
Position-based Skin Deformations for
Interactive Character Animation

NADINE ABU RUMMAN

A dissertation submitted to the Sapienza University
of Rome in accordance with the requirements of the
degree of DOCTOR OF PHILOSOPHY in the department
of computer, control, and management engineering

MARCH 2016

Word count: forty-three thousand, three hundred eighty

Position-based Skin Deformations for
Interactive Character Animation

NADINE ABU RUMMAN

Faculty of Information Engineering, Informatics and Statistics
SAPIENZA UNIVERSITY OF ROME

Thesis Committee
Advisor: Prof. Marco Schaerf
Co-Advisor: Prof. Marco Fratarcangeli

AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accor-
dance with the requirements of the University’s Regulations and Code
of Practice for Research Degree Programmes and that it has not been

submitted for any other academic award. Except where indicated by specific
reference in the text, the work is the candidate’s own work. Work done in
collaboration with, or with the assistance of, others, is indicated as such. Any
views expressed in the dissertation are those of the author.

SIGNED: .. DATE: ..

i

Copyright

Nadine Abu Rumman, 2016

All rights reserved.

Dedicated to

The Memory of My Brother Abdul Ilah and Professor Burhan Shraideh

"There is no particular mystery in animation · · ·
it’s really very simple, and like anything that is

simple, it is about the hardest thing in the world

to do"

-BILL TYTLA

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Marco Fratarcangeli for

being so patient and for all the discussions. Also, for forcing me to aim for perfection

and for teaching me to never give up on my dreams. His support and vigilance

have allowed me to achieve results that I could not have thought of. The outcome of this

dissertation owes much to his enthusiastic encouragement and continuous guidance.

Thanks must also go to my advisor Professor Marco Schaerf; I am indebted to him for

his endless support, motivation and patience. Furthermore, I am especially grateful to

Professor Ladislav Kavan for being a great source of inspiration. I have watched all of

his amazing online lectures, in which I have learned a great deal of information from

them. I am also grateful to Professor De Giacomo for his tremendous support.

I am particularly grateful to Professor Dominique Bechmann for inviting me to the

ICube Lab at University of Strasbourg (France), and for letting me enjoy and learn from

the IGG team during the period of my visit. It was a privilege to collaborate with such a

talented group. Further, I owe infinite thanks to Bart de Keijzer for proofreading this

dissertation as well as for all his suggestions for improvements. I would like to thank the

members of my Ph.D. committee who kindly agreed to evaluate this dissertation. Also, I

am thankful to the reviewers who provided feedback for each one of my publications. I am

sincerely indebted and grateful to Avempace-Erasmus Mundus Project for Technology for

funding this work. Special thanks go to my supervisors (back home at Princess Sumaya

University for Technology) Professor Jalal Atoum, Professor Issa Batarseh, Professor

Arafat Awajan, Professor Rawan Ghnemat, Professor Baha Khasawneh and Professor

Edward Jaser for their great support and for believing in me.

Lastly but most importantly, I am very grateful to my mom for her encouragement,

her mental support during my study, and for helping me deal with the many difficult

moments I have been through. I would like to thank God for giving me the strength all

the way up until this stage to finish my Ph.D. studies.

v

ABSTRACT

Skeletal animation is a widely used technique for animating articulated charac-

ters, such as humans and animals. In skeleton-based animation, skinning is the

process of defining how the geometric surface of the character deforms according

to a function of the skeletal poses. One of the fundamental aspects when animating

articulated character is the production of flesh-like deformations for the soft tissues

when the character is moving. Creating believable and compelling skin deformations

is the central challenge of animated feature films, computer games, and interactive

applications. Traditionally, the skin deformations are driven by an underlying skeleton.

The idea can be formulated with a simple expression that binds the character’s skin mesh

with its underlying skeleton, whose bones can be transformed in order to obtain a smooth

non-rigid deformation of the surrounding mesh. The deformation of each mesh vertex

is computed as a weighted blend of the bones transformations. This technique does not

generate realistic deformations and it usually suffers from unsightly artefacts. Moreover,

skeleton-based deformation methods are incapable of capturing secondary motion effects,

such as volume preservation, skin contact effects and the jiggling behaviors of soft tis-

sues when the character is moving. In contrast, by employing a physically based method

into the skinning process, the believability and realism of character motions are highly

enhanced. Physics-based simulations manage to bring skeleton-driven deformations

beyond the purely kinematic approach by simulating secondary motions. Despite offer-

ing such interesting effects, physics-based simulation requires complex and intensive

computations, and thus it is usually avoided in interactive applications such as computer

games. Furthermore, once the deformation parameters are specified in the simulation, it

is difficult to control the actual resulting shape of the character in every animation frame.

In this dissertation, we address the problem of creating believable mesh-based skin

deformation for soft articulated characters. We present a novel two-layered deformation

framework, which is able to mimic the macro-behaviors of the skin and capture sec-

ondary effects, such as volume conservation and jiggling. While minimizing the manual

vii

post-processing time, our system provides the artist with some level of control over the

secondary effects. Our system is practical, relatively easy to implement and fast enough

for real-time applications. We also introduce an efficient method for detecting collisions

and self-collisions on articulated models, in which we exploit the skeletal nature of

the deformation to achieve a good real-time performance. The output of the collision

detection algorithm is used to enhance our layered skin deformation with responsive

contact handling, and supports contact skin deformation between skin parts.

viii

TABLE OF CONTENTS

Page

List of Figures xiii

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1
1.1 Skin Deformation . 3

1.2 Collision Handling . 5

1.3 Contributions . 6

1.4 Publications . 7

1.5 Organization . 8

2 Literature Review 11
2.1 Skeleton-based Skinning Methods . 11

2.1.1 Geometric Skinning Techniques . 12

2.1.2 Example-based Skinning Methods . 15

2.2 Volume Preserving Skinning Methods . 18

2.3 Physics-based Methods . 21

2.3.1 Deformable and Soft Bodies Simulations 22

2.3.2 Physically based Skinning . 24

2.4 Collision Handling for Deformable Bodies . 26

2.4.1 Collision Detection . 26

2.4.2 Collision Response . 29

2.5 Conclusion . 30

3 Layered Skin Deformation 33
3.1 Layered Skin Deformation Framework . 34

3.2 Skeleton-based Deformations . 36

ix

TABLE OF CONTENTS

3.2.1 Linear Blend Skinning . 36

3.2.2 Dual Quaternion Skinning . 40

3.3 Physics-based Deformation . 42

3.3.1 Time Integration . 42

3.3.2 Physics-Based Simulation Techniques 45

3.4 Conclusion . 51

4 Position based Skinning for Soft Articulated Characters 53
4.1 Position Based Skinning . 54

4.1.1 Method Overview . 54

4.2 Linear Blend Skinning . 57

4.3 Position-based Dynamics . 58

4.3.1 Geometric Constraints . 59

4.4 Final Algorithm . 61

4.5 Gauss-Seidel Solver . 63

4.6 Parallel Position Based Skinning . 63

4.7 Soft Control . 64

4.8 Experiments and Results . 65

4.8.1 Visual quality . 65

4.8.2 Performance . 68

4.9 Comparison and Limitations . 72

4.10 Conclusion . 73

5 Collision Handling for Soft Articulated Characters 75
5.1 Biomechanical Basis of Articulated Characters 76

5.1.1 Classification of Joints . 76

5.1.2 Axes of Rotation and Types of Movement 78

5.2 Collision Handling for Soft Articulated Characters 80

5.2.1 Method Overview . 80

5.3 Collision Detection for Articulated Deformable Characters 81

5.3.1 Optimized Spatial Partitioning . 82

5.3.2 On-demand Hashing . 86

5.4 Localized Self-Collision Handling for Articulated Soft Characters 88

5.5 Overall Algorithm . 90

5.6 Experiments and Results . 90

5.6.1 Collision Detection . 90

5.6.2 Collision Response . 93

x

TABLE OF CONTENTS

5.7 Conclusion . 97

6 Conclusion and Future Directions 99
6.1 Discussion and Future Work . 101

References 103

xi

LIST OF FIGURES

FIGURE Page

1.1 Character animation is a vital component of animated feature films and com-

puter games. Left. An appealing character animation (video game: Heavenly
Sword). Right. Characters move in a believable manner (animated feature

film: Shrek). 2

1.2 The character motion does not necessarily require realistic behavior, but

behavior that is believable, full of an expressive quality which captures the

personality of the character [Park & Hodgins, 2008]. 2

1.3 Given an animated skeleton, the deformation is computed by linearly blending

bone transformations to the skin. Classic interactive skinning techniques,

namely linear blend skinning suffers from loss of volume or the well-known

“candy-wrapper" artefact, which requires manual post-processing work to be

fixed [Rohmer et al., 2008]. 4

1.4 Top row: A hand deformed using geometry-based skinning method (linear

blend skinning). Bottom row: The same hand deformed with physics-based

method [McAdams et al., 2011], which handles collision at near interactive

rates. Note how the physics-based method get correct creasing and contact

deformation where the finger bends. 5

2.1 Artefacts of classic interactive skinning techniques linear blend skinning

(LBS) and dual quaternion skinning (DQS). Linear blend skinning (LBS) is the

most widely employed skinning technique, due to its simplicity and efficiency.

Unfortunately, LBS suffers from the “candy-wrapper" artefact while twisting

((a) and (b)). This artefact can be eliminated by a nonlinear blending method

such as dual quaternion skinning (DQS), but DQS produces an unnatural

joint-bulging artefact while bending (c). Observing that LBS does not produce

bulging while bending and DQS does not suffer from the “candy-wrapper"

artefact while twisting [Kavan & Sorkine, 2012]. 13

xiii

LIST OF FIGURES

2.2 Dana model in a break-dance pose. From left to right, the model is deformed

with linear blend skinning, dual quaternion skinning and implicit skinning.

Note the visible loss of volume produced by LBS (left). Implicit skinning

(right), however, generates visually plausible skin deformations, which avoids

the artefacts of linear blend skinning, as well as the bulging artefacts of dual

quaternion skinning [Vaillant et al., 2013]. 15

2.3 A set of example poses from an anatomically motivated arm model with both

bending and twisting at the elbow. The twisting and muscle bulges are enough

to prevent LBS from approximating the examples well. The technique of

[Mohr & Gleicher, 2003] does better, but still differ from the given example

poses. The model from [Wang et al., 2007] well-approximate the examples poses. 17

2.4 The method proposed in [Park & Hodgins, 2008] captures and synthesize

detailed skin deformations given skeletal motion as input data. (a) Skeletal

motion as input of different motions. (b) Detailed skin and muscle deformation. 18

2.5 Illustration of the volume correction using the method presented in [Rohmer

et al., 2008] in a complex character. a) Skinned mesh and skeleton. b) Auto-

matic segmentation. c) Standard LBS that suffer from the loss of volume. d)

The volume correction method of [Rohmer et al., 2008], where the volume is

locally preserved in belly and trunk areas. 19

2.6 Skinning with cage: (a) Input geometry with skeleton. (b) An initial cage

constructed from four templates, which are associated with the hand joint,

elbow joint, upper arm bone, and the shoulder joint. (c) The skeleton deforms

the mesh templates. (d) The geometry is deformed by the cage, yielding a

non-pinching elbow and muscle bulging [Ju et al., 2008]. 21

2.7 Employing dynamic simulation into skinning process allows two-way inter-

actions between the skeleton, the skin geometry, and the environment at

interactive rates [Liu et al., 2013a]. 24

2.8 The method proposed in [Hahn et al., 2012] takes a character rig as an input

and automatically produces physically plausible motions, which maintains

the original artistic intent and is easily editable. 25

2.9 The method of [McAdams et al., 2011] takes a skeleton and a surface mesh as

input. Based on a hexahedral lattice with 106,567 cells (center), their method

simulates the deformed surface (right) obeying self-collision and volumetric

elasticity at 5.5 seconds per frame. 26

xiv

LIST OF FIGURES

2.10 Fast collision detection method introduced in [Kavan et al., 2006]. Their CD

algorithm is based on BVH, in which they produce a tree with 5 levels (center)

and 6 levels (right) to detect collisions on models deform by spherical blending

skinning. 28

2.11 The contact handling algorithm presented in [Teng et al., 2014] allows both

self-collision detection and contact response to be simulated in 5.8 FPS (171

ms) for a hand mesh composed of 458K tetrahedra. 30

3.1 Layered skin deformation composed of two-layered deformers. The first layer

modifies the skin shape in response to the changes in skeleton position. While

in the second layer, the skin is deformed using physically based deformer,

which is mainly used to simulate the elasticity of the skin and contact reaction. 34

3.2 An example illustrates the main concept of LBS. There are two transforma-

tions T1 and T2, corresponding to the transformations of shoulder and elbow

joints from the rest pose to an animated posture. 37

3.3 Left. Linear blend skinning. Note the loss of volume at the elbow joint. Right.

Rigid binding. Note the self-intersections and unnatural deformations in the

areas around the elbow joint. 38

3.4 The well-known “candy-wrapper" artefact of linear blend skinning. Left. The

character model in its rest pose. Right. The model deformed with linear

blend skinning, where the areas around the shoulder joint suffer from the

“candy-wrapper" artefact and volume loss when twisting. 39

3.5 Left to right: The skin in its rest pose. Rigid transformations (express rotation

and translation). While twisting, the weighted combination of vertices v1 and

v2 is not guaranteed to be a rigid transformation, which result in the “candy-
wrapper" artefact. When bending, the linear interpolation of LBS between

the vertices v1 and v2 produces v at an inadequate location, which result in a

loss of volume. 39

3.6 Left. Linear blend skinning, which computes a linear interpolation between

two vertices and the new position will be somewhere lying on the line segment

between v1 and v2. Right. Dual quaternion skinning, where instead of a linear

interpolation it is a spherical one. The new position will be lying on the arc

circle, and will avoid volume loss [Kavan et al., 2007]. 40

xv

LIST OF FIGURES

3.7 A demonstration of the artefacts of linear blend skinning (LBS) and Dual

quaternion skinning (DQS). Left. LBS suffers from volume loss while bending.

Right. DQS successfully eliminates the “candy-wrapper" effect and preserve

the volume of the skin, but produces the joint-bulging artefact while bending. 41

3.8 Two connected tetrahedra represented as a mass-spring model with different

connected spring topologies. Right. Simple mass-spring model. Left. Volumet-

ric mass-spring model with additional springs to preserve the volume. 46

3.9 A 2D example of a finite element mesh approximating a soft body, in which

it deforms over time. (a) The soft body in its rest position (initial state). (b)

The soft body deformed, changing shape from rest position to the deformed

position (deformed state). 47

4.1 Inputs to our method; (a) the embedded skeleton within the tetrahedral mesh,

(b) the fine surface corresponding to the coarse tetrahedral mesh, and (c) the

fine surface. 55

4.2 In the initialization phase, the fine surface mesh is converted to a tetrahedral

mesh, which is used to define soft geometric constraints. During the animation

of the skeleton, the volumetric mesh is first deformed using linear blend

skinning, after which the constraints are solved using a parallel position

based dynamics scheme. 56

4.3 (a) A surface composed of one triangle strip. (b) First-order tetrahedron el-

ement, and (c) the tetrahedron element before (shown in orange) and after

deformation (shown in purple). 56

4.4 2D example of the coupling between surface and tetrahedral mesh. (a) The

surface (shown in blue) deformed according to the corresponding deformed

tetrahedral mesh (shown in green). (b) A close-up view of two tetrahedrons

with the embedded surface composed by six vertices, where for each vertex v
the containing tetrahedron to v is found using barycentric coordinates, as in (c). 57

4.5 A character skinned by linear blend skinning. Left. The skeleton is embedded

within the mesh in its initial position. Middle. The skinning weights are

assigned for the character’s left arm, in which these weights are determined

using (Eq. 4.1). Right. The character deformation is computed using (Eq. 3.1). 58

4.6 A volume constraint is defined for each tetrahedron, together with six stretch

constraints (one for each edge). 60

xvi

LIST OF FIGURES

4.7 (a) The particle pi in the rest pose, d is the rest distance from the nearest

bone. (b) The particle pi is displaced from the first step of our approach, by

using LBS. (c) The bind constraint maintains the rest distance from the bone. 61

4.8 A graph coloring algorithm is applied to a simple particle system to parallelize

the computation of the constraints; (a) a simple particle system of 9 particles

and 12 constraints, (b) a dual graph is defined, where each node represents a

constraint and two nodes are connected if they share at least one particle. . . 64

4.9 Soft selection mechanism. (a) Surface mesh, including the selected vertices.

(b) Surface mesh embedded in the tetrahedral mesh. The tetrahedron vertices

placed between the selected surface vertices and the nearest bone are selected

automatically. (c) A close-up view of two tetrahedrons with the embedded

surface composed of six vertices. (d) The surface vertex is selected by the

artist, and the nearest vertices on the tetrahedron are selected automatically.

All of these vertices are shown in brown, and the brown rectangle highlights

these vertices. 65

4.10 Believable skin deformation including secondary motions and volume preser-

vation, TORSO (11K constraints, 149 fps). 66

4.11 Real-time animations of a complex articulated character, HORSE (17K con-

straints, 130 fps). 66

4.12 Realistic jiggling motion in the belly area for the BIGBUNNY character at

interactive rates (34k constraints, 71 fps). 66

4.13 Our method automatically produces believable skin deformations of the soft

tissues for an octopus moving at interactive rates (14k constraints, 145.6 fps). 67

4.14 Our method does not suffer from the “candy-wrapper" artefacts of linear blend

skinning (LBS) and the bulging artefacts of dual quaternion skinning (DQS). 67

4.15 Highly dynamic sequence, HUMAN character (12k constraints, 146 fps). 67

4.16 Comparison with and without volume preservation. The volume is preserved

by solving the PBD constraints. Left. Step 1: LBS is applied. Note the loss of

volume at the elbow joint. Right. Step 2: Positions of the vertices are adjusted,

by solving the PBD constraints (stretch, volume and bind), preserving the

volume and avoiding the “candy-wrapper" effect. 68

4.17 Real-time character animation driven by a kinematic skeleton, including

secondary motions and volume preservation (71.1 fps). 69

4.18 Real-time character animation driven by a kinematic skeleton, including

secondary motions and volume preservation (65.8 fps). 69

4.19 Different poses of a character kicking a ball (90.6 fps). 69

xvii

LIST OF FIGURES

4.20 Self-collisions are not explicitly handled. This may lead to geometry overlap-

ping in the contact regions (note the dark regions near the articulations). . . 72

5.1 More than ten joints in the human skeleton are simultaneously rotated to

perform a jumping movement. 77

5.2 Shows an example of the classification of joints in the human skeleton, where

the shoulder is a multiaxial joint (shown in red), the elbow is a uniaxial joint

(shown in purple) and the carpometacarpal joint of the thumb is a biaxial

joint (shown in green). 78

5.3 (a) The three cardinal planes all intersect at a single point known as the

body’s center of mass or center of gravity. (b) Flexion motion at horse’s knee

joint, which occurs about the coronal axis. 79

5.4 In the initialization phase, the fine surface mesh is converted to a tetrahedral

mesh, which is used for computing the elastic deformation of the character

skin while moving, as well as for collision detection. During the animation of

the skeleton, the volumetric mesh is deformed with position based skinning

(shown in purple) and the colliding vertices are computed by the collision

detection algorithm (shown in orange). The collision information is used to

generate collision response constraints (shown in green). 80

5.5 Self-collision detection. Left. The space is implicitly subdivided into small

cells, where red cells contain fully or partially the self-colliding primitives.

