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ÉCOLE DOCTORALE IAEM LORRAINE

Abstract

Doctorat de l’Université de Lorraine

Controllable Shape Synthesis for Digital Fabrication

by Jérémie Dumas

The main goal of this thesis is to propose methods to synthesize shapes in a
controllable manner, with the purpose of being fabricated. As 3D printers grow
more accessible than ever, modeling software must now take into account fabrication
constraints posed by additive manufacturing technologies. Consequently, efficient
algorithms need to be devised to model the complex shapes that can be created
through 3D printing. We develop algorithms for by-example shape synthesis that
consider the physical behavior of the structure to fabricate. All the contributions of
this thesis focus on the problem of generating complex shapes that follow geometric
constraints and structural objectives.

In a first time, we focus on dealing with fabrication constraints, and propose a
method for synthesizing efficient support structures that are well-suited for filament
printers. In a second time, we take into account appearance control, and develop new
by-example synthesis methods that mixes in a meaningful manner criteria on the
appearance of the synthesized shapes, and constraints on their mechanical behavior.
Finally, we present a highly scalable method to control the elastic properties of
printed structures. We draw inspiration from procedural texture synthesis methods,
and propose an efficient algorithm to synthesize printable microstructures with
controlled elastic properties.

Keywords: 3D Printing, Fabrication Constraints, Shape Synthesis, Modeling, By-
Example Synthesis, Procedural Texturing, Topology Optimization.
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Résumé

Doctorat de l’Université de Lorraine

Synthèse de formes contrôlable pour la fabrication digitale

par Jérémie Dumas

L’objet principal de cette thèse est de proposer des méthodes pour la synthèse de
formes qui soient contrôlables et permettent d’imprimer les résultats obtenus. Les
imprimantes 3D étant désormais plus faciles d’accès que jamais, les logiciels de
modélisation doivent maintenant prendre en compte les contraintes de fabrication
imposées par les technologies de fabrication additives. En conséquence, des algo-
rithmes efficaces doivent être développés afin de modéliser les formes complexes
qui peuvent être créées par impression 3D. Nous développons des algorithmes
pour la synthèse de formes par l’exemple qui prennent en compte le comportement
mécanique des structures devant être fabriquées. Toutes les contributions de cette
thèse s’intéressent au problème de génération de formes complexes sous contraintes
géométriques et objectifs structurels.

Dans un premier temps, nous nous intéressons à la gestion des contraintes de
fabrication, et proposons une méthode pour synthétiser des structures de support
efficaces qui sont bien adaptées aux imprimantes à filament. Dans un deuxième
temps, nous prenons en compte le contrôle de l’apparence, et développons de
nouvelles méthodes pour la synthèse par l’exemple qui mélangent astucieusement
des critères sur visuels, et des contraintes sur le comportement mécanique des objets.
Pour finir, nous présentons une méthode passant bien à l’échelle, afin de contrôler les
propriétés élastiques des structures imprimées. Nous nous inspirons des méthodes
de synthèse de texture procédurales, et proposons un algorithme efficace pour
synthétiser des microstructures imprimables et contrôler leurs propriétés élastiques.

Mots-clefs : Impression 3D, Contraintes de fabrication, Synthèse de formes, Modé-
lisation, Synthèse par l’exemple, Texturation procédural, Optimisation topologique.
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Résumé long

Introduction

L’objet principal de cette thèse est de proposer des méthodes pour la synthèse de
formes qui soient contrôlables et permettent d’imprimer les résultats obtenus. Les
imprimantes 3D étant désormais plus faciles d’accès que jamais, les logiciels de
modélisation doivent maintenant prendre en compte les contraintes de fabrication
imposées par les technologies de fabrication additives. En conséquence, des algo-
rithmes efficaces doivent être développés afin de modéliser les formes complexes
qui peuvent être créées par impression 3D.

Nous développons des algorithmes pour la synthèse de formes par l’exemple qui
prennent en compte le comportement mécanique des structures à fabriquer. Toutes
les contributions de cette thèse s’intéressent au problème de la génération de formes
complexes sous contraintes géométriques et objectifs structurels.

Dans un premier temps, nous présentons au Chapitre 2 les différents travaux en
rapport avec les thèmes développés dans cette thèse. Notamment, sont présentées :
les différentes technologies de fabrication additive, les techniques de modélisa-
tion d’objets autour de l’impression 3D, les méthodes de synthèse de contenu par
l’exemple (image ou modèles 3D), la modélisation de structures de remplissages
et de microstructures pour l’impression 3D et enfin les méthodes de conception
optimale de structures fort répandues dans le domaine de l’ingénierie mécanique.

Synthèse de formes et contraintes de fabrication

Au Chapitre 3, nous nous intéressons à la gestion des contraintes de fabrication et
proposons une méthode pour synthétiser des structures de support efficaces qui
sont bien adaptées aux imprimantes à filament.

La Fabrication par Fil Fondu (FFF) désigne le procédé de fabrication d’objets 3D
à partir de filaments de plastiques fondus. Le plastique chaud sort de la buse et
fusionne avec le morceau directement en dessous, ajoutant une couche de matière à
l’objet en train de s’imprimer. Cependant, le filament peut être déposé uniquement
par dessus une surface existante. De fait, les surplombs nécessitent d’être imprimés
avec une structure de support jetable, qui vient supporter temporairement les fils de
plastique, qui autrement se mettraient à pendre dans le vide.
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Les techniques existantes pour la génération de supports se classent en deux caté-
gories : la première permet de réaliser des impressions de manière extrêmement
fiable en remplissant le dessous d’un objet par une structure dense, aux dépens
d’une augmentation de la quantité de matière utilisée et du temps d’impression. La
seconde catégorie génère une fine structure hiérarchique se connectant à la surface
en un nombre limité de points. Cela gâche moins de matière, aux dépens de la
fiabilité : l’objet peut devenir instable, la structure elle-même peut être difficile à
imprimer et la qualité de surface sous l’objet est dégradée. L’utilisateur doit alors
corriger la structure et ses paramètres pour chaque nouveau modèle à imprimer.

Nous proposons d’exploiter la capacité des imprimantes FFF à imprimer des ponts au
dessus du vide. Un pont étant toujours supporté à ses deux extrémités par des piliers,
ils sont à la fois plus résistants et plus stables qu’une structure d’arbre hiérarchique.
Notre technique commence par sélectionner les points à supporter en fonction des
surplombs et de la stabilité des pièces au cours du processus d’impression. Elle
optimise ensuite une structure d’échafaudage imprimable qui comprend à la fois des
ponts horizontaux et des piliers verticaux, afin de supporter les points nécessaires.
Le résultat est une technique de génération de support automatique utilisant peu
de matière, tout en garantissant une bonne qualité de surface et stabilité durant le
processus d’impression.

Synthèse de formes et contraintes sur l’apparence

Au Chapitre 4, nous prenons en compte le contrôle de l’apparence et développons de
nouvelles méthodes pour la synthèse par l’exemple qui mélangent astucieusement
des critères visuels et des contraintes sur le comportement mécanique des objets.

Il existe plusieurs techniques pour synthétiser automatiquement des images 2D
ressemblant à une texture exemple donnée en entrée. La plupart de ces approches
consiste à optimiser une nouvelle image afin que les voisinages des couleurs dans
la sortie correspondent à ceux de l’entrée, au travers des différentes échelles. Dans
la Section 4.1, nous revisitons la synthèse de texture par l’exemple dans le cadre de
la fabrication additive. Notre but est de générer non seulement des couleurs, mais
également une structure le long d’une surface de sortie : étant donné un exemple
indiquant les pixels solides et les pixels vides, nous générons un motif similaire le long
de la surface de sortie. La difficulté principale est de garantir que le motif produit
est non seulement formé d’une seule composante connexe, mais également qu’il est
suffisamment solide d’un point de vue structurel.

Pour parvenir à cette fin, nous proposons une nouvelle formulation de synthèse
de texture sur surface à partir d’exemple, qui fonctionne directement sur une fine
couche de voxels autour de la surface. Il est alors possible de mettre à jour le motif
localement et efficacement, ce qui permet à notre optimiseur structurel d’effectuer
des changements qui améliorent la rigidité globale du motif. Nous utilisons cette
technique dans un schéma itératif qui optimise alternativement l’apparence et la
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solidité de la structure. Nous prenons en compte les contraintes de fabrication ainsi
qu’une description fournie par l’utilisateur des forces extérieures auxquelles le
modèle devra résister.

Nos résultats exploitent pleinement les possibilités de la fabrication additive en
permettant aux utilisateurs de créer des formes complexes le long de surfaces. Ces
structures sont sophistiquées, mais restent semblables aux exemples fournis en
entrée, fournissant un outil de modélisation accessible à un utilisateur occasionnel.

Dans la Section 4.2, nous nous intéressons plus en détail au problème de combiner
l’optimisation topologique et la synthèse de texture. Le domaine de l’optimisation
topologique s’intéresse à la synthèse de formes avec objectifs structurels, comme
par exemple obtenir la forme la plus rigide possible étant donné une certaine
quantité de matière. Au-delà de l’étude des structures optimales, ces méthodes
constituent des outils de conception de plus en plus populaires, car elles produisent
automatiquement des structures possédant des propriétés physiques attrayantes,
une tâche difficile à réaliser à la main même pour des dessinateurs expérimentés.
Cependant, il n’existe pas de manière simple de contrôler l’apparence des objets
ainsi générés.

Nous proposons d’optimiser des formes en considérant à la fois leurs propriétés
structurelles et leur apparence, cette dernière étant contrôlée par un motif d’exemple
fourni par l’utilisateur. Ces deux objectifs sont difficiles à combiner, car le caractère
optimal d’une structure définit entièrement sa forme, ne laissant aucun degré de
liberté pour contrôler l’apparence. Nous proposons une nouvelle formulation, où
l’apparence est optimisée comme objectif, tandis que les propriétés structurelles sont
considérées comme des contraintes. Cela produit des structures avec une rigidité
suffisante tout en laissant une marge de manœuvre suffisante pour que l’apparence
de la structure finale ressemble au motif donné en entrée.

Notre approche génère des formes rigides en utilisant une quantité de matière spé-
cifiée, tout en respectant des contraintes optionnelles comme des trous, des zones
solides, des points d’attache et des forces externes appliquées au système. L’appa-
rence est définie par des images d’exemple, ce qui rend notre technique accessible
à un utilisateur inexpérimenté. Nous illustrons l’utilisation de notre méthode dans
le contexte de la fabrication en utilisant une découpeuse laser pour confectionner
divers objets physiques à partir des formes optimisées automatiquement.

La Section 4.3 traite du problème de l’optimisation jointe de la structure et de
l’apparence sur des structures composées d’éléments discrets, dont les formes sont
prédéfinies et qui constituent alors des agrégats de géométries.

Les agrégats de géométries composés de volumes répétitifs sont omniprésents dans
la nature comme dans les objets fabriqués. Un important effort de recherche est
mené afin de modéliser, calculer un rendu réaliste, ou animer des agrégats de
géométries ayant une apparence visuelle et un comportement dynamique bien
précis. Cependant, optimiser les propriétés mécaniques de ces agrégats à des fins de
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fabrication tout en fournissant un contrôle intuitif sur leur apparence visuelle reste
un problème difficile.

Nous présentons une méthode pour créer des agrégats de géométries qui sont à la
fois mécaniquement solides pour la fabrication et visuellement fidèles à des exemples
spécifiés par un utilisateur. Notre principale observation est que de tels agrégats
contiennent souvent suffisamment de répétitions qui peuvent être optimisées afin
de respecter à la fois les critères visuels et mécaniques sans nécessiter de supports
additionnels. Nous visons à produire des résultats volumiques contenant à la fois
des éléments discrets et continus.

Microstructures et contrôle des propriétés élastiques

Enfin, le Chapitre 5 présente une méthode passant bien à l’échelle, afin de contrôler
les propriétés élastiques des structures imprimées. Nous nous inspirons des mé-
thodes de synthèse de texture procédurales et proposons un algorithme efficace pour
synthétiser des microstructures imprimables et contrôler leurs propriétés élastiques.

Les microstructures à l’échelle de dixièmes de microns affectent les propriétés phy-
siques des objets, les rendant plus légers ou plus flexibles. Alors que ces structures
sont difficiles à produire selon des procédés traditionnels, les techniques de fabri-
cation additive nous permettent désormais de produire physiquement de telles
microstructures à des coûts peu élevés.

Dans la Section 5.1, nous proposons d’étudier des microstructures procédurales
et apériodiques inspirées de mousses à cellules ouvertes issues de diagrammes de
Voronoi. L’absence de régularité permet, via une approche simple, de faire varier
graduellement la géométrie de la mousse — et donc ses propriétés mécaniques — au
niveau de la surface et à l’intérieur d’un objet cible. Plutôt que d’avoir recours à un
procédé d’optimisation globale, les microstructures sont générées directement afin
d’exhiber des propriétés élastiques bien précises. L’évaluation implicite est semblable
aux textures procédurales en infographie et s’adapte localement afin de suivre le
champ d’élasticité donné en entrée. Cela permet de générer des structures très
détaillées dans des objets de grande taille sans avoir à produire une représentation
explicite — maillage ou voxels — de la géométrie finale : les structures sont créées à
la volée et chaque couche de l’objet peut être envoyée directement à l’imprimante.

Nous étudions le comportement élastique de ces microstructures et fournissons une
description complète de la procédure pour les générer. Nous expliquons comment
déterminer les paramètres géométriques de ces microstructures en fonction de
l’élasticité désirée et évaluons le résultat sur des échantillons imprimés en 3D.
Enfin, nous appliquons notre approche à la fabrication d’objets dont l’élasticité varie
spatialement et décrivons un modèle implicite pour réaliser une armature le long de
la surface de l’objet afin de connecter les microstructures intérieures sans transitions.
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Chapter 1

Introduction

Computer graphics is the branch of computer science concerned with representing,
modeling and visualizing the world — be it real or imaginary. In half a century,
recent developments in computer graphics have considerably impacted animation
and movie industries, video games, and interactive design, by producing ever
more realistic content. While the discipline itself is fairly recent, earliest examples
of computer graphics applications can be traced back to half a century ago, e.g.
with the revolutionary Sketchpad by Sutherland [1964], which already showcased
impressive features for its time. Nowadays, software and hardware capabilities have
grown tremendously, to the point that a simple desktop computer is now able to
render extremely complex scenes at interactive frame rates.

Up until recently, modeling software could be roughly classified in two categories:
3D computer graphics software, such as Blender, can be used for computer animation,
visual effects, video games, while computer-aided design (CAD) software, such as
Catia or SolidWorks, target more specifically applications in mechanical engineering or
architectural design. While the former category of software provides accessible tools
with a great deal of artistic control, they aim at creating virtual objects, and using them
for creating physical structures poses a set of additional challenges. On the contrary,
CAD software cater to specialists and “traditional” fabrication methods, but they
remain difficult to use by non-experts for creating the complex objects now attainable
through modern 3D printing technologies. Even for expert users, creating the shapes
considered in this thesis can be extremely challenging via traditional approaches.

Most traditional manufacturing processes, used in industry, are subtractive: matter
is carved out of a block of metal, wood, or any other material, by machining tools
controlled by numerical commands, e.g. CNC milling machines. Typically, a rough
tool is used to first carve the coarse outline of a shape, while a finer tool is used
for the finishing operation. Before it can be manufactured, the shape is designed
using a specialized CAD software. The parts can then be numerically simulated,
and thoroughly studied and analyzed, before they can be put into production.
This design phase is done by expert engineers with a good understanding of the
mechanical properties of the object to be manufactured, and some expectations
about the functionality it needs to perform. Even so, the design process is often
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a painful iterative loop, where one has to simulate a piece, and update the model
accordingly every time the results of the simulation does not match the expectations.

Over the past decade, 3D printing has grown tremendously, and presents itself as
a viable alternative to traditional subtractive manufacturing methods. This rapid
growth can be explained by the decline in hardware prices, and by the progress in
software development which makes the technologies more accessible to end-users.
While subtractive fabrication technologies remain the standard for mass production
of industrial pieces, additive manufacturing has drawn a population of hobbyists
and small entrepreneurs who seek to exploit its potential for mass customization.

Different from skilled engineers and professional designers, this new category of
users need to be provided with appropriate software tools to help them modeling
and fabricating complex objects, without any deep understanding of the actual
fabrication process. Computer graphics has a long history of proposing modeling
tools for non-technical users — e.g. CG artists, game modders, level designers —
and these techniques hold great promises to help anyone model physical objects.
However, they were never concerned with physical fabrication processes and man-
ufacturing constraints. One example of such constraint is minimum thickness: one
has to ensure the model being fabricated can 1) be printed correctly with the de-
sired printing technology, and 2) the printed replica does not break under normal
manipulation.

Thus, a central question we seek to answer in this thesis, is how to provide acces-
sible design tools to model complex objects, and provide both artistic control, and
satisfying fabrication requirements? This idea is illustrated Figure 1.1.

There are several approaches to providing artistic control in an application. In a large
part of the work in this thesis, we draw inspiration from by-example texture synthesis
methods, which seek to synthesize visually appealing content, whose appearance
should resemble that of an input exemplar given by the user. By providing small
patterns or elements which are easy to design by hand, an inexperienced user can
quickly explore a range of new models which are generated automatically, from a
small set of parameters. In fact, by-example synthesis methods help experts as well
as non-experts, since designing these patterns is long and tedious. Texture synthesis
techniques have been used successfully in games and in the movie industry, e.g. in
the movie Tangled [Eisenacher et al. 2010]. In Chapter 4, we seek to develop new
by-example synthesis methods that account for the physical restrictions imposed
by a manufacturing process, in addition to the usual control provided by standard
texturing methods.

A second aspect central to this thesis is the representation and manipulation of
complex shapes. As manufacturing technologies grow, it is essential to devise
algorithms that help us print objects which are ever more complex, at resolutions ever
higher. In this document, Chapter 3 explains how to deal with certain fabrication
constraints when printing complex shapes, while Chapter 5 presents a scalable
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Figure 1.1 – A typical design pipeline for fabrication revolves around
a central iterative loop: a model is first designed, then numerically
simulated, until the desired constraints and objectives are met. A
central question in this thesis is how to provide both artistic control
and automated solutions that meet the constraints imposed by the

target fabrication technology.

method to control the elastic properties of printed objects by varying their internal
microstructure.

Additive Manufacturing. 3D printing technologies belong to the family of additive
manufacturing, in opposition to the subtractive technologies mentioned earlier, such
as CNC milling. Instead of carving matter from a block of material, the object is
fabricated by depositing matter, usually in a layer-by-layer manner. Each layer is
stacked on top of the precedent, by mean of different chemical processes, such as
plastic being melted down for Fused Deposition Modeling (FDM), photosensitive
resin being cured for Stereolithography (SLA), etc.

Compared to subtractive manufacturing, this has a number of advantages. The
first and probably the most appealing one is the so-called “complexity paradox”:
the feasibility, material cost, and print time of a model no longer depends on how
intricate the geometry is. It is now possible to fabricate complex objects that were
not feasible before. Objects with more intricate geometries are often cheaper and
faster to print with additive manufacturing techniques. The sparser the structure,
the less expensive it is to 3D print. In a subtractive process, one has to consider the
accessibility of a feature by the machining tool head, e.g. it is not possible to fabricate
objects with cavities, even with a small aperture. Additive technologies also have
certain restrictions, explained Section 2.1.1, but they are much less dramatic.

While it would appear that 3D printing is able to produce complexity for free,
it is in fact an illusion: the challenges are shifted to the software side, which has to
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deal with the model complexity, and to the user, who has to model the part in the
first place. Printing larger and more complex objects, at very detailed resolutions,
requires a careful software implementation, and ideally one should be able to stream
information to the printer, so that only the necessary data is being processed at a
given moment in time.

Last but not least, another important advantage of additive manufacturing, and
probably what motivates the need for innovative design applications, is that they
are tools of mass customization. Indeed, industrial manufacturing processes, e.g.
injection molding, are oriented towards mass production of the same component
over and over. This heightens the cost of fabricating two different objects successively,
as one has to setup the equipment, recalibrate the machines, etc. With additive
manufacturing, one can change the model anytime between two prints, without
any cost. This makes 3D printing the method of choice for rapid prototyping
applications, as a user can quickly explore different physical realizations of a design
of interest.

Applications of 3D Printing. When the topic of 3D printing is brought up to
unfamiliar users, the question of its potential applications is often raised. There
seem to be some misconception among individuals outside the field that 3D printing
is only used to create plastic toys. While the toy industry is in fact no small market,
the reality is that additive manufacturing has applications in about just every aspect
of our society, to the point that The Economist calls it the third industrial revolution1.
To give some perspective on the matter, we present just a small percentage of
potential applications of 3D printing.

Undoubtedly one of the most promising use of 3D printing is for medical applications.
The ability to synthesize tissue to repair damaged organs, or to fabricate prosthetics
— be it for tooth, or an artificial limb [link] — which are tailored to an individual
at no additional cost, is pushing the limits of medical science. As the technology
progresses, 3D printers are able to reproduce a wider range of structures, at higher
and higher resolutions. A recent example for manufacturing bone structures with
biomaterials is given in [Jakus et al. 2016]. From a software perspective, it means
there is a necessity to develop efficient algorithms which can handle the increasing
complexity of the underlying 3D models.

Another exciting field impacted by 3D printing is archaeology and the preservation
of cultural heritage. Scanning technologies enables scientists to digitalize on object
somewhere, and print it on the other side of the globe for another team to study it.
Working with physical copies avoids damaging further the original object, which
can be restored digitally for example. Furthermore, scanning and 3D printing
archaeological sites allows humanity to preserve important landmarks, which can
be destroyed, e.g. after a natural disaster, or in times of war [link].

1http://web.archive.org/web/20120515040242/http://www.economist.com/node/21552901

http://web.archive.org/web/20120515040242/http://www.economist.com/node/21552901
https://www.theguardian.com/media-network/2016/sep/29/3d-printing-revolutionise-medical-profession
https://www.theguardian.com/world/2016/oct/06/bull-nimrud-destroyed-isis-recreated-rome-colosseum
http://web.archive.org/web/20120515040242/http://www.economist.com/node/21552901
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A related domain which benefits from these new rapid prototyping methods is
architectural design. From the realization of miniature mock-ups, to the fabrication
of actual real-life buildings such as a pavilion [link], 3D printing is providing new
ways for architects and designers to design new structures. More generally, the
construction industry may also rely on 3D printing, e.g. to provide a quick and easy
way to install new shelters after an earthquake, at a very low cost. The technology
can also be used to build fancier accommodation, such as a small castle [link].

In the automobile and aerospace industry, manufacturers are also starting to take
advantage of the possibilities offered by additive manufacturing, for example to
fabricate more functional aircraft brackets, e.g. using titanium [link]. See also
[Tomlin and Meyer 2011] for the optimization of an aerospace part for metallic
additive manufacturing. At a different scale, manufactured parts also find they way
into robotic components. For example, the Poppy project features an open-source
design of the different parts of a humanoid robot, which can be easily customized.
3D printed parts can also be extremely useful for home improvement, e.g. to print
drill guides (thing:402531 and thing:267196), replacement parts, attachments, etc.

Arts and craftsmanship are other domains where 3D printing brings interesting
developments. Most notably, resin printers — which have a very high-precision, but
a limited build volume — are very popular for jewelry [link]. The 3D printer allows
a creator to quickly experiment with different designs and physically appreciate
their quality. Once the creator is satisfied, the printed model is used to create a mold,
which is used to cast one or more copies of the final object. 3D printing can also be
used to create complex sculptures, such as this beautiful 3D printed zoetrope.

Finally, there are still a number of applications that we did not evoke: garment
design and clothing, such as the products proposed by the company Nervous System
[Rosenkrantz and Louis-Rosenberg 2007] ; rigging and character animation [Glauser
et al. 2016] ; 3D printed food [link]. More applications of 3D printings can be
found everyday on specialized news webzine, such as https://all3dp.com/ or
https://3dprintingindustry.com/.

Contributions. In light of the preceding discussion, the contributions of this thesis
can be described as follows. In Chapter 3, we develop new algorithms for handling
fabrication constraints in complex virtual objects. In particular, we propose a
technique for synthesizing support structures that are very reliable, but also efficient
in terms material costs and print time. External support structures are typically
used to print shapes that are not attainable on regular filament printers due to
manufacturing constraints (overhangs).

In Chapter 4, we explore several tools for by-example synthesis of structured con-
tent that considers the fabrication process. While standard by-example synthesis
methods do not optimize the mechanical behavior of the final models, we present
several algorithms for automatically synthesizing content from a small exemplar
pattern so that structurally sound objects are produced. With a few concurrent works

http://www.designboom.com/architecture/vulcan-beijing-design-week-bjdw-largest-3d-printed-architectural-pavilion-parkview-green-10-07-2015/
http://www.totalkustom.com/3d-castle-completed.html
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/printing-the-future-airbus-expands-its-applications-of-the-revolutionary-additive-layer-manufacturi/
https://www.poppy-project.org/en/
https://www.thingiverse.com/thing:402531
https://www.thingiverse.com/thing:267196
https://i.materialise.com/blog/3d-printed-jewelry/
https://vimeo.com/125791075
https://all3dp.com/3d-printed-food-3d-printing/
https://all3dp.com/
https://3dprintingindustry.com/
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exploring similar ideas, we were one of the first to propose combining by-example
artistic control and fabrication requirements.

In Chapter 5, we draw inspiration from procedural modeling techniques, and de-
velop an efficient method for synthesizing microstructures inside a model. The
algorithm produces spatially-varying microstructure with prescribed elastic prop-
erties, and the resulting geometry can be sent directly to the printer in an online
manner.

The work presented in this thesis is the result of fruitful collaborations with various
talented colleagues, and lead to the following publications at international venues:

• Dumas, J.; Hergel, J. and Lefebvre, S. [July 2014]. “Bridging the Gap: Auto-
mated Steady Scaffoldings for 3D Printing”. ACM Trans. Graph. 33.4, 98:1–
98:10. doi: 10.1145/2601097.2601153

• Dumas, J.; Lu, A.; Lefebvre, S.; Wu, J. and Dick, C. [July 2015]. “By-Example
Synthesis of Structurally Sound Patterns”. ACM Trans. Graph. 34.4, 137:1–
137:12. doi: 10.1145/2766984

• Martínez, J.; Dumas, J.; Lefebvre, S. and Wei, L. [Oct. 2015a]. “Structure and
Appearance Optimization for Controllable Shape Design”. ACM Trans. Graph.
34.6, 229:1–229:11. doi: 10.1145/2816795.2818101

• Hornus, S.; Lefebvre, S.; Dumas, J. and Claux, F. [2016]. “Tight Printable
Enclosures and Support Structures for Additive Manufacturing”. Eurographics
Workshop on Graphics for Digital Fabrication. The Eurographics Association. doi:
10.2312/gdf.20161074

• Martínez, J.; Dumas, J. and Lefebvre, S. [July 2016]. “Procedural Voronoi
Foams for Additive Manufacturing”. ACM Trans. Graph. 35.4. doi: 10.1145/
2897824.2925922

https://doi.org/10.1145/2601097.2601153
https://doi.org/10.1145/2766984
https://doi.org/10.1145/2816795.2818101
https://doi.org/10.2312/gdf.20161074
https://doi.org/10.1145/2897824.2925922
https://doi.org/10.1145/2897824.2925922
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Chapter 2

Related Work

Digital fabrication is an inherently cross-disciplinary topic, with applications in
design, arts, geometry, physics, mechanical engineering, robotics, electronics, and
many more. In this chapter, we present the different fundamental concepts used
throughout this thesis. Section 2.1 introduces the different digital fabrication tech-
nologies used in this thesis, Sections 2.2 and 2.3 focuses on the shape synthesis, in
the context of fabrication and via by-example methods, while Sections 2.4 and 2.5
are more concerned with the mechanical engineering aspects of synthesizing micro-
and macro- structures respectively. Each section attempts to be a self-contained in-
troduction covering the most relevant literature in the field, and to give an overview
of the associated past and concurrent related work.

In Section 2.1, we describe the different manufacturing technologies considered
in this work, and the constraints associated to them. We also briefly explain the
slicing process and the toolpath planning, whose goal is to convert a digital 3D
model in a set of machine instructions that command the printers. Finally, we
review existing approaches for enforcing geometric constraints on a model to make
it manufacturable.

In Section 2.2, we discuss more generally how to design shapes for digital fabrication.
Modeling tools need to be adapted to produce physical and tangible objects rather
than purely virtual content. A new class of problems arises from additive manu-
facturing constraints, such as structural analysis, mass distribution, smart design
editing or optimization. In this section, a particular attention is given to modeling
tools that attempt to help users in their design choices, be it through interactive user
interfaces, or via an automatic optimization procedure .

In Section 2.3, we cover specifically question of by-example content generation,
such as by-example texture synthesis, which is a long standing and fundamental
problem in computer graphics. By-example synthesis methods seek to replicate the
appearance of an input pattern or model, to generate content in a larger domain —
e.g. an image in 2D, a surface or a volume in 3D. Appearance-based and by-example
synthesis play a central role later in the Chapter 4 of this thesis.

In Section 2.4, we present in more details problems related to the generation of
internal structures and microstructural patterns inside a target volume. Classical
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infill generation aims to save up material by reducing the amount of matter printed
inside an object, but other objectives such as print time and discretization errors
can be taken into account. At a finer scale, changing the microstructure geometry
of the printed volumes can also affect their macro-scale mechanical behavior. This
effect is captured by what is known as the homogenization theory, which constitute
an important part of the mechanical engineering literature. Efficient microstructure
generation via procedural methods is also discussed. Meta-material design via the
control of microstructures is the object of Chapter 5.

Finally, in Section 2.5, we discuss topology optimization, a discipline that belongs
to the field of mechanical engineering. In particular, we review in more details the
SIMP approach — one of the most popular form of topology optimization — as
it was used extensively during the course of this work, especially in Sections 4.2
and 4.3. Furthermore, a particular attention will be given to the aspects of topology
optimization most relevant to our work. First, we present methods that combine
topology optimization with additive manufacturing constraints, such as overhangs
or thickness control. Second, we examine a certain type of topology optimization
methods, which considers what we call discrete elements, that can move in the domain
as part of the optimization procedure. Synthesis methods that rely of those discrete
elements the focus of Section 4.3.

2.1 Additive Manufacturing Processes

The rapid development of additive manufacturing technologies over the past decade
has fostered a lot of interest from researchers in many different fields. In this section,
we do not aim to present a comprehensive overview of all the possible manufacturing
technologies, which would be beyond the scope of this thesis. Instead, we will focus
on the technologies we used in our lab, as they are they are the ones I have worked
with more extensively: filament printers, powder-based inkjet printers, laser-cutters,
and resin printers. For a presentation of broader aspects of digital fabrication, the
reader is referred to several of the recent surveys in the domain. [Schmidt and Ratto
2013] present challenges pertaining to the design of software that are tailored for
additive manufacturing applications. [Oropallo and Piegl 2015] offers a synthetic
presentation of ten challenges related to the 3D printing work flow. Guessasma et al.
[2015] discuss optimization problems related to additive manufacturing. Finally,
[Gao et al. 2015b] review different printing technologies and discusses problems
related to the fabrication pipeline.

The rest of the section is organized as follows. In Section 2.1.1, we first present
the manufacturing technologies used throughout the rest of this work, as well as
the constraints they impose on the shapes to fabricate. In Section 2.1.2, we discuss
the slicing pipeline, i.e. how to transform a virtual model into a set of instructions
for the machine. In particular, we examine how image-based representations of
solid objects can help simplifying this process. Finally, in Section 2.1.3, we review
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established solutions that exist to enforce the aforementioned fabrication constraints,
such as overhangs and minimum thickness. Note that methods which consider the
mechanical behavior and structural soundness of printed objects, e.g. for analysis
or editing purposes, are discussed later in Section 2.2.

2.1.1 Printing Technologies and Constraints

There are many fabrication processes that falls under the nomenclature of additive
manufacturing. Their common characteristic is that they fabricate on object by adding
matter, usually in a layer-by-layer manner, until the final shape is formed. This is in
opposition with subtractive technologies, which operate by removing matter from
a bloc of base material, e.g. CNC milling — one of the most common fabrication
process used in industry.

There are different ways to categorize additive manufacturing technologies. If
one considers the way layers are represented, an approach common to computer
graphics would be to distinguish between vector graphics representations, which
rely on polygonal descriptions of the printing toolpath — as in FDM or SLS printers
—, and raster representations, which rely on a pixel grid, or bitmap image — as in
DLP printers. A second approach would be to consider the physical process involved
in the matter solidification — e.g. filament deposition or light polymerization. We
chose to employ this latter classification, as it makes it easier to tie the fabrication
constraints with the underlying physical process.

While the technologies presented here are among the most widespread 3D printing
techniques, they do not represent an exhaustive list. For a more comprehensive
presentation of the different additive manufacturing technologies, the interested
reader is referred to recent books such as [Gibson et al. 2014]. In the following, we
describe the shape properties and the different manufacturing technologies useful
for this work. A summary of the printing constraints according to each technology is
presented Table 2.1, and the different printing constraint are illustrated in Figure 2.2.

Regularity. Most of the technologies presented in this section have a limit of the
minimum thickness that can be realized on a print. The dual, the limit on the
minimum size of a hole, is also present on some technologies. Although, at the
scale we consider, it is sometimes not clear if the limit is due to the imprecision of
the machine toolpath, or to the physical manufacturing process. Before describing
the particularities of the different technologies, we give a more precise definition
of shape regularity, and what we mean by minimum thickness and minimum hole
size. The definitions given here are inspired by [Williams and Rossignac 2005].
Definition 2.1.1 (Stability). Let S be a 3D shape. We define the stability of a point
p ∈ R3 as the radius of the largest (open) ball containing p that is completely enclosed
in S or its complement S. (See Figure 2.1.)



10 Chapter 2. Related Work

Definition 2.1.2 (Inner-regular). Let S be a 3D shape, and r ∈ R+. We say that S is
r-inner-regular if all the points inside S have a stability > r.
Definition 2.1.3 (Outer-regular). Let S be a 3D shape, and r ∈ R+. We say that S is
r-outer-regular if all the points inside the complement S have a stability > r.

p

r1

r2

S

Figure 2.1 – Stability of a point p. The green disk contains p and is
enclosed in the shape S, so p has a stability > r1. Conversely, there is
no open disk of radius r2 that contains p and is enclosed in S or S, so

the stability of p is < r2.

In the rest of this document, when we refer to the minimum feature size, or minimum
thickness, that is achievable when printing a shape S, we mean that the shape S
we send to the printer needs to be ri-inner-regular, where ri is the radius of the
minimum printable feature. Note that the definition becomes more complex when
considering machines such as filament printers, where the minimum feature size
is not the same on XY plane than along the Z axis, so the balls would need to be
defined according to a different metric. Similarly, when we refer to the minimum hole
size, or minimum void, that can be achieved by a machine, we mean that the input
shape S must be at least ro-outer-regular, where ro is the minimum hole size that
can be realized by the printer.

Connectivity. A constraint that is common to all the technologies described in the
following, is part connectivity. Unless the goal is to print non-assembly mechanisms,
such a ball joints [Calì et al. 2012], it is undesirable to fabricate an object comprised
of multiple connected components, as they would simply fall apart when the user
manipulates the object. Note that connectivity is often not enough to guarantee that
there are no structural defects in the final print. For example a large part connected
to the rest of an object through a single tiny junction will be very fragile. To create
more robust shapes, it is thus preferable to enforce a sufficient connectivity. This can
be done at the geometrical level — by considering combinatorial terms such as the
isoperimetric number of a graph in [Cignoni et al. 2014] —, or at a mechanical level
— by simulating the physical behavior of the structure. Analysis of the structural
soundness of printed shapes is discussed further in Section 2.2.1.
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Extrusion Printers. Also called filament printers, this category encompasses the
most popular and inexpensive consumer-level 3D printing technology, known under
the equivalent terms of Fused Deposition Modeling (FDM) or Fused Filament Fabrication
(FFF). A plastic filament is pulled by a motor through a heated print-head, which can
move horizontally, melts down the plastics, and deposits it on a descending build
plate. See Figure 2.3 for an illustration of the process. In our team we currently have
a number FDM printers: MakerBot Replicator 1, ORD Solutions RoVa3D 5 Extruder,
Ultimaker 2, MakerBot Replicator 2, and a homemade Delta Robot .

Because filament can only be deposited on top of another solid part, there is a
limit to the negative slope that can be realized by a FDM printer Figure 2.2. This
constraint on the minimum angle allowed on this negative slope is called the overhang
constraint, and it depends on the layer height and nozzle width. A corollary of the
overhang constraint is that local minima in the printing direction are to be avoided on
the solid phase, otherwise the filament will simply fall onto the print bed. To print
long overhang features, one typically resorts to a support structure built alongside the
object, to prevent the filament from falling. This auxiliary structure is to be removed
from the fabricated object during the print cleaning step.

FDM printers have also a minimum thickness limit to what they can print, determined
horizontally by the nozzle width, and vertically by the minimum layer thickness the
machine can achieve. On the other hand, there is no minimal hole constraints, and
internal cavities are not a problem for FDM printers, contrary to other technologies
presented in this section.

Note that despite the constraint on the slope angle, FDM printers have the remark-
able ability to print horizontal lines, as long as they are supported at both extremities.
These horizontal segments are called bridges, and will be heavily exploited in Sec-
tion 3.1. The phenomenon is illustrated Figure 3.3, and discussed in more details in
Section 3.1.2.

Powder Bed Printers. This second category of additive manufacturing technolo-
gies includes inkjet head printing, but also Selective Laser Sintering (SLS) and its
variants. In our team we are currently using a ZCorp 450, which belongs to the family
of inkjet 3D printers, sometimes called binder jetting. The common characteristic of
powder bed printers is that they solidify a base material in a layer-by-layer manner.
In the case of inkjet 3D printers, the print head moves horizontally and deposits a
liquid binder material on the current layer, which has the effect of gluing together
the powder particles. In the case of SLS printers, a laser is focused along the path
where the layer is to be solidified. Note that inkjet printers have the advantage that
they can inject standard inkjet colors into the powder, producing objects with a wide
color range that is difficult to achieve with FDM printers.

Contrary to FDM printers, overhangs are not a problem with powder bed printers,
but there is still a limit to the minimum thickness that can be achieved. In addition,
there should not be any enclosed cavities, as the powder base material needs to be
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extracted from the print. In this document, we will sometimes employ the equivalent
terms enclosed void, or pockets. Note that, while overhangs are a non-issue on powder
bed printers, it might still be necessary to print support structure alongside the target
object. For example, if the solid volume is large and heavy, it will press down on the
powder below, causing the whole print to sag. The can be avoiding by providing a
small amount of supporting pillars during the build. With other technologies, such
as metal laser sintering, the heat dissipation rate might be greatly improved with a
support structure that diffuses the heat evenly throughout the volume.

Light Polymerization. Also called resin printers, this type of machine operates by
solidifying a photo-sensitive polymer, which lies in a resin tank, in a layer-by-layer
manner similar to powder bed printers. Contrary to powder bed printers, the model
is often built upside-down, with the print platform pulling the object from the tank.
On Stereolithography printers, the resin is cured via a laser, whose focus point is
generally controlled through a set of mirrors. By contrast, DLP1 printers use an
image lit from a projector to solidify the resin at each layer. The printers used in our
lab, a B9 Creator V1.2 and a Autodesk Ember, are DLP-based resin printers.

Historically, stereolithography was also the first additive manufacturing technology
to be invented. The first prototypes date back to the 1980s, first realized by Kodama
[1981], and later patented simultaneously in France by André et al. [1984], and in the
United States by Hull [1984]. Interestingly, the STL file format, that is widely used
in computer graphics, CAD, and modeling software, stands for stereolithography.
Although originally created for CAD systems, with the goal of producing parts
through additive manufacturing on resin printers, STL is arguably not the best file
format2 for 3D printing applications nowadays.

In terms of constraints, resin printers can print slopes at almost any angles, so
overhangs are usually not an issue. However, the object still needs to be attached to
the print platform, otherwise it will “float around” in the resin tank. Consequently,
one should still take care to avoid local minima in the print direction, which we also
call islands. Similarly to powder bed printers, cavities are to be avoided, otherwise
it would trap some amount of liquid resin inside. Finally, the minimum thickness
requirement still persists, and there is also a minimum limit on the hole size, due
to how the light diffuses in the solidification process. See [Jansen et al. 2013]
for a discussion on this topic in the case of electron beam lithography, for the
manufacturing of micro/nano-scale structures.

2D Cutting Machines. While not technically an additive manufacturing technol-
ogy — 2D cutting machines operate by cutting matter out of a plank of base material
—, cutting machines, and especially laser cutters, are becoming increasing accessible
to the masses, and widely used for rapid prototyping purposes. Moreover, it is

1Digital Light Processing
2https://medium.com/3d-printing-stories/why-stl-format-is-bad-fea9ecf5e45

https://medium.com/3d-printing-stories/why-stl-format-is-bad-fea9ecf5e45
https://medium.com/3d-printing-stories/why-stl-format-is-bad-fea9ecf5e45
https://medium.com/3d-printing-stories/why-stl-format-is-bad-fea9ecf5e45
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possible to “stack” laser-cut pieces together, to assemble multiple layers into a 3D
object. One can also “bend” laser-cut 2D sheets to create 3D shapes, as in [Mueller
et al. 2013]. In the context of this thesis, laser-cut pieces were used extensively in
Section 4.2 to fabricate 2D designs, and some were assembled and glued together to
create 3D objects.

Since the designs produced by a laser cutter is restricted to 2D, there is no constraint
such as overhangs or islands. Holes or cavities are usually not a problem, but
it depends on the machines. For example, industrial water-jet cutters have some
constraints on the type of holes they can cut. Finally, 2D cutting machines have also
have a minimum achievable thickness and hole size, albeit this limit is usually much
lower compared to the aforementioned 3D printing technologies.

Technology Connectivity Overhangs Islands Cavities
Minimum
thickness

Minimum
void

Filament    #  #

Powder  # #   G#

Resin  #     

Cutting (2D)  # # G#   

Table 2.1 – Summary of the different fabrication constraints depend-
ing on the printer category.

✗

(a) Connectivity.

Z

l
θ

θ > θmax

l > nozzle width

(b) Overhangs.

Z

island

(local min)

(c) Islands.

cavity
(enclosed void)

(d) Cavities.

✓

✗

(e) Min thickness.

✓

✗

(f) Min void.

Figure 2.2 – Geometric constraints in fabrication.
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build plate

print head

filament spool

(a) Principle of a filament printer.
Image: https://www.flickr.com/photos/creative_tools/8266027093

powder bed

print head

current layer

(b) Principle of an inkjet powder bed printer.
Image: https://www.flickr.com/photos/neontommy/8264971129

build plate

projector

PDMS

resin tank

(c) Principle of a DLP resin printer.
Image: https://www.flickr.com/photos/mangtronix/12331560733

Figure 2.3 – Illustration of 3D printers most used in this thesis.

https://www.flickr.com/photos/creative_tools/8266027093
https://www.flickr.com/photos/neontommy/8264971129
https://www.flickr.com/photos/mangtronix/12331560733
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2.1.2 Converting 3D Models to Printed Objects

Data Structures

Printer Input. Different printers use different data structures to represent the
object that need to be fabricated. Filament printers typically need to be given the
precise toolpath followed by the print heads — e.g. using G-code or cli format —,
while powder bed and DLP resin printers require an image for every layer of the
object to manufacture.

However, most digital objects are stored on the computer using a different repre-
sentation. CAD systems typically use NURBS to describe piecewise polynomial
surfaces modeling an object, while most consumer-level modeling applications
preferably store a discrete representation in the form a triangle meshM � (V, F),
where V ∈ Rn×3 denote the vertices of the mesh, and F ∈ Nm×3 denote the facets of
the mesh. Meshes can have quadrilateral or polygonal faces, and 3D models can
also be represented by an implicit function or a fractal. Another possibility is to use
volumetric data, either in the form of a dense voxel grid, a hierarchical grid (octree),
or via a ray-based representation (dexels [Van Hook 1986], or layered depth images
[Shade et al. 1998]).

When the digital representation differs from the printer representation, a conversion
needs to be done. This conversion is usually referred to as the slicing process. It also
includes, in the context of filament printers, a step known as path planning.

Ray-Based Representations. By intersecting a regular grid of parallel rays with a
3D model, one can compute the segments from each ray that lie within the volume
enclosed by the 3D model. Storing the endpoints of those segments yields a compact
description of the original volumetric shape. The resulting discretization is called
a ray-based representation, and it has important applications in rapid prototyping.
Historically, the first ray-based solid representation was based on notion of dexels (for
depth pixels), proposed by Van Hook in 1986. Van Hook [1986] proposed a technique
to compute the results of CSG operations in image-space via this dexel structure, for
the purpose of facilitating NC milling path-planning. A similar technique is now
implemented in IceSL [Lefebvre 2013], a slicing software developed in our team. This
data structure is illustrated Figure 2.4. Note that, while in the original paper by Van
Hook [1986], each element in the linked-list stores a tuple (zmin , zmax) corresponding
to the solid segment encoded by a dexel, in Figure 2.4 this representation has been
“flattened out”. In that aspect, a dexel buffer can be interpreted as a special case
of a A-buffer, a technique developed for achieving order-independent transparency
[Carpenter 1984; Maule et al. 2011].

Interestingly, Layered Depth Images (LDI) [Shade et al. 1998] describe a data structure
similar to the dexel buffer, but were developed in a different context. The goal of
LDI was to achieve efficient image-based rendering, while dexel buffers were used
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for CSG operations, and A-buffers for rendering transparency. Consequently, the
algorithms developed to build and render LDI are different than those involving
dexel buffers, even though the underlying data structures are similar. In the context
of digital fabrication, Layered Depth Normal Images (LDNI) — which are LDI aug-
mented with surface normal information — have been proposed an alternative way
to discretize 3D models [Huang et al. 2014a].

Ray-based representations are extremely appealing, as they allow to perform a
number of operations directly in image-space, avoiding the for expensive remeshing
techniques. This includes CSG operations, but also support requirement calculations,
toolpath planning, infill calculations, etc. Implicit surfaces can also be discretized
directly without prior explicit meshing. The drawback of ray-based data structures is
that the discretization error is uniform across the volume, contrary to a triangle mesh
which can use finer triangles around delicate features. However, since 3D printers
have also a limited resolution, if one can provide a dexel buffer at the same resolution
than the printing precision, then the space of 3D shapes that can be represented by
a dexel buffer is in fact a superset of the actual shapes that can be fabricated.

(a) Input shape.

y1

1

y4

1

(b) Dexels approximation.

y1

1

y4

1

(c) Compact storage.

Figure 2.4 – The dexel-buffer data structure. An input shape (a) is
approximated by its intersection with an axis-aligned grid of parallel

rays (b), and stored compactly as an array or a linked-list (c).

Slicing Pipeline

Once the digital model representation, and the target 3D printing technology, have
been chosen, one can proceed to convert the digital model into a set of machine
instructions. In its simplest form, the slicing process amounts to computing the
intersection between the input model and horizontal planes at each layers height.
In a second step, specially for filament printers, one needs to transform each layer
description — commonly a set of polygonal lines defining the slice data — into a
sequence of paths to be followed by the print head. The output machine instructions
are usually presented in the form of G-code, but it can also be a proprietary format,
or a simple stack of images, as in the case of the Autodesk Ember.
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The software carrying this transformation from the digital model to the machine
instruction is called a slicer. There is a wide choice of slicing software available for
filament printers. Popular choices include vendor-specific slicers, such as Cura1 by
Ultimaker, or MakerWare by Makerbot, or vendor neutral applications, such as Slic3r,
Repetier Host, CraftWare, MatterControl, Simplify3D, among many others.

A detailed overview of the whole pipeline can be found in dedicated surveys,
regarding slicing procedures [Pandey et al. 2003], or the process planning [Kulkarni
et al. 2000]. More recently, the question of developing modeling and design tools
specific to 3D printing applications has also been covered in Siggraph and Siggraph
Asia courses [Liu et al. 2014a; Umetani et al. 2015; Dinh et al. 2015].

Improving Surface Quality. As machines have limited resolutions, printed models
suffer from artifacts inherent to the technology being used. This is typically known
as aliasing in computer graphics. The printed surface quality can be improved by
playing on the model orientation, adapting the slicing process, or segmenting the
object into parts. Thrimurthulu et al. [2004] study the problem of finding the best
model orientation to reduce build time and improve the surface finish on filament
printers. More recently, Delfs et al. [2016] proposed another method to optimize the
model orientation, in order to improve the surface roughness on parts printed on
SLS machines.

Pintus et al. [2010] have proposed a shape enhancement technique to increase the
amount of details perceived on a model to be printed. [Wang et al. 2015] present an
adaptive slicing algorithm based on a visual metric, to reduce printing time while
preserving salient features.

A third option is to partition the input shape to improve the printed surface quality.
[Hu et al. 2014] decompose a shape into pyramidal parts so they can be fabricated
on filament printers without supports. In a similar approach, Herholz et al. [2015]
allows small surface deformations to reduce the number of parts in the resulting
segmentation. Hildebrand et al. [2013] propose segmentation algorithm to reduce
the approximation error between an input shape and the stack of slices resulting
from the fabrication. In a recent work, Wang et al. [2016a] present a segmentation
technique to improve surface quality, by relying on the fact that 3D printers generally
have a higher resolution in the Z direction than along the XY directions. This echoes
Answering different challenges, Schüller et al. [2014] proposed a method to fabricate
bas-reliefs that depict certain target shapes viewed from specific directions.

Appearance and Colors. For 3D printers capable of fabricating colored objects, a
number of approaches have been proposed to improve the quality of the resulting
surfaces. Cignoni et al. [2008] and Brunton et al. [2015] proposed techniques to
improve colored results on multimaterial printers, while Hergel and Lefebvre [2014]

1https://github.com/Ultimaker/CuraEngine

https://github.com/Ultimaker/CuraEngine
https://github.com/Ultimaker/CuraEngine
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and Reiner et al. [2014] deal with the case of filament printers having multiple heads.
There has also been an increasing interest in reproducing reflective properties in
fabricated replica, such as materials with custom surface reflectance [Matusik et al.
2009; Weyrich et al. 2009], subsurface scattering [Hašan et al. 2010; Dong et al. 2010],
4D reflectance functions [Malzbender et al. 2012], translucent materials [Papas et al.
2013] or bi-scale materials [Lan et al. 2013]. Recently, other approaches to produce
high-quality, faithful, colored printouts have been explored. Zhang et al. [2015e]
and Panozzo et al. [2015] use water transfer printing to texture map an input image
onto arbitrary surfaces. Schüller et al. [2016] use thermoforming to achieve similar
goals, but achieve higher-quality results with an easier hardware setup.

Alternative Prototyping Schemes

While not directly the object of our work, alternative schemes for rapid prototyping
can provide interesting views on fabrications constraints. The goal of these tools is
to empower users with ways to quickly create physical replica of 3D models, using
using alternative fabrication methods. Garg et al. [2014] use wire meshes, that can
shear, but not bend, to replicate a user-given surface. Mueller et al. [2014a] presented
a process to rapidly print a wireframe preview of a given 3D model. Skouras et al.
[2015] proposed a design tool to create 3D models from interlocking elements, which
can be cut from a piece of paper. More recently, interlocking structures using steel
rods has also been investigated in [Miguel et al. 2016]. Another way of fabricating
objects is by using Lego bricks, e.g mixed with additive manufacturing [Mueller
et al. 2014b], or directly to replicate large models with a minimum number of bricks,
while maintaining a feasible solution [Luo et al. 2015]. Objects made of intersecting
planar cross-sections is also a popular way to quickly fabricate arbitrary objects, as
evidenced by the abundant literature on the subject [Schwartzburg and Pauly 2011;
McCrae et al. 2011; Hildebrand et al. 2012; Schwartzburg and Pauly 2013; Cignoni
et al. 2014; McCrae et al. 2014].

2.1.3 Enforcing Printing Constraints

Overhang and Supports

On filament printers, perhaps one of the most restricting constraint in terms of design
is in fact due to the limited slope that can be achieved when stacking multiple layers
together. To overcome this limitation, the standard practice is to print the object
with an external support structure, removed after the print. Note that these support
structures can be very tedious to clean up, and they often alter the appearance of
the object surface. Thus, notwithstanding material costs, it is advisable to reduce as
much as possible the amount of supports that is needed to print an object.

If an object is printed without support material on FDM printers, chances are it
will lead to an intriguing result, often quite far from the intended one. Figure 2.5
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illustrate such a failure case on the upper leg of the Poppy robot1. Note however, that
there are a number of reasons as to why a print can fail, besides improper support
structures. There is even a Flickr gallery entitled “The Art of 3D Print Failure”2
dedicated to this subject.

In order to generate a support structure for a given shape, one usually proceeds
in two steps: first, detect the actual parts of the object that need to be supported.
Second, generate the actual support geometry. Finally, one can also decide to orient
of deform the original model to reduce the need for supports in the first place. This
approach is known as support slimming.

(a) Original model.

(b) Printed result. (c) Zoom.

Figure 2.5 – Example of a print failure on the leg of the Poppy robot.
Without support structures, the object cannot be fabricated in this

orientation on FDM printers due to the overhang constraint.

Determining Support Requirements. Support generation algorithms start by de-
termining the surfaces in need for support. A first family of approaches consider
the down-facing facets of the input mesh having an angle too steep to print correctly
[Allen and Dutta 1995; Alexander et al. 1998]. A second family of approaches consist
in performing a boolean difference between two successive slices [Allison et al. 1988;
Chalasani et al. 1995; Huang et al. 2009a]. This generally leads to a compact set of
points to be supported. Eggers and Renap [2007] select a subset by down-sampling.
In Section 3.1, we follow a similar approach to [Chalasani et al. 1995], considering

1www.poppy-project.org
2https://www.flickr.com/groups/3d-print-failures/pool/

www.poppy-project.org
https://www.flickr.com/groups/3d-print-failures/pool/
www.poppy-project.org
www.poppy-project.org
https://www.flickr.com/groups/3d-print-failures/pool/
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whether the plastic deposition paths are correctly supported by the layers beneath.
Those three different principles are illustrated Figure 2.6. Finally, Telea and Jalba
[2011] study the printability of models using a voxel representation of the volume.
Note that a caveat of support detection via boolean operations is that it can falsely
detect unsupported regions as supported (see Figure 1.8 in [Huang et al. 2014a]).

(a) Triangle-based. (b) Morphology-based. (c) Printing paths.

Figure 2.6 – Three approaches to the support detection problem:
(a) Considering the angles of every facet in a triangle mesh.

(b) Computing boolean operations between successive layers.
(c) Evaluating the actual printing paths on filament printers.

Generating the Support Geometry. Once the parts requiring support are deter-
mined, the support geometry is computed. The standard approach consists in
extruding downward the mesh facets requiring support, thus defining a support
volume. The support volume is usually printed with a weak infill pattern (KISSlicer,
MakerWare, [Strano et al. 2013]). The support is manually removed by breaking it
apart from the object. Soluble material can also be used on multiple material printers
[Kritchman et al. 2008]. Printing the support volume uses a significant amount of
material and print time, but is very reliable: the support typically has a large area
of contact with both the part and the print bed, ensuring the print stability in most
cases. The volume is large enough to print without difficulty.

A number of approaches modify the support volume to reduce its size. Huang et al.
[2009b] use sloped walls instead of straight walls for the sides, shrinking the support
volumes in their middle sections. Heide [2011] also reduces the support volume
by decreasing its size and complexity as the distance below the supported model
increases. More recently, Jin et al. [2015] proposed a support generation approach
based of boolean operations between successive layers, in an manner which is closely
related to the method presented is [Hornus et al. 2015].

MeshMixer by Autodesk deviates from the support volume and instead builds a thin
structure supporting the part in a sparse, limited number of points. MeshMixer
automatically generates an initial support resembling a tree. While the precise
algorithm, to the best of our knowledge, has not been published as an article, some
insights can be found in their Siggraph 2014 talk [Schmidt and Umetani 2014].
This work elegantly shows that a very sparse structure can effectively serve as a
support. MeshMixer however often requires the user to fix up the initial structure (see
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comments on Thingiverse, thing:131054), and the slanted trees sometimes suffer
from print reliability issues (see Figure 3.18b). In contrast, our bridges presented
Section 3.1 offer similar grouping properties as a tree but print more reliably. A
concurrent work, presented by Vanek et al. [2014a], features support structures very
similar to MeshMixer.

Wang et al. [2013] optimize truss structures for the primary purpose of strengthening
3D printed objects, and extend their approach for support generation. Support
beams are added by tracing rays downwards, within a tolerance cone ensuring that
the result is printable. The beams are not grouped, missing an opportunity to reduce
print time and material usage.

Eggers and Renap [2007] propose to form a support structure by starting from a
regular rhombus mesh filling the print bed. The 3D model is subtracted from the
initial structure, removing intersected mesh edges. Points requiring support are
attached to the mesh by downward angled beams. A number of heuristics are
proposed to reduce the number of beams in the support structure. This approach,
however, has to ensure that large enough columns are formed so that the support
mesh remains printable. In contrast, in Section 3.1, we optimize for thin elongated
bridges that are guaranteed to remain printable. Our approach does not suffer from
the orientation bias resulting from canceling edges in a pre-existing mesh.

Photoshop CC includes support generation for 3D printing. Available screenshots
reveal that square-section pillars are grown from the ground with a hierarchical tree
structure to connect to the surface.

Orientation and Support Slimming. Several approaches have been proposed to
find a model orientation reducing the amount of supports required before printing
[Frank and Fadel 1995; Allen and Dutta 1995; Cheng et al. 1995; Alexander et al. 1998;
Majhi et al. 1999; Ezair et al. 2015; Morgan et al. 2016]. Note that other criteria for
choosing model orientation can also be taken into account, in particular mechanical
stress [Umetani and Schmidt 2013; Ulu et al. 2015], visual appearance [Zhang et al.
2015d], or upright correction [Wang et al. 2014a]. Another possibility is to deform
the model to further reduce the need for support material [Hu et al. 2015].

We do not consider this issue in our work Section 3.1, and assume that the part
orientation has been fixed by the user considering other criteria (stepping error,
mechanical robustness, aesthetics of filament orientation).

Thickness Control and Morphological Operations

Another important printing constraint, which is common to most printing technolo-
gies, is length-scale control. On filament printers, the minimum thickness of solid
parts is mostly limited by the nozzle width — although it is possible to print smaller
features by controlling the flow of plastic. On SLA and SLS printers, as well as laser

https://www.thingiverse.com/thing:131054
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cutters, the width of the laser beam, or resolution of the projector, is limiting the
size of both solid and empty regions.

To ensure manufacturability of a 3D model, it is thus imperative to control its
minimum feature size and, in some applications, its minimum hole size. To this end,
morphological operations, such as dilation, erosion, opening and closing are extremely
useful [Williams and Rossignac 2005]. Figure 2.7 illustrates the effect of different
morphological operations on a given shape. In the context of digital fabrication and
computer graphics, methods have been proposed to compute offsets of 3D surfaces
[Chen and Wang 2011; Liu and Wang 2011; Wang and Manocha 2013; Martínez et al.
2015b]. A closely related problem to consider is the thickening of a flat 2D surface.
The offsetting occurs either inwards, or outwards the input surface, and one should
take care to avoid self-intersections [Wang and Chen 2013]. In Section 3.2, I will
introduce an novel algorithm for fast morphological operations in 2D images.

Other Constraints

Part Stability. Parts may topple during printing, either due to weight imbalance
[Chalasani et al. 1995] or under the friction forces of the printing head. The literature
on this subject is very scarce, and I am not aware of any approach that considers
the stability of partially printed parts, at all stages of the printing process, and propose
to correct it in an automatic way. Indeed, while an object may be balanced once
printed, its — possibly disconnected — subparts may not be stable before all layers
are stacked together.

Our support generation algorithm, presented in Section 3.1, takes into account the
partial stability during the printing process, and we propose to adapt our support
structures to take this phenomenon into account. Note that the overall static stability
of a shape, once the object is printed entirely, is a key property to consider when
designing an object for fabrication. This aspect of the design process will be further
discussed in Section 2.2.2.

Print Volume and Segmentation. In Section 2.1.2, we have presented segmenta-
tion techniques to improve the surface quality the printed shapes. However, the
most common reason where one needs to segment a shape, is perhaps to fabricate an
object larger than the print volume allowed by the printer. Not only is it necessary to
decompose the input shape into multiple parts, but those parts need to be arranged
and packed into the allocated print volume as efficiently as possible, to reduce the
number of times one has to operate the printer.

Several approaches have been proposed to decompose and pack a model into a small
number of parts. [Hao et al. 2011] decompose a 3D model according to its surface
curvature. [Luo et al. 2012] proposed an approach to partition a shape into multiple
parts so that they fit into a target build volume. Vanek et al. [2014b] and Chen et al.
[2015b] consider the joint problem of decomposing a shape and packing the parts
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(a) DilationD(S). (b) Erosion E(S).

(c) Closing C(S) � E(D(S)). (d) Opening O(S) � D(E(S)).

(e) Inner-regularization O(C(S)). (f) Outer-regularization C(O(S)).

Figure 2.7 – Effects of different morphological operations on a simple
shape. The input shape is shown in black in (a). Image: [Williams

and Rossignac 2005].

into the given build volume. Attene [2015] explores a user-controllable trade-off
between the number of parts created by the segmentation, and the tightness of the
resulting packing. Yao et al. [2015] consider structural stress among other measures
to assess the quality of their segmentation. Song et al. [2016] propose an approach to
fabricate objects much larger than standard 3D printed build volume by combining
3D printed surface parts with a core skeleton obtained through other methods (e.g.
laser-cutting). Note that other methods offer to decompose a shape into interlocking
elements, which increases the stability of the assembled object [Xin et al. 2011; Song
et al. 2012, 2015].
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2.2 Shape Design for Fabrication

As Section 2.1 was dedicated to the presentation of geometrical constraints, such as
minimum thickness, and overhangs, it is now natural to discuss structural constraints
that should be considered when designing 3D models for fabrication. A structural
constraint denotes any shape characteristic that does not impede the manufacturing
process, yet renders the fabricated object too fragile to be manipulated. A model
that violates geometrical constraints will not print correctly. However, a model that
violates structural constraints but not geometrical ones will print correctly, but is
more likely to break under normal manipulation conditions.

In this section, we are particularly interested in how design tools can assist the user
in analyzing, editing, or synthesizing 3D shapes in a manner that is suitable for fab-
rication. Such tools should consider both the geometrical and structural constraints
mentioned above, and either provide automatic corrections for a particular problem,
or provide an interactive interface to assist the user in fixing the problem manually.

The rest of this section is organized as follows. In Section 2.2.1, we first present
methods for the analysis and simulation of the elastic behavior of 3D printed shapes.
Section 2.2.2 focuses on tools developed to edit and optimize existing shapes for a
particular purpose. Finally, in Section 2.2.3, we extend the discussion to methods that
synthesize new content in a fabrication-aware fashion, either from an incomplete
model definition, or from a more abstract description. This approach proposing
computer-assisted design tools is sometimes referred to as computational design.

2.2.1 Structural Shape Analysis

Given a 3D model to be printed, several works have tried to answer the crucial
question of whether the shape is mechanically sound, or if it will be too fragile once
printed. The initial work of [Telea and Jalba 2011], mentioned in Section 2.1.3, is a
first automated attempt in this direction, but they only analyze geometric constraints,
namely the minimum thickness.

Stava et al. [2012] describe what is probably the first automated solution dedicated
to the analysis of structural fragility in 3D printed models. Their algorithm computes
stress and displacements on a tetrahedral mesh of the model using the Finite Element
Method. They consider two types of loads. The first load is gravity force, which
corresponds to the weight of the object. The second load is grip forces, caused
by the pressure of fingers when a user manipulates the object. After analysis, the
authors propose several ways to reinforce a model in order to meet the structural
requirements. The first option is local thickening, based on an analysis of the medial
axis in regions which are too fragile. The second option is adding struts between two
points of the model. The struts are added using an heuristic compromise between
their mechanical efficiency, and their impact on the object appearance. The last
option, to alleviate the effect of gravity, is hollowing the interior of the shape.
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A subsequent work by Zhou et al. [2013] proposed a more robust, and more generic
approach to shape analysis compared to [Stava et al. 2012]. In [Zhou et al. 2013], the
authors study vibration modes of the input 3D shape, to determine which region
of the model is the weakest. It does so by computing the maximum possible stress
under any pressure distribution on the surface. By making some assumptions on
the pressure distribution, such as bounding the maximum total pressure, or limiting
the pointwise maximum pressure, the system admits a solution. The computation is
also sped up by relying on a coarse tetrahedral mesh at earlier stages of the algorithm.
While the paper showcases impressive results, it remains difficult to suggest design
changes that will alleviate all identified problems. An illustration is given Figure 2.8,
where a bearing bracket is analyzed using [Zhou et al. 2013]. The resulting weakness
map can then be used to compute a spatially-varying microstructure that is more
lightweight in the less fragile regions, thus saving material. More recently, Langlois
et al. [2016] proposed a stochastic approach to analyze the structural weaknesses of
an object, by predicting the probability of failure in the different parts of the model.

In order to achieve the real-time analysis performances necessary for interactive
modeling purposes, further work is required. In [Umetani and Schmidt 2013], the
authors proposed a different analysis technique suitable for interactive applications.
It their work, they consider bending forces to analyze cross sections of a 3D model,
which are modeled according to the Euler-Bernoulli beam theory. By computing
bending moments, they are able to determine quickly which cross section of an
object is more likely to break, without the need to solve an expensive FEM equation.
This is especially important in the context of filament 3D printers, where printed
objects have much stronger cohesion in the XY direction, but can delaminate in the Z
direction. It is thus desirable to orient weak cross sections of the model orthogonaly
to the Z direction of the print. The method presented in [Umetani and Schmidt 2013]
has some limitations, in particular behaviors which are not well captured by the
underlying theoretical framework, such as buckling, certain problematic boundary
conditions — e.g. a bar held by both extremities —, or round intricate objects — e.g.
Voronoi Sphere (thing:221740).

In another effort to provide real-time simulation feedback for interactive shape
modeling, Xie et al. [2015] proposed a method based on domain decomposition
and local computation, to provide interactive information about the edited model.
Finally, in a recent paper, Xu et al. [2016] augment the cross sectional analysis strategy
of [Umetani and Schmidt 2013] with information about the curve skeleton of the
analyzed shape, seemingly producing more accurate results. They also rely on the
shape skeleton to propose corrections to the model via e.g. local thickening.

2.2.2 Design Editing for Fabrication

Ascertaining the printability of a given shape is an essential step in the printing
pipeline. However, this does not always suggest what is the best way to edit the
design of an existing model in order to achieve a desired functional goal. For

https://www.thingiverse.com/thing:221740
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(a) Potential defects can be detected by analyzing vibration modes [Zhou et al. 2013].

(b) Microstructure generated procedurally with our method presented Section 5.1.

(c) Model printed on a ZCorp 450.

Figure 2.8 – To reduce the material cost of a print, a lightweight
internal structure can be devised, with a higher density in the more

fragile regions. Model: thing:994788.

https://www.thingiverse.com/thing:994788
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example, one may want to print non-assembly articulated models [Bächer et al. 2012;
Calì et al. 2012], balance a shape so that it can stand in an arbitrary orientation
[Prévost et al. 2013], or optimize the interior of an object to maximize its strength-
to-weight ratio [Lu et al. 2014]. In this subsection, we present some of the related
work most relevant to this thesis, in particular for the purpose of shape balancing,
and multi-purpose criteria that can arise in shape editing.

Balancing Shapes

The problem of balancing shape has gained a distinct interest in the computer
graphics community since the publication of Make It Stand [Prévost et al. 2013]. The
idea of the paper is that, given a input shape and an arbitrary orientation, one must
compute a modified shape that, once printed, can stand in static equilibrium in
the given orientation. The modifications to the input shape must minimal, so as to
preserve its appearance. While conditions for static equilibrium are well known —
the center of mass of the shape needs to vertically project in the 2D convex hull of
its points in contact with the ground —, the idea of an automatic process targeted
for digital fabrication really spurred a new trend. An illustration of the process is
shown Figure 2.9.

On the technical side, Prévost et al. [2013] and most of its follow-ups rely on similar
principles. To remove excessive interior weights, hollowing is carried out on a
voxelized version of the volume mesh [Prévost et al. 2013; Bächer et al. 2014], or
in directly in a tetrahedral mesh [Christiansen et al. 2015b]. Rotations or small
local deformations can also be applied to better achieve the target objective. In a
recent paper, Wu et al. [2016b] present a different framework to optimize the material
distribution of interior volumes. Their approach is based on ray-reps representations,
such as the dexels described in Section 2.1.2. Ray-reps are an efficient representation
of volumetric data that are very simple to process and update, hence their interest
for interior volume design.

While Prévost et al. [2013] were concerned only with the static equilibrium of
standing or suspended shapes, subsequent work has explored other balancing
objectives. Bächer et al. [2014] optimize the rotational stability of spinning tops, by
aiming for the lowest possible center of mass. Christiansen et al. [2015b] achieve
the same objective as [Prévost et al. 2013], but with a different approach: instead
of deforming the surface shape, they propose to rotate the model around its base,
producing less noticeable changes, at the expense of more limited possibilities.
Other works seek to optimize the floating properties of printed objects [Wang and
Whiting 2016], or create roly-poly toy [Zhao et al. 2016a].

Please note that static equilibrium of shapes has also been extensively studied in
the context of architectural design and masonry buildings. Some references in the
computer graphics literature include [Whiting et al. 2009; Vouga et al. 2012; Whiting
et al. 2012; Song et al. 2013; Panozzo et al. 2013; Deuss et al. 2014; Pietroni et al. 2015;
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Frick et al. 2015]. A recent study comparing finite element analysis and stability
analysis for masonry buildings is presented in [Shin et al. 2016].

(a) Left: Input model. Right: Balanced model. (b) Printed result standing.

Figure 2.9 – Automatic shape balancing from [Prévost et al. 2013]. An
unoptimized model is given as input to the system, which is allowed
to slightly deform its surface, and carve its interior, to produce a
balanced shape under the prescribed scenario (upright direction,

contact points with the ground).

Multi-Objective Optimization

In an effort to develop an efficient shape optimization framework for typical problems
that arise in the context of digital fabrication, Musialski et al. [2015, 2016] presented
two generic optimization procedure, and demonstrate their effectiveness on a variety
of specific problems.

