooth curved
boundaries, and even outperforms one of the most recent sampling based techniques.

1.3 List of Publications

This thesis is mainly based on scientific articles that were originally published in peer-reviewed jour-
nals or at refereed conferences. A list of the relevant work can be found below.

D. KOSCHIER, S. LIPPONER, and J. BENDER (2014). “Adaptive Tetrahedral Meshes for Brittle Fracture Simula-
tion”. ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 1–10.

D. KOSCHIER, C. DEUL, and J. BENDER (2016). “Hierarchical hp-Adaptive Signed Distance Fields”. ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation, pp. 1–10.

D. KOSCHIER and J. BENDER (July 2017). “Density Maps for Improved SPH Boundary Handling”. ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation, pp. 1–10.

D. KOSCHIER, J. BENDER, and N. THUEREY (2017a). “Robust eXtended Finite Elements for Complex Cutting of
Deformables”. ACM Transactions on Graphics 36.4, 55:1–55:13.

D. KOSCHIER, C. DEUL, M. BRAND, and J. BENDER (2017b). “An hp-Adaptive Discretization Algorithm for
Signed Distance Field Generation”. IEEE Transactions on Visualization & Computer Graphics 23.10, pp. 2208–
2221.

J. BENDER and D. KOSCHIER (2015). “Divergence-Free Smoothed Particle Hydrodynamics”. ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, pp. 1–9.

J. BENDER and D. KOSCHIER (2017). “Divergence-Free SPH for Incompressible and Viscous Fluids”. IEEE Trans-
actions on Visualization & Computer Graphics 23.3, pp. 1193–1206.

Other published work that I coauthored can be found in the following list.

J. BENDER, D. KOSCHIER, P. CHARRIER, and D. WEBER (2014b). “Position-Based Simulation of Continuous Ma-
terials”. Computers & Graphics 44.1, pp. 1–10.
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M. WEILER, D. KOSCHIER, and J. BENDER (2016). “Projective Fluids”. ACM SIGGRAPH Motion in Games, pp. 1–6.

J. BENDER, D. KOSCHIER, T. KUGELSTADT, and M. WEILER (July 2017). “A Micropolar Material Model for Tur-
bulent SPH Fluids”. ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 1–8.

M. WEILER, D. KOSCHIER, M. BRAND, and J. BENDER (2018). “A Physically Consistent Implicit Viscosity Solver
for SPH Fluids”. Computer Graphics Forum.
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Chapter 2

Foundations of Solid and Fluid Simulation

Physics teaches us that all the matter surrounding us and even the matter we consist of is formed
out of molecules that in turn are composed of atoms. Each of these incredibly small particles con-
tributes a certain mass to the portion of matter it belongs to. Therefore, we know that the distribution
of mass within matter is not continuous but can rather be interpreted as a system of discrete mass
points. Despite this fact, many macroscopic mechanical phenomena can be well-described when the
corresponding matter is idealized as a continuum, i.e., a region of continuously distributed mass. Most
of these phenomena are subject to the interaction among solid bodies, liquids or gases exhibited to
external influences, e.g., temperature, external loading, or gravity. This idealization then implies that
a portion of matter can always be divided into smaller portions independent of the size of the regions.
This in turn, confirms the theoretical existence of a material particle, i.e., a portion of matter contained
in an infinitesimal volume, within this model. The continuum theory then aims to model macroscopic
physical phenomena and neglects effects that can be observed on microscales.

This chapter gives a brief introduction into the field of continuum mechanics for the mathematical
modeling of solids and fluids and is based on the works of LAI et al. [2009], ABEYARATNE [2012], and
TSAKMAKIS [2013].

2.1 Continuum Mechanics

In the field of continuum mechanics the behavior of bodies with continuously distributed mass ex-
hibited to external loads is studied. The materials that are most frequently modeled using continuum
theory are elastic and plastic solids and Newtonian fluids. Based on mechanical axioms resulting from
experimental physics or simple observations, physical principles can be deduced to derive suitable
mathematical models. Consequently, solid or fluid matter in a continuous setting is characterized by
its kinematics, balance laws, constitutive laws and the second law of thermodynamics. The kinematics
describe the motion and deformation of the continuum, usually using differential measures. In case
of an elastic solid body this expresses the relation between the spatial displacement of each material
particle and the resulting strain at the particle location. The balance laws cover, among others, the con-
servation of linear momentum corresponding to Newton’s second law and the conservation of angu-
lar momentum. Constitutive laws model the relation between certain field quantities and mechanical
stress. Examples for these field quantities are strain, strain-rate, or temperature. The correspond-
ing equations therefore model the inherent behavior of a material. Consider the following examples.
While solid bodies being subject to small deformations can be described by linear constitutive models,
solids undergoing large deformations require more elaborate non-linear constitutive equations. Also
fluids follow the exact same balance laws as elastic solids but mainly differ in the constitutive model as
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they are subject to purely plastic deformation and therefore never return to their initial state. Finally,
the second law of thermodynamics is usually evaluated for a given constitutive law in order to deter-
mine if a material is thermodynamically valid. Physically interpreted the law states that the entropy
of an isolated system never decreases. From that it follows that the heat in a closed system never flows
from a colder to a hotter region. Another implication is that a closed system can never produce but
only conserve or dissipate energy. In solid and fluid mechanics the law is usually expressed in form of
the Clausius-Duhem inequality to test the validity of constitutive relations.

Continuum

A three-dimensional body B is defined by a set of material particles X ∈ B. The concept of a body
and material particles is inherently abstract such that B is intended to represent a portion of matter
as occurring in nature. In order to give these abstract entities a geometric meaning the concept of
configurations has to be introduced. Mathematically, a configuration X is defined as a one-to-one
mapping

X : B → Ω ⊂ E3, x = X (X).

that maps a material particle X to its definite location x in the domain Ω occupied by the body in three-
dimensional Euclidean space E3. Please note, that the inverse mapping X−1 : Ω → B also exists since
X describes one-to-one relations.

In order to model explicit problems using continuum theory it is beneficial to define one unique
configuration as reference configuration. For elastic materials this can be (but does not have to be) the
configuration in which the objects rests, i.e., the body is not subject to any internal stresses. In case of
liquids or gases it is convenient to choose this configuration as the initial position of the fluid. In the
following this configuration will be referred to as the reference configuration

XR : B → ΩR, ξ = XR(X)

that maps a material particle X to a position ξ in the reference domain ΩR. The definition of such
a reference configuration is especially important for modeling elastic solids. In this case the internal
forces are directly dependent on the deviation of a deformed configuration relative to the undeformed
configuration, i.e., the reference configuration. Although less significant, the definition of a reference
configuration can also be very helpful when fluids are modeled. The configuration can give the investi-
gator insight concerning the initial volume of the fluid, e.g., when incompressibility or other geometric
characteristics are considered. Given an arbitrary configuration X of the body B the deformation from
the reference configuration XR can be measured using the deformation mapping D = X ◦ X−1

R . Here
the ◦-operator denotes a composition of functions such that (f ◦ g)(x) = f(g(x)). Please see Figure 2.1
for a graphical illustration of the configurations and the mappings between them.

2.2 Motion and Kinematics

A motion describes the transition from one configuration to another on a certain path. This transition
can be parameterized using a single parameter. Physically, this parameterization can be used to rep-
resent the deformation of a continuum with respect to its reference configuration over time t within
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B

ΩR

Ω

X

ξ

x

ξ = XR(X) x = X (X)

x = D(ξ)

Reference configuration Deformed configuration

Body

Figure 2.1: Configurations and deformation mapping.

a time interval [t0, t1]. This finally results in a family of configurations X (X, t) : B → Ωt where Ωt

denotes the spatial domain occupied by the body B at time t. From here onwards, the following abbre-
viations will be used to ensure readability: Xt(X) = X (X, t), Xi(X) = X (X, ti). Also X0 will be denoted
as the initial configuration in the remainder of this thesis. Please note that the reference configuration is
often chosen as the initial configuration for the sake of convenience, i.e., XR ≡ X0, ΩR ≡ Ω0.

In the course of the motion each material particle follows a trajectory described by the curve xt. In
general, there are four types of coordinates in which the given trajectory can be described: in material
coordinates, reference coordinates, in Lagrangian coordinates or Eulerian coordinates. This is also true
for the values that a time-dependent function αt defined on B can take. The different descriptions can
then be represented as follows:

• Material description:
αt = αMt (X), xt = xMt (X)

• Reference description:
αt = αRt (ξ), xt = xRt (ξ)

• Lagrangian description:
αt = αLt (x0), xt = xLt (x0)

• Eulerian description:
αt = αEt (xt), xt = xt

9
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In the Eulerian description no extra mapping for the vector xt is required, because the trajectory is
measured in the current/deformed configuration. It is also worth noting that the reference and the La-
grangian description are equivalent if the reference configuration is chosen as the initial configuration,
i.e., ξ ≡ x0 if XR ≡ X0. In the following the index t will be left out for the sake of brevity. This means
that if a time-dependent quantity is index-free, it represents the given quantity at time t.

Besides describing the trajectory x of a material particle X, it is often necessary to calculate par-
ticle velocity v and acceleration a for modeling, analysis, or numerical solving. These vector fields
are defined as time derivatives of the particle trajectory, i.e., v := ẋ, a := ẍ. However, for physical
quantities represented by scalar or tensor fields on the body B, the (partial) time derivative has differ-
ent meanings when described in Lagrangian or Eulerian coordinates. In order to express the absolute
time rate of change of a given quantity the material derivative D(·)/Dt is introduced. In the following,
the material derivative of a quantity will alternatively be denoted with an overdot for brevity. Hence,
the time rate of change of a tensor field α in Lagrangian and Eulerian coordinates are defined as

(Lagrangian) α̇ =
Dα

Dt
=
∂αL

∂t
and α̇ =

Dα

Dt
=
∂αE

∂t
+ (v · ∇x) αE︸ ︷︷ ︸

convective
derivative

. (Eulerian)

While the partial derivative of α in Lagrangian coordinates coincides with the material derivative the
Eulerian field has an additional term that is referred to as convective derivative.

Deformation

When a solid body is modeled using the presented continuum theory, one has to introduce mathe-
matical tools to geometrically measure the body’s deformation and strain. The definition of suitable
measures will be important to model constitutive laws for elasticity relating the geometric strain with
mechanical stress. As motivation one can consider a continuum represented in reference configura-
tion and an arbitrary deformed configuration (cf. Figure 2.2). Now a parametrized curve C(λ) within
the continuum connecting a “string” of material particles can be chosen. The material curve naturally
takes different shapes in each of the considered configurations, i.e., CR = XR(C) and Ct = Xt(C).
In order to measure the deformation of points on the line, a relation between the infinitesimal line
elements dCR, dCt in reference and deformed configuration has to be found. This can be achieved by
simple derivation and application of the chain rule:

∂Ct

∂λ
=
∂D(CR)

∂λ
= ∇ξD

∂CR

∂λ
.

⇒ dCt = ∇ξD dCR.

This yields a linear relation between line elements on the curve among the reference and any de-
formed configuration. The two-point tensor relating the quantities is the gradient of the deformation
mapping with respect to the reference coordinates. This gradient also directly follows from a Taylor
series expansion in ξ (t = const) of first order of the deformation mapping at a position ξ0 ∈ ΩR:

D(ξ0) = x0 + ∇ξD|ξ0
(ξ − ξ0) + r(ξ0, ξ − ξ0), lim

‖ξ−ξ0‖→0

r(ξ0, ξ − ξ0)

‖ξ − ξ0‖
= 0,

where r denotes the remainder of the Taylor series.
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Reference configuration Current configuration

O

ΩR

Ωt
CR(λ)

C′R

Ct(λ)

C′t

ξ
x

u = U(ξ)

Figure 2.2: The displacement mapping and deformation of a material path. O denotes the origin of a
Cartesian coordinate system in Euclidean space.

Deformation Gradient

In the following, this gradient will be referred to as deformation gradient and will be denoted with
F = ∇ξD. From the previous insight that F transforms line elements from reference into deformed
space we can also deduce that

dx = F dξ. (2.1)

One of the most important properties of the deformation gradient F is that it can be factorized into
a proper orthogonal tensor and a symmetric tensor as long as F does not represent a reflection. This
decomposition is referred to as polar decomposition. Presuming that det F > 0, the decomposition is
mathematically defined as

F = RU = VR, with R = R−T ,U = UT ,V = VT . (2.2)

The symmetric and positive definite tensors U and V are often referred to as right and left stretch tensor.
Also existence and uniqueness of the polar decomposition under the given requirement can be proved.
For further details on the proof I would like to refer the reader to the book of LAI et al. [2009]. Finally,
the second-order tensor F can be used as a measure for (point-wise) deformation.

Displacement and Displacement Gradient

The displacement mapping U : ΩR → R3 maps the position of a material particle in reference configu-
ration XR to its displacement vector ut at time t in deformed configuration X, i.e., ut = Ut(ξ). Again,
the index t denoting the time point associated with the deformed configuration will be dropped in the
remainder to improve readability. Analogously to the deformation gradient, the deformation of a line
element can also be expressed using the displacement gradient H := ∂U

∂ξ resulting in dx = (H + 1)dξ.
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Consequently, the deformation gradient and the displacement gradient are related via the identity
F = H + 1, where 1 denotes the identity matrix.

Strain

The main question motivating a strain measure is: How can one quantify the deformation of a ma-
terial particle exclusive a potential rigid body motion in the near-field of the particle? Unfortunately,
the deformation gradient F is not suitable for measuring strain as the tensor contains rigid body ro-
tations. To construct suitable representations for strain measures one has to take care that rigid body
transformations are eliminated. In general, the strain tensors can be classified into Lagrangian and Eu-
lerian measures. Analogously to the corresponding material descriptions, Lagrangian strain tensors
measure strain in the reference configuration while Eulerian strain tensors represent the quantity in
deformed space. In the following, several strain measures will be specified. The focus will, however,
lie on Lagrangian measures as they are more relevant for this thesis.

Green-Lagrange Strain Tensor

A starting point to describe rigid body transformation free deformation of a line element is to measure
its (quadratic) length difference ∆

∆ :=
1

2

(
‖dx‖2 − ‖dξ‖2

)
(2.3)

as its length is not influenced by rigid body motions. Plugging Equation (2.1) into Equation (2.3) yields

∆ =
1

2
(Fdξ · Fdξ − dξ · dξ)

=
1

2

(
dξ · FTFdξ − dξ · dξ

)

= dξ ·
[

1

2

(
FTF− 1

)]

︸ ︷︷ ︸
E

dξ,

where E is referred to as the Green-Lagrange strain tensor or short Green strain tensor. The independence
of this strain measure from rigid body rotations also becomes intuitively clear when considering that
F can be decomposed using the polar decomposition (cf. Equation (2.2)) yielding

E =
1

2

(
FTF− 1

)

=
1

2

(
UTRTRU− 1

)

=
1

2

(
U2 − 1

)
.

In this way, one can see that the rigid body rotation contained in F is eliminated. It is also worth
noting that the Green strain tensor is a Lagrangian strain measure since it can also be interpreted as a
function mapping line elements from reference to reference space, i.e., E : Tξ ΩR × Tξ ΩR → R, where
Tξ ΩR denotes the tangent space of ΩR at point ξ. There is also an equivalent Eulerian strain measure
A := 1

2

(
1− FT−1F−1

)
which is referred to as the Almansi strain tensor such that A : Tx Ω×Tx Ω→ R.

The Lagrangian and the Eulerian measure are then related via the identity E = FTAF.
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2.2. MOTION AND KINEMATICS

Cauchy/Linearized Strain Tensor

The previously introduced strain measures ensure that no rigid body rotations are evident. However,
the measures are non-linear (or more specifically quadratic) in the material particle position. If a de-
formable object is subject to very small deformations a linearized strain measure can be sufficient to
describe the object’s behavior adequately. This in turn simplifies analytical or numerical analyses as
non-linearity is avoided. The linearization can then be realized by developing the Green strain into a
Taylor series of first order

E =
1

2

(
FTF− 1

)

=
1

2

(
(H + 1)T (H + 1)− 1

)

=
1

2

(
H + HT

)
+

1

2
HTH

≈ 1

2

(
H + HT

)
=: ε,

where ε is referred to as either Cauchy strain tensor or linearized strain tensor. It should, however, be
well-understood that this measure is in fact influenced by rigid body rotations due to the linearization.

Biot Strain Tensor

As previously mentioned, a linear strain measure is beneficial when it comes to numerical computa-
tions because less non-linearity means better convergence when solving the arising equation systems.
However, for deformable objects subject to large deformations a rotationally invariant strain measure
is still necessary. In order to keep the strain tensor “as linear as possible” the right stretch tensor can
be directly used, i.e.,

EBiot = U− 1.

The Lagrangian measure is rotationally invariant by definition as U represents the symmetric part of
the deformation gradient’s polar decomposition and is referred to as Biot strain tensor.

Velocity Gradient and Strain Rate

In some cases it is not enough to solely quantify deformation as source for mechanical stresses. Espe-
cially, for viscous effects in solids or fluids the rate of deformation is also important. The deformation
rate can then simply be defined as the time derivative of deformation or displacement gradient, i.e.,

Ḟ = Ḣ =
d

dt

∂U

∂ξ
= ∇v.

From this quantity strain rate measures can be derived. One example is then the linearized strain rate
tensor

ε̇ =
1

2
(Ḣ + Ḣ

T
) =

1

2
(∇v +∇vT ).

However, not relevant for this thesis, also more complex non-linear strain rate measures can be in-
troduced following the same idea. For further details, I would like to refer the reader to the work of
BONET and WOOD [1997].

13



CHAPTER 2. FOUNDATIONS OF SOLID AND FLUID SIMULATION

2.3 Global and Local Mechanical Balance Laws

In this section, the concept of global and local balance laws will be introduced. Based on this concept,
the mechanical principles of mass conservation and linear and angular momentum conservation will
be derived.

Consider a body B subject to a motion X : B → Ω in the time interval t ∈ [t0, t1]. Let P ⊂ B be
a region that is part of the body B and ΩP = X (P) be the domain in the deformed configuration at
time t. Here, it should be pointed out that P is composed of a fixed set of material particles X ∈ P .
This implies that independent of the deforming motion the set of particle covered by the domain
ΩP describes the deformed domain covering the same set of material particles. Let A further be a
physical property associated with P , then one can assume that there is a (smooth) density function
α : B × T → R, where T = [t0, t1] denotes the considered time domain with start and end time t0 and
t1, such that

A =

˚

ΩP

α(x)dx. (2.4)

When taking the total time derivative of Equation (2.4) and applying Reynold’s transport theorem this
results in the following identities

Ȧ =
d

dt

˚

ΩP

αdx =

˚

ΩP

α̇+ [α∇ · v] dx

=

˚

ΩP

∂α

∂t︸︷︷︸
volumetric
generation

dx +

‹

∂ΩP

(v · n)α
︸ ︷︷ ︸

flux

dS,
(2.5)

where n denotes the surface normal of the material portion’s boundary ∂ΩP . This model formulation
is called a balance law as it simply states that the increase rate of the amount of α in P is equal to (or
"balanced" with) the volumetric generation of α and the flux of α across ∂P . It is further called global
balance law as it only holds for the considered domain (or parts of the domain) but not necessarily for
a single particle.

Based on global laws, local balance laws, also often called field equations, and boundary conditions can
be derived. This derivation is usually done by localization. While not explicitly formulated here the
outline of the localization process is as follows. The boundary integral over the flux in Equation (2.5)
is transformed into a volume integral using the divergence theorem. Since it is presumed that all
integrands are smooth and since the integration domain ΩP is a subset of Ω, the localization theorem can
be applied and the balance law must also hold point-wise. In the following, several field equations will
be derived. These are namely the mass conservation law, the law of linear momentum conservation
and the law of angular momentum conservation.

Since all numerical simulation methods presented in this thesis are based on discretizations in
Lagrangian coordinates, the balance laws will further be formulated with respect to a reference con-
figuration XR.
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2.3. GLOBAL AND LOCAL MECHANICAL BALANCE LAWS

Mass Conservation Law

A set of material particles P ⊂ B that is part of a body B is associated with a certain mass m. Mathe-
matically this can be represented by an integral over the material subset of a scalar field ρ : B×T → R+

that maps a material particle X at time t to its mass density ρ̂ = ρ(X, t). In order to improve readability,
the mass density mapping ρ(X, t), the mass density ρ̂, and the mass density function that maps a posi-
tion in deformed space to the material density ρ̄ : Ω×T → R+ will be denoted with ρ in the remainder
of this work. Then, the mass m associated with a subset of material particles of a body B is defined as

m :=

˚

P

ρ(X, t)dX =

˚

ΩP

ρ(x)dx. (2.6)

As this work will consider only closed systems without mass flux, a global conservation law can be
derived by differentiating Equation (2.6) with respect to the time t and by applying Reynolds transport
theorem. This yields

ṁ =
d

dt

˚

ΩP

ρdx

Reynold’s theorem→ =

˚

ΩP

∂ρ

∂t
dx +

‹

∂ΩP

(v · n) ρ dx

Divergence theorem→ =

˚

ΩP

[
∂ρ

∂t
+∇ · (ρv)

]
dx

!
= 0

(2.7)

Since ρ is assumed to be smooth on ΩP , the integral vanishes if and only if the integrand vanishes, i.e.,

∂ρ

∂t
+∇ · (ρv) = 0. (2.8)

Equation (2.8) is usually referred to as the continuity equation and holds for all points in the domain
Ω described by the deformed configuration X . The transformation steps for the localization are all
reversible. Therefore, the field equation (2.8) and the global mass conservation law (2.7) are equivalent.
By a few further mathematical transformations the following identity can be derived.

∂ρ

∂t
+∇ρ · v = −ρ∇ · v

⇔
Dρ

Dt
= −ρ∇ · v (2.9)

This also implies that when incompressible materials are simulated, i.e., Dρ/Dt !
= 0, the velocity field

must be divergence-free, i.e., ∇ · v = 0 since ρ > 0. This is an important observation, especially when
it comes to the simulation of incompressible fluids, as this means that a divergence-free velocity field
has to be enforced at all times.

Balance Law of Linear Momentum

In this section the law of linear momentum conservation will be derived. Therefore, the concept of
forces will be introduced first. Secondly, a mathematical definition of the linear momentum of a ma-
terial portion will be defined. Finally, the global and local balance law will be derived by evaluating
Newton’s second and third law.
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CHAPTER 2. FOUNDATIONS OF SOLID AND FLUID SIMULATION

Consider a body B being subject to forces. The forces acting on the body will be further distin-
guished into external and internal forces. External forces represent all forces that the environment exerts
on the body. This includes external body forces acting on volume portions of the body, e.g., grav-
itational forces, and traction forces acting on surface areas of the body’s boundary ∂B, e.g., contact
forces. Internal forces are characterized by interactions of the material particles inside the body. These
can, however, be reactions to external influences such as deformation, temperature changes, etc. In
this work only internal traction forces that model the interaction with inner material regions will be
considered.

In order to mathematically characterize the total force F acting on a material portion P ⊂ B at time
t given the current configuration X and corresponding domain ΩP = X (P), one can assume that it is
the result of an integral over ΩP and its boundary ∂ΩP of smooth density functions b : ΩP × T → R3

and t : ∂ΩP × S × T → R3, i.e.,

F =

˚

ΩP

b(x)dx +

‹

∂ΩP

t(x,n)dS,

where S :=
{
x ∈ R3 | x · x = 1

}
denotes the group of unit vectors.

Physically, the functions b(x, t) and t(x, t) can be interpreted as a specific body force field and
a specific traction force field representing a force per unit volume and a force per unit surface area,
respectively. t is also often referred to as traction or stress vector. The assumption that t is existent not
only on ∂Ω but also on ∂ΩP , which lies in the interior of Ω, can be motivated as follows. As previously
stated, it is assumed that the body is subject to external surface and body forces. The effect of these
forces is then propagated throughout the body and counteracted by internal forces. This means that
the forces are transported across the interface ∂ΩP between ΩP and Ω \ ΩP . The traction on an area
segment ∆S on the interface is then equal to the transported force ∆F acting on the surface area
element ∆S with corresponding surface normal n (cf. Figure 2.3), i.e.,

t = lim
∆S→0

∆F

∆S
=
dF

dS
.

This model is referred to as the Cauchy hypothesis.

F

∆F

∆S

∂P

P

B \ P

Figure 2.3: Cauchy hypothesis. A force F acts on the boundary of the body. The solid object reacts to
the force and propagates a force field throughout the domain until it reaches P .
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2.3. GLOBAL AND LOCAL MECHANICAL BALANCE LAWS

Besides introducing the concept of force, the linear momentum I of a material portion P has to
be defined. Again, it can be assumed that the global quantity I is the result of an integral over the
material portion or, alternatively, its volume in the current configuration. Starting from the definition
of classical mechanics, momentum is defined as product of mass and velocity. From that definition,
the integral formulation of momentum can be defined as

I :=

˚

P

ρvdX =

˚

ΩP

ρvdx.

When incorporating the mass conservation law given in Equation (2.8) the time derivative of the total
momentum simplifies to

İ =
d

dt

˚

ΩP

ρvdx

Reynold’s theorem→ =

˚

ΩP

[
d(ρv)

dt
+ (ρv)(∇ · v)

]
dx

=

˚

ΩP

[ρv̇ + (ρ̇+ ρ ∇ · v)︸ ︷︷ ︸
=0

(cf. Equation (2.8))

v]dx

=

˚

ΩP

ρv̇dx.

(2.10)

Then, the global balance law for the conservation of linear momentum directly follows from Newton’s
second law. This expresses that the total momentum in a system should be in equilibrium with the total
external force, such that one can set the total derivative of the total momentum I equal to the external
force vector which yields

İ = F

⇔˚

ΩP

ρv̇dx =

˚

ΩP

bdx +

‹

∂ΩP

tdS. (2.11)

Newton’s second law results from observations in nature and can therefore considered to be an axiom.
It is also interesting to observe that the global law has the same structure as the global model balance
law in Equation (2.5).

To derive a local balance law from this global formulation the boundary traction term has to be
transformed into a volume integral, first. Cauchy’s stress theorem states that there is a linear relation
between the traction vector and the corresponding surface normal, i.e., t = σTn, where σ is a second-
order tensor and referred to as the Cauchy stress tensor. A mathematical proof for the correctness of this
theorem and the existence of the stress tensor can be found in the standard literature on continuum
mechanics (see e.g., [GONZALEZ and STUART 2008]). Consequently, Equation (2.11) can be rewritten
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CHAPTER 2. FOUNDATIONS OF SOLID AND FLUID SIMULATION

to obtain the corresponding field equation
˚

ΩP

ρv̇dx =

˚

ΩP

bdx +

‹

∂ΩP

σTndS =

˚

ΩP

[
∇ · σT + b

]
dx

⇔
ρv̇ = ∇ · σT + b. (2.12)

Finally, Equation (2.12) represents a local balance law for particle-wise conservation of linear momen-
tum.

Balance Law of Angular Momentum

Similar to the principle of linear momentum a balance law for angular momentum can be derived.
When the definition of angular momentum from classical mechanics is considered the definition can be
generalized to a continuum. This definition says that angular momentum is the moment of momentum
about an axis. This, in turn, means that it is the product of the linear momentum and the perpendicular
distance from the axis of its line of action. The generalization to a continuum then reads

L =

˚

ΩP

r× (ρv) dx,

where r represents the vector pointing from a fixed, arbitrary point in space to x. In the following,
the fixed arbitrary point will be (without loss of generality) chosen as the origin, such that r = x.
Analogously to the mathematical transformation in Equation (2.10), the total time derivative of L rep-
resenting the moment of force, i.e., torque, can be expressed by

L̇ =

˚

ΩP

x× (ρv)dx

Reynold’s theorem→ =

˚

ΩP

[
d(x× (ρv))

dt
+ (x× (ρv))(∇ · v)

]
dx

=

˚

ΩP


ρv × v︸ ︷︷ ︸

=0

+x× (ρ̇v + ρv̇) + (x× (ρv)) (∇ · v)


 dx

=

˚

ΩP


x× (ρv̇) + (ρ̇+ ρ∇ · v)︸ ︷︷ ︸

=0
(cf. Equation (2.8))

(x× v)


 dx

=

˚

ΩP

x× (ρv̇)dx.

Building on the concept of forces, it can be assumed that the total torque τ acting on a portion of a
body is

τ =

˚

ΩP

r× bdx +

‹

∂ΩP

r× tdS.
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Similar to Newton’s second law of motion, Euler’s second law of motion states that the rate of change of
angular momentum about a point equals the total external torque in the system. Applying this law to
the continuum formulation yields

L̇ = τ

⇔˚

ΩP

x× (ρv̇) dx =

˚

ΩP

x× bdx +

‹

∂ΩP

x× tdS. (2.13)

This formulation then represents the global balance law of angular momentum. In order to localize this
expression, the surface integral part of Equation (2.13) has to be transformed into a volume integral,
i.e.,

‹

∂ΩP

x× tdS =

‹

∂ΩP

x× (σTn)dS

=

‹

∂ΩP

[
x×σT

]
ndS

=

˚

ΩP

∇ ·
[
x×σT

]
dx

=

˚

ΩP

[
σ× + x× (∇ · σT )

]
dx,

where the operator (·)× is defined as [x×]ik =
∑
j εijkxj for vectors and [σ×]i =

∑
j

∑
k εijkσjk for

tensors with εijk being the Levi-Civita tensor. When the volume integral is plugged back into Equa-
tion (2.13) the law can be localized and simplifies to

˚

ΩP


−σ

× + x×
(
ρv̇ −∇ · σT − b

)
︸ ︷︷ ︸

=0
(cf. Equation (2.12))


 dx = 0 ⇒ σ× = 0

σ× = 0 ⇔ σ = σT .

Therefore, the evaluation of the local balance law for angular momentum proofs that the Cauchy stress
tensor has to be symmetric.

At this point I would like to point out that there are indeed cases, i.e., if there are other sources
for external torque or if coupling stress is assumed, where the stress tensor is not symmetric. One
class of these models is the micropolar model [ŁUKASZEWICZ 1999] that has also been applied to fluid
simulation in the context of computer graphics by BENDER et al. [2017] to simulate turbulent flow.

Finally, the acquired local balance laws are summarized below.

(Continuity equation)
(Linear momentum conservation)

(Angular momentum conservation)

ρ̇

ρv̇

σ

=

=

=

−ρ∇ · v
∇ · σ + b

σT

19



CHAPTER 2. FOUNDATIONS OF SOLID AND FLUID SIMULATION

Balance Laws in Reference Formulation

In some applications it is advantageous to formulate the derived field equations with respect to a
reference configuration. This is moreover required when simulations in Lagrangian coordinates are
desired. In the following, a body B with reference configuration XR and time-varying current configu-
ration X with ΩR = XR(B) and Ω = X (B) will be considered. Moreover, ξ ∈ ΩR and x ∈ Ω will denote
spatial positions of material particles in reference and current configuration, respectively. In order to
reformulate the local balance laws with respect to a reference configuration, transformation rules for
line, oriented surface area, and volume elements are required.

A relation for line elements is already known from Equation (2.1). To derive a transformation
for oriented surface area elements, they first have to be defined and subsequently a relation to line
elements has to be made. A surface element in reference and current configuration will be denoted dSR
and dS, respectively. An oriented surface element is then the product of the surface area element with
its surface normal, i.e., nRdSR and ndS. Such an oriented surface element can further be represented
by two linearly independent line element vectors dx(1) = Fdξ(1) and dx(2) = Fdξ(2) in the surface’s
tangent space. This yields the following relations: ndS = dx(1) × dx(2) and nRdSR = dξ(1) × dξ(2). A
mathematical transformation can then be directly derived, i.e.,

dx(1) × dx(2) = (Fdξ(1))× (Fdξ(2)) = JF−T (dξ(1) × dξ(2))

⇔
ndS = JF−TnRdSR,

with J = det F. A transformation between volume elements dvR = dξ(1) · (dξ(2) × dξ(3)) and dv =

dx(1) · (dx(2) × dx(3)) can be derived in a similar way, i.e.,

dx(1) · (dx(2) × dx(3)) = (Fdξ(1)) ·
[
(Fdξ(2))× (Fdξ(3))

]
= J

[
dξ(2) · (dξ(2) × dξ(3))

]

⇔
dv = JdvR.

With these transformations the global balance laws can be reformulated in reference coordinates and
subsequently localized. Let, again, P ⊂ B be a subset of B with ΩP = X (P) and ΩPR = XR(P). Then,

˚

ΩP

ρv̇dx =

˚

ΩPR

ρJ︸︷︷︸
ρR

v̇dξ,

˚

ΩP

bdx =

˚

ΩPR

bJ︸︷︷︸
bR

dξ

˚

ΩP

∇ · σdx =

‹

∂ΩP

tdS =

‹

∂ΩP

σndS =

‹

∂ΩPR

JσF−T︸ ︷︷ ︸
P

nRdSR =

˚

ΩPR

∇ ·Pdξ.

Here, ρR and bR denote the reference density and body forces in reference space. Moreover, P =

JσF−T is referred to as the first Piola-Kirchhoff stress tensor. Interpreting stress tensors as linear operator
σ : S → R3, e.g., t = σn, the Cauchy stress tensor relates normals in the current configuration with
tractions in the current configuration. To give P a similar interpretation; P relates normals in the
reference configuration with normals in the current configuration, i.e., t = PnR. Also a stress tensor S

can be found that purely acts in the reference configuration such that tR = SnR. It can be shown that
S = JF−1σF−T = F−1P, where S is referred to as second Piola-Kirchhoff stress tensor.
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As a result the law for point-wise linear momentum conservation can be reformulated in reference
space, i.e.,

ρRv̇ = ∇ ·P + bR (2.14)

All simulation approaches presented in this thesis will be of Lagrangian nature and therefore be based
on the reference formulation of the balance of linear momentum presented in Equation (2.14). It holds
independently of the nature of the simulated matter including solids, liquids, and gases.

2.4 Constitutive Laws for Solids and Fluids

As previously mentioned, the equation for linear momentum conservation is independent of the sim-
ulated material. For that reason, the material properties have to be encoded in the model. The me-
chanical properties of a certain material are characterized by relations between mechanical stress, in
this model expressed by the stress tensors, and external stimuli. For elastically deformable objects the
external stimulus is strain or more general deformation while Newtonian fluids generate stress from
compression or from the shear strain rate. Model equations that relate the external stimuli with the me-
chanical stress are referred to as constitutive equations. In the following, several constitutive models
for isotropic elastic deformations and the constitutive law for Newtonian fluids will be presented.

Isotropic Hyperelasticity

All constitutive laws for elastic objects presented in this work will be derived from potentials. Such
models are referred to as hyperelastic constitutive models or Green elastic materials. Therefore, it is as-
sumed that a function Ψ = Ψ(F) exists that maps a deformation to an energy density. Given a defor-
mation represented by a deformed configuration X at time t, the elastic potential (or elastic energy) of
a solid object is

E =

˚

ΩR

Ψ(F(ξ))dξ,

such that the first Piola-Kirchhoff stress tensor is

P(F) =
∂Ψ

∂F
.

St. Venant-Kirchhoff Model

The St. Venant-Kirchhoff model is the simplest material model and is, with the free energy function
being quadratic in E and therefore quartic in the deformation gradient F, a polynomial model. The
elastic energy density is then defined as

Ψ(F) = µE : E +
λ

2
tr (E),

where the material parameters µ and λ are referred to as Lamé parameters. Alternatively, a fourth-order
tensor C with Cijkl = λδijδkl+µ(δikδjl+δilδjk) can be defined such that Ψ(F) = E : C E. The according
first Piola-Kirchhoff stress tensor is then

P(F) = F(2µE + λ tr E 1).
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Because the physical meaning of the Lamé parameters is not obvious, they are often expressed by the
engineering parameters, i.e., Young’s modulus k = µ(3λ+2µ)

λ+µ and Poisson’s ratio ν = λ
2(λ+µ) . Then, the

physical interpretation is that k > 0 represents the general stiffness of the material whereas−1 < ν < 1
2

stands for the amount of lateral contraction or expansion. Further, a material is not affected by lateral
effects for ν = 0 and is incompressible in the limit ν → 1

2 . A problem of this model is that it is not
polyconvex [RAOULT 1986]. Therefore, the associated energy E has no unique minimizer.

Linear Elasticity or (Isotropic) Generalized Hookean Model

In order to formulate a linear constitutive model for small deformations, the St. Venant-Kirchhoff
model can be linearized. Then, the energy density function is solely based on the linearized strain,
i.e.,

Ψ(F) = µε : ε+
λ

2
tr (ε)

with the corresponding stress tensor

P(F) = 2µε+ λ tr (ε) 1.

Again, it should be noted that this energy density function is not invariant under rigid body rotations.
This means, that if the corresponding body is subject to rigid body rotations, the energy will be non-
zero and a stress will emerge within the body.

Corotated Linear Elasticity

In order to formulate a constitutive model that is as linear as possible but does not yield stresses when
the simulated body is subject to rigid body rotations, a corotated linear constitutive model can be used.
The term "linear" in the model’s name is, however, misleading as the material model is non-linear due
to the required polar decomposition of the deformation gradient to determine the right stretch tensor
U and the rotation matrix R. The energy density function is then defined by

Ψ(F) = µEBiot : EBiot +
λ

2
tr2 (EBiot)

with the corresponding stress tensor

P(F) = R (2µEBiot + λ tr(EBiot) 1) .

The model is called "corotated" because the used strain measure, i.e., the Biot strain tensor, can be
interpreted as linearized strain that is rotated from current into reference configuration such that no
rigid body rotations are evident in the final measure.