Middle. The red patches indicate self-collisions, in which intersections are

quickly found with an O (1) cell query. Right. Zoomed view of self-colliding

primitives (in red). 82

5.6 An example of 3D spatial hashing for an arm. Left. The arm mesh is embedded

in a spatial partitioning. The zoomed view shows a tetrahedron (in blue), its

bounding box (in red) and all cells affected by the tetrahedron’s bounding

box (in green). Right. In the hashing phase, all vertices of the arm mesh are

mapped into their cell and the hash table indices are computed for all cells

covered by the tetrahedron’s bounding box. Therefore, in the intersection

phase, the tetrahedron is checked for intersection with all vertices found at

these hash indices. 84

xviii

LIST OF FIGURES

5.7 Examples of flexion and extension motions. Flexion brings two adjoining long

bones closer to each other. While extension denotes rotation in the opposite

direction of flexion. (a), (b) and (c) Show flexion and extension movements of

the knee, elbow and neck joint, (d) shows the angle of the joint of the knee

during flexion, where the angle θ2 is indicating a possible self-collision. The

hash table is partially reconstructed by considering only the cells that are

affected by the bounding box of the part that indicates collisions (in green). . 87

5.8 Examples of abduction and adduction motions. Abduction is the movement of

a limb away from the midline. While adduction is the movement toward the

midline. We compute the angle between the bone segment and the midline, in

order to check whether the angle indicates a possible collision. 88

5.9 An example of the generation of planes for some joints of the skeleton for both

bipedal and quadrupedal characters, in order to address the self-intersection

problem between the skin parts. 89

5.10 Skin is deformed by position based skinning. Left. The skeleton is embedded

within the mesh in its initial position, where the plane is also attached to the

elbow joint. Middle. The collisions between the skin parts and the plane are

detected using the method described in Section 5.3 Right. Collision response

constraints push the skin along the plane normal, while the tetrahedral

volume constraints preserve the volume of the skin, leading to a localized

muscle bulging effect. 89

5.11 Real-time self-collision detection for an articulated character deformed by

position based skinning: an animated sequence of a walking HORSE with a

skeleton of 43 bones, 4K vertices and 6K tetrahedrons. All self-collisions are

calculated in 2.1 ms per frame, where self-collisions shown in red. 91

5.12 A back view of a walking HUMAN with a skeleton of 25 bones, 9K vertices and

5K tetrahedrons. All the colliding vertices are computed in 3.93 ms per frame,

where the red patches indicate self-collisions. 93

5.13 An animated sequence of a bending LEG, where all colliding vertices are

computed in 1.7 ms per frame. Self-collisions shown in red. 93

5.14 An animated sequence of a bending ARM, where all self-collisions are calcu-

lated in 1.702 ms per frame. 94

5.15 A bending ARM and a RIGID BODY, consisting of 4400 tetrahedrons and 132

tetrahedrons, respectively. Both the collisions and the self-collisions of the

arm are detected in 2.52 ms. 94

xix

LIST OF FIGURES

5.16 An animated sequence of a bending ARM, where our methods handles the

self-collision of upper and lower arm and successfully preserves the volume. . 95

xx

LIST OF TABLES

TABLE Page

4.1 Skinning performance. S: number of stretch constraints, T: number of vol-

ume constraints, B: number of bind constraints, fps: avg. frame rate, CT:

avg. skinning computation time for running a 1 second simulation, where

(CTtotal = CTvolume +CTstretch +CTbind) . 71

4.2 Skinning performance. #vertices: number of initial vertices in the render mesh,

#tetra: number of elements in the tetrahedral mesh, S: number of stretch

constraints, T: number of volume constraints, B: number of bind constraints,

fps: avg. frame rate, CT: avg. skinning computation time during 1 second

simulation, where (CTtotal = CTvolume +CTstretch +CTbind). 71

5.1 Performance comparison of our on-demand collision detection and optimized

spatial hashing. #vertices: number of initial vertices in the render mesh,

#tetra: number of elements in the tetrahedral mesh, f pson−demandHashing: avg.

frame rate, CTskinning: avg. skinning computation time and CTon−demandHashing:

avg. computation time of our collision detection method during 1 sec simu-

lation, where (CTtotal = CTskinning +CTon−demandHashing). CTSpatialHashing: avg.

computation time of optimized spatial hashing, f psSpatialHashing: avg. frame

rate of using optimized spatial hashing to detect collisions on models deform

by position based skinning. 95

5.2 Collision response performance. #vertices: number of initial vertices in the

render mesh, #tetra: number of elements in the tetrahedral mesh, fps: avg.

frame rate, CTskinning: avg. skinning computation time, CTon−demandHashing:

avg. computation time of collision detection, CTcollisionResponse: avg. computa-

tion time of our collision response during 1 sec simulation, where (CTtotal =
CTskinning +CTon−demandHashing +CTcollisionResponse). 96

xxi

LIST OF ALGORITHMS

1 A sample pseudo-code for creating two-layered skin deformation, consisting

of a skeletal deformer and an elastic deformer. 35

2 Simple pseudo-code of the linear blend skinning algorithm 38

3 Verlet integration pseudo-code . 45

4 Position based dynamics algorithm . 49

5 Position based skinning algorithm . 62

6 Simple pseudo-code that hashes the vertices position into the hash table . . 83

7 Simple pseudo-code that hash tetrahedrons into the hash table 84

8 Collision handling within position based skinning algorithm 91

xxiii

C
H

A
P

T
E

R

1
INTRODUCTION

Character animation is a vital component of contemporary computer games, an-

imated feature films and virtual reality applications (Fig. 1.1). The problem of

character animation can best be described by the title of the animation bible:

“The Illusion of Life" [Thomas & Johnston, 1981]. The focus is not on the problem of

completing a given motion task, but more importantly on how this motion task is per-

formed by the character. This does not necessarily require realistic behavior, but behavior

that is believable, full of an expressive quality which captures the personality of the

character [Demeure et al., 2011]. Animation of human characters and other living crea-

tures has long been one of the most important applications of deformable modelling in

computer graphics, notably in movie production and more recently in increasingly video

games, interactive medical applications and surgery simulations. However, believable

skin deformation for character animation is a complex and subtle phenomenon because

of the coupling between the skeleton and soft tissues of the character’s skin. Moreover,

modelling compelling skin deformations is difficult and computationally demanding due

to the nonlinear inner mechanics of the flesh.

This dissertation addresses the problem of creating believable mesh-based skin defor-

mation for soft articulated characters at interactive rates. In this context, the term

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Character animation is a vital component of animated feature films and
computer games. Left. An appealing character animation (video game: Heavenly Sword).
Right. Characters move in a believable manner (animated feature film: Shrek).

character is used in a broader sense, referring to any 3D model that undergoes motion or

deformation in a scene. A 3D model can be found across many application fields including

virtual reality, video games and movie production, such as cartoon-like animals and

life-like human characters with realistically deforming skin (Fig. 1.2). A character is

classified as an articulated character, when it has a skeletal structure of bones connected

by joints. Most robotic parts, animal-like and human-like creatures with limbs fall into

this category. The skeletal motion of an articulated character is primarily governed by

Figure 1.2: The character motion does not necessarily require realistic behavior, but
behavior that is believable, full of an expressive quality which captures the personality
of the character [Park & Hodgins, 2008].

bone transformations. Deforming the character with its underlying skeleton provide

purely kinematic motion for articulated rigid bodies (e.g. a robot). In this work, we con-

2

1.1. SKIN DEFORMATION

centrate on soft bodies, in which the term soft usually refers to the fact that the geometry

of the 3D model is deformable. In the sense that there is an underlying layer of elastic

tissue, as with human skin. The terms soft and deformable are very tightly connected,

but not equivalent. For example the robot is deformable articulated character because

it can undergo skeletal deformation along its joints. However, it is not soft, because its

geometry is infinitely stiff. Deforming the skin of a character as a soft body can be done

by using physical simulation, which allows the automatic synthesis of effects that are

difficult to animate by hand, such as the jiggling or vibration of the soft tissues caused

by gravity.

1.1 Skin Deformation

In character animation, skinning is the process of defining how a geometric surfaces

deform according to skeletal poses. The most pervasive skinning method is to deform

the skin of a character via an underlying skeleton. Given an animated skeleton, the

deformation is computed by linearly blending the bone transformations to the skin.

Traditionally, bone transformations describe the position and orientation of the joints.

This technique is called “skeletal subspace deformation", also known as linear blend

skinning (LBS [Magnenat-Thalmann et al., 1988]). However, such a simple and linear

blending to the bone transformations cannot be expected to capture complex deformations.

Moreover, because the deformation is restricted to the subspace of affine transformations

of the bones, this method has problems deforming the skin near joints due to volume

loss or the well-known “candy-wrapper" artefacts (Fig. 1.3). By replacing linear blending

with a nonlinear blending (dual quaternion skinning, [Kavan et al., 2007]), the artefacts

of LBS can be completely avoided. However, dual quaternion blending suffers from an

undesirable joint-bulging artefact while bending, which requires artistic manual work to

be fixed. Although these methods achieve good real-time performance, they are purely

kinematic, lacking of secondary motion effects, such as the passive jiggling motion of

fatty tissues and contact deformation effects. In contrast, by employing a physically

based method into the skinning process, the believability of character motions can be

highly enhanced. Physics-based simulations manage to bring skeleton-based animation

beyond the purely kinematic approach by simulating secondary motions like jiggling,

volume preservation and contact deformation effects. These secondary motions enrich

the visual experience of the animation and are essential for creating appealing character

animation for animated feature films and computer games. Despite offering such realistic

effects, physically based simulation is computationally demanding and complex, thus it

3

CHAPTER 1. INTRODUCTION

is usually avoided in interactive applications. Further, physically based methods require

human intervention to generate input data, which describe the physical states, before

the problem can be solved by a computer program. In most cases, such preparation

is tedious and the artist must master the knowledge of both the given software and

the underlying physics of the phenomenon. The key challenge of producing believable

deformations is to satisfy the conflicting requirements of real-time interactivity and

believability. Believability requires achieving sufficient deformation detail, which means

capturing the full range of desired effects, namely jiggling, volume preservation, muscle

bulging and skin contact deformations. Producing these deformations demands at least

an order of magnitude more computation power than current interactive deformation

system.

Figure 1.3: Given an animated skeleton, the deformation is computed by linearly blending
bone transformations to the skin. Classic interactive skinning techniques, namely linear
blend skinning suffers from loss of volume or the well-known “candy-wrapper" artefact,
which requires manual post-processing work to be fixed [Rohmer et al., 2008].

Therefore, we are motivated to (1) reduce the artefacts of the classic interactive skinning

techniques, and minimize the manual post-processing time, (2) obtain believable skin

deformations that support contact and collision, (3) capture appealing skin deformations

including secondary motion effects in the real-time, (4) offer the artist the ability to

modify and control the skin deformations at interactive rates.

4

1.2. COLLISION HANDLING

1.2 Collision Handling

In order to simulate the skin’s behavior in a believable manner, an appropriate collision

response has to be considered. However, skin contact deformations due to collision are

difficult to model using geometry-based skinning techniques, because bone transforma-

tions completely determine the resulting (deformed) shape. In contrast, physics-based

methods can capture contact deformations (Fig. 1.4). In these methods, collision handling

consists of two steps: collision detection and collision response. Often they are performed

separately, with the result of the collision detection being used as input to the collision

response algorithm.

Figure 1.4: Top row: A hand deformed using geometry-based skinning method (linear
blend skinning). Bottom row: The same hand deformed with physics-based method
[McAdams et al., 2011], which handles collision at near interactive rates. Note how the
physics-based method get correct creasing and contact deformation where the finger
bends.

Collision detection is the problem of checking for all possible geometric intersections

between moving models in a virtual environment. Solving the collision detection problem

has become of major interest in various application areas, ranging from games, animation

and virtual reality to surgery simulation and robotics. Moreover, efficient and reliable

collision detection is a critical part of almost all graphics applications. A significant

amount of research has been done to detect interfering objects moving in space or find

exact points of contact. Whereas most of the contributions concentrated on collision

detection for rigid body simulations, recent approaches started focusing on deformable

bodies, i.e., models whose shape changes during the simulation, for example articulated

characters, soft tissues and cloth. Deformable collision detection is a challenging problem

mainly because of its high computational complexity. Thus, it is difficult to devise an

5

CHAPTER 1. INTRODUCTION

efficient solution to accommodate the rapid interaction speed demanded by users. This is

especially true when we are simulating the skin of a virtual character, as self-collisions of

the limbs can occur and have to be handled. In this case, collision detection response re-

quires specific information, since it is not sufficient to just detect the collisions. Handling

self-collisions is a significant challenge, because collision handling algorithm has to be

responsive so that skeletal and global motion are handled simultaneously and naturally

with surface deformations. Nevertheless, resolving self-collisions is essential to generate

believable skin deformation.

1.3 Contributions

Traditionally, the character’s skin is deformed by its underlying skeleton. In this case,

the believability of the deformation is limited, since the deformation is purely kinematic,

lacking of secondary motions effects and skin contact deformations. The use of physics in

the skinning process enhances the sense of realism: in it enables us to produce secondary

effects such as jiggling, as well as to simulate the skin contact deformation due to

collisions. Unfortunately, the existing techniques cannot generally achieve these effects

in real-time and they do not support artistic control either. The goal of this dissertation

is to develop method that provides compelling skin deformations at interactive rates.

This includes the full range of desired effects such secondary motions and skin contact

deformation. Further, we would like to give the artist some level of control over the

deformation. The contributions of this dissertation can be summarized as follows:

Position Based Skinning (Chapter 4) We introduce a two-layered approach ad-

dresses the problem of creating believable mesh-based skin deformation. Position based

skinning (PBS) is a practical framework for deforming soft articulated characters in

real-time. This framework avoids the artefacts of classic interactive skinning techniques,

namely the “candy-wrapper" artefacts of linear blend skinning (LBS) and the bulging

artefacts of dual quaternion skinning (DQS). Furthermore, our layered skin deformation

is: 1) able to mimic the macro-behaviors of the skin, 2) able to provide secondary motion

effects such as volume preservation and jiggling of the fat tissues when the character is

moving, and 3) relatively easy to implement and fast to compute.

Parallelization and Shape Control (Chapter 4) To further improve the perfor-

mance, we solved the geometric constraint in parallel. In our two-layered approach, we

simulate the skin as a soft body, and the deformation approach is based on position

6

1.4. PUBLICATIONS

based dynamics [Müller et al., 2007] scheme. Hence, we applied our method in a parallel

fashion and solved it on a multi-core CPU, which leads to a significant improvement in

performance. Our method requires less mathematical complexity and provides believable

animations with at least one order of magnitude faster computation time than existing

state-of-the-art methods. We also allow the artist to interactively control the behavior of

the skin by tuning the amount of the jiggling effect and manually specifying a specified

area of the skin affected by it.

Collision Handling (Chapter 5) Despite offering interesting effects like secondary

motions and volume preservation, position based skinning (Chapter 4) cannot guarantee

the absence of self-intersection. To address the lack of collision and contact handling

inside position based skinning, we locally handle the self-intersection problem in the

areas around the joints. First, we present an efficient method for detecting collisions and

self-collisions on articulated models. The proposed method employs spatial hashing with

a uniform grid to detect collisions. Our collision detection method focuses on skeletal

characters, where we use a lazy procedure that updates the hash table in an on demand

way.

To handle collisions and capture contact deformations locally, we formulate a constraint-

based contact response within our the position based skinning framework.

1.4 Publications

• The method presented in Chapter 4 has been published as an article in the

proceedings of the 30th Spring Conference on Computer Graphics (SCCG, 2014)

with title “Position based Skinning of Skeleton-driven Deformable Characters",

pages 83-90. The paper received best paper award, best presentation award and

invited to submit an extended article version as journal publication to Computer

Graphics Forum.

• The overall techniques presented in Chapter 4 has been published as journal

publication with title “Position-Based Skinning for Soft Articulated Characters",

(Computer Graphics Forum, 2015), Volume 34, Issue 6, pages 240-250.

• Part of the material presented in Chapter 5 has been publication as an article in

the proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games (MIG,

7

http://dl.acm.org/citation.cfm?id=2643194
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12533/abstract

CHAPTER 1. INTRODUCTION

2015) with title “Collision Detection for Articulated Deformable Characters", pages

215-220.

• The literature review presented in Chapter 2 has written as state of the art paper

with title “State of the Art in Skinning Techniques for Articulated Deformable

Characters" has been accepted for publication in the 11th International Confer-

ence on Computer Graphics Theory and Application (GRAPP, 2016) [Rumman &

Fratarcangeli, 2016].

1.5 Organization

The remainder of this dissertation is organized as follows:

Chapter 2, Literature Review. This chapter presents a literature review of the

previous work on skin deformation. We mainly focus on methods that are relevant

to skeleton-based deformation techniques, soft body simulations and physically based

skinning methods. We also outline the research that has already been done in these areas

and how the work in this dissertation contributes to it. Moreover, this chapter briefly

reviews previous work on collision handling of deformable bodies or models undergoing

specific types of deformation, such as skeletal deformation.

Chapter 3, Layered Skin Deformation. This chapter gives a detailed insight into

the necessary background material. It also provides a quick tutorial on the computational

frameworks for skeleton-based deformation and physically based simulation. Before

presenting our novel skin deformation model (Chapter 4 and Chapter 5), we introduce in

this chapter the concept of layered skin deformation, which serves as the basis for the

developments presented in the following chapters.

Chapter 4, Position based Skinning for Soft Articulated Characters. This chap-

ter presents a two-layered deformation model named position based skinning. Position

based skinning is a new deformation method, which avoids the artefacts of classic in-

teractive skinning techniques, and provides believable skin deformation for articulated

characters at interactive rates. Moreover, it captures interesting effects, such as volume

preservation and jiggling. The artist is also allowed to control the amount of jiggling and

the area of the skin affected by it.

8

http://dx.doi.org/10.1145/2822013.2822034

1.5. ORGANIZATION

Chapter 5, Collision Handling for Soft Articulated Characters. This chapter

tackles the problem of self-intersections for models deformed by position based skinning,

where we exploit the skeletal nature of the deformation to achieve real-time collision

detection. Then, we formulate a constraint-based contact response within the position

based dynamics framework, to handle self-intersections and capture contact deformations

effects.

Chapter 6, Conclusion and Future Directions. In this chapter, we summarize the

main contributions of this dissertation and suggest ideas for future research.

9

C
H

A
P

T
E

R

2
LITERATURE REVIEW

Creating believable and compelling skin deformations for articulated virtual

characters is a multi-disciplinary problem, which can be divided into three main

problems: generating high-quality skin deformations, simulating skin contact

in response to collisions, and producing secondary motion effects such as flesh jiggling

when a character moves. In this chapter, we focus on the existing work that is closely

related to skeleton-based deformation, soft character simulation, physics-based skinning

techniques and contact handling. There has been a considerable amount of research on

each of these subjects; it is beyond the scope of this dissertation to exhaustively survey

the vast literature. This chapter discusses the literature that is most relevant to our

work, and we highlight the advantages and disadvantages of each existing skinning

method. For a more thorough treatment, we refer the reader to [Turner & Gobbetti,

1998; McLaughlin et al., 2011; Sifakis & Barbic, 2012; Geijtenbeek & Pronost, 2012;

Jacobson et al., 2014a].