In their first paper, Musialski et al. [2015] cast the shape optimization problem as a
sizing problem, where the thickness of an offset surface is to be determined according
to a certain objective function. By parameterizing the offset displacements using
harmonic manifolds — the equivalent of Fourier transforms for meshes [Vallet and
Lévy 2008] —, and solving the optimization problem by projecting in the subspace
spanned by only the first few vectors of this new harmonic manifold basis, they are
able to quickly solve problems with a large number of variables.

Their method was later extended in [Musialski et al. 2016]. This second approach is
designed for multi-objective optimization, where the goal is to minimize a weighted
sum of different shape properties ϕi . The shape is parameterized by a set of
parameters α, which constitute the variables of the system. The key insight of
[Musialski et al. 2016] is to perform a dimensionality reduction that maps α to a set
of reduced parameters β, which decorrelates their influence on the shape properties
ϕi . A linear mapping B such that α � Bβ, is computed. The matrix B is computed

from the current state of the system, using the gradients ∂ϕ
∂α .

The algorithm then runs two nested loops. In each outer iteration, the matrix B

is recomputed, so as to decorrelate the variables α, and reduce the dimensionality
of the problem. In each inner iteration, the reduced problem is solved using
classical gradient-based methods like Quasi-Newton or Levenberg-Marquardt. The
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algorithm is applicable to non-linear and constrained optimization problems, and
does not rely on a harmonic manifold basis to perform the dimensionality reduction.
We note however that when there is only one shape property ϕi to optimize, the
outer loop simply amounts to a dimension reduction much like in the previous
paper [Musialski et al. 2015].

2.2.3 Computational Design, Shape Synthesis and Completion

The term computational design encompasses a broad category of techniques, that
aim at integrating physical considerations into all sorts of design tools. While an
exhaustive overview is beyond the scope of this thesis, we present here a selection
that is the most relevant to our work. In particular, we focus on tools for shape
synthesis and shape completion, where new content is generated from more high-
level, possibly incomplete, specifications. The work presented in this thesis, in
particular Chapter 4, can be seen as an instance of computational design, where
physical constraints are taken into account in the design process, and optimized
together while considering the appearance of the synthesized shapes. Synthesis
methods for appearance optimization, but without considerations for fabrication,
will be discussed next in Section 2.3.

Dedicated Tools. A recent line of work in computer graphics that concerns — for
lack of a better term —, dedicated tools for computational design purposes. Tackling
one goal at a time, several specialized solutions have been proposed. For example,
Umetani et al. [2011] developed an interactive tool for garment editing that directly
integrates physical simulation. In [Umetani et al. 2012], the authors explore a range of
physically valid furniture designs. More generally, Shugrina et al. [2015] developed
a tool for the intuitive exploration over a set of physically sound parametric models.
In [Umetani et al. 2014], a data-driven method for the drawing of model airplanes
is presented. Martin et al. [2015] present an application for creating functional kite
designs. Applications to sound are also emerging, e.g. for the design of musical
instruments with custom shapes [Umetani et al. 2010; Bharaj et al. 2015; Umetani
et al. 2016].

Mechanical Characters. The design of animated mechanisms reproducing a given
movement has been investigated in [Coros et al. 2013; Ceylan et al. 2013; Thomaszewski
et al. 2014]. Bächer et al. [2012] and Calì et al. [2012] study how to model and fab-
ricate articulated characters without assembly — the articulated model is printed
as a single piece. The challenge lies in designing and placing the joints on a given,
non-articulated input shape. Megaro et al. [2014] present an intuitive interface to
model 2D mechanisms. Hergel and Lefebvre [2015] optimize the 3D layout of a
mechanism, given partial information about its 2D configuration, while improving
the robustness of the fabricated design.
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Elastic Shapes. Several methods have been proposed to synthesize objects that
can be deformed or animated with flexible materials. Skouras et al. [2012] design
rubber balloons which take a prescribed shape once inflated. Skouras et al. [2013]
animate characters with a small number of actuators, so that it can assume a target
shape — the algorithm computes the number and position of the actuators, as well
as material distribution that will allow the desired motion (Figure 2.10). Chen et al.
[2014] solve an inverse problem to compute the rest shape of a deformable model
that will assume the desired shape under the effect of gravity once printed. Note
that inverse elastic shape design has been previously employed in the context of
animation and hair simulation [Derouet-Jourdan et al. 2010, 2013]. More recently,
the design of flexible rod meshes has been investigated in [Pérez et al. 2015].

Figure 2.10 – Synthesis of deformable characters [Skouras et al. 2013].
A material distribution mixing two different materials is optimized,
so the fabricated shape can deform according to a prescribed scenario.
The characters are then animated using a small number of actuators.

2.3 By-Example Shape and Texture Synthesis

An important part of this thesis is dedicated to controlling the appearance of an
object during the model synthesis, and how it can affect the mechanical properties
of the printed structures. Appearance control can be achieved by multitude of
methods, two of which are by-example approaches, and procedural evaluation of
implicit functions.

By-Example Synthesis. The goal of by-example synthesis methods is to produce
new content from a user-given input exemplar, in a way that preserves its appearance.
One of the first application of by-example synthesis is texture synthesis [Efros and
Leung 1999; Wei and Levoy 2000], where an low-storage input image is used to
generate a high-resolution texture. If the algorithm can compute its result in real-
time, it can be integrated into video games and other interactive applications.
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There are different ways to classify texture synthesis techniques. One can distinguish
whether the synthesis is performed in 2D, on a surface (embedded in 3D space), or
directly in 3D (volume synthesis). One can also distinguish between raster texture
synthesis (where the exemplar is a 2D or 3D array of pixels), and vector texture
synthesis (where we manipulate polygonal lines, Bezier curves, or 3D meshes instead
of regular grids of pixels).

Despite those different categories, most by-example texture synthesis algorithms
can be decomposed into three essential steps. First, the output domain is filled with
an initial guess — random values, or patches copied from the input image. Second,
neighborhood matching is performed: for every pixel in the output image, find a
good location in the input that shares the most similar neighborhood. Third, update
the output pixels according to some criteria — vote from the adjacent pixels, gradient
direction of an energy function, etc. In any case, the appearance of the output image
is evaluated locally, by calculating how much each pair of matched input/output
neighborhoods are similar. This is an important property, as it means the usual
texture synthesis methods cannot reproduce images with a highly structured content
(e.g. a building), for which further work is necessary. Figure 2.11 illustrates the
principle of 2D texture synthesis, and Figure 2.12 presents different strategies for
the neighborhood search.

By-example texture synthesis techniques were the first approaches to try to repro-
duce appearance based on an input exemplar. Later, other methods have emerged,
that attempt to capture and reproduce more structured data, such as geometric
patterns [Bhat et al. 2004; Lagae et al. 2005; Zhou et al. 2006], or even entire 3D
models [Merrell 2007]. We build upon these works, and present in Chapter 4 several
example-based shape synthesis methods that not only generate structured objects,
but also take into account their mechanical properties.

Procedural Synthesis. Another approach for content generation with controllable
appearance is achieved via procedural synthesis methods. While the term itself is
very generic, we restrict our definition of procedural approaches to functions of
space F (x) that can be evaluated efficiently and with a local support. This generally
includes the evaluation of mathematical functions defined implicitly, fractals, shape
grammars, etc. In computer graphics, the first methods dedicated to the synthesis
of solid (3D) textures were using procedural functions [Peachey 1985; Perlin 1985].

Shape grammars, which we do not discuss further in this thesis, are another powerful
tool for the procedural synthesis of complex structures. Since the original develop-
ment of L-systems for the modeling of plants [Lindenmayer 1968a,b; Prusinkiewicz
et al. 1988], shape grammars have proven an effective approach to generate highly
structured content, such as urban landscapes [Vanegas et al. 2010], or buildings that
can be 3D printed [Kalojanov et al. 2016].

Note that procedural and by-example approaches are not mutually exclusive: a
procedural synthesis method can rely on exemplar images and aim at synthesizing
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visually similar content, e.g. to produce an “infinite zoom” effect with on-the-fly
texture synthesis [Han et al. 2008; Vanhoey et al. 2013]. In this thesis, we propose
in Section 5.1 a procedural approach for the generation of microstructures with
controllable elastic properties inside a given volume.

Summary. The rest of this section is organized as follows. In Section 2.3.1, we
present existing techniques for 2D content synthesis, whether it is restricted to the
2D plane, or to a surface embedded in 3D. The focus is put on by-example synthesis
methods, which encompasses geometric texture synthesis and style transfer. In
Section 2.3.2, we extent the discussion to volume synthesis methods, again with a
stronger focus on by-example approaches. Note that we only discuss techniques
that are the most relevant to our work, or that we find inspiring in the context of
fabrication and structural optimization. For a more comprehensive survey up to
2009, regarding by-example texture synthesis methods in general, the interested
reader is referred to [Wei et al. 2009]. Finally, in Section 2.3.3, we move the discussion
from unstructured to structured content generation, while keeping the emphasis of
by-example synthesis methods. Structured content generation imposes additional
constraints, which are not present in unstructured pixel-based synthesis methods.

Figure 2.11 – 2D texture synthesis [Ashikhmin 2001]. An input
exemplar (left) is used to synthesize a larger image (right). The
synthesis can be driven by a feature map painted by the user (middle).

2.3.1 Surface Synthesis

By-Example 2D Texture Synthesis

The initial methods for by-example texture synthesis are based on Markov Random
Fields [Efros and Leung 1999; Wei and Levoy 2000]: a probabilistic model is defined
by sampling neighborhoods from the exemplar. These approaches are not trivially
amenable to our context due to the stochastic nature of the optimization process.
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Figure 2.12 – Neighborhood search. To find the input neighborhood
the most to a given output neighborhood, different acceleration strate-
gies can be employed. In addition to speeding up the matching step,
restricting the neighborhood searches to coherent candidates can also

prevent the synthesizer from getting stuck in a trivial solution.
(Image courtesy of [Busto et al. 2010].)

Kwatra et al. [2005] proposed a different point of view of the problem which is based
on formulating an energy — the pixels of the output image being the variables. By
optimizing this energy a new image is synthesized which resembles the example.
We adopt this point of view in Section 4.2 to define the appearance energy relating
the produced shape to the exemplar.

In recent work, Wu et al. [2014] present a texture synthesis method based on a
level-set representation of the texture. In [Kaspar et al. 2015], the authors present a
self-tuning, non parametric method to generate various high resolution textures.

Few works have considered both texture synthesis and fabrication. [Zhou et al.
2014b] synthesize patterns along curves while precisely controlling their topology.
The results can then be laser-cut or 3D printed as they form singly-connected objects.
It is however essentially a one-dimensional synthesizer and the approach does not
consider the structural properties of the generated objects.

Finally, closer to our goals, [Zhou et al. 2014b] synthesize fabricable patterns along
a curve, from an example. This approach is specifically designed to synthesize
patterns with controlled topology.

Synthesizability of Textures Exemplars. Not all images provide good exemplars
suited for texture synthesis techniques. Dai et al. [2014] discuss the problem of
finding good candidate images for synthesis purposes. Categorization of textures
is also discussed in [Lefebvre 2014], and in Section 4.1.5. Stochastic textures which
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exhibit little structural elements will be the easiest to synthesize, while images with
very distinguishable features (such as letters of an alphabet) will be very hard to
synthesize without specialized algorithms.

By-Example Texture Synthesis on Surfaces

The principle of texture synthesis on surface is illustrated Figure 2.13. Turk [2001]
and Wei and Levoy [2001] adapt the image-based approaches comparing small
neighborhoods of colors to work along a mesh surface, considering densely tes-
sellated meshes with per-vertex colors. Tong et al. [2002] proceed similarly but
synthesize in every vertex a texton label capturing a BTF1 appearance. A drawback
of these techniques are the dependency on tessellation and the resampling required
when working with distorted neighborhoods along the surface. Ying et al. [2001]
synthesize the texture in a parametric space: the surface is divided into planar
charts into which synthesis is performed, and the result is mapped back to the
surface. A similar methodology is used by Lefebvre and Hoppe [2006] in a scheme
that performs parallel texture synthesis into the pixels of a texture atlas. These
approaches are relatively complex as they have to cope with parametric distortions,
discontinuities at chart boundaries, and sampling issues.

Praun et al. [2000] perform synthesis along a surface by applying many texture
patches with irregular boundaries so has to give the illusion of a continuous texture.
Soler et al. [2002] optimize a set of texture coordinates for the triangles with the
objective of producing a visually seamless texture along the surface. Recently,
Gagnon et al. [2016] proposed an atlas-based texture synthesis method for texturing
fluids.

To create texture maps of scanned 3D models, Lempitsky and Ivanov [2007] and
Gal et al. [2010] align photographs with the geometry an then formulate a labeling
problem to select one image for each triangle. In a more recent work, Pagés et
al. [2014] create a texture atlas from multiple photographs of the model. Our
synthesizer presented Section 4.1 takes a labeling view similar to [Lempitsky and
Ivanov 2007; Gal et al. 2010], using randomly positioned texture planes and voxels.

All these approaches only generate colors along the surface and do not modify the
underlying geometry of the model.

By-Example Geometry Synthesis

A number of approaches have been proposed to go beyond color synthesis, and
generate geometric details along the surface of an object.

Bhat et al. [2004] synthesize geometric details using the by-analogy approach initially
developed for images [Hertzmann et al. 2001]. The geometry is captured by voxels

1Bidirectional Texture Function, a 6D function modeling spatially varying reflectance properties.
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Figure 2.13 – Texture synthesis on surface [Lefebvre and Hoppe 2006].
A texture atlas (middle) is synthesized automatically from an input
exemplar (left), and then mapped onto the target surface (right).
Note the distortions introduced in the texture atlas, even though
the resulting surface appears undistorted. Dealing with distortions
through texture mapping and multiple indirections is a tedious step

unavoidable in most texture synthesis methods.

and a distance field, and therefore the synthesizer is free to carve and sculpt the
object. The scheme is based on voxel neighborhoods and therefore requires the input
exemplar to be a small 3D pattern with geometric details. Lagae et al. [2005] perform
geometry synthesis of 3D patterns by comparing blocks of voxels in a distance field.

All the aforementioned approaches employ a 3D version of the 2D neighborhood
matching of texture synthesis. Comparing voxel neighborhoods in a volume through-
out the object is computationally expensive, as it requires to process a significant
amount of volume data through the multi-scale neighborhood dependencies. It
contrast, our scheme presented Section 4.1 performs synthesis in a set of voxels
representing the surface, but it maintains a one-voxel thickness across all scales, and
does not involve comparing 3D neighborhoods of voxels.

Zhou et al. [2006] synthesize a detailed mesh around a guiding surface mesh by
stitching together geometric elements cut out from an input example geometry. The
elements are deformed, aligned and stitched to produce a continuous result which is
grown in a parametric domain around the model. Impressive patterns are obtained,
the main drawbacks being the need to define elements in an input mesh and
the geometric distortion in high curvature regions which would make fabrication
delicate. Another approach, presented in [Li et al. 2011], relies on shape grammars
instead of exemplars, to provide control over the synthesized geometry. These
approaches are not designed to guarantee connectivity or structural soundness.
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Style Transfer

Style transfer is a variant of by-example synthesis where the process is guided to
enrich existing content with details. Hertzmann et al. [2001] pioneered this idea
by proposing to transfer details specified by a pair of images A:A’ to produce an
image B’ from a different source image B. Recent approaches have explored how
to exchange styles within and across collections of shapes [Xu et al. 2010, 2012; Li
et al. 2013; Han et al. 2014; Ma et al. 2014]. These approaches typically require a
collection or a pair defining style by analogy, which are not available in our context.

Ma et al. [2014] transfer the style of a mesh to another, using the by-analogy
framework to guide an automated copy-paste of geometric patches. This work
addresses large scales models while we focus on synthesizing small scale patterns.

Our work Section 4.2 jointly optimizes appearance and structural objectives, instead
of transferring style after the facts. The global structure therefore emerges from the
details of the pattern, which becomes an intrinsic part of the final shape.

2.3.2 Volume Synthesis

Section 2.3.1 presented methods for synthesizing image textures or geometrical
details on surfaces. It is natural to consider extensions to volume synthesis, where
the goal is to generate content in 3D volume, called a solid texture. The first approaches
for solid texture synthesis were based on procedural textures, and are discussed briefly
in Section 2.3.2. In Section 2.3.2, we focus on by-example methods for solid texture
synthesis. Finally, in Section 2.3.3, we briefly discuss techniques that aim to go
beyond 3D arrays of voxels, and whose goal is to create more structured content, in
a by-example manner. Note that a survey on solid texture synthesis can be found
in [Pietroni et al. 2010]. Procedural aspects of volume synthesis for microstructure
generation is discussed next in Section 2.4.

Procedural Textures

The idea behind procedural textures, is to define an efficient function, that can be
evaluated in constant time and space, at the rendering stage, to display the said
texture. Solid textures were first introduced by Peachey [1985] and Perlin [1985], as
space-filling color functions F : R3 → [0, 1]3. If F can be represented compactly,
and independently of the resolution at which one evaluates F (x), then one can
produce high-resolution objects at low cost, or at least in a very scalable way. An
important class of procedural noise, from which we draw inspiration in Section 5.1,
is Worley noise [Worley 1996], which is based on Voronoi diagrams.

The notion of solid texture was extended to hypertextures, in [Perlin and Hoffert
1989]. The difference from regular solid texture lies in the function F : R3 → {0, 1},
which now defines the boundary of the object it represents, and not just its color.
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For further reading on solid textures and hypertextures, the reader is referred to the
comprehensive book of Ebert et al. [2003].

Procedural noises can also be defined by means of fractals. In a recent publication,
Kim [2015] demonstrated impressive results, where parameters of Julia sets are
optimized to fit a prescribed 3D model.

By-Example Solid Textures

The goal of by-example solid texture synthesis is to create a volumetric texture from
a set of 2D exemplars [Wei 2002]. In most cases, the input exemplar is simply a
triplet of 2D images, one for each axis. Starting from 2D exemplars affords easier
artistic control than having to require volumetric data as input. The target domain
is generally a 3D array of voxels representing the volume to be filled. Note that for
large domains this can become quite prohibitive and this limitation often restricts
the use of solid textures in practice. The principle of solid texture synthesis from
2D exemplars is illustrated Figure 2.14.

A first class of algorithms for by-example solid texture synthesis stems from the
work of [Jagnow et al. 2004]. In this work, the authors apply techniques from
stereology to derive a 3D texture from patterns made of particles. The field of
stereology is the study of three-dimensional properties of objects from measures
observed in two-dimensions. The main drawback of [Jagnow et al. 2004] is that
their method requires an explicit modeling of the particle shapes, which has to
be done manually. More recently, Du et al. [2013] and Shu et al. [2014] presented
other methods specialized to textures made of particles, improving upon the work
of Jagnow et al. [2004]. Both techniques remove the limitation of having to model
the particle shapes explicitly. Du et al. [2013] reconstruct the 3D shapes of the
particles to be distributed in the solid texture, allowing for the synthesis of regular
or semi-regular arrangements compared to [Jagnow et al. 2004]. Shu et al. [2014]
avoid the expensive step of reconstructing 3D shapes, and represent particles by
single points, using a spring-mass system to distribute the sample positions in space.

Techniques for more general families of pattern have been also developed. Qin and
Yang [2007] presented a framework for the synthesis of gray-scale textures. However,
because of the strong correlation of color channels in most texture exemplar, this
work in not suited to the synthesis of solid color textures. Kopf et al. [2007] proposed
an automated solution for a unstructured color textures, which produced better
results than the seminal work of [Wei 2002]. In their work, Kopf et al. perform
an energy minimization à la [Kwatra et al. 2005], and rely on orthogonal 2D slices
to compute neighborhood similarities. Computing information in a dense voxel
grid can be very expensive for large objects. To make the synthesis more efficient,
Takayama et al. [2008] proposed to extend the Lapped Texture method from [Praun
et al. 2000] to the synthesis of overlapping patches of textures over a tetrahedral
mesh of the volume.
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Another approach to accelerate the synthesis in a voxel grid is to perform lazy
evaluation as presented in [Dong et al. 2008]. Only the voxels of the visible surface
of the model need to be synthesized. This drastically reduces the time complexity of
the synthesis compared to [Kopf et al. 2007], affording real time computations. This is
another way to achieve surface texture synthesis, and is closely related the synthesis
method we present in Section 4.1. Note, however, that the approach of Dong et al.
still requires to process a significant amount of voxels, through multiresolution
schemes and 3D neighborhoods evaluations. In contrast, our texture synthesis
method Section 4.1 requires only a thin voxel layer on the surface, and operates
directly on 2D surfacic neighborhoods, without the need for any parameterization
of the surface.

Finally, given a solid texture with a distance field channel, Wang et al. [2010] present
a method to convert the 3D texture into a vector representation, affording high
resolution rendering with a relatively compact storage. This is the solid texture
equivalent of vector textures for surfaces [Ray et al. 2005; Nehab and Hoppe 2008].

Figure 2.14 – Solid texture from 2D exemplars [Dong et al. 2008].
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(a) Three orthogonal images are used as input (left). The appearance is evaluated by matching
neighborhoods from each exemplar across three orthogonal slices in the synthesized volume.
Compared to matching full volumetric neighborhood, the computational complexity is much

reduced, while preserving the coherence of the result.

(b) Solid texture synthesis results from [Dong et al. 2008].
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By-Example Discrete Element Synthesis

Another way to represent a texture is as a set of distinct elements (e.g. flowers,
pebbles) packed together following a certain spatial arrangement, which can be
interpreted as a special case of vector-based solid textures. The idea of particle-
based texture synthesis was pioneered by Dischler et al. [2002], and in real-time by
Lefebvre and Neyret [2003]. Barla et al. [2006] presented a method to synthesis a set
of stroke patterns following a Poisson disc distribution. Ijiri et al. [2008] proposed
an alternative approach based on local growth of connected patched, allowing more
control (e.g. orientation flow) at the expense of some global coherence. Hurtut
et al. [2009] improved upon these works by analyzing input exemplars to determine
element types automatically, and proposed a multi-type point sampling process to
synthesize a distribution of heterogeneous elements similar to a given exemplar.
Landes and Soler [2009] further explore the issue of extracting a set of distinct
elements from a pixel image. The issue of synthesizing arrangements of discrete
elements has been further investigated in [Passos et al. 2010; Öztireli and Gross
2012; AlMeraj et al. 2013a]. In [AlMeraj et al. 2013b], the authors compare to the
aforementioned methods by evaluating the perceptual quality of various results.

A more general approach has been proposed in [Ma et al. 2011, 2013], where each
element is represented by a set of sample points (in 2D, 3D, and even ND), which
allows manipulating elements of various shapes. The technique is illustrated Fig-
ure 2.15. The approach is based on an energy minimization technique. The elements
can be rigid or deformable, and the neighborhood matching and appearance energy
is computed using the point samples only. Landes et al. [2013] fix some of the
shortcomings of [Ma et al. 2011] — such as shape interpenetration, or dependence
on the initialization — by relying on simplified shape proxies, and use a stochastic
process to synthesize the output distribution. Sakurai and Miyata [2014] — although
not exactly a by-example approach — proposed a method to model piles of dense
aggregate elements, by refining a random distribution of elements on a target shape.

More recently, Roveri et al. [2015] further improve upon the work of [Ma et al.
2011, 2013], by proposing a gradient-based optimization framework that decouples
the similarity measure from the sample locations. This leads to a more robust
behavior towards bad initial states, and allows the use of a multiresolution scheme
to synthesize details of different scales more efficiently. They also use a more robust,
two-way, matching metric, which compares positions of samples in both input and
output neighborhoods.

Finally, in the context of fabrication, a recent approach proposed by Schumacher
et al. [2016] optimizes the position and the size of a holes on a given surface, and the
contours of the holes are described by discrete elements. They combine the point
distribution metric from [Ma et al. 2011, 2013] with an evaluation of the mechanical
behavior of the resulting object. This is closely related to our work, especially
Section 4.3. In Section 4.4 we discuss in more details the differences between this
concurrent work and the approaches developed in this thesis.
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Figure 2.15 – Texture synthesis with discrete elements [Ma et al.
2011].

(1) Exemplar. (2) Pixel-based synthesis. (3) Element-based synthesis.

(a) 2D synthesis. Left: Input exemplar. Middle: Result from standard pixel-based texture
synthesis. Note how the elements are not correctly preserved. Right: Texture synthesis
result using discrete elements. The elements are preserved and their spatial arrangement

matches that of the input exemplar.

(b) 3D synthesis. The same algorithm presented in [Ma et al. 2011, 2013] can handle both
2D, 3D, and 4D (videos) synthesis. The logs used as an exemplar (left) provide an easy way

for the user to model a wooden house (right).

2.3.3 Structured Content Synthesis

Moving away from synthesis of unstructured data, there has been a progress to-
wards by-example generation of structured content, be it 2D images or 3D models.
For instance, Ramanarayanan and Bala [2007] propose an example-based texture
synthesis method, guided by a constraint mask that captures the structure of the
exemplar image. With a more specialized goal in mind, Lefebvre et al. [2010] synthe-
size architectural facades by combining seam carving techniques and patch-based
texture synthesis methods. More recently, with applications to digital fabrication,
Zhou et al. [2014b] generate 1D patterns along curves while precisely controlling
their connectivity. While this method can be applied along a first direction ®u, and
applied a second time along a second, orthogonal, direction ®v, to give the effect of a
2D synthesis, it is in practice difficult to extend it to form a true 2D pattern synthesis
method. Moreover, connectivity is only one of the geometric constraint presented
in Table 2.1, and does not cover structural defects mentioned Section 2.2.1.
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Concepts from image texture synthesis inspired new developments in another line
of work, called model synthesis. The idea of by-example model synthesis was first
proposed by Merrell [2007], and was later improved in subsequent works [Merrell
and Manocha 2008, 2011]. Their approach relies on constraint-based modeling:
the algorithm start from a set of possible states, and greedily assigns values while
ensuring that constraints are satisfied. Consequently, the synthesized result is
guaranteed to be locally coherent with respect to the input object. While this family
of methods work well on architectural models and objects with local similarity,
objects with global structures cannot be captured by their local rules.

Repetitive structures is an important part of identifying and synthesizing structured
content. Huang et al. [2014b] detect near-regular structures repeated on the surface
of 3D models. Duplicating regular structures often provides a more appealing
alternative to stretching when sculpting deformable models [Milliez et al. 2013;
Rohmer et al. 2015]. Part-based modeling introduces a high number of constraints
to ensure consistency of adjacent pieces being built together. Consequently, the
underlying combinatorial quickly becomes too expensive, requiring trade-offs, such
as restricting the search space for valid configurations [Liu et al. 2015a].

Drawing from different texture synthesis techniques, Lee et al. [2012b] present a
method to synthesize new shapes from existing 3D distance field exemplars. This
allows retargeting or editing of an existing model, or creating a new object altogether,
based on an input exemplar. In the context of fabrication, a recent approach by
Kalojanov et al. [2016] uses shape grammars to produce variations of an input shape,
in a way that is suitable for manufacturing.

Finally, other recent techniques combining appearance and structured synthesis in
the context of digital fabrication have been proposed recently. Chen et al. [2016] and
Zehnder et al. [2016] synthesize curve patterns on a surface while considering their
structural soundness. Schumacher et al. [2016] distribute elements on a surface and
carve out their contour from the input mesh. Note that these works are not only
concurrent to ours, but also very similar in spirit to what is presented Chapter 4.
Thus, the similarities and differences with our work are discussed at greater lengths
Section 4.4.

2.4 Infill Patterns and Microstructures

In this section we discuss the synthesis of internal structures for additive manufac-
turing. When printing a solid object, it is often not desirable to fill the whole volume
with the solid material, as it often increases the material cost and print time. Thus,
a variety of infill patterns are employed to fill the internal volume with more or less
dense structures (see Figure 2.16). The goal is usually to find a good compromise for
the strength-to-weight ratio, so that the shape does not break once printed, but still
saves time and material. Internal structure synthesis can be seen as a very simple
form of texture synthesis, where a periodic base tile element is repeated through
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the target volume to fill the interior of a shape. However, internal structures do not
have to be defined by a periodic pattern: the structures can be optimized globally,
or defined via an aperiodic noise function for example, as we will see Chapter 5.

Moreover, if the scale of the pattern is small enough, the microstructures thus gener-
ated can also affect the average mechanical properties of the solid object as a whole.
The equivalent material thusly obtained, from a block of matter filled by a certain
microstructure, is called a meta-material (as it denotes a new material made from an
arrangement of a different base material).

The rest of the section is organized as follows. In Section 2.4.1, we present techniques
for synthesizing internal structures in a volume, for the purpose of strengthening
an object, or for tiling a prescribed micro-geometry in a efficient manner. In
Section 2.4.2, we discuss approaches for modeling and designing objects made of
multiple materials. Finally, in Section 2.4.3, we present work related to the design
and analysis of the mechanical properties of such microstructures.

(a) Direction parallel. (b) Contour parallel. (c) Hilbert curve. (d) Fermat spiral.

Figure 2.16 – Example of infill patterns that can be used to fill a shape.

2.4.1 Internal Structures

Structural Reinforcement

One of the main objective of infill structures is to minimize the amount of material
required to fill a given printed volume, while maximizing the structural strength the
physical object has to meet. We note that other objectives are possible. For example,
Zhao et al. [2016b] seek to create a connected infill path with low curvature, in order
to maximize the print speed and quality on filament printers.

A simple choice of infill pattern with good strength-to-weight ratio is rhombic infill
[Lefebvre 2015]. It has the advantage of being easy to print on filament printers, as
the overhangs constraints are straightforward to satisfy. Rhombic infills have also
received some recent interest in the literature [Wu et al. 2016c; Lee and Lee 2016].

In the computer graphics literature, [Wang et al. 2013] is one of the first work
that seeks to maximize the rigidity of an internal structure. The algorithm (see
Figure 2.17) optimizes parameters of a truss network, in a manner similar to the
topology optimization methods detailed in Section 2.5. The algorithm starts from a
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ground structure comprised of beams connecting vertices offseted from the outer
surface. Then, a multi-objective scheme is presented, where the goal is to minimize
both the volume of the total frame structure, and the number of beams in the final
design. A number of constraints are also enforced, so as to prevent excessive elastic
deformation or buckling, guarantee minimum thickness, etc. The optimization
process operates in two interleaved steps, one that optimizes the topology of the
structure (by selecting beams from the ground structure), while the other only
changes the geometry (positions and radii > rmin) of the selected beams.

Lu et al. [2014] proposed another approach based on distributing Voronoi cells in the
volume, and define a honeycomb-like interior structure with closed walls separating
the cells. Their algorithm distributes seeds in the target volume, and then iteratively
merges neighboring seeds, or updates the amount of hollowing inside individual
cells in a stochastic manner. A stress map is computed according to gravity, user-
defined loads and attachment points, and is used to drive the hollowing process
until a local stress threshold is met. While closed cells are stronger than their open
cell counterparts , one disadvantage is that they are not well suited for powder-based
printers or stereo-lithography techniques, where the based material needs to escape
the interior volume (Figure 2.2d).

Other works have also considered interior volume optimization with structural
objectives. Li et al. [2015] use the cross-sectional analysis from [Umetani and
Schmidt 2013] to drive the density of a mathematically defined procedural structure
inside a 3D model. Zhang et al. [2015c] optimize a frame structure similar the one
presented in [Wang et al. 2013]. The main difference is that the algorithm in [Zhang
et al. 2015c] is based on a tree structure computed from the medial axis of the shape,
so the algorithm can produce results with more internal struts.
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Figure 2.17 – Optimization of internal structures [Wang et al. 2013].
The interior of a given model is filled with beams, whose radii are
optimized (potentially removing them), to reduce the material cost

while ensuring structural soundness of the printed shape.

Efficient Microstructure Generation

Procedural functions — in the sense of hypertextures defined Section 2.3.2 — where
used as early as in 2000 in the context of additive manufacturing, to define the
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material composition within a volume [Park et al. 2000]. Chen [2007] use a texture
mapping approach to fill a CAD model with a predefined 3D microstructure. This
allow for the generation of a variety of patterns by just changing the definition of
the base tile.

Pasko et al. [2011] considered procedural definitions of periodic microstructures.
The parameters of the microstructures can vary spatially to produce graded materials
[Fryazinov et al. 2013], for instance to reinforce an object following a cross-sectional
stress analysis [Li et al. 2015]. Brennan-Craddock [2011] computes the intersection
of the object and periodic microstructures on a per-slice basis. A frame structure
is built on the object surface by subtracting the microstructure cells from a thick
surface shell. The surfacic frame structure presented Section 5.1.4 follows a similar
intuition for the case of Voronoi foams. OpenFAB [Vidimče et al. 2013] provides a
specialized language to describe procedural microstructures. The geometric details
are efficiently evaluated at slicing time, streaming voxels to the printer. Similar
to these approaches, we evaluate the microstructures procedurally during slicing.
However, the microstructures presented Section 5.1 are aperiodic graded foams
whose Young’s modulus is directly and precisely controlled.

Recent works consider the problem of generating non-periodic microstructures with
varying density. Brackett et al. [2014] perform a sequential dithering of a density
field to keep a subset of points, which are then used to define an open-cell foam.
The adaptive voids approach [Medeiros e Sá et al. 2015] relies on a subdivision
scheme to produce denser structures near the surface of an object. Fryazinov et al.
[2015] proposed a interpolation scheme based on an interior distance field to vary
the parameters of a Voronoi structure inside a 3D model. In [Kou and Tan 2012;
You et al. 2016], the authors use B-splines to define 2D porous structures based on
Centroidal Voronoi Diagrams. Their method is restricted to 2D, but offers various
degrees of control. Yang et al. [2015] consider different families of microstructures
defined mathematically, and propose a method to merge and transition between
different families in a space partition of the domain. While closely related to our
work presented Section 5.1, these approaches do not explicitly control the Young’s
modulus of the produced structures, nor afford for an efficient parallel evaluation.

Recent software for additive manufacturing propose microstructure generation
packages. In particular, Within [Autodesk 2016] proposes trabecular structures
resembling Voronoi foams. While the parameters can be varied, to the best of
the author’s knowledge there is no direct control of the Young’s modulus and the
structures are not defined by a procedure akin to procedural solid textures. The
software Magics by Materialise contains libraries of structures that can be tiled inside
a 3D object.

Closer to the procedural solid texture ideology we develop Section 5.1, it is worth
mentioning some existing works in the Shadertoy community. The “trabeculum
hypertexture” by Neyret (shadertoy:ltj3Dc) showcase an example of procedurally
defined 3D cellular structures, inspired by [Worley 1996]. While the sampling
density is constant, the beam radii is also not precisely controlled. An improved

https://www.shadertoy.com/
https://www.shadertoy.com/view/ltj3Dc
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version in the 2D case was uploaded later on (shadertoy:MlGGDw), which provides
better control over the beam radii. For the 2D case, the “Voronoi distances” shader by
Quílez (shadertoy:ldl3W8) demonstrates the correct computation of proper beam
radii between adjacent Voronoi cells. However, the 3D extension presents some
more tricky cases, which we discuss in Figure 5.3.

2.4.2 Material Design

While the aforementioned infill structures are designed for objects made of a single
base material, high-end multimaterial printers allow to mix different materials to
grade the properties inside an object. The previously mentioned work of Vidimče
et al. [2013] developed a programming framework to describe models made of
multiple materials, while Chen et al. [2013] addressed the issue of translating
high-level functional specifications into physical properties, thus controlling elastic
deformations or reflective properties of a printout. More recently, Ion et al. [2016] and
Vidimce et al. [2016] have proposed different systems to help the user interactively
design microstructures and create new meta-materials.

To facilitate the design of elastic materials, Li et al. [2014] and Xu et al. [2015b]
proposed different algorithms to optimize material properties given an intuitive
description of its expected physical response. In a broader context, the notion of
example-based material modeling denotes a system where the user would specify
just a few keyframe poses of an object, and let an algorithm infer the material prop-
erties that matches the deformation described by those keyframes. Techniques for
example-based material modeling have gained an increased interest recently, albeit
research has been mostly concerned for their applications to computer animation
[Martin et al. 2011; Schumacher et al. 2012; Koyama et al. 2012; Zhu et al. 2014; Song
et al. 2014; Jones et al. 2014; Zhang et al. 2015b; Jones et al. 2016].

In a more fabrication-oriented context, Chen et al. [2015a] use a data-driven ap-
proach to accelerate the FEM simulation of models with a heterogeneous material
distribution, and demonstrate their approach on a set of 3D printed objects. Zhang
et al. [2016b] present another data-driven approach, for the purpose of controlling
the bending behavior of 3D printed models, by optimizing the thickness of their shell.
The advantage of this technique is that it is applicable to single material printers,
and does not change the exterior appearance of the printed model. In contrast, when
microstructures are used to control the elastic properties of a shape, it is difficult to
assess how adding a skin shell on the surface, on top of the internal microstructure,
will affect the mechanical properties of the printed object [Brennan-Craddock et al.
2012; Aremu et al. 2016].

Finally, in [Xu et al. 2015a], the authors present a method to optimize the material dis-
tribution in a tetrahedral mesh, according to a user-specified set of loads and desired
displacements. The method then performs dimensionality reduction on the design
space by computing the first eigenvectors of a weighting matrix W � diag(V1 , ...,Vm),

https://www.shadertoy.com/view/MlGGDw
https://www.shadertoy.com/view/ldl3W8
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where each Vi designates the volume of a tetrahedron. We note that this method
bears similarities to topology optimization with density methods — such as the
SIMP approach presented in Section 2.5 —, since it optimizes a material distribution
to attain a structural objective. However, the main difference is that Xu et al. [2015a]
seek to enforce smooth variations over the resulting distribution, while the SIMP
method aims at producing binary designs.

2.4.3 Meta-Materials and Homogenization

Microstructure Reconstruction via Texture Synthesis

There are different methods to reconstruct a 3D microstructure from 2D cross-
sectional information. One of them is solid texture synthesis, and the closely related
field of multiple point statistics [Mariethoz and Lefebvre 2014]. In contrast to stan-
dard texture synthesis approaches — which are concerned with visual quality and
rely on a local neighborhood evaluation —, reconstruction methods for microstruc-
tures aim at reproducing statistical properties describing the composite material.
The 2D cross-sections are captured experimentally from real samples, and their sta-
tistical properties should be preserved in the 3D reconstructed volume. A number of
approaches have been proposed to exploit solid texture synthesis methods initially
developed for computer graphics (Section 2.3.2), in the context of microstructure
reconstruction. Liu and Shapiro [2015] first proposed to use the stochastic optimiza-
tion process presented in [Wei 2002] to reconstruct 2D and 3D microstructures from
2D samples. Sundararaghavan [2014] applied the more sophisticated approach of
Kopf et al. [2007] to the 3D microstructure reconstruction problem, while Turner
and Kalidindi [2016] relied on [Chen and Wang 2010], which is basically an im-
proved version of [Kopf et al. 2007]. Taking a different approach, Bostanabad et al.
[2016] use a direct supervised learning method to reconstruct volumetric data. Note
that all these methods make the common assumption in texture synthesis that the
data to reconstruct is unstructured, and can be represented by a local description
(neighborhoods matching). Moreover, they do not consider the issue of fabricalibity
(Section 2.1.3), which are necessary in our context.

Inverse Homogenization and Functionally Graded Materials

In the field of mechanical engineering Sigmund [1994b, 1995] introduced the opti-
mization of micro-scale structures to achieve specific macro-scale behaviors, such as
controlled elasticity. A key idea is to consider the behavior of a composite material,
made of infinitely many repetitions of a base material tile. This limit behavior
is captured by the theory of homogenization [Allaire 2012] which relates the unit
material tile to the elastic properties of its (infinite) periodic tiling. This idea is
illustrated Figure 2.18. Therefore, most techniques pose an inverse homogenization
problem, optimizing for a tile producing a target elastic behavior. Microstructure
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+ →

(a) When a periodic tile is repeated through a media, the homogenized material corresponds
to the equivalent material obtained in the limit case when the size of the representative

volume element becomes infinitely small.

+ →

(b) The microstructure of a solid object can be represented efficiently when it is defined as a
periodic repetition of the same base tile.

Figure 2.18 – Homogenization of a periodic tile (a), and geometry
synthesis filling of a solid with a given periodic pattern (b).

optimization via inverse homogenization is investigated in [Sigmund 2000; Sigmund
2009b]. A thorough survey, up to 2013, about microstructure design via inverse
homogenization is presented is [Cadman et al. 2013]. Wang et al. [2014b] study
the problem under the framework of level-sets. Andreassen et al. [2014] include
fabrication constraints in the structure optimization, and present a 3D microstruc-
ture with negative Poisson’s ratio. Xia and Breitkopf [2015] and Andreassen and
Andreasen [2014] present two Matlab codes for homogenization of periodic struc-
tures. Homogenization for additively manufactured structures is discussed in [Liu
and Shapiro 2016].

In the field of computer graphics, the design of materials for fabrication has become
an important direction of research, as we strive to enable artists and designers to
physically realize virtual models of deformable objects [Skouras et al. 2013; Xu
et al. 2015a; Pérez et al. 2015]. Bickel et al. [2010] proposed a data-driven approach
to design materials with a prescribed deformation. Base materials are stacked
by an optimizer to obtain the target properties. Schumacher et al. [2015] extend
this idea in two ways. First, elementary material tiles are optimized via inverse
homogenization to cover a large spectrum of elastic behaviors. Second, a process
globally optimizes for a choice of tiles in a grid covering the object, to achieve
the desired, spatially varying elastic behavior. The process considers fabrication
constraints and connectivity between adjacent tiles. Panetta et al. [2015] take a
different approach, by optimizing for an optimal family of elementary tiles among
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a large — but restricted — set of possibilities. The tiles geometry is expressed as an
inflated wire mesh, and take into account fabrication and connectivity constraints.
Once the best family is determined, it is possible to arrange the tiles in a grid to
obtain a spatially varying elasticity.

These works achieve impressive results at relatively low computational costs, thanks
to the regularity of the grid and the periodicity assumptions: homogenization is
performed on a single base tile instead of having to rely on a global optimization,
and the periodicity affords for compact descriptions [Pasko et al. 2011]. However,
the tile-based approach has a number of drawbacks.

First, grading the material by changing the tiles within the grid requires careful
handling of the interface between neighboring tiles. Ensuring proper transitions
between adjacent tiles is essential for the fabrication of functionally graded materi-
als, yet it has received only little attention in mechanical engineering, with notable
contributions presented for example in [Zhou and Li 2008; Radman et al. 2013]. In
[Panetta et al. 2015], the tiles families are pre-optimized to have matching bound-
aries. Other methods rely on a global optimization procedure to ensure proper
transitions. Alexandersen and Lazarov [2015] optimize directly the microstructures,
without homogenization or length-scale separation. In [Schumacher et al. 2015], a
global selection process attempts to strike a compromise between continuity across
neighbors, grid discretization and elasticity objectives. The global optimization
does not scale well with the size of the models — especially as it is desirable to
produce the smallest possible tiles to converge towards the limit behavior computed
by homogenization. Our approach Section 5.1 circumvent this issue by relying on a
direct and simple relationship between elastic properties and geometric parameters.

Second, it is often desirable to conform the elasticity field to the object surface,
for instance having a more rigid structure within a distance of the surface. The
axis-aligned nature of the grid makes this difficult. One possible way is to optimize
for a 3D parameterization of the grid within the object. While this is a topic of
intense research (related to hexahedral meshing), this remains difficult [Staten 2007],
and the effect on the final elastic properties is hard to precisely establish. Moreover,
fabrication constraints, such as islands (Figure 2.2c), would need to be considered
through the mapping, making the whole procedure even more complex. Instead,
in Section 5.1, we seek to produce stochastic, aperiodic structures which are by nature
simpler to conform to the gradients of a field as they do not require specific spatial
alignments. Finally, the isotropy of periodic tilings is equal to that of the optimized
base tile, while the isotropy of stochastic foams can further improve with larger
extents of foams (Figure 5.6).

Open-Cell Foams. The procedural microstructures we present Section 5.1 belong
to a specific class of microstructures known as open-cell foams. These structures
occur naturally and can be obtained from physical processes in a variety of materials
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including metals. Therefore, in the field of mechanical engineering there has been a
strong interest in modeling and analyzing the properties of these structures.

Interestingly, naturally occurring open-cell foams are often idealized as edges of
Voronoi cells [Gibson and Ashby 1997]. As we propose to generate foams from
procedurally generated Voronoi diagrams, these works are highly relevant for
the study of the mechanical behavior of the structures we develop in Section 5.1.
In particular, from these studies we can expect the following properties: 1) the
elastic behavior of open-cell irregular foams is highly isotropic [Luxner et al. 2007],
and 2) their Young’s modulus relate almost linearly to their geometric parameters
(thickness, density) [Gibson and Ashby 1997; Roberts and Garboczi 2002]. This is an
exceptionally good property for our purpose of producing graded elastic materials,
as the simple relationship affords for a direct derivation of structure parameters
given an elasticity target. We verify that our structures meet these observations in
Section 5.1.4.

Prior studies also indicate that the Poisson’s ratio of open-cell foams does not signif-
icantly vary [Gibson and Ashby 1997], and the structures we present in Section 5.1
indeed share this common limitation.

2.5 Topology Optimization

In the previous sections we have presented how problems related to the analysis,
editing, or synthesis of 3D shapes for additive manufacturing were approached from
a computer graphics perspective. In a broader setting however, shape optimization
problems with structural objectives have a long standing history in the mechanical
engineering literature, where they have been studied for decades, before 3D became
as popular as today. The goal of this section is to provide an introduction to this
discipline, known as topology optimization, while focusing on challenges relevant
in digital fabrication and computer graphics applications. Topology optimization
methods seek to answer the very general question: how to distribute matter in a
given domain to obtain the best structural performance, without making any a priori
assumption on the shape and topology of a possible solution.

The rest of the section is organized as follows. In Section 2.5.1, we present a self-
contained, practical introduction to the SIMP approach for topology optimization, as
it is used as the foundation for subsequent work in this thesis (Chapter 4 in particular).
We also discuss alternative approaches and recent surveys, choices of numerical
schemes for gradient-based optimization of structural problems, and point out
some practical considerations and available implementations. In Section 2.5.2, we
review existing work in topology optimization that specifically considers fabrication
constraints for additive manufacturing, such as thickness, overhangs, enclosed voids,
etc. Finally, in Section 2.5.3, we review a special category of topology optimization
approaches that uses discrete elements, i.e. elements with a fixed given shape, as
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building blocks for the structure to optimize. The elements are free to move and
rotate in the domain. This topic is further explored in our work in Section 4.3.

2.5.1 Introduction to Topology Optimization

Structural optimization problems encompass a broad variety of applications, de-
pending on the choice of materials, physical models, constraints and objectives
being considered. In this work, we are primarily interested in solid mechanics
problems under linear elasticity, where the goal is to maximize the rigidity of a
shape. Nevertheless, we note that techniques for topology optimization can also
be applied to a broad range of other physical problems including heat conduction,
fluids, electromagnetism, etc.

Regarding the optimization problem itself, one usually distinguishes three categories
[Bendsøe and Sigmund 2004]: sizing optimization, shape optimization, and topology
optimization, by order of increasing generality.

In sizing optimization, such as truss optimization, the structure is given, and the
design variables are parameters of the structure (such as the truss radii). By starting
from what is called a ground structure, and decreasing some radii to 0, it is possible
to select which truss should actually be kept in the final design, but it is impossible
to add new connections. The most closely related works in the computer graphics
literature, that employs truss optimization problems, are probably [Smith et al. 2002;
Wang et al. 2013]. Another example of sizing optimization includes [Musialski et al.
2015], where the design variable is the shell thickness of the input mesh.

In contrast, in shape optimization problems, a shape is still given as input, but also
serves as the design variable in the optimization procedure. In computer graphics,
techniques that are based on Laplacian surface deformations, e.g. the surface
deformation part of [Prévost et al. 2013] (Section 5), would fall into this category.

Finally, in topology optimization problems, the solver is allowed to create new
connections, or poke holes in the geometry, thereby changing the topology of the
underlying shape. The formulation becomes much more general, and the possible
solutions much broader, but the problem is also more difficult to solve. In a sense,
the hole-carving part of [Prévost et al. 2013] corresponds to a topology optimization
problem. Other computer graphics papers providing recent takes on a more classical
version of the topology optimization problem include [Christiansen et al. 2015a; Wu
et al. 2016a].

The rest of this subsection is organized as follows. First, we briefly present the
major approaches for solving topology optimization problems, and reference recent
surveys in the domain. Next, we describe in more detail the SIMP approach, as it
needed later in this thesis. We start by formulating the compliance minimization
problem, before describing filtering techniques necessary to ensure a proper solution.
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Then, we discuss the choice of numerical optimizer for this family of problem. Finally,
we present some existing reference implementations available in the literature.

Historical Perspective

The core problem solved by topology optimization is the assignment of a discrete
material distribution χ(x), for each point in the input domain x ∈ Ω. The character-
istic function of the material distribution is denoted by χ(x) ∈ {0, 1}, and evaluates
to 0 where there should be no material (void), and to 1 where the solution should
be solid. The problem is usually combined with a volume constraint on the solid
material, which is expected to be expensive. The goal is to obtain the most efficient
structure under a restricted material budget. One thus avoids the trivial solution
of filling the domain with solid material — setting χ(x) � 1 everywhere —, which
is the solution that maximize the rigidity if one ignores internal body forces (self-
weight). In the continuous setting, nothing prevents a theoretical solution from
having an infinite number of arbitrarily tiny holes, since it is known to improve the
rigidity of the resulting structure [Allaire 2012]. Since designs with infinitesimal
holes are impossible to fabricate, it is desirable to impose a length-scale control over
the acceptable solution to topology optimization problems, recalling that in practice
numerical methods can only solve a discretized version of the problem anyway.

Density Methods. The first practical algorithm for topology optimization is due to
Bendsøe and Kikuchi [1988], and relies on a technique known as the homogenization
method. A more detailed note on the history of homogenization can be found in
the reference book [Allaire 2012]. The idea behind the homogenization method
is to optimize the material distribution in a discretized version of the domain Ω,
and describe the geometry of each unit cell a small number of parameters (size,
orientation, position). By controlling the size/amount of holes in a unit cell, one
can affect the density x of the solid material (x � 1 means there is no hole). The
homogenization method gives the theoretical background to determine the limit
mechanical behavior of those unit cells, when the heterogeneous porous media
constituted by those holes is replaced by a spatially averaged description : the
homogenized composite material.

The homogenization method belongs to the family of density methods, because the
material density x is used as one of the optimization variable. Note that to obtain a
classical “black-and-white” solution, a penalization needs to be applied, to prevent
intermediate densities in the final design. This gave rise to simplified variant of
the homogenization method, called the Solid Isotropic Material with Penalization
(SIMP) approach, has since then become one of the most popular method for
solving topology optimization problems. In contrast to the homogenization method,
it discards information about the microstructures geometry, and only retain the
material density as the sole variable in the optimization procedure. To encourage a
classical 0 − 1 design without composite media in the result, a penalized density xp
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is used to compute the stiffness of the resulting structure, where p > 1 (a common
choice is p � 3), hence the name of the method. A consequence of this penalization
is that it gives a higher strain energy (compliance) to elements with intermediate
densities, which in turns encourages a binary result in the optimized design (see
also [Bendsøe and Sigmund 2004]).

The SIMP technique was first suggested in [Bendsøe 1989; Zhou and Rozvany 1991],
although the term itself seem to first appear in [Rozvany et al. 1992]. Despite
being simpler than the homogenization method, without additional filtering the
SIMP formulation is an ill-posed problem: it does not converge to a stable solution
when refining the discretization of the domain Ω. Moreover, the lack of physical
interpretation behind the penalization process was an obstacle in the adoption of
the technique by the community. It was only thanks to the work of Bendsøe and
Sigmund [1999] that the SIMP approach became widely accepted in the community.
Indeed, Bendsøe and Sigmund [1999] showed that under certain conditions on the
penalty exponent p (for example p > 3 in 3D for a base material with a Poisson’s ratio
of 1

3 ), the SIMP model actually falls under the framework of homogenized micro-
structural geometries. In other words, for intermediate penalized densities, there
exist a model of microstructure geometry that yields the same homogenized stiffness
as the penalized stiffness used in the SIMP model. Another fundamental work that
contributed to the popularity of the SIMP method is probably the educational
paper [Sigmund 2001], where the author present a very simple 99-line Matlab code
implementing the SIMP method. This code can easily be extended to problems
other than rigidity/compliance, and has proved to be a good starting point for many
people unfamiliar with the domain (including myself).

Ole Sigm und,  Mechanical Engineering,  Solid Mechanics Technical University of Denm ark
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Figure 2.19 – Illustrative timelime of topology optimization methods
[Sigmund et al. 2015].

A timeline of the different methods for topology optimization is presented in
Figure 2.19. Apart from density methods (homogenization and SIMP), two other
important categories are discrete approaches and level-set methods.
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Discrete Methods. Discrete approaches cast the density-based formulation into a
discrete assignment problem, where the function χ(x) is assigned a 0 − 1 value on a
discretized version of the domain Ω. Amongst them, methods such as ESO/BESO
employ evolutionary algorithms to update a discrete design. The motivation is
to allow exploration of a wider range of configurations, and get closer to a global
optimum by avoiding getting stuck around a local minimum, although there is still
no strong guarantee that a global optimum will be found. In addition, contrary to
the gradient-based optimization used in density approached, discrete approaches
usually require a high number of evaluation of the objective function — solving the
FEM equilibrium equation —, which can be quite prohibitive, especially in 3D. A
critical comparison of discrete approaches, with references to the relevant literature,
can be found in the recent survey of Sigmund and Maute [2013]. Evolutionary
approaches are also the subject of the last chapter in the book [Allaire 2007].

Level-Set Methods. Instead of using the material density directly as optimization
variables, level-set methods (LSM) derive the material densities implicitly from a
high-dimensional functionΨ, the level-set function (LSF). The densities are set to 1
whereΨ(x) < 0, and to 0 outside, so that the boundary of the structure corresponds
to the zero isovalue of the level-set function. The LSF is updated in order to minimize
the objective function, and the structure is updated accordingly. Contrary to density
methods, level sets provide a better description of the shape boundary — there is
no need for density penalization —, and do not suffer from checkerboard issues
common in SIMP approaches. However, they do suffer from other drawbacks, in
particular regarding a more challenging numerical optimization, imposing the need
for regularization techniques, as discussed in the survey [Dĳk et al. 2013].

The framework of level sets was originally developed by Osher and Sethian [1988]
(see also [Sethian 1999]). The technique has been used for structural optimization
problems in [Sethian and Wiegmann 2000; Osher and Santosa 2001], but the formu-
lation the most widely used today has been developed independently by Allaire
et al. [2002, 2004] and Wang et al. [2003]. The method combines shape derivative
and level sets for front propagation with a “soft” material to describe the void phase.
A more detailed history of level-set methods can be found in the recent survey [Dĳk
et al. 2013], while the older survey of Burger and Osher [2005] provides a more
focused discussion on the initial level-set methods.

Because level-set methods are able to merge boundaries, holes in a structure can
easily be suppressed, but not created. As a consequence, the optimization procedure
is still sensitive to the initial designs, and a shape with multiple holes is typically used
as an initial guess. This is a problem especially in 2D, since in 3D the advancing
fronts have more freedom — holes can be created by pinching boundaries. To
alleviate this issue, a technique commonly employed in combination with level sets
is topological derivative. The idea of topological derivatives, developed in 1994
by Eschenauer et al. [1994], is to consider the change in the mechanical response
of a shape after poking an infinitesimal hole at a given location. If the change
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is beneficial to the structural objective, then a hole is inserted. The technique of
topological derivative has been successfully combined with level-set methods in
[Burger et al. 2004; Wang et al. 2004; Allaire et al. 2005].

Surveys. Over the past decade, techniques for topology optimization have known
a rapid growth (see Figure 2.19). This enthusiasm can be explained by the maturation
of the numerical tools being developed and the wide range of industrial applications.
More recently, the spread of additive manufacturing technologies contributed to
the increased interest towards topology optimization methods, especially in the
eyes of the general public. Consequently, an increasing number of surveys are
appearing, attempting to cover different important aspects of the field, providing
critical reviews of established methods and comparing new trends.

Two excellent books covering the density methods mentioned earlier are [Bendsøe
and Sigmund 2004; Allaire 2012]. The first one gives a practical introduction to many
different aspects of topology optimization with density methods, while the second
one provides a self-contained theoretical framework to the homogenization method.
Two major surveys dating back to before the explosion of topology optimization
methods in the 2000s are presented in [Eschenauer and Olhoff 2001; Rozvany 2001].
In [Sigmund and Petersson 1998], the authors present a comprehensive survey,
discussing the existence of solutions, as well as the different filtering techniques
required for solving topology optimization problems using a density approach.

More recently, Rozvany [2009] discusses established methods that are actually used
for industrial applications. Sigmund and Maute [2013] present a comparative review
of major tendencies in structural optimization, trying to put them in perspective
with each others. Deaton and Grandhi [2014] is another recent general survey, with
a somewhat larger perspective than [Sigmund and Maute 2013], and also present
more applications. [Dĳk et al. 2013] contains a comprehensive survey of recent
level-set methods, while the older survey [Burger and Osher 2005] offers a more
succinct presentation of earlier level-set methods.

An interesting survey comparing and benchmarking different numerical solvers
for gradient-based structural optimization using the SIMP method is presented in
[Rojas-Labanda and Stolpe 2015b]. More recently, Lazarov et al. [2016] and Liu and
Ma [2016] discussed techniques to ensure manufacturability constraints in density-
based and level-set-based topology optimization methods, a subject that we discuss
in Section 2.5.2. Finally, Sigmund et al. [2016] discuss the optimality of truss-like
structures, as opposed to structures comprised of walls with variable thickness.

Problem Formulation

Let us consider the 2D case of compliance minimization, where the goal is to produce
the most rigid shape with a limited amount of material. We follow the description
from [Sigmund 2001; Andreassen et al. 2011]. The domain Ω is discretized with
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a regular grid of square finite elements (Q4). The optimization variables are the
element densities x ∈ [0, 1]N , ranging from 0 — representing void “soft” material —,
to 1 — representing full “solid” material. The relevant notations are recalled here
for simplicity:

x Element density vector
u Nodal displacement vector
ue Local displacement vector for element e
f External force vector
K Stiffness matrix
E Constitutive matrix
E Young’s modulus

Following these notations, the compliance minimization problem can be written as:

minimize
x

C(x) � u⊤f (2.1a)

subject to Ku � f (2.1b)

vmin 6

∑
e

xe 6 vmax (2.1c)

xmin 6 x 6 xmax (2.1d)

The compliance, or strain energy, (2.1a) is the work of the external forces on the
system. The more the forces work, the less rigid the shape is. To produce the most
rigid shape under these conditions, one must thus seek to minimize the compliance.
Equation (2.1c) is a constraint on the volume. Usually vmin is set to 0, except e.g.
for self-weight problems (see Section 4.2.4). In contrast, it is essential to bound the
maximum authorized volume vmax . Indeed, in the absence of a constraint vmax , a
trivial solution would be to fill the domain Ω with solid material, as it is always
more rigid than the “soft” void material. Equation (2.1d) is a constraint on the
densities. It can be used to represent passive elements (with a fixed density) in the
system. Given the equilibrium equation of the system (2.1b), the compliance can be
computed as:

C(x) � u⊤f � u⊤Ku �

∑
e

Eeu
⊤

e K0ue (2.2)

The SIMP scheme interpolates Ee , the Young’s modulus of element e, as:

Ee � Emin + x
p
e (E0 − Emin) (2.3)

The minimal imposed value of Emin ensures that the linear system Equation (2.1b)
does not becomes singular, as each square element becomes “infinitely soft”. The
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penalization factor is usually taken > 3 [Bendsøe and Sigmund 1999]. The goal of
the penalization is to “push” the variables x towards 0 or 1. Indeed, combined with
the limited material budget vmax , it is more advantageous to distribute the material
following a binary design, as intermediate densities have a “penalized” physical
response. We note that other interpolation schemes, such as RAMP, can be used
[Stolpe and Svanberg 2001; Bendsøe and Sigmund 2004].

Objective Functions. Other choices of objective functions include stress minimiza-
tion [Duysinx and Bendsøe 1998; Bruggi and Duysinx 2012; Verbart et al. 2016]
(see also §6.10 in the survey [Sigmund and Maute 2013]), optimization of compliant
mechanisms [Sigmund 1997; Larsen et al. 1997], inverse shape deformation [Wallin
and Ristinmaa 2015]. . .

Numerical Optimization

To solve the optimization problem posed by eq. (2.1), several methods can be
employed. We present the classical approaches based on gradient descent, e.g.
via the Optimality Criteria (OC) or the Method of Moving Asymptotes (MMA).
Other methods for solving (2.1) can be based for example on interior point methods
[Rojas-Labanda and Stolpe 2015a,b]. Note that gradient descent are only able to find
a local minimum to a given problem, especially as the system described is (2.1) is
non-linear, non-convex, and with non-linear constraints. Very few works are able to
guarantee the global minimality of the computed solution, e.g. [Stolpe 2015] in the
case of truss optimization.

Solving the Equilibrium Equation (2.1b). One of the key challenge in solving the
system (2.1) with a gradient-based approach is that the equilibrium equation (2.1b)
needs to be solved every time the objective function needs to be evaluated. Some
approaches try to circumvent this issue altogether by solving (2.1b) iteratively along
with the design updates, so that the equilibrium is verified only when the final
design has been reached. This is known as the Simultaneous Analysis and Design
(SAND) approach [Arora and Wang 2005].

In 2D, the linear system (2.1b) is usually small enough that is can be solved using
a direct solver on modern computers. For example, Cholmod [Chen et al. 2008b]
provide a good implementation accelerated on GPU. In practice I have experimented
with Cholmod through the interface provided by the Eigen library [Guennebaud;
Jacob, et al. 2010], which makes it very easy to use.

In 3D however, the system quickly becomes prohibitively expensive. Consider the
case of a 64×64×64 grid, which is a relatively small size to represent a complex model.
The system has 3× 643

� 823 875 DOFs (not counting fixed nodes). The per-element
stiffness matrix K0 has 576 nonzero entries for a linear eight-node hexahedron.
Assembling the linear system will require iterating over 643 × 576 � 150 994 944
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entries, even though the actual global stiffness matrix K has 60 563 249 nonzero
entries in this case (after summation of redundant terms). Using IEEE 754 doubles
to store the entries of K will require 462 MiB of storage, while the densities in the 643

grid could fit in 2 MiB. As can be seen, the memory requirement for solving (2.1b)
quickly become a huge limiting factor for actual computations. For this reason, the
3D results we show Section 4.2.4 are limited to interleaved planes.

In practice, the linear system (2.1b) is solved using an iterative solver, such as
a preconditioned conjugate gradient (PCG), with a geometric multi-grid (GMG)
preconditioner. Compared to the related algebraic multi-grid methods (AMG),
GMG are better able to take advantage of the specificities of a given problem,
since they directly exploit its geometry. In contrast, AMG methods are simpler
to implement, because they only need the system matrices as inputs. A GMG
preconditioner, in the context of topology optimization, is presented in [Amir et
al. 2014]. Regarding AMG preconditioners, I have experimented with the library
AmgCL1, which provides implementations of different AMG preconditioners on
the GPU. I was able to easily re-implement the 2D code provided in [Amir et al.
2014] within the framework of AmgCL to solve 3D problems more efficiently. The
limiting memory remains an issue though, and thus the performances do not match
dedicated solutions such as [Wu et al. 2016a], which are partially matrix-free (they
do not store the coefficients of K on the finest levels of the multi-grid).

Note that, as the solution progresses towards the final binary design, the high
contrast between material properties in adjacent elements will cause iterative solvers
to converge more slowly. Some works have started to provide contrast-independent
solutions, e.g. [Lazarov 2014], but this remains an active area of research. Other
precondioning methods, such as domain decompositions — which are most useful
for computing a solution in parallel on a cluster of machines —, are beyond the
scope of this document.

Updating the Design. In computer graphics, a very popular technique for gradient-
based minimization is the BFGS algorithm [Nocedal and Wright 2006]. While it
could be used to minimize the system (2.1), there are a number of caveats. First,
eq. (2.1) is a system with non-linear constraints, which would need to be taken into
account by BFGS, e.g. via an Augmented Lagrangian method [Conn et al. 1991].
Second, BGFS algorithms, and other similar gradient descent methods presented in
[Nocedal and Wright 2006], rely on a line search procedure to determine the step
size in the descent direction. As we have seen, solving eq. (2.1b) is expensive, so it
is desirable to avoid any line search that requires to evaluate the objective function
a high number of times.

For this reason, structural optimization are solved via different algorithms, which
avoid this expensive line search, and have the bonus of being amenable to parallel
implementations. The most simple update scheme is the so-called optimality criteria,

1https://github.com/ddemidov/amgcl

https://github.com/ddemidov/amgcl
https://github.com/ddemidov/amgcl
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which can be interpreted as a projected gradient descent (without line search)
[Ananiev 2005]. Due to its simplicity and trivially parallel nature, it is a widely
popular approach to solve simple structural optimization problems. However, it is
a heuristic method which lacks mathematical grounding, and as such is difficult to
extend to more complex problems with new objective or constraint functions. For
this reason, we preferred to rely on a second class of algorithms, based on Method
of Moving Asymptotes (MMA), which is the one we employed Section 4.2.

Historically, the first version MMA was published in [Svanberg 1987]. While still
widely used nowadays due to its simpler formulation, it may not always converge
to a local minimum from any starting point. A first globally convergent version
was published in [Zillober 1993], but it introduced a line search to ensure the
convergence of the algorithm. Later, a globally convergent version without line
search was presented by Svanberg [1995], but it was too slow in practice. Finally,
in a subsequent work, Svanberg proposed another version which was faster and
was working well in practice [Svanberg 2002]. This is the version of the Globally
Convergent Method of Moving Asymptotes (GCMMA) that is the most widely used
nowadays to solve structural optimization problems. A detailed description of both
MMA and GCMMA can be found in the technical report [Svanberg 2007], while
other variants are presented in [Bruyneel et al. 2002]. Fortran and Matlab codes
are freely available upon request from Pr. Svanberg1. In practice, we have used the
open-source implementation of GCMMA available in NLopt [Johnson 2016], which
has been implemented in C independently from the original code of Svanberg.

GCMMA is similar in spirit to Sequential Linear Programming (SLP) methods,
but differs in the way it approximate the objective and constraints functions. In
[Svanberg 2002], the algorithm is actually presented as part of a more general family
called Conservative Convex Separable Approximation (CCSA). The online wiki2 of
NLopt provides a good and succinct description of the MMA/GCMMA algorithms:

At each point x, MMA forms a local approximation using the gradient
of f and the constraint functions, plus a quadratic “penalty” term to
make the approximations “conservative” (upper bounds for the exact
functions). The precise approximation MMA forms is difficult to describe
in a few words, because it includes nonlinear terms consisting of a poles
at some distance from x (outside of the current trust region), almost a
kind of Padé approximant. The main point is that the approximation is
both convex and separable, making it trivial to solve the approximate
optimization by a dual method. Optimizing the approximation leads to a
new candidate point x. The objective and constraints are evaluated at the
candidate point. If the approximations were indeed conservative (upper
bounds for the actual functions at the candidate point), then the process
is restarted at the new x. Otherwise, the approximations are made more

1https://people.kth.se/~krille/
2http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms#MMA_.28Method_of_

Moving_Asymptotes.2]9_and_CCSA

https://people.kth.se/~krille/
http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms#MMA_.28Method_of_Moving_Asymptotes.2]9_and_CCSA
https://people.kth.se/~krille/
http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms#MMA_.28Method_of_Moving_Asymptotes.2]9_and_CCSA
http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms#MMA_.28Method_of_Moving_Asymptotes.2]9_and_CCSA


2.5. Topology Optimization 59

conservative (by increasing the penalty term) and re-optimized.
(NLopt online documentation [Johnson 2016].)

Note that MMA stores information about the state variables over three iterations,
meaning that x(i), x(i−1) and x(i−2) are stored. This is used to control the evolution of
the asymptotes limiting the trust region around the current point. If a variable is

oscillating, i.e.
(
x
(i)
e − x

(i−1)
e

) (
x
(i−1)
e − x

(i−2)
e

)
< 0, its asymptotes are brought tighter

to each other. Otherwise, the trust region is expanded to speed up the convergence.

Computing the Gradients. Differentiating eq. (2.1a) by element density xe yields:

∂C
∂xe

�
∂u⊤

∂xe
f + u⊤

∂f
∂xe

(2.4)

In most cases — e.g. when there is no self-weight, see Section 4.2.4 —, the external
forces are constant and do not depend on the densities, hence ∂f

∂xe
� 0. Differentiating

the equilibrium equation (2.1b) by xe gives the following:
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Now, since the stiffness matrix K is symmetric positive definite, we have K � K⊤,
and it can deduced that:

(2.4) ⇒ ∂C
∂xe

� −u⊤
∂K⊤

∂xe
K−⊤f (2.6a)

� −u⊤
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∂xe
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� −∂Ee

∂xe
u⊤

e K0ue (2.6c)

This derivation of ∂C
∂xe

yields a simple formula that does not require the explicit

computation of the gradient of the displacements ∂u
∂xe

. This is possible because the

stiffness matrix is symmetric, i.e. K � K⊤. This is known as the self-adjoint method.
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Note that because K0 is symmetric positive definite, ∂C
∂xe

here is always negative:
increasing an element density will always reduce the total compliance of the system.
Because the gradient is always 6 0, the problem of compliance minimization is a
relatively “easy” one, as any heuristic update schemes will probably find a local
minimum eventually.

Mesh-Independency Filtering

It has been mentioned before that the compliance minimization problem, as stated
in eq. (2.1), is in fact ill-posed, in the sense that a refinement of the finite element
grid will lead to different designs: the design does not converge to a stable solution
as the grid is refined. This phenomenon is known as the checkerboard pattern, and
it has been shown [Díaz and Sigmund 1995; Jog and Haber 1996] to be caused by
a bad numerical modeling which overestimates the stiffness of this checkerboard
pattern. The problem can be partially alleviated by using higher-order elements,
or completely by using a filtering scheme. The checkerboard pattern and filtering
scheme is illustrated Figure 2.20.