Governing Equations for Elastic Solids

Within the last sections all required equations and boundary conditions to simulate an elastic solid in
Lagrangian coordinates were derived. These are the balance law of linear momentum, a hyperelastic
constitutive law, and kinematic equations as well as traction and displacement boundary conditions,
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and initial displacement conditions. Then, the resulting Mixed Initial-Boundary Value Problem (IBVP) is

(Linear momentum conservation)
(Constitutive model)
(Kinematic equation)

ρRü

P

F

=

=

=

∇ ·P + bR
∂Ψ(F)
∂F

1 + ∂U
∂ξ

(Initial displacement condition)
(Initial velocity condition)

(Dirichlet boundary condition)
(Neumann boundary condition)

u

v

u

t

=

=

=

=

u0

v0

uD

tN

on
on
on
on

Ω at t = 0

Ω at t = 0

∂ΩD

∂ΩN

where ∂ΩD and ∂ΩN with ∂Ω = ∂ΩD∪∂ΩN denote portions of the domain’s boundary where essential
and natural boundary conditions are implied, respectively. The displacement boundary condition uD

is part of the problem description (so not part of the solution) and prescribes that the affected boundary
is either fixed, i.e., when uD = 0, or that certain boundary regions follow a given trajectory. Similarly,
tN is also part of the problem description and represents external boundary tractions exerted on the
system.

Incompressible Newtonian Fluids

A Newtonian fluid follows an idealized constitutive model that approximates the relation between
a fluid’s motion and the occurring mechanical stress. It further makes several assumptions about
this relation. Firstly, when the fluid rests, the stress within the fluid is assumed to be a hydrostatic
pressure. Secondly, it assumes that there is a linear relation between the Cauchy stress tensor and the
linearized strain rate. Thirdly, no shear stresses are assumed to occur when the fluid undergoes rigid
body motion. Finally, the fluid is assumed to behave isotropically and, therefore, a material particle
responds directionally independent to deformation, strain-rate or other internal/external influences.
The corresponding constitutive model is then

σ = −p 1 + 2µε̇,

where p denotes the hydrostatic pressure and µ > 0 is a material parameter usually referred to as
dynamic viscosity. Plugging the constitutive law into the law of linear momentum conservation (2.12)
yields

ρv̇ = ∇ · σ + b

= ∇ · (−p1 + 2µε̇) + b

= −∇p+ 2µ∇ ·
(

1

2

(
∇v +∇vT

))
+ b

= −∇p+ µ
(
∇ · ∇v +∇ · ∇vT

)
+ b

= −∇p+ µ (∆v +∇(∇ · v)) + b.

(2.15)

In the context of this thesis all fluids are assumed to be incompressible. This is an idealization but
holds for most fluids that humans interact with in daily life presuming moderate speed of motion and
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moderate external influences. Incompressibility is enforced if, and only if, the density at every material
particle is constant. The according mathematical constraint ρ = const will be referred to as constant
density condition. This also implies that the density’s rate of change equals zero, i.e., ρ̇ = 0. Considering
the identity given by Equation (2.9), this in turn means that the velocity field must be divergence-free
because ρ > 0 on B. Mathematically, this implies the velocity level constraint ∇ · v = 0 that will be
referred to as divergence-free condition in the following. Plugging the divergence-free condition into
Equation (2.15) yields the incompressible Navier-Stokes equations

ρv̇ = −∇p+ µ∆v + b

ρ = const ⇔ ∇ · v = 0. (2.16)

Please note that no relation between kinematic quantities and the pressure p is given here. While some
models rely on a state equation the pressure for an incompressible fluid is implicitly defined as the
constant density condition has to be satisfied. Mathematically, p can also be interpreted as Lagrange
multiplier that ensures that incompressibility is satisfied in the equations of motion. The quantities
pressure and velocity can also be linked by taking the divergence of the first equation and by plugging
the result into the divergence-free condition. This eventually results in the so-called Pressure Poisson
Equation (PPE) that has the form ∆p = f(v).

By prescribing an initial velocity and (if existent) an initial free surface location and non-penetration
boundary conditions again yields an IBVP

(Linear momentum conservation)
(Incompressibility)

ρv̇

∇ · v
=

=

−∇p+ ∆v + b

0

(Initial position condition)
(Initial velocity condition)

(Non-penetration condition)

x

v

v · n

=

=

=

u0

v0

0

on
on
on

Ω at t = 0

Ω at t = 0

∂ΩWall,

where ∂ΩWall denotes the portion of the fluid domain boundary that is in contact with a static solid.
The model further states that the fluid can move freely on free surfaces that are not in contact.

2.5 Summary

In this chapter, continuum mechanical models that describe idealized solids and fluids were presented.
The basis build the laws of mass and linear momentum conservation that can be combined to get a
PDE describing the dynamic motion of the considered matter. The derivation of the conservation law
of angular momentum showed that the Cauchy stress tensor has to be symmetric given the stated
assumptions. In order to describe the equations of motion with respect to the reference configuration,
the local linear momentum balance law was transformed respectively. Finally, several hyperelastic
constitutive laws for deformable solids and the Newtonian constitutive law for fluids were derived
in order to formulate IBVPs describing specific elasticity or fluid dynamics problems. However, in
by far most cases the IBVPs are not analytically solvable and therefore require the computation of
a numerical solution. In order to acquire a numerical solution, the differential operators in space
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and time have to be discretized. In the following chapters numerical simulation methods based on
continuum mechanical models to simulate complex physical phenomena will be presented.
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Part I

Cutting and Fracture of Deformable Solids





Chapter 3

Adaptive Tetrahedral Meshes for Brittle
Fracture Simulation

The physically-based simulation of deformable solids has been an active research topic for three
decades in the field of computer graphics. Because countless works focus on either modeling defor-
mation based on continuous, discrete, or even purely geometric spatial models, the general topic of
simulating elastic deformation in a physically plausible manner can be perceived as solved problem.
Recent research on deformable bodies can be generally divided into two directions. The first direc-
tion focuses on improving robustness, stability, and computational performance using novel space
and time discretization approaches or modern numerical solvers. The second direction is concerned
with mathematical modeling of complex physical phenomena such as viscosity, plasticity, thermody-
namic effects, etc. Further examples for physical phenomena that have been modeled in the computer
graphics community are cutting and fracture of deformable solids. These examples are moreover very
prominent as according mathematical models are required for the visual animation of destruction and
complex close-up scenes in special effects for Hollywood movies, purely animated films, or computer
games. Also in the application area of training simulators, there is a great demand for methods to
simulate cutting.

A simple criterion for failure in brittle materials can be based on the mechanical stress within the
object. Therefore, it is required to perform a numerical analysis in order to determine when and where
a crack occurs and how it propagates. Moreover, the spatial discretization of the elasticity IBVP has to
be adapted due to the crack propagation such that the arising discontinuity is sufficiently represented.
For that reason, the discretization should be very fine in regions experiencing high stresses and along
the crack path. However, the regions that will experience high stresses and the location of the cracks
are not known a-priori.

In this chapter, a method that employs a novel, reversible spatially adaptive discretization method
based on tetrahedral meshes for the simulation of brittle fracture is presented. The approach requires
an initial (preferably coarse) input mesh and treats solid objects as rigid bodies as long as they are

29



CHAPTER 3. ADAPTIVE TETRAHEDRAL MESHES FOR BRITTLE FRACTURE SIMULATION

not subjected to collisions with other objects. Subsequent to a collision a stress analysis is performed
and the underlying mesh is successively adapted guided by a stress-based criterion. In this way,
highly-stressed regions, i.e., stress concentrations, are accurately determined and the potential crack
origins can be located. The adaption scheme is designed to preserve the quality of the input mesh
to a large extent. Moreover, it has the advantages that it does not alter the boundary geometry, such
that geometric features are maintained, and that it is exclusively based on topological operations. The
algorithm is able to generate multiple cracks from a single collision while an approach to suppress
excessive shattering in highly stressed regions is incorporated. In order to increase the performance of
future stress analyses the previous refinement is partially reversed. The realism of the results produced
by the method is demonstrated using several complex scenarios involving hundreds of collisions that
produce thousands of fragments.

3.1 Introduction

In our natural environment solid objects fracture when subject to collisions or other sources of external
impulses or forces. In the human perception this is a natural phenomenon and part of our everyday
experience. However, in the context of physical simulation this phenomenon is very complex and hard
to model mathematically. On the way to model our world in virtual environments, it is necessary to
develop physically plausible models to improve visual realism. Therefore the simulation of fracture is
an important research topic in the field of computer graphics.

The fracture behavior of materials can be roughly categorized into two classes: brittle and ductile
fracture. While the case where an object experiences moderate to heavy plastic deformations before
the material fails and tears is referred to as ductile fracture, material failure that occurs subsequent to
a negligible amount of purely elastic deformation is referred to as brittle fracture. Typical examples
for materials undergoing brittle fracture are pottery, concrete, stone, and glass.

In the field of computer graphics, many approaches to simulate brittle fracture rely on a numerical
analysis to determine the stress field within a solid. Most of these methods are based on the Finite
Element Method (FEM) which has proven to be an effective tool for this purpose, e.g., [O’BRIEN and
HODGINS 1999; M. MÜLLER et al. 2001; BAO et al. 2007]. All of the mentioned methods spatially
discretize the IBVP for elasticity using linear Lagrange polynomials on a static tetrahedral mesh and
initiate a crack when the tensile stress associated with a tetrahedron exceeds a certain threshold. As
a consequence, the spatial resolution of the mesh heavily influences the number and locations of po-
tential crack origins. Also the accuracy of the obtained stress field is dependent on the resolution of
the tetrahedral mesh. Therefore, coarse meshes do not provide the desired accuracy to accurately lo-
cate stress concentrations while an analysis on high-resolution meshes is computationally expensive.
As we are only interested in regions where high tensile stresses occur, it is beneficial to locally refine
the mesh in these regions. This observation motivates the proposition to develop a novel spatially
adaptive method. However, spatial adaption of tetrahedral discretizations is in general non-trivial.
As continuous Galerkin FEMs require that the spatial approximation to the IBVP is C0 continuous
everywhere, the refinement strategy has to preserve the conformity of the mesh. This means that the
mesh must not contain T-junctions, also called “hanging nodes”, in order to avoid the requirement for
further treatments in the discretization. The mesh is also supposed to stay conforming with geometric
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features of the boundary geometry such as sharp edges or corners. Moreover, it is beneficial if the
refinement is (uniquely) reversible in order to coarsen the mesh in regions where the high-resolution
is not required anymore to save computational resources in the ongoing simulation.

In the following, a novel reversible refinement algorithm for tetrahedral meshes is proposed. The
strategy fulfills all stated requirements that are important for the simulation of brittle fracture and
the inherent balancing ensures that the quality of the involved tetrahedra decreases only slightly with
each refinement level. The algorithm is then used to formulate an adaptive FEM for the accurate
determination of stress concentrations within an elastic solid. Using the proposed fracture algorithm
cracks are inserted at the locations where the maximum tensile stress occurs and the stress field is
subsequently recomputed. As previously discussed, the number of crack origins is highly dependent
on the mesh resolution. In the case of highly detailed meshes, this results in excessive shattering of the
stressed region. In order to remove this undesired artifact, a region-wise non-maximum suppression
is presented. It is moreover possible, that an element repeatedly indicates material failure after a crack
already occurred. Therefore, a stress-rate based criterion is proposed to avoid this temporal shattering
artifact. To reduce the computational cost of the simulation, stress analyses are only performed when
the object collides with other dynamic solids or static boundaries.

For the general dynamic movement the solid is idealized as rigid body in the limit of infinite stiff-
ness. This strategy is not new and was already employed in several works, e.g., M. MÜLLER et al.
[2001], BAO et al. [2007], and GLONDU et al. [2013]. As the elastic solid experiences only small defor-
mation before the material fails, the individual tetrahedra do not become degenerate. Therefore, it
turned out to be sufficient to perform all adaption operations and to balance the quality of the tetrahe-
dra in the undeformed reference configuration (cf. Chapter 2). Additionally, the proposed refinement is
computationally very efficient due to its conceptual simplicity and is exclusively based on topological
modifications, i.e., split, merge, and flip operations. In order to be able to uniquely reverse the refine-
ment only a small amount of additional data per simplex has to be stored. An interesting property of
the refinement scheme is that the reversibility is also independent of the order of operations.

To summarize, the main contributions of the presented approach are the proposition of:

• an adaptive approach for the simulation of brittle fracture for highly detailed determination of
crack origins,

• a novel algorithm for reversible spatial adaption of tetrahedral meshes exclusively based on
topological operations that preserves geometric features on the mesh boundary and that main-
tains the quality of the mesh to a good extent, and

• a simple yet effective approach to prevent spatial and temporal shattering artifacts based on a
non-maximum suppression and a stress-rate dependent fracture criterion.

3.2 Related Work

In this section, publications closely related to the presented approach will be discussed. As this work
contributes to the field of brittle fracture simulation and mesh adaption, the discussion is organized
respectively.
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Fracture Simulation

Methods for the physically-based simulation of fracture have been developed and investigated for
nearly three decades, although not many articles were published towards the end of the last century.
In the pioneering work of TERZOPOULOS and FLEISCHER [1988] inelastic deformable objects are dis-
cretized using finite difference schemes or finite elements. They employ a constitutive model based
on controlled-continuity generalized spline kernels which are weighted by weighting functions. They
further use a stress-based fracture criterion such that the weighting functions are nullified when the
internal stress exceeds a certain threshold. The nullification then causes the elastic potential along the
crack path to vanish which physically means that the material is separated. For discrete elements, this
means that they simply vanish. A few years later, NORTON et al. [1991] proposed a method that simu-
lates brittle fracture on the basis of a discrete mass-spring system. They prescribe a spatially varying
‘breakage threshold’ field and remove springs when the force between two connected mass points ex-
ceeds the threshold. The spatial variation is intended to account for material defects such that cracks
are initiated in defect regions more frequently. It took several years until the research on the physically
based simulation of fracture was revived by O’BRIEN and HODGINS [1999] and experienced actual
innovations. They simulate an elastically deformable object based on a linear elastic continuum model
and discretize the resulting IBVP using a linear FEM on a tetrahedral mesh and using an explicit time
integration scheme. In each time step they compose a so-called separation tensor from the discrete
forces acting on each element and subsequently determine the amount and direction of the greatest
tensile stress by means of the tensor’s largest eigenvalue and corresponding eigenvector. If the ten-
sile stress exceeds a certain threshold, the corresponding discrete element is remeshed such that the
plane orthogonal to the eigenvector is explicitly captured within the tetrahedron. However, disad-
vantageous is that the local remeshing approach quickly leads to deteriorated elements and that the
number of additional vertices increases drastically. The approach still places a milestone in the phys-
ically based simulation of fracture as it was the first to explicitly account for the direction of newly
originating cuts and to guarantee mass conservation by remeshing of the affected area. The method
was later extended to model ductile fracture by O’BRIEN et al. [2002] and a simplified version was also
adopted by PARKER and O’BRIEN [2009] for simulating fracture in real-time. SMITH et al. [2001] rep-
resent a brittle object using a tetrahedral mesh where each individual tetrahedron represents a single
rigid body and constrain face-adjacent tetrahedra rigidly. The object is then simulated as rigid body
and the constraint system is then solved using a quasistatic simulation subsequent to a collision. In
this equation system the constraint forces are determined via Lagrange multipliers. If the constraint
force exceeds a certain threshold the constraint is simply removed. Due to the simplicity of the ap-
proach the method is much faster compared to the approach of O’BRIEN and HODGINS [1999] but,
because of the lack of the model’s physical justification and because of the absence of mesh adaption,
not comparable in terms of the quality of results. A method combining the advantages of the last
two discussed methods was proposed by M. MÜLLER et al. [2001]. They employ a quasistatic, and
therefore time-independent, model, discretize the resulting Boundary Value Problem (BVP) using a lin-
ear FEM, and compute an impact radius for fracturing multiple tetrahedra at once in order to provide
a certain independence between mesh resolution and fracture behavior. However, they do not remesh
the affected regions but only split the tetrahedra on existing interior faces. Additionally, they have to
anchor the object in the location of impact to guarantee that the BVP has a unique solution. In order to
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improve the visual appearance of the cracks while avoiding complex remeshing MOLINO et al. [2004]
present a Virtual Node Algorithm (VNA) that duplicates cracked elements and adds virtual nodes for
the duplicates. Exploiting this technique BAO et al. [2007] presented a VNA-based, quasistatic method
to simulate fracture of thin shells and volumetric objects. They also remove the necessity to anchor
the objects by eliminating the null space in the arising equation system. Another approach based on
the VNA was proposed by GLONDU et al. [2013]. Their goal was to achieve a real-time fracture simu-
lation while keeping the IBVP time-dependent. Therefore, they perform a modal analysis on a linear
Finite Element (FE) discretization such that they can compute an analytic solution for the spatially dis-
crete system. Since they also employ a rigid body simulation for the general dynamic movement,
they estimate the contact durations of collisions and provide a contact force model for this duration.
A disadvantage of this approach is that the modal analysis is invalidated when the solid fractures or
when the discretization is altered in any way, e.g., due to mesh adaptions. Computing further modal
analyses for the resulting fragments is, however, unfeasible if a simulation at interactive rates is de-
sired. An approach for the simulation of fracture that employs proper remeshing was proposed by
WICKE et al. [2010]. Their algorithm is able to dynamically improve the quality of a tetrahedral mesh
by local application of both topological operations and vertex smoothing. While they build the frac-
ture algorithm entirely on the work of O’BRIEN and HODGINS [1999], they use their sophisticated
remeshing approach to drastically improve the mesh quality after cracks are inserted. Unfortunately,
this dynamic local remeshing method is very hard to implement and cannot guarantee to converge
quickly to a high quality mesh due to the discrete nature of the problem. They also have to ensure
that transferring physical field quantities from the original to the improved mesh does not suffer from
excessive numerical diffusion. Another remeshing focused method for physically based simulation of
two-dimensional continua was proposed by BUSARYEV et al. [2013]. Instead of locally modifying the
mesh due to a crack, they globally remesh the whole domain using a constrained Delaunay approach.
While a high quality of the resulting mesh is guaranteed, the approach is computationally intensive as
the whole domain must be considered in every adaption. Additionally, the transfer of physical quan-
tities without excessive numerical diffusion poses a problem. HEGEMANN et al. [2013] refrain from
explicitly embedding the crack surface into their tetrahedral discretization and rather track regions of
undamaged material using discrete level-sets. As their goal is to model ductile fracture they evolve the
level-sets based on the shape derivative of the Griffith energy. In contrast to most of the approaches
presented towards the year 2014, LEVINE et al. [2014] revisit the usage of mass-spring systems for
fracture computation using a peridynamic model. They sample three-dimensional objects with point
masses and connect all particles that are neighboring each other in a certain radius. To model dynamic
fracture, springs are removed when their strain exceeds a certain threshold.

In contrast to the discussed works using mesh-based discretizations, also meshless approaches
were investigated. PAULY et al. [2005] discretize the elasticity IBVP using a meshless, moving-least
squares based particle discretization. The discontinuity in the PDE’s solution implied by a crack is then
enforced using a transparency criterion between interacting particles. The approach can moreover be
considered to be spatially adaptive as they employ particle resampling to avoid sparsely sampled
regions, although they do not use the spatial adaptivity to improve the solution of the stress analysis.
Another (partially) meshless method for the simulation of fracture was proposed by CHEN et al. [2013].
They first discretize the object using a tetrahedral mesh and place a particle sample on each tetrahedron
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centroid to spatially discretize the elasticity IBVP using SPH . The discontinuities implied by the cracks
are then captured by removing connections between particles neighboring over a tetrahedron face.

Besides choosing physical approaches for the simulation of fracture, methods relying on purely
geometric decompositions have become popular in the past. By computing a decomposition of the
material prior to the simulation, the material is separated on the precomputed interfaces when the
initiation of a crack is triggered. Prescoring is generally a very efficient method to animate fracture
and therefore desirable for real-time applications but, by far, less realistic since physical factors such
as impact point location and impact magnitude subsequent to a collision are neglected. Methods that
fall under this category were, e.g., presented by SU et al. [2009] and GLONDU et al. [2014]. A variant of
these geometric approaches was proposed by MÜLLER et al. [2013]. However, they use precomputed
fracture patterns and decompose the corresponding object respectively. In this way they can alleviate
the physical inaccuracy by aligning the pattern with the impact location.

In contrast to all of the discussed approaches, the method presented in this chapter is the first to
perform a spatially adaptive stress analysis on tetrahedral meshes for the physically based simulation
of brittle fracture. It moreover employs a method to decouple the mesh resolution and the number of
originating cracks which consequently avoids excessive spatial and temporal shattering.

Adaptive Tetrahedral Meshes in Physically Based Simulation

In this section spatially adaptive techniques based on tetrahedral meshes for physically based anima-
tion are reviewed. A general overview over adaptive simulations in this field can be found in the
review of MANTEAUX et al. [2017].

Strategies for the adaption of tetrahedral meshes can be generally divided into local and global
techniques. Global adaption techniques regenerate a mesh from scratch due to changed requirements.
In local adaption techniques a series of operations, e.g., topological splits, merges, or flips or continuous
vertex smoothing, is performed on a certain subset of the tetrahedra composing the mesh. While
global mesh regeneration approaches are able to guarantee a certain mesh quality dependent on the
meshing algorithm, they imply a considerable computational overhead when a higher mesh resolution
in local regions is desired. As local refinement is favored for the accurate determination of stress
concentrations in fracture simulation, this section focuses on techniques for local adaption.

A local adaption technique based on red-green refinement was proposed by MOLINO et al. [2003].
In this approach a level-set implicitly representing the surface of a given input shape and a regular
hexahedral grid are employed. Subsequently, each grid cell is decomposed into tetrahedra which are
marked as ‘red’. A tetrahedron is then refined using a sequence of edge split operatios (see e.g., BANK et
al. [1983]) resulting in a regular pattern of eight smaller ‘red’ tetrahedra. In order to keep the resulting
mesh conforming, neighboring tetrahedra have to be irregularly subdivided to match the refinement
pattern. These irregularly refined tetrahedra are then called ‘green’. Although they do not use the re-
finement technique within a simulation, they locally refine an initial mesh to improve conformance to
the given level set while keeping the mesh quality high. A similar approach that uses a grid structure
and a level-set as input was proposed by LABELLE and SHEWCHUK [2007]. They use predefined sten-
cils to decompose grid cells into tetrahedra. Moreover, they directly account for partially filled cells
and can even guarantee bounds on the dihedral angles of the resulting polyhedra. They also propose
a method to construct a graded mesh such that tetrahedra close to the boundary are finer than interior
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tetrahedra. These level-set based techniques were later applied to the physical simulation of fluids,
e.g., by WOJTAN and TURK [2008] or ANDO et al. [2013]. A method for the simulation of deformable
solids based on a hierarchy of non-nested tetrahedral meshes was proposed by DEBUNNE et al. [2001].
They use a linear FE discretization in combination with explicit time integration. In a first step, they
assign nodes of finer hierarchies to nodes of their parent hierarchy level. In this way field quanti-
ties can be interpolated from finer to coarser levels. Guided by an error based refinement criterion,
they can then de-/activate mutually assigned nodes if required. Typically, stiffness parameters of brit-
tle materials are very large resulting in a stiff system of Ordinary Differential Equations (ODEs) which
makes implicit time integration inevitable. However, the construction of equation systems for implicit
time integration is more than non-trivial in this case as the set of active nodes belonging to different
hierarchy levels makes the discretization discontinuous and therefore the evaluation of integrals over
the nodal support domains complex. This issue is also ignored in this approach, which makes the (at
least spatial) convergence of the method questionable. X. WU et al. [2001] proposed a method for the
dynamic progressive refinement of tetrahedral meshes for the simulation of deformable solids. Prior
to the simulation they perform a series of edge collapse operations to reduce an initial high-resolution
mesh and track all of the changes. During the simulation runtime they apply the reverse operations,
i.e., vertex splits, in regions indicated by an error estimator. It is, however, unclear how to maintain the
quality of the mesh during coarsening and refinement. This is also stated as a limitation by the authors.
A less traditional approach for the locally adaptive simulation of deformable bodies was proposed by
GRINSPUN et al. [2002]. Instead of geometrically refining the tetrahedra within a given mesh, they
employ a hierarchical basis to locally add new degrees of freedom improving the accuracy of the sim-
ulation. CAPELL et al. [2002] followed a similar strategy using hierarchical basis refinement. However,
the object has to be volumetrically parametrized which proves to be a non-trivial task. Therefore, they
embed the object into a ‘ficticious’ domain that does not conform to the object boundary but is nev-
ertheless easier to parametrize. As they do not account for partially filled tetrahedra, the accuracy of
the method is limited. Instead of following static rules for local adaption, KLINGNER and SHEWCHUK

[2008] proposed a method to dynamically improve the quality of tetrahedral meshes based on local
topological splits, flips, and vertex smoothing. This type of incremental quality improvement was
then adopted for the simulation of finite plastic deformations and fracture by WICKE et al. [2010]. As
already mentioned in the last section, the dynamic local remeshing method is very hard to implement
and cannot guarantee to converge quickly to a high quality mesh due to the discrete nature of the qual-
ity optimization problem. Among the different existing approaches, the method of BURKHART et al.
[2010] is most similar to the one presented in this chapter. Inspired by the popular

√
3-subdivision

for triangle meshes proposed by KOBBELT [2000], they generalize the approach to volumetric sim-
plicial meshes for the adaptive simulation of elasticity problems in engineering. While the approach
yields very good results in terms of the evolution of the surface triangles, the quality of the tetrahedra
deteriorates very quickly.

In contrast to most of the discussed approaches, this chapter presents a static subdivision rule
for tetrahedral meshes that is solely based on simple topological operations. Tracking the refinement
process is therefore trivial and the refinement can be uniquely reversed while the reversion is order
independent. Since the refinement is purely based on mesh refinement, it can be directly incorporated
into existing finite element solvers (or similar polyhedral based discretization approaches) without any
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further considerations. The most similar approaches, also employing static local refinement rules, are
red-green refinement [MOLINO et al. 2003] and the approach of BURKHART et al. [2010]. Compared to
red-green refinement the number of tetrahedra grows slower in the presented approach and requires
no special treatment of neighboring tetrahedra to ensure conformity. Compared to the method of
BURKHART et al. [2010], the presented method is easily reversible and maintains the quality of the
initial mesh to a larger extent.

3.3 Fracture Generation Algorithm

In this section a novel algorithm for the physically based simulation of brittle fracture is presented. The
algorithm can be subdivided into several stages. Therefore, the the following description is organized
accordingly.

As discussed earlier the phenomenon of brittle fracture arises as a result of large tensile stresses
evident in a deformable solid. Because the definition of brittle fracture implies that the corresponding
materials deform very slightly before a crack originates, the general dynamic behavior is simulated
using a rigid body simulator as long as the object is moving freely and not subject to any collisions.
This strategy is advantageous as the movement of the body can be described by only three translational
and three rotational degrees of freedom. As this work is rather focused on the numerical stress analysis
and crack generation, I would like to refer the reader to the state-of-the-art report of BENDER et al.
[2014a] for a general overview of the simulation of rigid bodies in the context of computer graphics.
As a consequence of a collision with another dynamic or static body, high internal stresses propagating
through the material are expected. Hence, a stress analysis is performed in the event of a collision. The
strategy to idealize a brittle object as rigid body and to analyze mechanical stresses only subsequent to
collisions is not new and has been employed in several previous approaches, e.g., by M. MÜLLER et al.
[2001], BAO et al. [2007], and GLONDU et al. [2013].

In the following, a brief overview over the whole fracture generation algorithm is provided. After-
wards a detailed description of every single step is given. In order to realize the simulation of rigid
bodies with robust contact handling the open source library Bullet COUMANS [2015] was used. After a
collision has been detected a contact duration is estimated. Subsequently, deformations and the result-
ing internal stresses are determined numerically using a linear finite element analysis. In the course
of the analysis, the stress field is inspected for large tensile components. In an iterative procedure
regions experiencing large tensile stresses are refined according to the adaption scheme presented in
Section 3.4. The stress analysis is then repeated until no further refinement is necessary. To avoid
excessive shattering within the object, local maxima in terms of the largest principle stress component
are located while tetrahedral elements that experience a strongly negative stress-rate are excluded such
that only a single crack originates within a stressed region at once. The fracture criterion used in this
algorithm is based on the Rankine hypothesis [D. GROSS and SEELIG 2011]. Thus, it is assumed that a
crack initiates if the tensile stress exceeds a certain threshold. If the criterion has been met anywhere
within the object, the mesh is separated guided by an implicitly represented fracture surface. The im-
plicit representation is realized using an Signed Distance Field (SDF). After a crack propagated through
the material, the stressed regions typically relax quickly. Therefore, the tetrahedral mesh is coarsened
in order to save valuable computation time in the further process. Finally, the mesh is inspected for
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topologically disjoint parts. If disjoint parts are evident, each part will be converted into a distinct,
topologically connected mesh.

Contact Duration Estimation

In the course of the simulation a rigid body interacts with its surroundings and will be subjected to
several collisions. The typical way to resolve these collisions is to apply sudden impulses to the colli-
sion pair. As it is the goal to analyze the mechanical stress field over time during a collision, a contact
duration has to be estimated. The Hertz model for contact duration estimation of colliding spheres was
proposed by JOHNSON [1985]. In order to get a rough estimation of the contact duration the model can
be simply generalized to arbitrary objects by replacing the sphere radius with the distance between
the contact point pc and the rigid body’s center of mass pcom resulting in

∆tc = c

(
m2

k2‖pcom − pc‖
· 1

vrel

) 1
5

,

where c denotes a user-defined scaling factor, m the rigid body’s mass, k Young’s modulus and vrel

the relative velocity between the contact points in the direction of the contact normal. For all results
generated with this algorithm the scaling constant cwas set to one. It should be a valid assumption that
the generalization holds for convex objects that have a shape similar to a sphere. However, our results
show that the generalization also works well with the fracture generation algorithm for complex non-
convex shapes, although the estimation might not be physically valid.

Finite Element Analysis

After the estimation of a contact duration ∆tc, a dynamic finite element analysis using the continuum
model presented in Chapter 2 on the corresponding objects is performed to find stress concentrations.
Based on the fact that brittle materials undergo very small deformations before they fracture, the usage
of a linear strain measure together with the isotropic Hookean constitutive model is justified. This
results in the following IBVP

(Linear momentum conservation)

(Constitutive model)

(Kinematic equation)

ρRü

P

ε

=

=

=

∇ ·P + bR

Cε

1
2

(
H + HT

)

(Initial displacement condition)
(Initial velocity condition)

(Neumann boundary condition)

u

v

t

=

=

=

0

v0 + ω0 × (pc − pcom)

tcol

on
on
on

Ω at t = t0

Ω at t = t0

Γc,

(3.1)

where tcol denotes the collision traction acting on the region in contact Γc. Here, four assumptions are
made. Firstly, the colliding solid is assumed to be undeformed prior to the collision resulting in the
given initial displacement condition. Secondly, it is assumed that the six degree-of-freedom velocity
initialize the point-wise velocity as given in the initial velocity condition. The third assumption is that
the object experiences a boundary traction due to the collision force at the impact location. Finally, it
is presumed that the object is freely moving and therefore no displacement boundary conditions are
prescribed.
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In the FEM literature the IBVP is often referred to as the strong form of the problem. In order
to discretize the problem using a linear FE discretization the so-called weak form has to be derived
prior to a polynomial discretization. The weak form is further defined as an inner product of the PDE
with a (non-zero) test function. When a solution to u is found that fulfills the weak form, it is called
a weak solution. This solution does not necessarily have to fulfill the PDE point-wise but only in this
weak sense. Therefore, one has to choose a weak solution space and a weak test space that fulfills
the minimal smoothness requirements. LetH1(ΩR) denote the Sobolev space of square-integrable and
once differentiable functions. Then, one can define a vector-valued weak solution space U for the
displacement and a vector-valued weak test space W such that

u ∈ U :=
{

u ∈
(
H1(ΩR)

)3 ∣∣∣ u|∂ΩD = uD

}

w ∈W :=
{

w ∈
(
H1(ΩR)

)3 ∣∣∣ w|∂ΩD = 0
}
,

where uD denotes a predefined displacement on the constrained portion of the boundary ∂ΩD. This
definition includes the requirements that the weak solution space strongly fulfills the essential bound-
ary conditions and that the test space vanishes at the Dirichlet boundary. Taking the L2-inner product
of the PDE (cf. 3.1) with the test function on the considered domain yields

˚

ΩR

w · (ρRü−∇ ·P− bR) dξ = 0.

By integrating by parts and by applying the divergence theorem this equation can be transformed into
˚

ΩR

w · (ρRü) dξ +

˚

ΩR

∇w : Pdξ =

‹

∂ΩR

w ·
(
PTn

)

︸ ︷︷ ︸
tR

ds+

˚

ΩR

w · bRdξ

Because a linear strain measure is employed, the first Piola-Kirchhoff stress tensor P and the Cauchy
stress tensor σ do not differ in infinitesimal motions to leading order, i.e., P = σ. This also implies
that P = PT in this particular case. By exploiting this symmetry property, by plugging in the linear
constitutive equation, and by accounting for the fact that the reference boundary traction is only non-
zero where natural boundary conditions are defined, the equation transforms into

(Weak form)
˚

ΩR

w · (ρRü) dξ +

˚

ΩR

ε(w) : Cε(u)dξ =

¨

Γc

w · tcds+

˚

ΩR

w · bRdξ,

where ε(u) = 1
2

(
∇u +∇uT

)
. This is equation is then referred to as the weak form of the problem.

In the event of a collision the rigid body simulator yields a collision impulse Ic at the contact point
pcol at the current time t0. Given the definition of an impulse as the integral over a force function f c

on the time domain, i.e.,

Ic =

t0+∆tˆ

t0

f cdt, (3.2)

one can simply find the force function f c such that the equation is fulfilled. In this regard GLONDU

et al. [2013] modeled the contact force using a smooth sinusodial function that fulfills Equation (3.2).
However, it was found that the simulation also yields good results when a constant collision force is
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used, i.e., f c = Ic/∆tc. Describing the collision force as a boundary traction involves the projection of
the resultant force onto the affected boundary region. In order to simplify the process, one can replace
the Neumann boundary condition with tc = 0. Then, the contact force f c can be applied as body force.
If the collision point pc coincides with a vertex of the tetrahedral mesh, the respective entries in the
body force vector bR are set. Otherwise, the collision point lies on a boundary triangle. Then, the force
is distributed between the triangle’s incident vertices and weighted using the barycentric coordinates
of the contact point implied by the triangle. The weak form then reduces to

˚

ΩR

w · (ρRü) dξ +

˚

ΩR

ε(w) : Cε(u)dξ =

˚

ΩR

w · bRdξ. (3.3)

Given this final weak form, discrete subspaces Uh ⊂ U and Wh ⊂ W can be chosen in order to
complete the discretization. In this work, a basis using linear Lagrange polynomials with compact
support on tetrahedral elements was chosen to span the discrete subspaces. Then, a shape function
Ni(ξ) corresponding to the ith vertex of the tetrahedral mesh is defined such that

u ≈ uh =
∑

i∈V
Ni(ξ)ui and w ≈ wh =

∑

i∈V
Ni(ξ)wi.

For a single tetrahedral element e with local displacements/test coefficients uei/w
e
i the sum can be

rewritten in matrix form, i.e.,

uh,e = Ne,3(ξ)




ue1

ue2

ue3

ue4




and wh,e = Ne,3(ξ)




we
1

we
2

we
3

we
4




Ne,m(ξ) =
(
Ne

1 (ξ)1m Ne
2 (ξ)1m Ne

3 (ξ)1m Ne
4 (ξ)1m,

)

where 1m denotes the m-dimensional identity matrix. The four local indices can then be mapped to
the M global indices corresponding to the vertex numbering in the tetrahedral mesh using constant
selector matrices Se = δg,ge(l) ∈ {0, 1}M×4. Here g denotes a global and l a local coefficient index while
ge(l) denotes a function that maps the local index l of an element e to the global index.

Discretizing the weak form (3.3) with the discrete spaces Uh and Wh, dropping the test coefficient
vector, and extending the model using a damping term yields the system of ODEs

Mü + Du̇ + Ku = Fext

M :=
∑

e

Se
˚

∆e

ρRNe,3TNe,3dξ (Se)
T
, K :=

∑

e

Se
˚

∆e

BeT CBedξ (Se)
T

Fext :=
∑

e

Se
˚

∆e

Ne,3bRdξ, Beikj =
1

2

(
∂Ne,3

ij

ξk
+
∂Ne,3

kj

ξi

)
,

where u denotes the global vector of nodal displacements (coefficient vector), M represents the mass
matrix, D = αM + βK represents the damping matrix following the Rayleigh model, K denotes the
stiffness matrix, and Fext the discrete external force vector. The transpose operator applied on the
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order three tensor BeT should be understood such that Beikj = Bejki
T . Further, ∆e denotes the domain

of the tetrahedron associated with the eth element and α > 0 and β > 0 denote the Rayleigh damping
coefficients with which the influence of the mass and stiffness matrix on the dissipative behavior can be
controlled. Please note, that the integrand for the evaluation of K can be simplified when the higher-
order tensor C and Be are rewritten in Voigt notation in order to exploit their symmetry properties.
This simplified notation is left out for the sake of brevity but can be found in several works, e.g., M.
MÜLLER and M. GROSS [2004]. All occuring integrals have continuous polynomial integrands and can
therefore be integrated analytically for a reference element and be transformed to match the integral
over the particular tetrahedral domain ∆e by multiplying the result with the (constant) functional
determinant. Further, it is common practice to replace the consistent mass matrix M by a (diagonal)
lumped mass matrix. The lumped representation is acquired by replacing the diagonal entry with the
sum of the entries in the respective row and by setting all off-diagonal entries to zero. The ODE system
can then be discretized in time using standard time integration schemes. However, the ODE systems
resulting from linear elasticity often prove to be very stiff. For that reason the implicit backward Euler
method with fixed time step width was employed for time discretization. In order to perform a time
step the solution of a linear equation system has to be obtained. Since the matrix is symmetric and
positive definite and since the linear equation system is constant as long as the mesh is not modified,
the matrix can be decomposed using a Cholesky decomposition once. Multiple steps of the system can
then be solved using forward and backward substitution.