2.1 Skeleton-based Skinning Methods

The most common technique for deforming articulated characters is to define the surface

geometry as a function of an underlying skeletal structure. Due to the simplicity, intuitive

11

CHAPTER 2. LITERATURE REVIEW

manipulation, and the ability to quickly solve inverse-kinematics on a small subspace

(the skeleton), skeleton-based methods are very popular and widely used in the animation

industry. In modelling a skeleton-based deformation, the challenge is to obtain high-

quality skin deformations in real-time, given an arbitrary skeletal posture. Several

techniques have been proposed to provide these deformations, in which the current

skeleton-based deformation techniques can be classified into two categories: geometric

methods (Section 2.1.1) and example-based methods (Section 2.1.2).

2.1.1 Geometric Skinning Techniques

In geometric skinning techniques, skeleton-to-skin binding is defined in a direct, geomet-

rical way [Magnenat-Thalmann et al., 1988; Komatsu, 1988; Walter & Fournier, 1997;

Singh & Kokkevis, 2000; Kavan & Zara, 2003; Hejl, 2004; Kavan & Zára, 2005; Rhee

et al., 2006; Forstmann et al., 2007; Kavan et al., 2007; Vaillant et al., 2013]. Geometric

approaches to deform articulated characters have shown reasonable results at interactive

rates.

We start by discussing the standard real-time method “skeletal subspace deformation",

also known as linear blend skinning (LBS) [Magnenat-Thalmann et al., 1988]. This

method has been widely adopted in real-time applications such as games, for its com-

putational efficiency and straightforward GPU implementation. Unfortunately, linear

blend skinning suffers from visual artefacts like self-intersection, volume loss or the well-

known “candy-wrapper" artefact 1 (see Fig. 2.1), which are the result of the linear nature

of the algorithm, since the linear interpolation of the transformation matrices is not

equivalent to the linear interpolation of their rotations [Alexa, 2002]. The limitations of

LBS have been extensively studied, where many techniques have been proposed to avoid

its artefacts. One possibility is by enriching the space with skinning weights, leading to

methods which are still linear, but feature more parameters than in linear blend skin-

ning. These methods are called multi-linear skinning techniques [Wang & Phillips, 2002;

Mohr & Gleicher, 2003], in which the extra weights are learned from input examples

and regularization is used to prevent overfitting. Merry et al. propose a multi-linear

skinning model called Animation Space [Merry et al., 2006], which uses 4 weights per

vertex-bone pair. However, this increase in the number of weights carries an additional

cost in time and space, as well as parameter passing. While linear skinning techniques

are popular due to their efficient implementations, which make them well suited for use
1the“candy-wrapper" artefact is the skin collapsing effect exhibited by linear blend skinning [Magnenat-

Thalmann et al., 1988].

12

2.1. SKELETON-BASED SKINNING METHODS

in interactive applications. They cannot totally remove the “candy-wrapper" artefact,

which is in all cases noticeable under large joint rotations. For a comprehensive survey

on linear skinning techniques, we refer the interested reader to [Jacka et al., 2007]. Se-

lecting good skinning weights is critical to avoid the artefacts and generate more natural

deformations. Recently, an automatic computation of skinning weights was presented

in [Dionne & de Lasa, 2013]. In their method, the influence weights are determined

using geodesic distances from each bone, which makes the inverse-distance weights

shape-aware and can work with production meshes (that may contain non-manifold

geometry). Despite that associating skinning weights with the mesh vertices can be done

automatically, this method tends to either increase or decrease the volume around joints.

Figure 2.1: Artefacts of classic interactive skinning techniques linear blend skinning
(LBS) and dual quaternion skinning (DQS). Linear blend skinning (LBS) is the most
widely employed skinning technique, due to its simplicity and efficiency. Unfortunately,
LBS suffers from the “candy-wrapper" artefact while twisting ((a) and (b)). This artefact
can be eliminated by a nonlinear blending method such as dual quaternion skinning
(DQS), but DQS produces an unnatural joint-bulging artefact while bending (c). Observ-
ing that LBS does not produce bulging while bending and DQS does not suffer from the
“candy-wrapper" artefact while twisting [Kavan & Sorkine, 2012].

By replacing linear blending with nonlinear blending [Hejl, 2004; Kavan & Zára, 2005;

Kavan et al., 2007], the “candy-wrapper" artefact can be completely avoided. Nonlinear

skinning methods convert rigid transformation matrices to (quaternion, translation)

pairs and blend them instead of their matrix equivalents [Hejl, 2004; Kavan & Zára,

2005]. This works, but Hejl’s method [Hejl, 2004] imposes some constraints on the char-

acter’s rigging, whereas spherical skinning [Kavan & Zára, 2005] uses a computationally

expensive Singular Value Decomposition (SVD) scheme. Besides, the practical impact of

these two methods is limited, because of their dealing with the translational component

of the skinning transformations. In contrast, dual quaternion skinning (DQS [Kavan

et al., 2007]) uses an approximate blending technique based on dual quaternions (essen-

tially, two regular quaternions). Although dual quaternion skinning is able to achieve

13

CHAPTER 2. LITERATURE REVIEW

comparable speeds to LBS, while retaining the increase in visual quality. It suffers from

an undesired joint-bulging2 artefact (as we can see in Fig. 2.1), which requires artistic

manual work to be fixed.

Because fixing these artefacts manually is a tedious process, automatic skinning tech-

niques are becoming increasingly popular [Baran & Popović, 2007; Wareham & Lasenby,

2008; De Aguiar et al., 2008; Kavan et al., 2009; Chen et al., 2011; Jacobson et al., 2011;

Bharaj et al., 2012; Jacobson et al., 2014b]. Moreover, an interesting extension of linear

blend skinning called spline-skinning comes from [Yang et al., 2006; Forstmann & Ohya,

2006; Forstmann et al., 2007], which often produces better skinning deformations and

suppresses (but not completely eliminates) the “candy-wrapper" artefact. Instead of using

conventional matrix rotation, spline-skinning represents each bone of the skeleton by

a spline. Furthermore, an appealing extension of DQS that is successfully applied in a

production setting (Disney’s Frozen), can be seen in [Lee et al., 2013]. For a extensive

discussion on nonlinear skinning methods, we refer the reader to [Kavan et al., 2009].

Whilst all the above-mentioned methods fully define the surface positions based on

skeletal configuration, they cannot capture secondary motion effects and skin contact

behavior in response to collision. Recently, more advanced geometric skinning methods

were introduced to limit the artefacts of LBS, while keeping their simplicity. Kavan and

Sorkine [Kavan & Sorkine, 2012] developed a new skinning method based on the concept

of joint-based deformers, which avoids the artefacts of linear blend skinning as well as

the bulging artefact of dual quaternion skinning. More interesting technique proposed

by Jacobson et al. [Jacobson & Sorkine, 2011], where they expanded skinning to support

bending, stretching and twisting by using a slight variation on the standard skinning

equations. Impressive skinning results can be obtained using the technique presented in

[Vaillant et al., 2013], which generates visually plausible skin deformations in real-time

(see Fig. 2.2). Their method automatically captures contact surfaces between skin parts,

without requiring any collision detection step. Moreover, they extended their framework

to handle local skin contacts and produce the effect of skin elasticity (sliding effect)

[Vaillant et al., 2014]. More recently, [Kim & Han, 2014] proposed a post-processing

method for dual quaternion skinning, which eliminates the joint-bulging artefacts and

its suitable for real-time character animation.

In spite of improvements, skinning using geometric skinning techniques remains purely

2joint-bulging is an unnatural skin bulging effect produced by dual quaternion skinning [Kavan et al.,
2007] while bending.

14

2.1. SKELETON-BASED SKINNING METHODS

Figure 2.2: Dana model in a break-dance pose. From left to right, the model is deformed
with linear blend skinning, dual quaternion skinning and implicit skinning. Note the vis-
ible loss of volume produced by LBS (left). Implicit skinning (right), however, generates
visually plausible skin deformations, which avoids the artefacts of linear blend skinning,
as well as the bulging artefacts of dual quaternion skinning [Vaillant et al., 2013].

kinematic, lacking of secondary motions effects like passive jiggling motion of the fatty

tissues or muscle bulging. In the next section, we present the most influential example-

based skinning methods, which are able to alleviate the limitations of geometric skinning

method, and add dynamic effects to the skin.

2.1.2 Example-based Skinning Methods

In contrast to geometric approaches, example-based skinning methods [Lewis et al.,
2000; Sloan et al., 2001; Kry et al., 2002; Allen et al., 2002; Kurihara & Miyata, 2004;

Magnenat-Thalmann et al., 2004; James & Twigg, 2005; Rhee et al., 2006; Weber et al.,
2007; Park & Hodgins, 2008; Shi et al., 2008; Lee & Hanner, 2009; Le & Deng, 2014]

have permitted more complex skinning effects such as muscle bulges and wrinkles,

while also addressing the artefacts of linear skinning techniques. These methods take

as input a series of sculpted example poses and interpolate them to obtain the desired

deformation. One of the first example-based methods is pose space deformation (PSD,

[Lewis et al., 2000]), which uses a radial basis function to interpolate correction vectors

among the example poses. In pose space deformation method, pose space is a set of

degrees of freedom of a character’s model, which vary between the example poses. A

particular pose is a set of particular values of these degrees of freedom. Pose space

deformation comprises one family of approaches, in which example poses (or local frame
corrections) are interpolated as a function of a character pose. A more sophisticated

extension of PSD was presented in [Sloan et al., 2001]. Their method interpolates an

articulated character using example poses scattered in an abstract space. This abstract

15

CHAPTER 2. LITERATURE REVIEW

space consists of dimensions describing global properties of the 3D character, such as

age and gender, in addition to dimensions that are used to describe the configuration,

such as the amount of bend at the elbow joint. Moreover, PSD was generalized to sup-

port weight (weighted pose space deformation WPSD, [Kurihara & Miyata, 2004; Rhee

et al., 2006]), which largely reduces the number of required example poses. Although

WPSD can handle large-scale deformations well, it cannot provide detailed deformation

and it requires more computation than the original pose space deformation (PSD). In

these methods, the amount of memory grows with the number of training examples,

thus they are more popular in animated feature film (DreamWorks Animation’s Shrek

2) than in real-time application. To tackle this problem, [Kry et al., 2002] proposed

a method similar in spirit to PSD called EigenSkin. Instead of using all the displace-

ments for example poses, they used precomputed principal components of deformation

influences on individual joints. The resulting algorithm leads to considerable memory

savings and enables to transfer the computations to the GPU. Despite the fact that pose

space deformation methods are simple to implement, they require tremendous effort

from artists, as they have to create different poses by hand for a wide variety of examples.

Another class of example-based methods, which is a direct generalization of LBS, but does

not require data interpolation, is formed by methods such as single-weight enveloping

(SWE, [Mohr & Gleicher, 2003]) and multi-weight enveloping (MWE, [Wang & Phillips,

2002]). Single-weight enveloping estimated single-weight per vertex with rigid charac-

ter bones, with provisions made for adding additional bones. Multi-weight enveloping,

however, is based on a linear framework supporting multiple weights per vertex-bone,

where it provides better approximations than SWE, but at the cost of 12 weights per

vertex-bone, instead of 1 weight per vertex-bone in SWE. However, linearity has certain

benefits: it is fast and it can be used to derive a measure of average distance across

the space of poses, but the example meshes are still necessary in order to obtain the

weights. This class of methods allows a smaller number of poses to be used to generate a

larger number of deformations, while introducing more weight parameters. Thus, these

numerous parameters come at a cost of complicated computation of the weights.

As an alternative to using sculpted example poses; several example-based approaches

use scanned or photographed data. Early work that uses 3D scanned poses of a human

body in character skinning has been presented in [Min et al., 2000]. Additionally, the

method in [Allen et al., 2002] creates a high quality posable upper body model from

range scan data and markers. In their method, to learn the skinning model, they obtain

16

2.1. SKELETON-BASED SKINNING METHODS

Figure 2.3: A set of example poses from an anatomically motivated arm model with both
bending and twisting at the elbow. The twisting and muscle bulges are enough to prevent
LBS from approximating the examples well. The technique of [Mohr & Gleicher, 2003]
does better, but still differ from the given example poses. The model from [Wang et al.,
2007] well-approximate the examples poses.

deformations corresponding to different poses by matching a subdivision surface tem-

plate to the range data. Recently, more advanced example-based techniques have been

effectively integrated with mesh deformation algorithms to further improve the quality

of skinning [Wang et al., 2007; Shi et al., 2008; Huang et al., 2011; Schumacher et al.,
2012]. A rotational regression model was proposed in [Wang et al., 2007], which captures

common skinning deformation such as muscle bulging (as we can see in Fig. 2.3) and

twisting, specifically in challenging regions such as the shoulders. Park and Hodgins also

introduced an interesting technique that captures and synthesizes detailed skin deforma-

tions such as bulging and jiggling [Park & Hodgins, 2006; Park & Hodgins, 2008], when

a character performs dynamic activities. They use a very dense and large set of markers

to capture the dynamic motions (see Fig. 2.4). Then, they employ a second-order skinning

scheme followed by a radial basis function of the residual errors to provide detailed skin

deformations. While high-quality skin deformations can be captured accurately using

scanned data, marker-based motion capture systems typically have a time-consuming

calibration process and high hardware cost.

Example-based skinning methods are attractive since they can provide rich details from

physical measurements and add realistic secondary deformation to the skeleton-based

animations. Shi et al. presented an appealing method that is able to provide the jiggling

of the fatty tissues in real-time by taking a surface mesh and a few sample sequences of

17

CHAPTER 2. LITERATURE REVIEW

Figure 2.4: The method proposed in [Park & Hodgins, 2008] captures and synthesize
detailed skin deformations given skeletal motion as input data. (a) Skeletal motion as
input of different motions. (b) Detailed skin and muscle deformation.

its physical behavior [Shi et al., 2008]. Moreover, the method proposed in [Huang et al.,
2011] is capable of synthesizing high resolution hand mesh deformation with rich and

varying details, from only 14 examples poses. However, these approaches do not capture

detailed soft-tissue deformations on a wide variety of body shapes. This limitation has

been addressed by (Dyna, [Pons-Moll et al., 2015]), which learns a model of soft-tissue

deformations from examples using a high-resolution 4D capture system. Dyna captures

surface deformations of the body at high spatial and temporal resolutions and constructs

a mathematical model for relating these deformations to the motion and body shapes of

novel characters.

The major drawback of example-based methods is the need for example poses. Be-

sides the fact that when the example poses cannot be captured on a real actor, creating

these poses requires either tremendous effort from an artist, or a complex physical

simulation on a volumetric version of the skin mesh. In both cases, the mesh and its

associated skeleton at rest are not sufficient, and further human intervention is required.

An interesting discussion on example-based deformation methods, can be found in [Feng

et al., 2008]. In the next section, we discuss several volume preservation methods for

skinned characters, which have been proposed to tackle the loss of volume artefact of

linear skinning techniques.

2.2 Volume Preserving Skinning Methods

Volume preservation is an important aspect in the context of skin deformation that has

been addressed in a variety of research papers over the last years [Desbrun & Gascuel,

1995; Guskov et al., 1999; Botsch & Kobbelt, 2003; Sorkine et al., 2004]. Volume preserva-

18

2.2. VOLUME PRESERVING SKINNING METHODS

tion methods allow artists to correct the volume changes through the generation of extra

bulges and/or wrinkles. The method that has been proposed in [Desbrun & Gascuel,

1995] is one of the first methods to introduce volume preserving deformation, where they

use local volume controllers to guarantee volume conservation of implicitly described soft

substances. Moreover, multi-resolution methods [Guskov et al., 1999; Botsch & Kobbelt,

2003] can preserve surface details by decomposing a mesh into several frequency bands.

Furthermore, Funck et al. presented an appealing approach that deforms the mesh

vertices based on vector field integration [von Funck et al., 2006; von Funck et al., 2008].

However, these two methods are either computationally expensive or do not fit into the

standard animation pipeline. Angelidis and Singh developed a skinning algorithm based

on a powerful embedding into the volumetric space, which enables to preserve volume

locally and globally [Angelidis & Singh, 2007]. In their method, a degree of freedom is left

to the artist to control the final shape, although its combination with skinning weights

variation along the mesh makes this control somewhat indirect. Recently, [Rohmer

et al., 2008; Rohmer et al., 2009] presented an automatic volume correction method to

model the constant volume behavior of soft tissues. It corrects the resultant deformations

of LBS using a set of local deformations. In their work, they used an automatic way

to segment an organic shape into a set of regions corresponding to the main muscle

and fatty tissue areas, in which volume is computed and locally corrected (see Fig. 2.5).

Huang et al. employed a nonlinear version of the volumetric graph Laplacian, which

features nonlinear volume preservation constraints [Huang et al., 2006]. Lipman et

Figure 2.5: Illustration of the volume correction using the method presented in [Rohmer
et al., 2008] in a complex character. a) Skinned mesh and skeleton. b) Automatic segmen-
tation. c) Standard LBS that suffer from the loss of volume. d) The volume correction
method of [Rohmer et al., 2008], where the volume is locally preserved in belly and trunk
areas.

al. introduce a shape and volume preserving mesh editing technique [Lipman et al.,
2007b], where meshes are represented by moving frames. These frames are scaled during

19

CHAPTER 2. LITERATURE REVIEW

deformation such that the volumetric shape properties are preserved. Several impressive

works that create an inner scaffolding of spring, which resist compression to maintain

volume are described in [Hong et al., 2006; Zhou et al., 2005]. The method in [Zhou et al.,
2005] provides an excellent introduction to these interior lattice methods. Lattice-Based

freeform deformation (FFD) are widely-used in commercial software (such as Autodesk

3D Studio Max [Autodesk, 1990–2015] and Maya [Autodesk, 1998–2015]) for providing

smooth deformations and preserving the volume of the skin [Sederberg & Parry, 1986;

Bloor & Wilson, 1990; Coquillart, 1990; Milliron et al., 2002]. For example, Autodesk

Maya 2007 supports the notion of flexors. This lattice flexor uses a local FFD lattice,

which can then be driven by joint transformations. However, the flexors do not support

skinning transfer and the use of flexors can require significant setup and tweaking be-

cause of the multitude of lattice points. FFD was first formally proposed in [Sederberg &

Parry, 1986] both as a representation for free-form solids and as a method for sculpturing

solid models. Using FFD, a complex character can be deformed by positioning the control

vertices of the coarse control grid. A more general extension of FFD (EFFD) was later

presented by [Coquillart, 1990]. Moreover, Hsu et al. provided a method that directly

manipulates the FFDs [Hsu et al., 1992] and the method in [Aubert & Bechmann, 1997]

uses an independent deformation function to provide a more flexible FFD. Although

lattice-based methods give the artist the flexibility of creating the desired deformation,

they require additional setup work and the deformation is sometimes difficult to predict.