(a) (b)

(c) (d)

Figure 2.20 – Illustration of the checkerboard problem. (a) Boundary
conditions of the classical MBB problem. (b) Low-resolution solution,
using a 60 × 20 grid and a density filter with radius 2.4. (c) Low-
resolution solution without filtering. (d) High-resolution solution,
using a 300 × 100 grid and a density filter with radius 12 (which

corresponds to 4 % of the domain width).

In this section we present the two most widely used filtering schemes: sensitivity
filtering, and density filtering. The idea is to “smooth” the discretized field by a
applying a convolution operation to it. If the radius of the convolution is chosen as a
fraction of the domain size, it defines a proper length-scale on design, independent
of the discretization refinement. The filtering radius is denoted as rmin. Sensitivity
filtering is a “hack” that smooths the gradient of the objective function, while the
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density filtering replaces the physical densities by a smoothed version, and the new
gradient is computed via the chain rule.

In the following, the convolution operation is denoted by a matrix H, which is
defined as follows:

He f � max
(
0, rmin − dist

(
e , f

) )
(2.7)

In the above formula, dist
(
e , f

)
is the distance between the centroids of voxels e and

f . In addition, we define the column vector S � H1, whose coefficients are the sum
of the columns of H, so that we have Se �

∑
f He f .

Sensitivity Filtering. This filtering scheme was first introduced in [Sigmund 1994a,
1997]. By replacing the gradient of the objective function with a “smoothed” version,
it turns out the checkerboard patterns can be avoided in the final solution. A physical
interpretation of this sensitivity filter is given in [Sigmund and Maute 2012].

The gradient of the compliance C is replaced by its filtered version:

∂̂C
∂xe

�
1

max(ǫ, xe)
∑

f He f

∑
f

He f x f
∂C
∂x f

(2.8)

The small value ǫ is there to avoid division by zero, and a typical choice is ǫ � 10−3.

Density Filtering. This second type of filtering scheme was proposed later [Bruns
and Tortorelli 2001], and analyzed in more details in [Bourdin 2001]. The physical
densities, used to compute the material properties, are replaced by a filtered version
x̃(x), which depends on the optimization variables through the following relation:

x̃ � (Hx) ⊘ S (2.9)

Alternatively, the definition eq. (2.9) can be written with element-wise relations:

x̃e �
1
Se

∑
f

He f x f (2.10)

The compliance is now a function C(̃x(x)). Its gradient can be computed via the
chain rule as follows:
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∂x̃ f
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�
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∂C
∂x̃ f

1
S f

H f e

�

∑
f

H
⊤

e f

(
1

S f

∂C
∂x̃ f

)
(2.11)

The above formula can be expressed more concisely in vector-matrix notation:

∂C
∂x

� H⊤

(
∂C
∂x̃
⊘ S

)
(2.12)

Alternative Filtering Schemes. Sensitivity and density filters are two of the most
common filtering schemes used in density-based topology optimization, but they are
not the only ones. One of the first method for ensuring convergence of the solution
with respect to grid refinement was to impose a perimeter constraint, as a way to
control the holes appearing in the design [Haber et al. 1996]. A comprehensive
survey on filtering schemes and numerical instabilities is presented in [Sigmund
and Petersson 1998]. Recent approaches pose the problem of density filtering as a
solution to a Helmholtz equation [Lazarov and Sigmund 2011]. This formulation is
particularly interesting in the context of parallel computing, because the computation
of the solution to the Helmholtz PDE can be split more easily between different
nodes. However, in our situation, the solution is computed on a single computer on
regular grids. In particular, I have found that implementing eq. (2.9) in an OpenCL
kernel on the GPU provided performances good enough for our applications.

More generally, morphological operations such as dilations and erosions can be
used to provide different filtering schemes on the densities [Sigmund 2007]. Such
formulations have proved a successful tool in optimizing designs that are robust to
fabrication constraints and uncertainties in the manufacturing process [Wang et al.
2011]. Interpretations of density filtering and other projection methods in terms of
the physical fabrication process (SLA) are given in [Jansen et al. 2013]. Other works
that take into account fabrication constraints in topology optimization are presented
in Section 2.5.2.

Available Implementations

To demonstrate the practicality and conciseness of implementing topology opti-
mization methods, several works have been proposed, where the authors provide a
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complete code accompanied with detailed explanations. Those papers are mostly in-
tended for educational purpose, but they also serve as a starting point for extending
classical schemes to more complex situations.

Sigmund [2001] was the first to present a compact implementation of the SIMP
method in 99 lines of Matlab code for solving 2D compliance minimization prob-
lems. The code is easy to extend to multiple load case or compliant mechanisms
[Bendsøe and Sigmund 2004]. A 3D version1 is available on the research group
webpage of Wang et al. [2005]. The 2D code of Sigmund was later improved and
shortened to 88 lines of Matlab in a subsequent publication [Andreassen et al.
2011], and Python versions of this code can be found on the webpage2 of their
research group. We used this Python code as a starting point to out implementation
in Section 4.2. Another 3D code implementing the SIMP method in 169 lines of
Matlab code can be found in [Liu and Tovar 2014]. Finally, ToPy [Hunter 2009] is a
Python package that contains a longer, but easily readable code solving compliance
minimization, heat conduction and compliant mechanisms design on 2D and 3D
grids. The code for ToPy is also available on Github3.

For optimizing truss structures, a 99-line Mathematica code can be found in [Sokół
2011], and a Matlab implementation for 2D and 3D domains is proposed in [Zegard
and Paulino 2014, 2015]. In the case of multi-objective optimization, Suresh [2010]
presented a 2D code for efficiently generating Pareto-optimal designs. A 100-line
Python code, using an evolutionary approach for compliance minimization instead
of a gradient descent, is presented in [Zuo and Xie 2015].

Another implementation of the SIMP method, using unstructured polygonal meshes,
is presented in [Talischi et al. 2012]. The algorithm computes solve a FEM system
on a polygonal mesh resulting from a Voronoi tessellation. The resulting cells are
convex polyhedra whose stiffness matrix can computed by triangulating the cell
and evaluating quadrature points inside each of its triangles. The Matlab code of
Talischi et al. [2012] has been ported to a C++ and Cuda in a subsequent publication
[Duarte et al. 2015], albeit this new C++ code does not seem to have been made
available online.

Regarding efficient code for large-scale simulation, Schmidt and Schulz [2011]
describe a C++ and Cuda code for compliance minimization via the SIMP method.
Other works describing topology optimization methods on the GPU, but without
readily available implementations, can be found in [Wadbro and Berggren 2009;
Challis et al. 2014; Wu et al. 2016a].

Amir et al. [2014] provide in supplementary material a 2D Matlab implementation
of a geometric multi-grid preconditioner for efficient solving of the linear system
(2.1b). In the context of parallel computing on multiple CPUs, Aage et al. [2015]
present an open-source topology optimization framework based on the PETSc library.

1http://ihome.ust.hk/~mywang/download/SIMP3D.m
2http://www.topopt.dtu.dk/
3https://github.com/williamhunter/topy/wiki

http://ihome.ust.hk/~mywang/download/SIMP3D.m
http://www.topopt.dtu.dk/
https://github.com/williamhunter/topy/wiki
http://ihome.ust.hk/~mywang/download/SIMP3D.m
http://www.topopt.dtu.dk/
https://github.com/williamhunter/topy/wiki
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While achieving impressive and highly detailed results, such a framework is most
useful when solving linear systems on multiple computers, whereas a single desktop
computer would still be limited by the available memory.

Implementations for level methods are also available in the literature. On the
webpage of Wang et al. [2005], one can find a 199-line Matlab implementation
based on the original idea of Wang et al. [2003] and Allaire et al. [2004]. More
recently, a shorter and more educational implementation, featuring only 129 lines
of Matlab code, was presented [Challis 2010]. Liu et al. [2005] described another
solution using a level-set method with FEMLAB1. However, the website where the
code is supposed to be downloaded from seems unfortunately unattainable. A
boundary variation method — i.e. without changing the topology by merging
holes — is described in [Allaire and Pantz 2006]. The implementation is written in
FreeFem++ [Hecht 2012], a high-level modeling language for solving PDEs. Allaire
and Pantz [2006] also present an implementation of topology optimization with the
homogenization method. More programs can be found on the webpage2 of their
research group.

In order to determine the equivalent material properties of a composite material,
Andreassen and Andreasen [2014] presented a simple Matlab 2D code that performs
numerical homogenization. Their implementation is a self-contained, educational
code. A 3D extension of this code was used in Section 5.1. For the design of
materials with prescribed macroscopic properties, Xia and Breitkopf [2015] describe
a self-contained Matlab code performing inverse homogenization.

2.5.2 Fabrication Constraints

The conception of optimal structures cannot be possible without considering the
fabrication constraints associated with industrial manufacturing processes. With the
growing interest in additive manufacturing techniques, an increasing research effort
is being devoted to the conception of automated algorithms producing shapes that
already satisfy different fabrication constraints (some of which are shown Table 2.1).

Note that recent literature surveys providing a more comprehensive overview length-
scale control and manufacturing constraints in topology optimization can be found
in [Lazarov et al. 2016; Liu and Ma 2016].

Level-set methods are well adapted to control the thickness of a shape. By computing
the skeleton (medial axis) of the level-set, it is possible to enforce both minimum
and maximum length-scale on the design [Guo et al. 2014b; Michailidis 2014; Allaire
et al. 2016]. However, skeletons, especially in 3D, are tricky to compute, because they
are very sensitive to noise (see the recent survey [Tagliasacchi et al. 2016]). Wang
et al. [2016b] presented another level-set method that achieve thickness control
without an explicit skeleton representation, by considering a narrow-band offset of

1Now renamed COMSOL Multiphysics https://www.comsol.com/press/news/article/189/
2http://www.cmap.polytechnique.fr/~optopo/index.php

http://www.cmap.polytechnique.fr/~optopo/index.php
https://www.comsol.com/press/news/article/189/
http://www.cmap.polytechnique.fr/~optopo/index.php
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the surface. Using a density-based approach, Guest et al. [2004] present a method
to control the minimum thickness of a structure, by having each cell of the grid
influencing its surrounding elements within a prescribed radius. By considering
both an eroded and dilated design during the optimization process, Sigmund [2009a]
can ensure both minimum thickness and minimum void size. An explicit constraint
for the minimum and maximum thickness was proposed in [Zhang et al. 2014], with
a technique based on an explicit computation of the image skeleton. Finally, an
explicit geometric constraint for minimum length-scale is presented in [Zhou et al.
2015]. The algorithm is inspired by previous level-set methods, but does not resort
to computing an explicit skeleton. Instead, a projection scheme is used to rescale
the density field in order to satisfy a minimum length-scale constraint. Controlling
the minimum void size, Liu et al. [2016] proposed a method to obtain two levels of
details on the void phase, corresponding to the rough/finish machining tools.

Beside minimum thickness control, it may also be necessary to account for geometric
uncertainties due to manufacturing errors and limited tool precision. Robust formu-
lations considering uncertainties in the fabrication process have been reviewed in
[Beyer and Sendhoff 2007; Schuëller and Jensen 2008; Wang et al. 2011], and is still an
ongoing topic of research [Schevenels et al. 2011; Lazarov et al. 2012a,b; Zhou et al.
2014a]. A parallel between coated structures and infill patterns in FDM printers
is made in [Clausen et al. 2015, 2016], to account for the different behavior at the
interface (perimeter toolpath) between the infill pattern and the external void.

More specific to filament printers, the overhang constraint and support detection can
be incorporated in the optimization process. Brackett et al. [2011] explicitly analyze
the cavities and down-facing edges in the structure, and add a weighted penalty to
the objective function at every iteration of the design update. Using a less ad-hoc
algorithm, Gaynor et al. [2014] present a projection scheme, where the optimization
variables are filtered into a printable design that respect the overhang constraint.
The filter function operates by averaging the densities in the supporting pixels
below a given point, and thresholding the result via a smoothed Heaviside step
function. Langelaar [2016a,b] proposed an improved filtering scheme, which more
precisely models the overhang constraints. In particular, it discourages pixels with
intermediate densities to support parts which are fully solid. The filter works for both
2D and 3D, and uses a smooth and penalized min/max formulation to threshold the
densities according to the supporting elements on the layer immediately below. Note
that smooth (differentiable) filters are necessary in order to use a gradient-based
optimizer such as MMA. It should be noted that choosing the print orientation a
priori restricts the set of admissible solutions, which is limiting the performances
that can be obtained compared to a solution that first optimizes a design without
overhang constraints, and then in a post-processing stage seeks to orient the shape
and generate supporting structures. This second approach is used for example in
[Leary et al. 2014].

Connectivity constraints are considered in [Liu et al. 2015b; Li et al. 2016], with
the goal of removing enclosed voids. The process is achieved by treating the void
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material as a virtual heat source, with the domain borders set as a dissipative
boundary. The virtual temperature becomes lower when the void material is
connected to the boundary, which discourages enclosed voids.

Choice of Representation. Level-set methods are often opposed to density meth-
ods such as SIMP for topology optimization. Due to the implicit boundary represen-
tation, level-set methods offer certain advantages for imposing geometric constraints
such as thickness and slope angle, which are essential for additive manufacturing.
However, as outlined in [Dĳk et al. 2013], level-set methods and density-based topol-
ogy optimization can also bear strong similarities, especially when the densities com-
puted from the level-set are embedded in a fixed regular grid. Perhaps a better suited
distinction would be to consider techniques that explicitly represent the boundary of
the structure, which can be optimized either via level-sets [Dapogny 2013], or via an
alternating scheme [Christiansen et al. 2014]. Either way, such an explicit represen-
tation facilitates the enforcement of geometric constraints, e.g. for manufacturing
purposes [Michailidis 2014], or architectural design [Dapogny et al. 2016].

2.5.3 Layout Optimization with Discrete Elements

As explained earlier, in density-based topology optimization methods, material
densities are used directly as optimization variables. In level-set methods, the
densities are implicitly derived from the level-set function. However, it is equally
possible to compute the densities defining the solid phase through an explicit
parameterization of certain geometric primitives. For example, one can imagine
combining shapes such as rectangles, rounded bars, or spheres, into a more complex
structures, by using topology optimization techniques. This approach, in the
context of structural optimization, has been described under different names, such
as feature-based optimization, or layout optimization with embedded components.
The interest in mechanical engineering is straightforward to imagine: the embedded
elements can describe solid components that need to be held together (e.g. in the
design of a satellite), or void area where existing pieces need to fit. Contrary to
standard passive elements, whose size and shape is fixed in advance, embedded
components can move around. In certain cases their scale and number can also be
used as a variable (e.g. when assembling a truss-like structure).

Recall that the use of discrete elements as a primitive for texture synthesis and
artistic control was discussed in Section 2.3.2. In this section, we focus on aspects
regarding the optimal conception of structures, as understood in the mechanical
engineering literature. This has become a very active research topic in recent years,
and many works mentioned here are in fact concurrent to the development of this
thesis. Our work in Section 4.3 further explores ideas for the automatic design of
structures using discrete elements in 3D.
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In a recent survey, Lazarov et al. [2016] distinguish three approaches for density-
based topology optimization using discrete elements. 1) The final shape is defined as
the union of existing discrete shapes, which can lead to a non-differentiable problem,
e.g. Saxena [2011] compute the union of overlapping masks describing the void
phase, and use an evolutionary method to update the population of masks. 2) The
original design field itself is defined as the union of discrete elements, e.g. bars or
rectangles [Norato et al. 2015]. While this approach restricts the possible attainable
designs, especially when the number of primitive does not change, it remains the
most widely used strategy in the works cited this section. 3) The original design
field is filtered or projected using filters with a compact support defined by the
target discrete elements, e.g. [Guest 2015].

Joint Support Optimization (Density Methods). Early methods for the joint op-
timization of embedded components (position + orientation) and their supporting
structure (holding the components together) can be traced back to before 2000. See
the survey of Zhang et al. [2011] and references therein. In their overview, Zhang et
al. [2011] present an approach that decompose a discrete shape into a finite number
of approximating spheres to treat overlaps between elements. Those elements are
placed into a grid domain, which is remeshed locally around the embedded shapes.
Subsequent works have explored combination of level-set technique (to define the
solid/void density of the embedded components), and the SIMP approach for opti-
mizing their support [Zhang et al. 2012; Kang and Wang 2013; Xia et al. 2013]. Those
works use an extended finite element method (XFEM) to ensure proper numerical
modeling at the interface between the embedded components and the surrounding
support. Wang et al. [2014c] use a similar approach to the design of piezoelectric
actuators. In [Zhang et al. 2015a], constraints based on the skeleton of the discrete
shapes are used to avoid overlaps.

Layout Optimization (Level Sets). Using a different approach, [Chen et al. 2007,
2008a] are able to combine different shapes together through CSG operations. To ob-
tain a differentiable parameterization of the densities when combining the primitives
together, the authors rely on the theory of R-functions [Rvachev 1982]. A similar
technique is employed in [Cheng et al. 2006; Mei et al. 2008], which furthermore
propose a method to insert new elements, inspired by the notion of topological
derivatives. Zhou and Wang [2013] regulates the velocity field used to advect the
boundary of the level set via a least-square fitting in order to preserve the geometric
characteristics of the embedded features. Liu et al. [2014b] described a unified
level-set framework using R-functions to encode geometric constraints. Liu and
Ma [2015] presented a 3D scheme that also consider machining constraints via
least-square regularization. Kang et al. [2016] developed a level-set approach where
explicit constraints are computed based on the distances from the zero level-set, to
avoid overlaps between components. In [Zhou et al. 2016], a level-set function is
defined using linear approximations of the signed distance functions computed on
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the embedded elements. Gao et al. [2015a] aggregate the geometric primitives with
an adaptive differentiable scheme (based on the number of primitives). Constraints
are imposed to explicitly connect different primitives, by adding a term to the elastic
potential energy of the system, so that it is minimized when the displacements at
nodes from overlapping primitives are equal under the specified external loads.

Recently, a slightly different approach has also emerged, which tries to produce
results comprised of aggregated elements only, i.e. without embedding them into an
optimized support structure. In [Guo et al. 2014a; Zhang et al. 2016a], each element
generates a field with local support in the shape of the element. The expression of
the density field for a given element is a complex expression involving the spatial
position and angular orientation of each element. The technique has been further
developed in [Deng and Chen 2016], which imposes explicit connectivity constraint
between certain elements. Finally, Norato et al. [2015] describe a similar approach,
using simper shapes (thick bars with rounded endpoints), and also accommodate
for overlapping elements.

Projection Methods. In [Saxena 2011], the void regions are represented by taking
the union of a set of disks/ellipsoids/rectangles (called material masks), whose
position and number are updated using an evolutionary method. Seeking a differen-
tiable alternative to this simple scheme, Wang et al. [2012] map the masks on a fixed
grid using a smoothed Heaviside function, making the update scheme amenable to
gradient-based minimization.

In [Clausen et al. 2014], flexible void areas are introduced, and a deformation penalty
is computed using a least square measure around the void center of mass. In [Ha and
Guest 2014; Guest 2015], a projection method is used to place objects at nodes of the
FE mesh. The algorithm needs 1 variable per object to indicate whether the feature
is “activated” or not, and a region of “negative influence” around each element
discourages phase mixing and overlaps. This method can only place elements
are predefined location, and without additional attention suffers from the curse of
dimensionality. Finally, Overvelde [2012] use Lagrangian samples inspired by fluid
simulation techniques (such as SPH), to define the solid structure. The particles can
move through the domain and define the solid implicitly. Our approach Section 4.3
draws inspiration from this Lagrangian formulation, but needs to address different
challenges, such as efficient 3D simulation, elements not reduced to a single point,
connection between adjacent elements, etc.
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Chapter 3

Shape Synthesis with Fabrication
Constraints

In this chapter, we are primarily concerned with the question how to fabricate com-
plex shapes? In this context, the user provides a 3D shape, and chooses a target
manufacturing technology. Because each manufacturing technology has its own set
of constraints (discussed Section 2.1.3), the model cannot always be printed as is.
In some cases, the shape can still be printed using auxiliary structures, which are
removed afterwards. Another point of view is to modify the model beforehand so
that it complies with the constraints, e.g. by deforming or cutting the model.

There are several ways a shape can be adapted to fit a specific printing technology.
One could classify them as shape-altering, and shape-preserving algorithms, whether
the procedure is allowed to modify the original shape or not. Note that the slicing
process unavoidably introduces an approximation of the original shape at the end,
so the shape-altering property refers to rather large and visible changes from the
input shape. Most techniques described in Section 2.2.2 would qualify as shape-
altering, in the sense that they are producing a new surface, hopefully as close to the
original as possible, in order to enforce the printing constraints. This is the case of
techniques such as Make It Stand [Prévost et al. 2013] and its variants [Christiansen
et al. 2015b], which seek to balance a shape before printing so they can rest in static
equilibrium in the desired orientation. Another example is methods to reduce the
amount of supports required before printing [Hu et al. 2015], where the output of
the algorithm is a new shape, that has been deformed.

On the other side of the spectrum, shape-preserving methods have been discussed
in Section 2.1.3. This includes techniques for generating external support structures,
either sparse [Schmidt and Umetani 2014; Vanek et al. 2014a], or dense ([Huang et al.
2009b; Heide 2011]. This notion of shape-preserving algorithms can also apply to
inner structures generation, either for explicit structural reinforcements [Wang et al.
2013; Lu et al. 2014], or improving print speed [Zhao et al. 2016b]. Segmentation
techniques such as [Luo et al. 2012; Hu et al. 2014; Chen et al. 2015b] fall somewhere
in between, in the sense that they do not modify the definition of the printed surface,
but the decomposition itself introduces visible seams that affect the appearance of
the fabricated results. Finally, some methods employ a mix of shape-altering and
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shape-preserving techniques: for example the carving step in [Prévost et al. 2013]
can be considered shape-preserving, since the surface definition is unchanged, while
the shape-deformation step is of course modifying the surface itself, and thus can
be labeled as shape-altering.

In the context of this thesis, being able to fabricate complex shapes that obey
printing constraints is a first logical step towards the conception of a more elaborate
printing pipeline — which aims to synthesize new shapes, blending appearance and
mechanical considerations in a controllable manner. Thus, before working on shape
synthesis ex nihilo, I first focused on the problem of shape synthesis for support
structures — either external or internal — as they are often needed in conjunction
with filament printers.

The rest of the chapter is organized as follows. In the first section a method for
generating support structures for filament printers is presented. This fits in the
shape-preserving category mentioned above, with the target printing technology
being fused filament deposition. This work has been the object of a Siggraph
publication in [Dumas et al. 2014], and was done in collaboration with Jean Hergel
and Sylvain Lefebvre. The content of the original publication is mostly reproduced
in Section 3.1, with additional details about the parts where I was the most involved:
the core scaffolding generation algorithm (given a set of points to support), collision
detection, and the presentation of alternative formulations that we have explored.

The second section of this chapter describes a fast algorithm for performing morpho-
logical operations (dilation) on 2D binary images. Possible extensions to 3D dexel
data structures is discussed. An interesting application of this work is presented,
for the purpose of finding the minimal printable volume enclosing (or enclosed) in
a given shape. This particular application has been described in a publication — see
the technical report [Hornus et al. 2015], or the later conference version [Hornus et al.
2016]. Although my main contribution to this publication was the implementation
of a fast dilation operator for binary images, the details of the particular algorithm
were not described in the publication, but are presented here. More precisely, the
dilation algorithm relies on an original interpretation of a Voronoi diagram with
parallel seed segments. Interestingly, its time complexity does not increase with the
dilation radius — in fact it performs faster with larger radii.



3.1. Bridging the Gap: Automated Steady Scaffoldings for 3D Printing 71

3.1 Bridging the Gap: Automated Steady Scaffoldings for
3D Printing

Remark. Compared to our original publication [Dumas et al. 2014], details about collision
detection and possible improvements are further discussed in Section 3.1.4.

(a) (b) (c)

Figure 3.1 – The upper leg of the Poppy robot cannot be 3D printed
on low cost FDM printers without support. Our technique automat-
ically generates scaffoldings made of horizontal bridges supported
by vertical pillars, shown in purple. The print is shown in the mid-
dle and on the right after clean up. Bridges are strong and stable,
increasing the print reliability while having a low material usage.

Fused Filament Fabrication (FFF) is the process of 3D printing objects from melted
plastic filament. The hot plastic exits a nozzle and fuses with the part just below,
adding a layer of material to the object being formed. However, filament can only be
deposited on top of an existing surface. Therefore, overhangs require a disposable
support structure to be printed, temporarily supporting the threads of plastic that
would otherwise hang in empty space.

Existing techniques for support generation fall into two categories: The first allow
for very reliable prints by enclosing the bottom of the object in a dense structure, at
the expense of increased material usage and build times. The second generate thin
hierarchical structures connecting to the surface in a sparse number of points. This
uses less material, at the expense of reliability: the part might become unstable, the
structure itself may become difficult to print, the bottom surface quality degrades.
The user therefore has to correct the structure and its parameters for each new object.

We propose to exploit the ability of FFF printers to print bridges across gaps. Since
bridges are always supported by pillars at their extremities, they are both stronger
and more stable than hierarchical tree structures. Our technique first selects the
points to support based on overhang and part stability during the entire print process.
It then optimizes for a printable scaffolding composed of bridges and vertical pillars,
supporting all points. The result is an automated support generation technique
using little material while ensuring fine surface quality and stability during the
printing process.

www.poppy-project.org
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3.1.1 Introduction

Fused filament fabrication (FFF) is a popular technique for turning 3D models into
real, tangible objects. A hot filament is melted through a heated nozzle and fuses
with the part just below, adding a layer of material to the object being formed.
Advantages are the low cost of both printers and filaments, the relative ease of
use requiring few manual steps before and after printing, and the wide availability
of printers which can be bought from a variety of manufacturers, e.g. Ultimaker,
RepRapPro, 3D Systems, Stratasys.

A major drawback of the process, however, is that filament can only be deposited
on top of an existing surface. Therefore, overhangs require a disposable structure
to be printed, temporarily supporting the threads of plastic that would otherwise
hang in empty space. Most of the existing approaches build very reliable support
structures that unfortunately incur a large increase in used material and print time.
Other approaches produce small support structures but rely on the user to fix an
initial, incomplete automated solution. This trial-and-error process often requires
multiple test prints. We discuss previous work Section 2.1.

We design our supports to answer two main criteria: 1) supporting plastic threads
wherever necessary, while being easy to remove and 2) minimizing used material,
while printing reliably. Material usage and reliability are contradictory goals: as the
size of the support is decreased it becomes more delicate to print and mechanically
fragile. In particular the weight of the object and the friction of the printing nozzle
start to endanger the integrity of the structure.

Support generation techniques focus on the issue of overhangs. This is, however,
not the only situation in which support is required. Many objects are printed in
a fragile equilibrium, or will have subparts in fragile equilibrium at a stage of the
printing process. When support is required this issue propagates throughout the
entire support structure: a thin support has to be strong enough to support the
weight imbalance of the subparts being printed above it. Our supports ensure that
not only all overhangs are properly supported, but also that at all stages of the print
process the already printed subparts of the object are maintained in a stable position.

Our structures are inspired from the scaffoldings used in construction.
In particular, we exploit bridges — horizontal bars printed between
mostly vertical pillars. Such bridges can be printed reliably by FFF
printers over gaps of several centimeters. These bridges exhibit good
mechanical properties and can support other layers of scaffolding.
As illustrated in the inset, our scaffoldings are surprisingly strong
— this particular scaffolding is made of the same geometry as the
scaffoldings we use to support our prints. Despite bridges that are only two threads
wide (0.8 mm) and two layers thick (0.4 mm), it withstands the 83 grams of a coffee
cup — the rough equivalent of 35 meters of 1.75 mm ABS plastic filament — most
objects use less than 10 meters of filament and are supported by several bridges.
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The scaffolding weights 0.5 g. These good mechanical properties led us to a scheme
where we only consider the topology of the structure: in all practical cases we
encountered and despite printing at the smallest thicknesses ensuring reliability,
our bridge structures proved sturdy enough.

Contributions.. Our first contribution, described Section 3.1.3, is a novel way to
select points to be supported based not only on overhangs but also on the stability
of the printed model throughout the entire build process. Our second contribution,
described Section 3.1.4, is an efficient algorithm to build bridge scaffoldings that
support a given sets of points in space. The structure itself preserves the balance of
the print, while using little material. A major difficulty in computing the structure
stems from the constraints ensuring that the result is printable: A bridge may only
be printed if it is supported by a pillar in each of its extremities.

3.1.2 Printing Bridges

We discuss in Section 3.1.2 our choice of using vertical pillars for the main structure,
and compare it with trees. Section 3.1.2 discusses the printing of bridges on FDM
printers. Section 3.1.3 describes the selection of the points required for supporting
the printed model. Our selection ensures both that deposited filament is properly
supported, but also that the printed parts remain stable at all times, throughout the
printing process. Section 3.1.4 introduces our bridge construction algorithm: the
generation of the geometry of the support structure once the required support points
have been determined. We conclude with results and comparisons in Section 3.1.5.

Analysis

An appealing option when designing support structures is to rely on hierarchical
tree-like structures. This is a choice worth considering since the support pillars
quickly regroup before reaching the printing bed. Therefore, one can expect less
material to be used and a smaller print time.

However, this incurs several difficulties. First, printing slanted pillars is generally
less reliable than printing vertical pillars. The slope induces a smaller bonding area
between layers and an uneven warping during cool down. The reliability varies
upon the room temperature, the plastic filament quality, and the layer height settings.
Printing vertical pillars is much less sensitive to these factors. Second, even when
the structure prints properly, the supported weight and the forces applied by the
print head on the upper levels generate torque on the base pillar(s). This bends
the structure, and resulting deformations can lead to print failures. In contrast
our scaffoldings are stable by construction: the pillars on each side of the bridges
prevent the bending of the structure.
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One might expect the tree structure to use less material than a bridge structure,
thanks to the hierarchical grouping. But as we now discuss, and perhaps somewhat
counter-intuitively, bridge structures are in fact comparable to tree-structures. Let
us consider a grid of 2k × 2k points spaced evenly by one unit (millimeters) on a
same horizontal plane. An example is shown Figure 3.2 for k � 2. The grid side
length is 2k − 1 mm. We consider the case of a tree-structure with pillars at 45
degrees. Grouping all points down to a single pillar requires a total pillar length of
Lt(k) � 2k(2k+1−2). The tree then has a height of 2k−1√

2
. A bridge structure for the same

points at the same height requires a total pillar length of Lb(k) � 2(2k−1)(1+
√

2+2k−1).
It can be seen that for k >� 3 the bridge is more efficient than the tree. However, as
the height further increases the tree grows a single pillar while the bridge grows four.
We consider the height at which a tree-structure and a bridge-structure use the same
pillar length as a function of k; that is h such that Lt(k)+ h � Lb(k)+4h. For instance,
for supporting 16 × 16 points (k � 4) spaced by 1 mm the tree becomes interesting
again after 56 mm. By this time we reach the configuration shown Figure 3.2 where
the tree fails to print properly. In contrast, the four pillars stabilize the bridge
structure, making it more reliable to print at higher heights and able to support
significant weights.

Bridge Printing Reliability

Our bridges are two layers thick and two threads wide, with a small spacing (0.4 mm)
in between both threads. To print bridges at relatively high speeds (60 mm/sec)
we force the extrusion of a small amount of plastic prior to printing horizontal
bridge segments (0.1 mm of filament). Our bridges are designed to print quickly,
which negatively impacts their appearance — in particular, the first printed threads
often sag. This has however little impact on the quality of the top of the bridge,
as detailed in Figure 3.3. While all results shown in the section are printed on a
MakerBot Replicator 1 with ABS plastic, we also tested our bridges successfully on an
Ultimaker 2 with PLA plastic, using same parameters. Our scaffolding algorithm is
independent from the exact geometry used to print bridges.

The bridges are mechanically robust despite their small size (see Section 3.1.1). Two
30 mm bridges can for instance support the entire Minotaur model of Figure 3.18
with little deflection (< 0.3 mm).

3.1.3 Support Points Detection

The first step of our approach is to determine a set of points that require support.
There are two aspects to this process: supporting filament and ensuring part stability.
We start by determining where filament needs support: these points are required
regardless of stability, whereas the stability analysis of the overall part depends
upon the already placed support points.
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(a) (b)

Figure 3.2 – (a) Top: A bridge structure supporting a grid of 4 × 4
points. Bottom: Corresponding tree structure. (b) From left to right:
A bridge structure 78 mm tall, the same structure supporting a 9 V
battery, the equivalent tree (same amount of filament). The tree
cannot support such weight without toppling. In addition, the top
of the tree failed to properly print due to extruder friction. Printed

at 60 mm/s on a Replicator 1 Dual with ABS plastic.

Figure 3.3 – We printed bridges of 30 mm length in batches, along the
X, Y axis and at a 45 degree angle. All the bridges printed successfully
with a flat top surface. However, the first threads of plastic often
sag, resulting in an uneven underside. We measure the deflection
to be 0.8 mm on average. In 12 % of the cases a first thread failed to
connect and was dangling from the bridge. Printed at 60 mm/s on

a MakerBot Replicator 1 with ABS plastic extruded at 220◦C.
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Supporting Filament – Detecting Support Points

Our approach starts by slicing the model without any support, determining the full
set of print paths. Each print path is a sequence of segments along which plastic has
to be deposited. The print paths are of two types: the perimeters which follow the
outer boundary of the surface and the infills which fill the interior of the volume.

Our algorithm walks along each print path and checks whether each segment
endpoint is properly supported by the layer just below. The test considers the
coverage of a disk having for diameter the size of the print nozzle (0.4 mm in our
setup). If more than 50 % of the disk lies outside the object on the layer below, we
consider the endpoint unsupported — this threshold was determined experimentally
to ensure good surface quality. In practice, we implement the test using images of
the layers with 0.05 mm pixel resolution. We only check segment end points since
the segments themselves form bridges if their extremities are supported. However,
in order to ensure a good quality for bottom surfaces, we restrict the longest segment
length. This is done by re-sampling any segment whose length exceeds a threshold
(5 mm in our implementation).

Figure 3.4 – Cube hanging in space. Left: Set of points requiring
support. Middle: Generated scaffold. Right: Bottom surface quality.

This simple analysis does not take into account the fact that when a point is supported,
a whole length of filament around it can be considered supported as well — the
cooling filament having a non negligible rigidity. This is the case on perimeters.
This effect turns into a surface support when filaments are deposited side by side, for
instance when filling an area with a tight infill pattern (see [Chalasani et al. 1995] for a
nomenclature of such cases). We therefore select only a subset of the detected points.
Pseudo code is given by Algorithm 1. C(u , v) denotes the curvilinear distance
between two points u and v on a same print path; τ is the canceling distance (2 mm
in our implementation); IsUnsupported tests the disk coverage test using the layer
directly below the point. Figure 3.4 shows the result for a box hanging in space.
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Algorithm 1: SelectSupportPoints

Input: Array of paths P, stored as array of points, ordered by Zր.
Output: Set of points S to be supported.

1 foreach perimeter perim ∈ P do
2 foreach u ∈ perim do
3 if IsUnsupported(u) then
4 if ∄v ∈ S , v ∈ perim ∧ C(u , v) < τ then
5 S ← S ∪ {u}

6 foreach non perimeter path ∈ P do
7 foreach u ∈ path do
8 if IsUnsupported(u) then
9 if ∄v ∈ S , z(v) 6 z(u) ∧ ‖u − v‖ < τ then

10 S ← S ∪ {u}

11 return S

Ensuring Part Stability

Once the points required for supporting filament are determined, we consider the
stability of the printed part. When printed layer by layer an object made of a single
component often starts as disconnected subparts which regroup at higher heights
(see Figure 3.5). At an intermediate stage, each of the disconnected sub-parts may be
subject to instabilities and topple, leading to a print failure. Our analysis algorithm
therefore proceeds in a bottom-up manner, analyzing layer after layer the stability
of each subpart independently until they regroup.

We assume next that there is no gluing force between the bed and the printed object
— a conservative assumption since any existing gluing force only improves stability.
We also assume that the part is rigid when checking for equilibrium and stability.

Stability Conditions. Verifying whether a rigid body lying on a surface is under
static equilibrium involves two main concepts: the center of mass (CoM) of the object
as well as its base of support (BoS). For an object of volumeΩ of homogeneous density
ρ the center of mass is defined as Com(Ω) � ρ

∫
Ω

x dx. In the case of FDM printed
object, the volumeΩ to consider is not the volume defined by the mesh, but instead
the volume resulting from the accumulation of plastic filament — this is especially
important when sparse infill patterns are used within the object interior. The BoS is
the convex hull of the points of the printed part in contact with the print bed. Our
goal is to increase the BoS to ensure stability, through the addition of support points
and bridges.
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Figure 3.5 – Left: A stable object. Right: At an earlier stage of printing
the object is made of four disconnected components. The center of
mass (red dot) of the full object (left) projects onto the ground (green
dot) within the base of support (orange polygon). At an earlier stage
of printing (right) the object is made of four disconnected components
which are unstable and may topple if unsupported. As can be seen

the projected CoM lies outside of the BoS.

A rigid body lies in static equilibrium on a plane orthogonal to gravity if its CoM
projects into the BoS (e.g. [Prévost et al. 2013]). This equilibrium might however be
unstable if small perturbations — for instance due to the print head — make the
object topple. We take these perturbations into account by verifying whether a disk
of radius r around the projected CoM lies entirely within the base of support. This
is an approximation, and we choose for radius a conservative estimate of 3 mm in
our implementation. A more elaborate scheme would change the radius depending
of the distribution of mass around the CoM and the distance to the BoS; we did not
find this necessary.

When a subpart is detected as unstable we add support points to increase its base
of support. This is only possible because the base of support of our scaffoldings
always contains all the projected support points: the bridges are always supported
by vertical pillars at their extremities.

Algorithm. Our algorithm sweeps through layers from bottom to top. At each
layer, we render an image of the print paths (one pixel per 0.05 mm) and use it to
keep track of the 3D connected components. Note that this only requires the images
of the current layer and the layer directly below. An example of layer image is shown
in Figure 3.6, right.

We compute the CoM of each component by summing the coordinates of the pixels
belonging to it — each pixel represents a small volume of matter having a same unit
mass. Using the image of the print paths properly accounts for infill patterns within
the object.
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While sweeping through layers we keep track of the current BoS of each 3D com-
ponent (Figure 3.6, right, green polygons). A BoS is a convex hull and therefore its
geometric complexity remains small. Each BoS is initialized at the first layer, where
the filament is in direct contact with the print bed: we add all the pixel coordinates
belonging to a component to its BoS. At each layer, we include in the BoS the support
points detected for the filament. We then check whether the disk of radius r centered
on the projected CoM is entirely within the BoS (Figure 3.6, right, orange circles). If
that is the case for all components we continue to the next layer.

If the CoM disk leaves its BoS new support points have to be added. During the
sweep we keep track of candidate points for each component: these are points on
the bottom surface of the object that are not projecting in the component BoS. By
supporting these points we have an opportunity to enlarge the BoS of the component.
We do not consider the candidate point directly but a circle of points around it. The
radius is the same as for the CoM disk. This guarantees that we can always enlarge
a BoS to cover the CoM disk.

To enlarge a BoS we iteratively add points until the CoM disk is fully covered. At
each iteration we add the candidate enlarging the BoS with the largest coverage of
the CoM disk. Due to the arbitrary insertion order, some points added in the first
iterations may no longer contribute to the final BoS. We remove these and tag the
selected points as requiring support. The added points may not be in contact with
the surface, in which case we add a small bridge between the candidate point and
the surface point (Figure 3.6, right, purple segments). This bridge is given as an
input to the scaffolding algorithm.

Figure 3.6, left illustrates the bridge structure resulting from the stability analysis
only. Note in particular how the BoS has been enlarged by adding bridges at the
first layer, providing an automated raft feature for small contact surfaces with the
bed. Timings for this algorithm are summarized in Table 3.1.

3.1.4 Scaffolding Synthesis Algorithm

We now describe how the geometry of our support structure is generated, given the
set of points to be supported. We seek to generate a structure so that:

• the structure is formed by vertical pillars and horizontal bridges,

• all required points are properly supported by vertical pillars,

• the vertical pillars connect either to the print bed, to horizontal bridges located
below, or to the object itself.

• all horizontal bridges are supported at their extremities, by vertical pillars, by
other bridges, or by connecting to the object.

This last point guarantees that the structure is printable on an FDM printer. We search
for a structure using a small amount of plastic while enforcing these constraints.
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Figure 3.6 – Left: Bridge structure stabilizing the part: the projected
CoMs are now within the BoSs. Right: Image of a layer created
during stability analysis. The print paths are color-coded with the
ID of their 3D connected component. The orange circle are the CoM
disks, the green polygons the current BoS of each component. The
purple segments are the added stabilizing bridges at this stage. They

maintain the orange CoM circle within the green BoS polygon.

Our initial attempts at formulating an integer problem in a regular grid, capturing the
constraints between horizontal bridges and vertical pillars resulted in impractical
computation times — it did not terminate but for the simplest examples. This
formulation is described in the supplemental material. We therefore propose a
greedy optimization algorithm.

We design our algorithm with the ability to create bridges in several directions in the
XY plane. This is important since a strong directional bias — such as axis aligned
bridges only — would generate a larger number of pillars when supporting features
at an angle. We also note that while thin slanted pillars become less reliable as their
length increases, they can print reliably on short distances. This is particularly useful
when trying to support several points with a rectilinear bridge: perfect alignments
are unlikely. Our algorithm therefore has the ability to connect vertical pillars to
other elements by adding a small slanted connector at their top.

Bridge Gain and Score

Our algorithm enumerates and selects new bridges that improve the current solu-
tion. It therefore requires a function to estimate the benefit of a new bridge. We
approximate the bridge benefit by counting the gain and loss in terms of pillar and
bridge length.

Following notations in the inset, a bridge of length wb at height hb supporting k
elements provides a gain ofGain(b) � (k−2)hb−wb . Clearly, only bridges supporting
more than two points can be beneficial. Our algorithm only inserts bridges where
Gain(b) > 0.



3.1. Bridging the Gap: Automated Steady Scaffoldings for 3D Printing 81

Z

hb

wb

lmin

lmax
When deciding which bridge to insert we compute a score for each
bridge. The score is: Score(b) � Gain(b) − k · lmax(b), where lmax(b)
is computed as the maximum length of the structure connecting
an element above to the bridge. It takes into account non vertical
parts that may occur when an element above is not in the vertical
plane of the bridge. The score penalizes uneven distributions of
connection lengths above the bridge. The bridge giving the best
(possibly negative) score will be selected. In cases where the bridge
extremities are above the object, we use the free length of each
vertical pillar instead of the bridge height: Gain(b) � k · hb − h1 − h2 − wb with h1

and h2 the heights of the pillars before reaching the object.

lmin (see the inset) is a parameter fixing the minimal distance between a bridge and
a supported point (1.6 mm in our implementation). Note that lowering the bridge
would only reduce its gain. Thus bridges have maximal gain at a distance lmin below
the lower of the elements they support. This provides a way to efficiently enumerate
possible bridge heights.

Construction Algorithm

The input to our bridging algorithm is a set of points and bridges that have to be
supported. The bridges come from the stability analysis (Section 3.1.3). We also
input a representation of the 3D model allowing for fast line intersection tests — this
can be any of the common ray-tracing data-structures.

The output of the algorithm is a set of horizontal bridges and vertical pillars forming
a correct (printable) bridge structure while having a small size. Each computed
bridge and pillar is turned into actually geometry before 3D printing (Section 3.1.4).

Sweep Strategy. Our algorithm iteratively searches for possible bridges through-
out the volume, adding those with the highest score. Since the set of points requiring
support is sparse only a small number of possible bridges has to be considered.

Our approach is based on a sweep strategy. Possible bridges are enumerated by
sweeping a vertical plane along a fixed direction in the XY-plane. For the sake of
clarity let us assume in the following that the selected sweep direction is the X axis.
We thus sweep a YZ plane along the X axis, stopping at a number of events. The
events represent opportunities to create bridges orthogonal to the sweep direction
that support other bridges and points located above. The events are the end points
and intersections of a number of anchoring segments describing where bridges and
points can be supported.

Anchoring Segments for Bridges. A bridge is represented by a solid segment
supporting elements above. Two anchoring segments — one on each extremity —
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X

Y

sweep

bridges?

Figure 3.7 – Two bridges and an isolated point as well as their corre-
sponding anchoring segments for a sweep along the X axis. The green
squares are events considered during the sweep. The purple line
illustrates the YZ sweep plane when examining one event. Bridges
will be searched along the Y and Z axis. All intersected anchoring
segments are an opportunity for a new bridge to support existing

bridges and points.

represent where the bridge can be supported from below: the interval of possible
endpoints for this bridge. The anchoring segments for a bridge are outlined in green
in Figure 3.7. Their length is chosen to enforce a longest bridge constraint (30 mm
in our implementation).

Supporting pillars from below can connect anywhere along the anchoring segments.
Once connected, the bridge extends to the pillar and the anchoring segment is
removed. The remaining anchoring segment, if any, is updated to enforce the
longest bridge constraint. We name this operation a snap, and name open bridge a
bridge with two open anchoring segments and a half-open bridge a bridge with a
single open anchoring segment. The exact size of the bridge is only determined
once both of its anchoring segments are snapped.

X

Z

Anchoring Segments for Points. Points are supported by pillars grown
either from the ground or from a bridge located below. Using only
vertical pillars would require a perfect alignment between bridges and
points, an unlikely event. Instead, our algorithm allows small slanted
bars to be used at the top of vertical pillars, as illustrated in the inset. To
ensure printability we constrain the ratio between the offset at the top
and the height of the slanted bar. The two dashed lines in the inset show
extremal configurations, with the point either exactly above the pillar or at the
largest admissible offset (5 mm in our implementation).

Anchoring segments for a point depend on the sweep direction. They are illustrated
in orange in Figure 3.7. The anchoring segments for points are created each time
a new sweep direction is selected. Note that we consider the extremities of the
solid segment of a bridge as points to be supported (Figure 3.7). If one extremity is
snapped, the corresponding bridge anchoring segment is removed.
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Algorithm 2: GenerateScaffolding

Input: A set of required points R ∈ R3, a set of required bridges B, the number of
sweep directions d.

Output: A valid bridge structure.
1 Initialize the active set of elements with E ← R ∪ B;
2 while true do
3 bestBridge← ∅;
4 for i ← 0 to d − 1 do
5 S ← CreateAnchoringSegments(E , i);
6 P ← ∅ ; // set of segments crossing the current sweeping plane
7 Q ← Events(S) ; // queue sorted by X ր
8 while Q , ∅ do
9 e ← Pop(Q) ; // leftmost event

10 for s ∈ S starting in e do P ← P ∪ s ;
11 selected← selectBridge(P);
12 if score(selected) > score(bestBridge) then
13 bestBridge← selected
14 for s ∈ S ending in e do P ← P \ s ;

15 if bestBridge � ∅ then return;
16 Let C bet the set of elements supported by bestBridge;
17 for c ∈ C do
18 Snap(c , bestBridge);
19 E ← E ∪ B;

Complete Algorithm. The full pseudo-code is given in Algorithm 2. At every
iteration (line 2) the algorithm starts with a number of (half-)open bridges and
points and attempts to snap as many as possible by adding a new bridge supporting
them from below through pillars. When the algorithm cannot find beneficial bridges
(G(b) > 0) it stops (line 15).

The algorithm considers multiple sweep directions at each iteration (line 4). Let us
assume that the problem is rotated each time to align the sweep direction with the
X axis. Possible bridges are enumerated by sweeping the YZ plane along the X axis,
stopping at each event (lines 7–8). The events are the end points and intersections of
all anchoring segments — the intersection being computed after projection on the
XY plane, i.e. ignoring the Z coordinate. Figure 3.7 illustrates the set of events for a
simple case.

CreateAnchoringSegments creates all anchoring segments for bridges and points
(see Figure 3.7); events computes all events for the sweep (green squares in Fig-
ure 3.7). At each event, we consider the bridges that can be formed along the Y
axis, connecting the segments currently intersected by the sweep plane. Bridges can
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exist at different heights: we consider the heights just below each of the anchoring
segments (see Section 3.1.4). This is performed by SelectBridge (line 11), described
in Algorithm 3.

In Algorithm 3, each bridge snapping more than two points is evaluated by the
functions AddSupported and EvalBridge which implement the bridge gain and
score evaluation described in Section 3.1.4. The gain and score are computed
assuming that the current endpoints are supported by straight pillars — which is
an approximation of the final solution. The score takes into account the increase in
length of the bridges located above that are snapped to the new bridge (see lmax in
Section 3.1.4). Candidate bridges are tested for collisions by Collisions: this checks
whether a collision occurs between the model, the bridge and each connector to the
elements above it. This takes into account collisions with already placed bridges.
The collision tests can be accelerated thanks to the fixed number of directions and
the limited set of points to consider.

Finally, Snap (line 18, Algorithm 2) snaps the extremity c of an element located
above to the newly added bridge B by creating a vertical pillar topped (if necessary)
by a small slanted pillar. For instance, that would be the case where the purple
line in Figure 3.7 intersects orange segments: a slanted bar is necessary to cover
the horizontal gap from the point to the bridge. Note that the distance between
the point and the intersection along the anchoring segments constrains the height
of the bridge. This is taken into account by z(c) in Algorithm 3, together with the
minimum distance between a bridge and an element, lmin .

Note that in some cases the new bridge might be able to support two anchoring
segments of a same bridge located above ; i.e. a bridge anchoring segment and a
point anchoring segment. This case can be seen for the rightmost segment and the
purple sweep line in Figure 3.7. If there is more than one possibility to snap an
element to the current bridge, only the one yielding the connector of smallest length
is considered.

Complexity. Algorithm 2 has a total time complexity of O(d · (n + k)n3 · c · b),
where d is the number of sweeping directions, n the number of points to support,
k the number of intersections between the segments projected on the XY plane,
c the maximum time complexity of a collision test, and b the number of newly
added bridges during the main loop of Algorithm 2. Note that this is only an upper
bound, and that in practice the execution time of the whole process is reasonable
(see Table 3.1). Several factors are favorable. First, the iterations for different
sweep directions are trivial to parallelize. Second, the number of segments input
to SelectBridge can be much smaller than the total number of element n (not all
anchoring segments intersect). Finally, for each newly added bridge, all the points
it supports are removed, making subsequent iterations within Algorithm 2 faster.

We measured the execution time of our parallel implementation on an Intel® Core™

i7-4770K @ 3.50GHz with 8 threads, 32 GB RAM and a GeForce GTX Titan. We used
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Algorithm 3: SelectBridge along a given plane
Input: Set of segments P intersecting the sweep plane YZ at current event.

1 C ← {P ∩ YZ} ; // intersections sorted by Y ր
2 Z ← {z(c), c ∈ C} ; // sorted by Zր
3 for z ∈ Z do
4 for i1 ← 0 to size(C) − 1 do
5 A ← ∅ ; // points supported by bridge
6 for i2 ← i1 to size(C) − 1 do
7 if ‖C[i2] − C[i1]‖ 6 maxDist then
8 AddSupported(A , C[i2]);
9 if Collisions(A , i1 , i2 , z) then break ;

10 (gain, score) ← EvalBridge(A , i1 , i2 , z);
11 if gain > 0 and score > bestscore then
12 bestbridge← currentBridge

13 return bestbridge

Model Dim. Max # Input Pts # Iter Bridging CoM

Knot 45.9 mm 155 4 263 ms 3.9 s
Servojoint 65.6 mm 195 21 676 ms 7.3 s
Gymnast 98.8 mm 114 17 712 ms 19.3 s
Bunny 5cm 55.0 mm 302 42 18 s 283 ms 2.6 s
Hilbert 30.0 mm 262 26 3 s 776 ms 1.2 s
Minotaur 99.5 mm 391 49 43.2 s 13.9 s
Enterprise 152.8 mm 823 75 1 min 12 s 24.2 s
DNA 94.8 mm 867 104 4 min 17 s 16.7 s

Table 3.1 – Execution times on a variety of models.

d � 8 sweeping directions (angular increments of π
8 due to symmetry). As we can

see in Table 3.1, the timing for most real-world examples are under five minutes and
we believe there is room for further optimizations.

Connecting to the Object. The extremities of a bridge may
connect to the top of the surface below by a vertical pillar. As
an alternative, we also consider snapping bridges to the object
sides, as illustrated in the inset. For each bridge considered
in line 10 of Algorithm 3, we also consider extended the same
bridge with endpoints until touching the surface (up to the
maximum allowable length). Such a candidate bridge simply
has one of its h{1,2} equals to 0 in the calculation of its score and gain (Section 3.1.4).
We retain the candidate bridge with the best score.
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Collision Detection

An implementation detail that we have not discussed previously is how to efficiently
compute collision queries during the construction of the scaffolding.

Because the scaffolding generation algorithm needs to perform a lot of collision
queries during the sweeping process, it is crucial to use an efficient data structure
that answers those queries efficiently. Depending on the underlying data structure
representing the 3D model, different strategies can be devised. In this section, we
briefly explain our implementation for the dexel data structure (Section 2.1.2). Note
that a triangle mesh can always be approximated by a dexel data structure in a
conservative manner.

There are two types of queries that are being performed: horizontal (in each of the
sweep direction), and vertical. The short diagonal pillars are neglected, i.e. we do
not test for collision with the original model.

For each of the possible direction of an horizontal query, we build a dexel structure
from the corresponding viewing direction. For each layer height we store a binary
image of the slice in a compressed format (a 2D dexel array): each row contains a
linked list of the entry/exit event in the slice. Using this data structure, it is possible
to test if a given horizontal segment [(x1 , y), (x2 , y)] in the image contains a black
pixel. The test can be performed in logarithmic time via a binary search. If the
segment contains a solid pixel, then it collides with the print and it is rejected.

To account for the thickness of the bridges being generated, a useful trick is to
consider the dilation of the original shape by a certain amount, and test if a given
line segment intersects with the dilated shape. In practice, we perform a conservative
offset in two steps. First, each slice is dilated in 2D by the horizontal width of a
bridge. Second, to account for the vertical thickness, we compute the union of
all slices within a slab of thickness t around the current one. This union can be
computed efficiently via two separate sweeps (one bottom-up and one top-down).
Once those two steps are performed, the dexel data structure represent the original
shape offset by the right amount (more precisely we have computed the Minkowski
sum of the input shape, a vertical segment of length t, and an horizontal disk of
radius w).

The storage of a 3D dexel data structure is compact, and only grows linearly with
the number of sweep directions used in the scaffolding generation (in practice we
only used 8 directions and found it to be sufficient). The important property is that a
collision query can be performed in logarithmic time in the number of events along
a ray. As most objects have simple topology, the number of such events is usually
less than 10, which makes the query very efficient.

For the vertical queries, only one vertical dexel data structure is needed. The same
dilation trick can applied, however in this case it is desirable to know precisely
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where on the surface a vertical pillar can be attached to, so we did not perform any
dilation during the construction of the query data structure.

Similarly to the slanted tips that were neglected before, potential spurious inter-
sections with the original surface are resolved later at the slicing stage by the CSG
engine within IceSL [Lefebvre 2013]. In practice, a small gap of one or two nozzle
widths is enforced between the support structure and the original shape (which
“wins” in case of overlaps with the competing supports). The gap makes the support
very easy to remove after printing without damaging the surface quality.

Producing the Final Geometry

The final geometry is an union of box and cylinder primitives. We rely on cross-
section pillars that we found more reliable to print than cylinders. Bridges are
formed of two parallel one-thread thick segments, across two layers. Figure 3.8
reveals the main components of our bridge structures. Our slicer processes union
of meshes without suffering from inter-penetration issues.

We adapt our slicer [Lefebvre 2013] for printing the scaffoldings. In each slice we
erode by 0.2 mm the bridge structure where it comes in contact with the object. This
helps the removal of parts of the structure connecting to the object. For sideways
connections to the object (Figure 3.8, second closeup form the left) we add a one-layer
thick protrusion from the object, providing a docking space for the bridge. This tiny
loop of plastic easily breaks away.

Figure 3.8 – Left to right: The gymnast model and its scaffolding. A
pillar, a sideways connector, vertical connectors supporting filament,

the mid-air support for the right foot. Model: 123dapp

http://www.123dapp.com/123C-3D-Model/Female-Gymnastics-Cartwheel/711240
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Possible Improvements

While the support synthesis technique presented in this section generates perfectly
valid structures, there are a number of possible improvements that were not dis-
cussed in our original publication.

First, even though the construction algorithm presented in Algorithm 2 is quite
fast in practice, it still has an asymptotic complexity which is quartic to the number
of support points. If the number of input points becomes large, it may be more
efficient to reduce it beforehand by doing a first pre-processing pass on the data.
Indeed, we often observe that a lot of points are close in space, e.g. under the leg
of the gymnast in Figure 3.8. In such cases, a possible approach is to cluster the
support points, in order to group the connectors with the same bridge, before trying
to connect the bridges together with Algorithm 2. We call the bridge supporting
such a group of connectors a cradle, and adding this step changes the whole support
synthesis pipeline as follows: 1) generate the individual support points, 2) analyze
part stability and compute the set of corresponding required bridges, 3) generate
all the cradles using a fast sweeping method, and 4) generate the final scaffolding
supporting the remaining required points and bridges, as defined in Algorithm 2.

A possible heuristic for generating the cradles would be to do a first sweep in
the Z direction, considering all possible slabs of points within a certain range
(corresponding to the maximum height of a connector). Then, a second sweep can
be done in the horizontal direction, that tries to fit points in a rectangle whose
dimensions correspond to the maximum length of a bridge and to the maximum
span of a sideways connector. Then, cradles can be extracted greedily in a first
pre-processing step that is in fact a simplified version of Algorithm 2.

While we did not experiment with other heuristics for determining those cradles, we
did not observe a significant impact on the quality of the final scaffolding. In most
cases, the resulting structure would use more plastic than without the pre-processing
step, while in a few cases this would result in a gain of material. As most of the
examples shown in this section were actually quite small (under 1000 input points),
the performances of the bridge synthesis algorithm without any pre-processing to
group the points were already satisfying. Consequently, we did not pursue any
further development in this direction.

A second improvement that can be discussed concerns the geometry of the connec-
tors themselves. Instead of printing individual pillars to joint each support point to
its supporting bridge, it may be advantageous to print a support structure between
the bridge and the surface with a single continuous filament path. This idea is
illustrated Figure 3.9, and it can be construed as a intermediate between dense
supports à la MakerWare — for the sine wave joining the surface and the bridge —,
and sparse supporting structures. This work has been the object of an internship in
our team, and was accomplished in summer 2014 by Florian Abribat, an undergrad
student that I helped supervise.
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Figure 3.9 – Improvements to the connectors: instead of printing
separate connectors to support a surface, one can print a continuous

sinusoidal line with a constrained angle.

3.1.5 Results and Discussion

We compare the behavior of different methods running in automatic mode: we
perform no manual editing of the proposed support structures. Our technique runs
with the exact same settings for all models. All models are printed on a MakerBot
Replicator 1 using ABS plastic at 40 mm/s print speed for perimeters, 60 mm print
speed for other print paths (including support) and 120 mm/s travel speed, using
layers of 0.2 mm height. The only exception is Table 3.2 where we match the settings
of MakerWare.

Figure 3.12 compares MeshMixer and our technique on the Enterprise 3D model.
We generate a support in MeshMixer and load it into our slicer to compute the used
filament length. We adjusted two parameters in MeshMixer: the angle threshold (40)
and density (80) to match as closely as possible our support density. MeshMixer uses
9.7 m of filament while our technique uses 9.89 m — similar amounts. However,
our approach ensures a more uniform support. This is visible under the propulsion
units, but also under the main body. On this model, the support from MakerWare
(not shown) uses 18.8 m of filament as it fills the space below the model.

We show a comparison to Photoshop CC in Figure 3.13. With our technique long
bridges supported by few pillars replace dense trees. Using parameters from
Photoshop CC (Replicator 1 profile), Photoshop CC uses 4.61 m of filament in the
support (11.97 m total) versus 2.31 m for our technique (9.48 m total). Our printed
version is shown Figure 3.10.

Figure 3.11 compares our technique and MeshMixer on the Minotaur model. The
model has heavy overhanging features (arms). MeshMixer uses 6.7 m of filament
but produces a precarious structure — this is a case where the user would have to
manually reinforce the structure through the MeshMixer support editing interface.
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Figure 3.10 – Top: Printout of the Enterprise model. Bottom: Under-
side after cleanup. We broke the engine connectors during cleanup
and had to glue them back (only case where glue was involved). Print

time: 3 h 14 min, 9.89 m of filament.

Our technique uses more plastic (7.66 m) but has a denser support, is stable and
prints reliably. Our final print and the print from the MeshMixer mesh are shown
Figure 3.18. MakerWare, shown in the inset, uses 10.8 m of plastic.

Table 3.2 summarizes other comparisons. In this table we use Mak-
erWare as the slicer for the MeshMixer output. We use 40 mm/s for
printing and 80 mm/s for travel. We match the settings of MakerWare
in our slicer. MakerWare and MeshMixer explicitly avoid supporting
the bridge overhangs in Servojoint. Our technique gives a rougher
surface but the bond between layers is improved. Despite the increase
in required support points our structure remains three times smaller
than the one of MakerWare. Knot is a defavorable case for our tech-
nique. MakerWare and MeshMixer support very few points through
thin beams while our approach builds a full bridge. For this object, with both
the MakerWare and MeshMixer models we had to use a raft for the part to remain
stable on the heated bed. In all other cases we use significantly less plastic than
MakerWare. Our print times are comparable to MakerWare, which is in large part
due to the printing of the many small connectors. We believe print times could
be significantly reduced by grouping connectors supported by a same bridge into
continuous connectors.
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Figure 3.11 – Comparison between MeshMixer (left) and our tech-
nique (right). MeshMixer uses 6.7 m of filament versus 7.66 m for our
technique. The tree generated by MeshMixer is fragile: a single pillar
supports the entire weight of the arms through long slanted bars.

Model: thing:46646 by user ajolivette.

Servojoint Knot Enterprise Minotaur
(Figure 3.14) (Figure 3.15) (Figure 3.10) (Figure 3.18)

MakerWare

Time 1 h 15 1 h 12 3 h 33 2 h 28
Filament 4.64 m 4.17 m 19 m 10.1 m

MeshMixer ⋆
Time 1 h 05 1 h 08 3 h 38 2 h 04
Filament 3.44 m 3.85 m 9.7 m 6.7 m

Ours
Time 1 h 14 1 h 20 3 h 14 2 h 37
Filament 3.86 m 4.01 m 9.89 m 7.66 m

Table 3.2 – Comparison of time and total filament length. Print
quality varies, please refer to Figure 3.14 and Figure 3.15.

(⋆) Generated with MeshMixer and sliced with MakerWare.

https://www.thingiverse.com/thing:46646
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Figure 3.12 – Comparison between MeshMixer (top) and our tech-
nique (bottom). The middle row shows underside views. MeshMixer
uses 9.7 m of filament while we use 9.89 m. Notice the much denser

support we provide in particular to the rear of the ship.

Figure 3.13 – Comparison between Photoshop CC (left) and our tech-
nique (right). Model: thing:18346 by user JackSpectre.

https://www.thingiverse.com/thing:18346
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Figure 3.14 – Servojoint. MakerWare, MeshMixer, Ours.

Figure 3.15 – Knot. MakerWare, MeshMixer, Ours.
Model: thing:5506 by chylld

Additional Results

Figure 3.16 is a tall and intricate design mimicking the helix of DNA. Figure 3.17
shows three additional models with very different geometries. Note the elegant
scaffolding generated for the Gymnast model. The Hilbert cube is a case where
bridges have little room to exist — the scaffolding is nevertheless successfully
created. Our version of the 5 cm bunny peel model uses 1.97 g of plastic versus only
0.75 g for the MeshMixer version, which has been manually optimized (see http:
//www.thingiverse.com/thing:131054/#comments, user meshmixer). Figure 3.1
is printed with PLA plastic on an Ultimaker 2 with 0.3 mm layer height, all other
parameters being the same.

Support Removal

Support detaches from the object when applying gentle force and we clean most
objects by hand, sometimes using a small wire cutter on interleaved bridges in
complex geometries. The support leaves faint white marks on the plastic — a default
shared by all techniques. These can removed by heating the plastic or by finishing
the part in acetone vapor. We did not apply such techniques to the results shown
here. Soluble material could be used to print our structures.

https://www.thingiverse.com/thing:5506
http://www.thingiverse.com/thing:131054/#comments
http://www.thingiverse.com/thing:131054/#comments
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Figure 3.16 – Left: Scaffolding for the DNA model. Middle: After
printing. Right: After cleanup. Printed in 3 h 36 min with 8.7 m of

filament.

(a) Gymnast.
Model: 123dapp

(b) Curved Hilbert Cube.
Model: thing:16343

(c) 5 cm Bunny Peel.
Model: thing:131054

Figure 3.17 – Models printed with our technique, with their scaffold-
ings (top) and cleaned models (bottom).

http://www.123dapp.com/123C-3D-Model/Female-Gymnastics-Cartwheel/711240
https://www.thingiverse.com/thing:16343
https://www.thingiverse.com/thing:131054
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Limitations

Our method does not consider the robustness of the printed object. It can be
frustrating to discover that a perfect print with support is in fact too fragile — a
difficulty worsened by the support removal step. The Enterprise model in Figure 3.10
is such a case: the thin connectors between the engines and the body (< 1.5 mm)
broke during clean-up where they connect to the engines. We had to glue them
back (no other model required gluing). Automatic methods exist for the purpose of
reinforcing objects [Stava et al. 2012].

Our sweeping algorithm is unaware of the geometry of the object aside from the
collision detection. For instance, it might miss an opportunity to create a bridge
where there is a hole through the object. Analyzing the shape to guide the algorithm
is an interesting avenue of future work. This is simple to integrate in our algorithm
which already takes open bridges as input.

As explained Section 3.1.2 when printing a bridge the first thread fails in approxi-
mately 12 % of cases, leaving hanging filament in the print. This is visible in figures
showing the print before cleanup. This has little impact on surface quality as falling
filament cools quickly and does not bond with the surface below.

(a) (b) (c) (d)

Figure 3.18 – (a) The Minotaur printed with our technique. Print
time: 2 h 37 min, 7.66 m of filament. (b) Attempt at printing the
MeshMixer version. Print time (same parameters): 2 h 4 min, 6.7 m
of filament. We also had to add a raft below each feet. On our model,
the stability analysis automatically added a raft beneath each feet
(visible in picture). (c-d) Model printed with our technique after

clean up.
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3.1.6 Alternative Formulation

While searching for an efficient algorithm we also considered alternative formula-
tions. In particular, we considered selecting edges in a regular grid covering the
entire build volume. Given a coarse regular grid graph G � (V, E) and a subset
of nodes to be supported R ⊂ V , we seek to select a minimal subset of the edges
forming a bridge structure supporting R. Collisions with the part are modeled
by removing from E the edges intersecting the object. We model this problem
as an integer program that — we hoped — could be solved with off-the-shelves
optimizers.

For a node i ∈ V , we denote left(i), right(i), front(i), back(i) the neighbors of i on
the same layer/height, and above(i), below(i) the neighbors on the layers above
and below. A node i can belong to three types of bridges: horizontal bridges
through left(i)-right(i), or through front(i)-back(i), and vertical bridges through
above(i)-below(i).
The integer program that we devise uses the following variables:

• xe equals 1 if the edge e � {i , j} ∈ E is selected in the final support, 0 otherwise.

• ui equals 1 if the node i needs to be supported (either by a bridge or a pillar), 0
otherwise. Initially, ui � 1 for all i ∈ R.

• bX
i

equals 1 if i is in the interior of a horizontal bridge along the X axis, 0
otherwise. bY

i
is the same for horizontal bridges along the Y axis.

Each edge e ∈ E is associated a certain cost ce corresponding to its length. The
objective of the linear program is to minimize the total material needed to print the
selected edges:

min
x

⊤cx

The constraints that express the validity of the support are:

xi ,below(i) + bX
i + bY

i > ui for all i ∈ V (3.1)

ui > xi ,above(i) for all i ∈ V (3.2)

xi ,left(i) > bX
i (3.3)

xi ,right(i) > bX
i (3.4)

xi ,front(i) > bY
i (3.5)

xi ,back(i) > bY
i (3.6)

xi ,below(i) + bX
i > xi ,left(i) (3.7)

xi ,below(i) + bX
i > xi ,right(i) (3.8)

xi ,below(i) + bY
i > xi ,front(i) (3.9)

xi ,below(i) + bY
i > xi ,back(i) (3.10)
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Equation (3.1) states the fact that node i ∈ V is supported by a pillar below or is
in the interior of a bridge. Equation (3.2) denotes the fact that node i ∈ V needs
to be supported (a pillar drawn from above ends up at node i). Equation (3.3) to
Equation (3.6) express the validity of the created bridges: if there is an horizontal
edge selected with endpoint i, then either i lies on the interior of a bridge with
a similar alignment, or some pillar stretches from i to a neighbor below. Finally,
Equation (3.7) to Equation (3.10) propagate bridges from left to right and front to
back, respectively.

We implemented this integer program in the Gurobi1 solver. Unfortunately, this
approach is impractical as soon as the grid size increases. In addition, compared
to our sweeping algorithm, the bridges are constrained by the grid: they cannot
follow features at an angle in the XY plane which typically results in more pillars
then necessary.

On the simple box model shown Figure 3.19 the optimizer took 20 minutes. We
ran the optimizer for more than 24 hours on a model of small complexity (≈ 200
elements to support) without reaching a solution. This motivated our choice of a
greedy algorithm.

Figure 3.19 – A scaffolding computed by the integer program on a
regular grid.

1http://www.gurobi.com

http://www.gurobi.com
http://www.gurobi.com
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3.1.7 Conclusion

We have shown how to exploit a specific property of FFF printers — their ability to
print bridges across gaps — to construct reliable scaffoldings. Their geometry gives
to our scaffolding interesting mechanical properties that makes them sturdier and
more stable, even at the smallest thickness ensuring that they print correctly. Our
structures could probably benefit other processes such as stereolithography — but
the set of requirements are different.