Stress and Stress-Rate Recovery

As discussed in the last section the finite element analysis yields a solution of the displacement field
over time. Based on this numerical solution the stress field P and the stress-rate field Ṗ can be com-
puted using the constitutive model from the IBVP (3.1). Due to the piecewise linear displacement
approximation the stress field is constant on each finite element and therefore exhibits finite jumps be-
tween neighboring elements. This is an issue in the subsequent stress analysis as the field is required to
be continuous on the whole domain ΩR to robustly find local stress maxima. To circumvent the prob-
lem a (piecewise linear) continuous stress field with nodal coefficient vectors Pkl can be recovered by
performing an L2 projection of the fields onto the linear Lagrange FE basis resulting in a piecewise
linear, continuous stress field P∗ =

∑
iNi(ξ)P kl,i. Here, Pkl denotes the coefficient vector of the stress

tensor field’s entry in the kth row and lth column. The projection requires solving a linear equation
system for each of the six independent components in the stress and stress-rate tensors, i.e.,

APPkl = bP with AP =
∑

e

Se
˚

∆e

Ne,1TNe,1dξ (Se)
T

=
1

ρR
M and bP =

∑

e

Se
˚

∆e

Ne,1TP ekldξ,

where P ekl denotes the (constant) component in the kth row and lth column of stress tensor field accord-
ing to the eth element. The linear system can be further simplified by lumping the mass matrix-like
projection matrix AP . When the right-hand side is further evaluated analytically the nodal coefficients
can be directly determined using

P kl,i ≈
ρR

4mii

∑

e∈I
VeP

e
kl,

where mii denotes the ith diagonal component of the mass matrix M, I denotes the set of elements
incident to the ith vertex, and Ve denotes the volume of the eth tetrahedral element. The stress-rate
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field Ṗ can then be projected onto the continuous linear basis in the same way. As the fracture crite-
rion will be based on the largest tensile stress component, the stress tensor is decomposed using an
eigenvalue decomposition, i.e., P = VΣVT . The time derivative of the principal stress component can
further be approximated by Σ̇ ≈ diag(VT ṖV) when it is assumed that the eigenvectors and therefore
the direction of the principal components changes slowly.

Refinement Pass

The refinement algorithm works best when the mesh is given in a uniformly coarse resolution. The
static refinement scheme is then applied locally using a fixed number of refinement steps according to
the scheme presented in Section 3.4. More specifically, the field of the locally dominating tensile stress
component τ = max(Σ) is computed to determine the regions with stresses exceeding the material
strength τcrit according to the Rankine condition (cf. Equation (3.4)). Then, the maximum occurring
tensile stress τmax of this field is determined per region. Subsequently, all cells incident to a node i
lying in a stressed region that fulfills τ > γτmax with 0 < γ < 1 are refined. In all experiments γ
was set to 0.8. Finally, the stress analysis is repeated in an iterative fashion to improve the accuracy in
highly stressed regions where stress concentrations are expected.

Non-Maximum Suppression

When the iterations in the refinement pass terminate the stress field is analyzed in order to determine
if cracks emerge. If this is the case, it is very likely that τcrit is exceeded at multiple nodes in the mesh.
Initiating cracks at every node would lead to excessive shattering in the stressed regions. Moreover,
the number of initiated cracks is then highly dependent on the mesh resolution. To avoid the shattering
it can be assumed that only a single crack emerges at the local maximum of the stress concentration.
Therefore, a flood-fill algorithm is used to determine the region of interest where only vertices expe-
riencing a tensile principle stress of τ > γτmax are included. The remaining vertices then serve to
indicate a boundary of the flood-filled region. This strategy avoids region-wise shattering while it still
allows simultaneous crack initiations caused by several individual stress concentrations. Finally, the
procedure yields a relatively small set of crack initiating vertices leading a plausible number of cracks
and to a certain independence of the discretization.

Fracture Criterion

As mentioned earlier the Rankine condition is employed to indicate material failure. It states that a
brittle material fails if the tensile stress exceeds the material strength, i.e.,

τ > τcrit. (3.4)

Using the non-maximum suppression technique described in the previous section, shattering of highly
stressed regions can be avoided. Additionally, the high tensile stresses in the near-field of an emerg-
ing crack require a certain time to decay. Therefore, evaluating the Rankine condition might falsely
indicate repeated material failure in the same region until the tensile stress has vanished. This artifact
will be referred to as temporal shattering. In order to avoid these additional shattering artifacts the
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Figure 3.1: A cylinder is fractured on a sharp obstacle using different fracture surfaces. Left: Planar
cracks. Center/Right: Planar cracks enriched using a noise functions.

fracture criterion is extended by a second condition:

τ̇ ≥ ϑ,

where ϑ ≥ 0 denotes the critical decrease stress-rate. Physically, this criterion ensures that material
portions experiencing a rapid decay in the largest tensile principal stress component do not cause
additional cracks.

Fracture Surface Generation

Due to the projection of the piecewise constant stress field onto a piecewise linear Lagrange basis,
local stress maxima will always be located at mesh nodes. Therefore, a crack will always originate at
a mesh vertex. It can be furthermore assumed that the crack will propagate in the plane orthogonal
to the direction of the largest tensile stress. This direction is uniquely defined by the eigenvector
corresponding to the eigenvalue representing the largest principal stress component. In the course
of the crack propagation the fracture surface may, however, deviate from the plane. For the sake of
simplicity, it will be assumed in this work that a crack propagates until it reaches the object boundary.
Following this strategy is not physically justified but yields adequate results in many scenarios. A
possible way to enforce a finite propagation of a crack was proposed by GLONDU et al. [2013] where
an energy-based fracture stopping criterion was introduced.

In this work the emerging crack surface is represented using an implicit surface Φ(ξ) = 0 with
Φ : ΩR → R describing the signed distance to the surface. Usually a simple plane is used for Φ, but
the fracture geometry can be visually enriched, e.g., with noise functions (cf. Figure 3.1). To dissect
the tetrahedral mesh along the surface all intersected tetrahedra are marked in a breadth first fashion,
subsequently duplicated, and finally assigned to each of the according crack flanks. The duplication
of the tetrahedra causes overlapping volumes that are treated as virtual material portions following
the approach of MOLINO et al. [2004]. Finally, the signed distance function Φ is sampled at the vertex
locations incident to the duplicated tetrahedra for surface reconstruction purposes as described in the
visualization paragraph. If a tetrahedron is intersected more than once, each vertex stores the signed
distance with the minimum absolute value.
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Coarsening Pass

The employed static mesh adaption scheme is able to uniquely reverse previous adaptions. Details
will be discussed in Section 3.4. Therefore, all refinements applied during the numerical stress analy-
sis are reversed in order to save computation time in future analyses. However, due to the duplication
of tetrahedra and mesh dissection previously refined regions can not be coarsened. For that reason,
all elements intersected by the fracture surface are marked as ‘locked’, meaning that all refinement or
coarsening operations involving a topological change of locked elements are omitted. Due to the nat-
ural grading of the refinement scheme, this will still lead to good transitions from very fine structures
near crack surfaces to a coarse resolution in the remaining regions (cf. Section 3.5).

Separation of Disjoint Partitions

The mesh is separated into multiple meshes if topologically disjoint regions exist where each disjoint
region is identified using a flood-fill algorithm. The separation is absolutely necessary, since disjoint
regions would be mistakenly treated as a single rigid body in the further simulation process. Addition-
ally, the separation implicitly decomposes the system of ordinary differential equations into smaller
equation systems which improves computational performance in further analyses. Finally, all physical
quantities required by the rigid body simulator such as the object’s mass, inertia, center of mass, etc.
are updated.

Visualization

To visualize an unfractured object, the boundary of the tetrahedral mesh is extracted. When the object
fractures, the boundary triangles from the fractured tetrahedra are removed and the fracture surface is
reconstructed using the marching tetrahedra algorithm based on the signed distance field sampled at
the vertices of the cut tetrahedra. Note that the signed distance field of multiply cut tetrahedra cannot
exactly represent the crack surface such that visual artifacts may arise in form of material loss. As a
possible strategy to avoid these artifacts, the approach of SIFAKIS et al. [2007] can be considered.

3.4 Static Reversible Refinement Scheme

In this section, a novel reversible refinement scheme for unstructured tetrahedral meshes will be pre-
sented. The scheme is designed to gradually refine the mesh and to automatically adapt neighboring
elements to avoid T-junctions and non-manifold vertices and edges. The algorithm expects a coarse
input mesh that is preferably as uniform as possible in resolution. The basic idea of the novel scheme is
that each tetrahedron traverses a maximum of five states within a full refinement cycle. Note that it is
not necessary to perform only full cycles for refinement or coarsening as all intermediate states ensure
a valid manifold topology. This is especially advantageous as it gives the user enhanced control over
the granularity of the mesh. The refinement can also be applied recursively to the tetrahedra which
already underwent one or more full refinement cycles. The operations, to transition from one state to
the next or previous state, solely consist of topological operations such that the scheme can be broken
down into a number of split and flip as well as their inverse operations. In order to capture the current
state and cycle in the mesh data structure, a generation index ge is assigned to each tetrahedron Hence,
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a tetrahedron e is in state (ge mod 5) and in cycle (ge div 5). In the following paragraph, all steps to
perform a full refinement cycle will be explained in detail. Each of the steps A-E describe the tran-
sition between two states (see Figure 3.2). Some transitions require that neighboring tetrahedra have
a specific generation. If this requirement is not fulfilled, the neighboring tetrahedra are refined until
the required generation is reached. It is worth noting that the neighboring tetrahedron’s generation
index can only be too small but never too large because if the neighbor was already refined it would
have affected the generation of the currently considered tetrahedron. In order to be able to reverse the
refinement, a certain amount of data has to be stored per tetrahedron. A state transition of a single
tetrahedron generally results in multiple tetrahedra of different states. In the following, a short de-
scription of the states of the newly arisen tetrahedra resulting from a transition will be given in curly
braces according to each step. It should be mentioned that some information per tetrahedron has to
be stored in order to track the refinement process to ensure the reversibility of the refinement. In some
cases it is also necessary to keep track of sets of tetrahedra that will be combined into a single tetrahe-
dron in a coarsening step. This, however, does not require to explicitly store the tetrahedra indices but
can be encoded by changing the permutation of faces and edges in the tetrahedron, e.g., in a 4-1 merge
operation the first face of each of the four tetrahedra may point away from its three neighbors that are
about to be combined, etc.

Step A (0↔ 1,1,1,1) To refine a state 0 tetrahedron a 1-4 split is performed. The split inserts a new ver-
tex at the tetrahedron’s geometric centroid yielding four new elements associated with state 1 (cf.
Figure 3.2A). The four child tetrahedra are obtained by moving one vertex of the original tetra-
hedron to the centroid and generating three new tetrahedra. In order to ensure the reversibility
of this operation, it is vital to remember which child is the former original tetrahedron. Hence,
the child that represents the original tetrahedron is tagged after the split. Moreover, it must be
tracked which four tetrahedra have to be combined in the reverse operation. Therefore, the faces
of the four arising tetrahedra are permuted such that the first face of each tetrahedron points
away from the three neighboring tetrahedra. Obviously, the inverse operation can be performed
by adapting the corresponding vertex at the tagged tetrahedron and deleting the remaining three
tetrahedra.

After finishing step A it is necessary to distinguish two cases. Each child contains exactly one face
of the parent state 0 tetrahedron. If this inherited face lies in the interior of the object then steps B,
C and D describe the further process (cf. second row of Figure 3.2). Otherwise, the face lies on the
mesh boundary and steps B∗, C∗ and D∗ (cf. third row of Figure 3.2) must be performed in the further
process.

Step B (1,1↔ 2,2,2) If the inherited face lies in the interior of the object and if both adjacent tetrahedra
are in state 1, the elements are refined using a 2-3-flip. This operation is performed by inserting
a new edge connecting the two vertices opposite to the inherited face (cf. Figure 3.2B). Then,
the two original tetrahedra are modified accordingly and a single new element is created. To
ensure that the inverse operation can be applied, the new element has to be tagged in order to
remember which tetrahedron has to be deleted. Additionally, the edge uniquely shared by the
resulting three tetrahedra has to be stored. Note that the inverse operation must guarantee that
the untagged tetrahedra are not accidentally swapped.
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Figure 3.2: Refinement pipeline.

Step C (2↔ 0,3,3) The edge opposite to the one inserted and stored in step B is trisected regularly (cf.
Figure 3.2C). The requirement for this operation is that all tetrahedra incident to this edge share
the same generation index. After the trisection, one element in state 0 and two elements in state
3 are generated. State 0 is assigned to one tetrahedron since its quality comes very close to the
quality of its original state 0. Therefore, no further operations to complete the cycle are necessary
for this element. The state 0 element is created by displacing the vertices of the original tetrahe-
dron and it has to be tagged in order to remember that state 3 and 4 were skipped. Additionally,
two new tetrahedra have to be created.

Step D (3,3↔ 0,4,4) A 2-3-flip is performed to refine two tetrahedra in state 3 sharing a common face
(cf. Figure 3.2D). Both tetrahedra are required to have the same generation index. The tetrahedra
are then split into three elements by inserting a new edge connecting the vertices opposite to the
common face. The operation results in one state 0 and two state 4 elements. A new tetrahedron
for the first element is generated and original two tetrahedra are adapted to obtain the remaining
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two elements. The first element is tagged and must be deleted in the inverse operation.

If the inherited face of a tetrahedron in state 1 lies on the mesh boundary, steps B and D have to be
adapted as described in the following.

Step B∗ (1↔2,2,2) As the inherited face lies on the mesh boundary, there is no adjacent tetrahedron
for a 2-3-flip available. To perform a similar refinement step, a vertex is inserted at the geometric
centroid of the inherited face (see Figure 3.2B∗). This 1-3-split is implemented by adapting the
original tetrahedron and by creating two new elements. After the split operation the modified
original tetrahedron is marked in order to allow a consistent inverse operation.

Step D∗ (3,3↔0,4) In the boundary case two tetrahedra in state 3 sharing a face are modified using a
2-2-flip (cf. Figure 3.2D∗). Both elements are required to have generation index 3. Note that in
this case two faces of the elements are coplanar. Therefore, no new elements are generated in
this step. The 2-2-flip combines the two tetrahedra and splits the geometry into two new ones
using a new edge connecting the vertices opposite to the common face. The new elements are in
state 0 and 4, respectively, and can be obtained by adapting the original tetrahedra. The inverse
operation only requires to revert the adaption of the elements. No tetrahedra have to be tagged
in this step.

The last refinement step does not have to be specialized and is therefore generally applicable to interior
and boundary tetrahedra.

Step E (4,4,4↔ 0,0) After applying the previous refinement steps B(∗)-D(∗) to at least three tetrahedra
that result from step A, three state 4 elements are located at each corner of the initial state 0
tetrahedron (cf. Figure 3.2E, left). The three elements at a corner can then be refined by a 3-2-flip.
This flip yields two new tetrahedra in state 0 (see Figure 3.2E, right). This refinement step is
realized by adapting two of the three state 4 tetrahedra and deleting the last one. Please note
that the deleted tetrahedron contains no information required to inverse any operation, since the
tetrahedron was created in the previous step without storing anything. Hence, it can be safely
removed. No tetrahedra have to be tagged in this step.

Information Storage

As discussed earlier, a certain amount of information has to be stored to enable the reversion of the
refinement. Firstly, a counter storing the generation is required for each tetrahedron. Secondly, some
refinement steps require the storage of explicit information to allow consistent inverse operations:

• Step A: 1 bit to tag the parent tetrahedron

• Step B(∗): 1 bit to tag the newly added tetrahedron (or parent tetrahedron in case of B(∗) + 3 bits
to store the index of the common edge

• Step C: 1 bit to tag the parent tetrahedron

• Step D(∗): 1 bit to tag the newly added tetrahedron

• Step E: 0 bits.
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Consequently, each tetrahedron requires to store 7 bits to ensure the reversibility of the refinement.
E.g., using a 32 bit integer per tetrahedron, up to three full refinement cycles (21 bits) with a generation
counter (4 bits) can be encoded. Alternatively, 64 bit integer can encode up to 8 full refinement cycles
(56 bits) with a 6 bit generation counter.

3.5 Results and Discussion

In this section the proposed approach will be discussed and simulation results will be presented.
Firstly, the preservation of mesh quality during local adaptive refinement with the presented static
refinement scheme will be examined. Secondly, several complex scenarios for the simulation of brittle
fracture will be described and discussed. Thirdly, the adaptive stress refinement approach will be com-
pared to a high-resolution simulation. Finally, the findings are discussed and the outcome is compared
with existing approaches.

Quantity Input mesh Cycle 1 Cycle 2

#Vertices 106 448 3862
#Tetrahedra 223 1663 17511

Worst min. angle [◦] 30 11.36 11.36
Avg. min. angle [◦] 43.28 41.54 41.15
Best min. angle [◦] 70.52 70.52 70.52

Avg. vertex valence 8.2 10.2 11.8
Max. vertex valence 13 22 23

Table 3.1: Refinement statistics of for beam mesh refinement example (cf. Figure 3.3).

Refinement Statistics

To examine the quality preservation of the novel refinement scheme, a tetrahedral beam mesh was
locally refined using two subdivision cycles (cf. Figure 3.3). Several measurements corresponding to
each refinement cycle are summarized in Table 3.1. The minimum dihedral angle was used as a per
tetrahedron quality criterion. The greatest minimum angle, and therefore the best possible minimum
angle, is arctan(2

√
2) ≈ 70.53◦ which is identical to the dihedral angles of a regular tetrahedron. Ob-

viously, the worst possible angle is 0. This experiment shows that the scheme preserves the average
minimum angle to a good extent. Moreover, the maximum vertex valence turned out to be almost
constant after the first refinement cycle.

Complex Simulation Scenarios

The presented method was applied to simulate several scenarios in order to demonstrate the robust-
ness and visual realism of the approach. The chosen scenarios have a different physical complexity
to show the general applicability in many kinds of situations. It should further be mentioned that the
tetrahedra selected for refinement in each iteration of the refinement pass are at least refined using one
cycle. Adopting this strategy is not mandatory but reasonable in this particular type of application
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Figure 3.3: Beam refinement test.

because the expensive Cholesky decomposition for time integration has to be recomputed every time
the mesh is adapted. This means that more frequent small mesh adaptions would result in a higher
computational effort.

In the first scenario the limbs of a brittle Stanford armadillo are fractured by a projectile. While the
mesh is initially very coarse (approximately consisting of 3000 tetrahedra), the algorithm produced
realistic cracks with high-resolution crack surfaces (cf. Figure 3.4, left). In this scenario two full refine-
ment cycles were applied locally in stressed regions. In the second scenario 30 torus-shaped brittle

Figure 3.4: Left: A number of projectiles are used to break the limbs of an initially coarse armadillo
mesh resulting in high-resolution fracture surfaces. Right: 30 brittle torus-shaped objects are dropped
into a static bowl.

objects are dropped into a bowl (cf. Figure 3.4, right). The tori fracture due to the collision impact and
the bowl collects the resulting fragments. In the third scenario a rigid sphere is used as a projectile to
break ten brittle concrete walls (cf. Figure 3.5). The tesselation shown in the right image shows how a
high-resolution is enforced along the crack surfaces. Both scenes demonstrate the scalability of the ap-
proach and that the method yields a realistic and physically plausible behavior even when the objects
are subjected to thousands of contacts. In a final scene, a series of three-dimensional extruded letters
were dropped from a certain height (cf. Figure 3.6).

All results were carried out on an Intel Core i7 860, 2.8 GHz and 8GB RAM. A summary of com-
putation time performance is given in Table 3.2. Besides the matrix factorization and stress recovery
algorithm, the biggest portion of the implementation is not parallelized. The most time-consuming
parts of the method are the solver initialization, factorization and forward/backward substitution
consuming about 50%-70% of computation time, as these steps have to be performed after each topo-
logical change in the mesh. In comparison to the solver timings, the fractions of the mesh operations
are comparatively small.
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Figure 3.5: Rigid spheres break a series of concrete walls. Left: Final rendered scene. Right. Tesselation
resulting from refinement.

Figure 3.6: Three-dimensional letters are dropped onto the floor and fracture on the impact.

Adaptivity vs. Uniform High Resolution

In order to examine the potential speedup of the adaptive approach over a non-adaptive full high-
resolution simulation, a benchmark scenario was simulated in three different configurations. The
scenario consisted of a torus dropping on a static floor with the torus’ axial symmetry axis being
parallel to the floor plane. The three different simulation configurations were chosen as explained in
the following. In the first configuration, the scenario was simulated using the described bidirection-
ally adaptive approach. In the second configuration the adaptive refinement strategy was used but no
subsequent coarsening was applied. In contrast to the two adaptive versions, the coarse torus mesh
was refined using two refinement cycles prior to the simulation to get a high-resolution mesh and was
simulated without any further spatial adaption. The non-adaptive third configuration was the slowest
in performance and the unidirectionally adaptive second configuration showed a speedup factor of
approximately 15. With the additional coarsening pass applied in the first configuration a speedup
factor of 20 was observed.

Discussion

The proposed adaptive approach is able to produce convincing results at moderate cost. The general
dynamic behavior of the simulated objects was performed using a rigid body simulator. This simple
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Model #Cracks Total Avg. Solver Mesh operations #Ref.
[s] [ms] init. fact. subst. stress ref. coar. frac. part.

armadillo 91 22.81 250 25% 24% 17% 23% 2% 2% 6% 1% 10
tori 19636 38.27 1.94 20% 32% 12% 13% 5% 3% 13% 2% 5

walls 18729 76.48 4.08 20% 20% 15% 17% 2% 2% 22% 2% 5
letters 632 4.36 6.89 21% 24% 15% 15% 3% 2% 16% 4% 5

Table 3.2: Performance statistics of simulated scenarios. For each scenario the number of fracture al-
gorithm executions, the total time for the pure fracture computations over the whole domain and the
according average computation time per execution is presented. The fraction of suboperations are
stated relative to the total time in percent. The solver section summarizes initialization and assembly
of the solver matrix, factorization, forward and backward substitution for solving and stress recovery.
The next section shows the fractions of mesh operations, more precisely refinement, reverse refine-
ment, fracture generation and separation of disjoint regions. The last column contains the number of
refinement steps applied to the underlying meshes during the refinement pass.

strategy is very cost effective and stable compared to full deformable body simulations performed in
the works of O’BRIEN and HODGINS [1999] and O’BRIEN et al. [2002] where the employed explicit
time integration demands very small time steps to ensure a stable simulation. The described FE stress
analysis does not require any anchoring of the vertices in contact as used in the method of M. MÜLLER

et al. [2001] or additional computations to remove null spaces as proposed in the method of BAO et al.
[2007]. In contrast to the approach of GLONDU et al. [2013] the here presented method does not depend
on a modal analysis of a static discretization and is moreover able to handle repeated fracturing of
fragments while generating high-resolution crack surfaces independent of the initial mesh resolution.

Using the novel refinement scheme, stress analyses of colliding objects were improved. In compar-
ison to red-green refinement [MOLINO et al. 2003], the scheme is able to increase the mesh resolution
incrementally while the number of tetrahedra is growing slowly. More specifically, one refinement
step results in 3 to 3m new cells, where m is the number of tetrahedra incident to an edge about to
be trisected. The scheme is simple to implement, because it is solely based on simple topological
operations. Furthermore, prior refinements can be easily reversed in contrast to the

√
3-refinement

based approach of BURKHART et al. [2010]. It even preserves sharp features at the boundary geometry
which grid-based techniques (e.g., LABELLE and SHEWCHUK [2007] and MOLINO et al. [2003]) tend to
smoothen.

Naturally, the presented method also comes with limitations. It is most beneficial to use the
proposed fracture algorithm with a coarse and uniformly sized initial mesh in order to gain large
speedups. However, at the same time this imposes a strong restriction on the amount of surface de-
tails a fracture object can have for rendering. In order to serve the different goals of rendering and
fracture simulation, the approach could be improved by employing a distinct mesh for each task. M.
MÜLLER et al. [2004a] proposed a method based on a hexahedral discretization to combine a fracture
simulation on objects with an embedded surface meshes. It should be considered to adopt the em-
bedding strategy in the presented work to enhance the visual quality of the simulation. A further
limitation is that each arising crack propagates until it reaches the geometric boundary of the simu-
lated object. To account for finite crack propagation, the implementation of the energy-based stopping
criterion proposed by GLONDU et al. [2013] should be considered.
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3.6 Conclusion

In this chapter a novel approach for the adaptive simulation of brittle fracture was presented. The
discussed results demonstrate that the algorithm is able to produce realistic animations even when
coarse initial discretizations are employed. Due to the adaptive mesh refinement the quality of the
performed stress-analyses is enhanced and high-resolution crack surfaces can be produced. Using the
non-maximum suppression and the stress-rate based fracture criterion, spatial and temporal shatter-
ing artifacts are avoided while the reversion of previous refinements greatly improves the efficiency.
By performing dynamic stress analyses, any anchoring of the colliding objects as well as null space
eliminations of the solver matrix are avoided. The method can also handle recursive fracturing while
the user can control the appearance of crack surfaces by providing modified implicit definitions of the
fracture surface. The results demonstrate that the adaptive refinement strategy significantly improves
the generation of highly detailed cracks at moderate costs and that the refinement along the fracture
surfaces produces appealing crack shapes.
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Chapter 4

Robust Cutting Simulation using eXtended
Finite Elements

In this chapter a robust remeshing-free algorithm for the simulation of cutting of deformable ob-
jects on the basis of the eXtended Finite Element Method (XFEM) with fully implicit time integration is
presented. The basic idea of the XFEM is to enrich a standard polynomial FE discretization by so-
called enrichment functions to improve the quality of the approximation to the underlying PDE. In the
particular case of cutting this means that a piecewise constant but discontinuous enrichment function
is employed to capture the discontinuity in the displacement field implied by the physical cut. One
of the biggest challenges for implementing the XFEM in combination with discontinuous enrichment
functions, is the computation of integrals over discontinuous integrands on polyhedral domains. Most
existing approaches construct a cut-aligned auxiliary mesh to perform the integration on subdomains
where the function is continuous everywhere. In contrast, this chapter presents a cutting algorithm
that includes the construction of specialized quadrature rules for each dissected finite element with-
out the requirement to explicitly construct an auxiliary mesh for integration. Moreover, the presented
method tackles the problem of avoiding ill-conditioned or even numerically singular solver matrices
required for implicit time integration. Therefore, a method to constrain degrees of freedom Degree
of Freedoms (DOFs) that only marginally contribute to the according entries in the solver matrix is
proposed and a novel preconditioner is introduced that efficiently reuses the previously constructed
quadrature weights. The method is particularly suitable for the simulation of fine structural cutting
as it decouples the added number of DOFs from the cut’s geometry and correctly preserves geometric
and physical properties by accurately computing the arising element integrals. Owing to the fully im-
plicit time integration, these fine structures can still be simulated robustly using large time steps. As
opposed to the enrichment based eXtended Finite Element (XFE) strategy, the vast majority of existing
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methods rely either on remeshing or element duplication to capture the discontinuity imposed by the
inserted cuts. An advantage of remeshing based approaches is that they are usually able to correctly
preserve physical quantities. However, they strongly couple cut geometry and mesh resolution which
can lead to an unnecessary large number of additional DOFs. Element duplication based approaches
keep the number of additional DOFs small but fail at correctly conserving mass and stiffness proper-
ties. In this chapter, the robustness and physical plausibility of the newly proposed XFEM approach
is demonstrated using both simple reproducible academic examples and complex problems with fine
structural cutting.

4.1 Introduction

In the last decades the animation of cutting of deformable bodies has been an active research topic
and is at the core of applications such as virtual surgery, special effects in feature films or computer
games. Maintaining physical plausbility and keeping the simulation robust in scenarios with com-
plex cut paths and fine structured cuts is particularly challenging. It is, moreover, crucial to keep the
computational overhead to a minimum even when simulating highly complex scenarios. The vast ma-
jority of mesh based approaches for simulating cutting rely on element deletion, element duplication
or adaptive remeshing in order to capture a cut’s geometry in the simulation mesh. Although, the pure
deletion or duplication of elements is easy to implement and leads to a very robust simulation, it does
not consistently embed the cut geometry into the discretization leading to physical inconsistencies.
Examples for these inconsistencies are unintended loss or addition of mass and stiffness properties. In
contrast, proper adaptive remeshing of the dissected regions ensures a physically consistent behavior.
This class of approaches, however, adds a large number of additional degrees of freedom (DOFs) to
the discrete system in order to properly embed the cut surface into the volumetric simulation mesh.
The increased number of DOFs leads then to a substantial overhead in computational cost. This is
particularly true if equation systems for implicit time integration have to be solved. Another problem
with remeshing based approaches is that all persistent physical quantities such as plastic deformation,
temperature etc. , that are stored within the discretization, have to be transferred to the new mesh.
Besides the additional computation effort associated with the transfer process, this usually leads to
undesired diffusion effects as discussed by WICKE et al. [2010]. In order to overcome these issues, a
novel method for the physical simulation of cutting based on the XFEM with fully implicit time in-
tegration is presented in this chapter. The proposed discretization captures cut surfaces with subcell
accuracy by means of an appropriate enrichment function without the requirement to apply any topo-
logical changes to the simulation mesh. In this way no additional geometry has to be created even
when highly complex cut paths are desired. Thus, the computational overhead resulting from geome-
try processing is kept to a minimum. This results in a simple algorithm where the cut path is encoded
via enrichment functions that only have to be considered during the assembly of the equation system
for implicit time integration. One of the key problems associated with the XFEM is the evaluation
of integrals over discontinuous integrands on polyhedral domains. These are required to compute
discretized force vectors as well as the mass and tangent stiffness matrix.

In this chapter an algorithm for the construction of specialized quadrature rules is proposed that
approximates the desired integrals with high accuracy. The highly accurate integration scheme enables
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the simulator to maintain physical properties, i.e., mass and stiffness properties, during cut insertion
and propagation. Moreover, an algorithm to constrain nearly non-contributing DOFs and a novel
method to precondition the solver matrix by direct use of the constructed quadrature weights are
presented. In the results section the method’s consistency and advantages over existing approaches
are demonstrated using easily reproducible academic examples. Additionally, the robustness of the
method is demonstrated in highly complex scenarios with fine-structural cuts.

4.2 Related Work

In this section, methods closely related to the presented approach are discussed. Although the pre-
sented method is based on the XFEM which was developed in the field of mechanical engineering, it
is targeted towards computer graphics applications. Also some methods for the simulation of frac-
turing solids are closely related. For that reason the discussion is organized into three paragraphs:
approaches for the simulation of cutting and fracture in the field of computer graphics, methods us-
ing basis enrichment developed in the field of mechanical engineering, and XFEM based approaches
targeted towards computer graphics applications.

Cutting and Fracture in Computer Graphics

In the pioneering work of O’BRIEN and HODGINS [1999] on brittle fracture, cracks within a solid were
captured by explicit embedding of the fracture surface into the underlying tetrahedral discretization
on using static local remeshing rules. The concept was later adopted by O’BRIEN et al. [2002] for
the animation of ductile fracture. A similar mesh based concept was developed by BIELSER et al.
[1999]. They capture the cut geometry by subdividing a tetrahedral mesh followed by topological
disconnection of the resulting subtetrahedra guided by a lookup table. BIELSER and M. H. GROSS

[2000] improved the concept by introducing case specific subdivision rules to reduce the number of
additional tetrahedra before the improved approach was generalized in form of a state-machine by
BIELSER et al. [2004]. An alternative static local remeshing approach was proposed by KAUFMANN et
al. [2008] who directly split cut elements along the crack surface but continue the simulation directly by
formulating adequate shape functions on the resulting general polyhedra. Moreover, they accurately
compute integrals over the smooth shape functions on the polyhedral domains by reducing the volume
integrals to integrals over lower-dimensional domains, i.e., element faces and edges.

A particular disadvantage of the mentioned approaches is that the mesh quality can easily deterio-
rate due to the static remeshing strategy. In order to avoid this deterioration STEINEMANN et al. [2006]
decouple visual representation and simulation mesh and dissect the former exclusively on existing
faces. Following the same splitting strategy, YEUNG et al. [2016] proposed a static FEM for linear elas-
tic materials. They further improve the solver efficiency by employing fast rank updates subsequent to
matrix augmentations induced by the element splitting. An advantage of this splitting strategy is that
it guarantees to fully conserve the mesh quality. However, the approximation can be arbitrarily inac-
curate especially when complex cut surfaces are employed. A more elaborate approach was proposed
by WICKE et al. [2010]. They propose a dynamic local remeshing algorithm based on topological splits
and flips as well as vertex smoothing that aims to maintain and improve the mesh quality. A similar
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two-dimensional approach based on anisotropic remeshing of triangle meshes for the simulation of
tearing and cracking of thin sheets was presented by PFAFF et al. [2014].

In contrast to embedding the cut surface into a tetrahedral mesh, DICK et al. [2010] discretize the
underlying elasticity PDE using a regular hexahedral grid. They further excessively refine hexahedra
affected by a cut using octree splits and embed the cut by simply separating the fine elements on the
axis-aligned faces. An extension of this strategy was later proposed by J. WU et al. [2011] where they
combine the resulting fine-granular elements to so-called composite finite elements in order to reduce
the number of additional degrees of freedom and to keep the solver efficient. MARTIN et al. [2008]
proposed a method to simulate cutting of deformables using polyhedral finite elements. Starting from
a tetrahedral or hexahedral initial mesh, they locally split cut elements into polyhedra and construct
harmonic basis function on the arising general polyhedral elements. As opposed to performing local
adaptions, an approach for the simulation of multi-layered thin plates using global constrained De-
launay remeshing was proposed by BUSARYEV et al. [2013]. However, global remeshing strategies are
computationally inefficient as the whole domain has to be remeshed even though only a small por-
tion of the mesh is affected by a cut. Moreover, the change of the discrete basis requires to project
the discretized physical quantities onto the new basis. This projection usually suffers from numerical
diffusion which was also discussed by WICKE et al. [2010].

In order to maintain mesh quality and to decouple cut geometry and mesh resolution, MOLINO

et al. [2004] developed a VNA. The main idea of the approach is to duplicate cut elements resulting in
a potentially non-manifold mesh topology that correctly accounts for the implied discontinuities. The
strategy became increasingly popular in the course of the last years and was adopted in several works,
e.g., by BAO et al. [2007], KOSCHIER et al. [2014], and N. MITCHELL et al. [2015]. One of the obvious
disadvantages of the original approach is that it can not handle an arbitrary number of cuts per element
resulting in a maximally-split configuration. Fortunately, by embedding a polygonal auxiliary mesh
into the simulation mesh this limitation can be removed as proposed by SIFAKIS et al. [2007]. This
improved version was later extended by Y. WANG et al. [2014] using a spatially adaptive approach
that significantly reduces the algorithmic complexity. However, a disadvantage of the cell duplication
is that physical properties such as mass and stiffness can not be accurately preserved.

Besides Lagrangian mesh based techniques for cutting and fracture, a meshless approach for frac-
turing solids using a novel transparency criterion was developed by PAULY et al. [2005]. Also a Eule-
rian mesh based technique was presented by HEGEMANN et al. [2013]. They model the discontinuities
using level-sets in reference space using a hexahedral background grid.

In contrast to all approaches discussed in this section, the presented method employs a Lagrangian
mesh-based discretization but requires no mesh adaptions during runtime. In this way the number of
additional DOFs can be kept to a minimum while the discontinuity is captured using the concept of
basis enrichment. Moreover, the method is able to correctly maintain discretized physical properties
in the course of the simulation as opposed to cell duplication based approaches.

eXtended Finite Elements and Virtual Node Algorithms in Engineering

This paragraph gives a brief overview over related methods developed in the field mechanical engi-
neering. For a general survey on XFEMs for the simulation of solids I would like to refer the reader to
the work of FRIES and BELYTSCHKO [2010].
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In the pioneering work of BELYTSCHKO and BLACK [1999] the concept of enriched finite element
discretizations using discontinuous functions was introduced and later referred to as XFEM. The in-
tended application was the simulation of elastic crack growth in two-dimensional solids by enriching
trial and test space using asymptotic displacement fields near the crack tip. MOËS et al. [1999] built
upon this approach and proposed the so-called Heaviside enrichment for the simulation of long cracks
using piecewise constant but discontinuous functions. This method was later generalized by DAUX

et al. [2000] for arbitrarily branched and intersecting cracks. A more general approach using harmonic
enrichment functions was proposed by MOUSAVI et al. [2011a]. By solving a Laplace problem in the
close proximity of the cracked domain they numerically determine the harmonic enrichment function
in order to treat multiple intersecting and branched cracks in a unified manner. The approach was
later extended for higher-order discretizations by MOUSAVI et al. [2011b].

A method that is strongly related to the XFEM approaches modeling strong discontinuities was
proposed by A. HANSBO and P. HANSBO [2004]. The main idea of their approach is to construct inde-
pendent discrete approximation bases for cut elements on each side fo the cut. Interestingly AREIAS

and BELYTSCHKO [2006] showed that the kinematic decomposition of their method is in fact equiv-
alent to the earlier proposed XFEM based version [MOËS et al. 1999]. During the work of the here
presented method, it was moreover discovered that the cell and node duplication following the VNA
is identical to the basis modification of A. HANSBO and P. HANSBO [2004]. Based on this insight, it can
be concluded that the kinematic decomposition of the VNA and the XFEM is equivalent. However,
there is a major difference between the XFEM for strong discontinuities and the traditional version of
the VNA. The XFE simulations require to compute integrals over the discontinuously enriched basis
functions on each element in the discretization. In the VNA the pure cell duplication implies that these
integrals over discontinuous integrands are simply approximated by integrating twice over the same
element with the integrands corresponding to each side of the cut.