On the other hand, cage-based skinning techniques consider an appealing way to control

the deformation of an enclosed fine-detailed mesh and help to preserve the volume of

skin deformations [Ju et al., 2005; Joshi et al., 2007; Lipman et al., 2007a; Ju et al., 2008;

Savoye & Franco, 2010]. Cage-based techniques can be considered as a generalization

of the lattice-based freeform deformation. Instead of a regular control lattice, a cage is

defined by a fixed-topology control lattice that is fitted to the character skin. The cage can

be seen as a low-resolution abstraction of the character, which enables the user to deform

a character using a simpler mesh. Most cage-based deformation methods are special case

of linear blend skinning, where the handle (cage vertex) transformations are restricted

to be translations and the focus is on choosing the weights. The method presented in [Ju

et al., 2008] uses cage-based deformations to implement skinning templates, which offer a

flexible design space within which to develop reusable skinning behavior. In their method,

the skeleton drives the motion of the cage vertices using an example-based skinning

technique, where the cage smoothly deforms the character model (see Fig. 2.6). Joshi et

al. proposed a powerful cage-based deformation method based on harmonic coordinates

20

2.3. PHYSICS-BASED METHODS

[Joshi et al., 2007] for use in high-end character articulation. Their technique guarantees

that the influence of each cage vertex is non-negative and falls off with distance as mea-

sured within the cage. It generates a pleasing deformation, but computing the harmonic

coordinates is not easy. In spite of that, cage-based techniques allow smooth deformation

of skin geometry. Posing the cage requires manual manipulation of the cage vertices. For

an overview discussion on volume-preserving deformation methods, we refer the reader

to [Gain & Bechmann, 2008; Nieto & Susin, 2013]. Another promising way to preserve

the volume of the skin and to achieve realistic deformation is by applying physics-based

simulation into the skin layer around the skeleton. The following section describes the

vast literature on physics-based methods.

Figure 2.6: Skinning with cage: (a) Input geometry with skeleton. (b) An initial cage
constructed from four templates, which are associated with the hand joint, elbow joint,
upper arm bone, and the shoulder joint. (c) The skeleton deforms the mesh templates. (d)
The geometry is deformed by the cage, yielding a non-pinching elbow and muscle bulging
[Ju et al., 2008].

2.3 Physics-based Methods

In order to model dynamic phenomena, such as the vibration of fatty tissues, muscles

bulging and skin contact deformations due to collisions, the animator must configure the

deformation for each keyframe. While manually posing a character for each animation

keyframe allows artists to create such realistic effects, this process is tedious. Therefore,

an alternative method is to employ physics into the skinning process, which highly

enhances the believability and realism of character motions. Accordingly, physics-based

simulation manages to bring skeleton-driven animation beyond the purely kinematic

approach by simulating secondary motions, such as jiggling of soft tissues when the char-

acter is moving. Those secondary motions enrich the visual experience of the animation

and are essential for creating appealing characters for movie productions and virtual

21

CHAPTER 2. LITERATURE REVIEW

reality applications. After the pioneering work of Terzopoulos et al. [Terzopoulos et al.,
1987] and concurrently Lasseter’s animation principle “squash and stretch" [Lasseter,

1987]. Physical simulation has taken an important role in the animated feature film

industry and computer games [Goktekin et al., 2007], where many physically based

methods encouraged to simulate soft bodies or add dynamic effects to the skin. In the

following subsections, we first discuss soft body simulations in (Section 2.3.1), and then

physically based skinning methods in (Section 2.3.2).

2.3.1 Deformable and Soft Bodies Simulations

Simulating soft bodies can be achieved in different ways, and the design choice often has

to balance the required accuracy and performance [Moore & Molloy, 2007]. The most

popular techniques for simulating soft bodies in computer animation are force-based

methods. In particular, most of the techniques used to simulate dynamics rely on mass

spring systems, because of the simplicity and efficiency. The general idea is to represent

the vertices of the mesh as mass points, governed by Newton’s second law of motion,

and the edges as elastic massless links (spring). Hence, the mesh is deformed when

the lengths of the elastic links change. This happens when the relative position of the

mass points changes due to external forces. Mass-spring systems are based on a local

description of the material, in which the physics of such systems is straightforward and

the simulator is easy to implement. However, to simulate a particular material, it is

important to select carefully the parameters of the springs, such as the stiffness and

damping. Despite that these systems are fairly easy to implement, they suffer from

instability and overshooting problems under large time steps. Moreover, mass-spring

systems are often not accurate, since they are strongly topology dependent and are not

built based on elasticity theory. On the other hand, finite element methods (FEM) are

based on elasticity theory, in which both the masses and the internal and external forces

are lumped to the vertices. The vertices in the mesh are treated like mass points in a

mass spring system while each element acts like a generalized spring connecting all

adjacent mass points. Here, the physical material properties can be described using

only few parameters that are used to model soft bodies in an accurate manner. Unlike

mass-spring systems, finite element methods are easy to simulate for any particular

material. This makes things easier for artists in charge of modelling different types of

soft bodies. Unfortunately, finite element methods are avoided in real-time applications,

because they are computationally expensive and complex to implement. Various methods

have been proposed to address the drawbacks of mass-spring systems and finite element

22

2.3. PHYSICS-BASED METHODS

methods [Chadwick et al., 1989; Pentland & Williams, 1989; Gourret et al., 1989; Turner

& Thalmann, 1993; Lee et al., 1995; Popović et al., 2003; Larboulette et al., 2005]. A

comprehensive survey of Nealen et al. [Nealen et al., 2006] provides the details about

these techniques. The methods presented in [Terzopoulos et al., 1987; Chadwick et al.,
1989] are the first to demonstrate the effectiveness of comparatively simple mass-spring

based approaches. In their methods, they applied the Lagrangian equations of motion

using a finite difference scheme to simulate elastic objects with regular parametrizations.

The concept of employing dynamic simulations into skinning for the purpose of character

animation was introduced over two decades ago [Girard & Maciejewski, 1985], where

many techniques were proposed to reduce the accuracy of the simulation to help improve

performance and interactivity. Capell et al. [Capell et al., 2002] used a volumetric finite

element mesh to represent the deformation of skin, driven by the underlying skeleton

motion. They extended their method to include rigging forces, which guide the deforma-

tion to a desired shape [Capell et al., 2005]. In their method, they effectively handled the

effect of skin movement by using skeletal constraints, but by using forces that can violate

the conservation of momentum makes their simulation unstable under large time steps.

Shinar et al. [Shinar et al., 2008] presented a framework of a two-way coupling between

rigid and deformable bodies, in which they use a time integration scheme for solving

dynamic elastic deformations in soft bodies interacting with rigid bodies. However, their

method does not facilitate the development of an interactive animation system, because

of the massive computation required for the finite elements representing the deformable

body. In contrast, a possible way to accelerate the simulation of soft bodies is to focus

on the surface rather than the volume [Bro-nielsen & Cotin, 1996; James & Pai, 1999;

Galoppo et al., 2007]. In particular, Galoppo et al. [Galoppo et al., 2007] presented a fast

method to compute the skin deformation on the surface of a soft body with rigid core.

Their formulation only considers the elastic energy from skin-layer deformation, and

does not include the deformation inside the volume. This may lead to inaccuracies when

capturing pose-dependent deformations.

All the above methods are only valid for small deformations and are unsuitable for

an articulated character’s large deformations. On the other hand, Müller et al. [Müller

et al., 2002] achieved a good real-time performances for large rotational deformations, by

using a pre-computed linear stiffness matrix to generate the deformations; their method

is simple and rotationally invariant. Recently, Kim and Pollard [Kim & Pollard, 2011]

proposed an approach relying on finite element method to simulate the skin deforma-

23

CHAPTER 2. LITERATURE REVIEW

tion, able to handle both one-way and two-way simulations. Their method generates

compelling dynamic effects, and the deformations are obtained at near interactive rates.

The method proposed in [Gilles et al., 2011a] simulates dynamic skinned deformation

models using frame-based degrees of freedom with unreduced force evaluation. Jain

and Liu presented a robust approach that realistically simulate characters with soft

tissue at the site of contact, where they used two-way coupling between articulated rigid

bodies and deformable objects [Jain & Liu, 2011]. Liu et al. developed a framework that

simulates and controls skeleton driven soft body characters [Liu et al., 2013a]. Their

method couples the skeleton dynamics and the soft body dynamics to enable two way

interactions between the skeleton, the skin geometry, and the environment at interactive

rates (as we can see in Fig. 2.7).

Figure 2.7: Employing dynamic simulation into skinning process allows two-way interac-
tions between the skeleton, the skin geometry, and the environment at interactive rates
[Liu et al., 2013a].

2.3.2 Physically based Skinning

Physics-based methods are the natural choice for creating secondary motion effects such

as flesh jiggling when a character is moving [Turner & Thalmann, 1993; Wilhelms, 1994;

Lee et al., 2009; Gilles et al., 2011b; Hahn et al., 2013]. Turner and Thalmann model

the elasticity of skin for character animation and simulate the fat layer by Hookian

spring forces [Turner & Thalmann, 1993]. However, they treat muscles as purely con-

trolled elements. Thus, they do not model muscles with deformable methods. Wilhelms

[Wilhelms, 1994] presented an approach for animated animals by simulating individual

bones, muscles, soft tissues and skin. The use of muscles, soft tissues and flesh elements

makes it hard to fit this approach into the skinning framework. Moreover, Hahn et al.

[Hahn et al., 2012; Hahn et al., 2013] generated secondary skin dynamics based on the

rig degrees of freedom (see in Fig. 2.8). Their methods simulate the deformation of a

24

2.3. PHYSICS-BASED METHODS

character’s fat and muscles in the nonlinear subspace induced by the character rig. In the

other direction, Kim and James [Kim & James, 2011] proposed a domain-decomposition

method to simulate articulated deformable characters entirely within a subspace frame-

work, where they combined locally-rotated nonlinear subspace models to simulate the

detailed deformations of the models. In order to simulate the musculotendons of the

human hand and forearm, [Sueda et al., 2008] add anatomic detail using the tendons

and bones.

Figure 2.8: The method proposed in [Hahn et al., 2012] takes a character rig as an input
and automatically produces physically plausible motions, which maintains the original
artistic intent and is easily editable.

While physics-based skinning methods can automatically generate secondary motion

with high visual quality, they entail a significant computational burden that slows produc-

tion and prohibits its use in interactive environments. McAdams et al. [McAdams et al.,
2011] presented a robust method using a uniform hexahedral lattice, which provides

convincing deformations of the skin with contact handling. In addition, they introduce a

one-point quadrature scheme and a multi-grid solver in order to improve the performance

and stabilize the simulation.

Although their method can capture appealing skin deformations and guarantee pinch-

free geometry, it works at best at near interactive performance (as we can see in Fig. 2.9).

Recently, Deul and Bender [Bender et al., 2013] introduced a multi-layer character

skinning based on shape matching with oriented particles, used to simulate the elastic

behavior of a closed triangular mesh as a representation of a skin model. They make a

use of position-based constraints for coupling the skeleton with the skin and handling

self-collisions. Lastly, Gao et al. [Gao et al., 2014] proposed a physics-based skinning

method for skeleton-based characters. They introduced a material model of ex-rotated

elasticity, which uses a procedural skinning technique to approximate co-rotated elas-

ticity with an affine force model and pose-dependent coefficients. Their method can

25

CHAPTER 2. LITERATURE REVIEW

simulate high-resolution human flesh models with full external and self-collision pro-

cessing, without the ability to generate secondary motions effects like jiggling of the fat

tissues.

Figure 2.9: The method of [McAdams et al., 2011] takes a skeleton and a surface mesh as
input. Based on a hexahedral lattice with 106,567 cells (center), their method simulates
the deformed surface (right) obeying self-collision and volumetric elasticity at 5.5 seconds
per frame.

2.4 Collision Handling for Deformable Bodies

In order to simulate the skin’s behavior realistically, an appropriate collision response has

to be considered. However, skin contact deformations due to collision are difficult to model

using geometric skinning techniques, because the combination of bone transformations

and blend weights, completely determine the resulting (deformed) mesh. In contrast,

physics-based methods can capture skin contact deformations. In these methods, collision

handling consists of two steps: collision detection and collision response. Often they are

performed independently, with the result of the collision detection algorithm being

used as input to the collision response algorithm. Both collision detection and collision

response are challenging problems and active areas of research in computer graphics. In

the following sections, we discuss literature that addresses these problems.

2.4.1 Collision Detection

Because of its importance, a substantial amount of research in computer animation is

related to collision detection. In order to achieve interactive performance of collision

detection, efficient data structures based on bounding volume hierarchies (BVHs) and

spatial partitioning have been widely used. In this section, we mainly focus on those

methods that detect collisions and self-collisions on deformable bodies or models under-

going specific types of deformation, such as skeletal deformation. For a more thorough

26

2.4. COLLISION HANDLING FOR DEFORMABLE BODIES

treatment of the collision detection literature, we refer the reader to the following surveys

[Jiménez et al., 2000; Lin & Manocha, 2003; Ericson, 2004; Teschner et al., 2005].

2.4.1.1 Bounding Volume Hierarchies

Bounding volume hierarchies (BVHs) have been commonly used to accelerate collision

detection algorithms. By using a BVH, the time complexity of a geometric query can be

reduced from O (n) to O (logn), where n is the number of object primitives. Many types of

bounding volumes (BVs) have been investigated, e.g., spheres [Spillmann et al., 2007],

axis-aligned bounding boxes (AABBs) [Bridson et al., 2002], oriented bounding boxes

(OBBs) [Gottschalk et al., 1996], discrete oriented polytopes (DOPs) [Klosowski et al.,
1998], boxtrees [Zachmann, 1995]. Widely used hierarchies are those based on simple

BVs such as spheres and AABBs [He et al., 2015]. For a comprehensive discussion on

bounding volume hierarchies, we refer the reader to [Zachmann & Langetepe, 2002].

In contrast to rigid objects, deformable bodies change their shapes almost at each time

step of the simulation. Therefore, their hierarchies must be updated accordingly and the

cost of these updates can be high. Traditional approaches require O (n) operations for

each update, where n is the number of object primitives. Several techniques have been

proposed to speed up the updates, including refitting algorithms [van den Bergen, 1998;

Larsson & Akenine-Möller, 2001; Larsson & Akenine-Möller, 2006; Zachmann & Weller,

2006] and dynamic restructuring [Otaduy et al., 2007]. In order to further reduce the

computational complexity, on-demand refitting algorithms have been proposed. These

algorithms exploit information provided by the deformation model, in which bounding

volumes are only recomputed when required by the collision detection algorithm. Such

refitting is presented in [James & Pai, 2004] for the reduce deformation model, in

[Larsson & Akenine-Möller, 2003] for morphing, in [Kavan & Zara, 2005] for linear

blend skinning and in [Kavan et al., 2006] for spherical blend skinning (see Fig. 2.10).

Another interesting collision detection method specialized for skeletally deformable 3D

models can be found in [Heim et al., 2004], but their refitting procedure is restrictive

especially for detailed 3D models.

On the other hand, deformable bodies often suffer collisions against themselves, and

detecting self-collisions is usually a bottleneck for real-time simulations. Self-collision

queries with BVHs are executed by starting a recursive query on the root BV against

itself. Unfortunately, BVHs lose all their advantages in this case, because tests between

triangles adjacent to each other cannot be culled away at high levels in the hierarchy.

Thus, detecting the self-collisions using BVHs is computationally expensive. Moreover,

27

CHAPTER 2. LITERATURE REVIEW

Figure 2.10: Fast collision detection method introduced in [Kavan et al., 2006]. Their CD
algorithm is based on BVH, in which they produce a tree with 5 levels (center) and 6
levels (right) to detect collisions on models deform by spherical blending skinning.

BV approaches typically detect the intersections, but they require an additional process-

ing step to compute the penetration depth for collision response. In order to address

these problems, various approaches have been introduced, which are based on surface

normals and curvature [Volino & Thalmann, 1994; Provot, 1997; Mezger et al., 2003;

Schvartzman et al., 2009] or based on star-shaped decomposition [Schvartzman et al.,
2010]. An efficient algorithm to handle self-collisions is proposed in [Govindaraju et al.,
2005], where they employed both visibility-based culling and chromatic decomposition to

radically improve the performance of self-collision detection using BVHs. For an exten-

sive description and analysis of the use of BVHs for collision detection, please refer to

Gottschalk’s PhD dissertation [Gottschalk, 2000].

2.4.1.2 Spatial Subdivision Partitioning

Spatial subdivision partitioning methods are simple and fast approaches to speed up

collision and self-collision detection on deformable bodies. These methods have simi-

larities with bounding volume hierarchies. However, the idea here is subdividing the

space instead of the objects. Several spatial subdivision schemes have been proposed

for collision detection, such as octrees-like structures [Madera et al., 2006], BSP trees

[Luque et al., 2005], kd-trees [Teller & Sequin, 1991], uniform grids [Zhang & Yuen,

2000] and spatial hashing [Turk, 1989; Teschner et al., 2003; Alcantara et al., 2009].

An important structure to be highlighted here is spatial hashing, because it has become

widely used for collision detection with deformable bodies [Sud et al., 2006; Eitz &

28

2.4. COLLISION HANDLING FOR DEFORMABLE BODIES

Lixu, 2007]. Instead of using complex data structure and explicitly performing a spatial

subdivision, a hash function is used to map 3D cells into a hash table. In [Maciel et al.,
2007] a spherical hash is used to detect collisions on biomechanical models. Despite

that this method has shown a fast performance in the main processing stage, there is a

drawback: In case the objects deform in a non-radial direction, the pre-processing stage

must be repeated, which is slow. Jund et al. presented an efficient collision detection

method based on spatial subdivision, which supports geometric and topological changes

on deformable bodies [Jund et al., 2009].

2.4.2 Collision Response

In order to produce convincing skin deformations and organic effects such as contact de-

formations between skin parts (especially in the areas around a joint), collisions between

skin parts must be handled. However, resolving collisions requires specific information,

and it is not sufficient to just detect the collisions. Nevertheless, collision detection is

the first step in resolving the dynamic behavior of skin in contact and it has a strong

influence on the continuity of a collisions response algorithm. Hence, collision detection

algorithms have to provide extra information such as penetration depth, which is re-

quired for realistic collision response. Accurate collision handling for an articulated body

with j bones and p contacts has O (jp) complexity [Baraff, 1996]. Therefore, handling

collision would slow down the computation, but the resulting deformations would be

more convincing.

Several approaches have been proposed to address the problem of efficiently handling

global and local collision response [Capell et al., 2005; Jain & Liu, 2011; Ye & Liu, 2012].

In particular, Capell et al. presented a framework that imposes constraints on a control

lattice for FEM simulation [Capell et al., 2005]. Their framework has been extended

to include rigging force fields, self-collision handling, and automatic linearization of

deformations in pose space. In contrast, one broadly applied technique to handle collision

is to formulate a linear complementarity problem (LCP). The formulation of the LCP

uses an implicit time-stepping method and robustly guarantees the enforcement of the

constraints at the end of the time step [Stewart & Trinkle, 1996]. In this context, Er-

leben proposed an LCP formulation [Erleben et al., 2005], in which he combines joint

constraints, joint limits, and joint motors with rigid contact constraints in a velocity

based linear complementarity for the purpose of contact modelling.

29

CHAPTER 2. LITERATURE REVIEW

Figure 2.11: The contact handling algorithm presented in [Teng et al., 2014] allows both
self-collision detection and contact response to be simulated in 5.8 FPS (171 ms) for a
hand mesh composed of 458K tetrahedra.

Recently, Teng et al. presented an efficient subspace method for simulating self-contact

of articulated deformable bodies ([Teng et al., 2014], see Fig. 2.11). They explored self-

collision in pre-computation schemes, but not on skinned bodies. More recently, Sheth et

al. proposed a framework for simulating reduced deformable bodies, which accounts for

linear and angular momentum conservation [Sheth et al., 2015]. Their framework fully

supports collision, contact, articulation, and other desirable effects.