Further reducing the quantity of material usage while preserving reliability will
require a precise modeling of the mechanical properties of the structure and object
throughout the print process. This is a challenging task since the plastic deposited
in layers has an anisotropic behavior which we expect to become highly nonlinear
on thin slanted structures. This is nevertheless an exciting venue of future work. In
the meantime our technique provides a simple and reliable way to print interesting
and complex geometries with a reasonable material usage.
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3.2 Fast Discrete Morphological Operations With Half-Space
Voronoi Diagrams

Morphological operations such as dilation and erosion are ubiquitous in all areas
of computer science. They can be used e.g. to regularize shapes [Williams and
Rossignac 2005], ensure robust designs in topology optimization [Sigmund 2007],
compute image skeletons, or to compute support structures in the context of digital
fabrication [Hornus et al. 2016].

Figure 3.20 – A dexel data structure represents a solid shape as the list
of its intersection points along the rays obtained by an orthographic
view of the scene. This can be used to perform efficient CSG operation

in a modeling software [Lefebvre 2013].

In this section we briefly present an algorithm for computing a discrete dilation in
2D. The algorithm operates on a dexel data structure (see Figure 3.20), which is used
to represent the solid to dilate. Note that under this representation, an erosion is
simply a dilation of the complement shape, and can be computed at the same cost
as the dilation. Our algorithm has been used in a recent publication by colleagues
in our team [Hornus et al. 2016]. Contrary to previous methods, it is both exact
(under the discrete definition of the dilated shape) and fast, with an asymptotic
complexity that does not increase with the dilation radius (in fact, the complexity
of our algorithm even decreases with higher dilation radii). This is in contrast e.g.
with [Martínez et al. 2015b], which can only computes dilation with kernels which
are zonotopes1, or with [Wang and Manocha 2013], which grows less efficient with
larger dilation radii.

Our algorithm operates in a 2D dexel structure (which is also a row-compressed
binary image). The idea is to compute the dilated shape from the Voronoi diagram
of the original shape. Using every point of the original image S as seeds for the
Voronoi diagram, the result D(S) of the dilation by a radius r is the set of (grid)
points which are at distance 6 r from any Voronoi seed.

The key insight of our is that the Voronoi diagram of a set of points in a regular
grid can be computed very efficiently by doing two successive sweeps in opposite
directions. Compared to Fortune’s original sweepline algorithm [Fortune 1987],

1A zonotope is the result of the Minkowski sum of line segments in any dimension.
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↑

↑

Figure 3.21 – Fortune’s original algorithm [Fortune 1987] requires
transforming the point coordinates to compute the correct Voronoi

diagram of points in a single sweeping pass.

we can avoid the lifting illustrated Figure 3.21, which makes the algorithm simpler
to implement, and possibly amenable to 3D. The idea is to use half-space Voronoi
diagrams, where each seed is associated to a certain direction, and a seed can only
“contribute” to the Voronoi diagram in the half-space corresponding to its associated
direction. If all the directions are parallel, the half-space Voronoi diagram can be
computed very efficiently in O(n log n) time and O(n) space [Fan et al. 2011] — a
complexity similar to Fortune’s algorithm, but with an algorithm which is simpler
to implement.

In practice, we compute two dilated shapes, one corresponding to the half-space
Voronoi diagram where all seeds face the direction (0,−1), and one where all
the seeds face the opposite direction (0, 1). As the union of two shapes is trivial
to compute on a dexel data structure, this yields a very efficient algorithm for
computing the dilation by a ball of radius r, the complexity of which does not
increase with the actual radius value.

The process described so far only computes the Voronoi diagram of point seeds.
However, the dexel data structure described Figure 3.20 only stores line segments.
While it is possible to compute the Voronoi diagram of segment seeds by approxi-
mating them with point seeds (see Figure 4 in [Lu et al. 2012]), this would remove the
interest of using a compressed dexel representation in the first place, as we would
switch from a surfacic representation (dexels) to a volumetric one (pixels/voxels).
Consequently, we aim at computing the half-space Voronoi diagram of parallel
line segments (the dexels) directly in a single sweep. The process is illustrated
Figure 3.22.
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Figure 3.22 – A single sweep in one direction allows us to compute
the half-space Voronoi diagram of parallel line segments (the dexel

data structure).

Note that while the coordinates transformation of Fortune’s algorithm would make it
very difficult to compute the exact Voronoi diagram of line segments, it is straightfor-
ward to incorporate in our two sweeping passes. Indeed, we only need to compute
the intersection point of the segment bisector with the sweeping line. This can be
done by finding the roots of a second-order polynomial, corresponding to the curves
shown in Figure 3.23.

A detailed description of our sweep-line algorithm is given in pseudo-code in
Algorithms 4 and 5. In Algorithm 4, one only needs to maintain a list of active
Voronoi cells L, i.e. the cells that intersect the current sweep-line, and whose seeds
are at a vertical distance > r. The event list Q indicates when a seed can safely be
removed from the active list L, i.e. when it does not affect anymore the current
dilation operation. The operation DilateLine computes a dilated version of the
input shape S intersecting the current sweep-line, given the set of active seeds
L. The operation InsertSeedSegment is described in more details in Algorithm 5.
Note that in this description, we consider that segment s′ is occluded by s if their
projections on the horizontal line overlap. As the operation RemoveSeedSegment
is very similar to InsertSeedSegment, we do not describe it in details.

In terms of data-structures, since at any point on the sweep line there can only be
non-overlapping segments, the segments can be stored in a simple std::set, using
their barycenter’s x coordinate as a sorting key in the set. This provides efficient
insertion and deletion of a segment in O(log n) time. It should be noted that we
do not actually compute the Voronoi diagram of the line segments at any point in
time. The std::set stores the seeds of the Voronoi cells intersecting the current
sweep line. Moreover, if a seed segment is at a distance > the requested dilation
radius r, it can simply be dropped from the std::set. The dilated shape can then
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Algorithm 4: VoronoiSweepLine
Input: A list of horizontal segments S (a 2D dexel structure) + dilation radius r.
Output: A list of horizontal segments corresponding to the dilated dexel S′.

1 L ← ∅ ; // Seed segments whose cell intersect the current sweep line
2 Q ← {} ; // List of events (y , segment id) for removing seeds from L
3 S′← ∅ ; // Dilated result
4 for y← 0 to N − 1 do
5 foreach event (y , s) ∈ Q do
6 RemoveSeedSegment(L ,Q , r, s);
7 foreach segment s � [(x1 , y), (x2 , y)] ∈ S do
8 InsertSeedSegment(L ,Q , r, s);
9 S′← S′∪ DilateLine(L , y , r);

10 return S′

Algorithm 5: InsertSeedSegment

Input:

L the Voronoi seeds active on the current sweep line,
Q the seed removal event queue,
r the dilation radius,
s the segment to insert s � [(x1 , y), (x2 , y)].

Output: An updated list of active seeds L and removal events Q.
1 RemoveOccludedSegments(L , s) ; // Remove segments entirely occluded by s

2 SplitPartiallyOccluded(L , s) ; // Split segments partially occluded by s

3 L ← L ∪ s ; // Insert s into the actual list L
4 Q ← Q ∪ (⌈y + r⌉ , s) ; // Remove s once the sweepline has advanced beyond y + r

5 while ∃ sequence (sa , sb , s) ∈ L do
6 (xv , yv) ← VoronoiVertex(sa , sb , s) ; // See Figure 3.23
7 if yv < y then
8 L ← L \ sb ; // Remove seed sb from the set of active seeds

9 else
10 Q ← Q ∪ (⌈yv⌉ , sb) ; // Remove sb later on

11 while ∃ sequence (s , sa , sb) ∈ L do
// Repeat operation on the right side of s

be reconstructed from the seed segments that affect the current sweep line, in linear
time with respect to the surface complexity on the current sweep line.

Exact Arithmetic. An advantage of computing the Voronoi diagram of line seg-
ments whose endpoints’ coordinates lie on a regular grid (the original image), is that
exact arithmetic can be used to compute the Voronoi diagram and the offset. Indeed,
the computation of the bisectors Figure 3.23 can be done using integer coordinates
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Figure 3.23 – The bisector of two line segments can be described
by a piecewise second-order polynomial curve. The intersection
between two bisectors are candidates for Voronoi vertices. Their ⌈y⌉
coordinate determine the next event on the sweep-line that affects

the current configuration of the Voronoi diagram.

(as the endpoints have integer coordinates to begin with). While the coordinates
of the Voronoi vertices can have floating point values, the coordinate of the sweep
line is only increased by integer steps, so the coordinates of Voronoi vertices can
safely be rounded up to the next sweep line coordinate where they will change the
structure of the current diagram. One caveat of using integer coordinates is that one
has to be wary of possible overflows when computing the roots of the second-order
polynomial describing the bisector of two line segments. This can happen on large
objects which can exhibit some degenerate structures.

Future Work. While the present algorithm has been implemented
and tested on 2D images, the current implementation is inherently
sequential, and a parallel version — e.g. computing offsets in sep-
arate bands — has not yet been investigated. However, it should
be noted that for the 2D case, the advantage of parallelism is prob-
ably limited, as the sequential version is already relatively fast on
modern computers, e.g. a dilation by a ball of radius 20 pixels takes
0.515 sec on a 2048 × 2048 image with random complex structures, shown inset.

While the algorithm described here is works in 2D, further investigations towards
a 3D extension are in order. In particular, we hope that combining sweeps in the
X and Y directions with “shifted” segments would allow us to compute the exact
dilation by a ball of radius r. However, the exact procedure for doing so is left as
future work.
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3.3 Discussion and Conclusion

In this chapter, we have presented two techniques to aid in the manufacturing
process of complex shapes. The first one is a sparse support structure technique
targeted at filament printers, which present the advantage of being much more
stable that their tree-like counterpart, while incurring a similar cost in terms of used
material and print time. Compared to dense volume-based support structures, they
are usually much more economical. The second technique presented in this chapter
was a fast, simple and original way to solve the problem of exact discrete offsetting
of 2D and possibly 3D images, with practical applications to the computation of
minimal printing volumes enclosing or enclosed in a given shape.

The use of horizontal bridges as a support structure is an original idea, and we have
shown in Section 3.1 that it is competitive with other state-of-the-art methods in
terms of print time, material usage, and computation cost. The inherent stability
provided by the structure itself allowed us to study some additional properties,
such as stability of a part during the print process. The three components of this
work are rather independent subroutines: determining support points, generating
the combinatorial scaffolding structure, and producing the final geometry from the
description of the scaffolding. Since the publication of the original work in [Dumas
et al. 2014], experience has shown that more engineering work is needed before the
technique can be made available in general public slicing software. For example, we
relied on a slicer-assisted definition of the support points, but other definitions could
be used: local minima based on the geometry of a triangle mesh, morphological
operations based on 2D slice images (see Section 2.1.3). Since our definition relies on
a the vertices of the printing paths, it needs to be tightly integrated with the slicing
software. This makes comparison across methods more difficult. Ideally, a modular
software organization should allow the user to select how to compute the support
points.

Miscellaneous remarks can be pointed out about the core scaffolding synthesis
algorithm presented in Section 3.1.4. First, it is relatively independent of the printing
technology, or the slicing software itself. Implementation-wise, one needs however
to take care of implementing the collision detection part efficiently, as a high number
of queries are being performed during the scaffolding generation. Depending on
the underlying data structures — dexels or triangle mesh —, different strategies can
be adopted. In Section 3.1.6, we have presented alternative formulations to solve
the core synthesis problem, but the formulation being restricted on a regular grid
we chose not to follow through on these formulation. Still, we hope it can inspire
further research in one direction or another, if different objectives are being studied.

The last step of this work concerned the actual geometry of the structures being
printed. While we empirically observed that cross-sectional pillars printed faster
and more robustly than their rounded-shaped counterparts, the reality is still very
complex. A thorough study would take into account influence of the type of plastic
used, the print temperature, print speed, etc., which was beyond the scope of our
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study. For example, a meticulous analysis on the effect of such parameters on regular
objects can be found in an online blog article1 from 3D Matter. In the context of
our support structures, there is a need to evaluate more clearly the influence of the
print speed — along with accelerations and decelerations —, of the prime and retract
actions — when the print head starts or stops depositing matter. Clearly, printing
a set of separate dots or crosses in a layer is not the same as printing a continuous
path in one go, and the latter can also print faster and more reliably, because the
print head does not need to stop and change speed all the time.

Finally, another aspect of the support structure generation, that we did not consider,
is user guidance. Since our algorithm uses a greedy heuristic, it is easy to enrich the
input with “suggestions” for potentially interesting positions to place new segments.
They can be soft constraints (“here is a cool place to add support”), or hard constraints
(“I want a bridge here”). The suggestions can be given by the user — through an
interactive painting application —, or computed automatically — by analyzing the
topological genus of the shape for instance, in order to suggest bridges that would
traverse a loop —. This opens up multiple directions for future work, which we think
could enrich the overall user experience when generating supports.

Regarding morphological operations, we have presented an alternative way to
perform discrete offsetting of 2D and possibly 3D images. Notwithstanding the
simplicity of computing the Voronoi diagram of a set of parallel segment with
this algorithm, perhaps its most remarkable trait is the fact that its computational
complexity decreases with the radius of the offset being computed. This is in contrast
with existing techniques such as [Wang and Manocha 2013]. The resulting algorithm
can be implemented in a few lines of code using standard STL data structures in
C++. However, there are a few caveats regarding integer overflows when an exact
arithmetical result is required. A parallel version of our method, as well as the
3D implementation, are left as open-problems and future work. In the meantime,
I hope that this interpretation of half-space Voronoi diagrams will inspire simple
implementation of other similar algorithms.

1http://my3dmatter.com/what-is-the-influence-of-color-printing-speed-extrusion-
temperature-and-ageing-on-my-3d-prints/

http://my3dmatter.com/what-is-the-influence-of-color-printing-speed-extrusion-temperature-and-ageing-on-my-3d-prints/
http://my3dmatter.com/what-is-the-influence-of-color-printing-speed-extrusion-temperature-and-ageing-on-my-3d-prints/
http://my3dmatter.com/what-is-the-influence-of-color-printing-speed-extrusion-temperature-and-ageing-on-my-3d-prints/
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Chapter 4

Shape Synthesis with Appearance
Constraints

In this chapter, we study shape synthesis methods that attempt to blend appearance
and structural considerations in a meaningful manner. In computer graphics, and
especially in the context of texture synthesis, appearance is often understood as
a metric upon the neighborhoods of every points in the synthesized space. By
comparing synthesized neighborhoods with that of an input exemplar, the visual
quality of the synthesized content can be assessed. Existing texture synthesis
methods were discussed Section 2.3.1. Metrics on regular grids of pixels are not
the only way appearance can be defined. For example, discrete elements with a
prescribed shape can also be used, and combined — or not — with a metric on
the neighborhood. This was discussed in Section 2.3.2. Structural considerations
arise from the physical process involved when fabricating real-world models: 3D
printed objects need to satisfy a number of geometrical and mechanical constraints
before they can undergo the machining process. Even then, they need to withstand
manipulation after printing: post-processing manipulation when cleaning support
structures, day-to-day manipulation by casual users, etc. Printing constraints have
been detailed in Section 2.1, while structural analysis for fabrication was presented
in Section 2.2.1. Methods that seek to synthesize optimized shape from the ground
up, given an objective function, have been discussed in Section 2.5.

The rest of the chapter is organized as follows. In the first section, we describe a novel
by-example texture synthesis method suitable for 3D printing applications. In the
context presented above, appearance is defined by pixel (or voxel) neighborhoods
on the surface being synthesized, while the input exemplars are 2D images. The
structural properties handled by the synthesis algorithm are: connectivity constraint,
compliance (rigidity), and minimal thickness of the solid phase. Other constraints
such as overhangs are treated as a post-process by printing with external support
structures, such as presented in Section 3.1. This work has been presented at
Siggraph in 2015, and has been carried out with An Lu and Sylvain Lefebvre
at INRIA, with help from our colleagues Jun Wu and Christian Dick from T.U.
München. An efficient GPU implementation of the surface texture synthesizer
was first realized by joint first author An Lu, following an original idea of Sylvain,
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before we started to study the possibility of printing the resulting patterns. I was
then mostly implied in this second part of the project, where I contributed to and
implemented the ideas presented in Section 4.1.4. The content presented here is
reproduced from [Dumas et al. 2015], along with the usual layout changes. Please
note that the texture synthesis step in Section 4.1 is also an original contribution,
which already provides high-quality surface textures, comparable to state-of-the-art
texturing methods. This was also the first attempt — to the best of our knowledge
— at an automated optimization technique that truly takes into account both visual
and structural objectives.

While the technique described in Section 4.1 is an appealing first approach, there
was clearly room for improvement. Most notably, the way the structural analysis
and the texture synthesizer interact is in fact quite ad-hoc: the output of one step is
fed back to the other, in an iterative process, without any stronger form of constraint
within each step. As a result, reinforcements suggested by the structural analysis
step can become very visible, and the texture synthesizer is doing its best to make
them appear seamless, but without any strong guarantee.

Consequently, I became interested in developing a different approach, which would
combine texture synthesis and structural optimization in a more intertwined manner.
As a result, we have developed a different technique, which is in fact closer to
standard topology optimization with the SIMP approach, but with an extra term for
the appearance function. The result of this research is presented in Section 4.2, and
explains how both energy terms have been successfully combined in a meaningful
manner, along with several extensions — such as symmetry constraints, self-weight
problems, and 3D synthesis —. The content of Section 4.2 was published at Siggraph
Asia in [Martínez et al. 2015a], and is reproduced here. This research was done
with colleagues Jonas Martinez and Sylvain Lefebvre at INRIA, in collaboration
with Li-Yi Wei from University of Hong Kong, where I traveled two times as part of
one-month long visits.

The third section of this chapter is dedicated to another form of visual criteria: the
appearance is determined by discrete elements, which serve as the base building
blocks for the designed shape. Discrete elements have been used successfully for
texture synthesis applications in [Ma et al. 2011, 2013], and were discussed in more
details in Section 2.3.2. As it turns out, recent and concurrent works in topology
optimization are also considering discrete elements for structural optimization
problems, as discussed more extensively in Section 2.5.3. However, the scopes and
applications of these works are quite different from ours, as we target interactive
design tools for 3D shape synthesis. In Section 4.3, we present our approach to the
problem, which aim to be a simple, efficient, and practical solution to a problem
that is very complex and computationally demanding, especially in 3D. The results
presented in Section 4.3 are preliminary results — currently unpublished —, as they
are the subject of research carried towards the end this thesis. However, they are
included in this manuscript for the sake of completeness.
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4.1 By-Example Synthesis of Structurally Sound Patterns

Remark. Readers familiar with our original publication [Dumas et al. 2015] are invited to
skip directly to the discussions and comparisons with concurrent works in Section 4.4.

Figure 4.1 – Our by-example pattern synthesis algorithm produces
structurally sound patterns along the surface of an objects, resem-
bling the input exemplar. The reinforcements are integrated within
the pattern, by a joint optimization of appearance and structural
properties. Top: The Standford bunny with a variety of synthesized
patterns. Bottom: Example patterns. These objects are printed in
ABS plastic on low-cost filament printers, using a dense support.
The patterns are fully connected and survived the cleaning process
thanks to their reinforced structure. Yet, the reinforcements are

inconspicuous as they seamlessly blend within the appearance.

Several techniques exist to automatically synthesize a 2D image resembling an
input exemplar texture. Most of the approaches optimize a new image so that
the color neighborhoods in the output closely match those in the input, across all
scales. In this section we revisit by-example texture synthesis in the context of
additive manufacturing. Our goal is to generate not only colors, but also structure
along output surfaces: given an exemplar indicating “solid” and “empty” pixels,
we generate a similar pattern along the output surface. The core challenge is to
guarantee that the pattern is not only fully connected, but also structurally sound.

To achieve this goal we propose a novel formulation for on-surface by-example
texture synthesis that directly works in a voxel shell around the surface. It enables
efficient local updates to the pattern, letting our structural optimizer perform changes
that improve the overall rigidity of the pattern. We use this technique in an iterative
scheme that jointly optimizes for appearance and structural soundness. We consider
fabricability constraints and a user-provided description of a force profile that the
object has to resist.

Our results fully exploit the capabilities of additive manufacturing by letting users
design intricate structures along surfaces. The structures are complex, yet they
resemble input exemplars, resulting in a modeling tool accessible to casual users.
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4.1.1 Introduction

Additive manufacturing empowers designers and artists with an unprecedented
ability to imagine and manufacture fine, intricate patterns. The patterns may be
arranged in a delicate overall structure that flows in space and suggests the surface
of a larger object. The sculptures Crania Anatomica Filigre by artist Joshua Harker
[Harker 2011], the surface autoglyphs by Segerman [2009] or the designs by company
Nervous System [Rosenkrantz and Louis-Rosenberg 2007] are impressive and fasci-
nating examples of this trend, also witnessed by the popularity of Voronoi carvings
on the sharing platform Thingiverse (e.g. Chess Set - Voronoi Style thing:172960,
Coral Candle Fixture thing:32513).

In this section we consider the problem of automatically generating such patterns,
from an input example. Our intent is to empower casual users and designers with a
tool that quickly generates a compelling pattern that prints correctly and does not
break in every-day use. Performing this task by hand is very difficult: the user has to
be skilled in the use of CAD systems — which are often not targeted at such models
— but also needs a good understanding of the limitations of additive manufacturing
as well as notions of mechanical engineering to foresee when and how the object
might break.

Using our approach, the user quickly obtains a solution that enforces these con-
straints, and resembles the input pattern. She is then able to focus on the most impor-
tant task: exploiting our technique for designing interesting and intriguing objects.

We understand this problem as an instance of by-example texture synthesis, a long
standing problem in computer graphics [Wei et al. 2009]. Despite the wide spectrum
of available methods, only a few are capable of synthesizing a pattern along a
surface, and these approaches either manipulate finely tessellated models and
per-vertex colors, or synthesize a volume of colors, or operate through a planar
parameterization of the surface. This does not fit our purpose: we seek to produce
a pattern that flows along the surface, without suffering from the distortions or
discontinuities of planar mappings. Existing volume approaches are not well suited
as we seek a method capable of efficiently updating the synthesis result locally, so
as to reinforce and strengthen the global structure.

Most importantly, none of the existing techniques generate patterns with controlled
structural properties. A simple failure case is to consider the connectivity of the
synthesized pattern. Given an exemplar pattern describing a connected, single
component pattern, the available surface synthesizers cannot offer any guarantee
regarding the connectivity of the output. Our situation is more general as we not
only seek for a connected pattern, but also for patterns that are rigid enough to
withstand the manufacturing process and the necessary finishing steps, as well as
every-day manipulation.

https://www.thingiverse.com/thing:172960
https://www.thingiverse.com/thing:32513
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Contributions.

• A novel by-example on-surface texture synthesizer, working in a voxel shell
around the surface. It synthesizes along the surface, without the need for a
global parameterization, and yet does not resort on a computationally expen-
sive volume definition of the texture synthesis problem.

• A graph abstraction of the synthesized patterns, allowing an approximate but
fast computation of weak areas within the patterns, both by a stress analysis
and by a geometric criterion.

• A pattern reinforcement strategy, that combines the synthesizer and a struc-
tural analysis to drive the pattern towards an object that can be fabricated.

This adds up to an algorithm for by-example synthesis of complex carved patterns
along surfaces, that can be fabricated even on low-cost fused-filament printers.

Assumptions. We assume that the input surface shell can be printed correctly at
the user-chosen shell thickness, without the pattern. Otherwise carving the pattern
would only worsen its already failing structural properties. We also assume that the
exemplar appearance allows for enough degrees of freedom to create connections.
Our technique will produce a correct output in any case, but the appearance may
be impossible to reconcile with the connectivity requirements, resulting in visible
reinforcements (see Section 4.1.5).

Topology Optimization. One possible way to improve the structural soundness
of a shape is via topology optimization. The Solid Isotropic Material with Penalization
(SIMP) method [Sigmund and Maute 2013; Christiansen et al. 2015a] seems partic-
ularly well suited to our goal, since it considers a distribution of material in a grid
and maximizes a rigidity objective under a prescribed material consumption ratio
[Sigmund 2001].

However, there are challenges in using this approach for our
purpose. In particular, the newly generated structures would
significantly disturb the visual appearance of the original pattern:
topology optimization tends to accumulate matter non-uniformly
as shown in the Figure inset. In this figure, a pattern was first
synthesized. The initial pattern (green) is then used as passive
elements with fixed density, where a vertical force (gravity) is
applied. The bottom nodes are fixed. The SIMP method is
then used to distribute additional material (black) and reinforce
the structure by minimizing its compliance. Matter tends to
concentrate at the bottom. This is due to the accumulation of the forces: the regions
below the loads have a much higher sensitivity to the overall compliance. This
leads to the destruction of any details in these regions. Our approach avoids this
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issue by reinforcing the pattern with a small number of thin bridges between nearby
structures, and uses by-example synthesis to preserve the appearance everywhere.

Finally, the performance of topology optimization currently makes it impractical for
the detailed geometric structures we target (on a bunny model with 734 415 voxels,
2 814 642 degrees of freedom, a single design update requires > 1 hour using a
multigrid solver).

4.1.2 Overview

Input. Our approach starts with a user specified target surface — given as a
triangulated meshM, a desired shell thickness and an input exemplar pattern. The
exemplar pattern is an image specifying colors as well as a binary pattern map
in which pixels are tagged as either solid (1) or empty (0). This is illustrated in
Figure 4.2.

The user also specifies a radius rpattern which captures the scale of the features in
the example pattern. We assume that this scale is larger than the minimal printable
feature.

Figure 4.2 – Input: The original mesh, the voxelized surface, the
colored pattern and its binary mask.

Pre-processing. As a pre-processing step we voxelize the surface shell. We consider
a regular grid of voxels and select only the voxels that intersect the surface. In
addition, we augment the exemplar images with a distance field computed within
the binary pattern map. The feature distance is used as an additional channel when
comparing the values of pixels [Lefebvre and Hoppe 2006].

Note that the voxelized surface shell has a thickness of only one voxel during the
entire process. We only thicken it to the user specified thickness prior to 3D printing.
Structural analysis properly takes into account the final thickness, but creating these
voxels from the start would be wasteful since pattern synthesis and analysis is
restricted to the surface voxels.
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Algorithm. Our algorithm generates a pattern along the voxelized surface shell,
that is both visually similar to the example and is structurally sound. The key novelty
of our approach lies in the interplay of these two objectives. Instead of reinforcing the
patterns after the fact, our scheme optimizes jointly for both objectives, incorporating
reinforcements within the synthesized pattern. The difference is illustrated in
Figure 4.3.

Figure 4.3 – Left: A result from our approach, and the correspond-
ing exemplar (zebra). Middle: Closeup. Without resynthesis rein-
forcements are visible. Right: At the same location our approach

seamlessly blends reinforcements within the pattern.

Targeting a structurally sound object means that we seek for the following properties:
1) the object can be manufactured and can survive the cleaning step after the printing
process and 2) the object can withstand a user-specified force profile, i.e. points of
attachments and external forces, most typically gravity, describing in which context
the object will be used.

These two objectives are slightly different in nature. Optimizing only for a specific
force profile means that the object will be sound under that particular circumstance,
but it might exhibit fragilities under different conditions. We therefore incorpo-
rate a secondary objective which eliminates such fragilities, without any specific
knowledge of the force profile. This is described in details in Section 4.1.4.

The overall algorithm for structurally sound, by-example pattern synthesis is given in
Algorithm 6. Synthesize performs a complete synthesis pass, generating an initial
pattern. It is only concerned with the appearance. StructuralOptim modifies
the voxels according the structural considerations and returns the modified set
of voxels and a boolean indicating whether the stopping criteria has been met
(done). Resynthesize updates the pattern to recover its appearance, while avoiding
damaging the changes made by the structural optimizer.

The synthesizer is described in Section 4.1.3 and the structural optimization in
Section 4.1.4. We present our results in Section 4.1.5.
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Algorithm 6: PatternSynthesizer
Input: Surface meshM, input exemplar I
Output: Surface voxels tagged as solid or empty, so that the produced pattern

resembles Iand is structurally sound.
1 V ← Voxelize (M);
2 V ← Synthesize(I,V);
3 while true do
4 (V , done) ← StructuralOptim(V);
5 if done then
6 returnV
7 V ← Resynthesize(I,V);

Notations. We denote the input exemplar image I : (x , y) → (r, g , b , f ), with f the
feature distance. We denote the state of a pixel i by s(i) ∈ {0, 1}, where a value of 1
means solid and a value of 0 empty. Our goal is to synthesize a mapping from any
given voxel center to a location (x , y) ∈ R2 of the exemplar image I.

We denote the list of surface voxelsV � J1, nK. Each voxel v ∈ V encloses a (small)
surface patch. We assume the small patch to be planar and going through the voxel
center. The voxel center position is denoted as p(v) ∈ N3, its normal — averaged
over the enclosed surface — is denoted as n(v) ∈ R3.

4.1.3 Surface Texture Synthesis

Our synthesizer builds upon a new formulation of texture synthesis on 3D surfaces.
We consider a set of planes in R3, each defining an orthogonal projection of the
(tiled) exemplar everywhere in space. Any voxel center can thus lookup a color
from any of these planes, by projection. Our synthesizer chooses in every voxel a
unique source plane so that the combinations of projected colors along the surface
gives the illusion of a continuous texture resembling the exemplar image. This idea
is illustrated in Figure 4.4.

By controlling the set of planes, we easily guide the synthesizer towards different
pattern scales or orientations. The approach is efficient as we only need to encode a
choice of plane in the voxels, while the other information (coordinates, projection,
colors) is implicit.

The synthesizer performs a multi-resolution synthesis into a pyramid of voxelized
representations of the initial voxels V. We denote V r the resolution levels, with
V �V0 the finest level andVL the coarsest level. For the sake of clarity, let us for
now only consider the finest resolution levelV.
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Figure 4.4 – Left: Planes surrounding the object, each defining an
orthogonal projection of the texture onto the surface. Right: Each
surface point selects a plane as the source for its color. The optimizer
naturally grows patches. The image shows the source plane for one
of the patches. The colors within the surface patch are revealing the

(u , v) lookup coordinates into the exemplar image.

Layers Around the Surface

We consider a set of planesΨ chosen to have normals uniformly distributed in the
unit sphere. The exact location of the planes does not matter, so let us assume they
surround the object as illustrated in Figure 4.4, left.

The planes define orthogonal projections of the texture onto the surface, and the
voxels will receive their color from one of these planes. By optimizing these choices,
the synthesized texture will appear along the surface. This is illustrated in Figure 4.4,
right.

We denote by ψ a plane in Ψ of normal n(ψ). In addition we define a set of plane
transformations Γ, each τ ∈ Γ defined by an origin point o(τ) in the plane and two
orthogonal vectors u(τ), v(τ). Every τmaps the exemplar I to the plane in a different
manner. The u(τ), v(τ) vectors are not necessarily normalized so as to allow for
scaling.

Each voxel v ∈ V is associated with a mapping to exemplar texture space by
choosing a plane-parameterization pair (ψ(v), τ(v)) ∈ Ψ× Γ. The mapping function
M(x, ψ(v), τ(v)) projects x on the surface of the chosen plane ψ(v) via an orthogonal
projection. The projected point is then mapped to image space by the planar
transformation τ(v).
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Our texture synthesis consists of finding a good set of choices of (ψ(v), τ(v)) for
voxels v ∈ V such that the resulting texture resembles the exemplar appearance.

Synthesis as an Energy Optimization

We now formalize the optimization problem to achieve texture synthesis along the
surface. We start by making several observations regarding the desired properties
of the result, and then give a precise formulation of the energy to optimize.

Desired Properties. Let us consider a voxel v ∈ V. It corresponds to a small
surface patch, approximated locally as a plane. All the surface points are mapped
to the image space by the same function M(x, ψ(v), τ(v)) where (ψ(v), τ(v)) is the
parameterization choice for v, the voxel enclosing x.

If the normal to the plane n(ψ(v)) and the voxel normal n(v) align perfectly, then the
resulting texture in v is a copy of one portion of the input exemplar, uniformly scaled
and rotated by τ(v). This locally reproduces the exemplar appearance. However,
if the normal of the plane disagrees with the voxel normal, the texture will appear
distorted along the surface enclosed within the voxel. Our energy term penalizes
such cases, encouraging voxels to choose projection planes agreeing with the local
surface normal.

Let us now consider that there is a negligible amount of distortion, as would be
the case for a planar surface. In this case, preserving the exemplar appearance
boils down to achieving inconspicuous texture transitions between the voxels, e.g.
similarly to image quilting [Efros and Freeman 2001]. Let us consider 5 × 5 × 5
neighborhoods of voxels. We denote by N(v) this neighborhood for a voxel v.
If the neighboring voxels perform the same choice of mapping, that is for all
w ∈ N(v), (ψ(w), τ(w)) � (ψ(v), τ(v)), then the voxels copy coherent (adjacent)
texture patches, and the appearance is preserved.

If the voxel chooses different projections, color discontinuities might become visible
at voxel boundaries. We measure the quality of the transition by considering the
color differences between the colors that the neighborhood expects and the color the
voxel has, and vice versa. This idea is illustrated in Figure 4.5.

Synthesis Energy. Based on this analysis, we derive the energy function that
measures the quality of a choice of mappings C : V → Ψ × Γ. The global energy
is defined as the sum of two terms, one for color transitions and one for normal
alignments:

E(V , C) �
∑
v∈V
(Etransition(v ,V , C) + Edistortion(v ,V , C)) (4.1)
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Figure 4.5 – Mapping voxel centers to exemplar texture space. (a)
Two voxels selecting different planes. (b) Projection of both voxel
centers into the plane selected by v1. The color of both projected
points is used to determine whether the transition is visible. A similar

operation is performed into the plane selected by v0.

The transition error is measured as:

Etransition(v ,V , C) �∑
w∈N(v)

I(M(v , ψ(v), τ(v))) − I(M(v , ψ(w), τ(w)))
2

+

I(M(w , ψ(v), τ(v))) − I(M(w , ψ(w), τ(w)))
2

(4.2)

The distortion error is:

Edistortion(v ,V , C) � 1 −
(
n(v) · n(ψ(v))

)
(4.3)

Optimization Scheme

We optimize for C̃ � arg min{E(V , C)}. To make the problem tractable we select a
finite set of planesΨ and plane transformations Γ. Therefore, each pair (ψ, τ) can
be seen as a label. In the following we consider the pairs to be integers indexing
planes and plane transformations.

We now describe an optimization scheme quickly selecting labels. It is inspired
by the upsample-jitter-correction scheme of Lefebvre and Hoppe [2005]. Note,
however, that our formulation could also be solved by other optimizers, such as
alpha-expansion on the labels (ψ, τ) in a global optimization approach [Kwatra
et al. 2003, 2005; Lempitsky and Ivanov 2007]. However, for stochastic textures, the
greedy local improvement strategy gives good results while enabling a fast parallel
update scheme [Wei et al. 2009].

We now consider the multi-resolution pyramid of voxels, together with a Gaussian
stack for the input exemplar I. The algorithm is given in Algorithm 7. Upsample
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propagates the choices from one level to the next, simply copying the choice of the
parent in the child voxels. Jitter introduces randomness: a fraction of the voxels are
forced to have random selections of labels. This percentage is exposed to the user to
control how regular or random the pattern should be. Optimize performs the actual
labeling, and is described in Algorithm 8.

Algorithm 7: SynthesizeTexture

Input: Pyramid of surface voxelsV0 , ...VL

Output: Choices for each resolution level C0 , ..., CL

1 CL ← {(ψ(v), τ(v)) � (0, 0)|v ∈ V0};
2 for l from L − 1 to 0 do
3 C l = Upsample(C l+1);
4 C l = Jitter (C l);
5 C l = Optimize(C l);

6 return C0

Algorithm 8: Optimize
Input: Surface voxelsV, set of choices C, planesΨ and plane transformations τ.
Output: Optimized set of choices C

1 for v ∈ V do
// Coherent candidates

2 K ← {(ψ(w), τ(w))|w ∈ N(v)} ;
// Random candidates

3 for i ← 1 to R do
4 (r1 , r2) = sample a random pair inΨ × Γ;
5 K ← K ∪ {(r1 , r2)} ;

6 emin ← E(v ,V , C) ; // Current energy
7 tbest ← (ψ(v), τ(v)) ; // Initialize best choice
8 foreach k ∈ K do
9 C′ � C with ψ(v) ← ψ(k), τ(v) ← τ(k);

10 emin ← min(emin , E(v ,V , C′));
11 tbest ← update best choice;

12 C(v) � tbest ;

13 return C

In every optimization step, we construct a set of candidate choices for each voxel.
We first include choices from the neighbors, a process inspired by the coherent-
candidate mechanism [Ashikhmin 2001; Tong et al. 2002]. These choices tend to
grow coherent patches on the surface. If, however, the neighboring voxels have
disagreeing normals the distortion energy will quickly increase.
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To allow the optimizer to discover better transitions, both between patches and in
curved areas, we add R random candidates. The space of possible pairs is however
extremely large, and we therefore bias the random sampling towards the most likely
candidates. We pick a random direction within a cone around the voxel normal,
and select the plane in Ψ having the normal that best aligns with this direction.
The parameterization τ is either chosen randomly (uniformly), or biased towards
a predefined orientation to let the user control how the pattern flows along the
surface.

The candidate with lowest energy becomes the choice for the current voxel. Voxels are
updated in parallel, using a sub-pass update mechanism [Lefebvre and Hoppe 2005].

Pattern Synthesis

The synthesizer is used to directly produce colors into the voxelized surface shell. By
considering the solid attribute in the exemplar image, we obtain a carved pattern. Of
course, this pattern generally cannot be fabricated — we will discuss these aspects
in Section 4.1.4.

As can be seen in Algorithm 6 there are two different calls to the synthesizer:
Synthesize and Resynthesize. The first performs the initial synthesis, and the
second adapts the patterns to the changes made by the structural optimizer.

Initial Synthesis. Initial synthesis is performed using our synthesis algorithm
without any change, with optional user controls such as a pattern orientation.

Re-ynthesis. After structural optimization, a new set of voxels has been marked
as solid to reinforce the pattern. These changes might disagree with the pattern
itself. Let us consider the case of an anisotropic pattern. Since it tends to produce
elongated contiguous features, the structural optimizer will very likely introduce
connections between the features, orthogonal to their main orientation.

It is therefore necessary to locally recover the appearance. However, to have any
hope for the process to converge we need to guarantee that the changes will not
be removed entirely. We therefore perform a local update of the pattern, that is
constrained in two ways. First, the voxels which have been forced as solid for
structural concerns may only select candidate labels marking them as solid through
the projection onto the exemplar. Second, only the surrounding voxels will be locally
resynthesized. These are free to adapt to their surroundings. We employ a local
constraint scheme which propagates through a few resolution levels. All parent
voxels having one child voxel tagged as solid are also tagged as solid. Synthesis then
resumes from the coarser resolution level to the finest, restricting the set of updated
voxels to a local region located below the coarsest parent tagged as solid. The
coarser resolution level is selected by going back log2(rpattern) levels, where rpattern
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is expressed in voxels of finest resolution. We illustrate the process in Figure 4.6,
where a red color shows the solid voxels introduced by structural optimization
and the green color shows voxels which are locally re-synthesized to adapt to the
constraint.

Figure 4.6 – From left to right: 1) Exemplar pattern at the top (white
is solid), color version at the bottom. 2) Initial synthesis result. 3)
The constraint map of a single iteration shown on the colored version
of the exemplar. The red areas can only select candidates with a solid
tag, while green areas are free to adapt. The rest of the surface is not
allowed to change. 4) Final pattern after all iterations are completed.
Note that the ears are now connected to the body, and that the neck

has been strengthened.

4.1.4 Structural Optimization

After the first synthesis step the voxel states (solid/empty) obtained from the
projected exemplar do not, in general, define a structurally sound pattern, and in
most cases not even a single connected component. The goal of our structural
optimization is to correct these issues, working jointly with the optimizer towards
the final pattern.

We give in Algorithm 9 the pseudo code for the structural optimization step. Gen-
erateSurfaceGraph and GenerateAbstractGraph are described in Section 4.1.4,
and ReinforcementBridges is described in Section 4.1.4.

We assume that the full surface shell, without the carved pattern, is a strong enough
object. Under this assumption, the worst case scenario of the structural optimization
would be to fill all empty voxels, completely removing the synthesized pattern.
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Algorithm 9: StructuralOptim
Input: Surface voxelsV tagged as solid or empty
Output: Surface voxelsV tagged as solid or empty with improved structural

properties
1 Gsur f ace ← GenerateSurfaceGraph(V);
2 Gabstract ← GenerateAbstractGraph(V ,Gsur f ace);
3 V ← ReinforcementBridges(Gabstract ,V);
4 returnV;

Surface Graph and Abstract Graph

We now need a data-structure on which to perform analysis. The number of surface
voxels is generally high — in the order of 106 — and it is computationally pro-
hibitive to directly manipulate this data, especially for the computation of structural
properties. We therefore propose to define an abstraction of the synthesized pattern.

We define the surface voxels graph as the weighted undirected graph Gsur f ace � (V , E),
where (u , v) ∈ E is an edge if and only if voxels u and v are contiguous, that is they
touch by a corner: ‖p(u) − p(v)‖22 6 3. The edges are weighted by the euclidean
distance between the voxels they connect. A closeup on a surface graph is shown in
Figure 4.7 (left). Note that this graph is not impacted by the choice of solid/empty
voxels and does not depend on the synthesized pattern. It is thus generated only
once. For the sake of clarity we assume next that Gsur f ace is fully connected: the input
surface meshM is a single object. We otherwise treat each component separately.

The first part of our analysis process is to abstract the surface graph into a graph of
lower complexity — between 500 and 1000 vertices — while still retaining the same
global connectivity as the synthesized pattern. Figure 4.7 (right) shows an example
of the abstract graph.

We denote by dG(u , v) the graph geodesic distance between u and v in a graph G.
The abstract surface graph is denoted Gabstract � (S , F ), where S ⊂ V. Each edge
f ∈ F is tagged with a state ρ( f ) ∈ {0, 1} indicated whether it is considered empty
or solid.

The subset of voxels S in Gabstract is selected by down-sampling from the set of
solid voxelsV in Gsur f ace . This is done following a Poisson disk sampling strategy,
with a binary search on the radius to reach a target number of voxels (1000 in our
examples) [Bowers et al. 2010]. We then connect these voxels by edges so as to
reproduce the connectivity of the synthesized pattern. This is done by algorithm
ConnectSamples (Algorithm 10).

ConnectSamples proceeds as follows: starting from sources in S, it initially grows
regions in Gsolid — the graph Gsur f ace restricted to solid voxels. Whenever two
regions are connected by the growth, the two source voxels are connected by a new
edge in Gabstract . The newly added edge f ∈ F is marked as solid (ρ( f ) � 1). In
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Figure 4.7 – The initial surface graph Gsur f ace (left) is used to produce
the abstract pattern graph Gabstract (right), having a greatly reduced
number of vertices but still capturing the connectivity of the pattern.

Red edges are solid and blue edges are empty.

a second pass, the same regions are grown in the whole graph Gsur f ace . For each
adjacent regions that were not previously connected a new edge is added in F . It is
marked as empty since the connecting path in Gsur f ace goes through empty voxels.
The paths connecting source voxels through Gsur f ace are recorded. They are used
later to produce reinforcements.

Algorithm 10: ConnectSamples
Input: The surface and solid voxels graphs and subsets S ⊆ V
Output: A graph Gabstract � (S , F ), which is a subset of Gsur f ace . A function

ρ : F → {0, 1} for the edge type.
1 Compute shortest path forestF from S in Gsolid (via Dijkstra);
2 For each pair of tree T(u), T(v) ∈ F that have a vertex incident to the same edge

e ∈ E(Gsolid), connect their roots (F ← (u , v) ∪ F ), and set ρ(u , v) � 1;
3 Compute shortest path forestF′ extendingF in Gsur f ace ;
4 For each pair of tree T(u), T(v) ∈ F′ s.t. (u , v) < F and both trees have a vertex

incident to the same edge e ∈ E(Gsur f ace), connect their roots (F ← (u , v) ∪ F ),
and set ρ(u , v) � 0;

5 return
(
Gabstract � (S , F ), ρ

)

Reinforcement Bridges

We now proceed to reinforcing the pattern. This step performs a number of local
changes, adding new voxels. The algorithm iteratively selects edges of Gabstract

marked as empty and changes them to become solid. The corresponding voxels
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in V are in turn switched to become solid. This information is fed back to the
synthesizer.

We rely on two complementary approaches to compute the scores in the edge
selection process. The first and main score is based on an analysis of stresses
under a certain force profile in a simplified beam geometry capturing the pattern
(Section 4.1.4). The second is a purely geometric criterion based on pattern geodesic
distance in Gabstract (Section 4.1.4).

The rationale for using two criteria is that the force profile only predicts a single sce-
nario. Therefore, under a different set of circumstances some fragile configurations
might exist. The second score acts as a worst-case criterion. Note that the user is
in charge of deciding how safe he wants the print to be. Strengthening the second
criterion will ultimately make the force profile have less impact. We generally allow
only a few changes from the worst-case criterion, so as to obtain interesting effects
from the force profile without extreme fragilities under other conditions.

A primary goal of the edge selection process is to form a single connected component
in Gabstract , considering solid edges only. To this end, edges are added iteratively,
choosing the next empty edge of highest score which connects two different com-
ponents, using the force profile criterion. A number of additional edges are then
added using the force profile criterion again, until the maximum stress of all edges
is below a material-dependent threshold. We currently manually fix this threshold
based on ABS/PLA plastic elastic properties. After adding edges with the force
profile, we consider the second, worst-case criterion. We again mark edges as solid
until no edge considered as weak remains.

The algorithm finally modifies the set of voxels. Each edge in Gabstract corresponds
to a voxel path — the one that connected the regions as described in Section 4.1.4.
Adding only these voxels would not be sufficient, as it would produce a very thin
bridge between two parts of the pattern. Instead, we dilate these paths and add
all voxels which are within distance rpattern of the voxels along the path. Let us re-
emphasize that adding edges in Gabstract does not necessarily produce a straight line
inV as it follows the shortest path between the solid regions, across empty voxels.

Score Based on Force Profile

We now exploit the abstract graph to build a simplified mechanical model of the
pattern. Intuitively, each edge will become a beam whose stiffness is determined by
whether it is solid or empty.

We cannot directly use truss or beam elements from the finite element method (FEM)
literature, as these are 1D elements that feature a free rotation at their endpoints.
This pivot joint behavior does not properly capture the printed pattern. Instead,
given the abstract surface graph, we generate a 3D geometry based on hexahedral
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and wedge elements, which we then simulate with the FEM to obtain a structural
analysis of the pattern.

To achieve a proper geometric construction we make the assumption that the surface
around each voxel is locally planar — which is correct given a smooth mesh as
input. This makes it possible to represent every graph voxel by wedge elements,
considering the 1-ring of neighbors projected into the local plane, as illustrated in
Figure 4.8. The elements are extruded along the voxel normal, by an amount that
corresponds to the desired shell thickness. Each neighbor connects to the current
graph voxel by an hexahedral element incident to the face of a wedge.

Figure 4.8 – Each vertex of the abstract graph becomes a set of wedge
elements connecting to its neighbors through hexahedral beams.
Solid elements are shown in red, while soft elements are shown in
blue. Each beam corresponds to an edge in the graph, letting us
derive a stress tensor for each edge through finite element analysis.

Note that we do not take into account flips or self-intersections that may occur if the
curvature is too high. None of the models we tested created such cases.

Finite Element Analysis. The geometry constructed from the abstract graph is
composed of wedges and hexahedral elements, onto which we apply the finite
element method. We simulate the displacement of each node (vertex) of the beam-
wedge geometry. The shape functions for interpolation within the elements are given
in supplemental material. We simulate an elastic material having the properties of
the printing material, typically ABS or PLA plastic.

Each element is associated with a stiffness ρ(e). For wedges it is always 1, and
for hexahedral elements — which correspond to graph edges — it is set to either
1 or ρmin depending on whether the corresponding edge in Gabstract is marked as,
respectively, solid or empty. The stiffness matrix of the element is then derived as
K̃e � ρ(e)Ke .
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Once the global stiffness matrix is assembled we need to decide on a set of external
forces and locked nodes. Let us briefly assume these are given. We can then solve
the static equilibrium equation Ku � f, which we compute using the Eigen library
[Guennebaud; Jacob, et al. 2010] and the sparse solver Cholmod [Chen et al. 2008b].
This computes a small displacement of the element nodes, which in turn allows us
to estimate a stress tensor in the beam of each edge: σ �

{
σx , σy , σz , τx y , τyz , τxz

}
,

given by σe � B(ξ, η, ζ)Eue . For more details on computing stresses with the FEM,
the reader is referred to [Cook et al. 2007a]. We use the sum of the norm of the
principal stresses as the score for the edges.

Solving for equilibrium is relatively expensive. We therefore insert multiple edges
at once. To avoid accumulation in areas of high stress, we forbid edges close to an
already inserted edge, in the manner of the dart-throwing process. The radius of
cancellation is twice the length of the already inserted edge.

External Forces and Locked Nodes (Boundary Conditions). In the standard set-
ting we only consider gravitational forces applied on the system. For each vertex
i ∈ Gabstract , we apply a constant pressure in the direction of the gravity at position
p(i), with an arbitrary but constant value. We fix all nodes that are within the 10%
first layers in Z. This corresponds both to the fabrication process and the case where
the model is standing upright and the points on the ground are fixed. Note that
our approach makes no assumption about the forces and locked nodes and it is for
instance possible to consider other scenarios such as pinch grips [Stava et al. 2012].

Score Based on Geometric Criterion

The geometric score is used to detect poor configurations that lead to fragilities
under conditions diverging from the specified force profile, without having to resort
on a mechanical simulation.

We observe that the worst fragilities consists in elongated structures that are discon-
nected from their surroundings. We again exploit Gabstract to detect and suppress
such configurations.

Let us consider a voxel in Gabstract belonging to an elongated structure. This voxel is
connected to a few voxels of the same structure by solid edges, and to neighboring
structures by empty edges. Since at this stage the structure is fully connected, there
exists a geodesic path within the pattern between the two voxels at each extremity of
an empty edge. This is illustrated in Figure 4.9.

We consider the length of the geodesic path in Gsolid as the score for an edge. We
iteratively add all edges with a score higher than a user-defined threshold (typically
1.5 times the extent of the volume in our examples). The score of all edges is updated
after each addition.
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Figure 4.9 – Geodesic distance criterion. The view is a closeup of
a pattern with the solid edge of the abstract graph overlaid. The
outlined blue edge is an empty edge of the abstract graph being
considered for reinforcement. Its extremities are connected by a
shortest path through the solid edges, outlined by the yellow broken
line. The score of the edge is its geodesic distance in the abstract

graph Gabstract .

4.1.5 Results

Texture Synthesis

We first present results from our on-surface texture synthesizer. Figure 4.10 shows
results, and Table 4.1 describes performance numbers. In all results, we use the
following parameters: synthesis at 2563 resolution (8 levels) for all but the skull
result in Figure 4.14 and Figure 4.15 which uses 5123 (9 levels). We use planes evenly
distributed on the unit sphere in all 26 directions, with 16 × 16 translations and 64
rotations per direction. We use 5 × 5 × 5 neighborhoods and 128 candidates in total,
starting with coherent candidates given by defined neighbors, and filling the rest
with random candidates. All shown results orient the pattern with a naive vector
field around the ‘up’ direction. This could however be controlled by the user. We
support non-tilable exemplars by penalizing pixels near boundaries [Lefebvre and
Hoppe 2005].

In terms of quality it is roughly equivalent to existing on-surface synthesizers, but we
have not added all the improvements from the state of the art (e.g. appearance space
transform [Lefebvre and Hoppe 2006], interpolation of overlapping neighborhoods)
which could further improve quality on color textures.

Our scheme is however conceptually simpler than the existing on-surface synthesis
techniques (see [Wei et al. 2009], Section 4, for a survey) and fits our needs perfectly:
the output is a thin shell of voxels and it enables fast local updates thus tightly
integrating with our geometry modeling pipeline.

One drawback of our synthesizer is that it works under the assumption that the
surface is smooth. Therefore, we can expect quality to degrade across sharp edges.



4.1. By-Example Synthesis of Structurally Sound Patterns 127

As can be seen Figure 4.11 synthesis quality remains reasonable even in challenging
cases such as the skull front where there is a concentration of sharp edges.

Figure 4.10 – Texture synthesis results.

Figure 4.11 – Texture synthesis results on a object with sharp edges,
high curvature areas, and complex topology.

Models: Skull (thing:168602), Knot (thing:5506).

Preparing Synthesized Patterns for 3D Printing

Enlarging Small Features. After the main loop of the program exits, the pattern
we obtain is globally connected and structurally sound in regards of the abstract
graph. However the abstract graph only captures the global connectivity of the
pattern, and ignores its local thickness. We therefore further improve the pattern by
recovering a consistent feature size in all places that are too thin.

We would like to enlarge the pattern directly on the surface, and not out of it. We
propose to compute a geodesic skeleton of the solid surface pattern, and perform a di-
lation of the skeleton by the minimal printable feature radius, restricted to the surface
shell. The final result is the union of the dilated skeleton and the original pattern.

https://www.thingiverse.com/thing:168602
https://www.thingiverse.com/thing:5506
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Our approach bears similarities to the work of Liu et al. [2010], whereby the geodesic
curve skeleton of the surface is computed. However, our algorithm is more relaxed
because it does not preserve the exact topology of the surface. This is desired since
the input pattern may contain small loops which appear through synthesis. We
exclude these from the skeleton.

Our technique starts by performing a watershed transform of the graph to detect
large regions and connect local maxima located within these regions [Haumont
et al. 2003]. We next prune the leaves and small loops from the resulting graph.
Figure 4.12 illustrates the cleaning process.

Figure 4.12 – From left to right: Initial pattern, noisy skeleton from
the watershed transform, skeleton after pruning, after dilation, and
after union with initial pattern. Small features have been enlarged.

Final Mesh. The contiguous solid voxels form a thin pattern along the surface
shell. We thicken this shell as a post-process, by a user-specified amount. The
resulting set of voxels is then meshed by extracting its orthogonal polygon which is
then remeshed to obtain a smoother model.

Support Structures. We produce our models both on filament printers (MakerBot
Replicator 1, Ultimaker 2) and powder based ink jet printers (ZCorp 450).

Our patterns are of course challenging prints on filament printers and they require
support structures. We use simple supports from the slicing software, but more
elaborate approaches could be used to facilitate cleanup [Dumas et al. 2014; Schmidt
and Umetani 2014; Vanek et al. 2014a]. Figure 4.13 shows an object on the print
bed, just after printing and the cleaned up version. Our structurally sound patterns
survive the cleaning process even in such extreme cases.

Powder based printers, such as the ZCorp printers present different challenges.
While support is not necessary the print is extremely fragile when removed from the
powder bed — it is later strengthened by dipping it into cyanoacrylate. Figure 4.14
shows a print created on this technology.

Printing on SLS machines (laser on polyamide) would allow us to produce even
thinner results without support, and would directly produce stronger parts.
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Figure 4.13 – Result before and after cleanup of the support structure.

Prints

Figure 4.1, Figure 4.14 and Figure 4.15 present 3D printed results. Note how
the patterns remain easily identifiable along the surfaces. It is worth noting that
isotropic patterns are generally easier to handle as their initial synthesis is often well
connected, with the exception of highly curved areas, e.g. the ears of the Standford
bunny model. Anisotropic patterns are more challenging as the appearance tends to
conflict with the strengthening of the model. Nevertheless our technique produces
natural results on different patterns.

Computation times and other statistics are summarized in Table 4.1. Table 4.2 gives
performance breakouts between texture synthesis and structural analysis for the
bunny model on various exemplars.

Model Texture Grid # Voxels # Iter tinit ttotal

Bunny Keyboard 256 67 651 4 1.11 14.6
Bunny Bluebrown 256 84 292 10 1.11 34.8
Bunny Greencells 256 80 917 3 1.11 11.4
Bunny Hooks 256 55 356 11 1.11 40.0
Bunny Waves 256 107 038 10 1.11 52.4
Bunny Animalskin 256 89 110 24 1.30 76.2
Kitten Hooks 256 38 626 8 0.9 24.3
Skull Hooks 512 241 652 4 5.9 40.3

Table 4.1 – Computation time for the different models shown in
the section, showing the extent of the voxelization used, number of
voxels in the final geometry, number of iterations, timings for the first

synthesis pass, and timings for the whole process (in s).
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Texture Synthesis Structural Analysis Total

Keyboard 8.6 4.6 13.2
Bluebrown 23.8 12.1 35.9
Greencells 8.3 4.9 13.2
Hooks 28.4 10.5 38.9
Waves 37.3 13.9 51.2
Animalskin 45.5 26.9 72.4

Table 4.2 – Computation times in seconds on the bunny model for
the synthesis, structural analysis, and both.

Figure 4.14 – Result printed on a ZCorp 450. On this type of machines
the printed objects are very fragile and have to be extracted from the
powder bed before dipping into cyanoacrylate. Our thin patterns

nevertheless print successfully.

Experimental Verification

We experimentally verify our approach by simulating our output pattern with a
full-scale high resolution finite element analysis. Each voxel of the thickened pattern
becomes a cubic (hexaheadral) element. We use the same boundary conditions
as for our optimizer: the object is fixed to the ground and subject to gravity. The
material parameters are those of ABS plastic.

It is worth noting that the FEA solver requires two to five minutes to solve for the
equilibrium equation. Our system does several iterations of structural optimization,
each solving several times the equilibrium equation (see Section 4.1.4 and Table 4.1).
It would thus be impractical to rely on the full simulation of the pattern directly.

The full FEA solution lets us validate our approach of using the abstract graph and
simplified beam geometry. We first simulate the fully connected structure, before
any additional edges are added. This is the first structure that can be simulated
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Figure 4.15 – Kitten and skull model carved with the hooks pattern.
Models: Kitten (thing:12694), Skull (thing:168602).

as disconnected structures lead to an under-determined system in FEA simulation.
Second, we simulate the structure reinforced with only the force profile criterion
(Section 4.1.4). Finally, we simulate the structure reinforced with our complete
approach, that is force profile and geodesic criteria (Section 4.1.4). We repeat the
FE analysis but this time change the force profile — the weight is applied in a
direction orthogonal to the gravity used for the synthesis. This puts the pattern in
an unexpected situation, for which it was not designed.

Table 4.3 and Figure 4.16 summarizes the results. As can be seen, in the expected
scenario (top rows) the force profile criterion strongly reduces stresses in the struc-
ture. The geodesic criterion only marginally improves this result. In the unexpected

https://www.thingiverse.com/thing:12694
https://www.thingiverse.com/thing:168602
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scenario however, the geodesic criterion further improves the result as its reinforce-
ments compensate for the now incorrect force profile the pattern was optimized for.
Note that the number across both rows cannot be compared directly as the boundary
conditions differ. Only numbers within a same row are comparable.

We show in Figure 4.17 the effect of using different force profiles on the bridges
added by the structural optimizer.

Scheme Connected Forces only Forces + Geodesic

Stress Expected force profile: weight along ®g � (0, 0,−1)g
Average 16 388.5 5680.4 5418.16
Median 3961.5 3686.61 3444.95
99th% 153 947 31 720.7 30 486.6

Stress Unexpected force profile: weight along ®g � (1, 0, 0)g
Average 87 039.1 23 509.8 20 111.5
Median 20 770.5 10 374.6 9762
99th% 693 773.5 185 775 145 854

Table 4.3 – Stresses for a model 100mm long, using a grid of extent
256. The score shown is |σ1 | + |σ2 | + |σ3 |, in Pascal. Note that with
the unexpected force profile, the 99th percentile is further decreased

by the last optimisation scheme.

Limitations

Our technique works well as long as the scale of the pattern is relatively small
compared to the object. This is in general the intended use, but combined to the
print size limitation it would sometimes be desirable to generate coarser pattern.
High curvature areas also pose multiple difficulties: texture synthesis becomes
more challenging, the local planarity assumption for building the finite elements
might be violated (Section 4.1.4), and thickening to obtain the final mesh may lead to
fold-overs. Thus, final quality can degrade on surfaces with highly curved features
(e.g. front of the skull in Figure 4.15).

Not all patterns can be used to define meaningful reinforcements, e.g. if the features
of the input pattern are too thin to be printed at the selected scale. Additionally, when
the input pattern is completely disconnected the appearance severely conflicts with
the structural objectives. This still produces correct models, but the reinforcements
are less inconspicuous as they do not blend within the pattern. Such a failure case
is shown in Figure 4.18.
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Figure 4.16 – Top: Color coded stresses for the first row of Table 4.3.
The scale is the same for all three images. Bottom: Color coded
stresses for the second row of Table 4.3. The scale is the same for all

three images.

Figure 4.17 – From left to right: Different force profiles, with gravity
to the left, to the bottom, and to the right of the bunny. Note how the

reinforcements suggested by the structural optimizer adapt.
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Figure 4.18 – This pattern is fully disconnected and therefore the ap-
pearance cannot be reconciled with the connectivity requirements of
a sound structure. The produced object nevertheless prints correctly,

and does capture some of the original features.

4.1.6 Supplemental

In this supplemental material, we start by giving more details regarding the compu-
tation of element stiffness matrices for our stress analysis, and explicit out approach
for the enlargement of small features. We also show more results using different
patterns in Figure 4.20, with source exemplar and patterns shown in Figure 4.19.
All these patterns are fully optimized and could be fabricated. Finally, Figure 4.22
shows more results for texture synthesis only (using inputs shown in Figure 4.21)
on a more challenging set of meshes (having sharp edges, highly curved areas, and
complex topology respectively).

Shape Functions and Stiffness Matrices

Let (ξ, η, ζ) be the position of a point in an element, in the intrinsic coordinate system
of the element. For hexahedra the corners are at positions (ξi , ηi , ζi) ∈ {−1, 1}3. For
wedges the corners have positions (0, 0, ζi), (1, 0, ζi) and (0, 1, ζi), with ζi ∈ {−1, 1}.
For hexahedral elements:

Ni(ξ, η, ζ) �
1
8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ) (4.4)
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For wedge elements:

N1 �
1
2
(1 − ξ − η)(1 − ζ)

N2 �
1
2
ξ(1 − ζ)

N3 �
1
2
η(1 − ζ)

N4 �
1
2
(1 − ξ − η)(1 + ζ)

N5 �
1
2
ξ(1 + ζ)

N6 �
1
2
η(1 + ζ)

(4.5)

The local stiffness matrix of an element is integrated numerically over the geometry
by 6-point Gauss quadrature for wedges, and 8-point Gauss quadrature for hexahe-
dra. For more details on the assembly of the stiffness matrix please refer to a book
on the finite element method [Cook et al. 2007a].

The local stiffness matrix is given by:

Ke �

∫
Ve

B⊤EB | J | dξ dη dζ

Where E is the 6 × 6 constitutive matrix that relates stress and strain. As we use
isotropic linear material for our elements, the matrix E can be expressed as:

E �
E

(1 + ν)(1 − 2ν)



1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 (1−2ν)

2 0 0
0 0 0 0 (1−2ν)

2 0
0 0 0 0 0 (1−2ν)

2



(4.6)

B is the strain-displacement matrix (6× 24 for hexahedra, 6× 18 for wedges), and | J |
is the absolute value of the determinant of the Jacobian matrix that maps intrinsic
coordinates to world coordinates.

Enlarging Small Features

Initial Skeleton Extraction. Let us denote the boundary of the solid voxels by
∂Vsolid . We compute the geodesic distance from each solid voxel to any boundary
voxel, i.e. d∂V(i) � min j dGsolid

(i , j). This is done efficiently in a single pass of the
Dĳkstra’s algorithm starting from ∂V. We then compute the watershed transform of
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the graph Gsolid [Haumont et al. 2003]. It is defined via a flooding process, which
intuitively proceeds as follows: voxels which are local (non-strict) maxima for d∂V
serve as sources S, with respective height given by −d∂V . Water is then flooded
through the edges, which serve as a pipes, allowing the water to reach higher
heights — the difference of altitude being given by the edge weights. The watershed
transform can be easily computed by Dĳkstra’s algorithm from the source voxels S.
The height of a voxel is the minimum distance from a voxel in S.

When two trees spanning from different sources are adjacent by an edge in E(Gsolid),
they are connected together, forming voxel paths connecting sources in S. The set
of all paths forms the the watershed transform of the graph that we denote Gwsh .

Pruning. The resulting graph looks close to the desired skeleton but suffers from
spurious structures appearing due to the discrete settings. We propose a combina-
torial cleaning approach which performs well on our patterns.

To understand our pruning process, let us start with two remarks. First, we might
consider recursively pruning leaves (vertices of degree 1). However, the process
has to stop before pruning the main part of the skeleton as well. Second, it is not
alway possible to find a leaf, and we often observe unwanted small spurious loops
attached to a longer structure. We have to find where to cut open these loops and
prune the resulting leaves recursively.

For the pruning process we defined for each vertex i ∈ V(Gwsh) the pruned distance
dpruned(i) as

dpruned(i) � max{d∂V(i), max
j∈pruned(i)

dpruned( j) + w(i , j)}

where pruned(i) is the set of pruned neighbors of i. Intuitively, this gives the length
of the pruned branch that emanated from i.

The pruning process is summarized in Algorithm 11. The score innerCount(x) is
defined as the minimum number of edges between x and another vertex of degree
, 2. The rationale behind this score is, in case of a cycle, to cut open first the vertex
that is further away inside that cycle. This extends the intuitive notion for the case
of vertices of degree 2 to a more general tie-breaking rule. α is a constant controlling
the length of loops which are considered small. In practice we select α � π.
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Algorithm 11: PruneGraph

1 Q ← V(Gwsh) sorted by lexicographic order as defined by the tuples
(d∂V , innerCount, dpruned);

2 T ← {v ∈ V(Gwsh) , de g(v) � 1} ; // Current leaves
3 P ← ∅ ; // Set of pruned vertices
4 while Q , ∅ do
5 while T , ∅ do
6 x ← pop(T);
7 if d∂V(x) 6 rpattern and dpruned(x) 6 α · rpattern then
8 PruneVertex(x);

9 if Q , ∅ and top(Q) < P then
10 x ← pop(Q);
11 if d∂V(x) 6 rpattern and dpruned(x) 6 α · rpattern then
12 if TestPruneLoop(x) then
13 PruneVertex(x);

Algorithm 12: PruneVertex(x)
1 P ← P ∪ x;
2 G← G − x ; // Remove vertex from current graph
3 forall vertices y adjacent to x before pruning do
4 Update dpruned(y) and innerCount(y);
5 if deg(y) � 1 then
6 T ← T ∪ y;
7 else
8 Q ← T ∪ y;

Algorithm 13: TestPruneLoop(x)
Input: maxLoopCount

1 forall vertices y adjacent to x do
2 R(y) ← y ; // Root in Union-Find data structure

3 for outgoing vertices y by increasing distance from x do
// This is again a Dijkstra routine

4 if a loop of length 6 maxLoopCount connects two vertices u , v ∈ N(x) then
5 Merge(R(u), R(v));

6 return Number of remaining trees in R is 6 1
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Figure 4.19 – All exemplars.

Figure 4.20 – Additional pattern synthesis results.
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Figure 4.21 – All exemplars.

Figure 4.22 – Additional texture synthesis results on other models.
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4.1.7 Conclusion

We have introduced the first method to synthesize patterns along a curved surface
from an example, while ensuring that the pattern is printable and withstands a user
specified force profile. We believe our work opens interesting questions regarding
the joint optimization of shape structural soundness and shape appearance. By-
example approaches offer unique advantages in this context: our method is easily
accessible to casual users, and simple to use through the specification of a 3D model
and an image of a pattern.

There are several directions of future work. A first direction is to transpose what we
applied on surfaces into a volume synthesis context. The challenges are different: in
3D patterns have more opportunities to connect without violating the appearance
specified in a 2D exemplar. However, the computational cost grows dramatically
when dealing with volumes. A second direction is to further explore the possible
controls. We currently under-exploit the ability of our on-surface synthesizer to
orient and scale the synthesized textures. It is also possible to locally change the
texture, introducing progressive variations along a surface (e.g. [Zhang et al. 2003]).
Both controls can be combined with structural optimization, e.g. orienting the
pattern locally to maximally absorb stress.
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4.2 Structure and Appearance Optimization for Controllable
Shape Design

Remark. Readers familiar with our original publication [Martínez et al. 2015a] are invited
to skip directly to the discussions and comparisons with concurrent works in Section 4.4.

Problem Exemplars

Symmetry

Figure 4.23 – Our technique automatically generates rigid shapes
answering a specific loading scenario and resembling an input exem-
plar pattern, while using a user-specified quantity of material. Top
left: Loading scenario; in this case the synthesized shape is anchored
to the ground by its bottom left/right corners, while supporting a
road through four attachments. Each attachment contains an empty
region (white) surrounded by a solid boundary (blue), serving as a
socket to plug in the road plank. Top middle: Two exemplars defin-
ing the desired appearance. Top right: Two synthesized bridges
answering the loading scenario but each using a different exemplar.

Photograph: Fabricated objects using the synthesized shapes.

The field of topology optimization seeks to optimize shapes under structural ob-
jectives, such as achieving the most rigid shape using a given quantity of material.
Besides optimal shape design, these methods are increasingly popular as design
tools, since they automatically produce structures having desirable physical proper-
ties, a task hard to perform by hand even for skilled designers. However, there is no
simple way to control the appearance of the generated objects.

In this section, we propose to optimize shapes for both their structural properties and
their appearance, the latter being controlled by a user-provided pattern example.
These two objectives are challenging to combine, as optimal structural properties
fully define the shape, leaving no degrees of freedom for appearance. We propose
a new formulation where appearance is optimized as an objective while structural
properties serve as constraints. This produces shapes with sufficient rigidity while



142 Chapter 4. Shape Synthesis with Appearance Constraints

allowing enough freedom for the appearance of the final structure to resemble the
input exemplar.

Our approach generates rigid shapes using a specified quantity of material while
observing optional constraints such as voids, fills, attachment points, and external
forces. The appearance is defined by examples, making our technique accessible
to casual users. We demonstrate its use in the context of fabrication using a laser
cutter to manufacture real objects from optimized shapes.

4.2.1 Introduction

Recent years have witnessed a significant spread of rapid manufacturing technolo-
gies, such as 3D printing and laser cutting. In principle, these techniques empower
casual users with the ability to create tangible objects from their virtual counterparts.
In practice, it remains extremely difficult to design objects which are aesthetically
pleasing and at the same time structurally sound for real world constraints, such as
being rigid enough to perform their intended function.