The mentioned evaluation of integrals over discontinuous integrands poses one of the biggest chal-
lenges when implementing the XFEM, as no standard quadrature rules can be applied in order to com-
pute a sufficiently accurate approximation. A naïve approach to solve that problem is to generate a
discontinuity-aligned auxiliary mesh on each dissected element and to compute the integrals on the
subdomains using Gauss-Legendre quadrature [MOËS et al. 1999]. However, as one of the main rea-
sons to choose an XFEM based approach is to avoid remeshing, the generation of an auxiliary mesh
is undesirable. In this regard, RICHARDSON et al. [2011] generate an explicit discontinuity-aligned
(lower-dimensional) boundary mesh and reformulate the integrals as surface integrals by applying
the divergence theorem. Similar approaches in order to correctly account for the discontinuous in-
tegrands in combination with the VNA were developed by the community, e.g., BEDROSSIAN et al.
[2010], HELLRUNG et al. [2012], SCHROEDER et al. [2014], and ZHU et al. [2012]. Over the years, alter-
native approaches emerged, i.e., adaptive quadrature B. MÜLLER et al. [2012], integration over equiva-
lent polynomials VENTURA [2006] or the construction of variable quadrature weights HOLDYCH et al.
[2008]. Due to the fact that adaptive techniques are computationally expensive and as the latter two
mentioned methods expect element-wise straight cuts, they are not suitable for cut surfaces of arbi-
trary shape. In this regard, a novel moment-fitting algorithm for the integration of integrands with
discontinuities represented using higher-order level-sets was proposed by B. MÜLLER et al. [2013].
The method was later improved by modifying the quadrature node locations B. MÜLLER et al. [2017].
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The moment-fitting strategy is highly suitable for smooth cut surfaces but suffers from large errors in
case of non-smooth, kinked cut shapes.

The approach presented in this chapter represents the cut surface using an explicit triangle mesh.
The explicit information is then used to construct specialized quadrature rules for the integration of
integrals over discontinuous integrands. Similar to the level-set based approach of B. MÜLLER et al.
[2013] the quadrature rule is constructed hierarchically. However, the method uses the explicit cut
representation to place the quadrature nodes such that integrals on curved and even kinked cut sur-
faces are accurately captured. Moreover, the approach allows us to place quadrature nodes outside the
support domain of the corresponding finite element. In this away the number of required geometric
operations and queries is drastically reduced; thus, the implementation is simplified.

eXtended Finite Elements in Computer Graphics

Besides applications in the field of mechanical engineering, the XFEM was also adopted in a few works
in computer graphics. An XFE solver for interactive surgery simulation using shifted sign enrich-
ment was proposed by JEŘÁBKOVÁ and KUHLEN [2009]. Their work included a novel mass-lumpling
scheme to improve the stability of the simulation in the case of explicit time stepping. KAUFMANN

et al. [2009] proposed a simulation method for cutting of two-dimensional shells based on an extended
discontinuous Galerkin FE discretization and a semi-implicit Euler method for time integration. They
introduced the concept of harmonic enrichments that are constructed during runtime by numerically
solving a Laplace Problem on the GPU and by storing the resulting solution in a texture. This numer-
ical solution then mimics the behavior of the traditional asymptotic crack enrichment [BELYTSCHKO

and BLACK 1999]. This implies that for each cut at least one Laplace problem has to be solved numeri-
cally and stored at runtime resulting in a considerable computational effort and memory consumption.
Although this strategy proves to be very effective for two-dimensional domains, the computational
overhead and memory requirements increase significantly when the approach is generalized to three
dimensions. Also the numerical integration over the enriched regions can be computationally expen-
sive as the enrichment is not only discontinuous but also non-polynomial. A strict limitation of this
approach is that the detail of the cut geometry is bounded by the texture resolution.

In this chapter a novel XFEM based cutting algorithm featuring stable, fully implicit time integra-
tion is presented. An effective preconditioner based on the previously computed quadrature weights
is introduced keeping the solver matrix well-conditioned and regular at all times. The later presented
results demonstrate that the approach carries out stable simulations even when large time steps are
employed.

4.3 Governing Equations and Weak Form

In this section the mathematical formulation for the simulation of deformable objects that are subject
to cutting is introduced. The model is based on the continuum model described in Chapter 2 but has
to be extended in order to capture and account for the discontinuities in the PDE’s solution implied by
the cuts. Let us recall and extend the graphic illustration of a continuum in reference and current con-
figuration given in Figure 2.2 for the purpose of cutting simulation (cf. Figure 4.1). Besides the usual
description of the continuum representing the elastic body, the cut has to be represented. Here, ΓR
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Figure 4.1: Reference and current configuration of a cut continuum. O denotes the origin of a Cartesian
coordinate system in Euclidean space.

denotes the cut path in reference configuration with Γ+
R and Γ−R describing the positive and negative

cut flank. Analogously, Γ+ and Γ− denote the positive and negative cut flank in the current configura-
tion. Moreover, displacement (Dirichlet) and traction (Neumann) boundary conditions are prescribed
on the boundary of the domain. Then, the strong form of the extended IBVP can be derived:
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(4.1)

Please note that in this formulation it is assumed that there are no Dirichlet boundary conditions
prescribed on the cut flanks. As the most applications where the simulation of cutting is involved
require to use large deformations, a non-linear constitutive model should be employed. For all results
presented in this chapter the hyperelastic St. Venant-Kirchhoff model was used.

In order to solve the problem numerically using the FEM, its weak form must be derived prior to
a polynomial discretization. As already introduced in the previous chapter, the weak form is defined
as an inner product of the PDE with a test function that is non-zero on the considered domain. Let
H1(ΩR) denote the Sobolev space of square-integrable and once differentiable functions. Then, one
can define a vector-valued weak solution space U for the displacement and a vector-valued weak test
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space W such that

u ∈ U :=
{

u ∈
(
H1(ΩR)

)3 ∣∣∣ u|∂ΩD = uD ∧ u discontinuous on ΓR

}

w ∈W :=
{

w ∈
(
H1(ΩR)

)3 ∣∣∣ w|∂ΩD = 0 ∧ w discontinuous on ΓR

}
.

This definition includes the requirements that the weak solution space strongly fulfills the essential
boundary conditions and that the test space vanishes at the Dirichlet boundary. By taking the L2-inner
product of the PDE (cf. Equation (4.1)) with the test function on the considered domain, by applying
integration by parts and by application of the divergence theorem the weak form is derived as

(Weak form)
˚

ΩR

w · (ρRü) dξ +

˚

ΩR

∇w : Pdξ =

‹

∂ΩR,N∪Γ±R

w · tNds+

˚

ΩR

w · bRdξ.

4.4 Discretization

In this section a standard finite element discretization using linear Lagrange polynomials will be re-
capitulated. Subsequently, it will be explained how cut surfaces can be geometrically represented and
finally the concept of basis enrichment will be introduced that allows one to capture a discontinuity
within a FE discretization without remeshing.

Standard FE Discretization

Given the weak form derived in the previous section without accounting for cuts, discrete subspaces
Uh ⊂ U and Wh ⊂ W can be chosen in order to discretize the equation. In this work a basis using
linear Lagrange polynomials with compact support on tetrahedral elements was chosen to span the
discrete subspaces. Then, a shape function Ni(ξ) corresponding to the ith vertex of the tetrahedral
mesh is defined such that

u ≈ uh =
∑

i∈V
Ni(ξ)ui and w ≈ wh =

∑

i∈V
Ni(ξ)wi. (4.2)

For a single tetrahedral element e with nodal displacements/test coefficients uei/w
e
i the sum can be

rewritten in matrix form, i.e.,

uh,e = Ne(ξ)




ue1

ue2

ue3

ue4




and wh,e = Ne(ξ)




we
1

we
2

we
3

we
4




(4.3)

Ne(ξ) =
(
Ne

1 (ξ)1 Ne
2 (ξ)1 Ne

3 (ξ)1 Ne
4 (ξ)1

)
.

The four local indices can then be mapped to the M global indices corresponding to the vertex num-
bering in the tetrahedral mesh using a constant selector matrices Se = δg,ge(l) ∈ {0, 1}M×4. Here g
denotes a global and l a local coefficient index while ge(l) denotes a function that maps the local index
l of an element e to the global index. Semi-discretizing the weak form using Equation (4.2), dropping
the test coefficient vector w and extending the module by a damping term following the Rayleigh
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model then yields

Mü + Du̇ + Fint(u) = Fext

M :=
∑

e

Se
˚

∆e

ρRNeTNedξ(Se)T , Fint :=
∑

e

Se
˚

∆e

∇ξ

(
(Ne)T

)
: P(uh,e)dξ (4.4)

Fext :=
∑

e

Se
˚

∆e

NebRdξ,

where u denotes the global vector of nodal displacements (coefficient vector), M represents the mass
matrix, D = αM + βK represents the damping matrix following the Rayleigh model, where K =

∇uFint represents the stiffness matrix, and where Fint and Fext denote the discrete internal and external
force vectors. Further, ∆e denotes the domain of the tetrahedron associated with the eth element and
α > 0 and β > 0 denote the Rayleigh damping coefficients which steer the influence of the mass and
stiffness matrix on the damping behavior.

Cut Representation

As previously mentioned, the described FE discretization is valid as long as the tetrahedral discretiza-
tion mesh is conforming to the object boundary. This implies that the mesh would have to be adapted
in order to capture cuts as long as the discretization does not account for the discontinuity in the solu-
tion. In order to capture the discontinuity in the discretization without modifying the mesh topology
the discrete trial space is enriched using a step function Ψ : ΩR → {−1, 1} as first suggested by MOËS et
al. [1999] resulting in an XFE discretization. To explicitly define the desired enrichment function a suit-
able representation for the cut surface geometry has to be found. Especially in the field of mechanical
engineering, implicit cut representations, e.g., level-sets defined on grids or on the simulation mesh,
are a very popular choice. However, implicit representations are not well-suited to represent sharp
features and quickly become very memory intensive. Moreover, it is more than non-trivial to detect
if, where and how often an implicit surface has dissected a tetrahedron. For the stated reasons all cut
surfaces in this work are represented using explicit triangle meshes in reference space. Consequently,
the surface of the jth cut will be denoted ΓjR.

0

ΩR

ΩP,A
ΩP,B

Φj > 0 Φj < 0

ΓjR

Figure 4.2: Convex domain ΩP that lies within a continuum is dissected by ΓjR into exactly two simply
connected subdomains ΩP,A and ΩP,B such that ΩP = ΩP,A ∪ ΩP,B and ΩP,A ∩ ΩP,B = ∅.
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Assuming that the cut surface ΓjR dissects a simply connected, convex domain ΩP ⊆ ΩR into
exactly two simply connected subdomains ΩP,A and ΩP,B (cf. Figure 4.2), then the cut surface ΓjR
implies a level-set function Φj : ΩP → R defined as the signed distance from the query point to the
surface, i.e.,

Φj(ξ) = s(ξ) inf
ξ∗∈ΓjR∪ΩP

‖ξ − ξ∗‖ with s(ξ) =





1 if ξ ∈ ΩP,A

−1 otherwise.
(4.5)

Basis Enrichment

Using this implicit representation the discrete trial and test spaces (cf. Equation (4.2)) can be augmented
using an enrichment function in order to capture the discontinuity in the PDE’s numerical solution us-
ing the XFEM. The main strategy of the (extrinsic) XFEM is to extend an existing (usually polynomial)
discrete trial space by additional enrichment functions to capture certain features in the solution, e.g.,
strong or weak discontinuities, and to improve the quality of the PDE’s numerical solution. Mathe-
matically, the discrete trial space is augmented, i.e.,

u ≈ uh =
∑

i∈V0

Ni(ξ)u0
i +

m∑

j=1

Ψj(ξ)
∑

i∈Vj
Ni(ξ)uji =

m∑

j=0

∑

i∈Vj
Ψj(ξ)Ni(ξ)uji , (4.6)

where m,Vj ,Ψj and uji are the number of enrichments, the set of enriched nodes, the enrichment
function itself and additional degrees of freedom according to the ith node and jth enrichment, respec-
tively. The first term can further be incorporated in the second sum by defining a trivial enrichment
function Ψ0(ξ) := 1 and by setting V0 := V , u0

i := ui. The other additional enrichment functions Ψj

then have to be chosen such that the discontinuity is captured within the discretization. First proposed
by MOËS et al. [1999], a piecewise constant step function which is discontinuous along the cut surface
can be employed resulting in the so-called sign or generalized Heaviside enrichment. Building on the
level set function defined in Equation (4.5) the sign enrichment function is

Ψj(ξ) = sgn(Φj(ξ)) ∀ j > 0 with sgn(x) =





1 if x > 0

−1 otherwise

Unfortunately, defining the enrichment function in this way has several disadvantages. As the enrich-
ment function associated with an enriched node i does not vanish at the node location, the Kronecker-δ
property is lost and the numerical solution is not interpolate the values of the degrees of freedom at
their locations, i.e., uh(ξi) 6= u0

i . This complicates the enforcement of Dirichlet boundary conditions as
the nodal displacement coefficients cannot be simply constrained. Fortunately, the Kronecker-δ prop-
erty can be recovered by shifting the enrichment function at the node locations as proposed by ZI and
BELYTSCHKO [2003]. The enrichment function is then specialized for each node and simply shifted by
the value of the enrichment function at the node location resulting in

Ψj
i (ξ) :=

1

2

(
Ψj(ξ)−Ψj(ξi)

)
∀ j > 0,

where ξi denotes the position of the ith node in the reference configuration. Consequently, Equa-
tion (4.6) and the corresponding discrete test space have to be modified accordingly yielding

u ≈ uh =

m∑

j=0

∑

i∈Vj
Ψj
i (ξ)Ni(ξ)uji and w ≈ wh =

m∑

j=0

∑

i∈Vj
Ψj
i (ξ)Ni(ξ)wj

i . (4.7)
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As a result the shifted enrichment function Ψj
i vanishes at its associated node i, the linear basis function

Ni vanishes at all nodes other than i and a displacement boundary condition at the node can then be
enforced by simply constraining the nodal coefficients.

Selecting Nodes for Enrichment

In the last section the XFE discretization for capturing physical cuts in the discrete trial space was
introduced. The presented discretization requires to identify a set of nodes Vj to be enriched for each
individual cut. Further, I would like to stress the fact that the correct identification of the set Vj is
crucial because a wrong selection can either lead to the cut flanks physically sticking together or that
the discretization has undesired discontinuities in certain regions. Therefore, a strategy to select the
correct set of nodes is described in the following.

Partial cut Complete cut

Figure 4.3: Tetrahedral element intersected by cut surface represented by a triangle mesh. The orange
polyline represents the intersection path between the surface and the element.

In order to determine Vj , the set of tetrahedra Ej completely dissected by the jth cut has to be
determined. A tetrahedron is further called partially dissected if the intersection path between cut
surface and tetrahedron boundary is open and called completely dissected if the intersection path is
closed (cf. Figure 4.3). Algorithmically, the decision whether a tetrahedron is completely cut is made
using the following steps. The algorithm proposed by BARAFF et al. [2003] is employed in order to
compute the intersection path (cf. orange path in Figure 4.3) as the cut surfaces are represented by
triangle meshes and because the tetrahedron can be represented by four triangles. Finally, it has to be
determined if the cut is complete. This is realized by identifying cycles in the graph implied by the
intersection path using a simple depth-first traversal.

Once Ej is determined, each vertex i incident to a tetrahedron in Ej is tested whether the support
domain of its according shape function Ni is either completely or partially cut. Based on the choice of
Lagrange polynomials as shape functions, the support domain of a node i is exactly represented by its
one-ring, i.e., the union of incident tetrahedra. Then the boundary mesh of vertex’ one-ring represented
by a triangle mesh can be extracted and the completeness of the cut can be tested by following the
exact same algorithm described for testing the completeness of a cut through a tetrahedron. In case
of a complete cut by surface j node i is enriched using the enrichment function Ψj

i . Examples for the
enrichment test are depicted in Figure 4.4, left using a simplified, two-dimensional example, and in
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Figure 4.5 (left) in the three-dimensional case. Special care must be taken when a node’s one-ring is cut

Γ1

Γ2

Γ3

Figure 4.4: Simplified two-dimensional examples for testing whether to enrich a vertex or not. Left:
The central node is enriched by Γ1 and Γ2, as they completely dissected the one-ring. The partial cut
Γ3 does not lead to an enrichment. Right: One-ring is cut by a single cut path. However, the node is
enriched thrice as the one-ring is separated into four disjoint regions.

into multiple disjoint regions by a single cut surface (cf. Figure 4.4, right). In order to resolve this case,
one can treat each patch consisting of a triangle submesh that completely separates the one-ring as a
distinct cut and add an enrichment for each of the patches. Identifying for multiple disjoint regions in
three dimensions case has an additional special case as illustrated in Figure 4.5 (right). The cut surface
might enter and leave the vertex’ one-ring multiple times. However, the one-ring in this example is
only dissected into three distinct parts although three closed intersection paths are detected such that
the corresponding vertex has to be enriched only twice. This issue can be handled in the following way.
The detected paths can then be classified into entering intersection paths (red) and exiting intersection
paths (green). Only entering intersection paths cause an enrichment resulting in a correct number of
enrichments.

Due to the new extended discrete trial and test spaces defined in Equation (4.7), the element vectors
and matrices given in Equation (4.4) have to be modified accordingly. Therefore, a new element-wise
discretization similar to the one introduced in Equation (4.3) can formulated, i.e.,

uh,e = Ne(ξ)




ue,01

ue,11

...
ue,11

...
ue,m4




and wh,e = Ne(ξ)




we,0
1

we,1
1

...
we,1

1

...
we,m

4




Ne(ξ) :=
(

Ψe,0
1 (ξ)Ne

1 (ξ)1 Ψe,0
2 (ξ)Ne

2 (ξ)1 . . . Ψe,m
4 (ξ)Ne

4 (ξ)1
)
,

where ue,ji and Ψe,j
i denote the displacement coefficient and shifted enrichment function correspond-

ing to the ith local node of the considered element e and to the jth enrichment. Consequently, with the
redefinition of Ne the definition of the element vectors and matrices given in Equation (4.4) still holds.

64



4.4. DISCRETIZATION

Figure 4.5: One-ring of a vertex is tested for vertex enrichment due to an intersection with the gray cut
surface. Left: The vertex’ one-ring is exactly separated into two parts by a complete cut at the closed
intersection path (red). Right: Cut surface enters and leaves the one-ring multiple times. Although
three closed intersection paths are detected (2 × red, 1 × green) the vertex has to be enriched only
twice.

Due to the discontinuous nature of Ψj
i the integrals required to compute these quantities have dis-

continuous integrands. Figure 4.6 illustrates a (two-dimensional) triangular finite element separated
by a single cut. When integral quantities have to be evaluated on the corresponding domain, special
attention has to be paid to the strong discontinuity caused by the enrichment function. This results in
two major issues. The first issue is that standard quadrature rules are not applicable anymore which
makes the evaluation of these quantities non-trivial. The second issue is that large volume ratios of the
resulting subdomains can lead to badly conditioned mass and stiffness matrices.

uncut XFEM VNA

∆0
e

∆1
e

∆0
e

∆1
e

∆e ∆e

∆e = ∆0
e ∪∆1

e

Fe =
´

∆e

fedξ =
´

∆0
e

fedξ +
´

∆1
e

fedξ 6=
´

∆e

fedξ +
´

∆e

fedξ

Figure 4.6: Integration domains of a dissected element. During integration the arising subdomains left
and right of the cut have to be treated separately. While XFEM based methods correctly account for
this, VNA methods simply duplicate the element leading to an incorrect integral evaluation.

In the next sections, a novel integration strategy to construct quadrature rules for this specific prob-
lem and a preconditioner based on the computed quadrature weights will be introduced. Using this
concept both issues will be addressed in a robust manner. At this point I would like to advise the reader
with the information that similar cutting methods based on the VNA overcome both the quadrature
and matrix condition issues by simply copying the element for each disjoint part that emerged while
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cutting [MOLINO et al. 2004]. While this leads to a very stable simulation, it introduces physical in-
consistencies, i.e., mass and stiffness increments as well as a shifted center of mass, which becomes
especially noticeable for cutting of fine structures. This effect is also demonstrated in Section 4.7.

4.5 Numerical Integration over Discontinuous Integrands

In order to determine element mass and element tangent stiffness matrices as well as internal and
external element force vectors, integrals according to Equation (4.4) have to be evaluated. Based
on the standard discretization using polynomial shape functions (cf. Equation (3)) all integrands are
element-wise continuously differentiable polynomials. An exact evaluation of these can be conve-
niently achieved by using a Gauss-Legendre quadrature rule of adequate order. However, the ex-
tended discretization approach introduced in Equation (4.7) leads to polynomial but discontinuous
integrands. Therefore, an evaluation using Gauss-Legendre quadrature is not an option due to the fact
that the resulting accuracy is not sufficient. The usage of adaptive techniques yields sufficient results
but requires a large number of subdivisions to adequately capture the discontinuity resulting in poor
performance [FRIES and BELYTSCHKO 2010]. Another strategy is to remesh the integration domain
in order to capture the cut surface and to apply standard Gauss-Legendre quadrature on the result-
ing subdomains. For one-dimensional integration domains this approach works very well in practice
and is very accurate. However, for higher-dimensional domains the remeshing is computationally ex-
pensive as it involves the triangulation or the tetrahedralization of possibly non-convex domains and
error-prone geometric intersection tests based on floating-point arithmetic.

In the following a method to construct specialized quadrature rules for discontinuous integrands
based on the work of B. MÜLLER et al. [2013] will be introduced. While a similar approach for quadra-
ture rule construction for partially filled hexahedra was proposed by PATTERSON et al. [2012], they
require the quadrature points to be positioned inside the filled domain, and rely on computing the
integrals of the construction monomials using Monte-Carlo sampling. Also, an approach considering
partially filled elements was proposed by KIM and POLLARD [2011]. However, both approaches are
not guaranteed to yield an accurate quadrature rule as the sampling of the cell may miss the partially
filled regions. In contrast, the here presented approach does not require the points to be inside the
considered volume portion and hierarchically constructs rules for integrals over the desired volume
portion and the intersecting cut surface. Especially, the rule construction for the evaluation of inte-
grals on the cut surface is beneficial if external tractions have to be applied or if Neumann boundary
conditions have to be enforced on the arising surface.

In the following, T d denotes the domain enclosed by a d-dimensional simplex. Further, T d is the
closure of T d, i.e., the union of T d and its boundary. It should also be mentioned that, in the following,
the double and triple integral notation for integrals over two- and three-dimensional domains, i.e.,

˜
and
˝

, will be deliberately avoided to generalize the notation to the d-dimensional domain T d. Let
h : T d → R be a function that is only piecewise continuously differentiable on T d but continuously
differentiable on nc subdomains T di , where T d =

⋃
i T

d

i and T di ∩ T dj = ∅ ∀ i 6= j. Let further χdi be the
characteristic function of T di . Then the following integral can be additively decomposed into a sum of
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individual integrals ˆ

T d

h(ξ)dξ =

nc∑

i=1

ˆ

T d

χdi (ξ)h(ξ)dξ.

One-Dimensional Integration Domain

In order to numerically integrate a piecewise continuous polynomial, the integration domain is subdi-
vided such that the discontinuity is captured and integrated over each individual continuous segment:ˆ

T 1

χi(ξ)h(ξ)dξ =

ˆ

T 1
i

h(ξ)dξ.

The position of each discontinuity is determined by a geometrical intersection test between the cut
surface and the mesh edge. The integral of each subdomain T 1

i can then be numerically computed
using Gauss-Legendre quadrature. Figure 4.7 shows a one-dimensional example of the discontinuous
function and its corresponding subdomains.

ξA ξB

T 1
1 T 1

2

Figure 4.7: Domain of 1D function is subdivided into T 1
1 and T 1

2 such that the function is continuous
on both subdomains.

Quadrature Rule Construction for Two and Three-Dimensional Domains

In order to numerically compute integrals over discontinuous integrands on two- or three-dimensional
simplicial domains, a specialized quadrature rules depending on the discontinuties’ geometries is con-
structed. More specifically, a single rule for each subdomain T di where the integrand is continuously
differentiable is determined, such that

ˆ

T d

χi(ξ)h(ξ)dξ ≈
N∑

j=1

wi,jh(ξj), (4.8)

where ξj and wi,j denote quadrature points and weights corresponding to the ith subdomain, respec-
tively.

Volume/Area Integrals

Given a set of integrands P = {P1, ..., PM} over a domain T d, a quadrature rule can be constructed by
solving the following system of equations:




P1(ξ1) · · · P1(ξN )
...

. . .
...

PM (ξ1) · · · PM (ξN )







wi,1
...

wi,N


 =




´
T di

P1dξ

...´
T di

PMdξ



. (4.9)
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As all occurring integrands in Equation (4.4) are polynomials of maximum order two in ξ, P is cho-
sen as a set of (linearly independent) polynomials up to order two. Moreover, choosing P as a basis
that is orthonormal on the reference triangle/tetrahedron greatly improves the matrix condition num-
ber of Equation (4.9). The orthonormal basis can be easily constructed from a monomial basis, i.e.,
{1, x, y, x2, xy, y2} for d = 2, using generalized Gram-Schmidt orthogonalization and subsequent nor-
malization. The equation system is only linear in wi,j but nonlinear in the quadrature nodes ξj and
for that reason hard to solve. In order to alleviate the problem, a set of quadrature nodes is predefined
and their position is kept constant which simplifies Equation (4.9) to a linear equation system.

While the construction of the matrix is trivial given the fixed quadrature points, the evaluation
of the system’s right-hand-side is challenging due to the integrals over the subdomain T di . In order
to tackle this problem the right-hand-side is reformulated by replacing the polynomials Pj with the
divergence of their antiderivatives PA

j , such that ∇ · PA
j = Pj . Please note, that there are multiple

choices to choose the antiderivatives PA
j . However, PA

j,i =
´
Pjdξi is a valid and simple choice, where

PA
j,i is the ith component of vector PA

j . Then, the integrals can be rewritten using the divergence
theorem yielding

ˆ

T di

∇ξ ·PA
j dξ =

ˆ

∂T di

PA
j · nds =

ˆ

∂T d

χi PA
j · nds

︸ ︷︷ ︸
1

+

ˆ

Ii

PA
j · nds

︸ ︷︷ ︸
2

,

where Ii = ∂T di \ ∂T d. Here Ii can be interpreted as the interface between the currently considered
subdomain T di and its neighboring subdomains.

In order to compute integral 1 one has to distinguish between the three-dimensional (d = 3)
and the two-dimensional (d = 2) simplicial case. For a tetrahedral domain, again, quadrature rules
as described in this section for each triangular face are constructed by computing the intersection
of the cut surface’s relevant triangles with the plane spanned by the tetrahedron’s face. In the two-
dimensional case, one can directly compute 1 by integrating over the mesh edges as described in the
previous subsection.

The second term 2 represents a path/surface integral over the interface Ii. For an evaluation of
the term an additional interface quadrature rule is constructed as discussed in the next subsection.

Finally, the linear equation system (4.9) can be solved in order to obtain the quadrature weights
wi,j required to construct the element vectors and matrices (cf. Equation (4.4)). It is important to state,
that depending on the number of quadrature nodes and polynomials contained in P Equation (4.9) is
generally over- or underdetermined. For that reason, it is intended to guarantee the equation system
to be underdetermined in order minimize the error in a least-squares fashion and to choose the num-
ber of quadrature nodes as approximately twice the number of polynomials according to symmetric
quadrature rules. Finally, it has to be decided where to place the quadrature points ξj . For both cases,
i.e., d = 2, 3, ξj can be precomputed according to symmetric quadrature rules with the corresponding
number of points following the method proposed by ZHANG et al. [2009] and the underdetermined
system can be solved by computing the matrix’ Moore-Penrose pseudoinverse using a singular value
decomposition.

In order to improve the efficiency when solving Equation (4.9) a linear transformation Q : Rd →
Rd can be used that maps the simplex onto a reference simplex with coordinates (0, 0, 0)T , (1, 0, 0)T ,
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(0, 1, 0)T for a tetrahedron and (0, 0)T , (1, 0)T , (0, 1)T for a triangle and the involved cut triangles/
segments can be additionally transformed into the reference space. Then the matrix’ pseudo-inverse
has to be computed only once and can be reused for every element as the matrix is independent of the
cut location. Subsequently, the quadrature weights wi,j are scaled by |det(Q−1)| in order to obtain the
correct weights in the original space.

Interface Integrals

As an integral over the subdomain interface Ii has to be computed in order to evaluate term 2 , a
second quadrature rule with a set of predefined quadrature nodes is constructed such that

ˆ

Ii

hds ≈
NIi∑

j=1

ωi,jh(ξj),

where ξj and ωj denote quadrature nodes and weights, respectively.

Based on a vectorial, polynomial basis PD =
{

PD
1 , . . . ,P

D
MD

}
, the according construction equa-

tions are



PD
1 (ξ1) · n(ξ1) · · · PD

1 (ξN ) · n(ξ1)
...

. . .
...

PD
M (ξ1) · n(ξ1) · · · PD

M (ξN ) · n(ξN )







ωi,1
...

ωi,N


 =




´
Ii

PD
1 · nds

...´
Ii

PD
M · nds



. (4.10)

Analogously to Equation (4.9) the evaluation of the linear system’s right-hand-side is non-trivial for
a choice of arbitrary polynomial vectors. Fortunately, a special choice of PD as divergence-free basis
allows one to elegantly simplify the right-hand-side. In this work the divergence-free basis was con-
structed following the method presented by B. MÜLLER et al. [2013]. Assuming that ∇ξ · PD

j = 0 the
entries of Equation (4.10)’s right-hand-side can be transformed using the divergence theorem resulting
in

ˆ

Ii

PD
j · nds =

��
�
��

��*
0ˆ

∂T d

∇ξ ·PD
j dξ −

ˆ

∂T d

χi PD
j · nds.

The integral can then either be directly evaluated by piecewise integration over the mesh edges for
d = 2 or using the already constructed quadrature rule used to evaluate 1 for d = 3.

Again, one has to choose quadrature points ξj in order to evaluate the integrands in meaningful
positions. For d = 2 the cut path is a polyline. Therefore, four quadrature points are placed on each
segment following the corresponding quadrature points of traditional Gauss-Legendre quadrature as
illustrated in Figure 4.8, left. Due to the dependence of the system matrix on the cut geometry the
matrix is not guaranteed to have full rank. The aim is to still maintain an underdetermined system by
using enough quadrature points. Therefore, using approximately twice as many points as polynomial
basis vectors in PD was a safe choice for all of the performed tests and simulations. Consequently, one
segment is subdivided at a time until the desired number of quadrature points is reached. Similarly,
the quadrature points for d = 3 are placed on the triangles of the intersecting patch, again, using
the abscissae of the symmetric quadrature rules for triangles determined following the approach of
ZHANG et al. [2009] (cf. Figure 4.8, right).
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Figure 4.8: Interface quadrature nodes. Blue line/surface represents the cut geometry while orange
dots indicate the location of quadrature points. Left: 2D case; triangle intersected by polyline. Right:
3D case; tetrahedron intersected by triangle mesh.

Figure 4.9: Node distribution example of quadrature on 2- and 3-simplex.

Finally, Equation (4.10) can be solved in order to obtain the interface quadrature weights ωi. Please
note, that, again, the number of quadrature points is chose to be approximately twice the number
of polynomials in PD which results in an undetermined system. Moreover, the system matrix is in
general rank-deficient and has poor conditioning depending on the discontinuity’s geometry. To ro-
bustly solve the underdetermined system, the Moore-Penrose pseudoinverse using a singular value
decomposition can be used.

Placing the quadrature nodes directly onto the cut path/surface rather than somewhere within the
surrounding finite element [B. MÜLLER et al. 2013] ensures that the cut patch’s geometry, if smooth
or sharp, is captured sufficiently resulting in an accurate quadrature rule. It might, however, seem
to be an interesting choice to place the quadrature nodes on the polyline segments/triangles with-
out clipping the primitives on the considered triangular/tetrahedral element. Conducting several
experiments showed that even if many quadrature points lay outside the element due to the cut path
segments being large compared to the element size, still resulted in very accurate quadrature rules. I
assume that this is the case because the integrands, i.e., polynomials, are infinitely often differentiable
and therefore very smooth.
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4.6 Keeping the Solver Matrix Well-Conditioned

The enrichment of nodes using shifted sign enrichment as described in Section 4.4 adds DOFs to the
system and therefore leads to additional entries in the system matrix. The matrix entries corresponding
to a DOF heavily depend on how the node’s support domain, i.e., its one-ring, is dissected. If the ratio
of the contributing subdomain’s volume (the portion of cut-off material) and the one-ring’s volume
is high, the system matrix’ condition number deteriorates. This phenomenon is similar to the influ-
ence of element shapes on the matrix condition number in standard FE discretizations as discussed
by SHEWCHUK [2002].

The convergence of iterative solvers is heavily influenced by the condition number of the system
matrices (see e.g., SHEWCHUK [1994]) but also modern direct solvers rely on well-conditioned matrices
(see e.g., SONNEVELD [1989]). Even worse, a numerically singular system can cause a breakdown of
the simulation. For the stated reasons keeping the system regular and moreover well-conditioned is
a vital requirement and one of the key aspects regarding stability and robustness. A well-conditioned
system is therefore ensured by means of the following three steps:

1. Perturbation step It is tested if the cut surface touches (but does not intersect) the support domain
of the currently processed node’s shape functions. As previously described, a vertex is enriched
if its one-ring is completely dissected. Due to the nature of floating point arithmetic, a com-
plete cut may be detected but no actual intersection geometry is generated. This may cause the
construction of the interface quadrature rule to fail, and results in a potentially singular system
matrix. Therefore, the cut surface’s vertices are perturbed in order to improve robustness. As
this problem is caused by numerical inaccuracies in geometric intersection tests, intersection al-
gorithms based on robust predicates or exact arithmetic may be employed to correctly resolve
this problem.

2. Constraining step If the support domain’s volume of an enriched node is small compared to the
volume of its shape functions’ support domains, the DOF is constrained. In order to avoid the
material "sticking" together in the region close to the constrained DOF, the DOF is rigidly moved
with its according fragment to keep the afflicted region as-rigid-as-possible. Mathematically, the
criterion for constraining a DOF di,j is

Vi,j,enr

Vi,supp
< ε,

where Vi,supp is the volume of the support domain of the ith node and Vi,j,enr the volume of
the DOF di,j ’s support domain volume associated with the ith node and the jth enrichment.
Further, ε represents a scalar threshold that was chosen to be 10−9 for all of the later presented
results. Generally, the computation of Vi,j,enr is problematic since it should be avoided to ex-
plicitly represent the DOF’s support domain. However, the previously computed weights can
fortunately be reused to determine Vi,j,enr because the volume over the given domain is equal to∑
e∈Ci

´
∆j
e

1dξ =
∑
e∈Ci

∑N
j=1 we,j , where Ci is the set of elements incident to vertex i.

3. Preconditioning step In the third and final step a diagonal preconditioning matrix T to improve
the system matrix A’s condition number for the subsequent Newton iterations is constructed. In
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order to keep the matrix symmetric, the diagonal preconditioning matrix T is applied bilaterally,
i.e.,

Ax = c

TTATy = TT c

x = Ty.

As previously mentioned the area ratio of Vi,supp and Vi,j,enr has a big influence on the system
matrix’ condition number. Therefore, diagonal entries of A are scaled with the inverse ratio such
that

Tdi,j ,di,j =
1
√
νi,j

νi,j =
Vi,j,enr

Vi,supp
=

∑
e∈Ci

∑N
j=1 we,j

Vi,supp
.

4.7 Results and Discussion

In this section, a technique to generate a representation for visualization purposes is described and
results and comparisons are presented. All measurements provided in this section were performed on
an Intel i7-6700HQ processor with 2.6 GHz, 4 cores and 16GB RAM. The implicit Euler scheme was
employed for time integration and the resulting nonlinear equation system was solved using Newton’s
method in combination with the PARDISO solver implemented in Intel’s Math Kernel Library. The
number of quadrature points for volume/area quadrature were 24 and 19, respectively (cf. Figure 4.9).
Analogously, 4 quadrature points per cut path segment for the construction of triangle quadrature
rules and 6 quadrature points per cut surface triangle for the construction of tetrahedron quadrature
rules were used (cf. Figure 4.8). Please note that Dirichlet conditions were enforced following the
approach of B. WU et al. [2008] in all presented scenarios. Further, I would like to mention that none
of the presented simulations includes collision handling.

Visualization

The simulation yields a numerical solution represented by the displacement field uh(ξ, t) to the IBVP
described in Equation (4.1). Consequently, a suitable representation has to be found in order to vi-
sualize the result in an appealing way. At this point I would like to point out that the generation
of a visualization can be understood as post-processing step and that the strategy presented in the
following is by no means inextricably linked to the described simulation.

In order to represent the (initially uncut) simulation object’s boundary surface, the boundary of the
tetrahedral discretization is extracted as triangle mesh in reference space. Subsequently, the geometric
intersection path between boundary mesh and cut surfaces is computed using the algorithm proposed
by BARAFF et al. [2003]. The acquired path is then explicitly embedded into both the border mesh and
the cut surface meshes by inserting intersection vertices and the according mesh edges followed by
a retriangulation. Because the cut surfaces overlap the boundary mesh, all triangles located outside
the boundary mesh are clipped away. Each cut surface mesh is then duplicated in order to represents
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both sides of the cut. Finally, Equation (4.7) is used to compute the world positions for each vertex
in the visualization mesh. If the tetrahedral mesh’s boundary is too coarse for visualization purposes
or if a higher resolution is desired, an additional high-resolution triangle mesh representing the object
boundary can be used. The only requirement is that the mesh is entirely contained in the tetrahedral
mesh in order to evaluate Equation (4.7) for mapping the vertices to their respective world space
positions. Regarding the presented results, a high-resolution boundary mesh was used to generate the
results shown in Figures 4.13, 4.12 (right) and 4.14.