2.5 Conclusion

In this chapter, we have reviewed the common techniques for modelling deformations,

especially those for character animation purposes. A greater attention was paid to

skeleton-based methods, and physics-based methods. In skeleton-based skinning such as

linear blend skinning, dual quaternion skinning and pose space deformation, surface

deformation is restricted to the skeletal pose that fully defines the surface deforma-

tion. While skeleton-based methods can produce good results, the believability of the

deformation using these methods is limited. Because they cannot capture secondary

motions effects and skin contact deformations. In contrast, physics-based simulations

bring skeleton-based animation beyond the purely kinematic approach by simulating

secondary motions such as jiggling of soft tissues when the character is moving, as

well as capturing skin contact deformation. Simulating such flesh-like deformations is

difficult due to the coupling between the skeleton and soft skin. Moreover, the resultant

deformation has a high number of independent degrees of freedom, in which it does not

respect any manipulation done by the artist. Therefore, once the deformation parameters

are specified, it is difficult to control the actual resulting shape of the character in every

animation frame. Furthermore, physics-based methods are computationally expensive

and usually avoided in interactive applications.

30

2.5. CONCLUSION

The goal of this dissertation is to develop methods that can interactively capture high

quality skin deformation in a plausible way at a low computational. In the next chapter,

we recapitulate the mathematical concept and essential background information that

will be necessary for understanding and reproducing the technical contributions in the

following chapters.

31

C
H

A
P

T
E

R

3
LAYERED SKIN DEFORMATION

To put this dissertation in a proper perspective, it is important to give some insight

into the background material, mathematical descriptions and the computational

frameworks for skeleton-based deformation and physically based soft-body an-

imation. In this chapter, we provide the context for these topics, which serves as the

basis for the developments presented in following chapters. Moreover, the main aim of

this chapter is to introduce the reader to the concept of layered skin deformation. The

general idea of layered skin deformation is to create a chain of layered deformations,

the result of which approximates the behavior of the skin. Typically, character meshes

are deformed with a single skeleton-based skinning algorithm. However, traditional

skeleton-based deformation methods produce unsightly artefacts and fail to capture the

full range of desired effects, namely jiggling, volume preservation, muscle bulging and

skin contact deformations. To enforce elastic behavior and preserve the volume of the

skin, new deformer types can be developed and integrated with the traditional skeleton-

based deformer. This combination of simple deformers is sufficient for reproducing the

macroscale volume changes observed in moving creatures.

First, we briefly introduce the concept of layered skin deformation (Section 3.1). Then,

we discuss the fundamental theories of skeleton-based deformation (Section 3.2) and

33

CHAPTER 3. LAYERED SKIN DEFORMATION

review the basic definitions and formulations in physics-based deformation methods

(Section 3.3). This chapter also serves as a quick tutorial to physically based approaches.

For readers who are interested in more details on these subjects, we would like to refer

them to [Dong et al., 2002; Erleben et al., 2005; Kenwright, 2012; Sifakis & Barbic, 2012;

Bender et al., 2015].

3.1 Layered Skin Deformation Framework

The skinning process for articulated characters is an indispensable component of the

content creation pipeline for feature films, for video games, and in the special effects

industry. In character animation, both the skeleton of a virtual character and the skin

that defines its external shape are required. Therefore, the deformation of the skin is

computed in every animation frame and depends on the actual positions of skeletal

joints. Lasseter and Chadwick emphasized that computers provide the advantage of

working with an animation in layers [Lasseter, 1987; Chadwick et al., 1989]. The ability

to additively build an animation in layers provides an effective means for creating

complex motion. Therefore, the layered deformation framework is commonly employed

in animated films and computer games. Layered deformers use a stack (or chain) of

deformers to compute the final deformation of the skin shape. For simple deformations,

this stack may have only one deformer, which is usually purely kinematic that binds the

skeleton-to-skin in a geometrical way. However, to provide more life-like deformations, it

is important to add more physically based deformers.

Inputs

animated skeleton

surface mesh

time

geometric deformation
Output

deformed shape

Layered Deformers

dynamic elastic

 simulation
collisions

physically based deformation

Figure 3.1: Layered skin deformation composed of two-layered deformers. The first layer
modifies the skin shape in response to the changes in skeleton position. While in the
second layer, the skin is deformed using physically based deformer, which is mainly used
to simulate the elasticity of the skin and contact reaction.

34

3.1. LAYERED SKIN DEFORMATION FRAMEWORK

The design of this stack allows for concatenation of multiple types of deformers, in

which each deformer in the stack operates on the output of the previous deformer (see

Fig. 3.1). Consequently, this framework offers a compact way for modelling both geometric

deformations and the physically realistic behaviors of the skin, which is also capable of

processing collisions and contacts. Moreover, it gives the artists the freedom to create

a flexible combination of deformations so as to achieve almost any desired effect. This

concept is also easy to implement: the mesh vertices are passed through a linear series

of deformations, and each of which adds some contributions to the final position of the

vertices. The following pseudo-code demonstrates how to develop a simple two-layered

skin deformation (see Alg. 1). Despite the simplicity, there is an obstacle that prevents

adaptation of this concept into real-time applications: The impediment is the lack of

understanding of how to exactly construct such a system that achieves visually pleasing

deformations, while keeping the computation cheap.

Algorithm 1: A sample pseudo-code for creating two-layered skin deformation,
consisting of a skeletal deformer and an elastic deformer.

Input :Vector inputVertices, Matrices4x4 boneTransformations
Output :Vector deformedVertices

1: Establish nextDeformer as stack of [skeletalDeformer,elasticDeformer]
2: updateSkin ()
3: {
4: Deform(inputVertices,boneTransformations)
5: if nextDeformer then
6: nextDeformer->updateSkin()
7: end if
8: }
9: skeletalDeformer(inputVertices,boneTransformations)

10: {
11: for each vi in inputVertices do
12: // binding each vertex only to the nearest bones
13: bindSkin(vi, closestBones)
14: end for
15: }
16: elasticDeformer(inputVertices)
17: {
18: // elastic layer, which adds physics-based elastic components to improve
19: // the realism. A simple example is the jiggly-looking skin of the fat
20: // tissues
21: jiggle(vi)
22: }

35

CHAPTER 3. LAYERED SKIN DEFORMATION

The most intuitive deformation method to model the skin of a virtual character is via its

underlying skeleton. In the following, we present the fundamentals of skeleton-based

deformations in details.

3.2 Skeleton-based Deformations

The fundamental technique to drive the deformation of a character skin is via an

underlying skeleton. Among the many proposed skeleton-based deformation techniques,

linear blend skinning (LBS) is the most popular technique due to its effectiveness,

simplicity, and efficiency [Magnenat-Thalmann et al., 1988]. It has been given many

different names over the years, including “skeletal subspace deformation", matrix palette

skinning, enveloping, vertex blending, smooth skinning (Autodesk Maya), bones skinning

(Autodesk 3D Studio Max), or linear blend skinning (the open-source Blender) [Le

& Deng, 2012]. What follows is an explanation of both the concepts and mathematics

necessary to understand and implement linear blend skinning. We will also review the

algorithm and its limitations.

3.2.1 Linear Blend Skinning

In linear blend skinning, the basic operation is to deform the skin according to a given

list of bone transformations (Fig. 3.2). The formulation of the LBS model requires the

following input data:

• Surface mesh, a 3D model represented as a polygon mesh, where only vertex

positions will change during deformations. We denote the rest pose vertices as vi,

... ,vn, and vi ∈ R4 is given in homogeneous coordinates.

• Bone transformations, representing the current deformation using a list of

matrices T1, ... ,Tm ∈ R4×4. The matrices can be conveniently defined using an

animated skeleton. T j is the transformation matrix associated with bone j in its

current (animated) pose, R−1
j is the inverse transformation of the same bone in

the rest pose R. Additionally, the matrix R remains constant, so its inverse is also

constant and can safely be pre-computed. Each bone transformation influences

part of the mesh.

• Skinning weights, For each vertex vi, we have weights wi,1 + ...+wi,m ∈ R, in

which each wi, j describes the amount of influence of bone j on vertex vi. The

36

3.2. SKELETON-BASED DEFORMATIONS

binding weights are normally assumed to be convex, so wi,1 + ...+wi,m = 1 and

wi, j ≥ 0.

The surface mesh is driven by a set of bones. Every vertex is associated with the bones

via a bone-vertex bind weight, which quantifies the influence of each bone to the vertices.

Therefore, the basic idea behind LBS is to linearly blend the transformation matrices.

The skin is deformed by transforming each vertex through a weighted combination of

bone transformations from the rest pose. Thus, the final transformed vertex position v′
i

is a weighted average of its initial position transformed by each of the attached bones.

The whole process can be expressed with the following equation [Merry et al., 2006]:

v′
i =

m∑
j=1

wi, jT jR−1
j vi (3.1)

Figure 3.2: An example illustrates the main concept of LBS. There are two transforma-
tions T1 and T2, corresponding to the transformations of shoulder and elbow joints from
the rest pose to an animated posture.

In practice, it is rarely makes sense to attach a vertex to more than four joints. However,

some old games systems used a variant dubbed rigid binding, which corresponds to

allowing only one influencing bone per vertex. Rigid binding leads to unrealistic non-

smooth deformations near joints and suffers from self-intersections. With increasing

polygon budgets, linear blend skinning quickly replaced rigid binding because it allowed

for smooth transitions between individual transformations (see Fig. 3.3). Linear blend

skinning begins by assigning weights for every vertex on the skin mesh to the underlying

bones. The binding weights can be constructed automatically based on the distance

between the skin vertices and line segments representing the bones, but it is hard to

37

CHAPTER 3. LAYERED SKIN DEFORMATION

reliably create good weights automatically. Usually the artists must paint the weights on

the mesh directly, using their knowledge of anatomy1. Technically, the implementation

of a linear blend skinning algorithm is straightforward, and a pseudo-code is presented

in Alg. 2. Linear blend skinning works very well when the blended transformations

T j are not very different. Issues arise if we need to blend transformations, which differ

significantly in their rotation components.

Figure 3.3: Left. Linear blend skinning. Note the loss of volume at the elbow joint.
Right. Rigid binding. Note the self-intersections and unnatural deformations in the areas
around the elbow joint.

Algorithm 2: Simple pseudo-code of the linear blend skinning algorithm
Input :Vector inputVertices, Matrices4x4 currentbonesTransformations,

Matrices4x4 restbonesTransformations, Matrices4x4 bindingweights
Output :Vector deformedVertices

1: // Apply current animation (bone transform) to the rest pose to get the final
2: // skinning matrices
3: for each j in Bones do
4: skinningmatricesj = currentbonesTransformations×
5: restbonesTransformations−1

j
6: end for
7: // Loop through every vertex and compute the blended position
8: for each vi in inputVertices do
9: deformedVerticesi = inputVerticesi +bindingweightsi,j×

10: skinningmatricesj
11: end for

Despite its fast and straightforward implementation, linear blend skinning suffers from
1In Chapter 4, we describe how binding weights can be efficiently computed.

38

3.2. SKELETON-BASED DEFORMATIONS

some visible artefacts when we rotate joint more than 90◦. In a rotating joint, we expect

the skin to rotate around the joint too, maintaining the volume. But the linear blend

model instead interpolates skin vertex positions linearly between where the bones expect

them, which shrinks the volume of the skin. Therefore, this linearly blending rotation

leads to the well-known “candy-wrapper" artefact (as we can see in Fig. 3.4).

Figure 3.4: The well-known “candy-wrapper" artefact of linear blend skinning. Left. The
character model in its rest pose. Right. The model deformed with linear blend skinning,
where the areas around the shoulder joint suffer from the “candy-wrapper" artefact and
volume loss when twisting.

Fig. 3.5 below illustrates the problems of LBS, which are loss of volume when bending

and the “candy-wrapper" artefact when twisting:

Figure 3.5: Left to right: The skin in its rest pose. Rigid transformations (express rotation
and translation). While twisting, the weighted combination of vertices v1 and v2 is not
guaranteed to be a rigid transformation, which result in the “candy-wrapper" artefact.
When bending, the linear interpolation of LBS between the vertices v1 and v2 produces
v at an inadequate location, which result in a loss of volume.

Fixing these artefacts requires some intervention. One possibility is to improve the

skinning algorithm itself. One of most the popular improvements based on geometric

algebra, is called dual quaternion skinning, which completely eliminates these artefacts.

We discuss this algorithm in the next section.

39

CHAPTER 3. LAYERED SKIN DEFORMATION

3.2.2 Dual Quaternion Skinning

To avoid the “candy-wrapper" effect and volume loss of linear blending skinning (LBS),

dual quaternion skinning (DQS) [Kavan et al., 2007]) is a good alternative. DQS delivers

a rigid transformation in all cases and it is almost as fast as LBS. While the underlying

mathematics may not be trivial, an actual implementation of dual quaternion skinning

is quite straightforward. Instead of using matrices to express the rigid transformations

of the bones, dual quaternion skinning uses the geometric algebra of quaternions. The

formulation of DQS is based on dual quaternions [Clifford, 1882], which is a gener-

alization of regular quaternions that can be used to express both the translation and

the rotation. We are blending rigid transformations, however, the blended matrices M
are no longer rigid transformations under rotations, but general affine transformations

(potentially containing scale and shear factors). Therefore, instead of blending matrices

M=∑m
j=1 wi, jT jR−1

j . In DQS, we blend dual quaternions q̂j. The figure below illustrates

the intuition of why DQS is better than LBS.

1

V

V

2

m

1

V

V

2

Vm

V

Figure 3.6: Left. Linear blend skinning, which computes a linear interpolation between
two vertices and the new position will be somewhere lying on the line segment between
v1 and v2. Right. Dual quaternion skinning, where instead of a linear interpolation it is
a spherical one. The new position will be lying on the arc circle, and will avoid volume
loss [Kavan et al., 2007].

To compute the deformed position of a vertex with DQS. First, the transformation ma-

trices are converted to unit dual quaternions. Then, these unit dual quaternions are

blended linearly, similarly to linear blend skinning. In other words, we blend dual quater-

nion transformation q̂j, weighted by wi, j. The result is normalized with ‖∑m
j=1 wi, jq̂j‖ to

produce the final dual quaternion used to transform a vertex from its rest pose to the

deformed position. This guarantees to represent only a rotation and translation. While

linearity is lost (due to the projection on unit dual quaternions), the resulting algorithm

can be implemented very efficiently. Dual quaternion skinning computes deformed ver-

tex positions according to the following formula (a more detailed explanation on dual

40

3.2. SKELETON-BASED DEFORMATIONS

quaternion skinning can be found in [Kavan et al., 2008]):

v′
i = q̂jviq̂j

∗ (3.2)

where q̂j =
∑m

j=1 wi, jq̂j

‖∑m
j=1 wi, jq̂j‖ is a unit dual quaternion and q̂j

∗ is the conjugate of q̂j.

Unlike matrices, by using dual quaternions there will not be any scale factor that

shrinks the mesh around the joints. Dual quaternion skinning thus successfully elim-

inates the “candy-wrapper" effect, but it reveals its own artefact, called joint-bulging

artefact (as we can see in Fig. 3.7). Moreover, dual quaternion skinning has a number of

limitations especially in a production environment, as dual quaternions are unable to

represent non-rigid transformations, such as shearing.

Figure 3.7: A demonstration of the artefacts of linear blend skinning (LBS) and Dual
quaternion skinning (DQS). Left. LBS suffers from volume loss while bending. Right.
DQS successfully eliminates the “candy-wrapper" effect and preserve the volume of the
skin, but produces the joint-bulging artefact while bending.

Skeleton-based deformation alone is not sufficient for capturing believable skin deforma-

tions, such as skin stretching, secondary motion effects and skin contact due to collisions.

In contrast, physics-based simulation offers believable and compelling deformations and

enables to create physically based secondary motions, such as flesh jiggling and realistic

collision reaction. The next section elaborates on the main physically based methods for

simulating dynamic behavior of articulated characters.

41

CHAPTER 3. LAYERED SKIN DEFORMATION

3.3 Physics-based Deformation

Popular physics-based simulations for producing efficient, realistic-looking animations for

computer graphics applications, including physics engines (constraint-based techniques)

[Müller et al., 2007; Fratarcangeli, 2012] like NVIDIA PhysX, and the mass-spring

(MS) methods [Galoppo et al., 2007]. High-accuracy applications in science, engineer-

ing, and surgical applications typically require a more accurate and computationally

complex physics-based technique for simulations, such as the finite element methods

(FEM) [Capell et al., 2005; Kim & Pollard, 2011]. The classic approach of “layered skin
deformation" [Chadwick et al., 1989] uses a skeleton that drives soft tissue motions

and accommodates kinematic and dynamic deformations. However, to produce dynamic

deformation, a simulation model is required. This section provides an introduction to var-

ious aspects of physically based deformation models, including time integration schemes

and physics-based simulation techniques, namely mass-spring (MS, Section 3.3.2.1)

models, finite element methods (FEM, Section 3.3.2.2) and position based dynamics

(PBD, Section 3.3.2.3). Moreover, in this section, we evaluate the stability, performance

and visual quality of each method. In this dissertation, we choose to employ a constraint-

based technique, which is position based dynamics (PBD) [Müller et al., 2007]. The use

of position based dynamics adds believability to our skin deformation model and ensures

real-time performance.

3.3.1 Time Integration

The simulation techniques to produce physically based deformations are often force based.

Internal and external forces are accumulated from which accelerations are computed

based on Newton’s second law of motion (Eq. 3.3). A set of ordinary or partial differential

equations defines the force fields applied to the different elements that represent the

system. Then, a numerical integration scheme is employed to integrate the acceleration,

in order to obtain the velocity and then the position of the element in a given time step.

F= ma (3.3)

where F=∑
j=1 F j is the internal and external forces vector. F acts to push and pull an

object around in space. The a in this equation expresses the acceleration vector (a= F
m),

and m is the mass of the object, which is constant.

42

3.3. PHYSICS-BASED DEFORMATION

Given the positions xi(t) and velocities vi(t) of a point at time t, new positions xi(t+h)

and new velocities vi(t+h) need to be determined for the next time step of the simulation

t+h, according to the equation of motion (Eq. 3.3). For this, we first transform (Eq. 3.4)

into a first order differential equation (Eq. 3.5):

Fexternal =M
∂2x
∂t2 +D

∂x
∂t

+Finternal (3.4)

∂

∂t

(
x
v

)
=

(
v

Fexternal −Dv−Finternal(x,v)

)
(3.5)

where D is the damping matrix that represents viscous damping applied to each element

in the system, and M the mass matrix.

Solving Eq. 3.5 can be done using a numerical integration method. Traditionally, nu-

merical integration schemes can be divided into three general categories: explicit (for-

ward) Euler integration (Section 3.3.1.1), implicit (backward) Euler integration (Section

3.3.1.2) and Verlet integration (Section 3.3.1.3). Therefore, these numerical integration

methods deal with how to advance a simulation from one time step to the next step. In

the following, we provide a short review of these methods, explaining their differences

and drawbacks.

3.3.1.1 Forward Euler Integration

The simplest method of numerical integration is the explicit (forward) Euler scheme,

which uses the positions, velocities, and external forces at the current time step to

compute the corresponding values of the following step. The explicit Euler scheme is

given by the following update rules:

vt+h = vt +hat (3.6)

xt+h = xt +hvt (3.7)

This scheme guarantees first order precision of the computed positions and velocities.