An important effort towards simplifying the creation of complex yet functional
objects emerged from the field of topology optimization [Bendsøe 1989; Sigmund
2009a; Brackett et al. 2011]. In this field, the primary consideration is to design
lightweight structures that are as rigid as possible. That is, optimizing for the
most rigid shape using a prescribed amount of material. This is a key engineering
problem as material use and weight are directly related to cost and efficiency. These
techniques are a perfect match to additive manufacturing technologies as they
typically produce complex geometries impossible to manufacture otherwise.

However, these approaches only consider rigidity as an optimization objective, and
the appearance of the final object cannot be controlled besides explicit constraints
such as avoiding regions of space or enforcing symmetries [Kosaka and Swan 1999].
In this work we propose to jointly optimize for the rigidity and the appearance of
the structure, as defined by a user-specified exemplar pattern. This is different
from after-the-facts reinforcement of the final result [Stava et al. 2012], and from
synthesizing uniform, manufacturable patterns [Dumas et al. 2015] (Figure 4.24): the
optimized shape is obtained as the result of a single optimization problem integrating
both appearance and rigidity, and operates under a constrained material budget. It is
easy to use via by-example specification and simple constraints such as solid and
void regions to enforce, as well as external forces. These constraints are general and
allow us to optimize for appearance, mechanical strength, and material cost.

A natural intuition is to combine topology optimization [Sigmund 2009a] and by-
example texture synthesis [Wei et al. 2009] to satisfy both structural and appearance
objectives. However, these are challenging to combine, preventing the algorithm
to properly converge. This is confirmed experimentally (see Figure 4.27) as finding
good compromises with a simple combination of these two objectives requires
tedious parameter tuning, if possible at all.
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Contributions. Our contributions are:

• A new formulation in which appearance is optimized as an objective while
rigidity is understood as a constraint.

• Controls that are powerful yet easy to understand: single parameter for
the appearance-rigidity tradeoff (α), volume usage bounds (vmin , vmax), and
appearance specified by example.

• First order derivatives for the appearance objective, enabling gradient descent
under non-linear constraints.

Scope. In this section, we target the synthesis of flat (and possibly curved) shapes
that are manufactured with laser cutting. Our formulation directly translates to
volumes (see Section 4.2.4), but results in large problems which are too slow to solve
via our current implementation. Scalability to higher dimensions is an important
direction of future work.

Foreword. In Section 4.1 [Dumas et al. 2015], we proposed a technique synthesizing
a uniform stochastic pattern covering a surface, while ensuring that it is printable.
However, the application is different: our approach in this section generates a shape
under a prescribed material budget and will generally not fill a domain. Instead, it seeks
for the optimal compromise between appearance and rigidity while distributing
material in space. Figure 4.24 highlights the differences: while Section 4.1 targets
the equivalent of uniform texturing, this section targets controllable shape design.

Section 4.1 Section 4.2
Exemplar Loading Scenario Volume: 50% Volume: 34%

No Control Controllable

Figure 4.24 – Comparison with Section 4.1 [Dumas et al. 2015]. From
left to right: input exemplar; loading scenario, attachment points
and optimization domain (gray square); result of Sections 4.1 and 4.2.
Regardless of the loading scenario the method in Section 4.1 always
seeks to produce a structure that fills a given region, while we gen-
erate a rigid shape using the user-specified quantity of material and

resembling the input exemplar.
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4.2.2 Problem Formulation

f

u1

f

u2

Low compliance C1 � f · u1 High compliance C2 � f · u2

Figure 4.25 – Two 1D linear elements (springs) with a single degree
of freedom. A same force f generates a displacement of respectively
u1 and u2. The compliances reflect that the stronger spring (leftmost)
is more rigid: C1 < C2. The same concept translates to elements of

higher dimensions.

Our method combines two fundamental ingredients. The first is the notion of
appearance as defined by neighborhood similarities between a synthesized structure
and an example pattern. The second comes from mechanical engineering and is the
notion of compliance. Figure 4.26 provides an overview of our method.

The basic problem in which compliance appears is the prediction of the mechanical
behavior of a structure when it is subjected to precise boundary conditions — that
is, a set of attachment points and external loads applied to the structure. In this
work we consider small deformations for which the behavior of the structure can be
characterized by linear elasticity. We consider isotropic materials described by their
Young’s modulus and Poisson’s ratio. The compliance is the work exerted by the
forces on the structure, i.e. the sum of the dot product of forces and displacements,
as illustrated in Figure 4.25. A low compliance implies that forces produce only
small displacements, which characterizes a high rigidity.

We model the shape in an n-dimensional grid of square elements denoted by x, each
having 2n corner nodes shared with their neighbors. Each element e in x receives a
density xe which through optimization has to converge towards void (� 0) or solid
(� 1), thus defining an interior and exterior. In practice, intermediate values remain
after optimization, and we apply a thresholding after convergence.

We formulate our goal as a multi-objective optimization problem that minimizes
both an appearance energyAI(x) and the structural compliance C(x):

x � arg min
x
(AI(x), C(x)), (4.7)

where I is the input exemplar — a black and white pattern defining void (pixel � 0)
and solid (pixel � 1) regions; x is the outcome — densities defining a shape in the
grid — computed through our optimization procedure. The user has to specify at
least one attachment point for the problem to be well-posed. She can optionally
impose additional conditions, such as regions of void or fill, symmetry, and external
forces; see results in Figure 4.23 and Section 4.2.5.
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Boundary conditions Exemplar

Level
Compliance
optimization

Compliance and
appearance optimization

0

1

2

Figure 4.26 – Overview of our multi-resolution optimization ap-
proach. Given an input exemplar (upper right) and output boundary
conditions (upper left), our method optimizes the corresponding
output in a multi-resolution fashion (lower rows). The boundary
conditions can include support, solid, and void. In this example, the
volume is constrained to 35% of the overall output domain, and the
relaxation factor of the compliance with respect to the optimal is set

to α � 1.2.

Previous works exist to optimize each of these energies in isolation. Therefore, a
straightforward approach would optimize for a linear blend of both energies, i.e.

AI(x) + λC(x), (4.8)
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with λ > 0 allowing to explore the tradeoff. Unfortunately, such a simple scheme
does not produce reliable results: the values of λ that can produce a reasonable out-
put differ widely between exemplars, boundary conditions, and domain size, when
they exist at all. Figure 4.27 illustrates this issue and compares to our formulation.

Exemplar Weighted sum optimization via eq. (4.8) Our method
λ � 1 λ � 50 λ � 300 α � 1.2

×15 ×1.48 ×1.35 ×1.2

×42 ×3.5 ×1.68 ×1.2

Figure 4.27 – Comparison of a straightforward weighted sum ap-
proach and our formulation. All results use the same parameters
and a volume constrained to 30% of the entire domain. We give
below each result the ratio between its compliance and the compli-
ance of the shape optimized without appearance objective (Copt) ; e.g.
×1.2 implies the result is within 20% of the computed optimum. λ
weights the importance of rigidity versus appearance. On the left
hand side, a low λ gives results with good appearance but mediocre
compliance. On the right hand side, a large λ produces more rigid
results but a degraded appearance. We show in orange the values of
λ producing reasonable compromises, and in green and red the best
and worst compliance ratios, respectively. Note that these differ sig-
nificantly between both exemplars. Our method (rightmost column)
does not need any specific setting besides the threshold from the
computed optimum (20%). The boundary conditions are the same

as in Figure 4.26.

We therefore propose to modify the formulation of the problem. We note that the
goal is not necessarily to obtain the most rigid structure, but rather a structure with
sufficient rigidity, i.e. which does not yield under the given loads. Thus, our insight
is that rigidity should be considered as a constraint, which can be relaxed to allow
more freedom for the appearance objective. Thus, our goal is now to minimize
AI(x) such that the structural compliance is below a threshold Cmax and the volume
is bounded:
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arg min
x

: AI(x)
subject to : C(x) 6 Cmax

vmin 6

∑
e

xe 6 vmax

∀e 0 6 xe 6 1

(4.9)

The volume bounding constraint is important. The weight of the structure is often
negligible compared to external forces, in which case the most rigid shape would
tend towards a full block of material. vmax prevents this naive solution to exist. On
the contrary, when only considering the weight of the structure — i.e. solving a
self-weight problem — the naive solution is an empty shape. vmin prevents it. The
volume constraint is also a natural control for the user. Combined to appearance
it allows changing the overall size of the structure (see Figure 4.28). For the sake
of clarity we express volume constraints as a percentage of the design domain. We
often use only external forces or only self-weight in which case we respectively set
vmin � 0% or vmax � 100%. In such cases we report only the non-trivial bound.

A meaningful value of the Cmax constraint is crucial to ensure a feasible solution.
We describe how the threshold is computed in Section 4.2.2, and describe the
appearance objective in Section 4.2.2. We discuss our solver and numerical scheme
in Section 4.2.3 and extensions in Section 4.2.4.

Compliance Constraint

We determine the compliance threshold Cmax by first computing a solution Copt to
the problem considering compliance alone. We adopt the well-established Solid
Isotropic Material Penalization (SIMP) topology optimization method [Bendsøe and
Kikuchi 1988]. Implementation details of this method can be found in [Sigmund
2001; Andreassen et al. 2011].

Topology Optimization for Determining Copt

The SIMP method seeks to minimize compliance by assigning densities to each
element in x given a constrained total material budget vmin 6

∑
e xe 6 vmax . The

elastic structure is simulated with the Finite Element Method (FEM).

Each square element e receives a continuous scalar density 0 6 xe 6 1, and its
Young’s modulus is defined as

Ee � Emin + (xe)p(E0 − Emin) (4.10)
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where E0 is the material Young’s modulus, Emin > 0 is a small value to prevent
numerical instabilities, and p � 3 is the standard SIMP penalization factor which
penalizes intermediate values in the solution.

The compliance of the output is measured by summing the compliance of each
individual element. Let us denote:

u Global displacement vector
ue Local displacement vector per element
f Global force vector
K Global stiffness matrix
K0 Element stiffness matrix with unit Young’s modulus
t Element thickness

Compliance minimization is formulated as

Copt � min
x

: C(x)

subject to : vmin 6

∑
e

xe 6 vmax

∀e , 0 6 xe 6 1

(4.11)

where the compliance term is given by the equation

C(x) � u⊤f � t
∑

e

Eeu
⊤

e K0ue

subject to : Ku � f
(4.12)

We use the Method of Moving Asymptotes (MMA) [Svanberg 1987] to minimize
C(x) and obtain a solution Copt .

Note that when the boundary conditions include large external forces, the weight of
the structure tends to have a negligible influence, and can be ignored. We discuss
in Section 4.2.4 how self-weight can be taken into account.

Setting the Threshold Cmax . We first perform standard topology optimization to
compute a lower bound on the achievable minimal compliance Copt . We then set
Cmax � αCopt , where α > 1. As we increase the value of α, we obtain results having
a higher compliance, but that are more similar to the exemplar. This is a simple and
predictable parameter controlling how much freedom is allowed to appearance, as
can be seen in Figure 4.28.
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α � 1.2, vmax � 30%

α � 1.4, vmax � 30% α � 1.6, vmax � 30%

α � 1.2, vmax � 35% α � 1.2, vmax � 40%

Figure 4.28 – Progressive relaxation of the maximum compliance
(top row) and maximum volume (bottom row) constraints.

Appearance Objective

Our method can be used with any appearance energy that has first order derivatives
available, as required by the solver (Section 4.2.3). Our formulation builds upon the
work of Kwatra et al. [2005] but adapts it to facilitate the computation of first order
derivatives with respect to x.

In the following, when using the notation xe , e is meant as a coordinate within the
grid of elements. We denote by N � 2δ + 1 the texture synthesis neighborhood
size typically 15 × 15, i.e. δ � 7). We denote by m(e) the coordinate of the matching
pixel in I whose neighborhood ze is the most similar to the current neighborhood
of xe in the result. The matching process is described in Section 4.2.3. We denote
by ze

f
� I[m( f ) + (e − f )] the value at coordinate e from the best matching neigh-

borhood of f , where I[z] accesses the pixel value (0 or 1) at coordinate z in I. The
appearance energy contributed by an element xe ∈ x is:

AI(xe) �
∑

f , ‖ f−e‖∞6δ

���xe − ze
f

���r (4.13)

The total appearance energy isAI(x) �
∑

e AI(xe). We use r � 1.2, set experimentally
as in [Kwatra et al. 2005].

4.2.3 Solver

We are now ready to solve for the global optimization problem, that is to minimize
appearance under the compliance constraint (Section 4.2.2). This is a challenging
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optimization as all terms are non-linear and are subject to inequality constraints. In
addition, the appearance objective contains combinatorial terms: the best matching
neighborhoods.

We thus optimize for the density x in an iterative block coordinate descent scheme
alternating between finding the best matching neighborhoods coordinates m(e) and
the densities xe for each element e.

Initialization. We set xe � min( vmax

|x | , 1) for all elements and select random coordi-
nates for best matches m(e). One can choose a different initial guess, but a better
convergence is typically observed when starting from a uniform gray; see Figure 2
in [Sigmund and Maute 2013].

Neighborhood Matching. Given the densities, the coordinates of the most similar
neighborhoods are computed with PatchMatch [Barnes et al. 2009] and the ran-
dom walk of [Busto et al. 2010]. For a neighborhood at coordinate e in x and a
neighborhood at coordinate e′ in I the similarity used for matching is defined as:

d(e , e′) �
∑

f , ‖ f−e‖∞6δ

��x f − I[e′ + ( f − e)])
��r + λocc

O[e′]
N2
· |I ||x |N2

(4.14)

The first term compares pairwise densities throughout neighborhoods and corre-
sponds to the appearance energy (eq. (4.13)). The second term is used to increase
the spatial uniformity of the appearance energy [Kopf et al. 2007; Kaspar et al. 2015].
O is an occurrence map storing how many times each exemplar pixel is used in
the different closest neighborhoods. It is computed from the previous iteration.
λocc > 0 controls the amount of enforced spatial uniformity. |I |

|x |N2 is a normalizing
factor making λocc independent of synthesis resolution. In our implementation
λocc � 20.

Optimizing Densities. Optimizing the appearance objective (eq. (4.13)) given the
best matching neighborhoods is more challenging. We are facing a non-linear,
non-convex optimization problem for both objective and constraints. In addition,
evaluating the compliance constraint is computationally expensive as it requires
solving for the FEM equation. For these reasons we rely on the Globally Conver-
gent Method of Moving Asymptotes (GCMMA) [Svanberg 1995, 2002]. GCMMA
converges in fewer iterations than augmented Lagrangian methods, reducing the
number of required FEM solutions. It iteratively solves subproblems that are convex
approximations of the original problem, and rely on the gradient of both objective
and constraints functions to do so. GCMMA therefore requires the first order
derivatives of the objective and constraint functions.
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Derivatives. The derivative of the volume constraint is 1. The compliance deriva-
tive is [Bendsøe and Sigmund 2004]:

∂C
∂xe

� 2uT
e

∂f
∂xe
− uT

e

∂K
∂xe

ue (4.15)

The term ∂f
∂xe

is null when the weight of the structure is neglected. For self-weight
problems (Section 4.2.4) this term will however influence the result.

The derivatives are typically filtered to prevent numerical issues, and to control
the optimization quality. We consider the extensively used smoothing operator
described by [Sigmund 1997] to filter the derivative of the function C:

∂̂C
∂xe

�
1

max(ǫ, xe)
∑

i we ,i

∑
i

we ,i xi
∂C
∂xi

(4.16)

where we ,i � max
(
0, γ − dist(e , i)

)
is a weight factor (convolution), controlled by a

parameter γ (filtering radius), and ǫ (10−3) is a small coefficient avoiding division
by zero.

At this step, all ze
f

are assumed to be constants. Therefore, the derivative of AI(x)
can be expressed as

∂AI

∂xe
�

∑
f , ‖ f−e‖∞6δ

r

���xe − ze
f

���r(
xe − ze

f

) (4.17)

The derivative is not defined when xe � ze
f
. Thus, using a small ε > 0, we regularize

AI(x) as follows:

ÃI(xe) �
∑

f , ‖ f−e‖∞6δ

((
xe − ze

f

)2
+ ε

) r/2
(4.18)

and it follows that the derivative is

∂ÃI

∂xe
�

∑
f , ‖ f−e‖∞6δ

r
(
xe − ze

f

) ((
xe − ze

f

)2
+ ε

) r/2−1

(4.19)

Multi-Resolution. For improved performance and quality we optimize through
a multi-resolution scheme. The process starts from downsampled versions of the
grid x and exemplar I. The resolution is iteratively doubled, using the previous
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result to initialize the next finer resolution by bilinear up-sampling. The process is
illustrated in Figure 4.26.

Our algorithm optimizes three resolution levels. The compliance relaxation param-
eter α remains constant throughout the process. The exemplar is downscaled to
match the resolution of each level. The strain-displacement and constitutive material
matrices are also changed according the resolution.

We use the same multi-resolution scheme to compute the compliance solution
(Section 4.2.2) and obtain Cmax for each resolution level. In practice, we observe that
the value of Cmax is remarkably stable across resolutions.

Convergence. The optimization process ends when ‖∇A‖‖A‖ is below a small thresh-
old (we use 0.001), or when a maximum number of iterations is reached (in our
implementation we use 40, 20, 10 on the three successive resolution levels).

4.2.4 Extensions

Optional constraints can be added to our basic formulation. We describe two
important ones. The first is to consider the weight of the structure itself during
optimization (Section 4.2.4). This is useful when there is no external force besides
gravity applied to the structure. The second is to consider symmetry constraints,
which are useful for aesthetics purposes but also to reduce computation time
when the solution is known to have symmetries (Section 4.2.4). We also describe
how to optimize for 3D outputs even though our method is dimension agnostic
(Section 4.2.4).

Self-Weight

We optionally take into account the weight of the structure and the forces it generates
under gravity. Note that on self-weight problems — i.e. no external forces — the
complete void is a trivial optimal. We therefore impose vmin > 0 in such cases.

Forces due to the structure weight are modeled by a vertical force acting on each
grid node q as follows:

qx � 0, qy � −g
∑

e , q∈qe

xe
me

|qe | (4.20)

where qe is the set of nodes belonging to element e (as defined in Section 4.2.2), me

is the element mass, and g is the absolute value of the gravitational acceleration. Let
us emphasize that this force depends on the current densities of the elements xe .
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When using the SIMP formulation on a problem taking into account the weight of
the structure, the displacements might become unbounded for low density regions,
resulting in numerical issues [Bruyneel and Duysinx 2005]. We therefore use
a modified formulation of material stiffness as suggested by [Pedersen 2000] to
overcome this problem:

Ee �

{
Emin + (xe)p(E0 − Emin) µ < xe 6 1

Emin + xeµp−1(E0 − Emin) 0 < xe 6 µ
(4.21)

In our experiments we set µ � 0.25. This switches to a linear stiffness model
in regions of low densities. The derivatives are updated accordingly. The non-
differentiable point where the switch between models occurs does not have a
detrimental impact in practice [Bruyneel and Duysinx 2005].

We observe that on self-weight problems the volume bounds vmin , vmax have to allow
for some freedom to achieve convergence. Indeed, the optimized shape is a subtle
tradeoff: adding matter makes some regions more rigid but also adds stress to others
through gravity. Figure 4.29 illustrates results obtained on self-weight problems.

Symmetry

Symmetry plays an important role in aesthetics for shape design. We adopt the
symmetry reduction approach of [Kosaka and Swan 1999] for topology optimization.
The design domain x is partitioned into S > 1 subdomains x

i . We define a mapping
between x

i and an imaginary domain x
∗, and only optimize for x

∗. The derivatives
are given by:

∂C
∂x∗e

�
1
S

∑
i

∂C
∂x i

e

(4.22)

That is, we compute the derivatives for the design domain x, and optimize x
∗

according the averaged derivatives given by the mapping. Note that even though all
x i

e variables map to the same x∗e , their individual gradients on the right-hand side
may differ due to asymmetric loading scenarios. Figure 4.30 illustrates a problem
solved with symmetry reduction.

Optimizing 3D Structures

Our formulation is amenable to 3D, adding a third dimension and using a grid of cu-
bic (hexahedral) elements. While this would provide a full volume synthesis, such an
approach is computationally expensive and requires a 3D exemplar as input (schemes
using several 2D exemplars to define a volume could be adapted [Wei et al. 2009]).
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Compliance optimization
Boundary conditions Standard Using eq. (4.21)

32% volume 27% volume
Compliance and appearance optimization

41% volume 43% volume 34% volume

Figure 4.29 – Optimizing self-weight problems (no external forces).
Top: A different material stiffness model is required to avoid degen-
eracies in low density regions. Bottom: All results use the same
parameters α � 2.2, vmin � 20%, vmax � 100%. Self-weight problems
are more challenging to optimize (see text), and therefore the bounds
are relaxed to let the optimizer converge. Note how different volumes

are obtained depending on the exemplar.

Compliance optimization only

x
1

x
2

x
∗Symmetry

Compliance and appearance optimization

Figure 4.30 – Constrained symmetry, with boundary conditions de-
fined on x

∗. Maximum volume is constrained to 45%.
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Instead, we propose to optimize structures along several interleaved planes in 3D,
as illustrated in Figure 4.31. This is different from independently optimizing 2D
shapes: the 3D hexahedral elements at the crossing of several planes are shared,
and stresses and appearance propagate across the different planes. The results in
Figure 4.31 show how pattern features are able to flow from one plane to another.

4.2.5 Results

Most of our results are obtained by laser cutting from the synthesized shapes. We
then assemble objects by gluing several planks together. In most cases, we compute
and assemble independent 2D results, under the assumption that forces remain
in a plane — which works well in practice for most scenarios. We however also
investigated full 3D solutions, as described in Section 4.2.4.

Before presenting our results in more details Section 4.2.5, we describe Section 4.2.5
how we obtain the final curves for laser cutting. We discuss performance in Sec-
tion 4.2.5 and validation tests in Section 4.2.5.

Contour Extraction

Contours for laser cutting are extracted in a few simple steps. The optimized shape
x is first thresholded (0.5) to snap values which are between 0–1 to void or solid.
In rare cases, this results in the creation of small disconnected components. We
filter these by keeping the connected components anchored to attachment points.
Disconnected components are further discussed in Section 4.2.5. Finally, the filtered
grid is upsampled by bilinear filtering (x2 in our implementation), and paths for
laser cutting are extracted along the isovalue 0.5.

Fabricated Objects

We created several objects using our approach. In all
cases, the user only specified the attachment points,
external forces, target volume and example pattern.
The algorithm automatically synthesizes the struc-
ture. Thus, many results can be easily produced
using a variety of patterns: the algorithm deals with
the complex task of generating the intricate details
of the final structure. While we only laser cut minia-
tures, industrial cutters could be employed to fabricate large-scale objects in a variety
of materials.

Besides attachment points and external forces, the user may also rely on passive
elements, which can represent non-designable parts with a fixed density. The
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Figure 4.31 – 3D synthesis. From left to right: Boundary conditions,
result optimized without appearance, two fabricated chairs from our

optimized results using different patterns.

inset figure illustrates the use of passive elements to optimize a structure around
the SIGGRAPH logo. This is obtained by constraining the value of xe , that is
xmin 6 xe 6 xmax . If desired, other passive element properties can be predefined,
such as the material volumetric mass density and stiffness.

In Figure 4.32 different bridge sides supporting a road are obtained by changing the
loading scenario. A symmetry constraint is also used, but this is optional. Results
using different patterns on the same set of conditions are shown Figure 4.23. In
Figure 4.33 a set of shelves is produced. They are designed to be fixed on the
ground and to support several shelves offset from the attachment point: the weight
is entirely supported by the sides. Yet, the structure remains visually similar to the
exemplar pattern. In Figure 4.34 we apply the same principle to produce phone
stands. Figure 4.35 shows a variety of tables obtained by interleaving three planks.
Using different patterns immediately changes the look and feel of the results. The
tables are very strong and can support large weights.

Finally, we show in Figure 4.31 3D results where the structures along each plane
are optimized jointly in an interleaved 3D problem. This allows the pattern to flow
from one plane to another, while in previous results the pattern features could be
interrupted between different planks. Also, note how the result optimized without
appearance looks much less appealing in 3D, while our results produce intricate,
visually interesting details.

Performance

We implemented our approach with Python and use the GCMMA implementation
of the NLopt [Johnson 2016] optimization library. We measured the execution
time on an Intel® Core™ i7-4770K @ 3.50GHz, 16 GB RAM. Table 4.4 summarizes
performance for the main results. On average, in 2D, 75% of the time is spent on
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Figure 4.32 – Bridges obtained from the same exemplar using differ-
ent loading scenarios. Symmetry is used, which is why the boundary
conditions are shown for only half of the problem. Top: Forces
are applied at the top, supporting only the road. Middle: Forces
are applied below the top for the road, and at the top to create a
handrail. Bottom: Forces are applied in the middle. Combined with

the passive elements this produces an arch.
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Figure 4.33 – A set of shelves, meant to be fixed on the ground. Two
exemplars are used on the same problem, producing results of very

different styles but the same purpose.

Figure 4.34 – Phone stands fabricated from optimized structures
using two different exemplar patterns.

the FEM computation, 20% on the appearance gradient computation, and 5% on the
GCMMA optimization.

As performance was not our focus, our reference implementation uses a single thread
and takes in the order of minutes to converge. Nevertheless, the multi-resolution
approach allows the user to preview the result being computed.

As can be seen in Table 4.4, the 3D result of Figure 4.31 takes roughly three times
longer to compute than a 2D problem with the same number of elements.
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Figure 4.35 – Three tables produced with our system, using three
planks and structures optimized independently. The two tables on
the left use the same external conditions but different patterns. The
right table weights 76 g and is supporting a filled cup of 762 g (10×

heavier).

Source # Elements Exemplar Time # Iterations

Figure 4.23 202 000 Web 240 × 240 8 min 33 s 120
Figure 4.24 62 000 Sponge 200 × 200 1 min 56 s 77
Figure 4.27 150 000 Cells 210 × 210 4 min 20 s 112
Figure 4.29 80 000 Cells 200 × 200 1 min 4 s 56
Figure 4.30 120 000 Grid 160 × 160 5 min 24 s 118
Figure 4.31 114 000 Sponge 104 × 104 14 min 20 s 113
Figure 4.32∗ 162 000 Flower 176 × 169 5 min 45 s 106
Figure 4.34 230 000 Grid 330 × 330 7 min 38 s 89
Figure 4.36 90 000 Cells 105 × 105 3 min 34 s 119

Table 4.4 – Performance on our main results. The exemplar resolu-
tions are shown as width × height. ∗Figure 4.32 middle result.
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volume = 45%

Figure 4.36 – Two structures in MDF wood optimized for different
forces but with the same volume constraint. The ratio between the
two forces is 10 : 1. The arrow indicates where the top structure
starts to rupture when loaded with the heavier weight intended for

the bottom structure (please refer to the accompanying video).

Structural Properties

We first verify that the structural properties optimized by our system can be observed
after fabrication. We show in Figure 4.36 two bridge structures using the same
volume but optimized with a different force in the center. As can be seen, for the
case where the force is small the optimizer grows features on the top of the bridge,
as this does not violate the compliance constraint. On the contrary, when the force is
large the optimizer concentrates material below the arch, for reinforcement. When
a heavy load is applied to both, the bridge optimized for a small load collapses,
whereas the bridge optimized with the correct force withstands it easily.

Compliance reflects the global rigidity of a shape but does not consider local stresses.
Therefore, there is a concern that shapes of low compliance but high local stresses
could be produced, resulting in local failures under loads. In practice the results
usually exhibit low local stresses, but for a few specific places such as sharp corners.
This is illustrated in Figure 4.37 for the classical L-Beam test. Our approach inherits
this limitation from compliance-based methods. It is however worth noting that
our method produces results having comparable local stresses to those optimized
without appearance, as shown in Figure 4.37.

Note that in the field of topology optimization compliance is widely used due to its
smoother behavior (see e.g. §2.4 in [Deaton and Grandhi 2014], §6.10 in [Sigmund
and Maute 2013]) making it amenable to efficient gradient descent minimization.
Optimizing local stresses is still an active research topic [Parıs et al. 2005; Lee et al.
2012a; Holmberg et al. 2013].
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Boundary conditions Compliance optimization

Exemplar Compliance and appearance

Figure 4.37 – Comparison of Von Mises stresses. vmax � 40%, α � 1.3.
We use the classical L-Beam boundary conditions for stress analysis
[Duysinx and Bendsøe 1998] (see top left image). Stress colors use
the same normalization of both rows. Our structure (bottom row)
has a higher compliance (α � 1.3), but local stresses are comparable

to the ones found in the result without appearance (top row).

Limitations, Future Work

Connectivity and Convergence. While the SIMP method does not explicitly pre-
vent disconnected components from appearing, they are typically not present in
an optimized design. Whenever the compliance constraint is violated, matter is
redistributed in weaker regions to reduce the compliance. Combined with the
volume constraint this discourages the existence of disconnected components. In all
our results, the disconnected elements represent less than 3% of the total volume.
However, in cases where the exemplar has many small disconnected components
and where the user allows for a high compliance threshold, the appearance objective
is free to generate disconnected components (Figure 4.38a).

Self-weight (Section 4.2.4) explicitly penalizes disconnected components: unsup-
ported matter produces high compliance. Therefore, using self-weight encourages
well connected shapes (Figure 4.38a). However, combining self-weighting with
external forces generally leads to very challenging optimization problems and the
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No self-weight, α � 1.15 No self-weight, α � 1.20 With self-weight, α � 1.20

(a) Disconnected exemplar

(b) Non-stochastic exemplar (c) Strongly oriented exemplar

Figure 4.38 – Some challenging exemplars.

resulting shapes are not perfectly converged. In addition, self-weight require relax-
ing the compliance bound (see Figure 4.29). This typically requires the user to test
a few different parameters. Strictly enforcing connectivity thus remains an open
direction of future work.

Note that there are assumptions about the exemplars that are inherited from texture
synthesis. They should exhibit an overall stochastic, homogeneous appearance, and
have features roughly the size of the selected neighborhood size. The appearance
of organized patterns is not properly reproduced (Figure 4.38b). Strongly oriented
patterns make it challenging to create a rigid structure when the features do not
align with stress directions (Figure 4.38c).

Thickness Constraints. While we did not impose a minimum length-scale on our
designs, previous works exist to control the minimum thickness and hole size in the
SIMP framework [Sigmund 2009a; Zhou et al. 2015]. Combining these approaches
to ours is left as future work.

4.2.6 Conclusion

Our work enables a novel way to design shapes that are rigid under a set of
external conditions. It offers an unprecedented control over appearance through
the specification of an exemplar. Rigidity is understood as a constraint affording for
a simple and predictable control on the tradeoff between appearance and structural
properties.

We envision that expert users will use our technique to quickly produce initial
designs serving as a starting point, while non-expert users will explore a large
variety of appearances for objects having the same mechanical purpose.
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There are several avenues of future work. First, our technique does not scale well to
dense 3D problems which are almost impractical due to their large computational
cost. Second, some patterns have appearance that complicates the task of achieving
a rigid structure, as illustrated in Figure 4.38. While this is currently a limitation we
believe that integrating the pattern orientation as an optimization variable will help
on the last exemplar, allowing features to align with the local directions of stress.
Finally, we are looking forward to explore design tools exploiting our technique.

We hope to bring a novel modeling tool that will empower users — experts or other-
wise — to produce shapes that are unique, visually appealing, and yet structurally
sound for a given usage scenario.

4.2.7 Additional Results

Figure 4.39 – Additional synthesis results, all with a bound of 35%
maximum volume.
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4.3 Discrete Element Synthesis

Remark. This section presents preliminary results using a technique developed towards the
end of this thesis. Current details are included here for the sake of completeness.

4.3.1 Introduction

Aggregate geometry, such as a pile of rocks, a box of fruits, a plate of noodles, or
furniture assembled from pieces, are ubiquitous in natural and manufactured objects.
Due to their importance, aggregate geometry has received significant research focus
in rendering [Cook et al. 2007b], modeling [Ma et al. 2011; Landes et al. 2013; Sakurai
and Miyata 2014; Roveri et al. 2015], and animation [Kaufman et al. 2008; Hsu and
Keyser 2010] to achieve desired appearance and behavior. However, how to design
aggregate geometry with desired visual appearance and mechanical properties
suitable for manufacturing remains relatively under-explored.

Aggregate geometry often contains sufficient repetitions that can be optimized for
both appearance and structure without requiring additional supports such as struts
[Stava et al. 2012; Wang et al. 2013; Dumas et al. 2014]. However, existing methods
have been applied only to 2D domains, either planes or surfaces [Dumas et al. 2015;
Martínez et al. 2015a; Chen et al. 2016], but not 3D volumes which are required
for many functional objects. Currently, such 3D aggregates can be procedurally
generated [Panetta et al. 2015; Martínez et al. 2016] or manually assembled [Yoshida
et al. 2015; Luo et al. 2015], but these methods lack general appearance control. Thus,
designing aggregate 3D volumetric objects with desired mechanical structures and
visual appearances remains an open problem.

We present a method to automatically generate aggregate volumetric geometry with
user controllable visual appearance and mechanical structures. Our system is easy
to use, requiring an input exemplar of the desired aggregate patterns and the output
domain with desired size, shape, and loading scenario. The output does not require
extra support, yet are both feasible during and robust after manufacturing.

Our main idea is to use point samples as design variables for both appearance
(as in element texture [Ma et al. 2011]) and structure (as in topology optimization
[Bendsøe and Sigmund 2004]). We propose a solver to simultaneously satisfy
the following often conflicting goals: faithful reproduction of the input exemplar
pattern, observation of the output domain size, shape, and loading scenario, and
satisfaction of manufacturing constraints. We adopt the Lagrangian, fluid-like
[Overvelde 2012] instead of the Eulerian, grid-based representation to allow more
accurate representation and more efficient computation.

Specifically, we use samples to represent geometry [Ma et al. 2011] and optimize
their position and orientation in order to minimize the compliance of the system, in a
setting inspired by topology optimization techniques [Bendsøe and Sigmund 2004].
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Contrary to existing methods in computer graphics (Section 2.3.2) and mechanical
engineering (Section 2.5.3), we face additional challenges:

• An efficient 3D simulation need to be performed to allow quick feedback and
help the user in the design process.

• The elements need to overlap by a small amount, or be joined together some-
how, in a way that does not impair the visual quality of the aggregate structure.

• The elements should be allowed to deform slightly if needed.

• The overall algorithm should be simple enough so that it can be reproduced,
integrated or extended for further applications.

The rest of this section is organized as follows. Section 4.3.2 describes in more
details our current algorithm for structural optimization using discrete elements.
Section 4.3.3 presents some preliminary results, and discusses further possible
improvements to the technique.

4.3.2 Overview

Our algorithm takes as input an initial assembly of elements and a description of
a mechanical problem: fixed points and external loads applied to the system. The
initial configuration can be created manually by a user, or automatically by copying
random instances from an input collection of elements.

The elements in the domain are defined by a set of parameters θ, which are the
variables used in the optimization. To minimize a structural objective, such as
the compliance C, using a gradient-based method, one need to be able to define
the compliance C and its gradient in terms of the parameters θ. Building upon
density-based topology optimization methods, such as SIMP, the elements are used
to define an intermediate density field x, which is used to compute the mechanical
behavior of the system. A soft elastic material is assigned to the regions with density
x � 0, and a rigid solid material is assigned to the regions with density x � 1. In
between, the material stiffness is interpolated according to x.

To compute the density field x from the parameters θ, each element is represented
by a number of point samples [Ma et al. 2011]. In the following, we first discuss our
choice of parameterization for rigid elements in 3D. Secondly, we briefly explain
how the densities and their gradients are computed from the point samples. Finally,
we describe the formula for to the compliance and its derivative in a discrete setting.
The final expression of the compliance partial derivative with respect to the element
parameters is computed via a a direct application of the chain rule.
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Discrete Element Parameterization

Following [Ma et al. 2011], we represent the elements in the domain by point
samples. The samples of an element can be selected manually, or they can be
computed automatically. We chose the latter option, and used a centroidal Voronoi
tessellation [Liu et al. 2009] to sample points regularly inside the input meshes.

If the elements are allowed to deform during the optimization process, the sam-
ple positions can be used directly as optimization variables, in combination with
additional constraints to prevent excessive deformation. However, if the element
shapes must be preserved during the optimization, then the sample positions of
each element must be parameterized, e.g. by a translation and a rotation.

Consider an element υ in the output domain. Let S
υ be a 3×mυ matrix representing

the coordinates of the samples inside υ, relative to the reference frame of the element
(e.g. the origin set at the centroid of the element). Then, the world space coordinate
of the samples in υ are given by the relation:

Y
υ
� R

υ
S
υ
+ T

υ (4.23)

where T
υ and R

υ respectively denote the translation matrix and the rotation matrix
that parameterizes the element υ.

Parameterization of 3D Rotations. Since we seek a gradient-based minimization
technique, we need to be able to derive the sample positions Y

υ with respect to the
element parameters θυ. While the partial derivatives of Y

υ are easy to obtain, there
are many different formalisms to express 3D rotations — Euler angles, quaternions,
exponential maps, etc. — and not all of them yield a suitable representation for
our purposes. Indeed, while 3 parameters suffice to represent a rotation in 3D,
certain representations, such as quaternions, use an additional coordinate. While
quaternions avoid discontinuities when parameterizing 3D rotations, an additional
normalization constraint is required to restrict them to the unit sphere in R4.

To avoid increasing the problem size with one additional constraint per element, we
opt for a three-dimensional parameterization of 3D rotations. One such parameteri-
zation is given by the exponential map exp, which provides a surjective mapping
from the group of skew-symmetric matrices so(3) to the group of 3D rotation ma-
trices SO(3). In addition, the exponential map is known to be a diffeomorphism
between the neighborhood of the origin of so(3), and the identity matrix in SO(3),
which means it behaves well for small rotations.

In practice, we use the formulation given by [Grassia 1998], which computes the
exponential map from so(3) to SO(3) via an intermediate quaternion representation.
The authors provide a C implementation for computing the partial derivatives of
the rotation matrix with respect to the exponential map vector in so(3). Note that
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a compact and direct formula for the derivative of 3D rotations can also be found
in [Gallego and Yezzi 2015], however we chose the to use [Grassia 1998] because it
implements a Taylor expansion of the exponential map around the origin vector.

Material Densities

To compute the compliance of the system, it is necessary to assign a material density
to the current configuration of elements, represented by their point samples. Let s
be a point sample in the output domain, and let ρs be the material density associated
to the sample s. ρs : R3 → R+ is a radial basis function, which depends only on the
distance from the sample position ys , and is parameterized by the sample radius σs .
σs can vary from sample to sample, e.g. depending on how well the ball of center
ys and radius σs locally approximates the shape of the input element. The RBF ρs is
chosen to have a compact support, e.g. using a Gaussian kernel

ρs(y) � A exp

(
−‖y − ys ‖2

2σ2
s

)
(4.24)

where A is a normalization factor. Another possibility is to use a smoothed Heaviside
step function

ρs(y) �
1
2
− 1

2
tanh(k(‖y − ys ‖ − σs)) (4.25)

where k controls the smoothness of the approximation. Note that both function
have a rather compact support. Equation (4.24) can be set to 0 when ‖y − ys ‖ > 3σs .
While the support of Equation (4.25) depends on k and σs , one should expect it to
be close to 0 when ‖y − ys ‖ > 2σs .

The overall material density ρ(y) is then defined as the max of the densities induced
by any sample point s ∈ S:

ρ(y) � max
s∈S
(ρs(y)) (4.26)

It is necessary to define the material density as the maximum instead of the sum of
individual densities, in order to discourage elements to overlap. For the compliance
minimization problem, this means that the samples behave better when they are
spread out. However, it should be noted that the max function is technically not
differentiable. A common workaround is to resort to a smoothed max formulation,
e.g. using a p-norm ‖·‖p , with a high p > 6 or 8. The principal drawback of this
approach is that the actual density at any point in space depends on the number of
samples |S|, as the p-norm inevitably computes some kind of weighted average over
the domain. To retrieve a good approximation of the max function, it is necessary
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to increase the p exponent when there are a high number of samples, which leads
to numerical inaccuracies.

In practice, we have found that simply ignoring this theoretical issue, and retaining
a hard max formulation, does not impede the overall gradient computation. Indeed,
the only non-differentiable points of the max function are the points which are
closest and equidistant from two different samples (assuming σs is the same for
all samples). In other terms, they are located on the edges of the Voronoi diagram
formed by the current distribution of samples.

Discretized Cell Densities. In order to compute the compliance of the system via
a finite element method, the material densities are discretized following a regular
grid, in our case composed of linear H8 cube elements. Let e denote a cell in the
regular grid, and let xe be its associated material density. The discretized cell density
is given by the following relation:

xe �
1

Vol(e)

∫
y∈e

ρ(y)dy (4.27)

Equation (4.27) simply means that xe is defined as the average density ρ over the
grid cell e. In practice, the integral eq. (4.27) can be computed either 1) analytically
by computing an exact expression of the integral of ρ(y), or 2) numerically by means
of a Gaussian quadrature rule, i.e. evaluating ρ(y) at specified points inside the
cell. While the expression of ρs(y) for a given sample s is integrable analytically,
the use of the max function makes it difficult to derive a simple analytic expression
of the resulting integral. For this reason, we opted for numerical integration of the
expression given in Equation (4.27):

xe �
1

Vol(e)
N∑

i�1

ωiρ(ye
i ) (4.28)

where the ye
i

are the evaluation points of the quadrature rule for the cell e, and ωi

are their associated weights.

Compliance and Sensitivities

Given the discrete displacement field u and external forces f applied to the system,
the compliance of the system is computed as (Section 2.5.1):

C(x) � u⊤f �
∑

e

xeu
⊤

e K0ue (4.29)
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where K0 is the stiffness matrix for the base solid material, and ue is the displacement
vector associated to the node of the grid cell e.

Following a similar reasoning as in Section 2.5.1, the partial derivative of the
compliance can be expressed as

∂C
∂xe

� −u⊤

e K0ue (4.30)

Chain Rule. The current pipeline for computing the compliance C from the ele-
ment parameters can be summarized as follows:

{θυ}υ → {ys}s → {xe}e → C (4.31)

Which means that the partial derivative of the compliance with respect to one
element parameter can be computed via the chain rule

∂C
∂θυ

�

∑
e

∂C
∂xe

∂xe

∂θυ
�

∑
e

∂C
∂xe

(∑
s

∂xe

∂ys

∂ys

∂θυ

)
(4.32)

Note that in the above notation, ∂xe

∂ys
is a 1 × 3 matrix, while ∂ys

∂θυ is a 3 × |θυ | matrix.
While it may seem that the expression of Equation (4.32) is quite complex, a lot
of terms in the summation are actually null, since the densities RBF have compact
supports, and there is at most one sample contributing to the material density at
any given point y in space — due to the use of the max function in Equation (4.26).
Using an acceleration structure such as a k-d tree, and given u the solution to the
FEM equilibrium equation, it is possible to compute Equation (4.32) efficiently.

4.3.3 Results

Preliminary results on a 3D cantilever bridge problem are shown in Figure 4.40.
The elements are rigid shapes parameterized by a translation and a rotation. When
the rotation becomes too high, the element is reparameterized and the current
rotation becomes the new reference rotation for the element. The FEM simulation
is performed on a regular grid of size 64 × 32 × 32, and the result is obtained
in a few minutes on a desktop computer. The FEM equation is solved with a
geometric multigrid solver [Amir et al. 2014], which runs on the GPU in OpenCL
(the implementation is done within the AmgCL1 library).

As can be seen, the resolution seems to not be quite sufficient enough to properly cap-
ture the element geometries, as the regular grid approximation shown Figure 4.40c

1https://github.com/ddemidov/amgcl

https://github.com/ddemidov/amgcl
https://github.com/ddemidov/amgcl
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actually appears to be quite crude. The FEM simulation is currently the bottleneck
of our algorithm, a problem shared by most topology optimization methods. In
particular, we are limited by the memory available on a single machine, as the size
of the stiffness matrix of the whole system can grow tremendously.

To remedy this situation, we have been investigating adaptive simulation using an
octree data structure. Compared to an adaptive volumetric tetrahedral mesh, an
octree is both simpler and faster to implement, and it leaves out the possibility for
the solver to take advantage of the structured content within the octree.

(a) Initial configuration. (b) Optimized layout with discrete elements.

(c) Grid densities associated to (b). (d) Equivalent result via the SIMP method.

Figure 4.40 – Preliminary results on a 3D cantilever bridge. Nodes
are attached on the left side (top and bottom), and external forces

pull the lower-right side downwards.
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Adaptive Simulation

To solve the FEM equilibrium equation using an octree data structure instead of
a regular grid, some adjustments need to be made. More specifically, instead of
solving the discretized equilibrium equation

Ku � f (4.33)

where u represent the nodal displacements at the nodes of the grid — regular or
adaptive —, the nodal displacements at the hanging points (or T-junctions) of the
octree need to be interpolated from the free nodes in the octree. If we let v be the
displacement vector for the DOFs of the octree (the non-hanging octree nodes), then
we can express the relation between v and u as

u � Pv (4.34)

where P is an interpolation matrix that computes the constrained nodal displace-
ments u from the nodal DOFs v. It is now possible to retrieve v and solve eq. (4.33)
by pre-multiplying each side with P⊤:

P⊤KPv � P⊤f (4.35)

The result of a FEM simulation on a discretized octree grid is shown in Figure 4.41.

Future Work

There are still areas of this work that need to be further developed. First, the
adaptive FEM simulation needs to be combined efficiently with the gradient-descent
procedure described in Section 4.3.2. While the subdivision of the octree is almost
instantaneous on the CPU, a careful attention needs to be given to the linear solver
and preconditioner. Second, flexible elements were not yet investigated in details,
and third, a careful control over the element overlap still remains to be exerted. In
addition, it is highly possible that a multi-resolution strategy that adapts the radius
of influence of individual samples, similar to [Roveri et al. 2015], could help the
algorithm converge more quickly to an interesting design, especially in the first
stages of the update procedure.

Interior structures that are not visible from outside, due to densely occluded exem-
plar patterns and/or output domain shapes, can be further simplified [Cook et al.
2007b] or sparsified [Wang et al. 2013] to reduce printing time, save materials, or
strengthen structures.
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(a) One level of the octree grid.

(b) Another level of the octree grid.

(c) Underlying regular grid at the finest resolution.

Figure 4.41 – Adaptive octree grid and FEM simulation. The FEM
equilibrium equation is solved on the octree grid, which as a con-

trolled number of elements.
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4.3.4 Conclusion

In this section, we have presented a system for optimizing the layout of discrete
elements in 3D in a way that minimizes the compliance of the resulting system.
The procedure provides artistic control over the structure by controlling the size of
shapes of the aggregated geometries, and the automatic optimizer takes care of the
position and orientations of individual elements.

The technique has a lot of potentials, e.g. in terms of aggregating deformable shapes,
or stochastic simplification of interior details, that have yet to be explored. We hope
that in the future, similar applications will empower the user to explore a variety
of designs from a limited set of exemplar shapes, and that intuitive authoring of
complex structures can be achieved more efficiently.
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4.4 Concurrent Works

In this section, we present other recent advances on shape synthesis for digital
fabrication that considers appearance. In particular, we discuss and compare with
concurrent works strongly related to the content presented in this chapter.

In [Zhou et al. 2014b], the authors present a method to synthesize a pattern along
a curve, from an exemplar, while enforcing connectivity constraints. While this
method can be applied along a first direction ®u, and applied a second time along
a second, orthogonal, direction ®v, to give the effect of a 2D synthesis, it is in
practice difficult to extend it to form a true 2D pattern synthesis method. Moreover,
connectivity is only a geometric constraint, and this work do not cover structural
constraints.

After the publication of our methods in [Dumas et al. 2015; Martínez et al. 2015a]
(Sections 4.1 and 4.2), a number of approaches dealing with similar problems
have emerged. In [Chen et al. 2016], the authors present a method for synthesizing
filigree patterns from one or more filigree elements (curvilinear structured elements).
This is difficult to achieve with pixel-based methods such as [Dumas et al. 2015;
Martínez et al. 2015a], and conversely their method is not well suited to patterns
that are not described by basic elements. Their approach starts with an initial
dense packing of filigree, then optimizes their position and topology to enforce
progressive connections between patterns. A structural analysis step is performed
to determine whether more elements should be added to reinforce the resulting
pattern on the surface. The optimization is done iteratively, alternating between
the two aforementioned steps until no improvements can be made. Their approach
work in 2D, and operate on a surface through overlapping patches mapped onto
a 3D model. Consequently, as with every method that employs mapping, it will
suffer from distortions in high-curvature areas of the model. Another bottleneck
of their approach is the structural analysis, which requires extracting a 3D mesh of
the surface, to simulate it with shell elements, whereas filigrees themselves can be
efficiently represented by their skeleton — a 1D curve.

In a concurrent work of [Chen et al. 2016], Zehnder et al. [2016] developed an
interactive editing tool for synthesizing curve pattern. Contrary to [Chen et al. 2016],
their method is more focused on interactive editing than automatic by-example
synthesis, although they propose an algorithm to create a layout automatically.
An advantage of their method is that they operate directly on the surface in 3D,
as the curves are modeled as elastic components gliding on a smooth surface,
which means the method is less prone — under some assumptions — to distortions
artifacts. The structural analysis presented in [Zehnder et al. 2016] is based on an
eigenanalysis of the elastic energy of the system. The smallest forces that would
incur the largest displacements is computed. Then, the author describe a criteria for
suggesting reinforcements, which is very similar to what we present in Section 4.1.4
and [Dumas et al. 2015], as it is based on virtual “soft” edges between points that
are geodesically close on the surface. Finally, Chen et al. [2016] provide control over
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orientation and scale of the synthesized patterns, while Zehnder et al. [2016] only
vary the scale of their elements.

Finally, in a recent work, Schumacher et al. [2016] proposed a method to distribute
elements (holes) on a surface while considering both its appearance and structural
properties. The appearance objective is formulated as a packing problem, or as a
discrete by-example synthesis problem similar to [Ma et al. 2011]. The structural
behavior is analyzed using a coarse triangular mesh of the surface (less than 1000
vertices in all examples), and simulated with shell elements. A membrane energy
is defined per triangle, and a bending energy is associated to each triangle pairs.
Elements are parameterized by the position of their centroid, and to account for
their presence in the simulation, a fill ratio αi is computed for each triangle i, and
represents the ratio of its area that is covered by any overlapping element. This fill
ratio is used to penalize the membrane and bending energies of shell elements in the
simulation. This approach bears strong similarities to the way densities are defined
in the SIMP method in topology optimization, which is explained in Section 2.5.1.

In contrast to our objective in Section 4.3, two fundamental differences need to
be discussed. First, Schumacher et al. [2016] explicitly prevent element collisions,
by adding a repulsive force between neighboring elements. I conjecture that it
allows them to use a coarse surface mesh and a simple fill ratio α in the simulation,
as detailed element boundaries do not interfere with each others. In contrast,
the objective in Section 4.3 is to produce inter-penetrating elements, and thus
physical simulation should encourage adjacent elements to slightly overlap. This
consideration, plus the fact that the synthesis is performed within a volume, calls
for a different type of simulation, which is not a simple extension of [Schumacher
et al. 2016].

The second point, which should be easy to adapt, is the choice of the numerical
optimizer. Schumacher et al. [2016] seek to minimize a simple weighted sum
between appearance and structural energies, whereas in [Martínez et al. 2015a] we
advocate the use a more sophisticated constrained optimization scheme, compared
to a classical weighted sum. In addition, the L-BFGS-B method employed in
[Schumacher et al. 2016] needs to perform an expensive line search to update
the design variables. The line search is expensive because each evaluation of the
objective function requires recomputing a solution to the equilibrium equation of
the system (see previous discussions in Section 2.5.1). For this reason, a solver
without line search, such as MMA [Svanberg 1987] or GCMMA [Svanberg 2002],
would probably be beneficial to [Schumacher et al. 2016]. Another shortcoming of
the L-BFGS-B method, is that it does not handle non-linear constraints directly, and
they have to be integrated either in a principled way, e.g. via augmented Lagrangian
methods, or in a ad-hoc fashion, e.g. by projecting the design variables onto the
constrained subspace after each update. Again, other optimization schemes such as
MMA or interior point methods can alleviate this issue, even though at the expense
of a slower update at each iteration.
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4.5 Discussion and Conclusion

In this chapter, we have presented different ways to meaningfully combine visual
and mechanical criteria, as part of an automatic shape optimization procedure. In
the following, I summarize and discuss the key ideas introduced by the different
techniques developed in the sections above.

Surface Synthesis (Section 4.1). An abstract graph is built as a simple and fast
proxy capturing the connectivity of the pattern being synthesized. The size of this
abstract graph is independent from the complexity of the pattern in most cases.
Only when the pattern has a very intricate topology — e.g. with a high number of
disconnected components — will it affect the minimum size of the corresponding
abstract graph. In addition, since this abstract graph has a controllable number of
vertices, very fast simulations can be achieved by selecting its size accordingly.

Note that certain aspects of this technique can also be improved. First, the meshing
algorithm used to reconstruct a volumetric mesh from the abstract graph is very
crude. More advanced techniques, such as the tessellation algorithm of [Hart 2008]
— used for example in [Panetta et al. 2015] —, would provide more accurate results
at the expanse of a higher computation cost. Since the graph itself is already an
approximation of the real printed pattern, it is not clear how much accuracy is needed
in this surface reconstruction step. Alternatively, using different simulation models,
which rely directly on the graph structure, would probably be more adapted.

Second, to correctly assess the accuracy of the simulation model and the approxima-
tions made, a more quantitative study should be carried out. Indeed, the comparison
presented in Section 4.1.5 is only a qualitative. In addition, mechanical testing equip-
ment often requires standardized test specimens, whereas visual appearance of
synthesized results in computer graphics is often better appreciated on more intri-
cate 3D models. In addition to typical models used in computer graphics — such as
the Standford Bunny, the Armadillo and the Standford Dragon —, online platforms
such as Thingiverse now provides us with a wide variety of models, giving rise to
initiatives such as the Thingi10K dataset [Zhou and Jacobson 2016]. Nevertheless, it
remains difficult to precisely and easily measure the mechanical behavior of complex
manufactured models, especially when they have spatially-varying properties.

Third, the mechanical objective used in the simulation model can be chosen differ-
ently. For example, optimizing for local stress (§6.10 in [Sigmund and Maute 2013]),
or using modal analysis, to not only detect weak parts of the model [Zhou et al.
2013], but also suggest reinforcements, is an interesting direction of future work. It is
interesting to note that other analysis criteria can be used, which do not involve any
mechanical simulation. Our geometric criterion in Section 4.1.4 was in fact partly
inspired by [Cignoni et al. 2014], where the authors seek to maximize the isoperimetric
number of a graph to obtain more stable configurations. The isoperimetric number
measure the size of bottlenecks in a graph. Other measures exist, such as the algebraic
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connectivity — defined as the second-smallest eigenvalue of its Laplacian matrix —,
or the connectivity — the minimum number of vertices or edges that needs to be
remove to disconnect the graph. We note that subsequent work in [Zehnder et al.
2016] also used an idea similar to our geometric criteria, comparing the geodesic
distance of endpoints of an edge which are close in Euclidean space. The difference is
that they take into account the deformations induced at each endpoints, to evaluate
the strain of the edge.

Finally, the texture synthesis method itself has room for improvement. In particular,
interactions between texture synthesis techniques based on distance fields [Wu et al.
2014] and level-set methods for structural optimization, is an interesting direction
for future work that has yet to be explored.

Joint Optimization (Section 4.2). The key idea in this section is to combine two
different energies, one for the appearance, one for the compliance, in a single
constrained problem formulation. The problem is solved using a gradient-based op-
timizer (GCMMA), while giving a meaningful value to the bound on the compliance
constraint. The advantage over an iterative alternating scheme is that contradicting
contributions to the energy function are handled in a unified manner by a systematic
mathematical tool. The result is a design tool that can be controlled via intuitive
parameters, in a way that makes sense compared to traditional weighted sums,
which tend to mix completely unrelated quantities. A weighted sum of objectives
can still achieve visually competitive results, but it is harder to tune, and provides
no guarantee on either of the objective function once the process has converged. In
the case of multi-criteria optimization, a useful alternative is the search for Pareto
optimal configurations [Suresh 2013], which is a direction that we did not pursue.

In practice there are some implementation details that were not discussed in Sec-
tion 4.2. In particular, it is often beneficial to rescale objective (appearance) and
constraint (compliance) functions to a similar range, e.g. between 0 and 100, even
if MMA/GCMMA does not perform an explicit weighted sums of these functions.
The reason is that the different step size and weights used in the algorithm imple-
mentation result in a better numerical behavior if the values taken by the multiple
functions are not too disparate. Similar numerical considerations are also discussed
in Section 2 of [Svanberg 2007].

Another algorithmic detail that warrants further discussion is the multi-resolution
scheme employed in Section 4.2.3. In Section 4.1.3 we were able to perform the
surface texture synthesis across 8 or 9 levels of resolution in a hierarchical manner.
In contrast, in compliance minimization problems, using too many multi-resolution
levels can be detrimental to the computed solution. The reason is that the design
at the finest resolution is influenced by the solutions computed at intermediate
levels, effectively trapping it into a potentially undesirable local minimum. This is
a common problem in SIMP approaches: the solver is very good at converging to
an initial guess from a gray initial guess, but moving to a different solution once
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the system is already in a black-and-white stage takes a lot of iterations, because the
frontier of the design move slowly — see discussion surrounding Figures 1 and 2 in
[Sigmund and Maute 2013]. In the case of a multi-resolution strategy, it means that
if a small feature could help the hires solution in terms of compliance, but the initial
guess inherited from the previous level has “hidden” this small feature — in a void
area for example —, then it might be hard for the solver to make it appear later on.
Maybe restarting from a “greyed” version of the coarse-level guess could alleviate
this issue, but this is left as future work. An example of a multi-resolution scheme
for compliance minimization can be found in [Stainko 2005, 2006].

Now, a natural question that arises, is why this is not a problem in texture synthesis?
One explanation can be sought in the assumptions made on the synthesized patterns
[Lefebvre 2014], which is that they must present a stochastic nature, which should
hold across the different resolution levels. Being stuck in a local minimum is usually
not an issue in texture synthesis, since the appearance measure is only local, and
bad “global” minima are to be avoided. If the input exemplar has a flat color region,
a bad global minimum would be an output with a constant color, which is obviously
undesirable. In other words, there can be many good local minima which are
preferable over global ones, even though they have a “higher” appearance energy,
according to the standard definitions. Maybe this calls for a more appropriate
definition of the appearance energy — one not subject to this pitfall —, but this
discussion is out of the scope of this thesis.

A last fundamental question brought up by the multi-resolution scheme is the choice
of filtering process. In Figure 4.26, we used a filter size defined as a fraction of
the total problem size. This means that filter covers 4× times more pixels on the
coarsest level (0), and 2×more pixels on the intermediate level (1), when compared
to the finest level (2). Consequently, the compliance minimizing solution is stable
across the levels, albeit the boundaries are “fuzzier” on the coarser levels. This
is especially true when using the density filter over the sensitivity filter. Another
option is to reduce the filter size when going to the finer levels, knowing that this
will change the compliance minimizing solution. Note that more complex filtering
schemes may be employed; for example Stainko [2005] uses a combination of two
different filtering approaches. The combination of appearance metrics with more
involved filtering techniques, along with projection schemes to ensure minimal
thickness of the solid and/or void phase [Wang et al. 2011], were not explored
during this work, but they are an interesting venue for future work. Note that as
more filtering schemes are used (e.g. to ensure minimum thickness), the objective
function becomes more challenging for the optimizer (MMA) to minimize, and
continuation schemes [Rojas-Labanda and Stolpe 2015a] are required. Interestingly,
one could also ask whether the converse formulation — using an appearance metric
constraint as a way to filter out checkerboard patterns — could yield a practical
alternative to the current filtering methods being used nowadays.

A more practical concern in our current formulation is the lack of local control over
the computed solution. In particular, we do not optimize for local stresses, nor do



4.5. Discussion and Conclusion 179

we put any local constraints on the volume. This results in parts of the design which
are completely black, which serves to enforce the global compliance constraint, at
the expanse of the appearance metric. See for example the bottom of the bridges in
Figure 4.23, or the lower-right corner in the shelf Figure 4.28.

More generally, topology optimization methods provide non-traditional ways to
design new shapes. The user has only control over fixed nodes, external forces, but
she can define sets of passive elements to restrict the design space. In combination
with texture synthesis techniques, and a few selected optimization parameters
(neighborhood size, volume constraint, relaxation ratio), this would provide an
enriched set of design tools for interactive applications. Note that interactive
applications for topology optimization have been previously explored, e.g. in [Aage
et al. 2013].

Discrete Elements (Section 4.3). In the last section of this chapter, we showed pre-
liminary results regarding a different kind of structural optimization that considers
appearance. Here, the appearance is given by the shape of the building elements,
that are to be preserved during the structural optimization step. This yields a
different class of texture synthesis technique, labeled discrete element textures in the
literature [Ma et al. 2011, 2013].

The core idea in Section 4.3 is to represent the complex geometrical shapes by simple
point samples, which are then used as proxies to perform the structural optimization.
This is in contrast with the more involved techniques presented in Section 2.5.3, and
more akin to the approach employed in [Overvelde 2012].

We note that there are two complementary and challenging problems arising with
this approach. The first one pertains to the fundamental problem itself, in 2D or
3D, of how to perform the optimization, how to update and connect the elements
together. The second difficulty is of a practical order, and relates to performing
such an optimization efficiently, especially in 3D. Indeed, the precision required to
precisely position neighboring elements requires a fine discretization, which quickly
becomes prohibitive in 3D both in terms of time, and memory. To this end, we have
started to explore the possibility of using hierarchical formulations, where a higher
precision is employed only in ambiguous areas. Note that even with very high
resolution, the problem behaves very differently in 2D and in 3D, because elements
can connect much more easily in 2D, whereas in 3D they have more freedom to
“float around” each others.

Thus, I believe that every practical attempt at solving a topology optimization
problem with discrete elements should strive to make it extensible to 3D, even
though it is computationally very hard to do so currently. Nevertheless, I believe
this original combination to have a lot of potentials in the future, given the increasing
capabilities offered by GPUs and parallel computing devices.
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Chapter 5

Shape Synthesis with Controlled
Elasticity

In the previous chapters we have presented several shape synthesis techniques.
In Chapter 3, we were concerned with fabrication constraints, and presented a
technique for sparse support generation, aimed primarily at FDM printers. In
Chapter 4, the focus was on combining by-example texture synthesis techniques,
with methods for structural optimization. In this chapter, we wish to control the
elastic properties of parts produced by additive manufacturing technologies. More
specifically, in Section 5.1, we seek to control the elastic behavior of printed objects
by acting on their micro-structural geometry.

Note that in every chapter of this thesis, different printing constraints were consid-
ered to some degree. In Chapter 3, our scaffoldings are inherently stable under static
mechanical equilibrium, while the primary objective was to minimize the volume
of support material. In Chapter 4, objects are designed according to prescribed
load scenario — the user specifies the external forces and fixed points —, while
the objective was to match the appearance of an input exemplar, or a given set of
input elements. In this chapter, the primary objective is to match the an input scalar
field describing the elastic behavior of the given shape, while ensuring the resulting
geometry will be printable on the target device.

In order to be suitable for fabrication, techniques that consider the mechanical
properties of microstructures need to account for the limited printing resolution,
and provide algorithms that take into account the meso-scale nature of the printed
structures, e.g. [Alexandersen and Lazarov 2015] that does not rely on the homog-
enization method. Alternatively, synthesis methods that rely on homogenization
theory should be highly scalable, to better match the limit theoretical behavior of
materials, and prove effective with regards to future technologies, increasing print
volumes, and increasing print resolutions.

Our work follows the latter approach, and we tried to propose an original point of
view on the matter, combining ideas from procedural texture synthesis techniques
while taking into account the mechanical behavior of the synthesized textures. The
idea of this project was sparked by two Siggraph 2015 publications [Panetta et al.
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2015; Schumacher et al. 2015], which showed the growing interest in microstructure
design and fabrication in the computer graphics community. Our original contribu-
tion was to take a procedural synthesis approach, as opposed to the regular tiling
common to both [Panetta et al. 2015; Schumacher et al. 2015]. The result is a highly
scalable method that achieve controllable microstructures synthesis, which are easy
to conform to an arbitrary field, even on very large objects. This work was published
at Siggraph 2016, in [Martínez et al. 2016], and was done in collaboration with Jonas
Martinez and Sylvain Lefebvre. The content of our publication is reproduced in
Section 5.1 mostly unchanged, apart from the necessary layout adaptations, and an
updated Figure 5.6.

Note that methods for procedural texture synthesis have been presented in Sec-
tion 2.3.2, while efficient methods for generating microstructures — in general
without any mechanical considerations — were presented in Section 2.4.1. Aspects
regarding mechanical analysis of microstructures, via the homogenization method,
as well as other structural optimization techniques, are the subject of Section 2.4.3.
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5.1 Procedural Voronoi Foams for Additive Manufacturing

Remark. Compared to our original publication [Martínez et al. 2016], we have improved
certain figures and their explanations, such as Figure 5.3. Readers familiar with our original
publication are invited to skip directly to the discussion and conclusion in Section 5.2.

rigid flexible

Figure 5.1 – Our method procedurally generates structures with
graded material elasticities, which can be directly fabricated. Here
the user paints elasticity on a 3D model to create a flexible figurine.

Model: Moomin (thing:1173447) by Jeroentjj.

Microstructures at the scale of tens of microns change the physical properties
of objects, making them lighter or more flexible. While traditionally difficult to
produce, additive manufacturing now lets us physically realize such microstructures
at relatively low cost.

In this section we propose to study procedural, aperiodic microstructures inspired
by Voronoi open-cell foams. The absence of regularity affords for a simple approach
to grade the foam geometry — and thus its mechanical properties — within a
target object and its surface. Rather than requiring a global optimization process,
the microstructures are directly generated to exhibit a specified elastic behavior.
The implicit evaluation is akin to procedural textures in computer graphics, and
locally adapts to follow the elasticity field. This allows very detailed structures to be
generated in large objects without having to explicitly produce a full representation
— mesh or voxels — of the complete object: the structures are added on the fly, just
before each object slice is manufactured.

We study the elastic behavior of the microstructures and provide a complete descrip-
tion of the procedure generating them. We explain how to determine the geometric
parameters of the microstructures from a target elasticity, and evaluate the result on
printed samples. Finally, we apply our approach to the fabrication of objects with
spatially varying elasticity, including the implicit modeling of a frame following the
object surface and seamlessly connecting to the microstructures.

https://www.thingiverse.com/thing:1173447
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5.1.1 Introduction

Additive manufacturing enables the fabrication of objects having unprecedented
complexity. This capability is often understood in terms of the overall shape of
objects. However, it is also possible to fabricate parts filled with microstructures —
having intricate internal details in the order of tens of microns. The macro-scale
mechanical properties of the object are then directly influenced by the geometry of
the microstructures. In particular, careful design of the structures affords for parts
that are lighter while remaining rigid enough for their intended use. This reduces
material usage, shipping and transportation costs. In addition, inner structures can
progressively vary within the object and adapt to varying rigidity requirements
between regions subject to different stresses.

There are several challenges to achieve these goals. First, the fine scale geometry
of the structures has to produce the desired large scale elastic behavior. This often
implies formulating challenging global optimizations, either to directly synthesize
the fine scale geometry or to fill the shape with precomputed microstructures (see
Section 2.4). Second, the structures are very small compared to the size of the objects
(e.g. tens of microns versus tens of centimeters). Therefore, the meshes describing
the models become quickly prohibitively large, posing important computational
challenges for simulation, visualization, and fabrication. Third, the structures have
to enforce fabricability constraints. The main industrial processes have different
requirements depending on whether they locally deposit material (e.g. fused
filament fabrication, resin droplets) or whether they locally solidify a bed of material
itself acting as a support (e.g. selective laser sintering). In the first case the structures
should not present any disconnected parts during fabrication, while in the second
case they should not enclose non-solidified material in pockets.

To answer these challenges we draw inspiration from procedural noises in computer
graphics, where an infinite amount of content is produced at low, constant memory
cost while precisely controlling the statistical properties of the produced noises
[Lagae et al. 2009]. This hints at the possibility of generating procedural, stochastic
microstructures that directly exhibit the desired elastic behavior, without further
optimization. Our approach explores this idea and defines a procedure to synthe-
size open-cell foams that enforce fabrication requirements while having precisely
controlled elastic properties. The foam parameters can vary spatially to follow
gradients of elasticity.

As the microstructures are procedural we only generate their details when needed
for fabrication. Typically, evaluation happens at the slice level, just before sintering or
curing a layer of material. The microstructures are stochastic and aperiodic in nature.
Stochasticity results in an exceptionally good isotropic behavior, and lets us grade
the properties without introducing discontinuities along pre-defined boundaries.
Aperiodicity removes the need for a global optimization when conforming the
structures to a surface.



5.1. Procedural Voronoi Foams for Additive Manufacturing 185

Contributions.

• The definition of procedural Voronoi foams that can be evaluated very effi-
ciently, have precisely controlled isotropic elastic behavior, and can be spatially
graded to produce gradients of elasticity.

• A methodology to derive an inverse mapping, from a target elasticity to the
parameters driving the microstructure generation.

• A complete implementation that maps well to stackless, massively parallel
architectures.

• Applications to the 3D fabrication of objects filled with procedural Voronoi
foams, with proper handling of the outer object frame.

The result is an algorithm that generates microstructures with a prescribed elastic
behavior on the fly, during fabrication. No optimization process is required to adapt
to a different object or to match a graded elasticity field. There is no limit to the
size of the printable objects as the microstructures never fully reside in memory.
Therefore, our approach will naturally scale with future technology as the resolution
and size of printable object increases.

Scope. Isotropic elastic materials are described by two parameters: Young’s mod-
ulus and Poisson’s ratio. Intuitively the Young’s modulus captures how rigid or soft
an object is, while the Poisson’s ratio captures how one dimension stretches with
another. In this work we focus on varying the Young’s modulus while preserving
the Poisson’s ratio of the base material.

For spatially varying elasticity we assume the target scalar field is given as input
and do not consider its computation.

5.1.2 Procedural Voronoi Foam Generation

We now introduce our approach for the procedural generation of open-cell foams.
We describe the procedural synthesis of the structures in Section 5.1.2 and discuss
implementation in Section 5.1.2. We explain how to derive the parameters of the
structures from a desired target elastic behavior in Section 5.1.3 and present results
and applications in Section 5.1.4.