Robust XFE Simulation vs. VNA

Three experiments were performed where the novel XFE based method was compared with the widely
used VNA. In the first scenario depicted in Figure 4.10 a cube consisting of five tetrahedra was cut at
three different locations. Because of the hinge fixation, the resulting slices fold down and oscillate
until they reach a resting position. In all simulations performed with the XFEM based method (blue
shading) the slices rest in a position where their centers of mass are exactly placed under the fixations.
In contrast, the resting positions of the VNA based simulations (red shading) are noticeably displaced
resulting in a physically incorrect and even implausible state. In the second experiment depicted in

Figure 4.10: Cubes consisting of five tetrahedra fixated on one edge are cut in differently sized slices.
This image shows the resting position of the slices where all blue shaded slices where simulated using
XFEM based method and the red-shaded slices using the VNA.

Figure 4.11 a deformable slab fixed to a wall was cut into several slices with increasing thickness. The
slab is discretized into 61 × 11 × 1 blocks is consisting of five tetrahedra each. The novel XFE ap-
proach produces a realistic result where each distinct slice folds down separately due to the varying
thicknesses. When the exact same scenario is simulated using the VNA, each slice is as stiff as the
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uncut slab caused by inexact integration (cf. Figure 4.11, right) and therefore scarcely folds. In the

Figure 4.11: A deformable slab is fixed to a wall and cut into five slices with increasing thickness. Left:
Resting position resulting from the novel XFE based simulation. Right: Result computed using the
VNA with the exact same material and simulation parameters.

third and final experiment mass conservation after the insertion of several cuts was compared. As
illustrated in Figure 4.12 (left) two blocks hanging on a comparably small strip of deformable material
were simulated. Due to the weight of the blocks the attached strips stretch and can thus be interpreted
as nonlinear springs. The nonlinearity in the strips’ deformation behavior is caused by the nonlinear
hyperelastic constitutive model. As a consequence of the insertion of several cuts into the blocks, the
objects unfold. Investigating the unfolded objects’ resting states reveals that the simulation performed
with the XFE based method conserves mass very well as the attachment point that connects block and
fixation strip still rests at the initial position (around one on the background measuring scale). In con-
trast, the block simulated using the VNA drops significantly, finally resting at three on the background
measuring scale. This indicates a significant amount of additional mass caused by the element dupli-
cation strategy. Moreover, the resulting dynamic behavior of the object simulated with the novel XFE
based method is noticeably "livelier" and looks less stiff compared to the VNA simulation.

Quadrature Comparison

The quality of the acquired volume quadrature rules for 24 quadrature points by evaluating Equa-
tion (4.8) on the unit tetrahedron was tested for several test polynomials. In this experiment, three
different cut surface shapes were used: a planar, a kinked and a spherical cut. Furthermore, the re-
sults were compared with a regular sampling approach as used by KAUFMANN et al. [2009] and a
specialized adaptive quadrature approach for multidimensional discontinuous functions proposed by

74



4.7. RESULTS AND DISCUSSION

Figure 4.12: Left: Two blocks hanging on thin material strip are cut into an unfolding structure. The
result produced by the XFE based method (left) conserves mass before and after inserting cuts as
indicated by the strip’s extension. The block simulated using the VNA (right) drops significantly due
to unphysically added mass and looks stiffer. Right: Cutting a plate with a smooth, helical surface.

B. MÜLLER et al. [2012]. To realize the sampling a regular grid on the tetrahedron’s bounding box
consisting of 503 cells was employed. For the adaptive approach a maximum refinement depth of four
was used. The results are summarized in Table 4.1. Please note that only quadrature points evaluating
to non-zero values were accounted for the values in the #QP columns for the sampling approach and
the adaptive quadrature technique. The regular sampling consistently produced less accurate results
compared to our method while a much larger number of quadrature points was required. Although
the adaptive approach was in some cases able to achieve comparable accuracy, the number of required
quadrature points was larger by several orders of magnitude.

Complex Cutting

Besides comparisons and academic examples, four complex simulations were performed. In the first
experiment a helical cut surface was used to dissect a plate discretized with 25 × 25 × 1 hexahedral
blocks each consisting of 5 tetrahedra (cf. Figure 4.12, right). Even though the object is discretized
using a small number of linear elements, the helical-shaped material deforms very smoothly while
the cut is progressing. In the second scenario the Stanford armadillo that was fixated on its limbs was
simulated (cf. Figure 4.13, left). This example demonstrate that the presented method is able to robustly
handle cuts with low and high frequent smooth and/or sharp features while dissecting thousands of
tetrahedra.

In the scenario illustrated in Figure 4.14, a circular groove was cut into the Stanford bunny. Fur-
thermore, the groove itself was peeled off by a second progressing cut. The result demonstrates that
the method is able to robustly handle finely structured cut surfaces. Moreover, it shows that the sim-
ulation yields realistic results even when the underlying tetrahedral mesh is coarse. The tetrahedral
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Scenario Integrand Pres. Method Regular Sampling Adaptive Quadr.
h(ξ, η, ζ) εrel (24QP) εrel #QP εrel #QP

1 3.32× 10−5 4.44× 10−3 560 5.79× 10−2 54
ξ + η + ζ 4.43× 10−5 4.44× 10−3 560 8.19× 10−2 54

ηζ + ξζ + ξη 5.54× 10−5 9.78× 10−1 560 9.25× 10−1 181
ξ2 + η2 + ζ2 5.54× 10−5 5.00× 10−1 560 4.94× 10−1 181

1 2.99× 10−6 4.94× 10−4 3795 1.54× 10−2 646
ξ + η + ζ 6.50× 10−6 4.89× 10−4 3795 2.16× 10−2 646

ηζ + ξζ + ξη 1.26× 10−5 2.50× 10−3 3795 1.86× 10−2 2512
ξ2 + η2 + ζ2 1.38× 10−5 1.10× 10−4 3795 1.72× 10−2 2512

1 3.88× 10−4 4.62× 10−3 8219 1.21× 10−2 788
ξ + η + ζ 5.15× 10−4 6.23× 10−3 8219 1.65× 10−2 788

ηζ + ξζ + ξη 6.43× 10−4 7.60× 10−3 8219 1.30× 10−3 3073
ξ2 + η2 + ζ2 6.46× 10−4 7.71× 10−3 8219 1.79× 10−4 3073

Table 4.1: Results of the numerical integration test using regular sampling, an adaptive approach [B.
MÜLLER et al. 2012] and the presented approach. The unit tetrahedron was cut using a planar (diag-
onal) cut, a kinked cut and a spherical cut. The integral over polynomials h(ξ, η, ζ) over the volume
portion indicated in blue was computed. εrel and #QP represent the relative error to the analytic solu-
tion and the number of the contributing quadrature points used for quadrature, respectively.

Figure 4.13: Left: Stanford armadillo is cut by several high- and low-frequent, smooth or sharp sur-
faces. Right: Plate with attached objects is cut by long, bumpy cut surface.

discretization of the bunny consisted of only ~18.5k tetrahedra while the visualized triangle mesh had
~53k triangles. In the fourth and final scenario, a plate with several attached objects as depicted in
Figure 4.13 (right) was simulated. It is dissected by a very long complicated cut surface. Due to the
complex bumpy structure of the surface several tetrahedra are cut multiple times by the same cut
surface resulting in the requirement to enrich several nodes multiple times (problem described in Sec-
tion 4.4). This highly complex example shows that the presented method is able to accurately handle
very complex cut surfaces and yields a realistic animation where all cut regions are properly separating
without any artifacts.

Also performance was measured in two scenarios. Both scenarios were simulated using a time step
width of ∆t = 5ms. The simulation of the bunny scenario took on average 1.375s per step with initially
5326 DOFs, finally resulting in 9432 DOFs. Further, 47.27% of the time was spent to process the cuts
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Figure 4.14: A groove is carved into the Stanford bunny (18.5k tetrahedra) rotating around a fixed axis.
Subsequently, the groove itself is peeled off by a second cut.

and to enrich the nodes. The quadrature rule construction is included in that portion but individually
took only 8.5% of the time required per step. The plate scenario initially consisted of 47643 DOFs
resulting in 53326 DOFs and took 9.365s per time step. 17.5% of the time was spent to process the cuts
while the quadrature rule construction individually took 0.7% of the simulation time. The last scenario
clearly shows the advantage of the presented approach in comparison to remeshing based methods as
the number of DOFs increased only by 12% even when a very complex cut surface is employed.

Preconditioning

In order to analyze the effect of the presented preconditioner on the system matrix’ condition number,
an experiment where a unit cube consisting of five tetrahedra with bounding coordinates (−1,−1,−1)T

and (1, 1, 1)T was dissected using a planar cut with surface normal (1, 0, 0). Then the condition num-
ber of the system matrix was measured while varying the location of the cut in x-direction. We further
chose the system matrix as A = M + ∆t2K resulting from the discretization and linearization in a
single Newton step, where ∆t and K = ∂Fint/∂u represent time step width and tangent stiffness
matrix, respectively. The cube was unconstrained and the matrix was assembled for Young’s modu-
lus E = 106N/m2, Poisson ratio ν = 0.3, density ρ = 1000kg/m3 and time step width ∆t = 10−3s.
The graph in Figure 4.15 shows the outcome of the experiment. While the condition number of the
unpreconditioned system matrix approaches infinity when the cut is close to the bounds, the condi-
tion number of the preconditioned matrix is considerably lower. Even when the cube is cut exactly
through its center, the condition number of the unpreconditioned matrix is nearly two orders of mag-
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nitude higher compared to the uncut matrix’ condition number. It should further be mentioned that
the condition number of the preconditioned matrix will also approach infinity when the cut is so close
to the cube boundary that some of the enriched vertices’ DOFs have (almost) no support. Fortunately,
this is prevented by constraining the affected nodes which keeps the condition number bounded.
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Figure 4.15: Semi-logarithmic plot of the condition number of the system matrix A = M + ∆t2K over
cut location x. A cube consisting of five tetrahedra was cut using a planar cut surface.

4.8 Conclusion

In this chapter a novel approach for the simulation of complex cutting of three-dimensional deformable
solids with fully implicit time integration was presented. After introducing the concept of basis enrich-
ment for the representation of cuts within the finite element discretization, an approach to construct
specialized quadrature rules to compute arising integrals over discontinuous elements on polyhedral
domains was proposed. Moreover, an algorithm was presented that keeps the equation system re-
quired for implicit time integration regular and well-conditioned. The presented results demonstrate
that the presented method robustly handles complex cut surfaces in large scenarios. It was also shown
that the method is able to realistically simulate fine-structural cuts, even in the case of coarse tetrahe-
dral discretizations. The XFE based approach was further compared to the popular VNA where the
considerable advantages concerning preservation of physical plausibility such as mass conservation
and correctly maintaining stiffness properties of the XFE based approach was demonstrated.

As explained before, the presented method only treats elements as cut if they are completely dis-
sected by the cut surface. Therefore, the approach currently cannot handle cuts that progressively
advance within a single element. Building on the flexibility of the XFEM to incorporate different
enrichments, one could enrich completely dissected elements using the presented shifted sign enrich-
ment and treat regions near the crack tip following the harmonic enrichment strategy KAUFMANN et
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al. [2009]. A localized Laplace enrichment near crack tips would allow one to represent intra-element
progressive cuts at moderate cost. This would result in a nice synergy of both approaches. A limita-
tion of the given implementation is that it did not treat the case of mutually intersecting and T-cuts.
However, there seems to be no reason why this should limit the generality of the proposed approach
as branched and intersecting cuts can probably be directly handled using the specialized enrichments
proposed by DAUX et al. [2000]. Further, an implicit backward Euler scheme together with Newton
iterations was employed to solve the resulting nonlinear equation system. I am aware of the fact that
more elaborate and efficient implicit time integration schemes were developed within the computer
graphics community in the recent years. While performance was not the main focus of this work,
it would still be beneficial to incorporate a more efficient time integrator and to fully parallelize the
implementation.
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Chapter 5

hp-Adaptive Generation of Discrete Signed
Distance Fields

In this chapter an hp-adaptive algorithm to generate discrete higher-order polynomial Signed Distance
Fields (SDFs) on axis-aligned hexahedral grids from manifold polygonal input meshes is presented.
Using an orthonormal polynomial basis, polynomials are efficiently fit to the underlying signed dis-
tance function on each cell. The proposed error-driven construction algorithm is globally adaptive and
iteratively refines the SDFs using either spatial subdivision (h-refinement) following an octree scheme
or by cell-wise adaption of the polynomial approximation’s degree (p-refinement). Furthermore, a
novel decision criterion based on an error-estimator is introduced that decides whether to apply p-
or h-refinement. The carried out results demonstrate that the method is able to construct more ac-
curate SDFs at significantly lower memory consumption compared to previous approaches. While
the cell-wise polynomial approximation will result in highly accurate SDFs, it can not be guaranteed
that the piecewise approximation is continuous over cell interfaces. Therefore, an optimization-based
post-processing step is proposed that weakly enforces continuity. Finally, the generated SDFs are used
in the application of collision detection in the physically based simulation of geometrically highly
complex solid objects. This demonstrates the practical relevance and applicability of the proposed
representation.

5.1 Introduction

Signed distance fields are a frequently used tool in the field of computer graphics and serve a wide
range of applications including surface reconstruction [CALAKLI and TAUBIN 2011], rendering [JAM-
RIŠKA 2010], geometrical modeling [S. FRISKEN 2006] or collision detection [N. MITCHELL et al. 2015].
For a three-dimensional spatial domain B ⊂ R3 the distance function is usually defined as the Eu-
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clidean distance from a given point ξ = (ξ, η, ζ)T in space to the nearest point on the boundary ∂B of
the domain. The sign of the distance function additionally provides information whether the point in
question lies inside or outside the domain. Mathematically, the signed distance function Φ : R3 → R
is defined as

Φ(ξ) = s(ξ) inf
ξ∗∈∂B

‖ξ − ξ∗‖, s(ξ) =




−1 ξ ∈ B
1 otherwise.

(5.1)

Signed distance functions can be evaluated efficiently if an analytic form exists for the associated
object. This is the case for simple geometric shapes such as spheres, tori, boxes, etc. For arbitrary
polyhedral shapes the evaluation of the signed distance function is, however, computationally very
expensive. For that reason, it is common practice to discretize the signed distance function in order
to evaluate the function more efficiently. In the remainder of this thesis, a discretized signed distance
function will be referred to as SDF.

Most commonly, an SDF is constructed by sampling the signed distance at the vertices of a regular
hexahedral grid and by trilinearly interpolating within each cell, as e.g., proposed by XU and BARBIČ

[2014b]. However, for complex objects this discretization strategy either consumes a large amount of
memory or is not sufficiently accurate. The sampling may additionally suffer from aliasing effects.
More elaborate approaches sample the function adaptively in order to increase the accuracy in regions
with fine details and to reduce the overall memory consumption. The adaptive sampling can be re-
alized, e.g., as an octree-like scheme, as proposed by S. F. FRISKEN et al. [2000]. Especially in regions
near curved or sharp features, strong subdivision is required resulting in very memory consuming
SDF representations.

In this chapter, a novel method to efficiently construct a grid-based SDF using hierarchical hp-
refinement based on piecewise polynomial fitting is proposed. Besides a spatial adaption using octree
subdivision to refine the cell size (h), the polynomial degree (p) of the local discretization is adapted.
An orthonormal polynomial basis using shifted, normalized Legendre polynomials is employed that
is able to hierarchically construct higher-order polynomials without having to discard and recompute
any of the previously computed coefficients. Using a novel hp-decision criterion the algorithm esti-
mates whether h- or p-adaption is more beneficial in each individual refinement step. On the basis of
several examples for the construction of SDFs for complex surfaces, it will be demonstrated that the
method generates highly accurate discretizations while the memory consumption remains at a mini-
mum. Using a novel nearness weighting approach, the user can choose to focus the refinement efforts
on regions close to the surface of the associated object. Finally, it is shown in several experiments that
the hp-adaptive SDFs are well-suited for the robust detection of collisions in dynamic simulations. In
addition to the detection of contacts, the SDF also provides information about the penetration depth
and contact normals. The method is, however, not limited to this application.

5.2 Related Work

Since the introduction of SDFs by ROSENFELD and PFALTZ [1966] to the computer graphics commu-
nity, numerous approaches to construct and use SDFs have been proposed. For a general overview, I
would like to refer the reader to the survey of M. JONES et al. [2006].
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Signed Distance Fields

In recent years, many methods have been presented to accelerate the exact evaluation of signed dis-
tance functions based on polygonal representations (see e.g., SANCHEZ et al. [2012]). Even though
the computational efficiency was drastically improved, the computation time still cannot fulfill the
strict time constraints of applications such as interactive simulation or haptic rendering. Moreover,
approximations to signed distance functions using precomputed SDFs can be efficiently queried and,
therefore, serve as an excellent alternative. Due to the fact that discretizations of increasingly complex
surfaces are very memory consuming, various methods focusing on a reduction of memory consump-
tion were developed. One of the most popular methods is the Adaptive Distance Fields (ADFs) approach
introduced by S. F. FRISKEN et al. [2000]. During the SDF’s construction the underlying signed dis-
tance function is first sampled on a coarse grid and recursively refined using octree subdivisions as
long as the deviation of trilinearly interpolated signed distance samples from the exact value exceeds
a certain threshold. The method was later improved in terms of memory consumption and construc-
tion time by PERRY and S. F. FRISKEN [2001]. As a consequence of the refinement strategy, a large
number of cells is required in regions where a trilinear discretization does not accurately represent
the signed distance function. In order to further reduce the memory requirements, narrow band ap-
proaches were proposed by BÆRENTZEN [2002] and ERLEBEN and DOHLMANN [2008] that discretize
only regions close to the object surface. A very cache efficient narrow band discretization approach for
volumetric data on grid structures has been presented by MUSETH [2013]. This method is tailored to
very large sparse data sets with grid resolutions of at least 81923 cells. In order to handle large data
sets the approach uses a structure similar to a B+-tree to find the cells containing data. At this point,
I would like to mention that a narrow band construction is directly applicable to the here proposed
hp-adaptive SDFs. However, the present work focuses on a high quality representation of the SDF on
the whole domain in order to quickly exclude possible contacts in the demonstrated application.

In contrast to using purely scalar valued SDFs several approaches were proposed that augment the
discretization by additional geometric information. HUANG et al. [2001] propose a hybrid approach for
distance field representation of polygonal meshes. Using a regular hexahedral grid, they store a list of
triangles and the respective scalar distance value from the cell center to each triangle for each individ-
ual cell. This allows for an exact signed distance computation without any discretization errors as the
polygonal representation is explicitly stored within the data structure. However, it is still necessary to
perform expensive computations to evaluate distances to explicit polygons when querying the SDF.
Moreover, explicitly storing the triangle lists results in a substantial memory overhead. N. MITCHELL

et al. [2015] present multivalued signed distance fields where several cells might occupy a single vol-
ume portion of space. This allows to represent non-manifold features that cannot be represented by
standard grid-based representations. As such, the approach is orthogonal to the aforementioned meth-
ods to represent more detail with less memory. Therefore, the method should also be compatible with
the here presented grid based approach. In order to improve the representation of sharp features such
as corners or hard edges while avoiding unnecessary refinement, several approaches were proposed.
JU et al. [2002] store additional hermite data on the grid that represents exact intersection points and
normals. Using an additional curvilinear offset grid, QU et al. [2004] align the mesh features with
the second grid to improve the discretization. Similarly, BAERENTZEN [2005] uses an additional point
cloud when reconstructing a mesh from an SDF in order to recover sharp features.
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As opposed to discretizing the signed distance function using an axis-aligned hexahedral grid, J.
WU and KOBBELT [2003] present a discretization approach based on binary space partitioning. In each
subdivision step the splitting planes are aligned with geometric features in the input data in order to
optimize the approximation. M. W. JONES [2004] completely avoids spatial subdivision but transforms
the distance field with a vector distance transform using a specially defined predictor in order apply
entropy compression to the distance data. By reducing the SDF data to a 2D height field projected
onto a proxy geometry, OTADUY et al. [2004] as well as MOUSTAKAS et al. [2007] reduce the consumed
memory. The main problem of both approaches is to define a suitable proxy geometry.

SDF-based Collision Handling

In the field of physics-based animation, SDFs allow for rapid distance queries between potentially
colliding objects and are therefore especially well-suited for collision detection. Moreover, a contact
normal for collision response can be directly deduced by computing the SDF’s gradient as it points in
the direction of the closest point on the object surface. Several works adopt the concept of SDF-based
collision detection for rigid body simulations, e.g., KAUFMAN et al. [2007], GLONDU et al. [2014], and
XU et al. [2014]. BRIDSON et al. [2003], as well as FUHRMANN et al. [2003] use SDFs to resolve collisions
between cloth and rigid objects. BARBIČ and JAMES [2008] present a method for haptic rendering in-
volving data provided by SDFs. Image-based volume contacts proposed by FAURE et al. [2008] and AL-
LARD et al. [2010] are an alternative approach of capturing detailed contact geometry but require high-
resolution sampling for precise contact handling. Therefore, B. WANG et al. [2012] apply, similar to the
here presented method, an error estimation based on polynomials to guide the refinement of the spa-
tial sampling. In order to improve efficiency and robustness of rigid body collision handling XU and
BARBIČ [2014a] developed an SDF-based continuous collision detector. In this chapter, the applicabil-
ity of novel hp-adaptive SDF representation in rigid body simulations with contacts is demonstrated.
Please note, that the collision handling approach using the novel SDF representation is not limited
to rigid body simulations and can also be applied for rigid-deformable and deformable-deformable
collision detection when considering the modifications presented by MCADAMS et al. [2011].

Similar to several aforementioned methods, an adaptive construction algorithm for SDF generation
is proposed here. In contrast to all previous approaches, polynomials are fit to the underlying signed
distance function. The presented method is, to the best of my knowledge, the first approach that not
only spatially subdivides (h-adaption) the grid but also improves the discretization by hierarchical
augmentation of the polynomial basis with higher-order polynomials (p-adaption). As a consequence,
the presented globally-adaptive, error-driven construction algorithm is able to generate memory effi-
cient but highly accurate SDFs as shown in the results section.

hp-Adaptivity in Numerical Methods for PDEs

While the here presented approach is, to the best of my knowledge, the first approach on hp-adaptive
generation of SDFs, hp-adaptivity is well-investigated in the field of numerical methods for PDEs,
especially in the context of finite element solvers. In an early work, BABUŠKA et al. [1981] introduced
the concept of p-adaptivity for a finite element solver for one- and two-dimensional PDEs and proved
that its convergence rate is not worse (and in some cases even better) than h-adaptive approaches.
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The concept was then combined with an h-adaptive approach and analyzed by BABUŠKA and SURI

[1981] building the first hp-adaptive method in the field of FE analysis. For a discussion on further
developments in the field until 1994, I would like to refer the reader to the survey of BABUŠKA and
SURI [1994]. As hp-adaptive approaches refine the approximation in two distinct dimensions a suitable
criterion is required to decide whether to refine in h- or p-direction. In this regard, W. F. MITCHELL

and MCCLAIN [2014] compare several strategies to guide the hp-refinement. A very effective strategy
to decide which refinement direction is likely to improve the approximation best was first proposed
by SCHMIDT and SIEBERT [2000] for one-dimensional problems. They apply a refinement in p- and
h-direction and choose the refinement direction that reduces the estimated remaining error the most.
Unfortunately, for higher-dimensional problems this strategy is computationally very expensive as
the numerical approximation has to be recomputed for each refinement step on the whole domain.
In the application of SDF generation this problem is not present as the (discretized) field has only
to be reconstructed in the currently considered cell which makes this strategy effective yet efficient.
Similar to the basis polynomials in the here presented approach, HOUSTON et al. [2003] use Legendre
polynomials as shape functions in an hp-adaptive finite element solver for hyperbolic conservation
laws. They analyze the decay rate of the polynomial’s Legendre expansion coefficients to estimate
local regularity of the PDE’s solution in each finite element and use this information to guide the
refinement directions.

In contrast to methods for numerical solvers for PDEs, the here presented approach is targeted
towards the construction of SDFs. A normalized, shifted Legendre polynomial basis is employed for
discretization. The orthonormality property of the basis enables one to efficiently fit the basis functions
to the exact input signed distance function without the requirement to solve a (usually required) linear
equation system. Using the proposed polynomial basis, an efficient degree-based error estimator was
developed and a novel refinement direction criterion that estimates the individual improvement of an
h- or p-refinement step is proposed.

5.3 Signed Distance Field Construction

In this section, a novel hierarchical hp-adaptive SDF construction algorithm is presented. Given an
initial grid on an axis-aligned bounding box representing a rectangular domain Ω the method aims to
discretize a signed distance function Φ (cf. Equation (5.1)) implied by a corresponding surface descrip-
tor, e.g., a polygonal mesh. The algorithm can be divided into the following steps. In the first step,
a coarse SDF is constructed by fitting low-order polynomials to Φ on each individual cell serving as
an initial guess. In the second step, the error contributed by each cell is estimated by computing the
quadratic distance between the approximating polynomial and its embedded lower order polynomial.
Following a globally-adaptive top-down strategy, the cell that contributes the largest residual as can-
didate is selected for refinement in the third step and a novel decision criterion is applied in order to
determine whether to apply h- or p-refinement. Finally, the third step is repeatedly performed until the
aggregate residual of all cells tracked over the refinement process falls below the target error thresh-
old. In the following sections a detailed explanation of each step will be given and the mechanisms
and mathematical foundations to perform the discretization will be discussed.

87



CHAPTER 5. HP-ADAPTIVE GENERATION OF DISCRETE SIGNED DISTANCE FIELDS

Exact Signed Distance Computation

Given a triangular input mesh a method to determine the exact signed distance to the surface is re-
quired. Therefore, first the unsigned distance is computed by finding the closest triangle of the mesh
and by subsequently evaluating the distance to the individual polygon. As a naïve search for the near-
est triangle has linear complexity, the procedure is accelerated by construction of a bounding sphere
hierarchy with a special traversal algorithm as proposed by SANCHEZ et al. [2012]. In order to deter-
mine the sign of the minimal distance, the approach of BÆRENTZEN and AANÆS [2005] is employed.
The method uses the angle-weighted pseudo-normal test which only requires the evaluation of a single
dot product with a precomputed surface normal.

Polynomial Fitting

In order to locally discretize the signed distance function, a multivariate polynomial of degree p is fitted
to Φ on each individual cell. Given an arbitrary polynomial basis, this requires minimizing a quadratic
distance measure between the polynomial approximation and the underlying signed distance function
in order to find an optimal coefficient set for the basis polynomials. Mathematically, this results in the
following quadratic minimization problem:

min
ce

Re(ce)

Re =

ˆ

Ωe

1

2
(fe − Φ)2dξ, fe = ce ·Pe

Pe = {Pρ
e }, ce = {cρe}

ρ = (ρξ, ρη, ρζ), 0 ≤ ρξ + ρη + ρζ ≤ p,

(5.2)

where Re represents the half squared error to the exact signed distance function, Ωe the domain of
the eth cell, fe the polynomial approximation of order p, respectively. Furthermore, Pe and ce denote
the polynomial basis vector and cell coefficient vector, respectively. ρ describes the polynomial degree
in each direction of the corresponding basis polynomial. The solution to the quadratic minimization
problem then corresponds to the solution of the linear equation system

Aece = be,

Ae =

ˆ

Ωe

Pe (Pe)
T
dξ, be =

ˆ

Ωe

PeΦdξ.
(5.3)

which yields the desired coefficient set ce. The SDF can then be queried at point ξ by evaluating the
fitted approximation fe(ξ).

Polynomial Basis and Hierarchical p-Refinement

Obviously, the underlying polynomial basis affects the structure and condition number of matrix Ae.
Moreover, the dense linear equation system grows when the degree of the polynomial basis is in-
creased. For these reasons, a basis that is orthogonal on the corresponding cell is employed. The
usage of this basis diagonalizes the matrix in Equation (5.3). The fact that Legendre polynomials have
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the property to be orthogonal on the interval [−1, 1] makes them attractive for the construction of a
higher-dimensional orthogonal basis. In order to generalize the Legendre basis to be orthogonal on an
arbitrary interval, the coordinates have to be shifted accordingly. Consequently, a polynomial tensor-
product basis based on shifted normalized Legendre polynomials is constructed that keeps the system
well-conditioned and diagonalizes the generally dense linear system. The polynomial basis is then
defined by
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Figure 5.1: First nine (one-dimensional) shifted, normalized Legendre polynomials used for discretiz-
ing the signed distance function on cell interval [aξ, bξ] = [−1, 1].

Pρ
e (ξ) =

∏

x∈{ξ,η,ζ}

√
2ρx + 1

bxe − axe
Lρx(x′)

Lp(x) =
1

2p

p∑

l=0

(
p

l

)2

(x− 1)p−l(x+ 1)l

=
1

p
((2p− 1) x Lp−1(x)− (p− 1) Lp−2(x)) ,

(5.4)

where axe and bxe are the minimum and maximum coordinate of the cell e in x-direction with shifted
coordinate x′ = 2

bxe−axe
x − bxe+axe

bxe−axe
. The one-dimensional portions of the Legendre basis are depicted in

Figure 5.1. Due to the orthonormality of the basis, i.e.,
´

Ωe

Pρ
e P

ρ∗

e δξ = δρξρ∗ξ δρηρ∗ηδρζρ∗ζ , the solver matrix

becomes the identity matrix, i.e., Ae = I, where δij denotes the Kronecker-δ. Consequently, the linear
equation system (5.3) reduces to

ce =

ˆ

Ωe

PeΦdξ. (5.5)

Besides the fact that the requirement to compute and assemble Ae vanished, the diagonality implies
that there is no coupling between the coefficients. This is especially advantageous as only new coef-
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ficients have to be computed when the approximation’s polynomial degree is increased. As the ap-
proximation’s polynomial degree can simply be augmented by computation of desired coefficients in
ce, the basis can be considered to be hierarchical. By definition of Equation (5.2), the number of entries
contained in vectors Pe and ce is nc(p) = 1

6 (6+11p+6p2 +p3). Please note that instead of a polynomial
basis fulfilling 0 ≤ ρξ + ρη + ρζ ≤ p the complete set of polynomials such that 0 ≤ max(ρξ, ρη, ρζ) ≤ p

can be used for discretization. However, this strategy turned out to be less efficient as the number of
resulting vector entries then grows faster (nc(p) = (p+ 1)3) resulting in less granular refinement steps.

In order to finally fit the basis polynomials to the underlying signed distance function, the integral
equation describing the coefficient vector (cf. Equation (5.5)) has to be evaluated. Unfortunately, the
only knowledge about the properties of the integrand one has, is that it is a continuous (but not neces-
sarily smooth) function. Common approaches for the numerical integration of a-priori unknown func-
tions include locally or globally adaptive, multi-dimensional numerical integration rules, e.g., adaptive
Gauss quadrature or Monte-Carlo integration using importance sampling. However, the convergence
of these methods for the application to Equation (5.5) may suffer from two major issues. The first
issue is the smoothness of the integrand. While the polynomials are smooth and therefore infinitely
often differentiable, Φ is only guaranteed to be continuous for two-manifold geometries and usually
contains discontinuities in its derivatives. Possible sources for these ’kinks’ are sharp features in the
underlying geometry or ambiguities in the signed distance function when the closest point on the sur-
face is not unique. An example for the second case is the non-differentiability in the signed distance
function at the center of a sphere where all surface points have the exact same distance to its center.
This, finally, results in a large number of expensive Φ evaluations during numerical integration. In
order to compute the integral sufficiently well and in an acceptable amount of time, it is heuristically
approximated using multi-dimensional Gauss-Legendre quadrature of order 4p, where p is the highest
polynomial degree contained in Pe. Using this heuristic, no artifacts or major issues were experienced.
Moreover, the achieved results demonstrate that the method is able to generate very accurate SDFs us-
ing the described strategy.

Hierarchical h-Refinement

In contrast to increasing the polynomial order of the approximation, spatial subdivision can be an
effective alternative for refining the SDF. Especially in regions where the underlying signed distance
function is not smooth and therefore has low regularity, h-adaption is known to be more effective
[W. F. MITCHELL and MCCLAIN 2014]. A simple but very reasonable explanation for this is that the
very smooth polynomials are not suitable to represent ’kinks’ in the function while more low-order
polynomials are better at capturing these features. In order to realize the spatial subdivision, an octree
is maintained for each of the base cells. After subdividing a cell into eight subcells corresponding to
the next octree level, polynomials are again fitted to the exact signed distance function by means of
solving Equation (5.5) and the coarse approximation is rejected. At this point I would like to stress the
fact that an initial coarser approximation is not superfluous as it is essential for error estimation and
the decision whether to apply h- or p-refinement in the further process.

90



5.3. SIGNED DISTANCE FIELD CONSTRUCTION

Error Estimation

In order to steer the error-driven refinement process, the discretization error εe has to be computed
over the domain of each individual cell e. Theoretically, it is possible to directly approximate the exact
quadratic error Re(ce) using numerical integration because Φ can be evaluated exactly at any point
on the domain. This, however, results in a significant computational effort for two reasons. Firstly,
exact signed distance evaluations are expensive because they require to traverse the acceleration data
structure and to compute geometric distances to multiple triangles. Therefore, the number of Φ eval-
uations should be kept to a minimum. Secondly, a numerical computation of Re(ce) with sufficient
accuracy is hard as the integrand is in general locally non-smooth. Therefore, static numerical integra-
tion rules result in poor accuracy while adaptive techniques require an unacceptably large number of
function evaluations. Please note that it was initially intended to approximate the exact error, but it
was discovered that neither accuracy nor performance are acceptable in this case.

As a robust alternative, the cell-wise error can be estimated using the currently available approxi-
mation. More specifically, the estimation is based on the difference of the current degree p approxima-
tion compared to a lower order approximation of degree p− 1:

εe =

ˆ

Ωe

(ce ·Pe − c∗e ·P∗e)2
dξ

=

ˆ

Ωe


 ∑

i+j+k=p

c(i,j,k)
e P (i,j,k)

e




2

dξ

=
∑

i+j+k=p

∑

α+β+γ=p

c(i,j,k)
e c(α,β,γ)

e

ˆ

Ωe

P (i,j,k)
e P (α,β,γ)

e dξ

=
∑

i+j+k=p

|c(i,j,k)
e |2,

(5.6)

where c∗e = {cρ∗e } and Pe = {Pρ∗

e } are coefficient and polynomial vector of the embedded approxi-
mation of order p − 1 of cell e with 0 ≤ ρ∗ξ + ρ∗η + ρ∗ζ ≤ p − 1. Due to the hierarchical basis the p − 1

approximation is directly embedded in the current approximation. Moreover, the integral error mea-
sure can be evaluated analytically as all coefficients can be factored out while the remaining integral
factors become either exactly one or zero as a consequence of the orthonormal basis. This finally re-
sults in a simple sum over the squared constant coefficients of the degree p basis polynomials. Please
note that using smaller p approximations for a-posteriori error estimation is common practice in the
finite element community and has proven to be an effective approach [W. F. MITCHELL and MCCLAIN

2014].

Construction Algorithm

In this section the novel construction algorithm based on the previously introduced error estimator and
refinement strategies will be described. In general, the approach can be interpreted as an error-driven
globally adaptive construction following a top-down strategy. The abstract procedure is outlined in
Algorithm 5.1 and the reader will be guided through each step of the construction process.
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Algorithm 5.1 hp-adaptive SDF construction.

Require: Φ, nξ, nη, nζ , τ,Ω, pmax , lmax

1: ε← 0
2: n← nξnηnζ
3: pending← priority_queue{}
4: for e← 0 to n do
5: fit_polynomial(e, Φ, 2) // Fit polynomial of order 2 to
6: // each base cell e Eq. (5.5)
7: εe ← estimate_error(e) // Equation (5.6)
8: ε← ε+ εe
9: pending.push({e, εe})

10: while not pending.empty() and ε > τ do
11: {e, εe}← pending.pop()
12: {p, l}← {degree(e), level(e)}
13: µe ← estimate_improvement_p(e) // Equation (5.8)
14: νe ← estimate_improvement_h(e) // Equation (5.9)
15: refinep ← p < pmax and ( l == lmax or µe > νe )
16: refineh ← l < lmax and not refinep
17: if refinep then
18: fit_polynomial(e, Φ, p+ 1) // Equation (5.5)
19: ε← ε− εe
20: εe ← estimate_error(e) // Equation (5.6)
21: ε← ε+ εe
22: pending.push({e, εe})
23: if refineh then
24: children← subdivide(e) // Octree subdivision
25: ε← ε− εe
26: for j ∈ children do
27: fit_polynomial(j,p) // Equation (5.5)
28: εj ← estimate_error(j) // Equation (5.6)
29: ε← ε+ εj
30: pending.push({j, εj})

The algorithm expects the exact signed distance function Φ, an initial grid consisting of nξ×nη×nζ
cells on a rectangular domain Ω, the maximum refinement degree pmax, the maximum octree depth
lmax, and the target error threshold τ as input. Further, the global error on the domain will be tracked
using the total error ε in the course of the construction (cf. line 1).