We are treating h as a time step and it is sufficiently small, where h controls stability

and speed of the computation. v is the velocity vector, x is the position vector, and t is

a specific time during the simulation. A solution obtained using explicit Euler scheme

is quite unstable, suffers of overshooting problems and exhibits inferior accuracy. The

smaller the time step, the higher the stability, and vice versa. The major drawback of

this scheme is that the resultant deformation tends to vibrate and even explode, when

time steps are too large.

43

CHAPTER 3. LAYERED SKIN DEFORMATION

3.3.1.2 Backward Euler Integration

In contrast to the explicit Euler scheme, the implicit (backward) Euler scheme assumes

for the solution of the next simulation state that future variables are known. In other

words, with the backward Euler scheme, we update the current position, not with the

current velocity and acceleration but with the resulting velocity and acceleration. The

problem with this approach is that the velocities and accelerations of the next time

step are unknown. We need to solve for them, which can be done by treating implicit

Euler integration as a linear equation and solve for it. However, the resulting set of

equations can be large, which makes solving them each time step is computationally

more expensive than the explicit method. An alternative solution is to use an explicit

Euler scheme and then use the result to compute the implicit integration. This is known

as a predictor-corrector method, since we predict a solution using the explicit Euler

equation and then correct for errors using the implicit scheme.

The simplest implicit integration scheme is given by the following update rules:

vt+h = vt +h
Fexternal −dvt+h/dt

m
(3.8)

xt+h = xt +hvt+h (3.9)

Although implicit methods are computationally expensive, they have the advantage of

stability and are useful for large particle systems.

3.3.1.3 Verlet Integration

Verlet integration [Verlet, 1968] is a velocity-less integration scheme, which is frequently

used in video games, mainly due to [Jakobsen, 2001] (Jakobsen is the first to employ

Verlet integration in games). He developed the PhysX engine of a popular game called

“Hitman: Codename 47", where he employed the Verlet scheme to simulate rag dolls,

cloth and plants. The Verlet integration method works by using the current and previous

position to create the velocity, instead of using the exact velocity (Eq. 3.10). In this

formulation, the velocity term disappears and the position at the next time step xt+h

depends only on the current forces applied to the point, current position and position

at the previous time step. However, because the velocity is now given only implicitly by

using the previous position, the time step need to be kept constant between each call to

the numerical integrator.

xt+h = 2xt −xt−h +ath2 (3.10)

44

3.3. PHYSICS-BASED DEFORMATION

Verlet integration offers stability as well as other properties that are important in

physical systems, such as time-reversibility, area preserving properties, and conservation

of the energy of the system. In addition, Verlet integration is easy to implement. Simple

pseudo-code is presented in Alg. 3. While standard Verlet integration is unconditionally

stable, it does not incorporate velocity, which makes it difficult to use with velocity

dependent forces.

Algorithm 3: Verlet integration pseudo-code
Input :Double timeStep, Vector previousPositions, Vector currentPositions,

Vector currentAccelerations
Output :Vector deformedPositions

1: // VerletTimeStep
2: Double oldPosition
3: while currentPositions do
4: oldPositions = currentPositions
5: currentPositions= 1.99 · currentPositions−0.99 · previousPositions+

currentAccelerations · timeStep · timeStep
6: // The two factors 1.99 and 0.99 are included
7: //, in order to introduce a small amount of drag in the system
8: previousPositions=oldPositions
9: end while

3.3.2 Physics-Based Simulation Techniques

Both the differential equations and numerical integration scheme constitute a physical

model. A physical model is assessed according to its generality, accuracy and efficiency.

First, we discuss the most used physical model in computer graphics community, which

is the mass-spring model.

3.3.2.1 Mass-Spring Model

The mass-spring model (MS) is indubitably the simplest and most intuitive deformation

model. In the mass-spring method (Fig. 3.8), a continuous body is approximated by a

system of mass points connected by massless springs that are simulated using some

variant of Hooke’s law. This model allows to perform interactive deformations and to

handle complex interactions with ease [Liu et al., 2013b]. It is well-suited for generating

visually plausible animations.

45

CHAPTER 3. LAYERED SKIN DEFORMATION

Figure 3.8: Two connected tetrahedra represented as a mass-spring model with different
connected spring topologies. Right. Simple mass-spring model. Left. Volumetric mass-
spring model with additional springs to preserve the volume.

The force applied on a mass point is given by rest length l0, current length l, and

spring constant k, according to Hooke’s law F = k(l0 − l). The spring force acting on a

point i with position xi due to a connected spring to point j with position x j is given

below:

Fi =
∑

j
ki, j(‖x j −xi‖− l0

i, j)
xi −x j

‖x j −xi‖
(3.11)

Mass-spring methods vary according to the discretization mesh, the way the springs are

set between the mass points, and the functions used to model the springs. Because mass-

spring model is a discrete approach, it can only roughly approximate the true physics

governing the deformation of an elastic object. Moreover, the integration of realistic tissue

properties into this model is not straightforward, and often requires manual parameter

tuning. In addition, the simulated mass spring elements have no volume; meaning that

properties such as volume preservation are often simulated using additional springs

(see Fig. 3.8) or heuristic functions. Mass-spring models are usually quite efficient and

suitable for real-time animation, but they are unable to model accurately the exact

properties of soft tissues [Chen et al., 1998] and it is difficult to predict and generate

the desired behavior using such models. For more information, we refer the interested

reader to [Gibson & Mirtich, 1997].

3.3.2.2 Finite Element Method

The partial differential equations (PDEs) of continuum mechanics describe how soft body

deforms under the presence of external forces. Continuum mechanics is used to model

the kinematics and mechanical behavior of objects. It allows to approximate various

physical quantities, such as energy and momentum. Therefore, continuum mechanics

46

3.3. PHYSICS-BASED DEFORMATION

defines the governing equations of an object based on its material properties. However,

in continuum mechanics, the behavior of an object is modelled assuming continuous

matter instead of a set of discrete mass points. There exist a variety of approaches to

convert the continuum PDEs to a discretized system of ordinary differential equations

(ODEs), which can then be time-stepped numerically. A commonly used discretization

approach is the finite element method (FEM) [Shabana, 1989]. The Finite element

method involves finding an approximate solution to a set of differential equations that

define the dynamics of a continuum. The displacement-based finite element method can

be used for soft body dynamics, such as soft-tissue simulation. This involves discretizing

the continuous body into a finite number of elements, such as tetrahedra, hexahedra and

polyhedra. Therefore, in the finite element method, the object is represented as a 3D

volumetric mesh, by dividing the object into a large number of elements (see Fig. 3.9).

(a) (b)

Figure 3.9: A 2D example of a finite element mesh approximating a soft body, in which it
deforms over time. (a) The soft body in its rest position (initial state). (b) The soft body
deformed, changing shape from rest position to the deformed position (deformed state).

This allows to represent the continuous displacement field using interpolation of nodal

displacements. Thus, displacement is approximated via:

u=Nu′ (3.12)

where N is a matrix containing the interpolating shape functions and u′ is the unknown

vector of nodal displacements.

47

CHAPTER 3. LAYERED SKIN DEFORMATION

Therefore, the deformation is prescribed (controlled) by the displacements of the vertices

of the mesh. Displacement at an arbitrary position is then defined via interpolation. Such

an approximation will of course only be accurate if elements are sufficiently small, so that

the interpolation is able to sufficiently describe the deformations within each element

[Reddy, 93]. FEM is widely considered a reliable and accurate (assuming the mesh is

fine enough) method to simulate soft bodies and deformable objects. Its main drawback

is that it is computationally demanding. Unlike the mass-spring (MS) model, the FEM

is based on continuum mechanics, making it more suitable for modelling continuous

materials like soft tissue. However, it also requires knowledge of solid mechanics, where

FEM of the deformable bodies are often considered nontrivial to implement. Despite

offering realistic effects, FEM requires complex and intensive computations, and thus it

is usually avoided in real-time applications. For more detailed information, we refer the

interested reader to [Sifakis & Barbic, 2012].

3.3.2.3 Position Based Dynamics

In our deformation model, we simulate the character skin inside the position based

dynamics (PBD) [Müller et al., 2007; Bender et al., 2014; Bender et al., 2015] framework.

We choose PBD for its unconditionally stable time integration and robustness. The most

popular methods for simulating dynamics in computer graphics are force based. Force

based methods compute the accelerations based on Newton’s second law of motion. Then,

a time integration method is used to update the velocities, and finally the positions of

the object. Unlike force based methods, PBD omits the velocity and immediately works

on the positions. The main advantage of this approach is its controllability. In PBD, the

physical system is still modelled through equations governing external and internal

forces that are applied to soft bodies, but these equations are formulated as a set of

constraints. The integration scheme used in PBD is very similar to the Verlet method

(Section 3.3.1.3). It is also closely related to the Nucleus solver ([Stam, 2009], Autodesk

Maya), which also uses constraints to describe the objects to be simulated. However,

the main difference is that Nucleus solves the constraints for velocities, not positions.

Being based on an integration scheme that is very similar to the Verlet method, PBD

does not suffer from instability and overshooting problems. The basic idea of PBD is to

model the soft body as a particle system, simulate the dynamics according to external

forces (if present), and then solve nonlinear constraints that express the geometric

relations between particles. In the following, we briefly summarize the core idea of PBD,

which is useful to understand our deformation model (in Chapter 4). The soft bodies

48

3.3. PHYSICS-BASED DEFORMATION

are modelled as a set of n particles whose motion is governed by a set of m nonlinear

geometric constraints. Each particle pi corresponds to a vertex in the input mesh, where

geometric constraint C j is a mathematical relationship between particles. Each particle

has three attributes, a mass mi, position xi and velocity vi. Each constraint has a

stiffness parameter k which defines the strength of the constraint in a range from zero to

one. This gives a user more control over the elasticity of the body. The set of constraints

is composed by nonlinear equality and inequality equations such that:

C j(p)Â 0, i = 1, . . . ,m (3.13)

where the symbol Â stands for either = or ≥. Inequality constraints are mainly used to

resolve collisions, where m is the number of constraints. Given the set of n particles and

m constraints, the simulation proceeds as described by Alg. 4, where ∆t is the time step.

Algorithm 4: Position based dynamics algorithm
Input :Vector inputVertices, Double ∆t, Integer solverIterations
Output :Vector deformedVertices

1: for all inputVertices i do
2: vi = v0

i
3: xi = x0

i
4: wi = 1/mi
5: end for
6: loop
7: for all inputVertices i do
8: vi = vi +∆twiFexternal(xi)
9: pi = xi +∆tvi

10: end for
11: for all inputVertices i do
12: generateCollisionConstraints(xi →pi)
13: end for
14: for solverIterations do
15: projectConstraints(C1, . . . ,Cm,pi, . . . ,pn)
16: end for
17: for all deformedVertices i do
18: vi = (pi −xi) /∆t
19: xi =pi
20: end for
21: velocityUpdate(vi, . . . ,vn)
22: end loop

The positions and velocities of the particles are initialized in (1-5) before the simulation

49

CHAPTER 3. LAYERED SKIN DEFORMATION

loop starts. Lines (6-10) perform simple explicit forward Euler integration step on the

velocities and the positions, where gravity is represented by external force Fexternal.

Collision constraints are generated in lines (11-13), where collision constraints can be

handled easily and penetrations can be completely resolved inside the PBD solver loop.

The geometric constraints are iteratively solved in lines (14-16). The idea is to repeatedly

solve each constraint sequentially one after the other, in a Gauss-Seidel type fashion.

The process is repeated solverIterations times. The corrected positions pi are finally used

to update the positions and the velocities in (17-21).

Constraint Projection: the set of constraints must always be satisfied, or at least, the

error should be as small as possible. During the simulation, if the particle configuration

pi does not satisfy the set of the constraints, then the solver projects the particle positions

into a valid state by finding a displacement ∆p that satisfies the constraints. For example,

the distance constraint:

C(p1,p2)= |(p1 −p2)|−d2 = 0 (3.14)

is used to keep particles p1 and p2 at distance d. The constraints are generally nonlinear,

like in the just mentioned example, and they are solved sequentially through Gauss-

Seidel iterations. Each equation is linearized individually to find the correction ∆p:

Ci(p+∆p)≈ Ci(p)+∇pCi(p) ·∆p= 0 (3.15)

where ∇pCi(p) is the vector containing the derivatives of the equation Ci w.r.t. the n
components of p.

The correction ∆p is imposed to be in the direction of ∇pC(p):

∆p=λi∇pCi(p) (3.16)

This condition implicitly conserves the linear and angular momenta for the single

constraints while, at the same time, allowing us to solve the under-determined system of

constraints. Combining Eqs. 3.15 and 3.16 yields:

λi =− Ci(p)∣∣∇pCi(p)
∣∣2 (3.17)

Chapter 4 provides more detail about this method and how we employ it in our skin

deformation model.

50

3.4. CONCLUSION

3.4 Conclusion

In this chapter, we have given a thorough description of the theoretical and mathematical

background of real-time skinning techniques. In addition, we provided an introduction

to various aspects of physically based soft body simulations, including physics-based

simulation techniques and time integration schemes.

Interactive skeleton-based skinning techniques, namely linear blend skinning and dual

quaternion skinning are purely kinematic approaches and suffer from visual artefacts.

In contrast, physically based simulations provide believable deformations and able to

capture the elasticity of the soft tissues. However, they are either hard to implement,

suffer from instability or require intensive computations. Thus, they are usually avoided

in real-time applications.

This chapter also introduced the concept of layered skin deformation, and we discussed

how the layered skin deformation framework could extend the existing deformation

techniques to include volume preservation, elasticity and jiggle. In the next chapter,

we investigate the possibility of combining classic interactive skinning techniques with

a physics based method in a layered skin deformation framework. We would like this

combination to be able to avoid the artefacts of classic interactive skinning techniques,

and to be capable of capturing believable skin deformations at interactive rates.

51

C
H

A
P

T
E

R

4
POSITION BASED SKINNING FOR SOFT ARTICULATED

CHARACTERS

Believable skin deformation for soft articulated characters is essential to enrich

the visual experience of the animation and for creating appealing character an-

imation in movie productions, computer games, and virtual reality applications.

The production of life-like deformations includes capturing a range of desirable effects,

like secondary motions, volume preservation, and contact deformations. In character

animation, the skin deformation of an articulated character is determined primarily

by its underlying skeleton, which leads to purely kinematic deformations. Our goal

is to produce compelling skin deformations and capture the desired effects of skin in

an efficient and robust simulation. We would like the skin of a character to follow the

motion of a skeleton, and at the same time exhibit realistic elastic behaviors within the

computational limits imposed by interactivity. Therefore, the deformation model must

trade off between the following requirements: it must (1) be fast enough to achieve an

interactive rate (i.e., > 30 fps), (2) produce believable animation to minimize manual

post-processing time, and (3) be controllable and stable.

In this chapter, we introduce a novel two-layered approach addressing the problem

53

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

of creating believable mesh-based skin deformation (Section 4.1). The deformation model

discussed in this chapter mimics the behavior of the skin and achieves effects like volume

preservation and jiggling. We also allow the artist to tune the amount of jiggling and

specify the areas of the skin affected by it (Section 4.7). To address the above-mentioned

requirements, we present a CPU-based implementation (in Section 4.6). Moreover, we

demonstrate the visual quality and the performance of our deformation model with a

variety of skeleton-driven soft body characters (Section 4.8), where we also show that

our approach enables stable simulation for appealing deformations of a wide range of

animated characters (including humans and animals).

4.1 Position Based Skinning

Our new deformation model, called position based skinning (PBS), is based on the

concepts that have been discussed in (Section 3.1). Our method is conceptually very

straightforward. We employ a robust combination of two popular techniques well known

in the computer graphics community: linear blend skinning (Section 3.2.1) and position

based dynamics (Section 3.3.2.3). The idea is to create a two-layered deformation scheme,

the result of which approximates the behavior of the skin. For each animation frame,

the deformation of the character is decoupled in two steps. First, we apply classic linear

blend skinning (LBS, Section 4.2) to the character. Then, in a second step, we simulate

the skin as a soft body, using a deformation approach that is based on position based

dynamics (PBD, Section 4.3). We define a system of geometric constraints, which are

used to model the volume conservation and skin jiggling in real-time. These geometric

constraints are applied in a parallel fashion and solved on a multi-core CPU (in Section

4.6). The resulting skinned animations are unaffected by the well known artefacts proper

of LBS, namely the “candy-wrapper" effect and loss of volume. Being based on PBD, this

second step is efficient, controllable and unconditionally stable, even when large time

steps are employed for advancing the character’s dynamics.

4.1.1 Method Overview

The inputs of our model are a fine surface mesh representing the character in its

rest pose and an animated skeleton embedded within the mesh. From the surface

mesh, we generate a volumetric (tetrahedral) mesh of the same shape using the method

of [Boissonnat & Oudot, 2005], which preserves the original outer surface geometry

(Fig. 4.1).

54

4.1. POSITION BASED SKINNING

Figure 4.1: Inputs to our method; (a) the embedded skeleton within the tetrahedral
mesh, (b) the fine surface corresponding to the coarse tetrahedral mesh, and (c) the fine
surface.

We use the tetrahedral elements for defining the geometric constraints used to compute

the elastic motion of the character skin while moving, including volume preservation and

jiggling. In the initialization phase, the vertices of the original skin mesh are mapped to

the tetrahedral elements by using barycentric coordinates, and the geometric constraints

are defined according to the rest pose of the character. Then, at every animation frame,

the skeleton moves and the mesh vertices are first deformed through a standard linear

blend skinning (LBS) process. Thereafter, the vertex positions are adjusted by solving

the constraints. The geometric constraints are solved using a position based dynamics

scheme. We employ a graph coloring algorithm for parallelizing the computation of the

constraints. Finally, the resulting vertex positions are used for updating the fine mesh,

which is employed for rendering. The whole mechanism is summarized in Fig. 4.2.

Tetrahedral Mesh Generation: The skin is represented as a volumetric mesh con-

sisting of 3D tetrahedra called elements. We use the first-order tetrahedron element in

all of our experiments; this element is a polyhedron with four faces (a tetrahedron) and

linear shape functions (Fig. 4.3). A tetrahedral mesh is a tetrahedralization of the interior

structure of a triangular surface. In order to generate a tetrahedral mesh that preserves

the original outer surface geometry, we use a method based on Delaunay refinement

[Boissonnat & Oudot, 2005]. A Delaunay tetrahedralization (DT) is a tetrahedralization

where for each tetrahedron there exists a circumsphere such that no point lies inside it.

Optimal properties of such tetrahedralization include that it maximizes the minimum

angle and minimizes the maximum circumradii, which therefore helps prevent highly

irregular tetrahedron being generated.

55

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

Figure 4.2: In the initialization phase, the fine surface mesh is converted to a tetrahedral
mesh, which is used to define soft geometric constraints. During the animation of the
skeleton, the volumetric mesh is first deformed using linear blend skinning, after which
the constraints are solved using a parallel position based dynamics scheme.

Figure 4.3: (a) A surface composed of one triangle strip. (b) First-order tetrahedron
element, and (c) the tetrahedron element before (shown in orange) and after deformation
(shown in purple).

56

4.2. LINEAR BLEND SKINNING

Mesh Coupling The surface mesh is deformed according to the simulation performed

on the tetrahedral mesh (Fig. 4.4). We apply linear surface interpolation, similar to

[Müller & Gross, 2004]. For each surface vertex, the closest tetrahedron is found and

the barycentric coordinates of the vertex with respect to the linked tetrahedron are

computed and stored. When the tetrahedral mesh deforms, the position of each vertex

in the surface is interpolated using the linked tetrahedron and the stored barycentric

coordinates.