Procedural Synthesis

We seek to define aperiodic procedural structures akin to procedural textures in
computer graphics. The structure is defined as a function F : R3 → {0, 1} which is
evaluated during display and slicing at every point in space, at the desired resolution.
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To have the computational advantages of procedural textures, F has to follow a
number of requirements [Lagae et al. 2010], that we summarize as follows: 1)F has to
evaluate in constant time and constant memory regardless of the point of evaluation.
2) The size of F — its program and built-in data — has to be independent from
the size of the generated content. This is the case of our technique which produces
arbitrary large aperiodic content from a constant, small memory footprint (a few
hundreds of bytes).

In addition, the structure has to enforce geometric requirements to be printable. First,
there should be a minimal number of pockets (holes) enclosing printing material.
This advocates for an open-cell structure made of beams along the edges of a
cellular structure. Second, there should be no disconnected parts appearing during
fabrication. It is easy to see that convex cells enforce this property everywhere but
at the boundary (which we discuss in Section 5.1.4). The convex cells of Voronoi
diagrams are therefore well suited.

Our procedural Voronoi foams are defined by two parameters: the density ρ of
Voronoi seeds per unit volume (seeds/mm3), and the radius τ of the beams along
the edges (mm). Density may vary spatially and is given as a function, i.e. at a
given point x the desired density is ρ(x). We assume the variations to be smooth
compared to the size of the structure cells.

(a) Density field.

→

(b) Gather seeds.

→

(c) Eval structure.

→

(d) Voronoi edge
beams.

Figure 5.2 – 2D overview of Algorithm 14. (a) Input query point
q and density field ρ. (b) The seeds that could contribute to the
Voronoi cell of N[0] (which is the seed closest to q) are gathered
(Algorithm 15). (c) The bisectors of the seed pairs influencing q are
computed. (d) Finally, the algorithm checks whether q lies inside a

beam of radius τ along the Voronoi edge.

Open-Cell Voronoi Foams. We seek to design a procedural function Fρ,τ that
produces beams of thickness 2τ along the edges of a Voronoi cell structure having
a density ρ. In addition, we would like to allow for ρ to be spatially varying. Our
procedural generation is inspired by the seminal work on cellular solid textures by
Worley [1996], revised to produce an open-cell structure. We further extend the
procedural scheme to afford for spatially varying densities.
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Worley defines procedural cellular textures by using pseudo-random sequences to
generate seeds in a virtual grid, following a Poisson distribution (not to be confused
with a Poisson disc distribution). Given an evaluation point q the seed closest to q is
determined. The seed id is used to derive a color value at q, for instance coloring
each Voronoi cell differently. The set of grid cells that can have an influence is
limited to cells neighboring q. This stems from the fact that each cell contains at
least one seed — a deviation from a pure Poisson distribution to enable efficiency
[Worley 1996] — and, therefore, the closest seed is necessarily within the 2-ring
of neighboring cells. This leads to the constant time evaluation property, as the
number of considered seed points remains below a constant everywhere in space.

Our algorithm achieves similar properties while generating the edges of a Voronoi
open-cell foam. Given an evaluation point q our goal is to write a function returning
0 (empty) if q is not inside a beam of the structure and 1 (solid) otherwise. The
pseudo-code of our structure generation is in Algorithm 14, and a graphical overview
is in Figure 5.2. It starts by generating all the seeds that could contribute to the
definition of the Voronoi cell by calling algorithm GatherSeeds (line 1) — we detail
this algorithm later. We next enumerate, for each triplet of seeds (N[0],N[i],N[ j]),
the equations of their line bisector (line 4), as they are potential edges of Vor

(
q
)
, the

Voronoi cell containing q. For each bisector line, we compute pL, the point closest to
q on the bisector (line 5). If the distance between q and the line is greater than the
beam radius τ (line 6), then q is not influenced by this edge. Otherwise, q might be
inside a beam. To be certain that it is the case, we have to verify that pL is indeed
on an edge of the Voronoi cell containing q. To ensure this, we verify that pL does
not strictly belong to another Voronoi cell (lines 8-11). If it does, then pL is not on
an edge of Vor

(
q
)
, and we ignore this line equation (line 10). Otherwise, q is in

a solid region and we return 1 (solid) line 13. A counterexample, illustrating the
importance of this test (lines 8-11) is presented in Figure 5.3.

We next discuss how the seeds are gathered and generated.

N[0]

N[k]

N[ j]

N[i]

q

pL

τ

Figure 5.3 – In this counterexample, all the seeds lie on the same 3D
plane (cross section shown on the right). The point pL, which is the
closest point to q on the bisector line of (N[0], N[i], and N[ j]), is at
a distance τ − ǫ from q, with ǫ > 0. However, pL does not belong to

any edge of the Voronoi cell of N[0] (shaded in blue).
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Algorithm 14: EvalStructure Fρ,τ(q)
Input: Density field ρ, beam radius τ, query point q.
Output: Voxel state ∈ {0, 1}.

1 N ← GatherSeeds(q) ; // seeds influencing q

2 for i ← 1 to |N | do
3 for j ← i + 1 to |N | do
4 L← BisectorLineEquation(N[0],N[i],N[ j]);
5 pL ← ClosestPointOnLine(q , L);
6 if

q − pL

 6 τ then
7 accept← true;
8 for k ← 1 to |N | do
9 if

N[0] − pL

 > N[k] − pL

 then
10 accept← false;
11 break

12 if accept then
13 return 1

14 return 0

Gathering Seeds. Algorithm 14 requires all seeds that can influence the result at
q. If some required seeds were to be missed, the produced structure could fail to
print or break. However, we only need to be conservative: as long as we have a
superset of the required seeds, the algorithm will produce the correct result.

We generate seeds in a grid, and we guarantee that all grid cells receive at least one
seed. This bounds the number of grid cells that we have to consider. As explained
in Figure 5.4, the Voronoi cell of a seed cannot be influenced beyond a 2-ring of
neighbors.

Algorithm 15 gives the pseudo-code for gathering the seeds around q. The evaluation
point q might belong to the Voronoi cell of any of the seeds within (at most) a 2-ring
radius. We therefore first search for the seed closest to q, and then gather seeds with
a 2-ring around the closest seed. SubdivideCell produces at least one seed per grid
cell — possibly more with spatially varying density. We detail this algorithm next.

Seed Generation and Density Control. We now describe SubdivideCell. It gen-
erates seeds in each cell, at least one and possibly more by subdividing to locally
adapt to density. Conceptually our technique is based on a primal subdivision of
the coarsest density grid, where each parent cell is split regularly in eight children.
It is important to recall, however, that the grids are never stored: all computations
happen implicitly and on the fly. We refer to the first level of grid cells as the coarse
grid cells (between 2 mm and 5 mm in our implementation). Another important
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Algorithm 15: GatherSeeds(ρ, q)
Input: Density field ρ, query point q.
Output: Set of seeds possibly influencing q.

1 N ← ∅ ;
2 visited← ∅ ;
3 closest←∞ ; // closest seed (initially at infinity)
4 cq ← GridCellEnclosing(q) ;
5 for cell ∈ TwoRingNeighborhood(cq) do
6 visited← visited ∪ {cell};
7 seeds← SubdivideCell(cell, ρ);
8 N ← N ∪ seeds;
9 for s ∈ seeds do

10 if
s − q

 < closest − q
 then

11 closest← s;

12 cs ← GridCellEnclosing(closest) ;
13 for cell ∈ TwoRingNeighborhood(cs) \ visited do
14 N ← N ∪ SubdivideCell(cell, ρ);
15 return N

design goal of our subdivision process is to avoid bias: The statistics of the point
distributions remain constant — up to a scaling factor — at all density levels.

The pseudo-code is given in Algorithm 16 for the general case of a spatially varying
density field. Given a grid cell of size l and center c, we compute the number of
seeds it has to contain as l3×ρ(c) (line 2, cell volume times density). We evaluate the
density at the cell center, but more elaborate schemes could be used (e.g. multi-point
evaluation, or pre-integration of ρ in a summed area table). The field ρ is clamped
to a minimum value to ensure that the coarsest cells always receive at least one seed.
When the target number of seeds in a cell is above 23 — there is more than exactly
one seed per subdivision child of the current cell — we recurse and subdivide the
cell (line 13). Otherwise, we randomly select n � ⌊l3 × ρ(c)⌋ distinct children and
draw exactly one seed in each (lines 4-7). We take into account the remaining fraction
f � t − n by drawing an additional sample in a next child cell, with probability f
(lines 8-10). Note that all random number generators are pseudo-random sequences
seeded by the grid cell coordinate. Therefore, for a same initial grid cell, the exact
same set of seeds is produced.

The pseudo-code in Algorithm 16 cannot be implemented directly on massively par-
allel architectures (GPUs) due to the recursive calls. We present in the supplemental
material a stackless iterative version that maps well to massively parallel processors.
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Figure 5.4 – Left: We consider the Voronoi cell of a seed located
anywhere in the green square, and how it is influenced by another
seed in the red square. The red grid square is within the second
ring of neighbors of the green grid square. Each pair of seeds in
the green/red squares defines a possible bisector, which might be a
face of the Voronoi cell of the green seed. The opposite half-space
cannot belong to the Voronoi cell. This is illustrated for a single pair
of seeds in the figure (green/red dots). We define the shadow of the
red square as the intersection of all the half-spaces from all possible
pairs of green/red seeds. The shadow is shown in gray ; it represents
the region of space that cannot possibly be part of the Voronoi cell of
the green seed: regardless of the position of the seeds, the shadow
is always cutout by the bisectors. Right: The shadows of all grid
squares in the 2-ring completely cover the space beyond. Therefore,
no seed outside of the 2-ring can have an influence on the Voronoi

cell of the green seed.

Algorithm 16: SubdivideCell
Input: A cell to subdivide, a density field ρ.
Output: A set of seeds, with a density driven by ρ.

1 N ← ∅ ;
2 t ← currentCell.length3 × ρ(currentCell.center) ; // target number of seeds
3 if t 6 23 then
4 I � RandomPermutation(Subcells(currentCell));
5 nmin � ⌊t⌋ ; // minimum number of samples to draw
6 for i ← 0 to nmin − 1 do
7 N ← N ∪ {RandomSampleInSubcell(I[i])};
8 p ← RandomFloat(0, 1);
9 if p 6 (t − nmin) then

10 N ← N ∪ {RandomSampleInSubcell(I[nmin])};
11 else
12 for subcell ∈ currentCell do
13 N ← N∪ SubdivideCell(subcell, ρ);

14 return N
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Beam Radii. The radii of the beams are directly controlled by τ during evaluation
(Algorithm 14, line 6). While this value may also vary spatially (τ(q)) we only vary
density in our approach (see Section 5.1.3).

We next discuss how to select the parameters to reach a target elastic behavior.

Implementation

We implement our technique in an image-based slicer, which either directly sends
images to the printer (SLA) or extracts contours (SLS). We slice at a resolution
between 10 µm and 50 µm per pixel.

The procedural foam is implemented as an OpenCL kernel processing all pixels of a
slice in parallel on a GPU. In addition, we implement a supersampling procedure
to obtain gray-scale exposure levels on SLA processes. This is done by performing
supersampling around the evaluation point q in a small loop around lines 6-13 of
Algorithm 14, counting the number of times q + ǫ lies within the beam.

Exact beam contours could be extracted by locally constructing the explicit geometry
of the Voronoi cells around q in the manner of Algorithm 14. We found this approach
less convenient than our implicit description that fits very well existing massively
parallel architectures, and avoids having to union beam geometries explicitly.

5.1.3 Foams With Controlled Elasticity

We now consider the problem of selecting the microstructure parameters (ρ, τ)
to achieve a target elastic behavior. This is done by statistical analysis of the
homogenized elasticity tensor of Fρ,τ, for different parameters.

Analysis Using Homogenization

For a choice of (ρ, τ) we produce a periodic version of the structure in a base volume,
and apply homogenization to compute the elastic tensor of the corresponding peri-
odic media. By doing this for many choices of (ρ, τ) we reconstruct the underlying
relationship between ρ, τ and the elastic properties (Young’s modulus, Poisson’s
ratio). The graph resulting from this analysis is shown in Figure 5.5. It is obtained
for a material with a unit Young’s modulus (� 1) and a Poisson’s ratio ν � 0.3 which
matches most plastics. Only changing the Poisson’s ratio requires re-running the
simulation as results scale linearly with Young’s modulus.

We perform homogenization on a grid of hexahedral elements (see supplemental
material in Section 5.1.5 for details). The size of the elements is chosen to properly
capture the beams; our experiments showed that using half the diameter gives stable
results. The stiffness of each element is computed by calling our implicit procedural
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function with super-sampling, which returns the volume of structure intersected by
the element.
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Figure 5.5 – Young’s modulus as a function of radius and density.
Each dot is the result of homogenization for a given (ρ, τ). For
each (ρ, τ) we generate multiple instances of foams using different
random seeds. As can be seen the dots tightly cluster, indicating that
randomness has little impact on the elastic properties. The maximum
deviation after the fitting is 3.3% of the Young’s modulus. The data
points are used to fit a polynomial function (see Section 5.1.3). For
clarity, the graph shows a subset of our data that extends to higher

densities for lower beam radii.

Homogenization of Aperiodic Foams. With this approach we are making an
important assumption. Our structures are not periodic: they form an aperiodic foam
of constant density in space. We therefore assume that the overall behavior of the
aperiodic foam is similar to the periodic behavior of a sufficiently large base volume.
To determine the size of the base volume we rely on the expected isotropic behavior
of irregular open-cell foams [Luxner et al. 2007]. We perform homogenization for
volumes of increasing spatial extent and consider the deviation of the computed
tensor from a perfectly isotropic tensor.

The homogenized tensor is a full symmetric tensor composed of 21 independent
variables. We approximate the full tensor with the tensor of an isotropic material
and consider the residual error. The tensor of an isotropic material is expressed
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from only two independent variables — Young’s modulus and Poisson’s ratio — and
we denote it as CI(E, ν). Its expression is given in the supplemental material.

Similarly to [Schumacher et al. 2015] we approximate the homogenized elasticity
tensor CH by minimizing

ξ(CH) � min
E,ν
‖CI(E, ν) − CH ‖2F

−1 6 ν 6 0.5

0 6 E 6 EM

(5.1)

where EM is the upper bound Young’s modulus of the solid base material. While the
expression of CI is nonlinear with respect to E, ν, it becomes linear when expressed
in terms of the Lamé parameters, and thus it can be computed via least square
minimization.

The approximation error measures whether homogenization was able to properly
capture the isotropic behavior of the structure. Figure 5.6 reports the error in isotropy
for various grid sizes. In practice, we find that a volume having at least 60 × 60 × 60
hexahedral elements provides a stable result across a wide range of beam radii.
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Figure 5.6 – Relative volume — volume of the structure over simu-
lated volume — and error ξ(CH) of the approximation of the ideal
isotropic tensor (i.e. divergence from isotropy). As the spatial extent
of the simulated volume grows the tensor tends towards the ideal

isotropic tensor.

Collecting Data Points. In a one-time precomputation we generate a large number
of pairs (ρ, τ). We uniformly sample ρ and τ to cover the range that can be fabricated
(see Section 5.1.3). For each selection of (ρ, τ), we generate a number of different
structure realizations by varying the global random seed. We compute the Young’s
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modulus and Poisson’s ratio obtained by applying homogenization on each unit
volume. This gives us a large number of data points characterizing the elastic
behavior of the structures, as shown in Figure 5.5.

We then fit a polynomial function P on the experimental results to correlate the
density, beam radius, and Young’s modulus. We optimize for the coefficients of a
degree 4 polynomial by least square fitting, minimizing

∑
i

(
P(ρi , τi) − Ei

)2. The
resulting polynomial fit is shown in Figure 5.5.

Deriving Parameters for a Target Elasticity

We now describe how to select ρ and τ to achieve a target Young’s modulus. As
can be seen in Figure 5.5, for a given target elasticity multiple choices of ρ and τ are
possible: the full isocurve where P(ρ, τ) � Etarget. Our preferred strategy to select
the values of ρ and τ is to obtain structures that are as dense as possible, to remain
close to the limit behavior computed by homogenization. The limiting factor is the
minimal printable beam radius, which we denote as τmin. To maximize density, we
fix τ � τmin. As densities increases with a fixed radius, we reach a point where the
block of matter is full. There is no need to further increase density, which leads to
a density upper bound ρmax �

1
(2τmin)3 . The resulting curve is extracted from the

polynomial shown in Figure 5.5 by intersecting it with the plane τ � τmin — in
practice we use τmin ∈ [0.2, 0.3]mm depending on the printer.

For high densities, just before reaching a full block of matter, small pockets start to
appear. This is due to the edges of the Voronoi cells merging together. As measured
in Figure 5.7 the volume captured by pockets never exceeds 4%, and is negligible
for relative volumes below 0.7.
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Figure 5.7 – Relative volume ω and volume of pockets (%). Pockets
have a negligible impact under a relative volume of 0.7 and go up
to 4% of the full volume around 0.9 relative volume. Thanks to
the quasi-linear relationship between relative volume and Young’s
modulus, we can expect at most a similar error on the elastic behavior.
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Other strategies could be developed. For instance, for aesthetic purposes a user
could use thicker beams and a lower density to reveal the structures at the same
elasticity.

Elastic Behavior: Properties and Analysis

The collection of data points we produced for the parameter fitting lets us fully
characterize our procedural foams. We now compare our results to the open-cell
foams literature and verify our microstructures behave as expected.

Elasticity. The linear elastic response of low density (0.04 < ω < 0.5) open-cell
foams is described by the following model [Gibson and Ashby 1997]:

E f

Es
� C

(
ω f

ωs

)n

(5.2)

where the subscript f denotes the foam and s denotes a solid block of base material.
ω f

ωs
defines the relative volume ω. The constants C and n change depending on the

foam family [Roberts and Garboczi 2002].

Figure 5.8a shows the relationship between the relative volume and the Young’s
modulus E of our procedural foams. We fit the model for low density foams on the
range 0.04 < ω < 0.5, using C � 0.85 and n � 1.95. As can be observed, our data fits
this model very well.

Figure 5.8b shows the Poisson’s ratio of our structures, and as can be seen it remains
stable. While different materials will give different values of Poisson’s ratio, it always
remains stable around the Poisson’s ratio of the base material as observed by Gibson
and Ashby [1997] on open-cell foams.

Randomization. Our procedural foams are based on a (pseudo) random process.
Therefore, it is important to consider whether different realization using the same
base parameters ρ, τ produce a consistent Young’s modulus. Figure 5.5 reveals this
as for each pair (ρ, τ) we produced three different realizations. Close inspection
reveals that the different realizations do not perfectly match. The largest deviation
to the fitted polynomial is 3.3% of the Young’s modulus and therefore is negligible.
This is in agreement with the literature where it was observed that randomization
has little influence on the linear elastic properties of open-cell foams [Van Der Burg
et al. 1997].

Regularity. Studies of naturally occurring foams often discuss the regularity of the
foam, which in our case measures the minimum distance between Voronoi seeds
in a bounded domain using the same number of seeds. A Poisson disc distribution



196 Chapter 5. Shape Synthesis with Controlled Elasticity

0.0 0.5 1.0

Volume ω
0.0

0.2

0.4

0.6

0.8

1.0

Yo
un

g’s
m

od
ulu

s
0.85

(

ω f

ωs

)1.95

(a) Young’s modulus.

0.0 0.5 1.0

Volume ω
0.0

0.1

0.2

0.3

0.4

0.5

Po
iss

on
’s

ra
tio

(b) Poisson’s ratio.

Figure 5.8 – Relative Young’s modulus and Poisson’s ratio. The base
material has a Poisson’s ratio of 0.3. The Poisson’s ratio tends to 0.5
for low densities, and to the base material Poisson’s ratio for high

densities.

provides the most regular cases, while a random point process is the less regular.
Our procedural foams lie in-between.

Our seed generation draws at least one sample per grid cell. This is known to
be a crude — yet very efficient — approximation of a Poisson disc distribution
[Cook 1986]. The approximation is less evenly spaced than a high-quality Poisson
disc distribution. However, less regular foams exhibit a better isotropy [Luxner
et al. 2007], which is also desirable. Therefore, we believe that our jittered grid
approximation is a good compromise between computational efficiency and elastic
properties, while allowing for graded densities.

5.1.4 Applications and Results

We now experimentally challenge the behavior of our foams. In Section 5.1.4 we
compare their isotropy to recent tile-based techniques, in Section 5.1.4 we measure
actual printed samples, and in Section 5.1.4 we describe a complete application to
fill 3D models with graded elasticity.

Isotropic Behavior Versus Periodic Tiles

Figure 5.9 compares the isotropy of the tensors computed by homogenization using
tile-based methods. The method of Panetta et al. [2015] explicitly constructs isotropic
tiles. When discretized in our homogenization process they provide close to perfect
isotropy; the measured error is due to the limited numerical precision. At a same
scale and resolution our structures exhibit lower isotropy; however, performing
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homogenization with increasingly larger volumes reveals that the residual quickly
decreases (see Figure 5.6). This shows that filling larger volumes with procedural
foams improves isotropy — a property that stems from the aperiodic stochastic
nature of Voronoi foams. Figure 5.9 also shows a tile with a less isotropic behavior
(manually designed to match [Schumacher et al. 2015]).

[Panetta et al. 2015] [Schumacher et al. 2015]

E � 4.73 × 10−03 4.31 × 10−03 4.74 × 10−02 4.72 × 10−02

ξ � 6.72 × 10−12 2.16 × 10−07 2.86 × 10−03 3.52 × 10−06

ξ̃ � 6.54 × 10−08 4.55 × 10−04 1.01 × 10−01 2.09 × 10−04

isotropic extentր⇒ ξ̃ց extentր⇒ ξ̃ց

Figure 5.9 – Relative distance ξ̃ to an ideal isotropic tensor, for a
fixed voxel size and a resolution of 80 × 80 × 80. Both pairs have a
similar Young’s modulus. The small isotropy error of the tile from
[Panetta et al. 2015] (left) is due to limited numerical precision and
decreases with finer discretization. As larger volumes are simulated,
the isotropy of our structures quickly improves (see also Figure 5.6).

Experimental Results on Printed Samples

We verify the predicted elastic behavior of our foams on printed samples. We print
two families of four samples with varying Young’s modulus. Each family uses a
different random seed. All samples are printed on a B9 Creator V1.2 using red-cherry
material. The two families are visible in Figure 5.10.

We put each sample on a high precision scale and impose to each a same small
displacement. We then measure the weight applied to the sample onto the scale
(canceling out the structure weight). Due to the limited maximum measurable
weight of the scale we consider samples with relatively close Young’s modulus. The
results are reported in Figure 5.10. We obtain a good correspondence between the
measured data and the prediction; the average deviation of the Young’s modulus
from linear correlation (dashed line in Figure) is 0.001434, that is less than 0.2%
absolute error, and 25% relative error.

For reproducibility please note that the SLA print process, the subsequent cleanup
and the material curing all have significant variabilities. We noticed on a few prints
(2 out of 16) an incorrect final weight — we discarded these samples. We also
noticed that the elastic behavior significantly changes in the first few hours after the
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print completed. Similarly to [Panetta et al. 2015] we wait for 24 hours before taking
measurements.

Family
Target Young’s

modulus
Density by
polynomial

Object
weight (g)

Measured
weight (g)

1

0.0045 0.0097 1.47 35.9
0.006 75 0.0168 1.66 57.98
0.009 0.025 1.82 100.82
0.011 25 0.0332 1.91 147.36

2

0.0045 0.0097 1.42 32.32
0.006 75 0.0168 1.67 60.06
0.009 0.025 1.78 99.2
0.011 25 0.0332 2.07 153.86
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Figure 5.10 – Compression tests on printed samples. The measured
weight is expected to be linearly correlated with the target Young’s

modulus.

Procedural Foam with Elasticity Gradients

The process we have described in Section 5.1.3 is capable of generating graded
structures, with a spatially varying Young’s modulus. We exploit this property to
generate objects with controlled elastic properties. The user inputs the spatially
varying Young’s modulus as a scalar field in space, which we denote E(x), with x
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a point in space. Our technique does not put any requirement on how the field
is encoded (e.g. implicit function or interpolated from a grid), but it is expected
that the field varies smoothly compared to the size of the Voronoi cells. Violating
this expectation will not result in an incorrect structure, but the produced elasticity
gradient will not be a good match to the input field.

The target Young’s modulus field is converted upon lookup into a target density
following the approach proposed in Section 5.1.3 — this requires a simple tabulation
computed from Figure 5.5. This directly drives ρ in Algorithm 14. Unless otherwise
specified, the beam radius remains fixed at τmin.

There are two main usage scenarios for our technique. A first scenario is to fill the
inside of objects that have to remain rigid — simply adapting the inner density to
varying stresses. In such a case the outer hull of the object remains solid and there is
no additional challenge. The second scenario is to produce objects that can deform
— flexible prosthesis and robot parts, toys. In such a case, printing the outer hull
of the object would be detrimental to its flexibility. We therefore propose an object
frame generation well suited to our approach. This frame is visible on all our 3D
printed objects. It is fully procedural and only assumes that we have access to a
(narrow band) distance field from the surface.

Object Frame. The key idea of our frame generation is to intersect the faces of
the Voronoi diagram with a thick shell just below the surface, while taking care of
cases where faces are almost parallel to the surface. Figure 5.11a explains our frame
generation process. q is the query point and we want to know if it belongs to the
solid structure or not. Here we consider two seeds s1 , s2 among the closest seeds
from q as obtained from Algorithm 14. If the point q is too close from the surface,
we need to keep the intersection of the Voronoi faces with the frame (in addition
to the regular Voronoi edges). Simply using the distance from q to the bisector
of {s1 , s2} would yield the region colored in light orange, whereas we would like
to select the point q iff it belongs to the beam of center c and thickness t (in light
purple). However, we don’t know the exact position of c, but only the distance to
the border d, the distance to the bisector x, and an estimate of the angle formed
by the surface and the bisector at point q, that we call α. Assuming the surface is
locally planar the rest follows from basic trigonometry: knowing l1 + l2 �

d
sin(α) , and

l2 �
x

tan(α) , we can compute y and test whether x2
+ y2 6 t2.

Printed Results. We now apply our approach to produce a variety of 3D printed
results. We use two different printers: a B9Creator with red-cherry resin and an
Autodesk Ember with standard clear resin. All these prints are prepared using our
image based in-house slicer using the implicit procedural foam generation.

Our SLA printers require support structures. The objects we printed do not them-
selves require support — a property preserved by our microstructures but for a few
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Figure 5.11 – Top: 2D planar cut orthogonal to the surface (top black
line). The goal is the produce the beam which cross section is drawn
as a circle. The purple line is a Voronoi face intersected by the view
plane. Bottom: Extreme case of a frame on a small cylinder. From
left to right, no frame, frame obtained by intersecting the Voronoi
faces with the surface naively, frame obtained with our approach.
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Figure 5.12 – A simple graded ellipsoid.



5.1. Procedural Voronoi Foams for Additive Manufacturing 201

Figure 5.13 – Knight model with a dense crust, and low-density
interior. Model: Knight thing:33804 by andreas.

Figure 5.14 – Finger with articulations. Right: deformed object. Note
that the inferior articulation is made wider and thus bends further.

Model: Olivier hand (AIM@SHAPE Project).

https://www.thingiverse.com/thing:33804
http://visionair.ge.imati.cnr.it/ontologies/shapes/view.jsp?id=763-Olivier_hand_-_Uniform_remeshing__50k_vertices_
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Figure 5.15 – SIGGRAPH logo driving the density field.

Figure 5.16 – A dome with variable density. No frame is generated
on the cut revealing the interior.

cases along the object frame. These cases are rare, for illustration we selected one in
Figure 5.11b (top of rightmost case). Table 5.1 shows the amount of volume filtered
out due to those constraints. We filter them out during out-of-core slice generation,
keeping track of connected components from one slice to the next. Adapting support
techniques to our microstructures is left as future work — a possibility would be to
connect a standard support to the closest microstructure beam. Figure 5.20 shows
the location of isolated voxels filtered out before printing on SLA printers. SLS
printers do not require support and can directly print our objects.

Figure 5.12 shows a very simple case of graded material applied to a 3D model.
Figure 5.13 is a detailed 3D model filled with a spatially varying structure, denser
along the surface and coarser inside. Note how the frame preserves the surface
details. Figure 5.16 is a similar case on a sliced sphere, revealing the deformation
behavior. Figure 5.17 is a model with varying elasticity. The model deforms as
expected when pushing its head sideways. The object frame has a limited impact on
the deformation behavior, while producing a much more visually pleasing object.
It is however difficult to quantify precisely the mechanical influence of the frame.
Figure 5.14 illustrated an android finger with built-in flexible articulations. Figure 5.1
shows a more complex case of a painted object, where we added a support manually.
Figure 5.15 shows how the elasticity field can be controlled, e.g. by the SIGGRAPH
logo. Figure 5.18 illustrates how the elasticity field can be used to produce additional
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Figure 5.17 – Cute octopus. From left to right: 3D model (original),
printed model, printed with deformation (finger pressure).

Model: Cute Octopus thing:27053 by MakerBot.

Figure 5.18 – Varying the density in one direction only can also
produce parts with anisotropic behavior. The same weight of 8 kg
has been applied to the cube placed in different orientations, leading

to a visible deformation in the direction of the anisotropy.

https://www.thingiverse.com/thing:27053


204 Chapter 5. Shape Synthesis with Controlled Elasticity

Figure 5.19 – Closeups of the depth map of a large dragon (about
1 m3) with painted elasticity, sliced at a resolution of 0.05 mm. The

computation domain is a volume of about 1012 voxels.
Model: Forest dragon (thing:87458) by dutchmogul.

Figure 5.20 – Illustration of the isolated voxels filtered out for resin
printers. Removed percentage for each example is reported in Ta-
ble 5.1. Greyscaled values in voxels (section 5.1.2) have been thresh-

olded at isovalue 0.5 to show a binary design.

https://www.thingiverse.com/thing:87458
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Example Extent (mm) # Voxels Volume % Filtered
Time per
slice (ms)

Moomin fig. 5.1 26.7 × 40.8 × 51.9 534 × 815 × 1038 6.44 % 0.005 % 68.34
Ellipsoid fig. 5.12 30.9 × 30.9 × 41.1 617 × 617 × 822 6.30 % 0.001 % 37.28
Knight fig. 5.13 26.1 × 30.0 × 50.6 521 × 600 × 1011 12.50 % 0.023 % 20.25
Finger fig. 5.14 25.0 × 23.3 × 70.5 500 × 465 × 1410 23.35 % 0.006 % 28.03
Siggraph logo fig. 5.15 20.0 × 40.0 × 80.0 400 × 800 × 1600 5.73 % 0.003 % 69.18
Half-dome fig. 5.16 25.0 × 50.0 × 25.0 500 × 1000 × 500 19.49 % 0.025 % 71.22
Octopus fig. 5.17 41.7 × 41.1 × 28.8 833 × 822 × 576 17.27 % 0.009 % 150.22
Anisotropic cube fig. 5.18 40.0 × 40.0 × 40.0 800 × 800 × 800 26.86 % 0.005 % 113.52
Forest dragon fig. 5.19 770.1 × 990.7 × 961.7 15 402 × 19 814 × 19 234 N/A N/A 1666.91

Table 5.1 – Statistics on the examples shown in the section. Beam
thickness varies between 0.2 mm and 0.4 mm.

effects, such as anisotropic behaviors. Table 5.1 gives detailed statistics on all these
prints, including average time per-slice. The throughput of our implementation
averages to 7.8 Mpixel/s on the slice images on an Intel® Core™ i7-4770K @ 3.50 GHz,
16 GiB RAM with a Titan Black NVidia GPU.

Large Objects. Our approach scales trivially with object size. While we are
currently limited in the size of objects we can print, we illustrate this by producing
a microstructure in a model that is about one meter in size. The sliced equivalent
has 5 tera-voxels — but of course only a single slice (15 402 × 19 814) would have to
fit in the printer memory. Figure 5.19 provides closeups of the depth map obtained
by raycasting the implicit structure generated by our algorithm.

Discussion and Limitations

Our technique has a number of limitations. The foams only exhibit their target
properties when a sufficiently large volume is printed — a limitation shared by all
approaches relying on homogenization. This is however aligned with our goal of
producing dense microstructures in large objects.

Compared to regular structures the stochastic nature of the foams produces more
localized stresses. We have observed that a few beams fail under large deformations,
perhaps earlier than on regular structures. This is specially the case along object
frames with the Ember standard resin, which is more brittle. This would require
further studies, noting that crushing behaviors of naturally occurring open-cell
foams have received some interest [Gaitanaros et al. 2012].

Contrary to tile-based approaches we currently cannot provide spatially varying
Poisson’s ratios. Studying stochastic structures that can vary both Young’s modulus
and Poisson’s ratio is an interesting direction of future work. Generating structures
with anisotropic behaviors is another natural venue for further studies.
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5.1.5 Supplemental Material

In this section, first, we present the formula of the elasticity tensor for isotropic
materials. Second, we present a short background on numerical homogenization.
Finally, we give the iterative algorithm to generate seeds, and describe the Python
code attached in the supplemental material.

We use the following notation:

Notation Description

E Young’s modulus
ν Poisson’s ratio
ε Strain tensor
σ Stress tensor
C Elasticity tensor
u Displacement field
f Force field
K Stiffness matrix

Isotropic Material Tensor

Ê �
E

(1 − 2ν)(1 + ν) (5.3)

G �
E

2(1 + ν) (5.4)

CI(E, ν) �

©«

Ê(1 − ν) Êν Êν 0 0 0
Êν Ê(1 − ν) Êν 0 0 0
Êν Êν Ê(1 − ν) 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

ª®®®®®®®¬
(5.5)

Background on Homogenization

Homogenization is at the core of most existing work regarding microstructures
[Allaire 2012]. We rely on homogenization to predict the large scale behavior of
our structures. We therefore give some more precise background regarding this
technique.

Homogenization efficiently determines the elasticity tensor of a periodic composite
material defined from a unit tile V , having a volume |V |. For small deformations of
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an elastic material, the amount of stress σ is linearly proportional to the strain ε, as
given by the elasticity tensor C:

σ � C : ε

The homogenized elasticity tensor CH can be derived as [Sanchez-Palencia 1980]:

CH
rspq �

1
|V |

∫
V

Ci jkl

(
ε

0(i j)
pq − εi j

pq

) (
ε

0(kl)
rs − εkl

rs

)
dV (5.6)

ε
0(i j)
pq are prescribed strain fields. ε(i j)

pq is obtained as εpq(ui j), where the displacement
field ui j is the result of solving the elasticity equations with prescribed strain.

For most problems, homogenization is performed numerically by discretization,
solving the elasticity equation with the finite element method (FEM). Our method
is an extension to 3D of the 2D implementation of [Andreassen and Andreasen
2014]. The elasticity equation is discretized on a regular grid with N hexahedral
elements. Consider six force vectors f(i) corresponding to prescribed unit strains (the
six different strain coordinate directions in 3D). u0(i) are the six displacement fields
corresponding to unit strains, and u(i) are the displacement fields resulting from
enforcing the corresponding unit strains. The six displacement fields are obtained by
solving for linear elasticity Ku(i) � f(i), with imposed periodic boundary conditions.
When the displacements have been obtained, the homogenized elasticity tensor can
be found as [Andreassen and Andreasen 2014]:

CH
ij �

1
|V |

N∑
e

∫
Ve

(
u0(i)

e − u(i)e

)T

Ke

(
u0( j)

e − u( j)e

)
dVe (5.7)

This tensor characterizes the linear elastic behavior of the periodic material.

Seed Generation Process

Algorithm 17 shows a stackless version, iterative method for generating seeds in a
coarse grid cell.

We also provide two sample Python codes implementing the adaptive sampling
method described in our work, specialized for the 2D case. The files can be found
in the code.zip archive accompanying this supplemental material of the original
article [Martínez et al. 2016], and are organized as follows:

• The first file, generate_seeds_recursive.py is a 67 lines python version
of our algorithm SubdivideCell, using built-in calls for generating random
numbers.

• The second file, generate_seeds_iterative.py is a 141 lines stackless version
of the same code, with explicit random number generation (using the same
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generator as the default random number generator of libstdc++). This version
is amenable to a GPU implementation.

The code works with both python2 and python3, and includes a plot of the result.
It depends only on numpy and matplotlib.

Algorithm 17: SubdivideCellIterative
Input: Starting coarse cell, density field ρ.
Output: A set of seeds, with a density driven by ρ

1 N ← ∅;
2 d ← 0; // depth in the quadtree/octree
3 i jk ← coarseCell.center;
4 while true do
5 l ← coarseCell.length × 2−d ;
6 c ← l × i jk + l/2 ; // center of the current cell
7 t ← l3 × ρ(c) ; // target number of seeds in cell
8 if t 6 23 then
9 I � RandomPermutation(Subcells(c , l));

10 nmin � ⌊t⌋ ; // minimum number of samples to draw
11 for i ∈ J0, nminJ do
12 N ← N ∪ {RandomSampleInSubcell(I[i])};
13 p ← RandomFloat(0, 1);
14 if p 6 (t − nmin) then
15 N ← N ∪ {RandomSampleInSubcell(I[nmin])};

// move up the cells

16 while i jk mod 2 � (1, 1, 1) ∧ d > 0 do
17 d ← d − 1;
18 i jk ← ⌊i jk/2⌋;
19 if d > 0 then

// move to next cell with the same parent

20 i jk ← NextOnLevel(i jk);
21 else
22 break

23 else
// go to the first child cell

24 d ← d + 1;
25 i jk ← i jk × 2;

26 return N
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5.1.6 Conclusion

The main advantages of our approach stem from the implicit formulation of stochas-
tic microstructures. This has significant computational advantages by allowing for
evaluation at slicing time and by avoiding to resort on global optimizations for each
new object. The aperiodic and stochastic nature of the foams provide a simple and
efficient way to grade the structures and to conform to target elasticity fields in
space, without introducing artificial boundaries.

While we took a strict interpretation on the procedural nature of our structure
generation, it is clear that other computational schemes could be envisioned. The
important fundamental properties are 1) that the evaluation of the structure remains
local and independent from the overall size of the domain and 2) that the elastic
properties relate to the structure parameters through a simple relationship avoiding
complex parameter fitting during evaluation.

Our approach deviates significantly from both the periodic tiling of microstructures
and the optimization of macrostructures, by making a link between microstructures
and procedural solid textures with controlled statistics in computer graphics. We
believe there are many other such structures to be discovered, and hope our work
will spark further interest in procedurally generated, stochastic microstructures.
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5.2 Discussion and Conclusion

In the present chapter we have described an efficient approach to control the
microstructural geometry of a printed model, in a manner that is suitable for
additive manufacturing. The presented approach is an original application of
techniques inspired from procedural texture synthesis, in an original combination
that considers mechanical behavior of the synthesized structures. The use of Voronoi
open cells guarantee printability of the interior details on resin-based printer, and is
also amenable to other technologies such as powder-bed printers (see Figure 2.8c).

Another advantage of our technique is that it provides an efficient and easy way
to grade material properties within an object. This is especially interesting for
functionally graded materials, which previous methods optimizes explicitly, e.g.
[Radman et al. 2013]. In contrast to standard tiling methods, our approach nat-
urally allows the grading field to conform and adapt to the surface geometry, as
exemplified in Figures 5.13 and 5.16. While our procedural approach addresses
the two aforementioned challenges faced by tiling methods — cells connectivity
and conforming grading —, it is not without its own shortcomings. The results we
provide are only a first step, that we hope will foster further research, towards more
elaborate solutions.

In the interest of evaluating the quality of present and future solutions, we feel that
a immediate challenge common to every approach lies in measuring the mechanical
properties of spatially varying structures. Indeed, in homogenization theory, and
in most mechanical testing devices, a regular lattice with a constant density is
usually expected. But how should one measure the equivalent elastic tensor of a
structure with varying density printed on a complex shape like the Armadillo1?
An orthogonal issue is to consider the effect of the skin shell on the mechanical
behavior of the printed microstructures. To which extent does printing a skin with
the microstructure changes its rigidity? Printing a “skin frame” versus fully solid
“skin shell” surely makes the whole object stiffer, but by how much? To the best of
our knowledge, it seems that this effect has been scarcely studied in the mechanical
engineering literature. Some recent work that consider the influence of the skin
on printed geometry are presented in [Brennan-Craddock et al. 2012; Aremu et al.
2016].

Beyond the influence on the mechanical properties of the interior microstructures,
the skin at the boundary of volume can also have an adverse effect on the printing
process. Indeed, while Voronoi cells that are fully enclosed in the volume are always
convex, this is not the case when a cell is intersected by the surface at the boundary.
This is visible on the extreme example shown Figure 5.11b. In practice, for resin
printers, we are only interested in avoiding local minima in the printing direction.
To this end, enforcing convex cells even near the boundary is only a sufficient
condition, but not a necessary one. Note that even if all the cells are convex, if

1http://graphics.stanford.edu/pub/3Dscanrep/armadillo/Armadillo.ply.gz

http://graphics.stanford.edu/pub/3Dscanrep/armadillo/Armadillo.ply.gz
http://graphics.stanford.edu/pub/3Dscanrep/armadillo/Armadillo.ply.gz
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the original input volume exhibits local minima — like the head of the Moomin
in Figure 5.1 —, then no matter what partitioning scheme is used for the interior
microstructures, external supports will be required to print the final shape. A key
property of approach though, is that the support does not have to go inside and
pollute the microstructure.

As a future work, we would like to explore different families of procedural patterns
for fabrication, and relate their parameters to their physical properties. Indeed, the
convex cells obtained from a Voronoi diagram are in fine a very restrictive class
of microstructures, which does not cover a range as wide as the results featured
in [Panetta et al. 2015; Schumacher et al. 2015] for example. In comparison, the
procedural synthesis methods discussed in Section 2.4.1 already covers different
pattern families, but the question of their equivalent elastic properties remains
largely unexplored.

While only briefly mentioned in the conclusion of Section 5.1, I would like to
discuss the benefits and drawbacks of using other computational schemes — like
hybrid methods and out of core approaches —, as opposed to the purely procedural
approach presented here. For example, one could imagine generating all the Voronoi
seeds as a preprocessing step, and pass this 1D array to the subroutine computing
the slice geometry — thereby short-circuiting the call to GatherSeeds on line 1
in Algorithm 14. This is probably acceptable for the presented type of patterns
presented here, and would probably scale quite well up to, say, 109 seeds. However,
after that limit, if you need to increase the print volume of the resolution of your
model and microstructures, some extra work will be necessary to make this approach
scale well. Recall that the Dragon presented in Figure 5.19 has 1012 voxels, and can
easily handle more than 109 seeds. For example, one can imagine that an accelerating
structure like a k-d tree will be needed to fetch the seeds around a query point in
Algorithm 14. A second possibility is to simply pass the points around the current
slab to the EvalStructure routine instead of the whole 1D array containing all the
seeds. But we can argue that this amounts to generate seeds locally around each
slice or query point, as is done by GatherSeeds in Algorithm 15. The last argument
to keep in mind, is that there is an extra engineering cost to every paradigm change.
To put it differently, it is easier to create a program and experiment with different
microstructure families, if all the synthesis subroutines have a common interface
which is a pure procedural function F (x , y , z).
At this point, it is interesting to make a parallel with two-scale topology optimization
techniques, such as the homogenization methods mentioned Section 2.5.1. Indeed,
the objective in Section 5.1 was to generate a geometry whose elastic behavior
matches an input elasticity field. However, the question of how this input field is
computed is left mostly untouched. For example, one could imagine taking the
output of an unpenalized version of SIMP (the so-called variable thickness sheet
problem), and use it as an input to our procedure described Section 5.1. In two-scale
topology optimization methods, an algorithm optimizes jointly for both microstruc-
tures geometry and the macro-scale description of the design. While both parts
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are optimized together, they are still decoupled: without extra constraints, nothing
ensures that microstructures in neighboring cells have a compatible connectivity.
There are however recent topology optimization techniques, such as [Alexandersen
and Lazarov 2015], that seek to optimize manufacturable microstructural details di-
rectly without separating the micro- and macro-scale behavior via homogenization.
Note also that even with a few unit cells, Panetta et al. [2015] reported a good agree-
ment between predicted homogenized material properties and measured behavior
of printed samples.

As the size of printed models increases, one can also ponder the effects of the limited
print resolutions on fabricated models. As explained in the introduction of [Cook
et al. 2007a], one can distinguish 3 sources of errors when computing the solution
of a mathematical model representing a physical phenomenon: modeling error,
discretization error, and numerical error. Modeling errors represent the approximation
made by the mathematical model itself, usually the PDE describing the mechanical
behavior in the continuous domain. It can be alleviated by improving the model, e.g.
linear material vs nonlinear materials. Discretization errors are introduced when the
continuous description of the problem is discretized in several elements, which yield
a piecewise linear or polynomial representations. It can be improved by increasing
the number of elements, or the order of their basis function. Numerical errors are
intrinsically bound to the limited precision of arithmetical operations carried out on
the computer. They can be alleviated by using more numerically robust routines,
especially when solving linear systems with a high condition number. The use
of exact arbitrary-precision arithmetic is often impractical for solving large finite
element problems.

In this context, the fabrication process introduces a fourth type of error, that could be
called machining error. It is intrinsic to the inaccuracies of the fabrication processes:
geometrical defects or mechanical play in the frame or carriage of a filament; cali-
bration precision on resin and DLP printers, etc. This results in inaccuracies in the
printed shapes, with the consequence that no two prints can be exactly the same. The
extent of these inaccuracies is probably relatively small, hardly visible, and difficult
to measure with limited precision equipment. However, for industrial applications,
it might become a concern. To this end, a few recent works are striving to directly
model the physical behavior of filament deposition printers, via finite element anal-
ysis [Guessasma et al. 2015; Liu and Shapiro 2016]. Modeling uncertainties in the
manufacturing process is also an important part of robust structural optimization
methods, see e.g. surveys [Beyer and Sendhoff 2007; Schuëller and Jensen 2008;
Wang et al. 2011], and more recently [Lazarov et al. 2012a,b; Zhou et al. 2014a]. Note
that there, the machining error really encompasses the inaccuracies of the physical
process — like the resin curing, or the filament deposition. The finite resolution of
the images representing a slice (with resin printers), or the piecewise linear nature
of toolpaths in FDM printers, should be considered a part of the discretization error
rather than the machining error.
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Chapter 6

Conclusion

In this thesis several methods for controllable shape synthesis were presented.
Chapter 3 describes algorithms for treating complex shapes before fabrication. In
particular, we introduced an original method for generating support structures that
are well suited for filament printers, based on the idea of bridges. Our approach pro-
vides increased stability and robustness compared to other sparse support methods,
for a similar material waste and print time.

In Chapter 4, we introduced methods for by-example shape synthesis that account
for both appearance and mechanical behavior of the generated structures. This
opens up new directions of research, where by-example synthesis methods not only
have to improve the appearance of a model, but need to be combined with shape
optimization techniques in a meaningful manner. We have presented different
synthesis algorithms, based on pixel neighborhoods on a voxelized surface in
Section 4.1, joint topology and appearance optimization in Section 4.2, and aggregate
element synthesis in Section 4.3.

In Chapter 5, we proposed a technique for controlling the elasticity of a structure
by efficiently generating printable microstructures through a procedural function.
The proposed solution scales up well with the size of a model, and is amenable to
online synthesis, as the microstructures can be streamed directly to the printers.

Impact. Since the first publication of our bridge support structures in [Dumas et al.
2014], the article has been cited more than 20 times in 2 years. Unfortunately, there is
no available open-source implementation of our support synthesis algorithm, which
could have helped a wider adoption of our method from the additive manufacturing
community. While the algorithm itself not exceedingly complex, its implementation
needs to be done carefully. Our reference implementation in the original publication
is tightly integrated our slicing software IceSL, especially for the computation of
the support points and the post-synthesis boolean operations with the original
model. This makes it difficult to provide an independent open-source code directly
exploitable by the community. Furthermore, the current implementation within
IceSL could be improved, in particular the part that precomputes the acceleration
structure for collision detection. In its current state, the code would need further
engineering work before it can be put into production into a public release of IceSL.
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Figure 6.1 – A bottle and a vase generated with our technique from
Section 4.1. Models made for the company Creative Industries [link].

Regarding Chapter 4, it is worth mentioning that the technique from [Dumas et al.
2015] has already stirred interest from a local company called Creative Industries.
Two examples of fabricated objects are shown in Figure 6.1. The patterns used for
these two objects demonstrate the interest for discrete elements as a design tool (e.g.
the bubbles in the bottle, and the arrows in the vase). As our work in Chapter 4 was
published more recently, it is also more difficult to judge its impact. However, as
discussed in Section 4.4, there has been a number of concurrent or subsequent works
on closely related problems. Whether these works have been inspired by ours, or
just happened to study similar problems, is irrelevant. The point is that it shows the
increasing interest for appearance control in shape synthesis for fabrication.

Similarly, it is still early to judge the impact of our work in Chapter 5, but given
the expanding capabilities of 3D printing technologies, we can only hope that the
controlled procedural approach presented in [Martínez et al. 2016] will inspire
exciting applications in the future.

Perspectives and Future Work. More specialized discussions have already been
provided in individual chapters, so the following contains only general comments
about the work presented in this manuscript. In general, the techniques we have
developed are focused on the automatic optimization of a certain problem. However,
there are cases where interactive input from the user is actually desired. For example,
to guide the support generation to avoid certain sensitive features of a model. For
by-example synthesis, having interactive feedback when drawing constraints for a
shape can help the design process. Indeed, works such as [Zehnder et al. 2016] have

http://www.synual.fr/
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focused on interactive design of curve network suited for fabrication. The same goes
for our microstructure synthesis algorithm, which is fully automated, although the
input field can be painted by the user in an interactive application. Other approaches,
such as the Element1 software by nTopology, provide an interactive lattice editor for
generating microstructures in a model. Recent works in metamaterial design, such
as [Ion et al. 2016; Vidimce et al. 2016], attest the interest in fabrication-oriented
design software for microstructures.

In conclusion, I believe that automatic methods for the synthesis of optimal structures
are essential to help designing shapes for fabrication. However, current topology
optimization techniques are not yet amenable to interactive synthesis of detailed
structures in 3D, despite recent efforts in this direction [Aage et al. 2013; Nobel-
Jørgensen et al. 2015]. Providing extra control over the appearance of the produced
results adds another set of challenges, and I hope that in the future, more interactive
applications for large-scale controllable shape optimization in 3D will emerge.

1http://www.ntopology.com/

http://www.ntopology.com/
http://www.ntopology.com/




217

Bibliography

Aage, N.; Andreassen, E. and Lazarov, B. S. (Mar. 2015). “Topology Optimization
Using PETSc: An Easy-To-Use, Fully Parallel, Open Source Topology Optimization
Framework”. Structural and Multidisciplinary Optimization 51.3, 565–572. doi: 10.
1007/s00158-014-1157-0.

Aage, N.; Nobel-Jørgensen, M.; Andreasen, C. S. and Sigmund, O. (Jan. 2013).
“Interactive Topology Optimization on Hand-Held Devices”. Structural and Multi-
disciplinary Optimization 47.1, 1–6. doi: 10.1007/s00158-012-0827-z.

Alexander, P.; Allen, S. and Dutta, D. (1998). “Part Orientation and Build Cost
Determination in Layered Manufacturing”. Computer-Aided Design 30.5, 343–356.

Alexandersen, J. and Lazarov, B. S. (June 2015). “Topology Optimisation of Man-
ufacturable Microstructural Details Without Length Scale Separation Using a
Spectral Coarse Basis Preconditioner”. Computer Methods in Applied Mechanics and
Engineering 290, 156–182. doi: 10.1016/j.cma.2015.02.028.

Allaire, G.; Jouve, F. and Michailidis, G. (Apr. 2016). “Thickness Control in
Structural Optimization via a Level Set Method”. Structural and Multidisciplinary
Optimization 53.6, 1349–1382. doi: 10.1007/s00158-016-1453-y.

Allaire, G. and Pantz, O. (July 2006). “Structural Optimization With FreeFem++”.
Structural and Multidisciplinary Optimization 32.3, 173–181. doi: 10.1007/s00158-
006-0017-y.

Allaire, G. (2007). Conception Optimale De Structures. Vol. 58. Springer Berlin Hei-
delberg. doi: 10.1007/978-3-540-36856-4.

Allaire, G. (2012). Shape Optimization by the Homogenization Method. Vol. 146. Springer
Science & Business Media.

Allaire, G.; De Gournay, F.; Jouve, F. and Toader, A. (2005). “Structural Optimiza-
tion Using Topological and Shape Sensitivity via a Level Set Method”. Control and
cybernetics 34.1, 59. eprint: http://oxygene.ibspan.waw.pl:3000/contents/
export?filename=2005-1-03_allaire_et_al.pdf.

Allaire, G.; Jouve, F. and Toader, A. (Jan. 2002). “A Level-Set Method for Shape
Optimization”. Comptes Rendus Mathematique 334.12, 1125–1130. doi: 10.1016/
s1631-073x(02)02412-3.

Allaire, G.; Jouve, F. and Toader, A. (Feb. 2004). “Structural Optimization Using
Sensitivity Analysis and a Level-Set Method”. Journal of Computational Physics
194.1, 363–393. doi: 10.1016/j.jcp.2003.09.032.

Allen, S. and Dutta, D. (1995). “Determination and Evaluation of Support Struc-
tures in Layered Manufacturing.”

https://doi.org/10.1007/s00158-014-1157-0
https://doi.org/10.1007/s00158-014-1157-0
https://doi.org/10.1007/s00158-012-0827-z
https://doi.org/10.1016/j.cma.2015.02.028
https://doi.org/10.1007/s00158-016-1453-y
https://doi.org/10.1007/s00158-006-0017-y
https://doi.org/10.1007/s00158-006-0017-y
https://doi.org/10.1007/978-3-540-36856-4
http://oxygene.ibspan.waw.pl:3000/contents/export?filename=2005-1-03_allaire_et_al.pdf
http://oxygene.ibspan.waw.pl:3000/contents/export?filename=2005-1-03_allaire_et_al.pdf
https://doi.org/10.1016/s1631-073x(02)02412-3
https://doi.org/10.1016/s1631-073x(02)02412-3
https://doi.org/10.1016/j.jcp.2003.09.032


218 Bibliography

Allison, J. W.; Chen, T. P.; Cohen, A. L.; Smalley, D. R.; Snead, D. E. and Vorgitch,
T. J. (1988). Boolean Layer Comparison Slice. US Patent 5854748, 3D Systems Inc.

AlMeraj, Z.; Kaplan, C. S. and Asente, P. (2013a). “Patch-Based Geometric Texture
Synthesis”. Proceedings of the Symposium on Computational Aesthetics - CAE ’13.
Association for Computing Machinery (ACM). doi: 10.1145/2487276.2487278.

AlMeraj, Z.; Kaplan, C. S. and Asente, P. (2013b). “Towards Effective Evaluation
of Geometric Texture Synthesis Algorithms”. Proceedings of the Symposium on
Non-Photorealistic Animation and Rendering - NPAR ’13. Association for Computing
Machinery (ACM). doi: 10.1145/2486042.2486043.

Amir, O.; Aage, N. and Lazarov, B. S. (May 2014). “On Multigrid-CG for Efficient
Topology Optimization”. Structural and Multidisciplinary Optimization 49.5, 815–
829. doi: 10.1007/s00158-013-1015-5.

Ananiev, S. (Feb. 2005). “On Equivalence Between Optimality Criteria and Pro-
jected Gradient Methods With Application to Topology Optimization Problem”.
Multibody System Dynamics 13.1, 25–38. doi: 10.1007/s11044-005-2530-y.

André, J.; Le Mehaute, A. and De Witte, O. (1984). “Dispositif Pour Réaliser Un
Modèle De Pièce Industrielle”. 411. url: http://bases-brevets.inpi.fr/fr/
document/FR2567668/publications.html.

Andreassen, E. and Andreasen, C. S. (Feb. 2014). “How to Determine Composite
Material Properties Using Numerical Homogenization”. Computational Materials
Science 83, 488–495. doi: 10.1016/j.commatsci.2013.09.006.

Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S. and Sigmund, O. (Jan.
2011). “Efficient Topology Optimization in MATLAB Using 88 Lines of Code”.
Structural and Multidisciplinary Optimization 43.1, 1–16. doi: 10.1007/s00158-010-
0594-7.

Andreassen, E.; Lazarov, B. S. and Sigmund, O. (Feb. 2014). “Design of Manufac-
turable 3D Extremal Elastic Microstructure”. Mechanics of Materials 69.1, 1–10. doi:
10.1016/j.mechmat.2013.09.018.

Aremu, A. O.; Maskery, I. A.; Tuck, C. J.; Ashcroft, I. A.; Wildman, R. D. and
Hague, R. J. M. (2016). “Effects of Net and Solid Skins on Self-Supporting Lattice
Structures”. Challenges in Mechanics of Time Dependent Materials, Volume 2. Springer
Science + Business Media, 83–89. doi: 10.1007/978-3-319-22443-5_10.

Arora, J. and Wang, Q. (June 2005). “Review of Formulations for Structural and
Mechanical System Optimization”. Structural and Multidisciplinary Optimization
30.4, 251–272. doi: 10.1007/s00158-004-0509-6.

Ashikhmin, M. (2001). “Synthesizing Natural Textures”. Proceedings of the 2001 sym-
posium on Interactive 3D graphics - SI3D ’01. Association for Computing Machinery
(ACM). doi: 10.1145/364338.364405.

Attene, M. (May 2015). “Shapes in a Box: Disassembling 3D Objects for Efficient
Packing and Fabrication”. Computer Graphics Forum 34.8, 64–76. doi: 10.1111/cgf.
12608.

Autodesk (2016). Within. www.autodesk.com/products/within.
Bächer, M.; Bickel, B.; James, D. L. and Pfister, H. (July 2012). “Fabricating Articu-

lated Characters From Skinned Meshes”. ACM Transactions on Graphics 31.4, 1–9.
doi: 10.1145/2185520.2185543.

https://doi.org/10.1145/2487276.2487278
https://doi.org/10.1145/2486042.2486043
https://doi.org/10.1007/s00158-013-1015-5
https://doi.org/10.1007/s11044-005-2530-y
http://bases-brevets.inpi.fr/fr/document/FR2567668/publications.html
http://bases-brevets.inpi.fr/fr/document/FR2567668/publications.html
https://doi.org/10.1016/j.commatsci.2013.09.006
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1016/j.mechmat.2013.09.018
https://doi.org/10.1007/978-3-319-22443-5_10
https://doi.org/10.1007/s00158-004-0509-6
https://doi.org/10.1145/364338.364405
https://doi.org/10.1111/cgf.12608
https://doi.org/10.1111/cgf.12608
http://www.autodesk.com/products/within
https://doi.org/10.1145/2185520.2185543


Bibliography 219

Bächer, M.; Whiting, E.; Bickel, B. and Sorkine-Hornung, O. (July 2014). “Spin-
It: Optimizing Moment of Inertia for Spinnable Objects”. ACM Transactions on
Graphics 33.4, 1–10. doi: 10.1145/2601097.2601157.

Barla, P.; Breslav, S.; Thollot, J.; Sillion, F. and Markosian, L. (2006). “Stroke
Pattern Analysis and Synthesis”. Computer Graphics Forum. Vol. 25. 3. Wiley Online
Library, 663–671. eprint: https://hal.inria.fr/inria-00362883/document.

Barnes, C.; Shechtman, E.; Finkelstein, A. and Goldman, D. B. (2009). “Patch-
Match: A Randomized Correspondence Algorithm for Structural Image Editing”.
ACM SIGGRAPH 2009 papers on - SIGGRAPH ’09. Association for Computing
Machinery (ACM). doi: 10.1145/1576246.1531330.

Bendsøe, M. P. (Dec. 1989). “Optimal Shape Design as a Material Distribution
Problem”. Structural Optimization 1.4, 193–202. doi: 10.1007/bf01650949.

Bendsøe, M. P. and Sigmund, O. (Nov. 1999). “Material Interpolation Schemes
in Topology Optimization”. Archive of Applied Mechanics (Ingenieur Archiv) 69.9-
10, 635–654. doi: 10.1007/s004190050248.

Bendsøe, M. P. and Kikuchi, N. (Nov. 1988). “Generating Optimal Topologies in
Structural Design Using a Homogenization Method”. Computer Methods in Applied
Mechanics and Engineering 71.2, 197–224. doi: 10.1016/0045-7825(88)90086-2.

Bendsøe, M. P. and Sigmund, O. (2004). Topology Optimization: Theory, Methods and
Applications. Springer Science + Business Media. doi: 10.1007/978-3-662-05086-
6.

Beyer, H. and Sendhoff, B. (July 2007). “Robust Optimization – a Comprehensive
Survey”. Computer Methods in Applied Mechanics and Engineering 196.33-34, 3190–
3218. doi: 10.1016/j.cma.2007.03.003.

Bharaj, G.; Levin, D. I. W.; Tompkin, J.; Fei, Y.; Pfister, H.; Matusik, W. and Zheng,
C. (Oct. 2015). “Computational Design of Metallophone Contact Sounds”. ACM
Transactions on Graphics 34.6, 1–13. doi: 10.1145/2816795.2818108.

Bhat, P.; Ingram, S. and Turk, G. (2004). “Geometric Texture Synthesis by Ex-
ample”. Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Ge-
ometry processing - SGP ’04. Association for Computing Machinery (ACM). doi:
10.1145/1057432.1057437.

Bickel, B.; Bächer, M.; Otaduy, M. A.; Lee, H. R.; Pfister, H.; Gross, M. and
Matusik, W. (July 2010). “Design and Fabrication of Materials With Desired
Deformation Behavior”. ACM Transactions on Graphics 29.4, 1. doi: 10.1145/
1778765.1778800.

Bostanabad, R.; Bui, A. T.; Xie, W.; Apley, D. W. and Chen, W. (Jan. 2016). “Stochastic
Microstructure Characterization and Reconstruction via Supervised Learning”.
Acta Materialia 103, 89–102. doi: 10.1016/j.actamat.2015.09.044.

Bourdin, B. (2001). “Filters in Topology Optimization”. International Journal for
Numerical Methods in Engineering 50.9, 2143–2158. doi: 10.1002/nme.116.

Bowers, J.; Wang, R.; Wei, L. and Maletz, D. (Dec. 2010). “Parallel Poisson Disk
Sampling With Spectrum Analysis on Surfaces”. ACM Trans. Graph. 29.6, 166:1–
166:10. doi: 10.1145/1882261.1866188.

Brackett, D. J.; Ashcroft, I. A.; Wildman, R. D. and Hague, R. J. M. (July 2014).
“An Error Diffusion Based Method to Generate Functionally Graded Cellular

https://doi.org/10.1145/2601097.2601157
https://hal.inria.fr/inria-00362883/document
https://doi.org/10.1145/1576246.1531330
https://doi.org/10.1007/bf01650949
https://doi.org/10.1007/s004190050248
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1016/j.cma.2007.03.003
https://doi.org/10.1145/2816795.2818108
https://doi.org/10.1145/1057432.1057437
https://doi.org/10.1145/1778765.1778800
https://doi.org/10.1145/1778765.1778800
https://doi.org/10.1016/j.actamat.2015.09.044
https://doi.org/10.1002/nme.116
https://doi.org/10.1145/1882261.1866188


220 Bibliography

Structures”. Computers & Structures 138, 102–111. doi: 10.1016/j.compstruc.
2014.03.004.

Brackett, D.; Ashcroft, I. and Hague, R. (2011). “Topology Optimization for
Additive Manufacturing”. Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, 348–362. eprint: http://sffsymposium.engr.utexas.edu/Manuscri
pts/2011/2011-27-Brackett.pdf.

Brennan-Craddock, J.; Brackett, D.; Wildman, R. and Hague, R. (Aug. 2012).
“The Design of Impact Absorbing Structures for Additive Manufacture”. Journal
of Physics: Conference Series 382, 012042. doi: 10.1088/1742-6596/382/1/012042.

Brennan-Craddock, J. (2011). “The Investigation of a Method to Generate Con-
formal Lattice Structures for Additive Manufacturing”. Doctoral dissertation. ©

James Brennan-Craddock.
Bruggi, M. and Duysinx, P. (Jan. 2012). “Topology Optimization for Minimum

Weight With Compliance and Stress Constraints”. Structural and Multidisciplinary
Optimization 46.3, 369–384. doi: 10.1007/s00158-012-0759-7.

Bruns, T. E. and Tortorelli, D. A. (Mar. 2001). “Topology Optimization of Non-Lin-
ear Elastic Structures and Compliant Mechanisms”. Computer Methods in Applied
Mechanics and Engineering 190.26-27, 3443–3459. doi: 10.1016/s0045-7825(00)
00278-4.

Brunton, A.; Arikan, C. A. and Urban, P. (Dec. 2015). “Pushing the Limits of 3D
Color Printing: Error Diffusion With Translucent Materials”. ACM Transactions on
Graphics 35.1, 1–13. doi: 10.1145/2832905.

Bruyneel, M. and Duysinx, P. (Apr. 2005). “Note on Topology Optimization of
Continuum Structures Including Self-Weight”. Structural and Multidisciplinary
Optimization 29.4, 245–256. doi: 10.1007/s00158-004-0484-y.

Bruyneel, M.; Duysinx, P. and Fleury, C. (Oct. 2002). “A Family of MMA Approxi-
mations for Structural Optimization”. Structural and Multidisciplinary Optimization
24.4, 263–276. doi: 10.1007/s00158-002-0238-7.

Burger, M.; Hackl, B. and Ring, W. (Feb. 2004). “Incorporating Topological Deriva-
tives Into Level Set Methods”. Journal of Computational Physics 194.1, 344–362. doi:
10.1016/j.jcp.2003.09.033.

Burger, M. and Osher, S. J. (June 2005). “A Survey on Level Set Methods for Inverse
Problems and Optimal Design”. European Journal of Applied Mathematics 16.2, 263–
301. doi: 10.1017/s0956792505006182.

Busto, P. P.; Eisenacher, C.; Lefebvre, S. and Stamminger, M. (2010). “Instant
Texture Synthesis by Numbers”. VMV, 81–85. eprint: http://alice.loria.fr/
publications/papers/2010/TEXNBR/InstantTBN.pdf.

Cadman, J. E.; Zhou, S.; Chen, Y. and Li, Q. (Jan. 2013). “On Design of Multi-
Functional Microstructural Materials”. Journal of Materials Science 48.1, 51–66. doi:
10.1007/s10853-012-6643-4.

Calì, J.; Calian, D. A.; Amati, C.; Kleinberger, R.; Steed, A.; Kautz, J. and Weyrich,
T. (Nov. 2012). “3D-Printing of Non-Assembly, Articulated Models”. ACM Trans-
actions on Graphics 31.6, 1. doi: 10.1145/2366145.2366149.

Carpenter, L. (1984). “The A-Buffer, an Antialiased Hidden Surface Method”.
Proceedings of the 11th annual conference on Computer graphics and interactive techniques

https://doi.org/10.1016/j.compstruc.2014.03.004
https://doi.org/10.1016/j.compstruc.2014.03.004
http://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf
http://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf
https://doi.org/10.1088/1742-6596/382/1/012042
https://doi.org/10.1007/s00158-012-0759-7
https://doi.org/10.1016/s0045-7825(00)00278-4
https://doi.org/10.1016/s0045-7825(00)00278-4
https://doi.org/10.1145/2832905
https://doi.org/10.1007/s00158-004-0484-y
https://doi.org/10.1007/s00158-002-0238-7
https://doi.org/10.1016/j.jcp.2003.09.033
https://doi.org/10.1017/s0956792505006182
http://alice.loria.fr/publications/papers/2010/TEXNBR/InstantTBN.pdf
http://alice.loria.fr/publications/papers/2010/TEXNBR/InstantTBN.pdf
https://doi.org/10.1007/s10853-012-6643-4
https://doi.org/10.1145/2366145.2366149


Bibliography 221

- SIGGRAPH ’84. Association for Computing Machinery (ACM). doi: 10.1145/
800031.808585.

Ceylan, D.; Li, W.; Mitra, N. J.; Agrawala, M. and Pauly, M. (Nov. 2013). “De-
signing and Fabricating Mechanical Automata From Mocap Sequences”. ACM
Transactions on Graphics 32.6, 1–11. doi: 10.1145/2508363.2508400.

Chalasani, K.; Jones, L. and Roscoe, L. (1995). “Support Generation for Fused
Deposition Modeling”. Solid Freeform Fabrication Symposium, 229–241.

Challis, V. J. (Apr. 2010). “A Discrete Level-Set Topology Optimization Code
Written in Matlab”. Structural and Multidisciplinary Optimization 41.3, 453–464. doi:
10.1007/s00158-009-0430-0.

Challis, V. J.; Roberts, A. P. and Grotowski, J. F. (Feb. 2014). “High Resolution
Topology Optimization Using Graphics Processing Units (GPUs)”. Structural and
Multidisciplinary Optimization 49.2, 315–325. doi: 10.1007/s00158-013-0980-z.

Chen, D.; Levin, D. I. W.; Didyk, P.; Sitthi-Amorn, P. and Matusik, W. (July 2013).
“Spec2Fab: A Reducer-Tuner Model for Translating Specifications to 3D Prints”.
ACM Transactions on Graphics 32.4, 1. doi: 10.1145/2461912.2461994.

Chen, D.; Levin, D. I. W.; Sueda, S. and Matusik, W. (July 2015a). “Data-Driven
Finite Elements for Geometry and Material Design”. ACM Transactions on Graphics
34.4, 74:1–74:10. doi: 10.1145/2766889.

Chen, J.; Freytag, M. and Shapiro, V. (Oct. 2008a). “Shape Sensitivity of Construc-
tively Represented Geometric Models”. Computer Aided Geometric Design 25.7, 470–
488. doi: 10.1016/j.cagd.2008.01.005.

Chen, J.; Shapiro, V.; Suresh, K. and Tsukanov, I. (2007). “Shape Optimization With
Topological Changes and Parametric Control”. International Journal for Numerical
Methods in Engineering 71.3, 313–346. doi: 10.1002/nme.1943.

Chen, J. and Wang, B. (Apr. 2010). “High Quality Solid Texture Synthesis Using
Position and Index Histogram Matching”. The Visual Computer 26.4, 253–262. doi:
10.1007/s00371-009-0408-3.