The main idea of the construction algorithm is to maintain a priority queue which yields the index
of the cell contributing the largest individual error in each iteration as a candidate for refinement. In
line 1 to 3 the total error variable ε and the priority queue are initialized and the total number of base
cells in the coarse initial grid is computed. In the initialization loop (lines 4 to 9) a polynomial of
degree two is fitted to the underlying signed distance function on each individual cell, the contributed
error is estimated, the error is accumulated in the total error variable, and the cell index based on its
error contribution is inserted into the priority queue. The core part of the algorithm is the refinement
loop described in lines 10 to 30. The loop refines the discretization until the error falls below the target
error threshold τ and as long as refinable cells exist. After retrieving the element contributing the
highest individual error from the priority queue, it has to be decided whether to spatially subdivide
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the cell or to increase its approximation’s polynomial degree. If the cell has reached its maximum
refinement level, only the degree may be increased and vice versa, such that no further criterion is
required. Otherwise, the improvement that either p- or h-adaption yield is estimated. This is done by
individually applying both refinement strategies and estimating the remaining error on the h-adaption
induced subcells. Following this strategy, the following hp-decision criterion is developed:





adapt p if µe > νe

adapt h otherwise,
(5.7)

µe =
1

nc(p+ 1)− nc(p)
(
εe − α εp+1

e

)
, (5.8)

νe =
1

7nc(p)

(
εe − 8 max

c∈Ce
εc

)
, (5.9)

where Ce is the set of child cells resulting from the octree subdivision of e and α > 0 an error scaling
parameter. The error improvement per additional degree of freedom µe for p-refinement is computed
based on the scaled error of the (p+ 1)-polynomial defined on the coarse cell. Analogously, a measure
νe for the improvement corresponding to h-refinement is computed based on the scaled maximum
error of the spatially subdivided order p polynomial measured on each of the subdomains on the finer
octree level. The criterion decides in favor of p-adaption if the former improvement is greater than
the latter. The reason for preferring the criterion over simply measuring which adaption would re-
sult in the greater improvement is the following. h-adaption is favored if the approximation on any
of the potential subcells gains more accuracy from h-adaption compared to p-adaption. Moreover, as
the used error measure is degree based, the algorithm tends to underestimate the remaining error for
p-refinement. Therefore, the decision is additionally biased towards h-adaption using α = 8 in order
to counteract over-refinement in p-direction. Otherwise, the algorithm tends to drastically increase the
polynomial degree in the first few steps as this improves the approximation on average over the coarse
cell very well while there is potentially only a small improvement on some of the octree subdomains.
This would force at least the same degree on the subcells resulting from subsequent h-adaptions. Con-
sequently, many unnecessary degrees of freedom arise, leading to high memory consumption and
computational effort for both construction and interpolation. At this point I would like to point out
that the strategy to scale the p-error estimate for balancing the refinement is also common practice in
the field of hp-adaptive finite element analysis [W. F. MITCHELL and MCCLAIN 2014]. Finally, lines
18-22 and 24-30 describe how the polynomial degree is increased and how the current cell is spatially
subdivided, respectively. Then, the total error is updated and the resulting cells’ indices together with
the respective individual errors are inserted into the priority queue.

Please note that the total error is accumulated over the whole construction process. To avoid nu-
merical errors due to the accumulation, the error estimate is stored on each individual cell and the
total residual ε =

∑
e εe is recomputed every 1000 iterations.

Nearness Weighting

For some applications of SDFs a comparably higher accuracy near the object’s surface may be desired
while regions far away from the surface are less interesting. Therefore, a weighting factor to compute
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a new transformed nearness weighted error estimate

ε∗e = κeεe

is employed. This modification will artificially decrease the hp-refinement in regions far away from
the object’s surface. In order to find a suitable cell-wise coefficient κe, a measure encoding the distance
to the object surface is required. Building on the fact that Φ provides the point-wise shortest distance
to the surface, the average distance represented by a cell e is (1/Ve)

´
Ωe

Φdξ where Ve denotes the cell
volume. As expensive Φ evaluations should be avoided, the current approximation fe can be used
instead. Then, a polynomial weighting factor

κe =


1− 1

Ved

∣∣∣∣∣∣

ˆ

Ωe

fedξ

∣∣∣∣∣∣



θ

can be modeled, where d and θ denote the construction domain’s diagonal length and weighting ex-
ponent, respectively. Additionally dividing the distance measure by d normalizes it and ensures that
κe ∈ [0, 1] as long as the domain fully contains the object surface, i.e., B ⊆ Ω. However, due to poten-
tially strong deviations of the approximation, κe may lie outside of the interval. In this case the factor
can be simply clamped to [0, 1]. If an even stronger decreasing weighting is desired, an exponential
factor can be used instead:

κe = exp


− θ

Ved

∣∣∣∣∣∣

ˆ

Ωe

fedξ

∣∣∣∣∣∣


 .

Please note that if nearness weighting is used, the criterion described by Equations (5.7)-(5.9) must be
modified accordingly.

5.4 Enforcing Weak Continuity

The previously presented algorithm describes a method to fit multivariate polynomials to the underly-
ing signed distance function for each individual cell such that the global error is minimized efficiently.
However, there is no guarantee that the resulting SDF is continuous over shared faces (interfaces) of
neighboring cells. This is usually not a problem if the target error τ is chosen sufficiently small. If,
however, a rather coarse approximation is desired, the ’jumps’ in the discretization may pose a prob-
lem. Therefore, an approach using quadratic programming is presented in this section to enforce weak
continuity over cell interfaces.

Generally, it is possible to project the discontinuous discretization onto a conforming discrete space.
A method for the construction of a conforming hp-adaptive discretization was for example proposed
by STOLFO et al. [2016]. The cell-wise decoupled approximation can be projected onto such a conform-
ing discrete space, e.g., using an L2 projection. But since the polynomials are already optimally fit to
the signed distance function with respect to the quadratic error measure Re, one should aim to main-
tain the initial discretization as much as possible. Therefore, such a projection would potentially result
in an uncontrollable loss of accuracy in order to directly enforce continuity. In contrast, better control
of how much of the initial accuracy is lost for the sake of improving continuity can be gained by weak
enforcement of continuous transitions.
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Interface Error Measure

First an integral error measure is defined in order to quantify the discontinuity of the SDF between
two neighboring cells. Let i be an interior face of the adaptive grid with il and ir denoting the indices
of its incident cells. Then, the integral error measure is defined as

Ei(cil , cir ) =

ˆ

Γi

1

2
(fil − fir)2

dA

=
1

2

(
cTil cTir

)ˆ

Γi

(
PilP

T
il

−PilP
T
ir

−PirP
T
il

PirP
T
ir

)
dA

︸ ︷︷ ︸
Mi

(
cil
cir

)
,

(5.10)

where Γi = Ωil ∩Ωir and where dA denotes the integration variable for surface integration. The matrix
integral Mi in Equation (5.10) can be exactly evaluated using Gaussian quadrature of corresponding
order. Moreover, due to the chosen polynomial basis, Mi can be evaluated analytically when the cells
adjacent to an interface have the same cell size and therefore correspond to the same h-refinement
depths. Each block contained in Mi consists of the outer product of two polynomial basis vectors.
Let P = {Pi} and P∗ = {P ∗j } be the normalized, shifted Legendre polynomial basis vectors of two
neighboring cells, respectively. Since the polynomial basis vectors were constructed using a tensor-
product, each component can be multiplicatively decomposed into factors only dependent on a single
coordinate, i.e., Pi(ξ, η, ζ) = Pi,ξ(ξ)Pi,η(η)Pi,ζ(ζ). Without loss of generality, let us assume that the
normal of the common face points in ξ-direction. Let us further assume that both cells have the same
size and are aligned with each other in η- and ζ-direction. Each block entry in Mi is constructed using
an integral over the outer product of the basis vectors (cf. Equation (5.10)):

ˆ

Γ

PP∗T dA =

bηˆ

aη

bζˆ

aζ

PP∗T dηdζ.

Given the previously stated assumptions, the entry in the ith row and jth column of the matrix block
can be analytically evaluated as follows:



ˆ

Γ

PP∗T dA



ij

=

bηˆ

aη

bζˆ

aζ

Pi,ξPi,ηPi,ζP
∗
j,ξP

∗
j,ηP

∗
j,ζdηdζ

= Pi,ξP
∗
j,ξ

bηˆ

aη

Pi,ηP
∗
j,ηdη

︸ ︷︷ ︸
=δij

bζˆ

aζ

Pi,ζP
∗
j,ζdζ

︸ ︷︷ ︸
=δij

= Pi,ξP
∗
j,ξδij .

Finally, the global discontinuity error is defined as sum of the cell-individual errors, i.e., E =
∑
i∈I Ei

where I denotes the set of all inner faces.
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Regularization

It is obvious that a minimization of the error energy E in the global coefficient vector c minimizes
the "jumps" in the discretization. However, the solution of the optimization problem is not unique
as there is an infinite number of global coefficient vectors minimizing the function. Therefore, the
problem needs to be regularized to guarantee uniqueness and to moreover find a meaningful solution.

While regularizing the problem, the initial optimized discretization should be maintained as much
as possible. Therefore, a per-cell regularization energy

Ψe(ce, c
′
e) =

ˆ

Ωe

1

2
(fe − f ′e)

2
dξ

=
1

2
(ce − c′e)

T
ˆ

Ωe

PeP
T
e dξ

︸ ︷︷ ︸
I

(ce − c′e)

=
1

2
(ce − c′e)

T
(ce − c′e)

is defined, where f ′e, c′e and I denote the initial (discontinuous) approximation, the according initial
coefficient vector and the identity matrix, respectively. Once again, choosing an orthonormal polyno-
mial basis pays off as the integral part of the regularization energy vanishes. The regularization energy
over the whole domain is then defined by Ψ =

∑
e∈E Ψe = 1

2 (c− c′) · (c− c′), where E denotes the set
of cells contained in the grid.

Optimization

Using the previously defined interface error measure and regularization energy, a convex minimiza-
tion problem in the coefficient vector c can be formulated in order to compute an SDF with improved
continuity

min
c

(E(c) + βΨ(c, c′))

⇔

(M + βI) c = βc′, (5.11)

where β > 0 denotes a regularization parameter and c′ the coefficient vector of the discontinuous ap-
proximation. Furthermore, M = ∂2E/∂c2 is the second derivative of the interface error term and can
be assembled from the block matrices Mi. An interpretation of β is simple as a minimization results
in a more or less arbitrary (but continuous) SDF for β → 0 whereas the solution converges towards
the initial discretization induced by the initial coefficient vector c′ for β → ∞. Because the objective
function is quadratic in the coefficient vector c and convex, the (unique) solution to the minimization
problem is equivalent to the solution of the linear equation system given by Equation (5.11). The prob-
lem can finally be solved using an arbitrary (sparse) linear solver. As the number of coefficients, i.e.,
degrees of freedom, is very large for detailed SDFs, the memory requirements for direct solvers using
matrix factorization can easily exceed the available memory capacity. Therefore, a conjugate gradi-
ent descent solver in combination with an incomplete Cholesky factorization for preconditioning was
employed for the presented results.
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Figure 5.2: Comparison of the convergence
behavior for a torus model of the novel hp-
adaptive method with a pure octree-subdivision
using linearly and quadratically fitted polyno-
mials. #DOF encodes the number of polynomial
coefficients required to enforce the correspond-
ing residual.
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Figure 5.3: Convergence study of SDF construc-
tion for the skeleton hand model.

5.5 Results and Discussion

All computations in this section were carried out on two Intel Xeon E5-2697 processors with 2.7GHz,
30MB Cache, 12 cores per processor and 64GB RAM. The SDF construction was fully parallelized with
Intel TBB and 48 threads were used in all computations. All deformable and rigid body simulations
with contacts are based on the approaches proposed by BENDER et al. [2014b] and DEUL et al. [2014]
implemented in the open-source library PositionBasedDynamics [BENDER 2017].

In summary, the presented results cover four types of experiments. Firstly, the convergence of
the proposed method with respect to the number of coefficients was analyzed. Secondly, SDFs were
generated for a variety of meshes and summarized in Table 5.2. Thirdly, various scenarios including
rigid and deformable objects were simulated demonstrating the practical applicability of the novel
approach for physically based simulation. Finally, the average time required to compute distance
values with the novel SDF representation was measured. In the following paragraphs, each of these
experiments will be described in detail.

Convergence and Refinement Analysis

Figures 5.2 and 5.3 illustrate the convergence graph during SDF construction for a torus and a skele-
ton hand model. The number of required coefficients (#DOF ) is shown on the abscissa while the
estimated error (residual) from Equation (5.6) is displayed on the ordinate in logarithmic scale. The
novel hp-adaptive approach was compared to pure octree-subdivision with linear (h1-adaptive) and
quadratic (h2-adaptive) polynomials. Both examples show the superiority of the presented approach
on the basis of the given error measure as it requires a fraction of the number of coefficients compared
to the other methods. The curves’ ’kinks’, most visible in the curve of the h1-adaption, appear when all
cells of a certain octree level are subdivided such that the decrease in the residual becomes suddenly
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smaller. I would like to stress the fact that the polynomials were, in all cases, constructed using the
fitting approach (cf. Equation (5.2)) which yields the optimal solution in terms of the measured error.

Figure 5.4: Torus degree plot. Visualization of
octree cells with corresponding polynomial de-
grees according to the legend depicted in the fig-
ure.

Using the traditional approach of sampling dis-
tance values within each cell would yield even
worse results for the h1- and h2-adaptions. For fur-
ther investigation, the leaf cells and their polyno-
mial degree were visualized for an example slice
as depicted in Figures 5.4 and 5.5. It can be no-
ticed that h-refinement with low-order polynomi-
als was primarily used in regions where Φ is non-
differentiable while smooth regions are mainly rep-
resented by large cells with high polynomial de-
gree.leftleft This exactly correlates with the de-
sired behavior and demonstrates the meaningful-
ness and applicability of the hp-decision criterion
(cf. Equation 5.7).

In order to demonstrate the effect of nearness
weighting, an SDF for the skeleton hand was con-
structed with exponential nearness weighting with
θ = 30. The according degree plot is illustrated in
Figure 5.6. The result clearly shows how regions
close to the object surface are strongly refined while
regions far away correspond to a coarse discretization in comparison to the unweighted result in Fig-
ure 5.5. Moreover, the reduced field required approximately 72% less memory compared to the un-
weighted result.

Construction Statistics

Table 5.2 summarizes statistics on the input triangle meshes and the according SDF construction re-
sults. All input meshes were scaled to the unit box [−1, 1]3 and the construction domain was enlarged
by 10% while the refinement limits were chosen as pmax = 30 and lmax = 10. Additionally, polyno-
mial nearness weighting with θ = 4 was used for all examples. The mesh column shows the name
of the mesh and its number of vertices and faces. The SDF column further contains the resolution of
the initial construction grid, the time required for construction, the number of the resulting octree leaf
cells, the distributions of degree and octree depth, the target error and the final memory consumption
as well as a visualization of an exemplary slice of the SDF. The SDFs were stored in a data structure
which essentially consists of four arrays. The first two arrays contain the polynomial coefficients in
double-precision and a prefix-sum stating at which index in the coefficient array the coefficients of
each cell start and how many coefficients belong to the respective cell. The remaining two arrays hold
a child node index list containing the indices of the corresponding octree nodes stored in the last array.
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Figure 5.5: Skeleton hand degree plot. Visual-
ization of octree cells with corresponding poly-
nomial degrees according to the legend depicted
in the figure.

Figure 5.6: Skeleton hand degree plot of
nearness-weighted result. Visualization of oc-
tree cells with corresponding polynomial de-
grees according to the legend depicted in the fig-
ure.

Figure 5.7: Complex rigid and deformable bod-
ies slide down an inclined plane with obstacles.

Figure 5.8: 800 rigid bodies fall onto a set of 64
poles having several thousand contacts per sim-
ulation step.

Collision Detection

The novel SDF representation was used in several physics-based simulations as collision detector in
order to demonstrate the practical relevance of the approach. To realize the collision detector, the
involved objects’ surfaces were additionally point-sampled and organized in a Bounding Sphere Hier-
archy (BSH). The BSH was constructed and traversed similar to the approach described by SANCHEZ

et al. [2012]. As the SDF construction process can be interpreted as preprocessing step, all generated
SDFs were serialized. Finally, the relevant SDFs were loaded prior to each simulation scenario and
tested against the point samples of the other objects. Two experiments, depicted in Figures 5.7 and 5.8,
were conducted. In both scenarios, several dynamic bodies collide with a static grid of poles. Each
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Figure 5.9: Dynamic simulation of a marble fol-
lowing a highly-detailed, helix shaped groove in
a bowl.

Figure 5.10: Collisions of 1000 marbles dropped
into a bowl with highly complex structures are
accurately resolved using the novel SDF repre-
sentation.

body was sampled with approximately 10k sample points to perform the distance queries. In order to
reduce the number of distance queries a BSH was implemented. The collision tests were further ac-
celerated by parallelization of the collision test for each object pair. In the first scenario (cf. Figure 5.7)
deformable and rigid bodies slide on an inclined plane. While SDFs for the rigid dragons and bunnies
was used, collisions of the deformable armadillos were exclusively tested using the distance fields of
the rigid bodies and obstacles. In the second experiment 800 rigid armadillo, bunny and dragon mod-
els were dropped onto a set of 64 poles. After simulating a time interval of 25 seconds the average
and maximum number of contacts per step were 8007 and 15050, respectively. More than 11600 con-
tacts per time step were observed in the finally resting state. The collision detection including signed
distance field queries and BSH traversal required a computation time of 158 ms on average per time
step. Here, it should be mentioned that an accurate detection based on geometric vertex-triangle and
edge-edge tests would not have been feasible in a comparable computation time on the CPU as the
scenario manages models with a total number of more than 132M triangles. In further scenarios, two
finely structured bowls as illustrated in Figure 5.9 and 5.10 were simulated. In the first bowl a mar-
ble rolls on a helical groove whereas 1000 comparably small marbles were dropped into the second
bowl. In both scenarios the contact information between the marbles and the bowls is very accurate
while the highly-detailed surfaces are flawlessly represented by the SDF. Figure 5.11 shows a marble
rolling on a marble run. Please note that the geometry is very thin and small compared to its bounding
box. The presented method was still able to construct a very accurate SDF that required only a small
amount of memory (cf. Table 5.2). Finally, a sheet of cloth covering the Stanford dragon was simulated
as depicted in Figure 5.12. The features of the dragon surface are still clearly visible when they are
silhouetted against the sheet.

Continuity Optimization

The post-processing optimization step for enforcing weak continuity was performed on an SDF of the
Stanford dragon (τ = 5 × 10−7, exponential nearness weighting θ = 20). As depicted in Figure 5.13
(left) the SDF was first generated with a moderate target error. While the discretization captures the
macroscopic shape of the underlying geometry well, especially regions with high-frequent features
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Figure 5.11: Dynamic simulation of a marble run
with subsequent armadillo bowling.

Figure 5.12: A sheet of cloth represented by 320k
triangles is dropped on the Stanford dragon. The
mesh’s characteristic features are outlined due to
the accurate SDF representation serving as colli-
sion detector.

Figure 5.13: Discretization of the Stanford dragon (approx. 5.4MB) with target error τ = 5 × 10−7

and exponential nearness weighting (θ = 20). Left: SDF with subtle artifacts due to discontinuities on
element interfaces. Right: SDF after continuity optimization with regularization parameter β = 3.

suffer from the generally discontinuous piecewise approximation. In order to improve the continuity
of the field, the SDF was optimized as explained in Section 5.4 with regularization parameter β = 3.
The SDF consisted of 1.3M coefficients and the sparse solver matrix contained 178M non-zero entries.
The construction of the matrix took 47s and the incomplete Cholesky decomposition took 58s. Both
procedures were not parallelized. The actual solve of the equation system with a conjugate gradient
solver took 44s with 88 iterations using a parallelized implementation of the matrix vector product.
The result illustrated in Fig. 5.13 (right) clearly shows that the approximation continuity is greatly
improved while the general shape and features are maintained.

Improving the continuity of the field can also be beneficial when the SDF is applied in collision
handling. The marble run scenario described in the previous paragraph was simulated using an un-
optimized but very accurately discretized SDF (cf. Table 5.2). The scenario was resimulated using a less
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h-level Query time [ns]

0 169

1 202

2 226

3 245

4 276

5 322

6 380

7 611

8 1157

(a)

p-level Query time [ns]

1 169

2 194

3 238

4 276

5 336

6 397

7 483

8 577

9 697

(b)

Table 5.1: Performance measurements. A single cell was uniformly refined using either p- or h-
adaption. The resulting discrete SDF was then queried using random samples and the average time
for a single query was computed.

accurate but optimized SDF (τ = 10−8, #cells = 22.3k, 4.36MB, β = 8, exponential nearness weighting
with θ = 20). Using this more compact but post-processed representation the scenario was reproduced
with the marble rolling smoothly until it reaches the end of the track and finally resulting in a dynamic
simulation of comparable quality.

Distance Query Performance

In order to measure the performance of queries into the novel discrete SDF, a field was randomly
sampled with several thousand points and the resulting measured values were averaged. For the
armadillo and structured bowl SDFs, this resulted in approximately 4.76×10−4 ms and 7.16×10−4 ms,
respectively. If the SDF-gradient was additionally requested, the queries took 7.34 × 10−4 ms and
7.84 × 10−4 ms on average. In order to analyze the individual effect of h- or p-refinement on the
query performance the required query time for an SDF initially consisting of a single cell with linear
polynomials that was zero to eight times h-refined or up to nine times p-refined was analyzed. The
results are depicted in Tables 5.1a and 5.1b. Thanks to the recursive form of the Legendre polynomials
(cf. Equation (5.4)) their evaluation can be accelerated by reusing redundant terms from order 0 to
order p− 1 during the distance evaluation as well as the gradient computation.

5.6 Conclusion

In this chapter, a novel method to hierarchically construct higher-order SDFs was presented. The
approach efficiently fits shifted, orthonormalized Legendre polynomials to the exact signed distance
function in a hierarchical manner. Spatial adaptivity was implemented using octree subdivision. A
new hp-decision criterion using degree-based error estimation was developed in order to steer the
adaption in the refinement process. By comparing the method to traditional purely spatially adap-
tive approaches, it was demonstrated that the criterion-controlled refinement algorithm can greatly
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improve convergence. Furthermore, a nearness weighting approach was introduced that modifies the
estimated error in order to focus the refinement on regions close to the surface of the underlying object.
Moreover, an optimization-based post-processing step was proposed, that weakly enforces continuity
over element interfaces. It was demonstrated that the method is able to produce very accurate SDFs
for complex geometries while consuming only a small amount of memory. Moreover, the SDFs were
shown to be very well-suited for the detection of contacts and collisions in physically based simula-
tions as they implicitly contain information about the penetration depth and contact normal.

The proposed technique also has limitations. In its current version the method only features
isotropic refinement. However, an anisotropic adaption strategy could significantly reduce the mem-
ory requirements while still maintaining an accurate approximation. This could potentially be realized
by using a k-d-tree for spatial refinement and axis-dependent degree adaption for p-refinement. A fun-
damental problem is that for two-dimensional objects embedded in three dimensions, such as cloth or
shells, inside and outside cannot be distinguished. For that reason the method is not applicable for
handling cloth-cloth contacts or self-intersections of cloth. Collisions between touching surfaces – a
scenario which occurs in cutting or fracture simulations – cannot easily be handled by simply dis-
cretizing the signed distance. For that reason, it should be investigated if the proposed method can be
extended to a non-manifold representation similar to the work of N. MITCHELL et al. [2015].
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Mesh Signed Distance Field

Name #Vert. #Faces Base
Grid

Constr.
Time #Cells Degree Depth ε, τ Memory Field

Armadillo 173k 346k 63 270s 71k 10−6 10.6 MB

Bunny 34.8k 69.6k 63 301s 55k 10−6 8.4 MB

Dragon 40k 80k 103 1245s 299k 10−7 46.9 MB

Hand 66.2k 132.5k 103 833s 159k 10−7 25 MB

Helix
Bowl 164.9k 329.8k 43 423s 159k 5× 10−9 34.9 MB

Marble
Run 27k 53k 43 312s 87k 5× 10−9 18.4 MB

Structured
Bowl 2.05M 4.1M 43 4121s 1.25M 5× 10−9 250 MB

Table 5.2: Construction statistics. The mesh columns show object names and the corresponding numbers of vertices and faces. The SDF columns
contain initial grid resolution, required time for construction, number of octree leaf cells, normalized histograms capturing the volume-fraction
of the domain occupied by cells of the corresponding degree or octree depth, the (enforced) target error and the final memory consumption as
well as a slice image of the SDF.
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Chapter 6

Simulation of Incompressible Fluids using
Smoothed Particle Hydrodynamics

In this chapter a novel method for the simulation of incompressible fluids based on the semi-dis-
cretization technique SPH is presented. While the concept of SPH was originally introduced to solve
astrophysical problems in open space [GINGOLD and MONAGHAN 1977] it has become an increasingly
popular method for the simulation of fluids in the fields of engineering [M. LIU and G. LIU 2010] and
computer animation [IHMSEN et al. 2014b]. In this context it is usually used to spatially discretize the
Navier-Stokes Equations (NSE) in Lagrangian coordinates. The basic idea is to use a set of particles in
combination with so-called smoothing kernel functions to discretize a continuum and all differential
operators contained in the according PDE. Most approaches for the spatial discretization of the NSE
such as the FEM, Finite Volume Method (FVM) or Finite Differences (FDs) usually discretize the space
into polyhedral meshes in Eulerian coordinates such that the mesh stays constant over time. However,
describing the NSE in Eulerian coordinates has several disadvantages as e.g., enforcing conservation
of mass becomes less trivial and as the convection term includes a non-linear differential operator.
Mesh based numerical solvers for the discretization of the NSE in Lagrangian coordinates are, how-
ever, extremely complicated because a fluid constantly undergoes heavy deformations and topological
changes. Under these circumstances the solver relies on complex remeshing operations to maintain a
meaningful discretization. In contrast, the SPH approach is inherently mesh-free in the sense that the
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continuum is represented by a set of particles in combination with so-called smoothing kernel func-
tions. With the help of these kernels the occuring differential operators can be directly discretized and
(almost) no attention has to be paid to heavy deformations and topological changes within the fluid.
Over the years the SPH concept has been widely adopted in the field of computer graphics and has
become an important technique for the efficient and robust simulation of complex visual and physical
fluid effects. The research in recent years has pushed the computational efficiency of the methods such
that we are able to simulate scenarios with highly complex fluid effects featuring millions of particles.

Most fluids we encounter in our daily life are almost incompressible. The incompressibility there-
fore implies an additional constraint in the continuum formulation as already introduced in Chapter 2.
This constraint can be formulated either on position or velocity level such that both formulations are
mathematically equivalent. However, numerical solvers suffer from a numerical drift in the position
if only the velocity-level constraint is satisfied. Similarly, the solver can become unstable if only the
position-level constraint is satisfied. Despite these issues, the vast majority of SPH based methods
for the simulation of incompressible fluids satisfies either position- or velocity-level constraint accept-
ing the implied consequences. However, the continuity equation for incompressible flow demands
to maintain a constant density and a divergence-free velocity field. This chapter proposes a combi-
nation of two novel implicit pressure solvers enforcing both a low volume compression as well as a
divergence-free velocity field. While a compression-free fluid is essential for realistic physical behav-
ior, a divergence-free velocity field drastically reduces the number of required solver iterations and
increases the stability of the simulation significantly. Thanks to the improved stability, the method
can handle larger time steps than previous approaches. This results in a substantial performance gain
since the computationally expensive neighborhood search has to be performed less frequently. The ef-
ficiency, robustness, and scalability of the method is demonstrated in a variety of complex simulations
including scenarios with millions of particles.

6.1 Introduction

In the area of computer graphics SPH is an important meshless Lagrangian approach to simulate com-
plex fluid effects. The SPH formalism allows one to efficiently compute a certain quantity associated
with a fluid particle by considering only a finite set of neighboring particles. One of the most chal-
lenging research topics in the field of SPH methods is the simulation of incompressible fluids. The fact
that most fluids we encounter in nature feature incompressible behavior, proves that enforcing incom-
pressibility is essential to produce realistic animations for a wide range of materials. Therefore, the
following sections introduce a novel Divergence-free Smoothed Particle Hydrodynamics (DFSPH) method
to simulate incompressible fluids.

In order to model incompressible fluids the model used in this work is based on the incompress-
ible, isothermal Navier-Stokes equations in Lagrangian coordinates. Let us therefore recall this PDE
introduced in Chapter 2, Equation (2.16)

Dρ

Dt
= 0 ⇔ ∇ · v = 0 (6.1)

Dv

Dt
= −1

ρ
∇p+ ν∇2v +

f

ρ
, (6.2)
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where ρ, p, ν,v and b denote density, pressure, kinematic viscosity, velocity and body force density
field, respectively. According to Equation (6.1) an incompressible fluid satisfies the divergence-free con-
dition and therefore has a divergence-free velocity field. Based on the observation that the density
must not change over time, i.e., ρ̇ = 0, and based on the continuity equation (2.8) the equivalence
stated in Equation (6.1) easily follows. Therefore, in theory, a fluid with a divergence-free velocity
field is incompressible, as it maintains constant density. However, in practice, incompressibility can-
not be guaranteed in SPH simulations by only enforcing the divergence-free condition. The numerical
time integration causes numerical errors which accumulate over time. The resulting density deviations
are not considered in the divergence-free condition and therefore a creeping volume compression can-
not be avoided. In order to avoid the numerical error to accumulate over time the second condition
ρ = const implying

ρ− ρ0 = 0

is employed. This condition will be in referred to as constant density condition. To summarize, one
can say that a position-level solver for the incompressible, isothermal Navier-Stokes equations must
ensure a divergence-free velocity field and should provide an additional stabilization to counteract
numerical errors. This stabilization can be realized by enforcing the constant density condition.

Figure 6.1: Velocity divergence comparison of IISPH (left) and DFSPH (right) in a breaking dam
simulation with 125k particles. The divergence errors are color coded, where white represents the
minimum and red is the maximum error value.

In recent years several implicit SPH solvers which compute pressure forces to counteract volume
compression were proposed. To date, the most efficient SPH pressure solvers only consider the con-
stant density condition. Since this condition solely depends on particle positions, the divergence-free
condition is generally not fulfilled (cf. Figure 6.1, left) as demanded by the continuity equation for in-
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compressible flow. A correction of velocity divergence is considered only by a few SPH approaches so
far. However, they are either comparatively slow or cannot maintain a small density error.

In this chapter a novel stable and efficient SPH method for incompressible flow is introduced.
In contrast to the vast majority of previous methods, it satisfies both the constant density and the
divergence-free condition. The method combines two pressure solver steps. The first step enforces a
divergence-free velocity field (cf. Figure 6.1, right) while the constant density condition is satisfied in a
second solver step. This combination has several advantages in SPH simulations. Firstly, the stability
of the simulation increases significantly, especially in simulations with fast moving particles. The
improved stability allows the solver to perform larger time steps than previous approaches. This yields
a considerable gain in computational performance as the neighborhood search has to be performed
less frequently. Secondly, the number of iterations required by the constant density solver decreases
significantly when a divergence-free velocity field is enforced. Finally, the divergence-free field allows
a more accurate computation of the maximum time step size as the commonly used Courant-Friedrichs-
Levy (CFL) condition depends on the maximum particle velocity.

In the last years different efficient constant density solvers have been proposed, e.g., Predictive-
Corrective Incompressible SPH (PCISPH) [SOLENTHALER and PAJAROLA 2009] or Implicit Incompressible
SPH (IISPH) [IHMSEN et al. 2014a]. Nevertheless, here a new approach is proposed that operates
analogously to the novel divergence-free solver, and therefore benefits from reusing precomputed
coefficients. The fluid simulation based on the combined solver clearly outperforms state-of-the-art
SPH methods and can be more than 20 times faster in typical scenarios.

6.2 Related Work

In this section, approaches related to the presented method will be briefly discussed. For a more
detailed discussion, I would like to refer to reader to the work of IHMSEN et al. [2014b] for SPH-based
simulation approaches.

Equation of State Based Solvers

In the pioneering work of Monaghan the first approaches to simulate fluids using SPH discretiza-
tions were proposed [MONAGHAN 1989; MONAGHAN 1992; MONAGHAN 1994]. Using an Equation
of State (EOS), deviations from a given rest density were penalized using a stiffness coefficient in or-
der to weakly enforce incompressibility. Several years later, an EOS-based approach for fluid sim-
ulation was introduced to the computer graphics community by M. MÜLLER et al. [2003] and later
extended by B. ADAMS et al. [2007] for spatially adaptive SPH discretizations. In order to restrict the
maximum compression using an EOS-based solver, BECKER and TESCHNER [2007] precomputed a
scenario-dependent stiffness coefficient. However, this may lead to stiff differential equations which
restrict the time step size for explicit integration schemes drastically.

Iterative Incompressibility Solvers Based on Splitting

An alternative strategy, often referred to as the concept of splitting, is to first discretize the Navier-
Stokes equations in time and to solve the spatial differential terms sequentially. Two of these steps
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are to compute the fluid pressure after advecting particles only based on non-pressure forces. Initially,
the concept was applied to EOS-based solvers [CHORIN 1968; BRIDSON 2008] only but soon combined
with implicit pressure solvers as discussed in the following.

SOLENTHALER and PAJAROLA [2009] developed an iterative pressure solver based on the split-
ting concept to approximately limit the maximum density error to a user-defined tolerance. Later,
the method was extended by rigid-fluid coupling [AKINCI et al. 2012] and a novel surface tension
model [AKINCI et al. 2013a]. MACKLIN and M. MÜLLER [2013] proposed Position Based Fluids (PBF) –
a similar approach that iteratively corrects particle positions to enforce incompressibility. A velocity-
level formulation using holonomic constraints based on rigid body mechanics was proposed by BODIN

et al. [2012]. However, due to numerical errors, their regularization approach and velocity-level correc-
tion, they report density errors of up to 17 %. In contrast to the discussed iterative approaches the here
presented method does not only enforce incompressibility on velocity or density level but considers
both. Another method eliminating the compression on both levels was recently proposed by KANG

and SAGONG [2014]. They extended the work of MACKLIN and M. MÜLLER [2013] by additionally
projecting the velocity field onto a the divergence-free state. However, the velocity field is not guar-
anteed to contain zero divergence after a time step as particle positions are updated subsequently to
the velocity projection. Moreover, their extension leads to a considerable overhead in comparison to
the underlying method of Macklin and Müller while the here presented method yields large speedup
factors of up to one order of magnitude, especially in case of large time steps (cf. Table 6.2).

Pressure Projection

Another popular choice to enforce incompressibility is to project the velocity field onto a divergence-
free state by solving the PPE. This method is particularly popular for mesh based discretizations of the
NSE in Eulerian coordinates [BRIDSON 2008]. A PPE derived from an approximate pressure projection
was proposed by CUMMINS and RUDMAN [1999]. They solved the resulting linear system using either
a conjugate gradient method or a multigrid approach treating the particles as finest level grid. FOSTER

and FEDKIW [2001] developed a semi-Lagrangian method where incompressibility is enforced on the
simulation grid. They counteracted mass dissipation using a level set and freely moving inertialess
particles. Further hybrid approaches using particles and a background grid were developed in the fol-
lowing years [ZHU and BRIDSON 2005; RAVEENDRAN et al. 2011; ANDO et al. 2013]. An interesting and
more elaborate approach was proposed by LOSASSO et al. [2008]. They solve the PPE on a background
grid not only to maintain zero divergence but to enforce a predefined target density. SIN et al. [2009]
constructed a Voronoi discretization of the PPE from point-samples in each step for solving. In con-
trast to the discussed approaches, the here presented method does not rely on any background grid.
For that reason it does not require to maintain memory consuming data-structures which is especially
advantageous for large scenarios.

In contrast to solve the PPE on a background grid, it may be directly solved on a meshless dis-
cretization. HU and N. ADAMS [2007] proposed an incompressible SPH-based approach for multi-
phase flows with multistep time integration. In a first halfstep the density error is eliminated us-
ing a position-altering iterative gradient descent solver. In the second halfstep, errors in velocity di-
vergence are similarly corrected. However, they applied their method exclusively to non-complex
two-dimensional scenarios of up to 14,400 particles. A local Poisson solver extending the work of
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SOLENTHALER and PAJAROLA [2009] was proposed by HE et al. [2012a]. The solver enforces both
a divergence-free velocity and constant density field. As the integration domain for the local solves
is not necessarily equal or a subset of the local kernel function support, they have to recompute the
particle neighbors. Moreover, a recomputation of particle neighborhoods is required in each solver
iteration resulting in a considerable computational effort. Compared to the method of Solenthaler and
Pajarola they are able to achieve a small speedup factor of approximately 1.5 while the here presented
approach achieves speedup factors of more than 20. IHMSEN et al. [2014a] proposed a method based
on a PPE that iteratively eliminates the density error to 0.1% or even less. However, they do not con-
sider resolving velocity divergence which leads to a large number of solver iterations compared to the
here presented method and can even cause artifacts under certain circumstances (cf. Section 6.8). Re-
cently, an incompressible particle-based approach using power-diagrams was proposed by DE GOES

et al. [2015]. In each simulation step they construct a Voronoi diagram induced by the particle positions
in order to enforce incompressibility. However, the here presented approach clearly outperforms the
method as the diagram construction is very time consuming.

6.3 SPH Discretization

The novel fluid simulator is based on the incompressible, isothermal Navier-Stokes equations intro-
duced in Section 6.1. However, in this work the viscous term on the right hand side of Equation (6.2)
is omitted. Instead the XSPH variant of SCHECHTER and BRIDSON [2012] is employed in order to
simulate low viscous fluids like water.

Equation (6.2) is discretized using the SPH concept which is introduced in the following. Equa-
tion (6.1) represents the velocity-level incompressibility conditions. The presented solver satisfies these
conditions by enforcing the divergence-free condition and the constant density condition as described
in Sections 6.5 and 6.6, respectively.

Following the standard SPH approach scalar and vector fields are approximated and rewritten in
discrete form as described in the following. Given a function f : Ω → Rn that maps a position vector
x in the problem domain Ω ⊂ R3 to a scalar or vectorial value, it can be rewritten using the Dirac delta
identity and approximated by replacing the delta distribution with a kernel function W : R+

0 → R+
0

with compact support:

A(x) =

˚

Ω

A(x∗) δ(x− x∗)dx∗

≈
˚

Dx

A(x∗) W (‖x− x∗‖, h)dx∗

=

˚

Dx

A(x∗)

ρ(x∗)
W (‖x− x∗‖, h) ρ(x∗) dx∗,

(6.3)

where h represents the smoothing length of the kernel and Dx the spherical domain around x where
W (‖x − x∗‖) > 0. In the following, the radius of the domain Dx will be referred to as support radius
r. More specifically, the kernel is chosen such that limh→0W (‖x − x∗‖, h) = δ(‖x − x∗‖) subject to
normalization

˝
Ω
W (‖x−x∗‖, h)dx∗ = 1. The integral resulting from Equation (6.3) is then discretized
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into a sum over particle positions where each particle j carries a portion of the fluid mass mj :

A(x) ≈
∑

j

mj

ρj
A(xj)W (‖x− xj‖, h).