(a) (b) (c)

v

α

γ

β

Figure 4.4: 2D example of the coupling between surface and tetrahedral mesh. (a) The
surface (shown in blue) deformed according to the corresponding deformed tetrahedral
mesh (shown in green). (b) A close-up view of two tetrahedrons with the embedded
surface composed by six vertices, where for each vertex v the containing tetrahedron to
v is found using barycentric coordinates, as in (c).

4.2 Linear Blend Skinning

In the LBS deformation layer, we apply linear blend skinning on the tetrahedral mesh.

As explained in the previous chapter, the LBS method attaches each vertex vi in the

input mesh to one or more skeletal bones; each attachment affecting the vertex with a

different strength, or weight. The final deformed vertex position v′
i is a weighted average

of its initial position transformed by each of the attached bones, according to (Eq. 3.1).

Binding Weights: In order to use the LBS algorithm in the first step of our method, we

need to determine the bone weights wi, j for each vertex vi. As we explained in (Chapter

3), smooth linear blend skinning does not guarantee rigid transformation. The simplest

way to guarantee rigid transformation is by consider all the weights are either one or

zero. Then, the result is exactly rigid blending. To provide a good foundation for the

weights, we add more smoothness to the rigid blending and we try to avoid the manually

adjusting the weights. We attach each vertex vi to at most 3 bones. To compute the

57

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

Figure 4.5: A character skinned by linear blend skinning. Left. The skeleton is embedded
within the mesh in its initial position. Middle. The skinning weights are assigned for the
character’s left arm, in which these weights are determined using (Eq. 4.1). Right. The
character deformation is computed using (Eq. 3.1).

weights, we use the following formula, which is based on the distance from the vertex to

the bone:

wi, j =

1.0 if 1

6 ≤ (vi−s j)
|d j−s j| ·

(d j−s j)
|d j−s j| ≤

5
6

1.0/njoints otherwise

(4.1)

where s j and d j are the parent and child joint positions (end points) of the bone j nearest

to vi, and njoints is the number of bones attached to the end points bone nearest to vi.

In this way, vertices far away from the end points of a bone are rigidly influenced by

only that bone, while vertices near the end points are equally influenced by the bones in

that area. The resulting deformation is smooth but suffers from joint collapse and loss of

volume, issues which are fixed by the second step of our method, as described in the next

section.

4.3 Position-based Dynamics

The core idea of PBD has been explained (in Section 3.3.2.3). The skin is modelled as

a set of n particles whose motion is governed by a set of m nonlinear constraints. The

system of constraints is solved using Gauss-Seidel iterations by directly updating the

particle positions. PBD avoids the use of internal forces, and the positions are updated

such that the angular and the linear momenta are implicitly conserved. In this way, the

whole process is not affected by the typical instabilities of interactive physically based

58

4.3. POSITION-BASED DYNAMICS

methods. In the following sections (4.3.1.1- 4.3.1.3), we define the geometric constraints

used in this deformation layer and how they are solved.

4.3.1 Geometric Constraints

We use geometric constraints for modelling the skin, the inner volumetric structure, and

the binding of the skin with the skeleton. These constraints are iteratively satisfied,

leading to primary and secondary motions of the external skin in real-time.

4.3.1.1 Stretch Constraint

We define one stretch constraint for the particles (p1,p2) at the end points of each edge

of the tetrahedral mesh, including the edges of the internal tetrahedrons (Fig. 4.6). The

stretch constraint is formed according to the following equation:

C(p1,p2)= |p1 −p2|−d = 0 (4.2)

is used to keep particles p1 and p2 at distance d. where d is the rest length of the edge.

Given the configuration (p1,p2) of two particles connected by a stretch constraint, the

corrections to the positions (Eq. 3.16) in order to satisfy the constraint are:

∆p1 =−1
2 ks (|p1 −p2|−d) p1−p2

|p1−p2|

∆p2 =+1
2 ks (|p1 −p2|−d) p1−p2

|p1−p2|

(4.3)

where ks ∈ [0,1] is a stiffness scalar parameter which slows the convergence of the

constraint and provides a “springy” behavior to the corresponding edge.

4.3.1.2 Tetrahedral Volume Constraint

We define one volume constraint for the particles (p1,p2,p3,p4) at the corners of each

tetrahedron of the mesh. The volume constraint maintains the rest volume of four

particles forming a tetrahedron (Fig. 4.6), enforcing the conservation of the total volume

of the character’s body:

C(p1,p2,p3,p4)= 1
6

(p2,1 ×p3,1) ·p4,1 −V0 (4.4)

where pi, j is the short notation for pi −p j and V0 is the rest volume of the tetrahedron.

The gradient with respect to each particle is:

∇p2C(p2,3)= 1
6

(p2,1 ×p3,1) (4.5)

59

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

∇p3C(p3,4)= 1
6

(p3,1 ×p4,1) (4.6)

∇p4C(p4,2)= 1
6

(p4,1 ×p2,1) (4.7)

∇p1C(p1)=− (∇p2C(p2,3)+∇p3C(p3,4)+
+∇p4C(p4,2))

=−1
6

(p2,1 ×p3,1 +p3,1 ×p4,1+

+p4,1 ×p2,1)

(4.8)

The correction of each particle belonging to the tetrahedron is:

∆p1 =−1
6

s ·kv(p2,1 ×p3,1 +p3,1 ×p4,1 +p4,1 ×p2,1) (4.9)

∆p2 = 1
6

s ·kv(p2,1 ×p3,1) (4.10)

∆p3 = 1
6

s ·kv(p3,1 ×p4,1) (4.11)

∆p4 = 1
6

s ·kv(p4,1 ×p2,1) (4.12)

where kv is the stiffness parameter and s is the scaling factor:

s =
1
6 (p2,1 ×p3,1) ·p4,1 −V0

Σ4
i=1 | ∇pi C(pi) |2

(4.13)

Figure 4.6: A volume constraint is defined for each tetrahedron, together with six stretch
constraints (one for each edge).

60

4.4. FINAL ALGORITHM

4.3.1.3 Bind Constraint

We define a bind constraint between each particle of the tetrahedral mesh and its

nearest bone. Basically, a bind constraint is a stretch constraint between a particle and

its projection on the nearest skeleton bone. When the skeleton moves and the joints rotate,

the projection point for each particle is updated accordingly and the bind constraint

pushes or pulls the particle to maintain the rest distance. This mechanism is depicted in

Fig. 4.7.

Figure 4.7: (a) The particle pi in the rest pose, d is the rest distance from the nearest
bone. (b) The particle pi is displaced from the first step of our approach, by using LBS.
(c) The bind constraint maintains the rest distance from the bone.

4.4 Final Algorithm

In this section, we summarize our two-layered deformation model in Alg. 5. First, we

define a system of geometric constraints, which are used for modelling the skin, the inner

volumetric structure, and the binding of the skin with the skeleton. In each animation

frame, the skin first deforms with LBS, and then the vertices positions are adjusted

using the PBD scheme.

61

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

Algorithm 5: Position based skinning algorithm
Input :Mesh surfaceMesh, Matrices4x4 currentbonesTransformations,

Matrices4x4 restbonesTransformations, Matrices4x4 bindingweights,
Double Deltat, Integer solverIterations

Output :Mesh surfaceMesh
1: // Coupling between the surface and tetrahedral mesh
2: generatetetrahedralMesh(Mesh surfaceMesh)
3: findBarycentricCoordinateForVertex(surfaceMesh,tetrahedralMesh)
4: // For each tetrahedron, we define a volume constraint
5: for each ti in tetrahedralMesh do
6: defineGeometricConstraints(TetrahedralVolume)
7: end for
8: // For each vertex, we define a bind constraint
9: for each vi in tetrahedralMesh do

10: defineGeometricConstraints(Bind)
11: end for
12: // For each edge, we define a stretch constraint
13: for each e i in tetrahedralMesh do
14: defineGeometricConstraints(Stretch)
15: end for
16: for each animation frame do
17: // Loop through every vertex and compute blended positions through LBS
18: for each vi in tetrahedralMesh do
19: deformedVerticesi = inputVerticesi +bindingweightsi,j×
20: currentbonesTransformations×restbonesTransformations−1

j
21: end for
22: // Simulating the skin as a soft body using PBD
23: for each vi in tetrahedralMesh do
24: vi = v0

i
25: xi = x0

i
26: wi = 1/mi
27: end for
28: loop
29: for each vi in tetrahedralMesh do
30: // We apply gravity as external force
31: vi = vi +∆twiFext(xi)
32: pi = xi +∆tvi
33: end for
34: for solverIterations do
35: projectTetrahedralVolumeConstraints(C1, . . . ,Cm,pi, . . . ,pn)
36: projectBindConstraints(C1, . . . ,Cm,pi, . . . ,pn)
37: projectStretchConstraints(C1, . . . ,Cm,pi, . . . ,pn)
38: end for
39: for each vi in tetrahedralMesh do
40: vi = (pi −xi) /∆t
41: xi =pi
42: end for
43: velocityUpdate(vi, . . . ,vn)
44: end loop
45: UpdatesurfaceMeshVertices()
46: end for

62

4.5. GAUSS-SEIDEL SOLVER

4.5 Gauss-Seidel Solver

The goal of the solver step (34-38) is to correct the predicted positions pi of the particles

such that they satisfy all constraints. We are using a nonlinear Gauss-Seidel iterative

method, which solves each constraint equation separately. Each constraint yields a

single scalar equation C(p)Â 0 for all the particle positions associated with it. Therefore,

each equation is linearized individually in the neighborhood of C around the current

configuration p to find the correction ∆p. The solver linearizes the constraint functions,

which corrects and updates the particle position in a single step. Because the positions

are immediately updated after a constraint is processed, these updates will influence the

linearization of the next constraint, as the linearization depends on the actual positions.

In the next section, we discuss how these geometric constraints are applied in a parallel

fashion and solved on the multi-core CPU.

4.6 Parallel Position Based Skinning

The set of constraints in the original Position-Based approach are solved in a Gauss-

Seidel fashion; the constraints are solved in a serial way, in succession, directly correcting

the position of the particles. This process is iterated several times for each animation

frame; for each iteration, the difference between the current and the optimal solution of

the system decreases. This approach is efficient when the number of constraints is rela-

tively small and thus the number of iterations needed for reaching a good approximation

of the global solution is low. However, when a high number of constraints is involved,

both the computational cost of a single iteration and the number of iterations for each

frame increases. In this case, the serial solution of the set of constraints quickly becomes

unsuitable for interactive animation.

As noted in [Fratarcangeli & Pellacini, 2015; Bender et al., 2014], this process can

be parallelized by using a graph coloring algorithm. A dual graph is defined, where each

node represents a constraint and two nodes are connected if they share at least one

particle. Then the graph is colored with a distance-1 algorithm, such that two adjacent

nodes are not assigned with the same color. The constraints belonging to the same color

do not share any particle and can be solved in parallel by using a number of dedicated

CPU threads. When all the constraints belonging to a color are solved, the constraints

assigned to the following color are solved, until all the colors are considered. The process

of coloring the graph happens just once in the initialization phase, and does not affect

63

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

p6

p3

p0

p7

p4

p1

p8

p5

p2c0,1 c1,2

c3,4 c4,5

c6,7 c7,8

c0,3 c1,4 c2,5

c3,6 c4,7 c5,8

(a) A set of particles connected by stretch con-
straints. Here ci, j is the short notation for C(pi,p j).

c1,4 c4,5

c3,4 c4,7

c1,2

c0,1

c0,3

c3,6 c6,7

c7,8

c5,8

c2,5

(b) The corresponding dual graph. Two constraints
are connected if they share at least one particle.
The graph is colored with a distance-1 algorithm
and the set of constraints belonging to the same
color are solved in parallel, reducing the number of
serial steps from 12 to 4.

Figure 4.8: A graph coloring algorithm is applied to a simple particle system to parallelize
the computation of the constraints; (a) a simple particle system of 9 particles and 12
constraints, (b) a dual graph is defined, where each node represents a constraint and two
nodes are connected if they share at least one particle.

the performance during the animation. In this way, the asymptotic complexity for each

iteration improves from O (m) where m is the number of constraints, to O (q) where q is

the total number of colors. We used Sequential Vertex Coloring [Coleman & More, 1983]

which usually leads to a number of colors equal to the size of the biggest clique in the

graph, or slightly bigger. Fig. 4.8 depicts this mechanism for a simple example.

4.7 Soft Control

We allow the artist to specify the amount of jiggling in a manually specified area of

the mesh surface. In a pre-processing step, the artist selects a surface area using an

external 3D modeling tool (we used Autodesk Maya). This set of surface vertices is then

mapped to the nearest vertices in the tetrahedral mesh (Fig. 4.9). All the tetrahedral

vertices included between the selected vertices and the nearest bone are also selected.

The average distance d from the nearest bone is then computed. If the distance of a

vertex from the nearest bone is smaller than d, the motion of the vertex is governed by

both LBS and PBD. If the distance is greater than d, only PBD is applied in that area.

The artist can change interactively the stiffness of all the constraints influenced by these

latter vertices, reducing or increasing the amount of jiggling until the desired effect is

64

4.8. EXPERIMENTS AND RESULTS

reached.

Figure 4.9: Soft selection mechanism. (a) Surface mesh, including the selected vertices.
(b) Surface mesh embedded in the tetrahedral mesh. The tetrahedron vertices placed
between the selected surface vertices and the nearest bone are selected automatically.
(c) A close-up view of two tetrahedrons with the embedded surface composed of six
vertices. (d) The surface vertex is selected by the artist, and the nearest vertices on the
tetrahedron are selected automatically. All of these vertices are shown in brown, and the
brown rectangle highlights these vertices.

4.8 Experiments and Results

We tested our method on a variety of articulated characters of different shapes, polygonal

resolutions and topologies. The tetrahedral meshes were generated using [Boissonnat

& Oudot, 2005], the walking and the kick motion capture data was available from the

Carnegie Mellon University Motion Capture DataBase [Gross & Shi, 2001], and the

remaining motions were hand-made by animator using Autodesk Maya.

4.8.1 Visual quality

Figs. 4.10, 4.11 and 4.12 show the TORSO, the HORSE and the BIGBUNNY models

animated with a walking cycle. All of these models exhibit large jiggling effects in the

area of the belly. Fig. 4.13 shows an octopus model with articulated tentacles and jiggling

65

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

effects in the head zone. Fig. 4.14 provides a visual comparison between the deforma-

tions achieved with our method, plain linear blend skinning (LBS), and dual quaternion

skinning (DQS). Our system is not affected either by the “candy-wrapper" effect or by

undesired skin bulging. Fig. 4.15 shows the HUMAN model performing a highly dynamic

motion sequence involving large joint rotations, which demonstrates the robustness of

our system. Please refer to the video for the animated results.

Figure 4.10: Believable skin deformation including secondary motions and volume
preservation, TORSO (11K constraints, 149 fps).

Figure 4.11: Real-time animations of a complex articulated character, HORSE (17K
constraints, 130 fps).

Figure 4.12: Realistic jiggling motion in the belly area for the BIGBUNNY character at
interactive rates (34k constraints, 71 fps).

To assess the accuracy of our method, we compute the relative error w.r.t. to the volume

66

https://vimeo.com/113874487

4.8. EXPERIMENTS AND RESULTS

Figure 4.13: Our method automatically produces believable skin deformations of the
soft tissues for an octopus moving at interactive rates (14k constraints, 145.6 fps).

Figure 4.14: Our method does not suffer from the “candy-wrapper" artefacts of linear
blend skinning (LBS) and the bulging artefacts of dual quaternion skinning (DQS).

Figure 4.15: Highly dynamic sequence, HUMAN character (12k constraints, 146 fps).

of the character’s mesh: e = V /V0, where V is the volume of the deformed mesh at the

current frame, and V0 is the volume of the mesh in the initial rest position. As shown

from the quantities reported in Table 4.2, our method successfully preserves the volume

of the character during the animation (e ≤ 0.5%). Fig. 4.16 shows an example of the

deformation of the arm with and without volume conservation.

67

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

Figure 4.16: Comparison with and without volume preservation. The volume is preserved
by solving the PBD constraints. Left. Step 1: LBS is applied. Note the loss of volume
at the elbow joint. Right. Step 2: Positions of the vertices are adjusted, by solving the
PBD constraints (stretch, volume and bind), preserving the volume and avoiding the
“candy-wrapper" effect.

4.8.2 Performance

We implemented our method in C++ and timings for various animation sequences were

measured on a mass-market laptop equipped with an Intel i5 2.50 GHz processor and

4GB RAM.

4.8.2.1 First Experiment

In our first experiment, the tetrahedral meshes have roughly 2K vertices and 10K

tetrahedral elements [Abu Rumman & Fratarcangeli, 2014]. We used a 10 ms time step

and 24 iterations per frame. Note that in this experiment, we used the sequential Gauss-

Seidel scheme to solve the geometric constraints. We tested our method on tetrahedral

meshes of only biped characters, as we can see in Figs. 4.17, 4.18 and 4.19. Please

refer to the video for the preliminary results and for more sophisticated results of this

experiment, please refer to the video. The mean computation times are reported in

Table 4.1.

68

https://vimeo.com/90705340
https://vimeo.com/95511286

4.8. EXPERIMENTS AND RESULTS

Figure 4.17: Real-time character animation driven by a kinematic skeleton, including
secondary motions and volume preservation (71.1 fps).

Figure 4.18: Real-time character animation driven by a kinematic skeleton, including
secondary motions and volume preservation (65.8 fps).

Figure 4.19: Different poses of a character kicking a ball (90.6 fps).

4.8.2.2 Second Experiment

To advance the dynamics in our second experiment, we used a 10 ms time step and 12

iterations per frame. In this experiment, the geometric constraints are solved in parallel,

where the mean computation times are reported in Table 4.2. Even by using a fairly high

number of constraints (e.g., the BIGBUNNYHQ test case, ~34K constraints), our system

69

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

is able to compute the animation of the tetrahedral mesh and map the deformation on

the render mesh at interactive rates.

70

M
od

el
#

ve
rt

ic
es

S
T

B
C

T
vo

lu
m

e
[m

s]
C

T
st

re
tc

h
[m

s]
C

T
bi

n
d

[m
s]

C
T

to
ta

l
[m

s]
#

it
er

at
io

ns
k s

tr
et

ch
fp

s
M

an
16

54
63

42
49

98
16

54
3.

8
4.

50
1

2.
75

11
.0

5
24

0.
9

90
.5

M
an

H
Q

26
45

13
22

3
10

51
6

26
45

4.
37

6.
25

3.
44

4
14

.0
64

24
0.

9
71

.1
bu

nn
y

21
08

97
32

78
27

21
08

4.
87

5.
05

3.
1

13
.0

20
24

0.
6

76
.8

bu
nn

yH
Q

31
90

17
36

7
14

02
2

31
90

5.
85

6.
9

2.
44

6
15

.1
96

24
0.

6
65

.8
L

ad
y

18
29

93
87

60
32

18
29

5.
12

5.
32

2.
14

12
.5

79
24

0.
7

79
.5

Ta
bl

e
4.