Chen, W.; Zhang, X.; Xin, S.; Xia, Y.; Lefebvre, S. and Wang, W. (2016). “Synthesis of
Filigrees for Digital Fabrication”. ACM Transactions on Graphics (Proc. SIGGRAPH)
35.4.

Chen, X.; Zheng, C.; Xu, W. and Zhou, K. (July 2014). “An Asymptotic Numerical
Method for Inverse Elastic Shape Design”. ACM Transactions on Graphics 33.4, 1–11.
doi: 10.1145/2601097.2601189.

Chen, X.; Zhang, H.; Lin, J.; Hu, R.; Lu, L.; Huang, Q.; Benes, B.; Cohen-Or, D. and
Chen, B. (Oct. 2015b). “Dapper: Decompose-And-Pack for 3D Printing”. ACM
Transactions on Graphics 34.6, 1–12. doi: 10.1145/2816795.2818087.

Chen, Y.; Davis, T. A.; Hager, W. W. and Rajamanickam, S. (Oct. 2008b). “Al-
gorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Up-
date/Downdate”. ACM Trans. Math. Softw. 35.3, 22:1–22:14. doi: 10.1145/1391989.
1391995.

Chen, Y. (Jan. 2007). “3D Texture Mapping for Rapid Manufacturing”. Computer-
Aided Design and Applications 4.6, 761–771. doi:10.1080/16864360.2007.10738509.

https://doi.org/10.1145/800031.808585
https://doi.org/10.1145/800031.808585
https://doi.org/10.1145/2508363.2508400
https://doi.org/10.1007/s00158-009-0430-0
https://doi.org/10.1007/s00158-013-0980-z
https://doi.org/10.1145/2461912.2461994
https://doi.org/10.1145/2766889
https://doi.org/10.1016/j.cagd.2008.01.005
https://doi.org/10.1002/nme.1943
https://doi.org/10.1007/s00371-009-0408-3
https://doi.org/10.1145/2601097.2601189
https://doi.org/10.1145/2816795.2818087
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1080/16864360.2007.10738509


222 Bibliography

Chen, Y. and Wang, C. C. L. (Jan. 2011). “Uniform Offsetting of Polygonal Model
Based on Layered Depth-Normal Images”. Computer-Aided Design 43.1, 31–46. doi:
10.1016/j.cad.2010.09.002.

Cheng, G.; Mei, Y. and Wang, X. (2006). “A Feature-Based Structural Topology
Optimization Method”. IUTAM Symposium on Topological Design Optimization of
Structures, Machines and Materials. Springer, 505–514.

Cheng, W.; Fuh, J. Y. H.; Nee, A. Y. C.; Wong, Y. S.; Loh, H. T. and Miyazawa, T. (1995).
“Multi-Objective Optimization of Part - Building Orientation in Stereolithography”.
Rapid Prototyping Journal 1, 12–23.

Christiansen, A. N.; Bærentzen, J. A.; Nobel-Jørgensen, M.; Aage, N. and Sig-
mund, O. (Feb. 2015a). “Combined Shape and Topology Optimization of 3D
Structures”. Computers & Graphics 46, 25–35. doi: 10.1016/j.cag.2014.09.021.

Christiansen, A. N.; Nobel-Jørgensen, M.; Aage, N.; Sigmund, O. and Bærentzen,
J. A. (Mar. 2014). “Topology Optimization Using an Explicit Interface Represen-
tation”. Structural and Multidisciplinary Optimization 49.3, 387–399. doi: 10.1007/
s00158-013-0983-9.

Christiansen, A. N.; Schmidt, R. and Bærentzen, J. A. (Jan. 2015b). “Automatic
Balancing of 3D Models”. Computer-Aided Design 58, 236–241. doi: 10.1016/j.
cad.2014.07.009.

Cignoni, P.; Gobbetti, E.; Pintus, R. and Scopigno, R. (2008). “Color Enhancement
for Rapid Prototyping”. VAST, 9–16. eprint: https://pdfs.semanticscholar.
org/0d54/b1fc743aad3045b01f5177b40cf944fa641e.pdf.

Cignoni, P.; Pietroni, N.; Malomo, L. and Scopigno, R. (Feb. 2014). “Field-Aligned
Mesh Joinery”. ACM Transactions on Graphics 33.1, 1–12. doi: 10.1145/2537852.

Clausen, A.; Aage, N. and Sigmund, O. (June 2014). “Topology Optimization With
Flexible Void Area”. Structural and Multidisciplinary Optimization 50.6, 927–943.
doi: 10.1007/s00158-014-1109-8.

Clausen, A.; Aage, N. and Sigmund, O. (June 2015). “Topology Optimization of
Coated Structures and Material Interface Problems”. Computer Methods in Applied
Mechanics and Engineering 290, 524–541. doi: 10.1016/j.cma.2015.02.011.

Clausen, A.; Aage, N. and Sigmund, O. (2016). “Exploiting Additive Manufacturing
Infill in Topology Optimization for Improved Buckling Load”. Engineering 2.2, 250–
257. eprint: http://engineering.org.cn/EN/article/downloadArticleFile.
do?attachType=PDF\&id=12285.

Conn, A. R.; Gould, N. I. M. and Toint, P. (Apr. 1991). “A Globally Convergent
Augmented Lagrangian Algorithm for Optimization With General Constraints
and Simple Bounds”. SIAM Journal on Numerical Analysis 28.2, 545–572. doi:
10.1137/0728030.

Cook, R. D.; Malkus, D. S.; Plesha, M. E. and Witt, R. J. (2007a). Concepts and
Applications of Finite Element Analysis. John Wiley & Sons.

Cook, R. L. (Jan. 1986). “Stochastic Sampling in Computer Graphics”. ACM Transac-
tions on Graphics 5.1, 51–72. doi: 10.1145/7529.8927.

Cook, R. L.; Halstead, J.; Planck, M. and Ryu, D. (July 2007b). “Stochastic Simplifi-
cation of Aggregate Detail”. ACM Transactions on Graphics 26.3, 79. doi: 10.1145/
1276377.1276476.

https://doi.org/10.1016/j.cad.2010.09.002
https://doi.org/10.1016/j.cag.2014.09.021
https://doi.org/10.1007/s00158-013-0983-9
https://doi.org/10.1007/s00158-013-0983-9
https://doi.org/10.1016/j.cad.2014.07.009
https://doi.org/10.1016/j.cad.2014.07.009
https://pdfs.semanticscholar.org/0d54/b1fc743aad3045b01f5177b40cf944fa641e.pdf
https://pdfs.semanticscholar.org/0d54/b1fc743aad3045b01f5177b40cf944fa641e.pdf
https://doi.org/10.1145/2537852
https://doi.org/10.1007/s00158-014-1109-8
https://doi.org/10.1016/j.cma.2015.02.011
http://engineering.org.cn/EN/article/downloadArticleFile.do?attachType=PDF\&id=12285
http://engineering.org.cn/EN/article/downloadArticleFile.do?attachType=PDF\&id=12285
https://doi.org/10.1137/0728030
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/1276377.1276476
https://doi.org/10.1145/1276377.1276476


Bibliography 223

Coros, S.; Thomaszewski, B.; Noris, G.; Sueda, S.; Forberg, M.; Sumner, R. W.;
Matusik, W. and Bickel, B. (July 2013). “Computational Design of Mechanical
Characters”. ACM Transactions on Graphics 32.4, 1. doi: 10.1145/2461912.2461953.

Dai, D.; Riemenschneider, H. and Van Gool, L. (June 2014). “The Synthesizability of
Texture Examples”. 2014 IEEE Conference on Computer Vision and Pattern Recognition.
Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/cvpr.2014.
387.

Dapogny, C. (2013). “Shape Optimization, Level Set Methods on Unstructured
Meshes and Mesh Evolution”. Doctoral dissertation. Université Pierre et Marie
Curie-Paris 6.

Dapogny, C.; Faure, A.; Michailidis, G.; Allaire, G.; Couvelas, A. and Estevez,
R. (Aug. 2016). “Geometric Constraints for Shape and Topology Optimization in
Architectural Design”. working paper or preprint.

Deaton, J. D. and Grandhi, R. V. (Jan. 2014). “A Survey of Structural and Multidis-
ciplinary Continuum Topology Optimization: Post 2000”. Structural and Multidis-
ciplinary Optimization 49.1, 1–38. doi: 10.1007/s00158-013-0956-z.

Delfs, P.; Töws, M. and Schmid, H.
bibinitperiod (June 2016). “Optimized Build Orientation of Additive Manufac-
tured Parts for Improved Surface Quality and Build Time”. Additive Manufacturing.
doi: 10.1016/j.addma.2016.06.003.

Deng, J. and Chen, W. (Mar. 2016). “Design for Structural Flexibility Using Con-
nected Morphable Components Based Topology Optimization”. Science China
Technological Sciences 59.6, 839–851. doi: 10.1007/s11431-016-6027-0.

Derouet-Jourdan, A.; Bertails-Descoubes, F.; Daviet, G. and Thollot, J. (Nov.
2013). “Inverse Dynamic Hair Modeling With Frictional Contact”. ACM Transac-
tions on Graphics 32.6, 1–10. doi: 10.1145/2508363.2508398.

Derouet-Jourdan, A.; Bertails-Descoubes, F. and Thollot, J. (Dec. 2010). “Stable
Inverse Dynamic Curves”. ACM Transactions on Graphics 29.6, 1. doi: 10.1145/
1882261.1866159.

Deuss, M.; Panozzo, D.; Whiting, E.; Liu, Y.; Block, P.; Sorkine-Hornung, O. and
Pauly, M. (Nov. 2014). “Assembling Self-Supporting Structures”. ACM Transactions
on Graphics 33.6, 1–10. doi: 10.1145/2661229.2661266.

Díaz, A. and Sigmund, O. (Aug. 1995). “Checkerboard Patterns in Layout Optimiza-
tion”. Structural Optimization 10.1, 40–45. doi: 10.1007/bf01743693.

Dijk, N. P. van; Maute, K.; Langelaar, M. and Keulen, F. van (Mar. 2013). “Level-
Set Methods for Structural Topology Optimization: A Review”. Structural and
Multidisciplinary Optimization 48.3, 437–472. doi: 10.1007/s00158-013-0912-y.

Dinh, H. Q.; Gelman, F.; Lefebvre, S. and Claux, F. (2015). “Modeling and Toolpath
Generation for Consumer-Level 3D Printing”. ACM SIGGRAPH 2015 Courses on
- SIGGRAPH ’15. Association for Computing Machinery (ACM). doi: 10.1145/
2776880.2792702.

Dischler, J.; Maritaud, K.; Lévy, B. and Ghazanfarpour, D. (Sept. 2002). “Texture
Particles”. Computer Graphics Forum 21.3, 401–410. doi: 10.1111/1467-8659.t01-
1-00600.

https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1109/cvpr.2014.387
https://doi.org/10.1109/cvpr.2014.387
https://doi.org/10.1007/s00158-013-0956-z
https://doi.org/10.1016/j.addma.2016.06.003
https://doi.org/10.1007/s11431-016-6027-0
https://doi.org/10.1145/2508363.2508398
https://doi.org/10.1145/1882261.1866159
https://doi.org/10.1145/1882261.1866159
https://doi.org/10.1145/2661229.2661266
https://doi.org/10.1007/bf01743693
https://doi.org/10.1007/s00158-013-0912-y
https://doi.org/10.1145/2776880.2792702
https://doi.org/10.1145/2776880.2792702
https://doi.org/10.1111/1467-8659.t01-1-00600
https://doi.org/10.1111/1467-8659.t01-1-00600


224 Bibliography

Dong, Y.; Lefebvre, S.; Tong, X. and Drettakis, G. (June 2008). “Lazy Solid Texture
Synthesis”. Computer Graphics Forum 27.4, 1165–1174. doi: 10.1111/j.1467-
8659.2008.01254.x.

Dong, Y.; Wang, J.; Pellacini, F.; Tong, X. and Guo, B. (July 2010). “Fabricating
Spatially-Varying Subsurface Scattering”. ACM Transactions on Graphics 29.4, 1.
doi: 10.1145/1778765.1778799.

Du, S.; Hu, S. and Martin, R. R. (Mar. 2013). “Semiregular Solid Texturing From
2D Image Exemplars”. IEEE Transactions on Visualization and Computer Graphics
19.3, 460–469. doi: 10.1109/tvcg.2012.129.

Duarte, L. S.; Celes, W.; Pereira, A.; Menezes, I. F. M. and Paulino, G. H. (June 2015).
“PolyTop++: An Efficient Alternative for Serial and Parallel Topology Optimization
on CPUs & GPUs”. Structural and Multidisciplinary Optimization 52.5, 845–859. doi:
10.1007/s00158-015-1252-x.

Dumas, J.; Hergel, J. and Lefebvre, S. (July 2014). “Bridging the Gap: Automated
Steady Scaffoldings for 3D Printing”. ACM Trans. Graph. 33.4, 98:1–98:10. doi:
10.1145/2601097.2601153.

Dumas, J.; Lu, A.; Lefebvre, S.; Wu, J. and Dick, C. (July 2015). “By-Example
Synthesis of Structurally Sound Patterns”. ACM Trans. Graph. 34.4, 137:1–137:12.
doi: 10.1145/2766984.

Duysinx, P. and Bendsøe, M. P. (Dec. 1998). “Topology Optimization of Continuum
Structures With Local Stress Constraints”. International Journal for Numerical Meth-
ods in Engineering 43.8, 1453–1478. doi: 10.1002/(sici)1097-0207(19981230)43:
8<1453::aid-nme480>3.0.co;2-2.

Ebert, D. S.; Musgrave, F. K.; Peachey, D.; Perlin, K. and Worley, S. (2003).
A Procedural Approach. Elsevier BV, xx–xxiii. doi: 10.1016/b978- 155860848-
1/50029-2.

Efros, A. A. and Freeman, W. T. (2001). “Image Quilting for Texture Synthesis
and Transfer”. Proceedings of the 28th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’01. Association for Computing Machinery
(ACM). doi: 10.1145/383259.383296.

Efros, A. A. and Leung, T. K. (Sept. 1999). “Texture Synthesis by Non-Parametric
Sampling”. Proceedings of the International Conference on Computer Vision. Corfu,
Greece, 1033–1038.

Eggers, G. and Renap, K. (2007). Method and Apparatus for Automatic Support Genera-
tion for an Object Made by Means of a Rapid Prototype Production Method. US Patent
20100228369, Materialize.

Eisenacher, C.; Tappan, C.; Burley, B.; Teece, D. and Shek, A. (2010). “Example-
Based Texture Synthesis on Disney’s Tangled”. ACM SIGGRAPH 2010 Talks on
- SIGGRAPH ’10. Association for Computing Machinery (ACM). doi: 10.1145/
1837026.1837068.

Eschenauer, H. A.; Kobelev, V. V. and Schumacher, A. (Aug. 1994). “Bubble
Method for Topology and Shape Optimization of Structures”. Structural Optimiza-
tion 8.1, 42–51. doi: 10.1007/bf01742933.

https://doi.org/10.1111/j.1467-8659.2008.01254.x
https://doi.org/10.1111/j.1467-8659.2008.01254.x
https://doi.org/10.1145/1778765.1778799
https://doi.org/10.1109/tvcg.2012.129
https://doi.org/10.1007/s00158-015-1252-x
https://doi.org/10.1145/2601097.2601153
https://doi.org/10.1145/2766984
https://doi.org/10.1002/(sici)1097-0207(19981230)43:8<1453::aid-nme480>3.0.co;2-2
https://doi.org/10.1002/(sici)1097-0207(19981230)43:8<1453::aid-nme480>3.0.co;2-2
https://doi.org/10.1016/b978-155860848-1/50029-2
https://doi.org/10.1016/b978-155860848-1/50029-2
https://doi.org/10.1145/383259.383296
https://doi.org/10.1145/1837026.1837068
https://doi.org/10.1145/1837026.1837068
https://doi.org/10.1007/bf01742933


Bibliography 225

Eschenauer, H. A. and Olhoff, N. (2001). “Topology Optimization of Continuum
Structures: A Review”. Applied Mechanics Reviews 54.4, 331. doi: 10.1115/1.
1388075.

Ezair, B.; Massarwi, F. and Elber, G. (Oct. 2015). “Orientation Analysis of 3D
Objects Toward Minimal Support Volume in 3D-Printing”. Computers & Graphics
51, 117–124. doi: 10.1016/j.cag.2015.05.009.

Fan, C.; Luo, J.; Liu, J. and Xu, Y. (June 2011). “Half-Plane Voronoi Diagram”.
2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering.
Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/isvd.2011.25.

Fortune, S. (1987). “A Sweepline Algorithm for Voronoi Diagrams”. Algorithmica
2.1-4, 153–174. eprint: http://link.springer.com/content/pdf/10.1007/
BF01840357.pdf.

Frank, D. and Fadel, G. (1995). “Expert System-Based Selection of the Preferred
Direction of Build for Rapid Prototyping Processes”. Journal of Intelligent Manufac-
turing 6.5, 339–345.

Frick, U.; Mele, T. V. and Block, P. (2015). “Decomposing Three-Dimensional Shapes
Into Self-Supporting, Discrete-Element Assemblies”. Modelling Behaviour. Springer
Science + Business Media, 187–201. doi: 10.1007/978-3-319-24208-8_16.

Fryazinov, O.; Sanchez, M. and Pasko, A. (Feb. 2015). “Shape Conforming Volu-
metric Interpolation With Interior Distances”. Computers & Graphics 46, 149–155.
doi: 10.1016/j.cag.2014.09.028.

Fryazinov, O.; Vilbrandt, T. and Pasko, A. (Jan. 2013). “Multi-Scale Space-Variant
FRep Cellular Structures”. Computer-Aided Design 45.1, 26–34. doi: 10.1016/j.
cad.2011.09.007.

Gagnon, J.; Dagenais, F. and Paquette, E. (May 2016). “Dynamic Lapped Texture
for Fluid Simulations”. The Visual Computer 32.6-8, 901–909. doi: 10.1007/s00371-
016-1262-8.

Gaitanaros, S.; Kyriakides, S. and Kraynik, A. M. (2012). “On the Crushing
Response of Random Open-Cell Foams”. Int. J. Solids Struct. 49.19–20, 2733–2743.

Gal, R.; Wexler, Y.; Ofek, E.; Hoppe, H. and Cohen-Or, D. (2010). “Seamless
Montage for Texturing Models”. Computer Graphics Forum 29.2, 479–486. doi:
10.1111/j.1467-8659.2009.01617.x.

Gallego, G. and Yezzi, A. (Mar. 2015). “A Compact Formula for the Derivative of
a 3-D Rotation in Exponential Coordinates”. Journal of Mathematical Imaging and
Vision 51.3, 378–384. doi: 10.1007/s10851-014-0528-x.

Gao, H.; Zhu, J.; Zhang, W. and Zhou, Y. (June 2015a). “An Improved Adaptive
Constraint Aggregation for Integrated Layout and Topology Optimization”. Com-
puter Methods in Applied Mechanics and Engineering 289, 387–408. doi: 10.1016/j.
cma.2015.02.022.

Gao, W. et al. (2015b). “The Status, Challenges, and Future of Additive Man-
ufacturing in Engineering”. Computer-Aided Design 69, 65–89. eprint: https :
//engineering.purdue.edu/ZhangLab/publications/papers/2015- cad-

review.pdf.
Garg, A.; Sageman-Furnas, A. O.; Deng, B.; Yue, Y.; Grinspun, E.; Pauly, M. and

Wardetzky, M. (2014). “Wire Mesh Design”. ACM Trans. Graph. 33.4, 66–1. eprint:

https://doi.org/10.1115/1.1388075
https://doi.org/10.1115/1.1388075
https://doi.org/10.1016/j.cag.2015.05.009
https://doi.org/10.1109/isvd.2011.25
http://link.springer.com/content/pdf/10.1007/BF01840357.pdf
http://link.springer.com/content/pdf/10.1007/BF01840357.pdf
https://doi.org/10.1007/978-3-319-24208-8_16
https://doi.org/10.1016/j.cag.2014.09.028
https://doi.org/10.1016/j.cad.2011.09.007
https://doi.org/10.1016/j.cad.2011.09.007
https://doi.org/10.1007/s00371-016-1262-8
https://doi.org/10.1007/s00371-016-1262-8
https://doi.org/10.1111/j.1467-8659.2009.01617.x
https://doi.org/10.1007/s10851-014-0528-x
https://doi.org/10.1016/j.cma.2015.02.022
https://doi.org/10.1016/j.cma.2015.02.022
https://engineering.purdue.edu/ZhangLab/publications/papers/2015-cad-review.pdf
https://engineering.purdue.edu/ZhangLab/publications/papers/2015-cad-review.pdf
https://engineering.purdue.edu/ZhangLab/publications/papers/2015-cad-review.pdf


226 Bibliography

https://pdfs.semanticscholar.org/20d2/d26b31be7358abee509091e76648a

ba01767.pdf.
Gaynor, A. T.; Meisel, N. A.; Williams, C. B. and Guest, J. K. (June 2014). “Topology

Optimization for Additive Manufacturing: Considering Maximum Overhang Con-
straint”. 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.
American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/6.
2014-2036.

Gibson, I.; Rosen, D. and Stucker, B. (2014). Additive Manufacturing Technologies:
3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer. eprint:
http://www.technology.matthey.com/wp-content/uploads/pdf/173-289-

pmr-jul15.pdf#page=23.
Gibson, L. J. and Ashby, M. F. (1997). Cellular Solids: Structure and Properties. Cam-

bridge university press.
Glauser, O.; Vartok, B.; Ma, W.; Panozzo, D.; Jacobson, A.; Hilliges, O. and

Sorkine-Hornung, O. (2016). “Rig Animation With a Tangible and Modular
Input Device”. Proceedings of the 29th Annual Symposium on User Interface Software
and Technology - UIST ’16 Adjunct. Association for Computing Machinery (ACM).
doi: 10.1145/2984751.2985696.

Grassia, F. S. (Jan. 1998). “Practical Parameterization of Rotations Using the Expo-
nential Map”. Journal of Graphics Tools 3.3, 29–48. doi: 10.1080/10867651.1998.
10487493.

Guennebaud, G.; Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.
Guessasma, S.; Zhang, W.; Zhu, J.; Belhabib, S. and Nouri, H. (2015). “Challenges

of Additive Manufacturing Technologies From an Optimisation Perspective”.
International Journal for Simulation and Multidisciplinary Design Optimization 6, A9.
doi: 10.1051/smdo/2016001.

Guest, J. K.; Prévost, J. H. and Belytschko, T. (Aug. 2004). “Achieving Minimum
Length Scale in Topology Optimization Using Nodal Design Variables and Projec-
tion Functions”. International Journal for Numerical Methods in Engineering 61.2, 238–
254. doi: 10.1002/nme.1064.

Guest, J. K. (Jan. 2015). “Optimizing the Layout of Discrete Objects in Structures
and Materials: A Projection-Based Topology Optimization Approach”. Computer
Methods in Applied Mechanics and Engineering 283, 330–351. doi: 10.1016/j.cma.
2014.09.006.

Guo, X.; Zhang, W. and Zhong, W. (May 2014a). “Doing Topology Optimization
Explicitly and Geometrically—A New Moving Morphable Components Based
Framework”. Journal of Applied Mechanics 81.8, 081009. doi: 10.1115/1.4027609.

Guo, X.; Zhang, W. and Zhong, W. (Apr. 2014b). “Explicit Feature Control in
Structural Topology Optimization via Level Set Method”. Computer Methods in
Applied Mechanics and Engineering 272, 354–378. doi: 10.1016/j.cma.2014.01.
010.

Ha, S. and Guest, J. K. (Feb. 2014). “Optimizing Inclusion Shapes and Patterns in Pe-
riodic Materials Using Discrete Object Projection”. Structural and Multidisciplinary
Optimization 50.1, 65–80. doi: 10.1007/s00158-013-1026-2.

https://pdfs.semanticscholar.org/20d2/d26b31be7358abee509091e76648aba01767.pdf
https://pdfs.semanticscholar.org/20d2/d26b31be7358abee509091e76648aba01767.pdf
https://doi.org/10.2514/6.2014-2036
https://doi.org/10.2514/6.2014-2036
http://www.technology.matthey.com/wp-content/uploads/pdf/173-289-pmr-jul15.pdf#page=23
http://www.technology.matthey.com/wp-content/uploads/pdf/173-289-pmr-jul15.pdf#page=23
https://doi.org/10.1145/2984751.2985696
https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1080/10867651.1998.10487493
http://eigen.tuxfamily.org
https://doi.org/10.1051/smdo/2016001
https://doi.org/10.1002/nme.1064
https://doi.org/10.1016/j.cma.2014.09.006
https://doi.org/10.1016/j.cma.2014.09.006
https://doi.org/10.1115/1.4027609
https://doi.org/10.1016/j.cma.2014.01.010
https://doi.org/10.1016/j.cma.2014.01.010
https://doi.org/10.1007/s00158-013-1026-2


Bibliography 227

Haber, R. B.; Jog, C. S. and Bendsøe, M. P. (Feb. 1996). “A New Approach to
Variable-Topology Shape Design Using a Constraint on Perimeter”. Structural
Optimization 11.1-2, 1–12. doi: 10.1007/bf01279647.

Han, C.; Risser, E.; Ramamoorthi, R. and Grinspun, E. (2008). “Multiscale Texture
Synthesis”. ACM SIGGRAPH 2008 papers on - SIGGRAPH ’08. Association for
Computing Machinery (ACM). doi: 10.1145/1399504.1360650.

Han, Z.; Liu, Z.; Han, J. and Bu, S. (July 2014). “3D Shape Creation by Style Transfer”.
The Visual Computer 31.9, 1147–1161. doi: 10.1007/s00371-014-0999-1.

Hao, J.; Fang, L. and Williams, R. E. (Mar. 2011). “An Efficient Curvature-based
Partitioning of Large-scale STL Models”. Rapid Prototyping Journal 17.2, 116–127.
doi: 10.1108/13552541111113862.

Harker, J. (2011). Crania Anatomica Filigre: Me to You. https://www.kickstarter.
com/projects/joshharker/crania-anatomica-filigre-me-to-you.

Hart, G. W. (June 2008). “Sculptural Forms From Hyperbolic Tessellations”. 2008
IEEE International Conference on Shape Modeling and Applications. Institute of Elec-
trical & Electronics Engineers (IEEE). doi: 10.1109/smi.2008.4547963.

Hašan, M.; Fuchs, M.; Matusik, W.; Pfister, H. and Rusinkiewicz, S. (2010).
“Physical Reproduction of Materials With Specified Subsurface Scattering”. ACM
SIGGRAPH 2010 papers on - SIGGRAPH ’10. Association for Computing Machinery
(ACM). doi: 10.1145/1833349.1778798.

Haumont, D.; Debeir, O. and Sillion, F. (Sept. 2003). “Volumetric Cell-And-Portal
Generation”. Computer Graphics Forum 22.3, 303–312. doi: 10.1111/1467-8659.
00677.

Hecht, F. (Jan. 2012). “New Development in FreeFem++”. Journal of Numerical
Mathematics 20.3-4. doi: 10.1515/jnum-2012-0013.

Heide, E. (July 2011). Method for Generating and Building Support Structures With
Deposition-Based Digital Manufacturing Systems. Patent. US Patent 20110178621 A1.

Hergel, J. and Lefebvre, S. (May 2014). “Clean Color: Improving Multi-Filament
3D Prints”. Computer Graphics Forum 33.2, 469–478. doi: 10.1111/cgf.12318.

Hergel, J. and Lefebvre, S. (May 2015). “3D Fabrication of 2D Mechanisms”. Com-
puter Graphics Forum 34.2, 229–238. doi: 10.1111/cgf.12555.

Herholz, P.; Matusik, W. and Alexa, M. (May 2015). “Approximating Free-Form Ge-
ometry With Height Fields for Manufacturing”. Computer Graphics Forum 34.2, 239–
251. doi: 10.1111/cgf.12556.

Hertzmann, A.; Jacobs, C. E.; Oliver, N.; Curless, B. and Salesin, D. H. (2001).
“Image Analogies”. Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’01. New York, NY, USA: ACM, 327–340.
doi: 10.1145/383259.383295.

Hildebrand, K.; Bickel, B. and Alexa, M. (May 2012). “Crdbrd: Shape Fabrication
by Sliding Planar Slices”. Computer Graphics Forum 31.2pt3, 583–592. doi: 10.1111/
j.1467-8659.2012.03037.x.

Hildebrand, K.; Bickel, B. and Alexa, M. (Oct. 2013). “Orthogonal Slicing for
Additive Manufacturing”. Computers & Graphics 37.6, 669–675. doi: 10.1016/j.
cag.2013.05.011.

https://doi.org/10.1007/bf01279647
https://doi.org/10.1145/1399504.1360650
https://doi.org/10.1007/s00371-014-0999-1
https://doi.org/10.1108/13552541111113862
https://www.kickstarter.com/projects/joshharker/crania-anatomica-filigre-me-to-you
https://www.kickstarter.com/projects/joshharker/crania-anatomica-filigre-me-to-you
https://doi.org/10.1109/smi.2008.4547963
https://doi.org/10.1145/1833349.1778798
https://doi.org/10.1111/1467-8659.00677
https://doi.org/10.1111/1467-8659.00677
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1111/cgf.12318
https://doi.org/10.1111/cgf.12555
https://doi.org/10.1111/cgf.12556
https://doi.org/10.1145/383259.383295
https://doi.org/10.1111/j.1467-8659.2012.03037.x
https://doi.org/10.1111/j.1467-8659.2012.03037.x
https://doi.org/10.1016/j.cag.2013.05.011
https://doi.org/10.1016/j.cag.2013.05.011


228 Bibliography

Holmberg, E.; Torstenfelt, B. and Klarbring, A. (Feb. 2013). “Stress Constrained
Topology Optimization”. Structural and Multidisciplinary Optimization 48.1, 33–47.
doi: 10.1007/s00158-012-0880-7.

Hornus, S.; Lefebvre, S.; Dumas, J. and Claux, F. (Apr. 2015). Tight Printable
Enclosures for Additive Manufacturing. Research Report RR-8712. Inria, 22.

Hornus, S.; Lefebvre, S.; Dumas, J. and Claux, F. (2016). “Tight Printable Enclosures
and Support Structures for Additive Manufacturing”. Eurographics Workshop on
Graphics for Digital Fabrication. The Eurographics Association. doi: 10.2312/gdf.
20161074.

Hsu, S. and Keyser, J. (2010). “Piles of Objects”. ACM SIGGRAPH Asia 2010 papers
on - SIGGRAPH ASIA ’10. Association for Computing Machinery (ACM). doi:
10.1145/1882262.1866181.

Hu, K.; Jin, S. and Wang, C. C. L. (Aug. 2015). “Support Slimming for Single
Material Based Additive Manufacturing”. Computer-Aided Design 65, 1–10. doi:
10.1016/j.cad.2015.03.001.

Hu, R.; Li, H.; Zhang, H. and Cohen-Or, D. (Nov. 2014). “Approximate Pyramidal
Shape Decomposition”. TOG 33.6, 1–12. doi: 10.1145/2661229.2661244.

Huang, P.; Wang, C. C. and Chen, Y. (2014a). Algorithms for Layered Manufacturing
in Image Space. ASME Press.

Huang, Q.; Guibas, L. J. and Mitra, N. J. (June 2014b). “Near-Regular Structure
Discovery Using Linear Programming”. ACM Transactions on Graphics 33.3, 1–17.
doi: 10.1145/2535596.

Huang, X.; Ye, C.; Mo, J. and Liu, H. (June 2009a). “Slice Data Based Support
Generation Algorithm for Fused Deposition Modeling”. Tsinghua Science and
Technology 14.S1, 223–228. doi: 10.1016/s1007-0214(09)70096-3.

Huang, X.; Ye, C.; Wu, S.; Guo, K. and Mo, J. (June 2009b). “Sloping Wall Structure
Support Generation for Fused Deposition Modeling”. The International Journal of
Advanced Manufacturing Technology 42.11-12, 1074–1081. doi: 10.1007/s00170-
008-1675-2.

Hull, C. W. (1984). “Apparatus for Production of Three-Dimensional Objects by
Stereolithography”. US Patent 4,575,330. url: https://www.google.com/patent
s/us4575330.

Hunter, W. (2009). “Predominantly Solid-Void Three-Dimensional Topology Op-
timisation Using Open Source Software”. Doctoral dissertation. Stellenbosch:
University of Stellenbosch. eprint: http://scholar.sun.ac.za/bitstream/
handle/10019.1/2648/Hunter,+W.pdf?sequence=1.

Hurtut, T.; Landes, P.
bibinitperiod; Thollot, J.; Gousseau, Y.; Drouillhet, R. and Coeurjolly, J.
bibinitperiod (2009). “Appearance-Guided Synthesis of Element Arrangements
by Example”. Proceedings of the 7th International Symposium on Non-Photorealistic
Animation and Rendering - NPAR ’09. Association for Computing Machinery (ACM).
doi: 10.1145/1572614.1572623.

Ijiri, T.; Mêch, R.; Igarashi, T. and Miller, G. (Apr. 2008). “An Example-Based
Procedural System for Element Arrangement”. Computer Graphics Forum 27.2, 429–
436. doi: 10.1111/j.1467-8659.2008.01140.x.

https://doi.org/10.1007/s00158-012-0880-7
https://doi.org/10.2312/gdf.20161074
https://doi.org/10.2312/gdf.20161074
https://doi.org/10.1145/1882262.1866181
https://doi.org/10.1016/j.cad.2015.03.001
https://doi.org/10.1145/2661229.2661244
https://doi.org/10.1145/2535596
https://doi.org/10.1016/s1007-0214(09)70096-3
https://doi.org/10.1007/s00170-008-1675-2
https://doi.org/10.1007/s00170-008-1675-2
https://www.google.com/patents/us4575330
https://www.google.com/patents/us4575330
http://scholar.sun.ac.za/bitstream/handle/10019.1/2648/Hunter,+W.pdf?sequence=1
http://scholar.sun.ac.za/bitstream/handle/10019.1/2648/Hunter,+W.pdf?sequence=1
https://doi.org/10.1145/1572614.1572623
https://doi.org/10.1111/j.1467-8659.2008.01140.x


Bibliography 229

Ion, A.; Frohnhofen, J.; Wall, L.; Kovacs, R.; Alistar, M.; Lindsay, J.; Lopes, P.;
Chen, H. and Baudisch, P. (2016). “Metamaterial Mechanisms”. Proceedings of
the 29th Annual Symposium on User Interface Software and Technology - UIST ’16.
Association for Computing Machinery (ACM). doi: 10.1145/2984511.2984540.

Jagnow, R.; Dorsey, J. and Rushmeier, H. (2004). “Stereological Techniques for
Solid Textures”. ACM SIGGRAPH 2004 Papers on - SIGGRAPH ’04. Association for
Computing Machinery (ACM). doi: 10.1145/1186562.1015724.

Jakus, A. E. et al. (Sept. 2016). “Hyperelastic "Bone": A Highly Versatile, Growth
Factor-Free, Osteoregenerative, Scalable, and Surgically Friendly Biomaterial”.
Science Translational Medicine 8.358, 358ra127–358ra127. doi: 10.1126/scitransl
med.aaf7704.

Jansen, M.; Lazarov, B. S.; Schevenels, M. and Sigmund, O. (June 2013). “On
the Similarities Between Micro/Nano Lithography and Topology Optimization
Projection Methods”. Structural and Multidisciplinary Optimization 48.4, 717–730.
doi: 10.1007/s00158-013-0941-6.

Jin, Y.; He, Y. and Fu, J. (May 2015). “Support Generation for Additive Manufac-
turing Based on Sliced Data”. The International Journal of Advanced Manufacturing
Technology 80.9-12, 2041–2052. doi: 10.1007/s00170-015-7190-3.

Jog, C. S. and Haber, R. B. (Apr. 1996). “Stability of Finite Element Models for
Distributed-Parameter Optimization and Topology Design”. Computer Methods in
Applied Mechanics and Engineering 130.3-4, 203–226. doi: 10.1016/0045-7825(95)
00928-0.

Johnson, S. G. (2016). The NLopt Nonlinear-Optimization Package.
Jones, B.; Thuerey, N.; Shinar, T. and Bargteil, A. W. (July 2016). “Example-Based

Plastic Deformation of Rigid Bodies”. ACM Transactions on Graphics 35.4, 1–11. doi:
10.1145/2897824.2925979.

Jones, B.; Ward, S.; Jallepalli, A.; Perenia, J. and Bargteil, A. W. (Apr. 2014).
“Deformation Embedding for Point-Based Elastoplastic Simulation”. ACM Trans-
actions on Graphics 33.2, 1–9. doi: 10.1145/2560795.

Kalojanov, J.; Wand, M. and Slusallek, P. (May 2016). “Building Construction
Sets by Tiling Grammar Simplification”. Computer Graphics Forum 35.2, 13–25. doi:
10.1111/cgf.12807.

Kang, Z.; Wang, Y. and Wang, Y. (July 2016). “Structural Topology Optimization
With Minimum Distance Control of Multiphase Embedded Components by Level
Set Method”. Computer Methods in Applied Mechanics and Engineering 306, 299–318.
doi: 10.1016/j.cma.2016.04.001.

Kang, Z. and Wang, Y. (Mar. 2013). “Integrated Topology Optimization With
Embedded Movable Holes Based on Combined Description by Material Density
and Level Sets”. Computer Methods in Applied Mechanics and Engineering 255, 1–13.
doi: 10.1016/j.cma.2012.11.006.

Kaspar, A.; Neubert, B.; Lischinski, D.; Pauly, M. and Kopf, J. (May 2015). “Self
Tuning Texture Optimization”. Computer Graphics Forum 34.2, 349–359. doi: 10.
1111/cgf.12565.

https://doi.org/10.1145/2984511.2984540
https://doi.org/10.1145/1186562.1015724
https://doi.org/10.1126/scitranslmed.aaf7704
https://doi.org/10.1126/scitranslmed.aaf7704
https://doi.org/10.1007/s00158-013-0941-6
https://doi.org/10.1007/s00170-015-7190-3
https://doi.org/10.1016/0045-7825(95)00928-0
https://doi.org/10.1016/0045-7825(95)00928-0
https://doi.org/10.1145/2897824.2925979
https://doi.org/10.1145/2560795
https://doi.org/10.1111/cgf.12807
https://doi.org/10.1016/j.cma.2016.04.001
https://doi.org/10.1016/j.cma.2012.11.006
https://doi.org/10.1111/cgf.12565
https://doi.org/10.1111/cgf.12565


230 Bibliography

Kaufman, D. M.; Sueda, S.; James, D. L. and Pai, D. K. (Dec. 2008). “Staggered
Projections for Frictional Contact in Multibody Systems”. ACM Transactions on
Graphics 27.5, 1. doi: 10.1145/1409060.1409117.

Kim, T. (Aug. 2015). “Quaternion Julia Set Shape Optimization”. Computer Graphics
Forum 34.5, 167–176. doi: 10.1111/cgf.12705.

Kodama, H. (1981). “Automatic Method for Fabricating a Three-Dimensional Plastic
Model With Photo-Hardening Polymer”. Review of Scientific Instruments 52.11, 1770.
doi: 10.1063/1.1136492.

Kopf, J.; Fu, C.; Cohen-Or, D.; Deussen, O.; Lischinski, D. and Wong, T. (July 2007).
“Solid Texture Synthesis From 2D Exemplars”. ACM Transactions on Graphics 26.3, 2.
doi: 10.1145/1276377.1276380.

Kosaka, I. and Swan, C. C. (Jan. 1999). “A Symmetry Reduction Method for Contin-
uum Structural Topology Optimization”. Computers & Structures 70.1, 47–61. doi:
10.1016/s0045-7949(98)00158-8.

Kou, X. Y. and Tan, S. T. (Feb. 2012). “Microstructural Modelling of Functionally
Graded Materials Using Stochastic Voronoi Diagram and B-Spline Representa-
tions”. International Journal of Computer Integrated Manufacturing 25.2, 177–188. doi:
10.1080/0951192x.2011.627948.

Koyama, Y.; Takayama, K.; Umetani, N. and Igarashi, T. (2012). “Real-Time Exam-
ple-Based Elastic Deformation”. Proceedings of the 11th ACM SIGGRAPH/Eurographics
conference on Computer Animation. Eurographics Association, 19–24. eprint: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.1214\&rep=

rep1\&type=pdf.
Kritchman, E.; Gothait, H. and Miller, G. (Apr. 2008). System and Method for

Printing and Supporting Three Dimensional Objects. Patent. US Patent 7364686.
Kulkarni, P.; Marsan, A. and Dutta, D. (Mar. 2000). “A Review of Process Planning

Techniques in Layered Manufacturing”. Rapid Prototyping Journal 6.1, 18–35. doi:
10.1108/13552540010309859.

Kwatra, V.; Essa, I.; Bobick, A. and Kwatra, N. (July 2005). “Texture Optimization
for Example-Based Synthesis”. ACM Transactions on Graphics 24.3, 795. doi: 10.
1145/1073204.1073263.

Kwatra, V.; Schödl, A.; Essa, I.; Turk, G. and Bobick, A. (2003). “Graphcut Textures:
Image and Video Synthesis Using Graph Cuts”. ACM SIGGRAPH 2003 Papers on
- SIGGRAPH ’03. Association for Computing Machinery (ACM). doi: 10.1145/
1201775.882264.

Lagae, A.; Dumont, O. and Dutre, P. (2005). “Geometry Synthesis by Example”.
International Conference on Shape Modeling and Applications 2005 (SMI’05). IEEE, 174–
183. eprint: http://www.academia.edu/download/33937747/LDD05GSE.pdf.

Lagae, A.; Lefebvre, S.; Cook, R.; DeRose, T.; Drettakis, G.; Ebert, D. S.; Lewis, J. P.;
Perlin, K. and Zwicker, M. (2010). “A Survey of Procedural Noise Functions”.
Computer Graphics Forum 29.8.

Lagae, A.; Lefebvre, S.; Drettakis, G. and Dutré, P. (2009). “Procedural Noise
Using Sparse Gabor Convolution”. ACM Trans. Graph. 28.3, 54:1–54:10.

Lan, Y.; Dong, Y.; Pellacini, F. and Tong, X. (July 2013). “Bi-Scale Appearance Fab-
rication”. ACM Transactions on Graphics 32.4, 1. doi: 10.1145/2461912.2461989.

https://doi.org/10.1145/1409060.1409117
https://doi.org/10.1111/cgf.12705
https://doi.org/10.1063/1.1136492
https://doi.org/10.1145/1276377.1276380
https://doi.org/10.1016/s0045-7949(98)00158-8
https://doi.org/10.1080/0951192x.2011.627948
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.1214\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.1214\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.1214\&rep=rep1\&type=pdf
https://doi.org/10.1108/13552540010309859
https://doi.org/10.1145/1073204.1073263
https://doi.org/10.1145/1073204.1073263
https://doi.org/10.1145/1201775.882264
https://doi.org/10.1145/1201775.882264
http://www.academia.edu/download/33937747/LDD05GSE.pdf
https://doi.org/10.1145/2461912.2461989


Bibliography 231

Landes, P.; Galerne, B. and Hurtut, T. (July 2013). “A Shape-Aware Model for
Discrete Texture Synthesis”. Computer Graphics Forum 32.4, 67–76. doi: 10.1111/
cgf.12152.

Landes, P. and Soler, C. (2009). “Content-Aware Texture Synthesis”. Doctoral
dissertation. INRIA. eprint: https://hal.archives-ouvertes.fr/docs/00/39/
42/62/PDF/RR-6959.pdf.

Langelaar, M. (July 2016a). “An Additive Manufacturing Filter for Topology Op-
timization of Print-Ready Designs”. Structural and Multidisciplinary Optimization.
doi: 10.1007/s00158-016-1522-2.

Langelaar, M. (June 2016b). “Topology Optimization of 3D Self-Supporting Struc-
tures for Additive Manufacturing”. Additive Manufacturing. doi: 10.1016/j.
addma.2016.06.010.

Langlois, T.; Shamir, A.; Dror, D.; Matusik, W. and Levin, D. I. W. (Nov. 2016).
“Stochastic Structural Analysis for Context-Aware Design and Fabrication”. ACM
Transactions on Graphics 35.6, 1–13. doi: 10.1145/2980179.2982436.

Larsen, U. D.; Sigmund, O. and Bouwstra, S. (1997). “Design and Fabrication
of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio”.
Microelectromechanical Systems, Journal of 6.2, 99–106. doi: 10.1109/memsys.1996.
494009.

Lazarov, B. S. and Sigmund, O. (May 2011). “Filters in Topology Optimization Based
on Helmholtz-Type Differential Equations”. International Journal for Numerical
Methods in Engineering 86.6, 765–781. doi: 10.1002/nme.3072.

Lazarov, B. S. (2014). “Topology Optimization Using Multiscale Finite Element
Method for High-Contrast Media”. Large-Scale Scientific Computing. Springer Sci-
ence + Business Media, 339–346. doi: 10.1007/978-3-662-43880-0_38.

Lazarov, B. S.; Schevenels, M. and Sigmund, O. (Mar. 2012a). “Topology Op-
timization Considering Material and Geometric Uncertainties Using Stochastic
Collocation Methods”. Structural and Multidisciplinary Optimization 46.4, 597–612.
doi: 10.1007/s00158-012-0791-7.

Lazarov, B. S.; Schevenels, M. and Sigmund, O. (Apr. 2012b). “Topology Optimiza-
tion With Geometric Uncertainties by Perturbation Techniques”. International Jour-
nal for Numerical Methods in Engineering 90.11, 1321–1336. doi: 10.1002/nme.3361.

Lazarov, B. S.; Wang, F. and Sigmund, O. (Jan. 2016). “Length Scale and Manufac-
turability in Density-Based Topology Optimization”. Archive of Applied Mechanics
86.1-2, 189–218. doi: 10.1007/s00419-015-1106-4.

Leary, M.; Merli, L.; Torti, F.; Mazur, M. and Brandt, M. (Nov. 2014). “Optimal
Topology for Additive Manufacture: A Method for Enabling Additive Manufacture
of Support-Free Optimal Structures”. Materials & Design 63, 678–690. doi: 10.1016/
j.matdes.2014.06.015.

Lee, E.; James, K. A. and Martins, J. R. R. A. (Apr. 2012a). “Stress-Constrained
Topology Optimization With Design-Dependent Loading”. Structural and Multi-
disciplinary Optimization 46.5, 647–661. doi: 10.1007/s00158-012-0780-x.

Lee, J. and Lee, K. (Aug. 2016). “Block-Based Inner Support Structure Generation
Algorithm for 3D Printing Using Fused Deposition Modeling”. The International
Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-016-9239-3.

https://doi.org/10.1111/cgf.12152
https://doi.org/10.1111/cgf.12152
https://hal.archives-ouvertes.fr/docs/00/39/42/62/PDF/RR-6959.pdf
https://hal.archives-ouvertes.fr/docs/00/39/42/62/PDF/RR-6959.pdf
https://doi.org/10.1007/s00158-016-1522-2
https://doi.org/10.1016/j.addma.2016.06.010
https://doi.org/10.1016/j.addma.2016.06.010
https://doi.org/10.1145/2980179.2982436
https://doi.org/10.1109/memsys.1996.494009
https://doi.org/10.1109/memsys.1996.494009
https://doi.org/10.1002/nme.3072
https://doi.org/10.1007/978-3-662-43880-0_38
https://doi.org/10.1007/s00158-012-0791-7
https://doi.org/10.1002/nme.3361
https://doi.org/10.1007/s00419-015-1106-4
https://doi.org/10.1016/j.matdes.2014.06.015
https://doi.org/10.1016/j.matdes.2014.06.015
https://doi.org/10.1007/s00158-012-0780-x
https://doi.org/10.1007/s00170-016-9239-3


232 Bibliography

Lee, S.; Park, T.; Kim, J. and Kim, C. (July 2012b). “Adaptive Synthesis of Distance
Fields”. IEEE Transactions on Visualization and Computer Graphics 18.7, 1135–1145.
doi: 10.1109/tvcg.2011.134.

Lefebvre, S. (2013). “IceSL: A GPU Accelerated CSG Modeler and Slicer”. AEFA’13,
18th European Forum on Additive Manufacturing. eprint: http://webloria.loria.
fr/~slefebvr/icesl/icesl-whitepaper.pdf.

Lefebvre, S. (June 2014). “Runtime By-Example Texture Synthesis”. Accreditation
to supervise research. Université de Lorraine (Nancy). url: https://hal.inria.
fr/tel-01388378.

Lefebvre, S. (2015). 3D Infilling: Faster, Stronger, Simpler. url: http://sylefeb.
blogspot.fr/2015/07/3dprint-3d-infilling-faster-stronger.html.

Lefebvre, S. and Hoppe, H. (2005). “Parallel Controllable Texture Synthesis”. ACM
SIGGRAPH 2005 Papers on - SIGGRAPH ’05. Association for Computing Machinery
(ACM). doi: 10.1145/1186822.1073261.

Lefebvre, S. and Hoppe, H. (2006). “Appearance-Space Texture Synthesis”. ACM
SIGGRAPH 2006 Papers on - SIGGRAPH ’06. Association for Computing Machinery
(ACM). doi: 10.1145/1179352.1141921.

Lefebvre, S.; Hornus, S. and Lasram, A. (July 2010). “By-Example Synthesis of
Architectural Textures”. ACM Transactions on Graphics 29.4, 1. doi: 10.1145/
1778765.1778821.

Lefebvre, S. and Neyret, F. (2003). “Pattern Based Procedural Textures”. Proceed-
ings of the 2003 symposium on Interactive 3D graphics - SI3D ’03. Association for
Computing Machinery (ACM). doi: 10.1145/641480.641518.

Lempitsky, V. and Ivanov, D. (June 2007). “Seamless Mosaicing of Image-Based
Texture Maps”. Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, 1–6. doi: 10.1109/CVPR.2007.383078.

Li, D.; Dai, N.; Jiang, X. and Chen, X. (Aug. 2015). “Interior Structural Optimiza-
tion Based on the Density-Variable Shape Modeling of 3D Printed Objects”. The
International Journal of Advanced Manufacturing Technology 83.9-12, 1627–1635. doi:
10.1007/s00170-015-7704-z.

Li, H.; Zhang, H.; Wang, Y.; Cao, J.; Shamir, A. and Cohen-Or, D. (2013). “Curve
Style Analysis in a Set of Shapes”. Computer Graphics Forum 32.6, 77–88.

Li, Q.; Chen, W.; Liu, S. and Tong, L. (May 2016). “Structural Topology Optimization
Considering Connectivity Constraint”. Structural and Multidisciplinary Optimiza-
tion. doi: 10.1007/s00158-016-1459-5.

Li, S.; Huang, J.; Goes, F. de; Jin, X.; Bao, H. and Desbrun, M. (July 2014). “Space-
Time Editing of Elastic Motion Through Material Optimization and Reduction”.
ACM Transactions on Graphics 33.4, 1–10. doi: 10.1145/2601097.2601217.

Li, Y.; Bao, F.; Zhang, E.; Kobayashi, Y. and Wonka, P. (Feb. 2011). “Geometry
Synthesis on Surfaces Using Field-Guided Shape Grammars”. IEEE Transactions
on Visualization and Computer Graphics 17.2, 231–243. doi: 10.1109/tvcg.2010.36.

Lindenmayer, A. (Mar. 1968a). “Mathematical Models for Cellular Interactions in
Development I. Filaments With One-Sided Inputs”. Journal of Theoretical Biology
18.3, 280–299. doi: 10.1016/0022-5193(68)90079-9.

https://doi.org/10.1109/tvcg.2011.134
http://webloria.loria.fr/~slefebvr/icesl/icesl-whitepaper.pdf
http://webloria.loria.fr/~slefebvr/icesl/icesl-whitepaper.pdf
https://hal.inria.fr/tel-01388378
https://hal.inria.fr/tel-01388378
http://sylefeb.blogspot.fr/2015/07/3dprint-3d-infilling-faster-stronger.html
http://sylefeb.blogspot.fr/2015/07/3dprint-3d-infilling-faster-stronger.html
https://doi.org/10.1145/1186822.1073261
https://doi.org/10.1145/1179352.1141921
https://doi.org/10.1145/1778765.1778821
https://doi.org/10.1145/1778765.1778821
https://doi.org/10.1145/641480.641518
https://doi.org/10.1109/CVPR.2007.383078
https://doi.org/10.1007/s00170-015-7704-z
https://doi.org/10.1007/s00158-016-1459-5
https://doi.org/10.1145/2601097.2601217
https://doi.org/10.1109/tvcg.2010.36
https://doi.org/10.1016/0022-5193(68)90079-9


Bibliography 233

Lindenmayer, A. (Mar. 1968b). “Mathematical Models for Cellular Interactions in
Development II. Simple and Branching Filaments With Two-Sided Inputs”. Journal
of Theoretical Biology 18.3, 300–315. doi: 10.1016/0022-5193(68)90080-5.

Liu, H.; Vimont, U.; Wand, M.; Cani, M.; Hahmann, S.; Rohmer, D. and Mitra,
N. J. (May 2015a). “Replaceable Substructures for Efficient Part-Based Modeling”.
Computer Graphics Forum 34.2, 503–513. doi: 10.1111/cgf.12579.

Liu, J. and Ma, Y.
bibinitperiod (May 2015). “3D Level-Set Topology Optimization: A Machining
Feature-Based Approach”. Structural and Multidisciplinary Optimization 52.3, 563–
582. doi: 10.1007/s00158-015-1263-7.

Liu, J. and Ma, Y. (Oct. 2016). “A Survey of Manufacturing Oriented Topology
Optimization Methods”. Advances in Engineering Software 100, 161–175. doi: 10.
1016/j.advengsoft.2016.07.017.

Liu, J.; Yu, H. and Ma, Y. (Oct. 2016). “Minimum Void Length Scale Control in Level
Set Topology Optimization Subject to Machining Radii”. Computer-Aided Design.
doi: 10.1016/j.cad.2016.09.007.

Liu, K. and Tovar, A. (June 2014). “An Efficient 3D Topology Optimization Code
Written in Matlab”. Structural and Multidisciplinary Optimization 50.6, 1175–1196.
doi: 10.1007/s00158-014-1107-x.

Liu, L.; Chambers, E. W.; Letscher, D. and Ju, T. (Sept. 2010). “A Simple and Robust
Thinning Algorithm on Cell Complexes”. Computer Graphics Forum 29.7, 2253–2260.
doi: 10.1111/j.1467-8659.2010.01814.x.

Liu, L.; Shamir, A.; Wang, C. and Whitening, E. (2014a). “3D Printing Oriented
Design: Geometry and Optimization”. SIGGRAPH Asia 2014 Courses on - SA ’14.
Association for Computing Machinery (ACM). doi: 10.1145/2659467.2675050.

Liu, S. and Wang, C. C. L. (Apr. 2011). “Fast Intersection-Free Offset Surface Gener-
ation From Freeform Models With Triangular Meshes”. IEEE Transactions on Au-
tomation Science and Engineering 8.2, 347–360. doi: 10.1109/tase.2010.2066563.

Liu, S.; Li, Q.; Chen, W.; Tong, L. and Cheng, G. (June 2015b). “An Identification
Method for Enclosed Voids Restriction in Manufacturability Design for Additive
Manufacturing Structures”. Frontiers of Mechanical Engineering 10.2, 126–137. doi:
10.1007/s11465-015-0340-3.

Liu, T.; Wang, S.; Li, B. and Gao, L. (Mar. 2014b). “A Level-Set-Based Topology
and Shape Optimization Method for Continuum Structure Under Geometric
Constraints”. Structural and Multidisciplinary Optimization 50.2, 253–273. doi: 10.
1007/s00158-014-1045-7.

Liu, X. and Shapiro, V. (Mar. 2015). “Random Heterogeneous Materials via Texture
Synthesis”. Computational Materials Science 99, 177–189. doi: 10.1016/j.commats
ci.2014.12.017.

Liu, X. and Shapiro, V. (Sept. 2016). “Homogenization of Material Properties in
Additively Manufactured Structures”. Computer-Aided Design 78, 71–82. doi: 10.
1016/j.cad.2016.05.017.

Liu, Y.; Wang, W.; Lévy, B.; Sun, F.; Yan, D.; Lu, L. and Yang, C. (Aug. 2009). “On
Centroidal Voronoi Tessellation—energy Smoothness and Fast Computation”.
ACM Transactions on Graphics 28.4, 1–17. doi: 10.1145/1559755.1559758.

https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.1111/cgf.12579
https://doi.org/10.1007/s00158-015-1263-7
https://doi.org/10.1016/j.advengsoft.2016.07.017
https://doi.org/10.1016/j.advengsoft.2016.07.017
https://doi.org/10.1016/j.cad.2016.09.007
https://doi.org/10.1007/s00158-014-1107-x
https://doi.org/10.1111/j.1467-8659.2010.01814.x
https://doi.org/10.1145/2659467.2675050
https://doi.org/10.1109/tase.2010.2066563
https://doi.org/10.1007/s11465-015-0340-3
https://doi.org/10.1007/s00158-014-1045-7
https://doi.org/10.1007/s00158-014-1045-7
https://doi.org/10.1016/j.commatsci.2014.12.017
https://doi.org/10.1016/j.commatsci.2014.12.017
https://doi.org/10.1016/j.cad.2016.05.017
https://doi.org/10.1016/j.cad.2016.05.017
https://doi.org/10.1145/1559755.1559758


234 Bibliography

Liu, Z.; Korvink, J. and Huang, R. (Feb. 2005). “Structure Topology Optimization:
Fully Coupled Level Set Method via FEMLAB”. Structural and Multidisciplinary
Optimization 29.6, 407–417. doi: 10.1007/s00158-004-0503-z.

Lu, L.; Lévy, B. and Wang, W. (May 2012). “Centroidal Voronoi Tessellation of
Line Segments and Graphs”. Computer Graphics Forum 31.2pt4, 775–784. doi:
10.1111/j.1467-8659.2012.03058.x.

Lu, L. et al. (July 2014). “Build-To-Last: Strength to Weight 3D Printed Objects”. ACM
Transactions on Graphics 33.4, 1–10. doi: 10.1145/2601097.2601168.

Luo, L.; Baran, I.; Rusinkiewicz, S. and Matusik, W. (Nov. 2012). “Chopper: Parti-
tioning Models Into 3D-Printable Parts”. ACM Transactions on Graphics 31.6, 1. doi:
10.1145/2366145.2366148.

Luo, S.; Yue, Y.; Huang, C.; Chung, Y.; Imai, S.; Nishita, T. and Chen, B. (Oct.
2015). “Legolization: Optimizing LEGO Designs”. ACM Transactions on Graphics
34.6, 1–12. doi: 10.1145/2816795.2818091.

Luxner, M. H.; Stampfl, J. and Pettermann, H. E. (May 2007). “Numerical Sim-
ulations of 3D Open Cell Structures – Influence of Structural Irregularities on
Elasto-Plasticity and Deformation Localization”. International Journal of Solids and
Structures 44.9, 2990–3003. doi: 10.1016/j.ijsolstr.2006.08.039.

Ma, C.; Huang, H.; Sheffer, A.; Kalogerakis, E. and Wang, R. (May 2014).
“Analogy-Driven 3D Style Transfer”. Computer Graphics Forum 33.2, 175–184. doi:
10.1111/cgf.12307.

Ma, C.; Wei, L.; Lefebvre, S. and Tong, X. (July 2013). “Dynamic Element Textures”.
ACM Transactions on Graphics 32.4, 1. doi: 10.1145/2461912.2461921.

Ma, C.; Wei, L. and Tong, X. (2011). “Discrete Element Textures”. ACM SIGGRAPH
2011 papers on - SIGGRAPH ’11. Association for Computing Machinery (ACM).
doi: 10.1145/1964921.1964957.

Majhi, J.; Janardan, R.; Smid, M. and Gupta, P. (1999). “On Some Geometric Opti-
mization Problems in Layered Manufacturing”. Computational Geometry 12.34, 219–
239.

Malzbender, T.; Samadani, R.; Scher, S.; Crume, A.; Dunn, D. and Davis, J. (May
2012). “Printing Reflectance Functions”. ACM Transactions on Graphics 31.3, 1–11.
doi: 10.1145/2167076.2167078.

Mariethoz, G. and Lefebvre, S. (May 2014). “Bridges Between Multiple-Point
Geostatistics and Texture Synthesis: Review and Guidelines for Future Research”.
Computers & Geosciences 66, 66–80. doi: 10.1016/j.cageo.2014.01.001.

Martin, S.; Thomaszewski, B.; Grinspun, E. and Gross, M. (2011). “Example-Based
Elastic Materials”. ACM SIGGRAPH 2011 papers on - SIGGRAPH ’11. Association
for Computing Machinery (ACM). doi: 10.1145/1964921.1964967.

Martin, T.; Umetani, N. and Bickel, B. (July 2015). “OmniAD: Data-Driven Omni-
Directional Aerodynamics”. ACM Transactions on Graphics 34.4, 113:1–113:12. doi:
10.1145/2766919.

Martínez, J.; Dumas, J. and Lefebvre, S. (July 2016). “Procedural Voronoi Foams
for Additive Manufacturing”. ACM Trans. Graph. 35.4. doi: 10.1145/2897824.
2925922.

https://doi.org/10.1007/s00158-004-0503-z
https://doi.org/10.1111/j.1467-8659.2012.03058.x
https://doi.org/10.1145/2601097.2601168
https://doi.org/10.1145/2366145.2366148
https://doi.org/10.1145/2816795.2818091
https://doi.org/10.1016/j.ijsolstr.2006.08.039
https://doi.org/10.1111/cgf.12307
https://doi.org/10.1145/2461912.2461921
https://doi.org/10.1145/1964921.1964957
https://doi.org/10.1145/2167076.2167078
https://doi.org/10.1016/j.cageo.2014.01.001
https://doi.org/10.1145/1964921.1964967
https://doi.org/10.1145/2766919
https://doi.org/10.1145/2897824.2925922
https://doi.org/10.1145/2897824.2925922


Bibliography 235

Martínez, J.; Dumas, J.; Lefebvre, S. and Wei, L. (Oct. 2015a). “Structure and
Appearance Optimization for Controllable Shape Design”. ACM Trans. Graph.
34.6, 229:1–229:11. doi: 10.1145/2816795.2818101.

Martínez, J.; Hornus, S.; Claux, F. and Lefebvre, S. (Feb. 2015b). “Chained Segment
Offsetting for Ray-Based Solid Representations”. Computers & Graphics 46, 36–47.
doi: 10.1016/j.cag.2014.09.017.

Matusik, W.; Ajdin, B.; Gu, J.; Lawrence, J.; Lensch, H. P. A.; Pellacini, F. and
Rusinkiewicz, S. (2009). “Printing Spatially-Varying Reflectance”. ACM SIG-
GRAPH Asia 2009 papers on - SIGGRAPH Asia ’09. Association for Computing
Machinery (ACM). doi: 10.1145/1661412.1618474.

Maule, M.; Comba, J. L.; Torchelsen, R. P. and Bastos, R. (Dec. 2011). “A Survey
of Raster-Based Transparency Techniques”. Computers & Graphics 35.6, 1023–1034.
doi: 10.1016/j.cag.2011.07.006.

McCrae, J.; Singh, K. and Mitra, N. J. (2011). “Slices: A Shape-Proxy Based on
Planar Sections”. Proceedings of the 2011 SIGGRAPH Asia Conference on - SA ’11.
Association for Computing Machinery (ACM). doi: 10.1145/2024156.2024202.

McCrae, J.; Umetani, N. and Singh, K. (2014). “FlatFitFab: Interactive Modeling
With Planar Sections”. Proceedings of the 27th annual ACM symposium on User
interface software and technology - UIST ’14. Association for Computing Machinery
(ACM). doi: 10.1145/2642918.2647388.

Medeiros e Sá, A.; Mello, V. M.; Echavarria, K. R. and Covill, D. (2015). “Adaptive
Voids”. The Visual Computer 31.6-8, 799–808.

Megaro, V.; Thomaszewski, B.; Gauge, D.; Grinspun, E.; Coros, S. and Gross,
M. (2014). “Chacra: An Interactive Design System for Rapid Character Crafting”.
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association, 123–130. eprint: https://graphics.ethz.ch/Downlo
ads/Publications/Papers/2014/Meg14a/Meg14a.pdf.

Mei, Y.; Wang, X. and Cheng, G. (Feb. 2008). “A Feature-Based Topological Opti-
mization for Structure Design”. Advances in Engineering Software 39.2, 71–87. doi:
10.1016/j.advengsoft.2007.01.023.

Merrell, P. (2007). “Example-Based Model Synthesis”. Proceedings of the 2007 sym-
posium on Interactive 3D graphics and games - I3D ’07. Association for Computing
Machinery (ACM). doi: 10.1145/1230100.1230119.

Merrell, P. and Manocha, D. (2008). “Continuous Model Synthesis”. ACM SIG-
GRAPH Asia 2008 papers on - SIGGRAPH Asia ’08. Association for Computing
Machinery (ACM). doi: 10.1145/1457515.1409111.

Merrell, P. and Manocha, D. (June 2011). “Model Synthesis: A General Procedural
Modeling Algorithm”. IEEE Transactions on Visualization and Computer Graphics
17.6, 715–728. doi: 10.1109/tvcg.2010.112.

Michailidis, G. (2014). “Manufacturing Constraints and Multi-Phase Shape and
Topology Optimization via a Level-Set Method”. Doctoral dissertation. Ecole
Polytechnique X. eprint: https://pastel.archives- ouvertes.fr/pastel-
00937306/file/thesis.pdf.

https://doi.org/10.1145/2816795.2818101
https://doi.org/10.1016/j.cag.2014.09.017
https://doi.org/10.1145/1661412.1618474
https://doi.org/10.1016/j.cag.2011.07.006
https://doi.org/10.1145/2024156.2024202
https://doi.org/10.1145/2642918.2647388
https://graphics.ethz.ch/Downloads/Publications/Papers/2014/Meg14a/Meg14a.pdf
https://graphics.ethz.ch/Downloads/Publications/Papers/2014/Meg14a/Meg14a.pdf
https://doi.org/10.1016/j.advengsoft.2007.01.023
https://doi.org/10.1145/1230100.1230119
https://doi.org/10.1145/1457515.1409111
https://doi.org/10.1109/tvcg.2010.112
https://pastel.archives-ouvertes.fr/pastel-00937306/file/thesis.pdf
https://pastel.archives-ouvertes.fr/pastel-00937306/file/thesis.pdf


236 Bibliography

Miguel, E.; Lepoutre, M. and Bickel, B. (July 2016). “Computational Design of
Stable Planar-Rod Structures”. ACM Transactions on Graphics 35.4, 1–11. doi: 10.
1145/2897824.2925978.

Milliez, A.; Wand, M.; Cani, M. and Seidel, H. (May 2013). “Mutable Elastic Models
for Sculpting Structured Shapes”. Computer Graphics Forum 32.2pt1, 21–30. doi:
10.1111/cgf.12022.

Morgan, H. D.; Cherry, J. A.; Jonnalagadda, S.; Ewing, D. and Sienz, J. (Jan. 2016).
“Part Orientation Optimisation for the Additive Layer Manufacture of Metal
Components”. The International Journal of Advanced Manufacturing Technology. doi:
10.1007/s00170-015-8151-6.

Mueller, S.; Im, S.; Gurevich, S.; Teibrich, A.; Pfisterer, L.; Guimbretière, F.
and Baudisch, P. (2014a). “WirePrint: 3D Printed Previews for Fast Prototyping”.
Proceedings of the 27th annual ACM symposium on User interface software and technology
- UIST ’14. Association for Computing Machinery (ACM). doi: 10.1145/2642918.
2647359.

Mueller, S.; Kruck, B. and Baudisch, P. (2013). “LaserOrigami: Laser-Cutting 3D
Objects”. CHI ’13 Extended Abstracts on Human Factors in Computing Systems on -
CHI EA ’13. Association for Computing Machinery (ACM). doi: 10.1145/2468356.
2479544.

Mueller, S.; Mohr, T.; Guenther, K.; Frohnhofen, J. and Baudisch, P. (2014b).
“faBrickation: Fast 3D Printing of Functional Objects by Integrating Construction
Kit Building Blocks”. Proceedings of the 32nd annual ACM conference on Human factors
in computing systems - CHI ’14. Association for Computing Machinery (ACM). doi:
10.1145/2556288.2557005.

Musialski, P.; Auzinger, T.; Birsak, M.; Wimmer, M. and Kobbelt, L. (July 2015).
“Reduced-Order Shape Optimization Using Offset Surfaces”. ACM Transactions on
Graphics 34.4, 102:1–102:9. doi: 10.1145/2766955.

Musialski, P.; Hafner, C.; Rist, F.; Birsak, M.; Wimmer, M. and Kobbelt, L. (July
2016). “Non-Linear Shape Optimization Using Local Subspace Projections”. ACM
Transactions on Graphics 35.4, 1–13. doi: 10.1145/2897824.2925886.

Nehab, D. and Hoppe, H. (Dec. 2008). “Random-Access Rendering of General Vector
Graphics”. ACM Transactions on Graphics 27.5, 1. doi: 10.1145/1409060.1409088.

Nobel-Jørgensen, M.; Aage, N.; Christiansen, A. N.; Igarashi, T.; Bærentzen,
J. A. and Sigmund, O. (June 2015). “3D Interactive Topology Optimization on
Hand-Held Devices”. Structural and Multidisciplinary Optimization 51.6, 1385–1391.
doi: 10.1007/s00158-014-1214-8.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer Science &
Business Media. eprint: http://thuvien.due.udn.vn:8080/dspace/bitstream/
TVDHKT/18432/1/72.pdf.

Norato, J. A.; Bell, B. and Tortorelli, D. (Aug. 2015). “A Geometry Projection
Method for Continuum-Based Topology Optimization With Discrete Elements”.
Computer Methods in Applied Mechanics and Engineering 293, 306–327. doi: 10.1016/
j.cma.2015.05.005.