Please note that due to the fact that the kernel function W has compact support, only a small subset
of the fluid particles located close to the evaluation point x contribute to the sum. Using efficient
algorithms to determine the neighboring particles the number of evaluations to compute the sum can
be minimized. The spatial derivative of A(x) is determined by

∇A(x) ≈
∑

j

mj

ρj
A(xj)

∂W (q, h)

∂q

∣∣∣∣
q=‖x−xj‖

x− xj
‖x− xj‖

. (6.4)

When the presented discretization is applied to the density field the formula reduces to

ρ(x) ≈
∑

j

mjW (‖x− xj‖, h).

The pressure field of a fluid is often computed using the following EOS:

pi =
kρ0

γ

((
ρi
ρ0

)γ
− 1

)
,

where ρ0 is the rest density and k and γ are stiffness parameters. In this work the parameter γ was
set to 1 which is a common choice in computer graphics applications [DESBRUN and GASCUEL 1996;
M. MÜLLER et al. 2003; IHMSEN et al. 2014b]:

pi = k(ρi − ρ0). (6.5)

The pressure field can be directly used to determine pressure forces which counteract density devia-
tions [MONAGHAN 1992]. However, a high stiffness coefficient k is required to keep the fluid suffi-
ciently incompressible leading to systems of stiff differential equations. Therefore, implicit pressure
solvers such as PCISPH [SOLENTHALER and PAJAROLA 2009] or IISPH [IHMSEN et al. 2014a] for the
simulation of incompressible fluids were developed. Such solvers typically rely on solving a linear
equation system to determine the pressure field. The implicit solve then allows a stable simulation
with larger time steps resulting in a significant performance gain.

In the following sections a novel implicit SPH approach to simulate incompressible fluids will be
presented. In contrast to previous methods it employs two solver steps: the divergence-free solver step
(cf. Section 6.5) and the constant density solver step (cf. Section 6.6). The first solve enforces a divergence-
free velocity field. Since density deviations resulting from numerical errors cannot be corrected in this
way, as discussed earlier, the second solver step eliminates these density errors by satisfying the con-
stant density condition. All in all, incompressibility and a divergence-free velocity field are enforced
as demanded by Equation (6.1). In both solver steps the respective conditions are fulfilled for each
neighborhood independently by computing a stiffness coefficient ki (cf. Equation (6.5)) and the corre-
sponding pressure forces. To obtain a global solution the solver steps process the neighboring particles
in a parallel Jacobi fashion which is a common approach [SOLENTHALER and PAJAROLA 2009; MACK-
LIN and M. MÜLLER 2013; IHMSEN et al. 2014a].

Please note that in the following subscripts will be used to simplify notation. The subscripts denote
that a function is evaluated at particle positions according to the subscript index in appearing order,
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e.g., ρi = ρ(xi) or Wij = W (‖xi − xj‖, h). If the subscript notation is moreover used in combination
with a differential operator, it denotes the derivative of the function with respect to the particle position
associated with the first index, e.g.,∇ρi = ∇ρ|x=xi

or∇Wij = ∂W (q,h)
∂q

∣∣∣
q=‖xi−xj‖

xi−xj
‖xi−xj‖ .

6.4 Simulation Step

Algorithm 6.1 DFSPH simulation step.

1: function PERFORMSIMULATIONSTEP
2: for all particles i do // init neighborhoods
3: find neighborhoods Ni(0)

4: for all particles i do // init ρi and αi
5: compute densities ρi(0)
6: compute factors αi(0)

7: while (t < tmax) do // simulation loop
8: for all particles i do
9: compute non-pressure forces Fadvi (t)

10: adapt time step size ∆t according to CFL condition
11: for all particles i do // predict velocities v∗i
12: v∗i = vi + ∆tFadv

i /mi

13: correctDensityError(α, v∗) // ρ∗ − ρ0 = 0
14: for all particles i do // update positions
15: xi(t+ ∆t) = xi(t) + ∆tv∗i
16: for all particles i do // update neighbors
17: find neighborhoods Ni(t+ ∆t)

18: for all particles i do // update ρi and αi
19: compute densities ρi(t+ ∆t)
20: compute factors αi(t+ ∆t)

21: correctDivergenceError(α, v∗) // Dρ
Dt = 0

22: for all particles i do // update velocities
23: vi(t+ ∆t) = v∗i

This section is intended to abstractly outline the simulation step. A detailed description of the
substeps is given in the following sections. The Navier-Stokes equations for incompressible fluids de-
mand that the constant density condition and the divergence-free condition are satisfied at the end of
a simulation step. In order to fulfill the first condition pressure forces are determined. These have to
be integrated twice to get the required position changes. Afterwards the pressure forces are computed
and integrated once to make the resulting velocity field divergence-free. Please note that perform-
ing the density stabilization before computing a divergence-free velocity field does not introduce any
errors as both steps are repeatedly executed in a loop.

The simulation based on the novel method is outlined in Algorithm 6.1. At the beginning of each
loop iteration all particle neighborhoods Ni are determined using compact hashing [IHMSEN et al.
2011]. Furthermore, the particle densities ρi and correction factors αi (cf. Section 6.5) are computed.
The factors αi can be used in both solver steps and only depend on the current particle positions. For
that reason they remain constant throughout the iterative process of the individual solver steps and it
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is sufficient to compute them only once in each simulation step. This reduces the computational effort
associated with the solver iterations considerably.

In the first step of the simulation loop all non-pressure forces Fadv, i.e., gravitational, surface ten-
sion and viscosity forces, are computed. Then, the time step size is adapted according to the CFL
condition [MONAGHAN 1992]

∆t ≤ 0.4
d

‖vmax‖
,

where vmax is the maximum particle velocity and where d is the particle diameter. Note that in contrast
to PCISPH [SOLENTHALER and PAJAROLA 2009] no special treatment is required to perform adaptive
time-stepping. In line 12 of the algorithm a predicted velocity v∗i is determined for each particle by
solely considering the non-pressure forces. This prediction and the precomputed factors αi are then
used by the constant density solver step to compute the pressure forces in order to correct the density
error ρ∗i −ρ0 (cf. Section 6.6) for each neighborhood. The time integration in line 15 determines the new
positions of the particles. Hence, all neighborhoods Ni, densities ρi and factors αi have to be updated.
Finally, the condition Dρi

Dt = 0 must be satisfied. This is done in line 21 where the divergence-free
solver step determines pressure forces to make the velocity field divergence-free (cf. Section 6.5). In
the last step the particle velocities are updated.

Note that the neighborhood information Ni, the densities ρi and the factors αi must be computed
only once per simulation step. These values are initialized before the simulation loop in lines 2-6 and
updated once per time step in lines 16-20. The values are not determined in the beginning of the
simulation loop as in previous methods because the solver steps are executed at different points in
time.

6.5 Divergence-Free Solver Step

The goal of the divergence-free solver step is to satisfy the condition Dρ
Dt = 0 which means that the

density must not change over time. From Equation (6.1) it follows that in this case the divergence of
the velocity field∇ · v must be zero.

In order to enforce the condition Dρi
Dt = 0 for a particle i the solver determines a set of pressure

forces which correct the divergence error in the neighborhood of the particle. The pressure force den-
sity of particle i is defined by

fpi = −∇pi. (6.6)

The pressure gradient ∇pi is determined by computing the spatial derivative of Equation (6.5) using
the SPH approach (cf. Equation (6.4)), i.e.,

∇pi = kvi∇ρi = kvi
∑

j

mj∇Wij ,

where kvi is the stiffness parameter that has to be determined. In order to compute the symmetric pres-
sure forces for each neighborhood, the force densities fpj←i which act from the particle i on its neigh-
boring particles j have to be considered. A set of symmetric pressure forces must satisfy the condition
fpi +

∑
j fpj←i = 0 which means that the forces sum up to zero which is required to conserve momen-

tum. The pressure force densities fpj←i for the neighboring particles are determined analogously to
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Equation (6.6) except that the pressure must be differentiated with respect to position xj :

fpj←i = − ∂pi
∂xj

= kvimj∇Wij . (6.7)

The current divergence error in particle i is determined using the SPH formulation of the diver-
gence IHMSEN et al. [2014b]:

Dρi
Dt

=
∑

j

mj(vi − vj)∇Wij . (6.8)

The goal of the divergence-free solver step is to compute a set of symmetric pressure forces to en-
force Dρi

Dt = 0. These pressure forces cause the following velocity changes ∆vi = ∆tfpi /ρi and
∆vj = ∆tfpj←i/ρi. Because the velocity changes that eliminate the divergence are desired, the fol-
lowing equation results:

−Dρi
Dt

= ∆t
∑

j

mj

(
fpi
ρi
−

fpj←i
ρi

)
∇Wij . (6.9)

Moreover, an equation for the stiffness parameter kvi can be deduced by using Equations (6.6) and (6.7)
in Equation (6.9), i.e.,

Dρi
Dt

= −∆t
∑

j

mj

(
fpi
ρi
−

fpj←i
ρi

)
∇Wij

=
∆t

ρi

∑

j

mj


kvi

∑

j

mj∇Wij + kvimj∇Wij


∇Wij

= kvi
∆t

ρi




∣∣∣∣∣∣
∑

j

mj∇Wij

∣∣∣∣∣∣

2

+
∑

j

|mj∇Wij |2

 .

Solving for kvi yields:

kvi =
1

∆t

Dρi
Dt
· ρi∣∣∣
∑
jmj∇Wij

∣∣∣
2

+
∑
j |mj∇Wij |2

︸ ︷︷ ︸
αi

, (6.10)

where αi is a factor that solely depends on the current particle positions. If the pressure forces are
computed using the resulting stiffness parameter kvi , the condition Dρi

Dt = 0 will be exactly fulfilled.
This means that a divergence-free velocity field in the neighborhood of particle i is obtained. In order
to enforce a globally divergence-free velocity field, the pressure forces for all particles are computed
iteratively using parallel Jacobi iterations.

If particle i has a small number of neighbors, the denominator of αi can be close to zero. There-
fore, the denominator is clamped if it gets smaller than 10−6 to keep the simulation robust. Alterna-
tively, the problem can be solved by adding a small constant to the denominator [MACKLIN and M.
MÜLLER 2013] or using a reference configuration with a prototype neighborhood [SOLENTHALER and
PAJAROLA 2009].
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Algorithm 6.2 Divergence-free solver step

1: function CORRECTDIVERGENCEERROR(α, v∗)

2: while
((

Dρ
Dt

)
avg

> ηdiv
)
∨ (iter < 1) do

3: for all particles i do // compute Dρ
Dt

4: Dρi
Dt = −ρi∇ · v∗i

5: for all particles i do // adapt velocities
6: kvi = 1

∆t
Dρi
Dt αi, kvj = 1

∆t
Dρj
Dt αj

7: v∗i := v∗i −∆t
∑
jmj

(
kvi
ρi

+
kvj
ρj

)
∇Wji

The total force fpi,total for a particle i is the sum of all pressure forces:

fpi,total =
mi

ρi
fpi +

∑

j

mj

ρj
fpi←j

= −mi

ρi
kvi
∑

j

mj∇Wij +
∑

j

mj

ρj
kvjmi∇Wji

= −mi

∑

j

mj

(
kvi
ρi

+
kvj
ρj

)
∇Wij .

Note that the resulting symmetric pressure force is equivalent to the one introduced by MONAGHAN

[1992].
In each iteration the stiffness parameters kvi depending on the factors αi have to be determined.

Fortunately, the factors can be precomputed before the iterative process as they solely depend on the
current positions which yields computationally cheap iteration steps. Note that Equation (6.10) must
be adapted for static boundary particles since in this case fpj←i = 0.

The divergence-free solver step is outlined in Algorithm 6.2. It terminates when the average density
change rate falls below the threshold ηdiv. To improve the convergence of solver step, a “warm start”
operating as explained in the following is used. The stiffness values kvi are summed up for each particle
during the iterative process. Before the divergence-free solver step in the subsequent time step starts,
line 7 is evaluated once for each particle using the resulting values.

6.6 Constant Density Solver Step

The constant density solver step minimizes the deviation ρ− ρ0 of the current density to the rest den-
sity. Previous pressure solvers like PCISPH [SOLENTHALER and PAJAROLA 2009] or IISPH [IHMSEN

et al. 2014a] analogously minimize the density deviation and can be combined with the here presented
divergence-free solver step. However, in this work a new constant density solver was developed
which works analogously to the divergence-free solver step. This has the advantage that the precom-
puted factors αi can be reused which reduces the computational effort significantly. The solver uses a
predictor-corrector scheme similar to PCISPH in order to determine particle positions for the next time
step to correct the density error. However, in contrast to PCISPH, no prototype configuration with a
filled neighborhood is precomputed to solve the system as this reduces the convergence rate.
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Algorithm 6.3 Constant density solver

1: function CORRECTDENSITYERROR(α, v∗)
2: while (ρavg − ρ0 > ηρ) ∨ (iter < 2) do
3: for all particles i do // predict density
4: compute ρ∗i
5: for all particles i do // adapt velocities
6: ki =

ρ∗i−ρ0
∆t2 αi, kj =

ρ∗j−ρ0
∆t2 αj

7: v∗i := v∗i −∆t
∑
jmj

(
ki
ρi

+
kj
ρj

)
∇Wij

The prediction of the density error ρ∗i − ρ0 is determined by integrating Equation (6.8) using an
explicit Euler scheme

ρ∗i = ρi + ∆t
Dρi
Dt

= ρi + ∆t
∑

j

mj(v
∗
i − v∗j )∇Wij .

Analogous to Equation (6.9), the forces to correct this error are computed by solving

ρ∗i − ρ0 = ∆t2
∑

j

mj

(
fpi
ρi
−

fpj←i
ρi

)
∇Wij .

The resulting stiffness parameter is determined by

ki =
1

∆t2
(ρ∗i − ρ0)αi.

Algorithm 6.3 outlines the implicit constant density solver step. Note that a warm start analogous to
the one of the divergence-free solver step is performed to reduce computation time.

6.7 Efficient Kernel Computation

SPH methods typically use kernel functions which approximate the Gaussian kernel. Sometimes dif-
ferent kernels are used to determine Wij and its gradient ∇Wij (e.g., M. MÜLLER et al. [2003]). How-
ever, in a predictor-corrector method the same kernel must be used for both. Otherwise, the prediction
and correction steps are not consistent. In the presented solver the cubic spline kernel according to the
work of MONAGHAN [1992] was used.

The Gaussian is approximated in order to obtain a kernel function with compact support. This
means the function vanishes at a finite distance which is also known as the support radius r. Such a
kernel function can be written as Wr(q(x)) with q = ‖x‖

r , where the function is non-zero for 0 ≤ q < 1.
Therefore, the kernel gradient∇Wr(q(x)) has the same compact support. As the kernel gradients must
be determined for each particle in the neighborhood of another particle during the non-pressure force
computation, the solver step iterations, and during the computation of the factors αi and βi, their
evaluation is one of the most time consuming tasks in in the simulation. However, due to the large
memory consumption it is not recommended to store the gradients of the particles when simulating
large scenes. In the following, an efficient evaluation of the kernel and its gradient based on precom-
puted lookup tables is presented. Lookup tables have already been employed in other areas to speed
up function evaluations but to the best of my knowledge they have not been used in existing SPH
based simulations.
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The generation of a lookup table for the kernel Wr is simple and can be realized by a regular sam-
pling of the smooth scalar function with compact support. However, the gradient ∇Wr is a vectorial
function and sampling this function in all three dimensions results in a higher memory consumption
and computational overhead. To circumvent this issue a scalar function g(q) can be extracted such that

∇Wr(q(x)) = x · g(q) with g(q) =
∂Wr

∂q
· 1

r‖x‖ .

This function is also a smooth scalar function with compact support which can be sampled regularly to
get a corresponding lookup table. Finally, only a single lookup and a multiplication with x is required
to compute a kernel gradient. The kernel lookup tables are easy to implement and can also be used
with other kernels and other SPH based simulation methods. Details about the sampling distance, the
performance gain and the approximation error are discussed in Section 6.8.

6.8 Results

In this section simulation results using DFSPH are presented. All timings were measured on two Intel
Xeon E5-2697 processors with 2.7 GHz, 12 cores per processor and 64 GB RAM. OpenMP was used
to parallelize the code. Boundary handling and solid-fluid coupling was realized using the method
ofAKINCI et al. [2012] and the neighborhood search using the parallel method of IHMSEN et al. [2011].
The method was moreover succesfully combined and tested with the surface tension model of BECKER

and TESCHNER [2007], AKINCI et al. [2013a] and HE et al. [2014]. However, in the experiments pre-
sented in this paper only the method of AKINCI et al. [2013a] was used. In order to simulate viscosity,
the XSPH variant of SCHECHTER and BRIDSON [2012] was employed.

A well-known issue of SPH fluid simulations is the problem of particle deficiencies at free surfaces.
These lead to an underestimation of the density and therefore to particle clustering. To alleviate the
problem, negative pressures were clamped to zero which is a common solution in computer graphics
applications, see e.g., [IHMSEN et al. 2014a]. In the performed simulations an average density error of
less than 0.01 % and a density error due to the density change rate of less than 0.1 % were enforced.
Moreover, adaptive time-stepping according to the CFL condition (cf. Section 6.4) was employed.

Performance

The performance of the novel simulation method for incompressible fluids was compared with IISPH,
PBF and PCISPH using a breaking dam scenario with 125k particles with different fixed time step
sizes. The particle radius in the simulation was 0.02 m. The results for a simulation over one second are
summarized in Table 6.1 and Table 6.2 shows the according speedup factors. Note that IHMSEN et al.
[2014a] compared the performance between PCISPH and IISPH with a similar scenario and measured
comparable results.

DFSPH enforces the constant density condition and the divergence-free condition at the same time.
Therefore, the density error is kept small during the whole simulation which leads to a significantly
lower number of iterations required by the solvers. The iteration count is further reduced by a warm
start which initializes both solvers with the sum of the stiffness values of the previous time step. In the
dam break scenario a speedup factor of approximately 3 using the warm start was measured. While

119



CHAPTER 6. SIMULATION OF INCOMPRESSIBLE FLUIDS USING SPH

DFSPH IISPH PBF PCISPH
∆t iter. solver total iter. solver total iter. solver total iter. solver total

[ms] (cd/df) [s] [s] [s] [s] [s] [s] [s] [s]

4.0 4.5/2.8 45.2 51.3 50.5 312.1 318.1 105.7 607.1 613.5 160.0 1079.1 1085.7
2.0 2.1/1.3 47.8 59.4 21.4 256.4 267.9 42.7 508.4 520.7 73.9 1021.2 1033.5
1.0 2.0/1.0 85.0 107.5 7.3 197.9 220.7 13.2 314.8 338.0 23.9 656.9 680.0
0.5 2.0/1.0 164.1 210.8 2.3 182.3 225.6 3.4 194.1 240.5 6.7 394.9 440.9

0.25 2.0/1.0 288.3 372.0 2.0 322.5 402.2 2.0 263.3 354.0 3.0 409.3 498.0

Table 6.1: Performance comparison of DFSPH, IISPH, PBF and PCISPH for a breaking dam simulation
with 125k particles using different fixed time step sizes (see Figure 6.1). The table contains the average
iteration count, the total computation time of the solvers and the total simulation time including the
neighborhood search in a simulation over one second. The best total computation times are marked
bold. The column with the average iteration count of DFSPH contains the values for the constant
density solver (cd) and the divergence-free solver (df). Note that the solver time of DFSPH is the sum
of the times needed by both solvers since they need almost the same amount of time for one iteration
step.

IISPH PBF PCISPH
∆t [ms] solver total solver total solver total

4.0 6.9 6.2 13.4 12.0 23.9 21.2
2.0 5.3 4.5 10.6 8.8 21.4 17.4
1.0 2.3 2.1 3.7 3.1 7.7 6.3
0.5 1.1 1.1 1.2 1.1 2.4 2.1

0.25 1.1 1.1 0.9 1.0 1.4 1.3

Table 6.2: Speedup factors of DFSPH in comparison to IISPH, PBF and PCISPH based on the measure-
ments in Table 6.1.

DFSPH uses a full warm start, IISPH performs best when multiplying the solution of the previous
time step with a factor of 0.5 [IHMSEN et al. 2014a]. As summarized in Table 6.2 the performed warm
start and the divergence-free velocity field in DFSPH lead to speedup factors of 6.9 in comparison to
IISPH and up to 23.9 in comparison to PCISPH for a time step size of 4 ms. There are two reasons for
this significant speedup. Firstly, in contrast to previous works, DFSPH enforces both incompressibility
conditions which increases the stability of the simulation and therefore allows one to perform larger
time steps and to apply a full warm start. Secondly, DFSPH reuses precomputed coefficients leading
to faster iterations. The constant density solver step requires only an average of 4.5 iterations while
the divergence-free solver step needed 2.8 iterations on average. The second best approach in the
experiment was IISPH which already required 50.5 iterations. For smaller time step sizes DFSPH often
used the minimum number of iterations which reduced the speedup for these step sizes. However,
in simulations with more particles, where more iterations are required, the speedup is also larger
for small step sizes. Based on the conducted experiments it can be noticed that DFSPH performs
best when a time step size is chosen so that the number of iterations ranges between 2 and 20. The
best performance of DFSPH method was obtained for larger time steps than IISPH, PBF and PCISPH
(cf. Table 6.1). The usage of larger time steps has the advantage that the computationally expensive
neighborhood search has to be executed less frequently.

In Section 6.7 a kernel optimization based on lookup tables was introduced. This optimization
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Figure 6.2: Breaking dam scenario with 2.3 mil-
lion fluid particles and a complex boundary
including two dragon models and a moving
wall. The velocity field is linearly color coded:
white represents the maximum and blue the
minimum velocity.

Figure 6.3: Whitewater flowing in a canyon. The
scene contains 5 million fluid particles, 40 million
boundary particles and the fluid is subject to a
maximum volume compression of 0.01%.

Scenario neigh.
α Fadv const. div.- Totalsearch density free

dragons 0.4 0.1 0.3 0.7 0.6 2.1
canyon 1.2 0.2 0.7 1.9 1.3 5.3

Table 6.3: Performance of the dam break (cf. Figure 6.2) and of the canyon simulation (cf. Figure 6.3).
The table shows the average times per simulation step (in seconds) required by the neighborhood
search, the computation of α, the computation of all non-pressure forces Fadv, the constant density
solver step and the divergence-free solver step.

yields a performance gain of approximately 30 % in the breaking dam scenario. In this performance
test the kernel function and its gradient were sampled at 1000 points. For this sampling a maximum lo-
cal error of less than 10−11 m−3 was measured. The implementation of the kernel optimization is very
simple and the error is negligible, hence, the optimization is a useful extension for SPH simulations.

In order to demonstrate the performance of the presented method in more complex scenarios, an-
other breaking dam simulation with a large number of fluid particles and a boundary consisting of
two dragon models and a moving wall was performed (cf. Figure 6.2). In this scenario 2.3 million fluid
particles and 0.7 million boundary particles were used. As a second example, 5 million fluid particles
flowing through a canyon consisting of 40 million boundary particles were simulated (cf. Figure 6.3).
Table 6.3 shows the average computation times of the most important steps in Algorithm 6.1 for both
scenarios.

Memory Requirements

The memory requirements of the presented method are low. DFSPH only needs to store the scalar
value αi per particle which is then used in both solver steps. An additional scalar value has to be stored
per particle for each solver step if a warm start is employed. Therefore, DFSPH requires considerably
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Figure 6.4: Stability comparison of DFSPH with PCISPH. The same color coding as in Figure 6.2 is
used. A cube with 27k fluid particles is falling on the ground with a high velocity. Instabilities occur
in the PCISPH simulation (left) and several fluid particles pass through the boundary. DFSPH without
activating the divergence-free solver shows artifacts (middle) while DFSPH with activated divergence-
free solver stays stable.

less memory than IISPH which needs seven scalar values for the solver and one for the warm start.
This is especially an advantage when simulating large scale scenarios with millions of particles.

Stability

In this section it is demonstrated that current state-of-the-art SPH pressure solvers which do not en-
force a divergence-free velocity field explicitly cannot satisfy the condition Dρ

Dt = 0 as demanded by the
continuity equation. However, this can cause instabilities, especially when fluid particles are subject
to high velocities.

The velocity divergence error of DFSPH and IISPH using a breaking dam scenario with 125k
particles was compared (cf. Figure 6.1). The results demonstrate that DFSPH is able to maintain a
divergence-free velocity field in contrast to approaches which do not enforce a divergence-free condi-
tion explicitly. In comparison the maximum local divergence error of IISPH was 108.3 s−1 while the
error of DFSPH was only 1.9 s−1.

Large divergence errors can lead to instabilities as demonstrated in the following comparisons with
PCISPH and IISPH. First, a cube of 27k fast moving particles falling on the ground was simulated in
order to show how this influences the stability (cf. Figure 6.4). As previously mentioned, adaptive time-
stepping driven by the CFL condition was used. In this experiment PCISPH, DFSPH with deactivated
divergence-free solver step and DFSPH with activated divergence-free solver step were compared.
A stable simulation was only possible with DFSPH when both solver steps were used. Without the
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Figure 6.5: Top of a fluid pillar with 80k particles. The divergence errors are color coded: red is the
maximum and white is the minimum error. Large divergence errors in the IISPH simulation (left) lead
to jumping artifacts. The DFSPH approach (right) maintains a divergence-free velocity field which
allows a stable simulation without artifacts.

divergence-free solver step artifacts occurred in the DFSPH simulation. PCISPH even became totally
instable due to the impact and several fluid particles penetrated the boundary. A stable simulation
with PCISPH was only possible when using a time step size which was clearly below the one suggested
by the CFL condition which reduced the overall performance significantly.

To compare DFSPH with IISPH a resting fluid pillar model with 80k fluid particles was simulated
(cf. Figure 6.5). Here, the time step size was restricted to a maximum of 5 ms because the CFL con-
dition allows arbitrary large values for the resting particles. In the DFSPH simulation the maximum
local divergence error was 2.5 s−1 which allowed a stable simulation without artifacts. In the IISPH
simulation large divergence errors of up to 72.9 s−1 occurred. In combination with the large time steps
this led to visual artifacts: fluid particles jumped up due to the errors (cf. Figure 6.5, left). By decreasing
the time step size significantly this problem can be solved. However, this reduces the overall perfor-
mance considerably. In summary, the comparisons show that enforcing a divergence-free velocity field
improves the stability of the simulation significantly and allows to use larger time steps.

The next two experiments demonstrate the stability of DFSPH in simulations with dynamic bound-
aries and in large scale scenarios. In the first simulation several rigid bodies fall in a breaking dam
scenario with 330k particles (cf. Figure 6.6). The Bullet physics library COUMANS [2015] was used to
simulate the rigid bodies. In the second experiment 2.4 million fast moving particles hit a complex
boundary (cf. Figure 6.7). In both scenarios DFSPH allowed a stable simulation with the maximum
possible time step size guided by the CFL condition.
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Figure 6.6: Two-way coupling of several dy-
namic rigid bodies with 330k fluid particles.

Figure 6.7: A temple is flooded with water. The
scene contains 2.4 million fast moving fluid parti-
cles and a complex boundary consisting of 6 mil-
lion particles.

6.9 Conclusion

In this chapter a novel implicit SPH approach to simulate incompressible fluids was introduced. In
contrast to previous state-of-the-art SPH methods for incompressible fluids the solver employs two
distinct steps to enforce constant density and a divergence-free condition. Enforcing both conditions
improves the stability and the performance of the simulation. The method handles scenarios with mil-
lions of fast moving particles robustly and is considerably faster than current state-of-the-art methods.

Since DFSPH is based on the same principles as other SPH pressure solvers, it has similar limita-
tions. The density near free surfaces is underestimated due to particle deficiencies. This may lead to
unnatural particle clustering artifacts. The problem was alleviated by clamping negative pressures to
zero which is a common solution in computer graphics applications. However, a more sophisticated
solution for this problem was presented by SCHECHTER and BRIDSON [2012]. They prevent particle
deficiencies by generating ghost particles near the free surface to improve the physical behavior of the
fluid. Avoiding pressure clamping by using ghost particles would also allow one to use linear equation
system solvers with better convergence rates such as the conjugate gradient method.
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Chapter 7

Density Maps for Improved SPH Boundary
Handling

In this chapter, the novel concept of density maps for robust handling of static and rigid dynamic
boundaries in fluid simulations based on SPH is presented. In contrast to the vast majority of existing
approaches the presented method uses an implicit discretization for a continuous extension of the
density field throughout solid boundaries. Using the novel representation accuracy of density and
density gradient evaluations in boundary regions are enhanced and the computational efficiency is
improved using efficient lookups into the density maps. A density map is generated in a preprocessing
step and discretizes the density contribution in the boundary’s near-field. In consequence of the high
regularity of the continuous boundary density field, cubic Lagrange polynomials on a narrow-band
structure of a regular grid are employed for discretization. This strategy not only removes the necessity
to sample boundary surfaces with particles, but also decouples the particle size from the number of
sample points required to represent the boundary. Moreover, it solves the ever-present problem of
particle deficiencies near the boundary. Several comparisons presented in the following show that the
representation is more accurate than particle samplings, especially for smooth curved boundaries. It
is further demonstrated that the approach robustly handles scenarios with highly complex boundaries
and even outperforms one of the most recent sampling based techniques.
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7.1 Introduction

As discussed in the previous chapter, fluid simulations based on SPH have become increasingly pop-
ular in recent years. While a lot of work has been put into the development of novel models for the
simulation of complex materials and efficient pressure solvers to enforce incompressibility, the general
concept of discretizing boundary geometries using particle samplings remained largely untouched
and is the state-of-the-art.

In this paper the concept of density maps, a novel model and discretization based on SDFs to rep-
resent boundary geometries and to impose boundary conditions with friction, is introduced. Starting
from a continuous representation extending the fluid’s density field into the boundary geometry, the
function is discretized using cubic polynomials on a sparse grid without any dependence on particle
sampling. The main advantage of the approach is that the higher-order approximation is able to very
accurately represent curved boundary surfaces. This results in very smooth trajectories of particles
in contact where traditional particle sampled boundaries produce artifacts in the dynamic movement
as shown in the later presented results. Even in the rare case of particles strongly penetrating the
boundary, our implicit representation throughout the boundary enables one to correctly recover non-
penetration. An additional advantage of the approach is that the discretization can be precomputed
such that the underlying integrals can be evaluated with high accuracy. Then, the discretized density
map can be queried very efficiently during runtime using a simple interpolation function of constant
complexity. Besides the efficiency improvement of the density lookups, the performance of neighbor-
hood searches is greatly improved due to the vanished requirement to account for boundary particles.
Additionally, the approach resolves the well-known problem of particle deficiencies in the boundary
near-field while no particle sampling of the boundary is required. Furthermore, an approach for solid-
fluid coupling with a novel Coulomb friction model is presented. As the density maps are based on
SDFs, contact normals and friction tangents using the gradient of the map can be easily computed and
the SDFs can even be reused for collision handling of dynamic objects.

The presented results show that the approach seamlessly integrates into existing SPH pressure
solvers. On the basis of several comparisons with particle-based boundary representations, the ad-
vantages of the implicit representation are discussed. It will be further demonstrated that the novel
formulation is able to produce physically plausible results in scenarios where particle sampled bound-
aries produce artifacts. The results, moreover, show that the method is able to robustly handle highly
complex scenarios resulting in realistic dynamics.

7.2 Related Work

In recent years, a variety of SPH-based methods to simulate complex fluid phenomena and solid-fluid
interaction has been developed. In this section, existing methods related to the presented approach
will be discussed. For a general overview over SPH based fluid simulations I would like to refer the
reader to the state-of-the-art report of IHMSEN et al. [2014b].

In an early work, MONAGHAN [1992] developed the first approach to simulate free surface flows
with SPH using state equations. Later, DESBRUN and GASCUEL [1996] introduced the concept of SPH
for the simulation of deformables and M. MÜLLER et al. [2003] for fluids to the computer graphics
community. A spatially adaptive variant following the same approach was presented by B. ADAMS
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et al. [2007]. In order to simulate incompressible fluids, BECKER and TESCHNER [2007] proposed an
equation of state based approach to guarantee a small maximum compression by precomputation of
a suitable stiffness coefficient. A similar method for weakly compressible fluids based on a truly im-
plicit time integration was later proposed by WEILER et al. [2016]. In the following years, many implicit
solvers were developed to enforce incompressibility, either by demanding a divergence-free velocity
field or by counteracting particle compression through position corrections or impulses. RAVEEN-
DRAN et al. [2011] proposed a hybrid method using SPH and a background grid. While the fluid
was represented by particles, a divergence-free velocity field was enforced on the grid. Similarly,
a divergence-free velocity field was enforced without the requirement of a background grid using
a meshless discretization of the pressure Poisson equation on the particles by HE et al. [2012a]. In
contrast to enforce incompressibility, SOLENTHALER and PAJAROLA [2009] use a predictive-corrective
scheme that avoids compression on the position level. A similar, position based approach was pre-
sented by MACKLIN and M. MÜLLER [2013]. Later, IHMSEN et al. [2014a] discretize the pressure Pois-
son equation to iteratively correct the density deviations, also enforcing incompressibility on the po-
sition level. TAKAHASHI et al. [2016] follow a similar concept proposing a hybrid SPH solver with
interface handling for boundary conditions in the pressure Poisson equation. In contrast to either
enforcing a divergence-free velocity field or counteracting compression based on particle positions,
solvers satisfying both conditions were proposed, e.g., by KANG and SAGONG [2014] and BENDER

and KOSCHIER [2017]. In a recent work of DE GOES et al. [2015], a particle based method enforcing
incompressibility based on Voronoi diagrams was presented.

Throughout the years, several works extending the existing solvers and modeling even more com-
plex physical phenomena such as highly viscous materials [TAKAHASHI et al. 2015; PEER et al. 2015],
multi-phase fluids and mixture models [SOLENTHALER and PAJAROLA 2008; REN et al. 2014] or sur-
face tension and adhesion [AKINCI et al. 2013a] were proposed. Furthermore, a typical problem of
traditional SPH discretizations is the particle deficiency near free surfaces. Therefore, SCHECHTER

and BRIDSON [2012] presented an approach using ghost particles near the free surface while HE et al.
[2014] introduced a method that modifies the internal pressure force and used an air pressure model
to maintain stability throughout the simulation.

In order to handle static and dynamic solid boundaries traditional approaches sample the bound-
ary surface using the concept of boundary particles [MONAGHAN 1994]. Furthermore, specialized
boundary kernel functions are frequently used during the computation of boundary pressure forces
as introduced by BECKER and TESCHNER [2007]. In contrast to counteracting boundary penetrations
using forces, BECKER et al. [2009] proposed a predictor-corrector scheme for boundary handling. How-
ever, the method suffers from particle stacking artifacts near the boundary. In order to solve the prob-
lem, IHMSEN et al. [2010] presented a similar method that results in smoother density distributions by
accounting for the fluid pressure near the boundary. A further improved variant of particle sampled
boundaries for two-way coupling was proposed by AKINCI et al. [2012]. They additionally compute
normalized pseudo masses for the boundary particles to account for non-uniform sampling patterns.
A staggered particle approach was proposed by HE et al. [2012b]. They introduce auxiliary particles
to enforce the desired boundary conditions during a pressure projection on a divergence-free velocity
field on the staggered structure. Also adaptive sampling approaches for two-way coupling of fluids
with deformable solids were developed over the years [M. MÜLLER et al. 2004b; YANG et al. 2012;
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AKINCI et al. 2013b].
Eventually, all previously discussed approaches have one thing in common. They all discretize

solid boundaries using particles which has the following consequences. Particle samplings of smooth
surfaces are only moderately smooth and often introduce a certain noise due to the ‘bumpy‘ patterns.
These irregularities bias the dynamics of the fluid and cause an undesired friction effect which can
also be interpreted as artificial viscosity. This effect will be demonstrated in the results section of
this chapter. Furthermore, boundary particles produce a considerable computational overhead during
neighborhood searches, force computations and pressure solves. In contrast, the novel concept of
density maps is able to represent smooth surfaces very accurately using higher-order polynomials and
improves the efficiency in neighborhood search algorithms and force computations.

Also approaches that avoid the use of particle samplings for boundary handling and two-way cou-
pling were proposed. HARADA et al. [2007a] and HARADA et al. [2007b] present methods for static
boundary handling. They construct a particle sampling for a planar example boundary and sample
the boundary’s density contribution dependent on the distance of a proxy fluid particle. They further
construct an SDF for the boundary geometry and access the sampling using distance queries dur-
ing runtime. However, the approach does not correctly account for non-planar boundaries. BODIN

et al. [2012] developed a fluid solver that enforces boundary conditions using unilateral constraints.
However, their approach eventually results in a Mixed Linear Complementarity Problem (MLCP) which
is hard to solve and computationally intensive as discussed by ERLEBEN [2013]. In order to couple
fluids with shells and cloth, HUBER et al. [2015] detect contacts using a continuous collision detection
with the polygonal surfaces and use impulses and forces to counteract penetrations. In the field of
mechanical engineering, KULASEGARAM et al. [2004] introduced a renormalization factor to improve
the SPH approximation close to the boundary. The factor encodes the overlapping volume of kernel
support and boundary domain. Similar gradient correction terms for weakly compressible fluids were
introduced by FERRAND et al. [2013] for two-dimensional and by MAYRHOFER et al. [2015] for three-
dimensional domains. The renormalization approach was later adopted by FUJISAWA and MIURA

[2015] in the field of computer graphics. They represent boundaries using triangular meshes and com-
pute the renormalization factors during runtime. While they avoid the requirement to sample the
boundary geometry with particles, they report of a significant drop in performance due to the factor
computation. Even worse, for larger numbers of triangles the computational effort increases resulting
in a significantly worse performance compared to sampling approaches. A semi-analytic approach
that extends the density field into the boundary was proposed by MONACO et al. [2011]. While they
solve the radial portion of the occurring volume integrals analytically, they have to perform a numer-
ical integration over the remaining dimensions during runtime. Very recently, a Moving Least-Squares
(MLS) based approach was proposed by BAND et al. [2017]. They identify planar regions in a particle
sampled boundary and fit a plane into the region using MLS. This improves the density estimate and
normal computation resulting in a smoother representation. Unfortunately, their approach does not
easily generalize to arbitrary boundary shapes.

In contrast to the discussed approaches, the here presented method precomputes an accurate im-
plicit representation of an extended boundary density field for arbitrary boundary geometries. Con-
sequently, the boundary density and density gradient contributing to a fluid particle can be efficiently
accessed during runtime by performing only a single query into the density map.
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7.3 Governing Equations and Standard SPH Discretization

As also discussed in the previous chapter, the dynamic behavior of a wide range of fluids can be
modelled using the incompressible Navier-Stokes equations

Dρ

Dt
= 0 ⇔ ∇ · v = 0 (7.1)

Dv

Dt
= −1

ρ
∇p+ ν∇2v +

f

ρ
, (7.2)

where ρ, t,v, p, ν and f stand for fluid density, time, velocity, pressure, kinematic viscosity and specific
external forces, respectively. While the incompressibility condition is represented by Equation (7.1),
Equation (7.2) describes momentum conservation. An analytical solution to these partial differential
equations with arbitrary boundary conditions is unknown. Therefore, the equations have to be dis-
cretized in order to compute a numerical solution.

As already introduced in Chapter 6, a popular method for the spatial discretization of the problem
is the SPH formalism. Following the standard approach scalar and vector fields are approximated and
rewritten in discrete form as described in the following.

Let us recall the function smoothing of the prior to particle discretization of the SPH formalism (cf.
6.3) given a function f : Ω→ Rn:

f(x) ≈
˚

Dx

f(x∗)

ρ(x∗)
W (‖x− x∗‖, h) ρ(x∗)dx∗︸ ︷︷ ︸

dm

, (7.3)

Following the standard approach this integral convolution is discretized into a particle sampling:

f(x) ≈
∑

j

mj

ρj
f(xj)W (‖x− xj‖, h).

When the presented discretization is applied to the density field, the formula reduces to

ρ(x) ≈
∑

j

mjW (‖x− xj‖, h). (7.4)

In order to account for solid boundaries the boundary surface is usually sampled using so-called
boundary particles which serve as a continuous extension of the density field. Due to the field ex-
tension the density of a particle approaching the boundary will increase until the resulting pressure
forces stop the particle from penetrating the boundary. Then Equation (7.4) is extended by a second
sum over the contributing density of the boundary particles k:

ρ(x) ≈
∑

j

mjW (‖x− xj‖, h) +
∑

k

m̃kW̃ (‖x− xk‖, h).

Often specialized boundary kernels W̃ or special pseudo-masses m̃k are used as presented by BECKER

and TESCHNER [2007] and AKINCI et al. [2012], respectively. Again, only boundary particles in the
close neighborhood of the query point x are considered due to the compact supports of W and W̃ .
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r

ΩB

Dx ∩ ΩB

∂Dx

Figure 7.1: Domains required to generate the
density map for a point located in a particle rep-
resented by a black dot. While the red area de-
picts the boundary domain ΩB the blue area rep-
resents the integration domain for the evaluation
of the boundary density value at the particle po-
sition.

Discussion Representing boundary regions with
particle samplings has several disadvantages. The
irregularity of the sampling patterns introduces a
certain noise in the dynamics of the fluid. This also
causes undesired friction between boundary and
fluid which can be physically interpreted as artifi-
cial viscosity. These effects are discussed and illus-
trated in Section 7.6. In order to alleviate the effects
of irregularities, the boundaries can be oversam-
pled. This, however, results in a considerable com-
putational overhead in neighborhood search algo-
rithms and during pressure solves and force com-
putations. Further, the detail with which smooth
surfaces can be represented is dependent on the
particle size so the number of required boundary
particles increases when the size of the fluid parti-
cles is decreased.

7.4 Continuous Boundary Model

In this section the novel concept of density maps
will be introduced. Recalling the continuous approximation described in Equation (7.3), the integral
is additively decomposed by splitting the integration domain into boundary domain ΩB and fluid
domain Dx \ ΩB (cf. Figure 7.1) such that the density function can be rewritten as

ρ(x) = ρF (x) + ρcB(x),

where ρF denotes the density contribution of the fluid and ρcB the density contribution of the bound-
ary. The superscript c moreover denotes that were dealing with a continuous function prior to discre-
tization. Subsequently, the integral is discretized over the fluid domain into the usual sum resulting
in

ρF (x) =

˚

Dx\ΩB

W (‖x− x∗‖, h)dm ≈
∑

j

mjW (‖x− xj‖, h).

The basis for the boundary model is a virtual extension of the density field into the solid boundaries.
Given a boundary object B the boundary density contribution in continuous form ρcB is defined by

ρcB(x) =

˚

Dx∩ΩB

γ(Φ(x∗)) W (‖x− x∗‖, h)dx∗ (7.5)

Φ(x) = s(x) inf
x∗∈∂B

‖x− x∗‖ with s(x) =




−1 if x ∈ B
+1 otherwise

ΩB = supp(γ ◦ Φ) =
{
x ∈ R3 | γ(Φ(x)) 6= 0

}
.
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Here γ : R → R+ is a (non-strictly) monotonically decreasing function which yields higher values
for higher penetration depth. The signed distance represented by Φ : R3 → R is then passed as an
argument to γ. From a physical point of view this means that if a particle approaches or penetrates
the boundary surface, the basis density function γ yields increasing non-negative values. Finally,
the resulting density field is modelled as convolution of γ with the SPH kernel W in order to fit the
smoothed discretization. While a choice of γ as constant function is generally possible, the boundary’s
basis density field was modeled as continuous linear function

γ(x) =




ρ0

(
1− x

r

)
if x ≤ r

0 otherwise.
(7.6)

The function’s domain is chosen slightly larger than the boundary object B and equals the rest density
ρ0 on the boundary surface. The reason for choosing a linear function is twofold. Firstly, a piecewise
constant choice of γ results in a discontinuity that makes the integral in Equation (7.5) much harder
to evaluate numerically. Secondly, in the rare case that a particle strongly penetrates the boundary,
the linear model enforces that the gradient direction of the function still points outwards in order to
resolve the penetration. Obviously, the support of γ(Φ) on the domain ΩB is enlarged by the kernel
support radius r. The choice for defining γ on this extended boundary domain ΩB rather than directly
on B is motivated by practical considerations. As the particles are visualized using spheres or using a
reconstructed polygonal surface with a certain offset, this buffer ensures that the fluid never visually
penetrates the boundary surface. Also an interesting observation is that the sampling based boundary
handling approach proposed by AKINCI et al. [2012] can be interpreted as particle discretization of the
here presented model with γ(s) = ρ0.

The final question that remains is: How can one accurately and efficiently compute the function
values of ρcB described by the integral in Equation (7.5)? Not only does this involve computing a
numerical solution to an integral but also evaluating the signed distance to the boundary’s surface.
Generally, an evaluation during runtime, e.g., using regular sampling, quadrature or Monte-Carlo
sampling methods, is possible. However, an accurate numerical computation of the integral can be
computationally costly as this may require a large number of function evaluations. Therefore, one
either has to sacrifice accuracy for computational efficiency or vice versa.

A first step in the course of avoiding the runtime computation is the following important observa-
tion. For static boundaries ρcB is, in terms of runtime variables, solely dependent on the query point
x. This also holds for rigid dynamic boundaries as the function can simply be evaluated at RT (x− c),
where R and c represent the rotation of the body and its center of mass’ translation, respectively. This
means the correct density can be computed using a simple linear-affine transformation of the query
point x into the rigid body’s reference space and, thus, the contributing boundary density can be
evaluated at any point in the boundary’s reference space prior to the simulation. Consequently, this
renders the possibility to precompute a highly accurate representation of the boundary density field.
This will also improve the performance of the simulation due to the very efficient boundary density
queries during runtime.
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7.5 Discrete Density Maps

The purpose of this section is to develop a suitable discretization and construction algorithm for Equa-
tion (7.5). The suggestion to discretize the function using cubic polynomials of Serendipity type on
a regular hexahedral grid is well justified for the following reasons. As discussed by M. JONES et al.
[2006] signed distance functions are continuous everywhere. Further, the convolution of the bound-
ary’s basis density field γ(Φ(x)) with the (usually at least cubic polynomial) SPH kernel enforces a cer-
tain smoothness of ρcB . The regularity of high-order polynomials is therefore well-suited to discretize
the smooth function with high accuracy. An obvious choice for C0 continuous polynomial discretiza-
tion is a tensor-product space of Lagrange polynomials. Due to the regular nodal pattern implied by
the basis, the approximation can be easily constructed by simply sampling the underlying field at the
node pattern. However, in three dimensions a single cubic element requires 64 nodes compared to an
8-node linear element. In order to reduce the number of nodes, cubic Serendipity type elements can be
employed. As discussed by ARNOLD and AWANOU [2011], this element type only requires 32 nodes
and is able to maintain C0 continuity while it has the same approximation order. A quantitative evalu-
ation for an example boundary density field that demonstrates the superiority of the cubic Serendipity
element compared to a sampling approach with trilinear interpolation is presented and discussed in
Section 7.6. For a general introduction and discussion on Serendipity type elements for discretization,
I would like to refer the reader to the works of ZIENKIEWICZ et al. [2013] and ARNOLD and AWANOU

[2011].

Figure 7.2: Cubic 32-node element of Serendipity
type in isoparametric space.

As previously discussed, evaluations of the
boundary density can be computationally intensive
since they involve the evaluation of a signed dis-
tance to a possibly high-resolution polygonal sur-
face and numerical integration to compute the con-
volution with the kernel function. In order to opti-
mize evaluations the discretization process is split
into three major steps:

1. Discretization of the signed distance function
Φ,

2. Identification of grid cells close to the bound-
ary resulting in a sparse, narrow-band pat-
tern,

3. Discretization of the boundary density field
ρcB on the sparse grid.

I would like to stress the fact that all steps are part of the pre-processing leading to very efficient
lookups in the course of the simulation. In the following paragraphs, each step will be described in
detail.
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Signed Distance Field Generation

In general, a signed distance field is either represented by analytic implicit functions or can be gener-
ated from explicit geometric representations. Bas-ed on the fact that complex geometries are usually
represented by polygonal meshes, the algorithm to discretize the induced SDF using cubic Lagrange
polynomials on a regular hexahedral grid will be described in the following.

Under the assumption that the input meshes are two-manifold, the unsigned distance to the mesh is
computed and then a sign is determined using the pseudo-normal test proposed by BÆRENTZEN and
AANÆS [2005]. In order to improve the performance of the signed distance computation, a bounding
sphere hierarchy is constructed beforehand and traversed accordingly. As discussed earlier, isopara-
metric shape functions of Serendipity type with 32 nodes (cf. Figure 7.2) are employed and the exact
signed distance is sampled on each node in world space. Then, the values Φi = Φ(xi), corresponding
to their sample points on the grid, can be used to cubically interpolate values within each cell using
the according shape functions, i.e.,

• Corner node (ξi = ±1, ηi = ±1, ζi = ±1) :

Ni =
1

64
(1 + ξiξ)(1 + ηiη)(1 + ζiζ)

[
9(ξ2 + η2 + ζ2)− 19

]
(7.7)

• Representative edge node (ξi = ± 1
3 , ηi = ±1, ζi = ±1) :

Ni =
9

64
(1− ξ2)(1 + 9ξiξ)(1 + ηiη)(1 + ζiζ), (7.8)

where ξi = (ξi, ηi, ζi)
T represents the nodal positions in isoparametric space [ZIENKIEWICZ et al.

2013]. Here, Equation (7.8) describes the shape functions on a representative edge that is aligned
in ξ-direction. The remaining edge nodes and according shape functions can easily be determined
by permutation of coefficients ξi, ηi and ζi and coordinates ξ, η and ζ. Finally, the interpolation is
described by

Φ(x) ≈
32∑

i=1

Ni(T (x))Φi

T (x) = [diag(b− a)]
−1

(2x− (b + a)) ,

where a and b are the hexahedral cell’s minimum and maximum bound vectors and where T : R3 →
R3 maps a coordinate in world space to a coordinate in the element’s isoparametric space.

Identification of Sparse Structures

As discussed earlier, the density field vanishes according to Equations (7.5) and (7.6) for signed dis-
tances of Φ > 2r. Moreover, it can be assumed that particles will not penetrate the boundary more
than three times their smoothing length as a heuristic. In fact, in none of the conducted experiments a
particle penetrated the boundary at all. Consequently, the discretized distance field is used to identify
unnecessarily stored cells. This greatly reduces the amount of memory required to store the discretized
fields and avoids unnecessary interpolations in far away cells. Based on the previous observation and
assumption all cells that do not meet the following criterion are discarded:





keep cell if 2r > Φmin ∧ Φmax > −r
discard cell otherwise,
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where Φmin and Φmax are the minimum and maximum signed distance from the cell to the boundary
surface. Although no particles penetrated the boundary in all conducted experiments, the criterion
was formulated in a way such that cells located within the radius r around the zero contour are kept
as a safety buffer.

Boundary Density Field Evaluation and Discretization

Figure 7.3: Two-dimensional slice of a three-
dimensional density map. The boundary den-
sity contribution is visualized using a linear
scale from white to red. The black contour rep-
resents the object surface intersecting the visual-
ized slice.

In the third and final step, the boundary density
function given by Equation (7.5) is evaluated at
each node in the remaining sparse structure. As
this is all part of the precomputation, the numeri-
cal integral evaluations can be performed with very
high accuracy. In this work an adaptive Gauss-
Kronrod quadrature algorithm was implemented
that efficiently estimates the residual during com-
putation using a nested quadrature rule [PIESSENS

and BRANDERS 1974]. However, the usage of any
quadrature method such as Monte-Carlo or naive
sampling etc. is possible. After determination of all
nodal coefficients, values at arbitrary positions can
be interpolated within each cell using the functions
described by Equations (7.7) and (7.8). A graph-
ical illustration of a density map for the Stanford
dragon is given in Figure 7.3. Please note that this
image visualizes a 2D slice of a 3D density map. Therefore, also points located in close proximity to
the surface in depth direction contribute to the field, e.g., in the region around the tip of the dragons
tail.

Incorporation into Existing Pressure Solvers

Many types of fluids we encounter in daily life are nearly incompressible. Therefore, many implicit
pressure solvers for the simulation of incompressible fluids were proposed in recent years, e.g., [SO-
LENTHALER and PAJAROLA 2009; MACKLIN and M. MÜLLER 2013; IHMSEN et al. 2014a; BENDER and
KOSCHIER 2017]. In this section it will be explained how the concept of density maps can be incorpo-
rated into existing solvers.

Density and Density Gradient

All pressure solvers typically have one thing in common. They all rely on density and density gradient
evaluations in order to project the velocities onto a divergence-free field and/or to project the particle
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positions onto an uncompressed state. Both quantities can then be evaluated using

ρcB(x) ≈ ρB(x) =

32∑

i=1

Ni(T (x))ρB,i

∇xρ
c
B |x ≈ ∇xρB |x =

32∑

i=1

∇Ni|ξ=T (x) ρB,i,

where ρB,i = ρcB(ξi) are the boundary density values, evaluated at the grid nodes of the hexahedral
cell containing x.

Density Advection

The mentioned pressure solvers further rely on a density evaluation after an advection based on a can-
didate velocity field. Solvers of predictive-corrective nature, e.g., [SOLENTHALER and PAJAROLA 2009;
MACKLIN and M. MÜLLER 2013], actually perform the advection to get a candidate position for each
particle and reevaluate the density. However, they often ignore the fact that the previously computed
neighborhood information is invalidated by the advection and avoid recomputing the neighborhood
information. Besides the problem that the neighborhood information for fluid particles is invalidated
this also holds for boundary particles in boundary sampling based approaches. Fortunately, the here
presented approach results in the exact result of the boundary density contribution after advections as
the method does not rely on boundary particles.

Other pressure solvers [IHMSEN et al. 2014a; BENDER and KOSCHIER 2017] approximate the ad-
vected density at a particle i using a Taylor series of first order in time

ρ(xi(t+ ∆t)) ≈ ρ(xi(t)) +
Dρ(xi(t))

Dt
∆t.

Generally, this strategy is very convenient as it circumvents the problem of invalidated neighborhood
information at the expense of a loss in accuracy due to the first order approximation. However, when
density maps are used, an actual advection of the boundary density contribution is both computation-
ally cheap and very accurate. Therefore, the estimation is reformulated by splitting the density into
fluid and boundary density

ρ(xi(t+ ∆t)) = ρF (xi(t+ ∆t)) + ρB(xi(t+ ∆t))

≈ ρF (xi(t)) +
DρF (xi(t))

Dt
∆t+ ρB(xi(t+ ∆t)).

When ρB(xi(t+ ∆t)) has to be evaluated for a particle i, the particle is simply advected in a prediction
step and the density map is accessed yielding the desired result. If rigid dynamic boundaries are
involved, one has also to account for their movement. In order to do so, the position and orientation of
the body at time t + ∆t is computed in the prediction step by time integration prior to the evaluation
of ρB(xi(t+ ∆t)).

Two-way Coupling with Dynamic Boundaries and Friction

In the course of the simulation, the fluid interacts with dynamic boundaries exerting forces on the
fluid and vice-versa. While the influence of the rigid bodies on the fluid comes naturally due to their
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movement and spatially changing position of their underlying density maps, it must be additionally
accounted for the forces exerted by the fluid on the rigid objects. Following Newton’s third law, the
negative force that the boundary exerted on the particle is simply applied on the dynamic boundary
object in order to ensure conservation of momentum. Finally, the force a particle i exerts on a rigid
object B at the point of contact is

fB←i = mi
pi
ρ2
i

∇xiρB |xi .

Friction

Usually fluid friction is modeled as viscous force for energy dissipation near the boundary [BECKER

and TESCHNER 2007; AKINCI et al. 2012]. In this case, however, the friction force is not necessarily
acting tangential to the boundary surface. Therefore, a friction model inspired by Coulomb friction
using the density map information is introduced in order to apply forces acting exactly tangential to
the boundary surface. The friction force counteracting the slip of a particle i is then defined by

f i,f = −µmi
pi
ρ2
i

‖∇xiρB‖ ti

with tangent vector ti = ∆vi − (∆vi · ni)ni and normal vector ni = ∇xiρB/‖∇xiρB‖, where µ > 0

is the friction coefficient and ∆vi = vi − vB is the relative velocity between the fluid particle and the
boundary. For a dynamic rigid body with velocity v and angular velocity ω the boundary velocity is
determined by vB = v + (ω × (xB − c)), where xB denotes the point of contact. However, in order to
avoid that a particle changes its tangential direction due to f i,f , the following definition of the friction
force is used:

f ′i,f =





f i,f if − ∆t
mi

f i,f · ti < ∆vi · ti
−mi∆t (∆vi · ti)ti otherwise.

Thanks to the implicit boundary representation, the density map’s gradient to compute the force can
be efficiently reused. Analogously to the application of pressure forces on the dynamic boundaries,
the negative friction force is applied on the dynamic object in contact.

7.6 Results and Discussion

For the experiments in this section the novel boundary handling was integrated into two state-of-the-
art SPH methods: DFSPH [BENDER and KOSCHIER 2017] and IISPH [IHMSEN et al. 2014a], and the
the cubic spline kernel [MONAGHAN 1992] was used in all simulations. Following the suggestion of
the corresponding authors an average compression of less than 0.01 % and a divergence-error of less
than 0.1 % (only DFSPH) was enforced. Moreover, the parallel method of IHMSEN et al. [2011] to com-
pute particle neighborhood information and XSPH to account for viscosity [SCHECHTER and BRIDSON

2012] was employed. For the simulation of rigid bodies the open-source library PositionBasedDynam-
ics [BENDER 2017] was integrated into the simulator and the generated sparse SDFs were reused for
the purpose of collision detection. All measurements in this section were performed on two Intel Xeon
E5-2697 processors with 2.7 GHz, 12 cores per processor and 64GB RAM.
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Figure 7.4: Trajectory of a single fluid particle flowing down an inclined plane. The used particle
sampling with the sliding particle is depicted in the lower left corner.

Comparisons with Particle Sampled Boundaries

The behavior and performance of the novel boundary handling method was compared with the sam-
pling based technique of AKINCI et al. [2012]. The first experiments demonstrate that density maps
can accurately represent boundary surfaces while sampling based approaches may lead to artifacts
and bias the resulting dynamics. The particle boundaries were generated using the Poisson-disk sam-
pling algorithm with blue noise properties as described by CORSINI et al. [2012]. Naturally, other
sampling algorithms can be used instead. Nevertheless, the general concept of particle sampling in
three dimensions is inextricably linked to the irregularities in the boundary representation.

A single fluid particle was dropped on an inclined plane. Then, the particle trajectories resulting
from boundary handling with the presented method and with the particle based boundary handling
approach of AKINCI et al. [2012] were compared. The trajectories of the fluid particle are illustrated
in Figure 7.4. The graphs clearly show that the particle jumps several times for the particle-sampled
boundary representation while the here presented method lets the particle follow a smooth trajectory.

In a similar scenario depicted in Figure 7.5 an inclined plane was sampled in three different reso-
lutions. While the boundary particles had a kernel support radius of r = 0.8 the planes were sampled
with sampling distances 0.2, 0.1 and 0.05, respectively. The fourth plane was discretized using the
density map approach with cell size 0.2. Then, a grid of fluid particles is dropped on each individual
plane such that the particles do not influence each other due to the incompressibility condition being
initially fulfilled. The trajectories of the fluid particles sliding on the sampled boundary are strongly
biased resulting in a chaotic movement (cf. Figure 7.5a). In the case of a moderately or even strongly
oversampled boundary the effect is alleviated. However, the irregularity of the sampling still consid-
erably influences the particle dynamics (cf. Figures 7.5b and 7.5c). Finally, using the novel density map
representation the particles slide down the slope as expected (cf. Figure 7.5d). I would further like to
point out that dense samplings lead to a larger number of particles in each particle neighborhood. This
again leads to a significant computational overhead in the neighborhood search.
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(a) Standard sampling with sampling distance 0.2
and ~69k boundary particles.

(b) Dense sampling with sampling distance 0.1 and
~286k boundary particles.

(c) Very dense sampling with sampling distance
0.05 and ~1.14M boundary particles.

(d) Density map.

Figure 7.5: A grid of particles slides down an inclined plane. The plane was either discretized with
particles or using the density map approach. The novel method maintains the grid structure while the
boundary samplings bias the particle trajectories.

In a third and final comparison a fluid (r = 0.2) is trapped inside a spherical boundary with radius
3. Additionally, the boundary is rotating along the x-axis with constant angular velocity while the con-
tact between fluid and boundary is frictionless. Again, a particle sampled boundary representation
was compared with the density map approach with 1003 grid cells. Due to the rotational invariance
of the boundary geometry the rotation of the sphere should not influence the fluid. As illustrated in
Figure 7.6 the density map perfectly fulfills this expectation while the fluid inside the particle based
boundary never rests, because of oscillations induced by the uneven boundary. Even worse, some-
times particles started to jump due to the irregularity of the sampling.

Complex Scenarios

A breaking dam scenario using IISPH was simulated with 2.1 million particles in a box with rounded
corners and 25 static Stanford armadillos as obstacles in the first scenario (cf. Figure 7.7). The density
map of each armadillo was discretized by 100×150×100 cells. However, the simulation required only
one instance of the discretization as it was reused for all instances of the object. The result shows that
the method is able to robustly handle large scenarios with millions of particles.

In the second scenario the performance of a fluid simulation using density maps was compared
to the method of AKINCI et al. [2012] using DFSPH. A breaking dam scenario with a static Stanford
dragon as obstacle was employed (cf. Figure 7.8). The fluid consisted of 211k particles while the obsta-
cle was either sampled using 586k particles or discretized into 200× 160× 100 cells. The average time
step using the method of Akinci et al. took ~355ms of which the neighborhood search took ~57ms on
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Figure 7.6: Comparison of frictionless fluid simulations inside rotating spheres with sampled (left) and
implicit boundary (right). The sampling pattern is partially illustrated in the left image. Independent
of the resolution, the particles never rest due to the irregularity of the boundary while the fluid handled
by the implicit boundary rests perfectly.

Figure 7.7: Breaking dam scenario consisting of
2.1 million fluid particles and 25 armadillos as
static obstacles in a box.

Figure 7.8: Benchmark scenario with a dragon
obstacle.

average. A simulation using the novel method outperformed the previous one resulting in an average
time step of ~241ms with ~33ms for the neighborhood search. On the basis of these results, a speed-
up of factor approximately 1.5 was achieved. Moreover, the lack of boundary particles in the novel
approach sped up the neighborhood search by a factor of approximately 2.

In a further experiment, three water wheels driven by 790k fluid particles using DFSPH were sim-
ulated where the wheels were discretized using 160 × 160 × 64 cells (cf. Figure 7.9). The wheels were
constrained using hinge joints resulting in a complex mechanical scenario. The result shows how the
two-way coupling correctly accelerates the wheels resulting in a steady and realistic movement.

In the fourth scenario illustrated in Figure 7.10, a breaking dam scenario with 45 dynamic rigid
objects of different shapes and 710k fluid particles was simulated using DFSPH without friction. The
result demonstrates that the presented method greatly deals with several floating objects, interacting
and colliding with each other while being in contact with the fluid.
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Figure 7.9: Three water
wheels driven by 790k fluid
particles.

Figure 7.10: Breaking dam scenario with 45 dynamic rigid bodies
interacting with 710k fluid particles.

The sixth experiment was simulated using IISPH and shows how three hollow spheres containing
rubber ducks and fluids consisting of 510k particles in total with different friction coefficients of µ = 0

(blue), µ = 250 (green) and µ = 500 (red) roll in a half-pipe. Please note that the same friction coeffi-
cient for contacts between the duck and the sphere was used in all three simulations. The blue fluid
remains mostly on the ground of the sphere and does not react to its rotation. In contrast, the green
fluid gets influenced by the inner surface of the hollow sphere following its rotation. The red fluid also
shows the mentioned effect and even flips the rubber duck on its back after a few seconds. Another
physically meaningful effect is that the rolling movement of the spheres containing the frictional fluids
slows down earlier due to the energy dissipation.

In the final scene a ball floating on water (ρ0 = 1000) was simulated. The ball initially had a density
of 100. In the course of the simulation the density of the ball was doubled every three seconds. As
illustrated in Figure 7.12 the ball initially lightly floats on the fluid surface. The gradually increased
density lets the floating height decrease. When the density finally exceeds the rest density of the fluid,
the ball sinks to the ground, as expected.

Linear vs. Cubic Density Maps To demonstrate the benefit of using cubic polynomials of Serendipity
type instead of regular sampling with trilinear interpolation, a high-resolution reference solution for
a circular boundary with radius 1 on a two-dimensional domain for particle support radius r = 0.1

was computed. Two discretizations of the function were generated. One using regular sampling and
the other one using the cubic polynomials. Here, it is important to mention that approximately the
same number of nodes was used in both grids. For the regular sampling a grid of 101 × 101 cells
inheriting 10404 nodes was used while the cubic field was constructed for a grid of 45 × 45 cells with
10396 nodes. In order to evaluate the quality of the discretizations the distance to the reference solution
relative to the reference density ε = |ρB − ρcB |/ρ0 was determined. A plot of the error functions for
both discretizations is depicted in Figure 7.13. Further, the average error for the regular sampling was
1.06 × 10−2. The average error for the cubic field was 3.04 × 10−3 and therefore nearly one order of
magnitude lower than the error of the linear discretization.
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Figure 7.11: Hollow spheres with rubber ducks and 510k fluid particles are rolling in a half-pipe with
different friction coefficients: µ = 0 (blue), µ = 250 (green) and µ = 500 (red).

7.7 Conclusion

In this chapter the novel concept of density maps was presented; a method to simulate static and
dynamic boundaries with friction in SPH simulations. Based on signed distance information, a con-
tinuous formulation that extends the fluid’s density throughout the boundary was introduced. The
function was then discretized using cubic polynomials on a sparse hexahedral grid in a precomputa-
tion step. This higher-order representation is able to very accurately represent curved surfaces. Even
in cases of strong boundary penetrations, the involved particles can be correctly recovered. Moreover,
the evaluation of the boundary density contribution using the interpolation function of the grid cells
is computationally very efficient compared to approaches based on particle sampled boundaries. The
presented results demonstrated that the method is more accurate and produces no artifacts compared
to sampling based techniques. It also maintains stability even in highly complex scenarios and outper-
forms one of the most recent sampling based approaches.

Like every other method the approach has some limitations. Models with high frequency or sharp
features are smoothed out due to the cubic polynomials. Therefore, using an adaptive discretization
method in the spirit of [KOSCHIER et al. 2017b] could be beneficial. Another limitation is that the den-
sity maps cannot be precomputed for deformable objects, so further research on possibilites to perform
updates is required. Also, no-slip boundary conditions were not considered in this work. However,
these conditions can potentially be imposed by extending the velocity field into the boundary as de-
scribed by MONACO et al. [2011].
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ρ = 100 ρ = 800 ρ = 1600

Figure 7.12: Solid ball with time-varying density interacts with water (ρ0 = 1000).
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Figure 7.13: Error plots of piecewise linear (left) and cubic (right) density maps for a two-dimensional
circular boundary with radius 1.0, smoothing length h = 0.1 and reference density ρ0 = 1000. The col-
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Chapter 8

Concluding Remarks

In this thesis, novel techniques for the physically based simulation of solids and fluids with special
consideration of interfaces and boundaries were presented. This chapter summarizes the main contri-
butions and provides an outlook for future research directions.

8.1 Summary

The numerical simulation of countless physical phenomena requires the representation and incorpo-
ration of interface and boundary geometries. These interface descriptions can represent boundary
surfaces of solid objects, layers in composite materials, domain boundaries in fluid simulations, cuts,
tears, and cracks in solids etc. Consequently, this thesis dealt with the numerical simulation of interface
phenomena and was organized into three parts.

Cutting and Fracture

In Part I, techniques for the simulation of deformable solids with crack interfaces for modeling cutting
and fracture were presented. Firstly, a novel method for the physically based simulation of brittle frac-
ture using an adaptive tetrahedral discretization was proposed. The produced results demonstrate that
the algorithm can produce realistic, detailed crack patterns, even when a coarse initial discretization
is employed. The method includes a novel adaptive and reversible mesh refinement technique that
allows to efficiently improve the quality of stress analyses in order to accurately locate crack origins.
In this way, highly detailed cracks can be generated at moderate costs while additional refinement
along the fracture surfaces produces visually appealing crack surfaces. Secondly, a novel approach
for the simulation of complex cutting of three-dimensional deformable solids with fully implicit time
integration was presented. Building on the concept of basis enrichment using the XFEM, deformable
objects can be dissected without the requirement to alter the mesh. Following this strategy the ex-
plicitly represented cut surface can be captured implicitly in the discretization. In contrast to many
existing approaches, even fine-structural cuts can be simulated resulting in a physically meaningful
behavior by accurately accounting for integrals over discontinuous integrands while the number of
additional degrees of freedom is kept to a minimum. The results demonstrate that the method is able
to handle highly complex cut surfaces.

Implicit Boundary and Interface Representations

In Part II an adaptive higher-order representation for the discretization of complex signed distance
functions describing boundary surfaces of volumetric objects was presented. Higher-order polynomi-
als were efficiently fit to the input function by exploiting the properties of a shifted orthonormalized
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function basis. Then, the initial discretization defined on a regular grid was iteratively refined using
spatial subdivision and using adaptions of the polynomial basis’ degree. The conducted experiments
showed that the proposed method greatly surpasses existing discretization approaches in accuracy
while keeping the memory effort low. Moreover, it was demonstrated that the constructed discrete
SDFs are well-suited for the purpose of collision detection in physically-based simulations; they are
efficiently queryable and provide all required information to resolve a collision, i.e., penetration depth
and contact normal.

SPH Fluid Simulation with Implicit Boundary Handling

Part III presented methods to simulate incompressible fluids with a novel boundary handling tech-
nique using SPH discretizations. A novel pressure solver that enforces two incompressibility condi-
tions was proposed. The first solver step ensures that a constant density field is maintained throughout
the fluid. The second solver step further enforces a divergence-free velocity field. It was demonstrated
that enforcing the two conditions improves both stability and performance of the simulation. Con-
sequently, the method even outperforms the most recent implicit SPH pressure solvers. Besides the
novel implicit pressure solver, an approach to handle non-penetration boundary conditions using the
novel concept of density maps was presented. Based on the signed distance function of a given do-
main border, a continuous formulation that extends the fluid’s density throughout the boundary was
formulated. The function was then discretized using cubic polynomials on a sparse hexahedral grid
in a precomputation step. This higher-order representation is able to very accurately represent curved
surfaces. The presented results demonstrate that the method is more accurate and produces no arti-
facts compared to sampling based techniques. It moreover maintains stability even in highly complex
scenarios and outperforms one of the most recent sampling based approaches.

8.2 Outlook

The presented thesis corroborates the important role of interface phenomena in the field of physics
based simulation in computer graphics. Potential directions for future work in this topic are manifold
and important open problems and ideas will be discussed in the following.

In the previous chapters, explicit and implicit representations for the geometry of interfaces and
boundaries were presented. In many cases explicit representations in form of meshes are avoided
in order to circumvent the complexity of generating high-quality meshes or remeshing. Therefore,
people often rather opt for implicit representations on structured grids. While a promising approach
for describing the geometry of a physical interface using an implicit adaptive higher-order represen-
tation on structured grids was presented in this thesis, further efforts should be made to improve
discrete implicit representations. In order to accurately represent sharp features using state-of-the-art
approaches, strong subdivision is inevitable to capture the features to sufficient accuracy. The reason
for this requirement lies in the fact that smooth polynomials are not particularly well-suited to capture
functions that are locally non-differentiable. It would therefore be highly beneficial to either find a
better suited function basis for discretization or to store additional information on the grid in order to
capture the function ‘kinks’ using a considerably smaller number of cells. Another problem is that the
generation of implicit representations is often computationally intensive and for that reason cannot be
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performed during runtime in interactive applications. However, many applications require the inter-
face geometry to change, e.g., to represent the surface of deformable objects or to capture the evolution
of fluid interfaces or free surfaces. The development of novel techniques to potentially perform local
fast updates of precomputed discretizations would be beneficial.

Besides improving implicit interface representations, challenges concerning numerical methods for
simulating interface phenomena that account for effects implied by a given interface have to be em-
braced. Especially, in finite element simulations interfaces are often used to describe the layer between
two different interacting materials. This can be the layer separating two fluids, e.g., water and air, two
different solid materials, e.g., skin and flesh, or a homogeneous material intersected by a cut. Due to
the nature of the finite element discretizations, integrals over the given interface modeling a flux be-
tween each individual side or integrals over intersected cells to determine mass and stiffness matrices
or certain field quantities have to be numerically evaluated. As this integrand arising in interface prob-
lems is often locally non-smooth or even singular, advanced techniques for the numerical evaluation
of these integrals should be developed. A method to construct quadrature rules for the evaluation of
integrals with piecewise continuous polynomial integrands to simulate cutting was presented in this
thesis. Nevertheless, further development of methodologies for quadrature rule construction could
open up a plethora of new possibilities to simulate even more complex physical phenomena or to
drastically improve existing techniques in accuracy and/or performance. An interesting idea would
be to move completely away from interface and boundary surface aligned discretizations. This would
shift the complexity in the FE discretization process away from mesh generation towards numerical
integral evaluation of intersected or partially filled cells. In this way arbitrarily shaped domains could
be captured using (hierarchical) structured grids that are remarkably well-suited for implementations
on highly parallel computer architectures, e.g., multicore processors, clusters and GPUs. Moreover, the
implementation of spatially adaptive approaches is more or less trivial on grid-like structures.

Finally, I would like to discuss a more general goal associated with physical simulation in the field
of computer graphics. All methods presented in this thesis deal with the synthesis of physical or at
least physically plausible motion, deformation, and interaction of solids and fluids. One can not neces-
sarily expect to find quantitative (or even qualitative) compliance of simulations with real experiments.
In contrast, the main goal of numerical simulations in mechanical engineering is to quantitatively an-
alyze mechanical problems in order to accurately predict a certain behavior or to understand certain
physical phenomena. There seems to be a gap between the two related research fields. While analyses
in mechanical engineering often focus on computing highly accurate numerical solutions to very spe-
cific complicated problems to get an exhaustive understanding of the mechanical behavior, numerical
methods in the field of computer graphics aim to provide efficient and extremely robust simulations
modeling highly complex mechanical effects in order to create a believable but not necessarily physi-
cally accurate or even meaningful mechanical behavior. Methods for digital fabrication are on the rise
and recent advances in capturing (non-rigid) motion of solids from videos are substantial. Therefore,
there seems to be a high demand for simulation techniques targeted towards qualitative predictions
and analyses of an object’s mechanical behavior. An example would be to make qualitative predic-
tions of the deformation behavior of fabricated objects in order to optimize fabricated structures for
certain applications. Another example would be to use video captured deformations of a solid object
in arbitrary scenarios in order to predict its behavior in other situations or to synthesize new motions
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with the same object by solving the inverse problem through numerical simulation. The develop-
ment of techniques suitable for the numerical simulation of such problems that are robust enough to
simulate general and highly complex scenarios, efficient enough to acquire results in acceptable time
constraints, but sufficiently accurate to make qualitative statements regarding material properties and
dynamic behavior, poses a great challenge for future research.
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