Oropallo, W. and Piegl, L. A. (June 2015). “Ten Challenges in 3D Printing”. Engi-
neering with Computers 32.1, 135–148. doi: 10.1007/s00366-015-0407-0.

https://doi.org/10.1145/2897824.2925978
https://doi.org/10.1145/2897824.2925978
https://doi.org/10.1111/cgf.12022
https://doi.org/10.1007/s00170-015-8151-6
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2468356.2479544
https://doi.org/10.1145/2468356.2479544
https://doi.org/10.1145/2556288.2557005
https://doi.org/10.1145/2766955
https://doi.org/10.1145/2897824.2925886
https://doi.org/10.1145/1409060.1409088
https://doi.org/10.1007/s00158-014-1214-8
http://thuvien.due.udn.vn:8080/dspace/bitstream/TVDHKT/18432/1/72.pdf
http://thuvien.due.udn.vn:8080/dspace/bitstream/TVDHKT/18432/1/72.pdf
https://doi.org/10.1016/j.cma.2015.05.005
https://doi.org/10.1016/j.cma.2015.05.005
https://doi.org/10.1007/s00366-015-0407-0


Bibliography 237

Osher, S. J. and Santosa, F. (July 2001). “Level Set Methods for Optimization
Problems Involving Geometry and Constraints”. Journal of Computational Physics
171.1, 272–288. doi: 10.1006/jcph.2001.6789.

Osher, S. and Sethian, J. A. (Nov. 1988). “Fronts Propagating With Curvature-
Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations”. Journal
of Computational Physics 79.1, 12–49. doi: 10.1016/0021-9991(88)90002-2.

Overvelde, J. T. (2012). “The Moving Node Approach in Topology Optimization”.
Doctoral dissertation. TU Delft, Delft University of Technology. eprint: http:
//repository.tudelft.nl/assets/uuid:86c056d8-f368-4239-893f-07ca3a

22e112/EM_2012_006_-_Overvelde_-_MSc_-_Report.pdf.
Öztireli, A. C. and Gross, M. (Nov. 2012). “Analysis and Synthesis of Point Dis-

tributions Based on Pair Correlation”. ACM Transactions on Graphics 31.6, 1. doi:
10.1145/2366145.2366189.

Pagés, R.; Berjón, D.; Morán, F. and García, N. (Oct. 2014). “Seamless, Static
Multi-Texturing of 3D Meshes”. Computer Graphics Forum 34.1, 228–238. doi:
10.1111/cgf.12508.

Pandey, P. M.; Reddy, N. V. and Dhande, S. G. (Dec. 2003). “Slicing Procedures in
Layered Manufacturing: A Review”. Rapid Prototyping Journal 9.5, 274–288. doi:
10.1108/13552540310502185.

Panetta, J.; Zhou, Q.; Malomo, L.; Pietroni, N.; Cignoni, P. and Zorin, D. (July
2015). “Elastic Textures for Additive Fabrication”. ACM Transactions on Graphics
34.4, 135:1–135:12. doi: 10.1145/2766937.

Panozzo, D.; Block, P. and Sorkine-Hornung, O. (July 2013). “Designing Unre-
inforced Masonry Models”. ACM Transactions on Graphics 32.4, 1. doi: 10.1145/
2461912.2461958.

Panozzo, D.; Diamanti, O.; Paris, S.; Tarini, M.; Sorkine, E. and Sorkine-Hor-
nung, O. (Aug. 2015). “Texture Mapping Real-World Objects With Hydrograph-
ics”. Computer Graphics Forum 34.5, 65–75. doi: 10.1111/cgf.12697.

Papas, M.; Regg, C.; Jarosz, W.; Bickel, B.; Jackson, P.; Matusik, W.; Marschner, S.
and Gross, M. (July 2013). “Fabricating Translucent Materials Using Continuous
Pigment Mixtures”. ACM Transactions on Graphics 32.4, 1. doi: 10.1145/2461912.
2461974.

Parıs, J.; Muınos, I.; Navarrina, F.; Colominas, I. and Casteleiro, M. (2005). “A
Minimum Weight FEM Formulation for Structural Topological Optimization With
Local Stress Constraints”. VI World Congress on Structural and Multidisciplinary
Optimization WCSMO6, Rio de Janeiro, Brasil. Citeseer. eprint: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.60.2567\&rep=rep1\&type=

pdf.
Park, S.; Crawford, R. H. and Beaman, J. J. (2000). “Functionally Gradient Material

Representation by Volumetric Multi-Texturing for Solid Freeform Fabrication”.
11th Annual Solid Freeform Fabrication Symposium. eprint: http://sffsymposium.
engr.utexas.edu/Manuscripts/2000/2000-43-Park.pdf.

Pasko, A.; Fryazinov, O.; Vilbrandt, T.; Fayolle, P. and Adzhiev, V. (Sept. 2011).
“Procedural Function-Based Modelling of Volumetric Microstructures”. Graphical
Models 73.5, 165–181. doi: 10.1016/j.gmod.2011.03.001.

https://doi.org/10.1006/jcph.2001.6789
https://doi.org/10.1016/0021-9991(88)90002-2
http://repository.tudelft.nl/assets/uuid:86c056d8-f368-4239-893f-07ca3a22e112/EM_2012_006_-_Overvelde_-_MSc_-_Report.pdf
http://repository.tudelft.nl/assets/uuid:86c056d8-f368-4239-893f-07ca3a22e112/EM_2012_006_-_Overvelde_-_MSc_-_Report.pdf
http://repository.tudelft.nl/assets/uuid:86c056d8-f368-4239-893f-07ca3a22e112/EM_2012_006_-_Overvelde_-_MSc_-_Report.pdf
https://doi.org/10.1145/2366145.2366189
https://doi.org/10.1111/cgf.12508
https://doi.org/10.1108/13552540310502185
https://doi.org/10.1145/2766937
https://doi.org/10.1145/2461912.2461958
https://doi.org/10.1145/2461912.2461958
https://doi.org/10.1111/cgf.12697
https://doi.org/10.1145/2461912.2461974
https://doi.org/10.1145/2461912.2461974
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.2567\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.2567\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.2567\&rep=rep1\&type=pdf
http://sffsymposium.engr.utexas.edu/Manuscripts/2000/2000-43-Park.pdf
http://sffsymposium.engr.utexas.edu/Manuscripts/2000/2000-43-Park.pdf
https://doi.org/10.1016/j.gmod.2011.03.001


238 Bibliography

Passos, V. A. d.; Walter, M. and Sousa, M. C. (Sept. 2010). “Sample-Based Synthesis
of Illustrative Patterns”. 2010 18th Pacific Conference on Computer Graphics and
Applications. Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/
pacificgraphics.2010.22.

Peachey, D. R. (1985). “Solid Texturing of Complex Surfaces”. Proceedings of the 12th
annual conference on Computer graphics and interactive techniques - SIGGRAPH ’85.
Association for Computing Machinery (ACM). doi: 10.1145/325334.325246.

Pedersen, N. L. (Aug. 2000). “Maximization of Eigenvalues Using Topology Opti-
mization”. Structural and Multidisciplinary Optimization 20.1, 2–11. doi: 10.1007/
s001580050130.

Pérez, J.; Thomaszewski, B.; Coros, S.; Bickel, B.; Canabal, J. A.; Sumner, R. and
Otaduy, M. A. (July 2015). “Design and Fabrication of Flexible Rod Meshes”.
ACM Transactions on Graphics 34.4, 138:1–138:12. doi: 10.1145/2766998.

Perlin, K. and Hoffert, E. M. (July 1989). “Hypertexture”. ACM SIGGRAPH Com-
puter Graphics 23.3, 253–262. doi: 10.1145/74334.74359.

Perlin, K. (July 1985). “An Image Synthesizer”. ACM SIGGRAPH Computer Graphics
19.3, 287–296. doi: 10.1145/325165.325247.

Pietroni, N.; Cignoni, P.; Otaduy, M. and Scopigno, R. (July 2010). “Solid-Texture
Synthesis: A Survey”. IEEE Computer Graphics and Applications 30.4, 74–89. doi:
10.1109/mcg.2009.153.

Pietroni, N.; Tonelli, D.; Puppo, E.; Froli, M.; Scopigno, R. and Cignoni, P. (May
2015). “Statics Aware Grid Shells”. Computer Graphics Forum 34.2, 627–641. doi:
10.1111/cgf.12590.

Pintus, R.; Gobbetti, E.; Cignoni, P. and Scopigno, R. (Apr. 2010). “Shape En-
hancement for Rapid Prototyping”. The Visual Computer 26.6-8, 831–840. doi:
10.1007/s00371-010-0488-0.

Praun, E.; Finkelstein, A. and Hoppe, H. (2000). “Lapped Textures”. Proceedings of
the 27th annual conference on Computer graphics and interactive techniques - SIGGRAPH
’00. Association for Computing Machinery (ACM). doi: 10.1145/344779.344987.

Prévost, R.; Whiting, E.; Lefebvre, S. and Sorkine-Hornung, O. (July 2013). “Make
It Stand: Balancing Shapes for 3D Fabrication”. ACM Transactions on Graphics 32.4, 1.
doi: 10.1145/2461912.2461957.

Prusinkiewicz, P.; Lindenmayer, A. and Hanan, J. (Aug. 1988). “Development
Models of Herbaceous Plants for Computer Imagery Purposes”. ACM SIGGRAPH
Computer Graphics 22.4, 141–150. doi: 10.1145/378456.378503.

Qin, X. and Yang, Y. (Mar. 2007). “Aura 3D Textures”. IEEE Transactions on Visual-
ization and Computer Graphics 13.2, 379–389. doi: 10.1109/tvcg.2007.31.

Radman, A.; Huang, X. and Xie, Y. M. (Feb. 2013). “Topology Optimization of
Functionally Graded Cellular Materials”. Journal of Materials Science 48.4, 1503–
1510. doi: 10.1007/s10853-012-6905-1.

Ramanarayanan, G. and Bala, K. (Jan. 2007). “Constrained Texture Synthesis via
Energy Minimization”. IEEE Transactions on Visualization and Computer Graphics
13.1, 167–178. doi: 10.1109/tvcg.2007.4.

https://doi.org/10.1109/pacificgraphics.2010.22
https://doi.org/10.1109/pacificgraphics.2010.22
https://doi.org/10.1145/325334.325246
https://doi.org/10.1007/s001580050130
https://doi.org/10.1007/s001580050130
https://doi.org/10.1145/2766998
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/325165.325247
https://doi.org/10.1109/mcg.2009.153
https://doi.org/10.1111/cgf.12590
https://doi.org/10.1007/s00371-010-0488-0
https://doi.org/10.1145/344779.344987
https://doi.org/10.1145/2461912.2461957
https://doi.org/10.1145/378456.378503
https://doi.org/10.1109/tvcg.2007.31
https://doi.org/10.1007/s10853-012-6905-1
https://doi.org/10.1109/tvcg.2007.4


Bibliography 239

Ray, N.; Neiger, T.; Lévy, B. and Cavin, X. (2005). Vector Texture Maps on the GPU.
Tech. rep. INRIA - ALICE. eprint: http://alice.loria.fr/publications/
papers/2005/VTM/vtm.pdf.

Reiner, T.; Carr, N.; Měch, R.; Št’ava, O.; Dachsbacher, C. and Miller, G. (May
2014). “Dual-Color Mixing for Fused Deposition Modeling Printers”. Computer
Graphics Forum 33.2, 479–486. doi: 10.1111/cgf.12319.

Roberts, A. P. and Garboczi, E. J. (Jan. 2002). “Elastic Properties of Model Random
Three-Dimensional Open-Cell Solids”. Journal of the Mechanics and Physics of Solids
50.1, 33–55. doi: 10.1016/s0022-5096(01)00056-4.

Rohmer, D.; Hahmann, S. and Cani, M. (Oct. 2015). “Real-Time Continuous Self-
Replicating Details for Shape Deformation”. Computers & Graphics 51, 67–73. doi:
10.1016/j.cag.2015.05.011.

Rojas-Labanda, S. and Stolpe, M. (July 2015a). “Automatic Penalty Continuation in
Structural Topology Optimization”. Structural and Multidisciplinary Optimization
52.6, 1205–1221. doi: 10.1007/s00158-015-1277-1.

Rojas-Labanda, S. and Stolpe, M. (May 2015b). “Benchmarking Optimization
Solvers for Structural Topology Optimization”. Structural and Multidisciplinary
Optimization 52.3, 527–547. doi: 10.1007/s00158-015-1250-z.

Rosenkrantz, J. and Louis-Rosenberg, J. (2007). Nervous System Inc. http://n-e-
r-v-o-u-s.com/about_us.php.

Roveri, R.; Öztireli, A. C.; Martin, S.; Solenthaler, B. and Gross, M. (Aug. 2015).
“Example Based Repetitive Structure Synthesis”. Computer Graphics Forum 34.5, 39–
52. doi: 10.1111/cgf.12695.

Rozvany, G. I. N. (Apr. 2001). “Aims, Scope, Methods, History and Unified Terminol-
ogy of Computer-Aided Topology Optimization in Structural Mechanics”. Struc-
tural and Multidisciplinary Optimization 21.2, 90–108. doi: 10.1007/s001580050174.

Rozvany, G. I. N. (Jan. 2009). “A Critical Review of Established Methods of Structural
Topology Optimization”. Structural and Multidisciplinary Optimization 37.3, 217–
237. doi: 10.1007/s00158-007-0217-0.

Rozvany, G. I. N.; Zhou, M. and Birker, T. (Sept. 1992). “Generalized Shape Opti-
mization Without Homogenization”. Structural Optimization 4.3-4, 250–252. doi:
10.1007/bf01742754.

Rvachev, V. L. (1982). “Theory of R-Functions and Some Applications”. Naukova
Dumka 552. (In Russian).

Sakurai, K. and Miyata, K. (Feb. 2014). “Modelling of Non-Periodic Aggregates
Having a Pile Structure”. Computer Graphics Forum 33.1, 190–198. doi: 10.1111/
cgf.12266.

Sanchez-Palencia, E. (1980). “Homogenization in Elasticity and Electromagnetism”.
English. Non-Homogeneous Media and Vibration Theory. Vol. 127. Lecture Notes in
Physics. Springer Berlin Heidelberg, 84–128. doi: 10.1007/3-540-10000-8_6.

Saxena, A. (2011). “Are Circular Shaped Masks Adequate in Adaptive Mask Overlay
Topology Synthesis Method?” Journal of Mechanical Design 133.1, 011001. doi:
10.1115/1.4002973.

Schevenels, M.; Lazarov, B. and Sigmund, O. (Dec. 2011). “Robust Topology
Optimization Accounting for Spatially Varying Manufacturing Errors”. Computer

http://alice.loria.fr/publications/papers/2005/VTM/vtm.pdf
http://alice.loria.fr/publications/papers/2005/VTM/vtm.pdf
https://doi.org/10.1111/cgf.12319
https://doi.org/10.1016/s0022-5096(01)00056-4
https://doi.org/10.1016/j.cag.2015.05.011
https://doi.org/10.1007/s00158-015-1277-1
https://doi.org/10.1007/s00158-015-1250-z
http://n-e-r-v-o-u-s.com/about_us.php
http://n-e-r-v-o-u-s.com/about_us.php
https://doi.org/10.1111/cgf.12695
https://doi.org/10.1007/s001580050174
https://doi.org/10.1007/s00158-007-0217-0
https://doi.org/10.1007/bf01742754
https://doi.org/10.1111/cgf.12266
https://doi.org/10.1111/cgf.12266
https://doi.org/10.1007/3-540-10000-8_6
https://doi.org/10.1115/1.4002973


240 Bibliography

Methods in Applied Mechanics and Engineering 200.49-52, 3613–3627. doi: 10.1016/
j.cma.2011.08.006.

Schmidt, R. and Ratto, M. (Nov. 2013). “Design-To-Fabricate: Maker Hardware
Requires Maker Software”. IEEE Computer Graphics and Applications 33.6, 26–34.
doi: 10.1109/mcg.2013.90.

Schmidt, R. and Umetani, N. (2014). “Branching Support Structures for 3D Printing”.
ACM SIGGRAPH 2014 Studio on - SIGGRAPH ’14. Association for Computing
Machinery (ACM). doi: 10.1145/2619195.2656293.

Schmidt, S. and Schulz, V. (Aug. 2011). “A 2589 Line Topology Optimization Code
Written for the Graphics Card”. Computing and Visualization in Science 14.6, 249–256.
doi: 10.1007/s00791-012-0180-1.

Schuëller, G. I. and Jensen, H. A. (Nov. 2008). “Computational Methods in Opti-
mization Considering Uncertainties – an Overview”. Computer Methods in Applied
Mechanics and Engineering 198.1, 2–13. doi: 10.1016/j.cma.2008.05.004.

Schüller, C.; Panozzo, D.; GrundhĂśfer, A.; Zimmer, H.; Sorkine, E. and Sorkine-
Hornung, O. (July 2016). “Computational Thermoforming”. ACM Transactions on
Graphics 35.4, 1–9. doi: 10.1145/2897824.2925914.

Schüller, C.; Panozzo, D. and Sorkine-Hornung, O. (Nov. 2014). “Appearance-
Mimicking Surfaces”. ACM Transactions on Graphics 33.6, 1–10. doi: 10.1145/
2661229.2661267.

Schumacher, C.; Bickel, B.; Rys, J.; Marschner, S.; Daraio, C. and Gross, M. (July
2015). “Microstructures to Control Elasticity in 3D Printing”. ACM Transactions on
Graphics 34.4, 136:1–136:13. doi: 10.1145/2766926.

Schumacher, C.; Thomaszewski, B.; Coros, S.; Martin, S.; Sumner, R. and Gross,
M. (2012). “Efficient Simulation of Example-Based Materials”. Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics
Association, 1–8. eprint: https://graphics.ethz.ch/~bthomasz/PDF/ESEBM.
pdf.

Schumacher, C.; Thomaszewski, B. and Gross, M. (2016). “Stenciling: Designing
Structurally-Sound Surfaces With Decorative Patterns”. Computer Graphics Forum.
doi: 10.1111/cgf.12967.

Schwartzburg, Y. and Pauly, M. (2011). “Design and Optimization of Orthogonally
Intersecting Planar Surfaces”. Computational Design Modelling. Springer Science +
Business Media, 191–199. doi: 10.1007/978-3-642-23435-4_22.

Schwartzburg, Y. and Pauly, M. (May 2013). “Fabrication-Aware Design With
Intersecting Planar Pieces”. Computer Graphics Forum 32.2pt3, 317–326. doi: 10.
1111/cgf.12051.

Segerman, H. (2009). Surface Autoglyphs. http://www.segerman.org/autologlyph
s.html.

Sethian, J. A. and Wiegmann, A. (Sept. 2000). “Structural Boundary Design via
Level Set and Immersed Interface Methods”. Journal of Computational Physics
163.2, 489–528. doi: 10.1006/jcph.2000.6581.

Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.
Vol. 3. Cambridge university press.

https://doi.org/10.1016/j.cma.2011.08.006
https://doi.org/10.1016/j.cma.2011.08.006
https://doi.org/10.1109/mcg.2013.90
https://doi.org/10.1145/2619195.2656293
https://doi.org/10.1007/s00791-012-0180-1
https://doi.org/10.1016/j.cma.2008.05.004
https://doi.org/10.1145/2897824.2925914
https://doi.org/10.1145/2661229.2661267
https://doi.org/10.1145/2661229.2661267
https://doi.org/10.1145/2766926
https://graphics.ethz.ch/~bthomasz/PDF/ESEBM.pdf
https://graphics.ethz.ch/~bthomasz/PDF/ESEBM.pdf
https://doi.org/10.1111/cgf.12967
https://doi.org/10.1007/978-3-642-23435-4_22
https://doi.org/10.1111/cgf.12051
https://doi.org/10.1111/cgf.12051
http://www.segerman.org/autologlyphs.html
http://www.segerman.org/autologlyphs.html
https://doi.org/10.1006/jcph.2000.6581


Bibliography 241

Shade, J.; Gortler, S.; He, L. and Szeliski, R. (1998). “Layered Depth Images”.
Proceedings of the 25th annual conference on Computer graphics and interactive techniques
- SIGGRAPH ’98. Association for Computing Machinery (ACM). doi: 10.1145/
280814.280882.

Shin, H. V.; Porst, C. F.; Vouga, E.; Ochsendorf, J. and Durand, F. (Feb. 2016). “Rec-
onciling Elastic and Equilibrium Methods for Static Analysis”. ACM Transactions
on Graphics 35.2, 1–16. doi: 10.1145/2835173.

Shu, Y.; Qian, Y.; Sun, H. and Chen, Y. (May 2014). “Efficient Texture Synthesis of
Aggregate Solid Material”. The Visual Computer 30.6-8, 877–887. doi: 10.1007/
s00371-014-0951-4.

Shugrina, M.; Shamir, A. and Matusik, W. (July 2015). “Fab Forms: Customizable
Objects for Fabrication With Validity and Geometry Caching”. ACM Transactions
on Graphics 34.4, 100:1–100:12. doi: 10.1145/2766994.

Sigmund, O. (Feb. 2000). “A New Class of Extremal Composites”. Journal of the
Mechanics and Physics of Solids 48.2, 397–428. doi: 10.1016/s0022-5096(99)00034-
4.

Sigmund, O. (Apr. 2001). “A 99 Line Topology Optimization Code Written in Mat-
lab”. Structural and Multidisciplinary Optimization 21.2, 120–127. doi: 10.1007/
s001580050176.

Sigmund, O. and Petersson, J. (Aug. 1998). “Numerical Instabilities in Topology
Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-De-
pendencies and Local Minima”. Structural Optimization 16.1, 68–75. doi: 10.1007/
bf01214002.

Sigmund, O. (1994a). “Design of Materials Structures Using Topology Optimization”.
Doctoral dissertation.

Sigmund, O. (1994b). “Materials With Prescribed Constitutive Parameters: An In-
verse Homogenization Problem”. Int. J. Solids Struct. 31.17, 2313–2329.

Sigmund, O. (June 1995). “Tailoring Materials With Prescribed Elastic Properties”.
Mechanics of Materials 20.4, 351–368. doi: 10.1016/0167-6636(94)00069-7.

Sigmund, O. (Jan. 1997). “On the Design of Compliant Mechanisms Using Topology
Optimization”. Mechanics of Structures and Machines 25.4, 493–524. doi: 10.1080/
08905459708945415.

Sigmund, O. (Jan. 2007). “Morphology-Based Black and White Filters for Topology
Optimization”. Structural and Multidisciplinary Optimization 33.4-5, 401–424. doi:
10.1007/s00158-006-0087-x.

Sigmund, O. (Mar. 2009a). “Manufacturing Tolerant Topology Optimization”. Acta
Mechanica Sinica 25.2, 227–239. doi: 10.1007/s10409-009-0240-z.

Sigmund, O. (2009b). “Systematic Design of Metamaterials by Topology Optimiza-
tion”. IUTAM Symposium on Modelling Nanomaterials and Nanosystems. Springer
Science + Business Media, 151–159. doi: 10.1007/978-1-4020-9557-3_16.

Sigmund, O.; Aage, N. and Andreassen, E. (Mar. 2016). “On the (Non-)Optimality
of Michell Structures”. Structural and Multidisciplinary Optimization. doi: 10.1007/
s00158-016-1420-7.

Sigmund, O.; Jensen, J. S.; Stolpe, M.; Aage, N.; Andreasen, C. S. and Lazarov,
B. S. (July 2015). “Topology Optimization - Theory, Methods and Applications”.

https://doi.org/10.1145/280814.280882
https://doi.org/10.1145/280814.280882
https://doi.org/10.1145/2835173
https://doi.org/10.1007/s00371-014-0951-4
https://doi.org/10.1007/s00371-014-0951-4
https://doi.org/10.1145/2766994
https://doi.org/10.1016/s0022-5096(99)00034-4
https://doi.org/10.1016/s0022-5096(99)00034-4
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/bf01214002
https://doi.org/10.1007/bf01214002
https://doi.org/10.1016/0167-6636(94)00069-7
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1007/s00158-006-0087-x
https://doi.org/10.1007/s10409-009-0240-z
https://doi.org/10.1007/978-1-4020-9557-3_16
https://doi.org/10.1007/s00158-016-1420-7
https://doi.org/10.1007/s00158-016-1420-7


242 Bibliography

PhD. Course (Technical University of Denmark). http://www.kurser.dtu.dk/
41591.aspx?menulanguage=en-gb.

Sigmund, O. and Maute, K. (June 2012). “Sensitivity Filtering From a Continuum
Mechanics Perspective”. Structural and Multidisciplinary Optimization 46.4, 471–475.
doi: 10.1007/s00158-012-0814-4.

Sigmund, O. and Maute, K. (Aug. 2013). “Topology Optimization Approaches: A
Comparative Review”. Structural and Multidisciplinary Optimization 48.6, 1031–
1055. doi: 10.1007/s00158-013-0978-6.

Skouras, M.; Coros, S.; Grinspun, E. and Thomaszewski, B. (Oct. 2015). “Interactive
Surface Design With Interlocking Elements”. ACM Transactions on Graphics 34.6, 1–
7. doi: 10.1145/2816795.2818128.

Skouras, M.; Thomaszewski, B.; Bickel, B. and Gross, M. (May 2012). “Computa-
tional Design of Rubber Balloons”. Computer Graphics Forum 31.2pt4, 835–844. doi:
10.1111/j.1467-8659.2012.03064.x.

Skouras, M.; Thomaszewski, B.; Coros, S.; Bickel, B. and Gross, M. (July 2013).
“Computational Design of Actuated Deformable Characters”. ACM Transactions
on Graphics 32.4, 1. doi: 10.1145/2461912.2461979.

Smith, J.; Hodgins, J.; Oppenheim, I. and Witkin, A. (July 2002). “Creating Models
of Truss Structures With Optimization”. ACM Transactions on Graphics 21.3. doi:
10.1145/566654.566580.

Sokół, T. (Feb. 2011). “A 99 Line Code for Discretized Michell Truss Optimization
Written in Mathematica”. Structural and Multidisciplinary Optimization 43.2, 181–
190. doi: 10.1007/s00158-010-0557-z.

Soler, C.; Cani, M. and Angelidis, A. (July 2002). “Hierarchical Pattern Mapping”.
ACM Trans. Graph. 21.3, 673–680. doi: 10.1145/566654.566635.

Song, C.; Zhang, H.; Wang, X.; Han, J. and Wang, H. (May 2014). “Fast Corotational
Simulation for Example-Driven Deformation”. Computers & Graphics 40, 49–57.
doi: 10.1016/j.cag.2014.01.003.

Song, P.; Deng, B.; Wang, Z.; Dong, Z.; Li, W.; Fu, C. and Liu, L. (2016). “CofiFab:
Coarse-To-Fine Fabrication of Large 3D Objects”. ACM Transactions on Graphics
(SIGGRAPH 2016) 35.4.

Song, P.; Fu, C. and Cohen-Or, D. (Nov. 2012). “Recursive Interlocking Puzzles”.
ACM Transactions on Graphics 31.6, 1. doi: 10.1145/2366145.2366147.

Song, P.; Fu, C.; Goswami, P.; Zheng, J.; Mitra, N. J. and Cohen-Or, D. (July 2013).
“Reciprocal Frame Structures Made Easy”. ACM Transactions on Graphics 32.4, 1.
doi: 10.1145/2461912.2461915.

Song, P.; Fu, Z.; Liu, L. and Fu, C. (May 2015). “Printing 3D Objects With Interlocking
Parts”. Computer Aided Geometric Design 35-36, 137–148. doi: 10.1016/j.cagd.
2015.03.020.

Stainko, R. (Sept. 2005). “An Adaptive Multilevel Approach to the Minimal Compli-
ance Problem in Topology Optimization”. Communications in Numerical Methods
in Engineering 22.2, 109–118. doi: 10.1002/cnm.800.

Stainko, R. (2006). Advanced Multilevel Techniques to Topology Optimization. na.
Staten, M. L. (2007). “Why Is Hex Meshing So Hard?” Presentation at Sandia

National Laboratories.

http://www.kurser.dtu.dk/41591.aspx?menulanguage=en-gb
http://www.kurser.dtu.dk/41591.aspx?menulanguage=en-gb
https://doi.org/10.1007/s00158-012-0814-4
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1145/2816795.2818128
https://doi.org/10.1111/j.1467-8659.2012.03064.x
https://doi.org/10.1145/2461912.2461979
https://doi.org/10.1145/566654.566580
https://doi.org/10.1007/s00158-010-0557-z
https://doi.org/10.1145/566654.566635
https://doi.org/10.1016/j.cag.2014.01.003
https://doi.org/10.1145/2366145.2366147
https://doi.org/10.1145/2461912.2461915
https://doi.org/10.1016/j.cagd.2015.03.020
https://doi.org/10.1016/j.cagd.2015.03.020
https://doi.org/10.1002/cnm.800


Bibliography 243

Stava, O.; Vanek, J.; Benes, B.; Carr, N. and Měch, R. (July 2012). “Stress Relief:
Improving Structural Strength of 3D Printable Objects”. ACM Transactions on
Graphics 31.4, 1–11. doi: 10.1145/2185520.2185544.

Stolpe, M. and Svanberg, K. (Sept. 2001). “An Alternative Interpolation Scheme for
Minimum Compliance Topology Optimization”. Structural and Multidisciplinary
Optimization 22.2, 116–124. doi: 10.1007/s001580100129.

Stolpe, M. (Jan. 2015). “Truss Topology Optimization With Discrete Design Variables
by Outer Approximation”. Journal of Global Optimization 61.1, 139–163. doi: 10.
1007/s10898-014-0142-x.

Strano, G.; Hao, L.; Everson, R. M. and Evans, K. E. (June 2013). “A New Approach
to the Design and Optimisation of Support Structures in Additive Manufacturing”.
The International Journal of Advanced Manufacturing Technology 66.9-12, 1247–1254.
doi: 10.1007/s00170-012-4403-x.

Sundararaghavan, V. (June 2014). “Reconstruction of Three-Dimensional Anisotropic
Microstructures From Two-Dimensional Micrographs Imaged on Orthogonal
Planes”. Integrating Materials and Manufacturing Innovation 3.1. doi: 10.1186/
s40192-014-0019-3.

Suresh, K. (July 2010). “A 199-Line Matlab Code for Pareto-Optimal Tracing in
Topology Optimization”. Structural and Multidisciplinary Optimization 42.5, 665–
679. doi: 10.1007/s00158-010-0534-6.

Suresh, K. (Jan. 2013). “Efficient Generation of Large-Scale Pareto-Optimal Topolo-
gies”. Structural and Multidisciplinary Optimization 47.1, 49–61. doi: 10.1007/
s00158-012-0807-3.

Sutherland, I. E. (May 1964). “Sketchpad a Man-Machine Graphical Communica-
tion System”. SIMULATION 2.5, R–20. doi: 10.1177/003754976400200514.

Svanberg, K. (Feb. 1987). “The Method of Moving Asymptotes—a New Method for
Structural Optimization”. International Journal for Numerical Methods in Engineering
24.2, 359–373. doi: 10.1002/nme.1620240207.

Svanberg, K. (1995). “A Globally Convergent Version of MMA Without Linesearch”.
Proceedings of the first world congress of structural and multidisciplinary optimization.
Vol. 28. Goslar, Germany, 9–16.

Svanberg, K. (Jan. 2002). “A Class of Globally Convergent Optimization Methods
Based on Conservative Convex Separable Approximations”. SIAM Journal on
Optimization 12.2, 555–573. doi: 10.1137/s1052623499362822.

Svanberg, K. (2007). MMA and GCMMA - Two Methods for Nonlinear Optimization.
Tech. rep. Technical report. eprint: https://people.kth.se/~krille/mmagcmma.
pdf.

Tagliasacchi, A.; Delame, T.; Spagnuolo, M.; Amenta, N. and Telea, A. (May 2016).
“3D Skeletons: A State-Of-The-Art Report”. Computer Graphics Forum 35.2, 573–597.
doi: 10.1111/cgf.12865.

Takayama, K.; Okabe, M.; Ijiri, T. and Igarashi, T. (2008). “Lapped Solid Textures:
Filling a Model With Anisotropic Textures”. ACM SIGGRAPH 2008 papers on -
SIGGRAPH ’08. Association for Computing Machinery (ACM). doi: 10.1145/
1399504.1360652.

https://doi.org/10.1145/2185520.2185544
https://doi.org/10.1007/s001580100129
https://doi.org/10.1007/s10898-014-0142-x
https://doi.org/10.1007/s10898-014-0142-x
https://doi.org/10.1007/s00170-012-4403-x
https://doi.org/10.1186/s40192-014-0019-3
https://doi.org/10.1186/s40192-014-0019-3
https://doi.org/10.1007/s00158-010-0534-6
https://doi.org/10.1007/s00158-012-0807-3
https://doi.org/10.1007/s00158-012-0807-3
https://doi.org/10.1177/003754976400200514
https://doi.org/10.1002/nme.1620240207
https://doi.org/10.1137/s1052623499362822
https://people.kth.se/~krille/mmagcmma.pdf
https://people.kth.se/~krille/mmagcmma.pdf
https://doi.org/10.1111/cgf.12865
https://doi.org/10.1145/1399504.1360652
https://doi.org/10.1145/1399504.1360652


244 Bibliography

Talischi, C.; Paulino, G. H.; Pereira, A. and Menezes, I. F. M. (Jan. 2012). “PolyTop:
A Matlab Implementation of a General Topology Optimization Framework Using
Unstructured Polygonal Finite Element Meshes”. Structural and Multidisciplinary
Optimization 45.3, 329–357. doi: 10.1007/s00158-011-0696-x.

Telea, A. and Jalba, A. (2011). “Voxel-Based Assessment of Printability of 3D
Shapes”. Mathematical Morphology and Its Applications to Image and Signal Processing.
Springer Science + Business Media, 393–404. doi: 10.1007/978-3-642-21569-
8_34.

Thomaszewski, B.; Coros, S.; Gauge, D.; Megaro, V.; Grinspun, E. and Gross, M.
(July 2014). “Computational Design of Linkage-Based Characters”. ACM Transac-
tions on Graphics 33.4, 1–9. doi: 10.1145/2601097.2601143.

Thrimurthulu, K.; Pandey, P. M. and Reddy, N. V. (May 2004). “Optimum Part
Deposition Orientation in Fused Deposition Modeling”. International Journal of
Machine Tools and Manufacture 44.6, 585–594. doi: 10.1016/j.ijmachtools.2003.
12.004.

Tomlin, M. and Meyer, J. (2011). “Topology Optimization of an Additive Layer
Manufactured (ALM) Aerospace Part”. Proceeding of the 7th Altair CAE technology
conference, 1–9. eprint: http://www.pfonline.com/cdn/cms/uploadedFiles/
Topology-Optimization-of-an-Additive-Layer-Manufactured-Aerospace-

Part.pdf.
Tong, X.; Zhang, J.; Liu, L.; Wang, X.; Guo, B. and Shum, H. (2002). “Synthesis

of Bidirectional Texture Functions on Arbitrary Surfaces”. Proceedings of the 29th
annual conference on Computer graphics and interactive techniques - SIGGRAPH ’02.
Association for Computing Machinery (ACM). doi: 10.1145/566570.566634.

Turk, G. (2001). “Texture Synthesis on Surfaces”. Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’01. New
York, NY, USA: ACM, 347–354. doi: 10.1145/383259.383297.

Turner, D. M. and Kalidindi, S. R. (Jan. 2016). “Statistical Construction of 3-
D Microstructures From 2-D Exemplars Collected on Oblique Sections”. Acta
Materialia 102, 136–148. doi: 10.1016/j.actamat.2015.09.011.

Ulu, E.; Korkmaz, E.; Yay, K.; Ozdoganlar, O. B. and Kara, L. B. (Oct. 2015). “En-
hancing the Structural Performance of Additively Manufactured Objects Through
Build Orientation Optimization”. Journal of Mechanical Design 137.11, 111410. doi:
10.1115/1.4030998.

Umetani, N.; Bickel, B. and Matusik, W. (2015). “Computational Tools for 3D
Printing”. ACM SIGGRAPH 2015 Courses on - SIGGRAPH ’15. Association for
Computing Machinery (ACM). doi: 10.1145/2776880.2792718.

Umetani, N.; Igarashi, T. and Mitra, N. J. (July 2012). “Guided Exploration of
Physically Valid Shapes for Furniture Design”. ACM Transactions on Graphics
31.4, 1–11. doi: 10.1145/2185520.2185582.

Umetani, N.; Kaufman, D. M.; Igarashi, T. and Grinspun, E. (2011). “Sensitive
Couture for Interactive Garment Modeling and Editing”. ACM SIGGRAPH 2011
papers on - SIGGRAPH ’11. Association for Computing Machinery (ACM). doi:
10.1145/1964921.1964985.

https://doi.org/10.1007/s00158-011-0696-x
https://doi.org/10.1007/978-3-642-21569-8_34
https://doi.org/10.1007/978-3-642-21569-8_34
https://doi.org/10.1145/2601097.2601143
https://doi.org/10.1016/j.ijmachtools.2003.12.004
https://doi.org/10.1016/j.ijmachtools.2003.12.004
http://www.pfonline.com/cdn/cms/uploadedFiles/Topology-Optimization-of-an-Additive-Layer-Manufactured-Aerospace-Part.pdf
http://www.pfonline.com/cdn/cms/uploadedFiles/Topology-Optimization-of-an-Additive-Layer-Manufactured-Aerospace-Part.pdf
http://www.pfonline.com/cdn/cms/uploadedFiles/Topology-Optimization-of-an-Additive-Layer-Manufactured-Aerospace-Part.pdf
https://doi.org/10.1145/566570.566634
https://doi.org/10.1145/383259.383297
https://doi.org/10.1016/j.actamat.2015.09.011
https://doi.org/10.1115/1.4030998
https://doi.org/10.1145/2776880.2792718
https://doi.org/10.1145/2185520.2185582
https://doi.org/10.1145/1964921.1964985


Bibliography 245

Umetani, N.; Koyama, Y.; Schmidt, R. and Igarashi, T. (July 2014). “Pteromys: In-
teractive Design and Optimization of Free-Formed Free-Flight Model Airplanes”.
ACM Transactions on Graphics 33.4, 1–10. doi: 10.1145/2601097.2601129.

Umetani, N.; Mitani, J. and Igarashi, T. (2010). “Designing Custom-Made Metal-
lophone With Concurrent Eigenanalysis”. NIME. Vol. 10. Citeseer, 26–30. eprint:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.478.1030\

&rep=rep1\&type=pdf.
Umetani, N.; Panotopoulou, A.; Schmidt, R. and Whiting, E. (Nov. 2016). “Print-

one: Interactive Resonance Simulation for Free-Form Print-Wind Instrument De-
sign”. ACM Transactions on Graphics 35.6, 1–14. doi: 10.1145/2980179.2980250.

Umetani, N. and Schmidt, R. (2013). “Cross-Sectional Structural Analysis for 3D
Printing Optimization”. SIGGRAPH Asia 2013 Technical Briefs on - SA ’13. Associa-
tion for Computing Machinery (ACM). doi: 10.1145/2542355.2542361.

Vallet, B. and Lévy, B. (Apr. 2008). “Spectral Geometry Processing With Manifold
Harmonics”. Computer Graphics Forum 27.2, 251–260. doi: 10.1111/j.1467-
8659.2008.01122.x.

Van Der Burg, M. W. D.; Shulmeister, V.; Van Der Geissen, E. and Marissen, R.
(1997). “On the Linear Elastic Properties of Regular and Random Open-Cell Foam
Models”. Journal of Cellular Plastics 33.1, 31–54.

Van Hook, T. (1986). “Real-Time Shaded NC Milling Display”. Proceedings of the
13th annual conference on Computer graphics and interactive techniques - SIGGRAPH
’86. Association for Computing Machinery (ACM). doi: 10.1145/15922.15887.

Vanegas, C. A.; Aliaga, D. G.; Wonka, P.; Müller, P.; Waddell, P. and Watson, B.
(2010). “Modelling the Appearance and Behaviour of Urban Spaces”. Computer
Graphics Forum. Vol. 29. 1. Wiley Online Library, 25–42. eprint: https://pdfs.
semanticscholar.org/2fa5/555bd7300b7383e62b489169db3dd460533d.pdf.

Vanek, J.; Galicia, J. A. G. and Benes, B. (Aug. 2014a). “Clever Support: Efficient
Support Structure Generation for Digital Fabrication”. Computer Graphics Forum
33.5, 117–125. doi: 10.1111/cgf.12437.

Vanek, J.; Galicia, J. A. G.; Benes, B.; Měch, R.; Carr, N.; Stava, O. and Miller, G. S.
(May 2014b). “PackMerger: A 3D Print Volume Optimizer”. Computer Graphics
Forum 33.6, 322–332. doi: 10.1111/cgf.12353.

Vanhoey, K.; Sauvage, B.; Larue, F. and Dischler, J. (Nov. 2013). “On-The-Fly Multi-
Scale Infinite Texturing From Example”. ACM Transactions on Graphics 32.6, 1–10.
doi: 10.1145/2508363.2508383.

Verbart, A.; Langelaar, M. and Keulen, F. van (May 2016). “Damage Approach: A
New Method for Topology Optimization With Local Stress Constraints”. Structural
and Multidisciplinary Optimization 53.5, 1081–1098. doi: 10.1007/s00158-015-
1318-9.

Vidimce, K.; Kaspar, A.; Wang, Y. and Matusik, W. (2016). “Foundry: Hierarchical
Material Design for Multi-Material Fabrication”. Proceedings of the 29th Annual
Symposium on User Interface Software and Technology - UIST ’16. Association for
Computing Machinery (ACM). doi: 10.1145/2984511.2984516.

https://doi.org/10.1145/2601097.2601129
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.478.1030\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.478.1030\&rep=rep1\&type=pdf
https://doi.org/10.1145/2980179.2980250
https://doi.org/10.1145/2542355.2542361
https://doi.org/10.1111/j.1467-8659.2008.01122.x
https://doi.org/10.1111/j.1467-8659.2008.01122.x
https://doi.org/10.1145/15922.15887
https://pdfs.semanticscholar.org/2fa5/555bd7300b7383e62b489169db3dd460533d.pdf
https://pdfs.semanticscholar.org/2fa5/555bd7300b7383e62b489169db3dd460533d.pdf
https://doi.org/10.1111/cgf.12437
https://doi.org/10.1111/cgf.12353
https://doi.org/10.1145/2508363.2508383
https://doi.org/10.1007/s00158-015-1318-9
https://doi.org/10.1007/s00158-015-1318-9
https://doi.org/10.1145/2984511.2984516


246 Bibliography

Vidimče, K.; Wang, S.; Ragan-Kelley, J. and Matusik, W. (July 2013). “OpenFab:
A Programmable Pipeline for Multi-Material Fabrication”. ACM Transactions on
Graphics 32.4, 1. doi: 10.1145/2461912.2461993.

Vouga, E.; Höbinger, M.; Wallner, J. and Pottmann, H. (July 2012). “Design of
Self-Supporting Surfaces”. ACM Transactions on Graphics 31.4, 1–11. doi: 10.1145/
2185520.2185583.

Wadbro, E. and Berggren, M. (Nov. 2009). “Megapixel Topology Optimization on a
Graphics Processing Unit”. SIAM Review 51.4, 707–721. doi: 10.1137/070699822.

Wallin, M. and Ristinmaa, M. (June 2015). “Topology Optimization Utilizing
Inverse Motion Based Form Finding”. Computer Methods in Applied Mechanics and
Engineering 289, 316–331. doi: 10.1016/j.cma.2015.02.015.

Wang, C. C. L. and Chen, Y. (Sept. 2013). “Thickening Freeform Surfaces for Solid
Fabrication”. Rapid Prototyping Journal 19.6, 395–406. doi: 10.1108/rpj-02-2012-
0013.

Wang, C. C. L. and Manocha, D. (Feb. 2013). “GPU-based Offset Surface Compu-
tation Using Point Samples”. Computer-Aided Design 45.2, 321–330. doi: 10.1016/
j.cad.2012.10.015.

Wang, F.; Jensen, J. S. and Sigmund, O. (Oct. 2012). “High-Performance Slow Light
Photonic Crystal Waveguides With Topology Optimized or Circular-Hole Based
Material Layouts”. Photonics and Nanostructures - Fundamentals and Applications
10.4, 378–388. doi: 10.1016/j.photonics.2012.04.004.

Wang, F.; Lazarov, B. S. and Sigmund, O. (June 2011). “On Projection Methods,
Convergence and Robust Formulations in Topology Optimization”. Structural and
Multidisciplinary Optimization 43.6, 767–784. doi: 10.1007/s00158-010-0602-y.

Wang, L. and Whiting, E. (May 2016). “Buoyancy Optimization for Computational
Fabrication”. Computer Graphics Forum 35.2, 49–58. doi: 10.1111/cgf.12810.

Wang, L.; Zhou, K.; Yu, Y. and Guo, B. (2010). “Vector Solid Textures”. ACM
SIGGRAPH 2010 papers on - SIGGRAPH ’10. Association for Computing Machinery
(ACM). doi: 10.1145/1833349.1778823.

Wang, M. Y. et al. (2005). Professor Wang’s Research Group. url: http://ihome.ust.
hk/~mywang/Download.html.

Wang, M. Y.; Wang, X. and Guo, D. (Jan. 2003). “A Level Set Method for Structural
Topology Optimization”. Computer Methods in Applied Mechanics and Engineering
192.1-2, 227–246. doi: 10.1016/s0045-7825(02)00559-5.

Wang, W. M.; Zanni, C. and Kobbelt, L. (May 2016a). “Improved Surface Quality
in 3D Printing by Optimizing the Printing Direction”. Computer Graphics Forum
35.2, 59–70. doi: 10.1111/cgf.12811.

Wang, W.; Chao, H.; Tong, J.; Yang, Z.; Tong, X.; Li, H.; Liu, X. and Liu, L.
(Jan. 2015). “Saliency-Preserving Slicing Optimization for Effective 3D Printing”.
Computer Graphics Forum 34.6, 148–160. doi: 10.1111/cgf.12527.

Wang, W.; Liu, X. and Liu, L. (July 2014a). “Upright Orientation of 3D Shapes via
Tensor Rank Minimization”. Journal of Mechanical Science and Technology 28.7, 2469–
2477. doi: 10.1007/s12206-014-0604-6.

Wang, W.; Wang, T. Y.; Yang, Z.; Liu, L.; Tong, X.; Tong, W.; Deng, J.; Chen, F.
and Liu, X. (Nov. 2013). “Cost-Effective Printing of 3D Objects With Skin-Frame

https://doi.org/10.1145/2461912.2461993
https://doi.org/10.1145/2185520.2185583
https://doi.org/10.1145/2185520.2185583
https://doi.org/10.1137/070699822
https://doi.org/10.1016/j.cma.2015.02.015
https://doi.org/10.1108/rpj-02-2012-0013
https://doi.org/10.1108/rpj-02-2012-0013
https://doi.org/10.1016/j.cad.2012.10.015
https://doi.org/10.1016/j.cad.2012.10.015
https://doi.org/10.1016/j.photonics.2012.04.004
https://doi.org/10.1007/s00158-010-0602-y
https://doi.org/10.1111/cgf.12810
https://doi.org/10.1145/1833349.1778823
http://ihome.ust.hk/~mywang/Download.html
http://ihome.ust.hk/~mywang/Download.html
https://doi.org/10.1016/s0045-7825(02)00559-5
https://doi.org/10.1111/cgf.12811
https://doi.org/10.1111/cgf.12527
https://doi.org/10.1007/s12206-014-0604-6


Bibliography 247

Structures”. ACM Transactions on Graphics 32.6, 1–10. doi: 10.1145/2508363.
2508382.

Wang, X.; Mei, Y. and Wang, M. (Aug. 2004). “Incorporating Topological Derivatives
Into Level Set Methods for Structural Topology Optimization”. 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. American Institute of Aero-
nautics and Astronautics (AIAA). doi: 10.2514/6.2004-4564.

Wang, Y.; Luo, Z.; Zhang, N. and Kang, Z. (May 2014b). “Topological Shape
Optimization of Microstructural Metamaterials Using a Level Set Method”. Com-
putational Materials Science 87, 178–186. doi: 10.1016/j.commatsci.2014.02.006.

Wang, Y.; Luo, Z.; Zhang, X. and Kang, Z. (Mar. 2014c). “Topological Design of
Compliant Smart Structures With Embedded Movable Actuators”. Smart Materials
and Structures 23.4, 045024. doi: 10.1088/0964-1726/23/4/045024.

Wang, Y.; Zhang, L. and Wang, M. Y. (June 2016b). “Length Scale Control for
Structural Optimization by Level Sets”. Computer Methods in Applied Mechanics and
Engineering 305, 891–909. doi: 10.1016/j.cma.2016.03.037.

Wei, L. (2002). “Texture Synthesis by Fixed Neighborhood Searching”. AAI3038169.
Doctoral dissertation. Stanford, CA, USA.

Wei, L.; Lefebvre, S.; Kwatra, V. and Turk, G. (2009). “State of the Art in Example-
Based Texture Synthesis”. Eurographics 2009, State of the Art Report, EG-STAR.
Eurographics Association, 93–117. eprint: https://hal.archives-ouvertes.
fr/docs/00/60/68/53/PDF/texture_synthesis_eg09star.pdf.

Wei, L. and Levoy, M. (2000). “Fast Texture Synthesis Using Tree-Structured Vector
Quantization”. Proc. of SIGGRAPH 2000, 479–488.

Wei, L. and Levoy, M. (2001). “Texture Synthesis Over Arbitrary Manifold Surfaces”.
Proceedings of the 28th annual conference on Computer graphics and interactive techniques
- SIGGRAPH ’01. Association for Computing Machinery (ACM). doi: 10.1145/
383259.383298.

Weyrich, T.; Peers, P.; Matusik, W. and Rusinkiewicz, S. (2009). “Fabricating
Microgeometry for Custom Surface Reflectance”. ACM SIGGRAPH 2009 papers on
- SIGGRAPH ’09. Association for Computing Machinery (ACM). doi: 10.1145/
1576246.1531338.

Whiting, E.; Ochsendorf, J. and Durand, F. (2009). “Procedural Modeling of
Structurally-Sound Masonry Buildings”. ACM SIGGRAPH Asia 2009 papers on -
SIGGRAPH Asia ’09. Association for Computing Machinery (ACM). doi: 10.1145/
1661412.1618458.

Whiting, E.; Shin, H.; Wang, R.; Ochsendorf, J. and Durand, F. (Nov. 2012).
“Structural Optimization of 3D Masonry Buildings”. ACM Transactions on Graphics
31.6, 1. doi: 10.1145/2366145.2366178.

Williams, J. and Rossignac, J. (July 2005). “Mason: Morphological Simplification”.
Graphical Models 67.4, 285–303. doi: 10.1016/j.gmod.2004.10.001.

Worley, S. (1996). “A Cellular Texture Basis Function”. Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques - SIGGRAPH ’96.
Association for Computing Machinery (ACM). doi: 10.1145/237170.237267.

https://doi.org/10.1145/2508363.2508382
https://doi.org/10.1145/2508363.2508382
https://doi.org/10.2514/6.2004-4564
https://doi.org/10.1016/j.commatsci.2014.02.006
https://doi.org/10.1088/0964-1726/23/4/045024
https://doi.org/10.1016/j.cma.2016.03.037
https://hal.archives-ouvertes.fr/docs/00/60/68/53/PDF/texture_synthesis_eg09star.pdf
https://hal.archives-ouvertes.fr/docs/00/60/68/53/PDF/texture_synthesis_eg09star.pdf
https://doi.org/10.1145/383259.383298
https://doi.org/10.1145/383259.383298
https://doi.org/10.1145/1576246.1531338
https://doi.org/10.1145/1576246.1531338
https://doi.org/10.1145/1661412.1618458
https://doi.org/10.1145/1661412.1618458
https://doi.org/10.1145/2366145.2366178
https://doi.org/10.1016/j.gmod.2004.10.001
https://doi.org/10.1145/237170.237267


248 Bibliography

Wu, J.; Dick, C. and Westermann, R. (Mar. 2016a). “A System for High-Resolution
Topology Optimization”. IEEE Transactions on Visualization and Computer Graphics
22.3, 1195–1208. doi: 10.1109/tvcg.2015.2502588.

Wu, J.; Kramer, L. and Westermann, R. (Aug. 2016b). “Shape Interior Modeling and
Mass Property Optimization Using Ray-Reps”. Computers & Graphics 58, 66–72.
doi: 10.1016/j.cag.2016.05.003.

Wu, J.; Wang, C. C.; Zhang, X. and Westermann, R. (Aug. 2016c). “Self-Supporting
Rhombic Infill Structures for Additive Manufacturing”. Computer-Aided Design.
doi: 10.1016/j.cad.2016.07.006.

Wu, R.; Wang, W. and Yu, Y. (Mar. 2014). “Optimized Synthesis of Art Patterns
and Layered Textures”. IEEE Transactions on Visualization and Computer Graphics
20.3, 436–446. doi: 10.1109/tvcg.2013.113.

Xia, L. and Breitkopf, P. (July 2015). “Design of Materials Using Topology Opti-
mization and Energy-Based Homogenization Approach in Matlab”. Structural and
Multidisciplinary Optimization 52.6, 1229–1241. doi: 10.1007/s00158-015-1294-0.

Xia, L.; Zhu, J.; Zhang, W. and Breitkopf, P. (Apr. 2013). “An Implicit Model
for the Integrated Optimization of Component Layout and Structure Topology”.
Computer Methods in Applied Mechanics and Engineering 257, 87–102. doi: 10.1016/
j.cma.2013.01.008.

Xie, Y.; Xu, W.; Yang, Y.; Guo, X. and Zhou, K. (2015). “Agile Structural Analysis
for Fabrication-Aware Shape Editing”. Computer Aided Geometric Design 35, 163–
179. eprint: https://pdfs.semanticscholar.org/5921/9998691bba31c3697f
9c032c0977ab16cc36.pdf.

Xin, S.; Lai, C.; Fu, C.; Wong, T.; He, Y. and Cohen-Or, D. (2011). “Making Burr
Puzzles From 3D Models”. ACM SIGGRAPH 2011 papers on - SIGGRAPH ’11.
Association for Computing Machinery (ACM). doi: 10.1145/1964921.1964992.

Xu, H.; Li, Y.; Chen, Y. and Barbič, J. (2015a). “Interactive Material Design Using
Model Reduction”. ACM Transactions on Graphics (TOG) 34.2, 18. eprint: http://
www-bcf.usc.edu/~yongchen/Research/materialEditor-tog-accepted.pdf.

Xu, H.; Sin, F.; Zhu, Y. and Barbič, J. (July 2015b). “Nonlinear Material Design
Using Principal Stretches”. ACM Transactions on Graphics 34.4, 75:1–75:11. doi:
10.1145/2766917.

Xu, K.; Li, H.; Zhang, H.; Cohen-Or, D.; Xiong, Y. and Cheng, Z. (2010). “Style-
Content Separation by Anisotropic Part Scales”. ACM Trans. Graph. 29.6, 184:1–
184:10.

Xu, K.; Zhang, H.; Cohen-Or, D. and Chen, B. (2012). “Fit and Diverse: Set Evolution
for Inspiring 3D Shape Galleries”. ACM Trans. Graph. 31.4, 57:1–57:10.

Xu, W.; Li, W. and Liu, L. (May 2016). “Skeleton-Sectional Structural Analysis
for 3D Printing”. Journal of Computer Science and Technology 31.3, 439–449. doi:
10.1007/s11390-016-1638-2.

Yang, N.; Tian, Y. and Zhang, D. (Nov. 2015). “Novel Real Function Based Method
to Construct Heterogeneous Porous Scaffolds and Additive Manufacturing for
Use in Medical Engineering”. Medical Engineering & Physics 37.11, 1037–1046. doi:
10.1016/j.medengphy.2015.08.006.

https://doi.org/10.1109/tvcg.2015.2502588
https://doi.org/10.1016/j.cag.2016.05.003
https://doi.org/10.1016/j.cad.2016.07.006
https://doi.org/10.1109/tvcg.2013.113
https://doi.org/10.1007/s00158-015-1294-0
https://doi.org/10.1016/j.cma.2013.01.008
https://doi.org/10.1016/j.cma.2013.01.008
https://pdfs.semanticscholar.org/5921/9998691bba31c3697f9c032c0977ab16cc36.pdf
https://pdfs.semanticscholar.org/5921/9998691bba31c3697f9c032c0977ab16cc36.pdf
https://doi.org/10.1145/1964921.1964992
http://www-bcf.usc.edu/~yongchen/Research/materialEditor-tog-accepted.pdf
http://www-bcf.usc.edu/~yongchen/Research/materialEditor-tog-accepted.pdf
https://doi.org/10.1145/2766917
https://doi.org/10.1007/s11390-016-1638-2
https://doi.org/10.1016/j.medengphy.2015.08.006


Bibliography 249

Yao, M.; Chen, Z.; Luo, L.; Wang, R. and Wang, H. (Oct. 2015). “Level-Set-Based
Partitioning and Packing Optimization of a Printable Model”. ACM Transactions
on Graphics 34.6, 1–11. doi: 10.1145/2816795.2818064.

Ying, L.; Hertzmann, A.; Biermann, H. and Zorin, D. (2001). “Texture and Shape
Synthesis on Surfaces”. English. Rendering Techniques 2001. Ed. by Gortler, S. and
Myszkowski, K. Eurographics. Springer Vienna, 301–312. doi: 10.1007/978-3-
7091-6242-2\_28.

Yoshida, H. et al. (2015). “Architecture-Scale Human-Assisted Additive Manufac-
turing”. ACM Transactions on Graphics (TOG) 34.4, 88. eprint: https://pdfs.
semanticscholar.org/2c38/aa009ced53f8d65a8f445395077577851c98.pdf.

You, Y. H.; Kou, S. T. and Tan, S. T. (Jan. 2016). “A New Approach for Irregular
Porous Structure Modeling Based on Centroidal Voronoi Tessellation and B-
Spline”. Computer-Aided Design and Applications 13.4, 484–489. doi: 10.1080/
16864360.2015.1131542.

Zegard, T. and Paulino, G. H. (June 2014). “GRAND — Ground Structure Based
Topology Optimization for Arbitrary 2D Domains Using MATLAB”. Structural and
Multidisciplinary Optimization 50.5, 861–882. doi: 10.1007/s00158-014-1085-z.

Zegard, T. and Paulino, G. H. (July 2015). “GRAND3 — Ground Structure Based
Topology Optimization for Arbitrary 3D Domains Using MATLAB”. Structural and
Multidisciplinary Optimization 52.6, 1161–1184. doi: 10.1007/s00158-015-1284-2.

Zehnder, J.; Coros, S. and Thomaszewski, B. (July 2016). “Designing Structurally-
Sound Ornamental Curve Networks”. ACM Transactions on Graphics 35.4, 1–10.
doi: 10.1145/2897824.2925888.

Zhang, J.; Zhang, W.; Zhu, J. and Xia, L. (Oct. 2012). “Integrated Layout Design
of Multi-Component Systems Using XFEM and Analytical Sensitivity Analysis”.
Computer Methods in Applied Mechanics and Engineering 245-246, 75–89. doi: 10.
1016/j.cma.2012.06.022.

Zhang, J.; Zhou, K.; Velho, L.; Guo, B. and Shum, H. (July 2003). “Synthesis of Pro-
gressively-Variant Textures on Arbitrary Surfaces”. ACM Trans. Graph. 22.3, 295–
302. doi: 10.1145/882262.882266.

Zhang, W.; Xia, L.; Zhu, J. and Zhang, Q. (2011). “Some Recent Advances in
the Integrated Layout Design of Multicomponent Systems”. Journal of Mechanical
Design 133.10, 104503. doi: 10.1115/1.4005083.

Zhang, W.; Yuan, J.; Zhang, J. and Guo, X. (June 2016a). “A New Topology
Optimization Approach Based on Moving Morphable Components (MMC) and
the Ersatz Material Model”. Structural and Multidisciplinary Optimization 53.6, 1243–
1260. doi: 10.1007/s00158-015-1372-3.

Zhang, W.; Zhong, W. and Guo, X. (Dec. 2014). “An Explicit Length Scale Control
Approach in SIMP-based Topology Optimization”. Computer Methods in Applied
Mechanics and Engineering 282, 71–86. doi: 10.1016/j.cma.2014.08.027.

Zhang, W.; Zhong, W. and Guo, X. (June 2015a). “Explicit Layout Control in
Optimal Design of Structural Systems With Multiple Embedding Components”.
Computer Methods in Applied Mechanics and Engineering 290, 290–313. doi: 10.1016/
j.cma.2015.03.007.

https://doi.org/10.1145/2816795.2818064
https://doi.org/10.1007/978-3-7091-6242-2\_28
https://doi.org/10.1007/978-3-7091-6242-2\_28
https://pdfs.semanticscholar.org/2c38/aa009ced53f8d65a8f445395077577851c98.pdf
https://pdfs.semanticscholar.org/2c38/aa009ced53f8d65a8f445395077577851c98.pdf
https://doi.org/10.1080/16864360.2015.1131542
https://doi.org/10.1080/16864360.2015.1131542
https://doi.org/10.1007/s00158-014-1085-z
https://doi.org/10.1007/s00158-015-1284-2
https://doi.org/10.1145/2897824.2925888
https://doi.org/10.1016/j.cma.2012.06.022
https://doi.org/10.1016/j.cma.2012.06.022
https://doi.org/10.1145/882262.882266
https://doi.org/10.1115/1.4005083
https://doi.org/10.1007/s00158-015-1372-3
https://doi.org/10.1016/j.cma.2014.08.027
https://doi.org/10.1016/j.cma.2015.03.007
https://doi.org/10.1016/j.cma.2015.03.007


250 Bibliography

Zhang, W.; Zheng, J. and Thalmann, N. M. (May 2015b). “Real-Time Subspace In-
tegration for Example-Based Elastic Material”. Computer Graphics Forum 34.2, 395–
404. doi: 10.1111/cgf.12569.

Zhang, X.; Xia, Y.; Wang, J.; Yang, Z.; Tu, C. and Wang, W. (May 2015c). “Medial
Axis Tree—an Internal Supporting Structure for 3D Printing”. Computer Aided
Geometric Design 35-36, 149–162. doi: 10.1016/j.cagd.2015.03.012.

Zhang, X.; Le, X.; Panotopoulou, A.; Whiting, E. and Wang, C. C. (2015d). “Percep-
tual Models of Preference in 3D Printing Direction”. ACM Transactions on Graphics
(TOG) 34.6, 215. eprint: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.710.582\&rep=rep1\&type=pdf.

Zhang, X.; Le, X.; Wu, Z.; Whiting, E. and Wang, C. C. L. (2016b). “Data-Driven
Bending Elasticity Design by Shell Thickness”. Computer Graphics Forum. doi:
10.1111/cgf.12972.

Zhang, Y.; Yin, C.; Zheng, C. and Zhou, K. (July 2015e). “Computational Hydro-
graphic Printing”. ACM Transactions on Graphics 34.4, 131:1–131:11. doi: 10.1145/
2766932.

Zhao, H.; Hong, C.; Lin, J.; Jin, X. and Xu, W. (Mar. 2016a). “Make It Swing:
Fabricating Personalized Roly-Poly Toys”. Computer Aided Geometric Design 43, 226–
236. doi: 10.1016/j.cagd.2016.02.001.

Zhao, H. et al. (July 2016b). “Connected Fermat Spirals for Layered Fabrication”.
ACM Transactions on Graphics 35.4, 1–10. doi: 10.1145/2897824.2925958.

Zhou, K.; Huang, X.; Wang, X.; Tong, Y.; Desbrun, M.; Guo, B. and Shum, H. (July
2006). “Mesh Quilting for Geometric Texture Synthesis”. ACM Transactions on
Graphics 25.3, 690. doi: 10.1145/1141911.1141942.

Zhou, M. and Rozvany, G. I. N. (Aug. 1991). “The COC Algorithm, Part II: Topo-
logical, Geometrical and Generalized Shape Optimization”. Computer Methods in
Applied Mechanics and Engineering 89.1-3, 309–336. doi: 10.1016/0045-7825(91)
90046-9.

Zhou, M.; Lazarov, B. S. and Sigmund, O. (Apr. 2014a). “Topology Optimization
for Optical Projection Lithography With Manufacturing Uncertainties”. Applied
Optics 53.12, 2720. doi: 10.1364/ao.53.002720.

Zhou, M.; Lazarov, B. S.; Wang, F. and Sigmund, O. (Aug. 2015). “Minimum Length
Scale in Topology Optimization by Geometric Constraints”. Computer Methods in
Applied Mechanics and Engineering 293, 266–282. doi: 10.1016/j.cma.2015.05.
003.

Zhou, M. and Wang, M. Y. (Dec. 2013). “Engineering Feature Design for Level
Set Based Structural Optimization”. Computer-Aided Design 45.12, 1524–1537. doi:
10.1016/j.cad.2013.06.016.

Zhou, Q. and Jacobson, A. (2016). “Thingi10K: A Dataset of 10, 000 3D-Printing
Models”. CoRR abs/1605.04797.

Zhou, Q.; Panetta, J. and Zorin, D. (July 2013). “Worst-Case Structural Analysis”.
ACM Transactions on Graphics 32.4, 1. doi: 10.1145/2461912.2461967.

Zhou, S. and Li, Q. (June 2008). “Design of Graded Two-Phase Microstructures for
Tailored Elasticity Gradients”. Journal of Materials Science 43.15, 5157–5167. doi:
10.1007/s10853-008-2722-y.

https://doi.org/10.1111/cgf.12569
https://doi.org/10.1016/j.cagd.2015.03.012
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.710.582\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.710.582\&rep=rep1\&type=pdf
https://doi.org/10.1111/cgf.12972
https://doi.org/10.1145/2766932
https://doi.org/10.1145/2766932
https://doi.org/10.1016/j.cagd.2016.02.001
https://doi.org/10.1145/2897824.2925958
https://doi.org/10.1145/1141911.1141942
https://doi.org/10.1016/0045-7825(91)90046-9
https://doi.org/10.1016/0045-7825(91)90046-9
https://doi.org/10.1364/ao.53.002720
https://doi.org/10.1016/j.cma.2015.05.003
https://doi.org/10.1016/j.cma.2015.05.003
https://doi.org/10.1016/j.cad.2013.06.016
https://doi.org/10.1145/2461912.2461967
https://doi.org/10.1007/s10853-008-2722-y


Bibliography 251

Zhou, S.; Jiang, C. and Lefebvre, S. (Nov. 2014b). “Topology-Constrained Synthesis
of Vector Patterns”. ACM Transactions on Graphics 33.6, 1–11. doi: 10 . 1145 /
2661229.2661238.

Zhou, Y.; Zhang, W.; Zhu, J. and Xu, Z. (Oct. 2016). “Feature-Driven Topology Op-
timization Method With Signed Distance Function”. Computer Methods in Applied
Mechanics and Engineering 310, 1–32. doi: 10.1016/j.cma.2016.06.027.

Zhu, F.; Li, S. and Wang, G. (Aug. 2014). “Example-Based Materials in Laplace-
Beltrami Shape Space”. Computer Graphics Forum 34.1, 36–46. doi: 10.1111/cgf.
12457.

Zillober, C. (Sept. 1993). “A Globally Convergent Version of the Method of Moving
Asymptotes”. Structural Optimization 6.3, 166–174. doi: 10.1007/bf01743509.

Zuo, Z. H. and Xie, Y. M. (July 2015). “A Simple and Compact Python Code for
Complex 3D Topology Optimization”. Advances in Engineering Software 85, 1–11.
doi: 10.1016/j.advengsoft.2015.02.006.

https://doi.org/10.1145/2661229.2661238
https://doi.org/10.1145/2661229.2661238
https://doi.org/10.1016/j.cma.2016.06.027
https://doi.org/10.1111/cgf.12457
https://doi.org/10.1111/cgf.12457
https://doi.org/10.1007/bf01743509
https://doi.org/10.1016/j.advengsoft.2015.02.006






Abstract

The main goal of this thesis is to propose methods to synthesize shapes in a controllable manner,
with the purpose of being fabricated. As 3D printers grow more accessible than ever, modeling
software must now take into account fabrication constraints posed by additive manufacturing
technologies. Consequently, efficient algorithms need to be devised to model the complex shapes
that can be created through 3D printing. We develop algorithms for by-example shape synthesis
that consider the physical behavior of the structure to fabricate. All the contributions of this
thesis focus on the problem of generating complex shapes that follow geometric constraints and
structural objectives.

In a first time, we focus on dealing with fabrication constraints, and propose a method for
synthesizing efficient support structures that are well-suited for filament printers. In a second
time, we take into account appearance control, and develop new by-example synthesis methods
that mixes in a meaningful manner criteria on the appearance of the synthesized shapes, and
constraints on their mechanical behavior. Finally, we present a highly scalable method to
control the elastic properties of printed structures. We draw inspiration from procedural texture
synthesis methods, and propose an efficient algorithm to synthesize printable microstructures
with controlled elastic properties.

Keywords: 3D Printing, Fabrication Constraints, Shape Synthesis, Modeling, By-Example
Synthesis, Procedural Texturing, Topology Optimization.

Résumé

L’objet principal de cette thèse est de proposer des méthodes pour la synthèse de formes qui soient
contrôlables et permettent d’imprimer les résultats obtenus. Les imprimantes 3D étant désormais
plus faciles d’accès que jamais, les logiciels de modélisation doivent maintenant prendre en
compte les contraintes de fabrication imposées par les technologies de fabrication additives. En
conséquence, des algorithmes efficaces doivent être développés afin de modéliser les formes
complexes qui peuvent être créées par impression 3D. Nous développons des algorithmes
pour la synthèse de formes par l’exemple qui prennent en compte le comportement mécanique
des structures devant être fabriquées. Toutes les contributions de cette thèse s’intéressent
au problème de génération de formes complexes sous contraintes géométriques et objectifs
structurels.

Dans un premier temps, nous nous intéressons à la gestion des contraintes de fabrication, et
proposons une méthode pour synthétiser des structures de support efficaces qui sont bien
adaptées aux imprimantes à filament. Dans un deuxième temps, nous prenons en compte le
contrôle de l’apparence, et développons de nouvelles méthodes pour la synthèse par l’exemple
qui mélangent astucieusement des critères sur visuels, et des contraintes sur le comportement
mécanique des objets. Pour finir, nous présentons une méthode passant bien à l’échelle, afin de
contrôler les propriétés élastiques des structures imprimées. Nous nous inspirons des méthodes
de synthèse de texture procédurales, et proposons un algorithme efficace pour synthétiser des
microstructures imprimables et contrôler leurs propriétés élastiques.

Mots-clefs : Impression 3D, Contraintes de fabrication, Synthèse de formes, Modélisation,
Synthèse par l’exemple, Texturation procédural, Optimisation topologique.
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