1:
S

ki
nn

in
g

pe
rf

or
m

an
ce

.
S

:
nu

m
be

r
of

st
re

tc
h

co
ns

tr
ai

nt
s,

T
:

nu
m

be
r

of
vo

lu
m

e
co

ns
tr

ai
nt

s,
B

:
nu

m
be

r
of

bi
nd

co
ns

tr
ai

nt
s,

fp
s:

av
g.

fr
am

e
ra

te
,

C
T

:
av

g.
sk

in
ni

ng
co

m
pu

ta
ti

on
ti

m
e

fo
r

ru
nn

in
g

a
1

se
co

nd
si

m
ul

at
io

n,
w

he
re

(C
T

to
ta

l
=

C
T

vo
lu

m
e
+C

T
st

re
tc

h
+C

T
bi

n
d
)

M
od

el
#

ve
rt

ic
es

#
te

tr
a

#
bo

ne
s

S
T

B
C

T
vo

lu
m

e
[m

s]
C

T
st

re
tc

h
[m

s]
C

T
bi

n
d

[m
s]

C
T

to
ta

l
[m

s]
#

it
er

at
io

ns
vo

lu
m

e
lo

ss
%

k s
tr

et
ch

fp
s

H
U

M
A

N
95

28
49

98
25

63
42

49
98

16
54

2.
1

3.
2

1.
50

7
6.

80
7

12
0.

09
0.

9
14

6.
9

H
U

M
A

N
H

Q
95

28
10

51
6

25
13

22
3

10
51

6
26

45
3.

43
5.

11
3

1.
62

7
10

.1
7

12
0.

12
0.

9
98

.3
B

IG
B

U
N

N
Y

81
11

78
27

29
97

32
78

27
21

08
2.

71
3.

74
1.

53
7.

98
12

0.
27

0.
6

12
5.

3
B

IG
B

U
N

N
Y

H
Q

81
11

14
02

2
29

17
36

7
14

02
2

31
90

5.
41

6.
56

1.
95

13
.9

2
12

0.
39

0.
6

71
.8

O
C

T
O

P
U

S
40

00
43

39
63

76
17

43
39

16
67

2.
08

3.
28

1.
50

7
6.

86
7

12
0.

45
0.

6
14

5.
6

H
O

R
S

E
38

33
61

26
43

94
37

61
26

18
26

2.
65

3.
52

1.
52

7.
69

12
0.

17
0.

8
13

0
T

O
R

S
O

43
45

42
80

25
60

76
42

80
10

74
2.

07
3.

17
1.

46
9

6.
70

9
12

0.
15

0.
6

14
9.

1

Ta
bl

e
4.

2:
Sk

in
ni

ng
pe

rf
or

m
an

ce
.#

ve
rt

ic
es

:n
um

be
r

of
in

it
ia

lv
er

ti
ce

s
in

th
e

re
nd

er
m

es
h,

#t
et

ra
:n

um
be

r
of

el
em

en
ts

in
th

e
te

tr
ah

ed
ra

lm
es

h,
S:

nu
m

be
r

of
st

re
tc

h
co

ns
tr

ai
nt

s,
T:

nu
m

be
r

of
vo

lu
m

e
co

ns
tr

ai
nt

s,
B

:n
um

be
r

of
bi

nd
co

ns
tr

ai
nt

s,
fp

s:
av

g.
fr

am
e

ra
te

,C
T:

av
g.

sk
in

ni
ng

co
m

pu
ta

ti
on

ti
m

e
du

ri
ng

1
se

co
nd

si
m

ul
at

io
n,

w
he

re
(C

T
to

ta
l
=

C
T

vo
lu

m
e
+C

T
st

re
tc

h
+C

T
bi

n
d
).

CHAPTER 4. POSITION BASED SKINNING FOR SOFT ARTICULATED
CHARACTERS

4.9 Comparison and Limitations

Currently, the skinning weights in our method are computed according to a simple heuris-

tic formula (Eq. 4.1). Those weights are simple to construct, but may not be optimal for

any given input mesh. Alternatively, the skinning weights can be computed using the

techniques in [Dionne & de Lasa, 2013], which uses voxels to approximate the geodesic

distance for computing bone influence weights. In future work, we would like to explore

the possibility of applying their algorithm in the first step of our deformation model to

bolster the second step and produce higher quality smooth bindings.

In contrast to other methods (e.g., [Kim & Pollard, 2011; Bender et al., 2013]), our

system does not model the inner structure of the human skin. However, using a com-

bination of widely known and relatively simple techniques, linear blend skinning and

position based dynamics, we achieved believable animations with a time performance

suitable for interactive applications.

Figure 4.20: Self-collisions are not explicitly handled. This may lead to geometry over-
lapping in the contact regions (note the dark regions near the articulations).

Our implementation does not detect and resolve self-collisions, which may lead to geome-

try overlapping (Fig. 4.20), and therefore our method cannot guarantee self-intersection-

free deformations. In the next chapter we extend our framework to support temporary

constraints for implementing self-collisions.

72

4.10. CONCLUSION

4.10 Conclusion

We have presented a simple and fast skinning algorithm for skeleton-driven deformations

of articulated characters [Abu Rumman & Fratarcangeli, 2015]. During the animation,

the deformation model preserves the volume and allows for passive jiggling behavior.

Our system initializes the blend weights and the soft constraints automatically, so it

does not require a considerable set-up effort. Artists can define specific areas of the body

and decide on the amount of jiggling affecting them by tuning a single scalar stiffness

parameter. In the first step, the character is deformed by applying linear blend skinning,

and in the second step the position of the vertices is corrected using a position based

dynamics solver. The first step in our skinning method, the LBS deformer, improves

the convergence speed of the PBD solver, while maintaining the elastic nature of the

character body. We employ a graph coloring algorithm for parallelizing the computation

of the geometrical constraints. This leads to fast performances even in the case of a fairly

high number of tetrahedra. We map the tetrahedral mesh to the input skin geometry for

achieving high quality renderings.

Being based on PBD, this second step is efficient, controllable and unconditionally

stable, even when large time steps are employed for advancing the character’s dynamics.

The elastic behavior of the soft body deformer is influenced by the number of iterations

employed in the parallel Gauss-Seidel solver. We employed 12 iterations during our

tests, but in general the artist has to heuristically choose a value which depends on the

topology and the polygonal resolution of the input mesh. In the next chapter, we address

the main limitation of this method, which is the absence of self-collision handling.

73

C
H

A
P

T
E

R

5
COLLISION HANDLING FOR SOFT ARTICULATED

CHARACTERS

The position based skinning method presented in the previous chapter produces

believable skin deformations at interactive rates. It also produces interesting

effects, such as secondary motions and volume preservation. The most obvious

deficiency of position based skinning is the lack of collision and contact handling. The

deformations that occur in real creatures are highly dependent on contact between skin

parts, especially the tissue around the joints. In this chapter, we address the problem of

collision handling on articulated deformable characters. Commonly, collision handling in

computer animation is composed of two steps: collision detection and collision response.

These two steps are performed independently, with the result of the collision detection

algorithm being used as an input to the collision response process.

Unlike highly deformable bodies such as clothes, articulated characters have limited de-

formation. This deformation is restricted to a function of an underlying skeletal structure,

where self-collisions typically occur in very localized regions of meshes. We exploit the

skeletal nature of the deformation to obtain real-time self-collision handling for models

deformed by position based skinning. In this chapter, we first study the biomechanical

75

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

basis of the articulated characters (in Section 5.1). Then, we exploit the mechanical na-

ture of the skeleton to achieve real-time collision detection (Section 5.3). In our collision

detection method, we employ spatial hashing (Section 5.3.1) to detect collisions and self

collisions on skeletally deformable meshes. Thereafter, to handle collisions and capture

contact deformations, we formulate a constraint-based contact response method within

the position based dynamics framework (Section 5.4). The resulting algorithm is simple

to implement and fast enough for real-time applications (Section 5.5). We demonstrate

the efficiency of our method on various animation examples (in Section 5.6).

5.1 Biomechanical Basis of Articulated Characters

Articulated characters (including humans and animals) form one of the most impor-

tant subject in computer animation. Therefore, the skin deformation of such characters

must “bring the graphical characters to life" by making their skin deform in a believable

manner [Chen & Zeltzer, 1992]. One important way to achieve this is by enriching

the deformations, which requires studying the biomechanics of the skeletal system and

exploiting its properties into the skinning process.

The skeleton of a 3D character consists of a set of bones connected by articulated joints,

arranged in a tree data structure. The joints are connected up in a hierarchical fashion

to the selected root joint, where the root joint has no parent. Generally, all skeletons are

kept as open trees without any closed loops; this restriction does not prevent kinematic

loops. Most joints allow a certain amount of movement, where each joint has one or

more degrees of freedom (DOF). Individual joints usually have one to six DOF, but all

together, a detailed character may have more than a hundred DOF in the entire skeleton.

Specifying values for these DOF poses the skeleton, and changing these values over time

results in movement, and is the essence of the animation process. In this section, we

discuss the mechanics of the skeletal system, and we provide a structural classification

of joints.

5.1.1 Classification of Joints

This kind of classification is often available in games, for the purpose of ragdolling. Most

movements in real life, such as walking, running and jumping, involve simultaneous or

sequential movement in two or more joints (Fig. 5.1). In such multi-joint movements,

the number of degrees of freedom in that part of the skeletal system responsible for the

76

5.1. BIOMECHANICAL BASIS OF ARTICULATED CHARACTERS

movement is the sum of the number of degrees of freedom of the individual joints involved.

Consequently, there is an almost infinite number of combinations of joint movements that

could be employed in all multi-joint movements. Furthermore, temporary or permanent

Figure 5.1: More than ten joints in the human skeleton are simultaneously rotated to
perform a jumping movement.

impairment in one joint can usually be compensated for by changing in the movement

of other joints. In realistic characters, all joints are rotational. Both 1-DOF and 3-DOF

rotational joints are common, and 2-DOF joints are used occasionally as well. Therefore

joints can be classified into three main types (Fig. 5.2):

Uniaxial (1-DOF): in uniaxial joints, movement takes place mainly about a single

axis. This type of joint allows movement in only one plane, such as the elbow, knee and

ankle joint. There are two types of uniaxial joint: hinge joints and pivot joints. Hinge

joints allow rotation around one axis perpendicular to the length of the bones involved.

In a hinge joint, usually the extremity of one bone is concave while the other is convex.

In contrast, pivot joints present angular motion around an axis parallel to the length of

the bones involved, allowing one bone to turn around the other.

Biaxial (2-DOF): in biaxial joints, movement mainly takes place about two axes at

right angles to each other. There are three types of biaxial joint: condyloid, ellipsoid and

saddle. A condyloid joint is a joint where an ovoid head of one bone moves in an elliptical

cavity of another, permitting all movements except axial rotation; this joint type is found

at the wrist. An ellipsoid joint has an egg-shaped head that allows opposition movement

only to a small degree. Its movement, just as the diameter and curvature of an ellipse,

varies in directions at right angles to each other (hence the name). A saddle joint moves

like an ellipsoidal one. The difference is in the joint shape. Each articulating extremity

77

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

in a saddle joint has a double curvature, and when put together, the convex curve of one

fits on the concave curve of the other; this type is found at the carpometacarpal joint of

the thumb.

Multiaxial (3-DOF): Some joints, such as the shoulder and hip, can rotate around

three axes. By combining rotations about the three reference axes, these joints can

rotate about any axis in between the three. The human multiaxial joints are also called

spheroidal joints or ball-and-socket joints.

Figure 5.2: Shows an example of the classification of joints in the human skeleton, where
the shoulder is a multiaxial joint (shown in red), the elbow is a uniaxial joint (shown in
purple) and the carpometacarpal joint of the thumb is a biaxial joint (shown in green).

5.1.2 Axes of Rotation and Types of Movement

Motion can be defined as a continuous change in position of a character. The axis around

which movement takes place and the plane through which movement occurs define

specific motions or resultant positions. There are three cardinal anatomical planes

that pass through the articulated body: coronal (frontal), sagittal (anteroposterior), and

transverse (horizontal). The coronal plane divides the body front (anterior) and back

(posterior) portions. The sagittal plane divides the the body into the left and right side.

The transverse plane divides the body into the upper (superior) and lower (inferior)

portions. Each plane is perpendicular to the other (see Fig. 5.3). In the following, we

78

5.1. BIOMECHANICAL BASIS OF ARTICULATED CHARACTERS

discuss the axes and types of movements that occur in these planes.

Figure 5.3: (a) The three cardinal planes all intersect at a single point known as the
body’s center of mass or center of gravity. (b) Flexion motion at horse’s knee joint, which
occurs about the coronal axis.

The coronal axis (x-axis) lies in the coronal plane and extends from one side of the body

to the other. The motions of flexion and extension occur about this axis and through the

sagittal plane. Extension is the motion opposite of flexion. Flexion refers to a decrease in

joint angle in the sagittal plane, while extension is motion increasing joint angle. The

sagittal axis (z-axis) lies in the sagittal plane and extends horizontally from anterior to

posterior. Movements of abduction and adduction of the extremities, as well as lateral

flexion of the spine, occur around this axis and through the coronal plane. Abduction is

movement away from the body, and adduction is movement toward the body; the reference

here is to the midsagittal plane of the body. Lateral flexion is a rotational movement

and is used to denote lateral movements of the head, neck, and trunk in the coronal

plane. The longitudinal axis (y-axis) is vertical, extending in a head-to-toe direction.

Movements of medial (internal) and lateral (external) rotation in the extremities, as

well as axial rotation in the spine, occur around it and through the transverse plane. It

is often assumed that the motion of a joint is an angular movement (rotation about a

static axis). However, the axis of rotation does not stay the same, but instead continually

changes throughout the motion. Thus, it is necessary to have a set of axes of rotation in

order to perform the joint motion properly.

79

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

5.2 Collision Handling for Soft Articulated
Characters

In this section, we present an efficient method for detecting collisions and self-collisions

on articulated models deformed by position based skinning (PBS). Additionally, to address

the self-intersections problem of PBS, we propose a real-time collision response. We

generate temporary constraints inside the position based skinning framework, such that

these self-intersections are handled in a localized manner.

5.2.1 Method Overview

Fig. 5.4 illustrates an overview of our method. The inputs are a fine surface mesh and an

animated skeleton. From the surface mesh, we generate a tetrahedral mesh using [Si,

2015], which preserves the original outer surface geometry and consists of tetrahedrons

of roughly the same size.

Figure 5.4: In the initialization phase, the fine surface mesh is converted to a tetrahedral
mesh, which is used for computing the elastic deformation of the character skin while
moving, as well as for collision detection. During the animation of the skeleton, the
volumetric mesh is deformed with position based skinning (shown in purple) and the
colliding vertices are computed by the collision detection algorithm (shown in orange).
The collision information is used to generate collision response constraints (shown in
green).

80

5.3. COLLISION DETECTION FOR ARTICULATED DEFORMABLE CHARACTERS

At every animation frame, in the deformation phase, the skin is deformed with position

based skinning. Although position based skinning is unaffected by the artefacts of classic

interactive skinning techniques, it cannot guarantee self-intersection free deformations.

Therefore, the first step for handling these self-intersections is to detect the collisions.

In the collision detection phase (Section 5.3), the collision detection algorithm gets the

deformed vertices as input and computes the colliding vertices. The collision information

is subsequently used to generate collision response constraints (Section 5.4). However,

the vertices are moved during the latter constraints solving step and may encounter new

collisions. Hence, we also detect the collisions inside of the solver loop, where collision

constraints are generated from scratch at each iteration. In the collision response phase,

we formulate a constraint-based response inside our position based skinning framework,

to handle the collisions and capture contact deformations.

5.3 Collision Detection for Articulated Deformable
Characters

In this section, we present a fast collision detection method for articulated deformable

characters. Our method was inspired by the work of [Teschner et al., 2003], but adapted

for articulated characters. We exploit the skeletal nature of the deformation to obtain

real time self-collision detection for models deformed by position based skinning (Chapter

4). We implicitly subdivide the space into uniform grids of axis-aligned bounding boxes

(AABBs), called cells. All mesh primitives (vertices and tetrahedra) are classified with

respect to these grids according to their position. Instead of using complex 3D data

structures, such as kd-trees, octrees or BSP trees, a hash function is used to project

the 3D cells into a finite 1D hash table. Only primitives mapped to the same hash

index indicate a possible collision and need to be tested for intersections. The hash

index can contain more than one primitive for the same mesh, which allows us to detect

self-collisions as well (Fig. 5.5). Our method focuses on skeletal characters, where we use

a lazy procedure that updates the hash table in an on-demand way. Therefore, it is not

necessary to update the hash table in each time step. Instead, it is only updated when

required by collision detection algorithm. This is not only memory efficient, but also

leads to a significant improvement in performance. The intersection test is then carried

out by computing the barycentric coordinates of a vertex with respect to a penetrated

tetrahedron. Thereby, it provides the exact position of a vertex inside a penetrated

tetrahedron and this information is used for collision response.

81

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

Figure 5.5: Self-collision detection. Left. The space is implicitly subdivided into small
cells, where red cells contain fully or partially the self-colliding primitives. Middle. The
red patches indicate self-collisions, in which intersections are quickly found with an O (1)
cell query. Right. Zoomed view of self-colliding primitives (in red).

5.3.1 Optimized Spatial Partitioning

In order to detect collisions and self-collisions within the position based skinning method,

we employ the spatial hashing procedure with temporal marks, introduced in [Teschner

et al., 2003]. To speed up the self-collision detection, we exploit the skeletal nature of

the deformation to only update the hashing table when required. The use of a regular

partition is suitable for our system, since all the tetrahedrons of the used models have

about the same size. Therefore, we implicitly subdivide the space R3 into a uniform

grid composed of small axis-aligned bounding boxes (AABBs), called cells. Each cell

maintains a list of the mesh primitives (vertices and tetrahedrons) that are fully or

partially contained in the cell. Rather than using complex 3D data structures, a hash

function is used to map these cells to a finite number of hash table entries. The algorithm

proceeds in two phases: the hashing phase (Section 5.3.1.1) and the intersection phase

(Section 5.3.1.2).

5.3.1.1 Hashing Phase

In the hashing phase (Fig. 5.6), all mesh primitives are classified with respect to cells

and mapped into hash table entries in uniformly random fashion. Hence, all vertices

are mapped into their cell (Alg. 6), and all tetrahedrons are also mapped into the cells

touched by their bounding box (Alg. 7). This hashing process is dependent on the following

parameters:

• Table size: the optimal size is related to the number of primitives in the scene, and

must be a high prime number in order to minimize the risk of mapping different

82

5.3. COLLISION DETECTION FOR ARTICULATED DEFORMABLE CHARACTERS

positions to the same hash index.

• Grid cell width: influences the number of mesh primitives that are mapped to the

same hash index. Thus, a reasonable choice is to employ the tetrahedron’s average

edge length.

• Hash function: a function that maps a cell to an arbitrary hash table address.

Simple and fast to execute hash function is preferable for spatial hashing. The

following function is used:

h = hash(i, j,k)= (i u⊕ j v⊕k w) mod n (5.1)

where ⊕ stands for exclusive-or operation, i, j,k are grid coordinates, u, v and w
are high prime numbers and n is the hash table size.

For example, a vertex with position p= (x, y, z) is mapped into a hash table of size n by

computing its table index h as follows: h =
[(
b x
d
c ·u

)
⊕

(
b y
d
c ·v

)
⊕

(
b z
d
c ·w

)]
mod n, where

for u,v,w we use the prime numbers 73856093, 19349663, 83492791, respectively. The

value d is the cell size.

Algorithm 6: Simple pseudo-code that hashes the vertices position into the hash
table

Input :Vector inputVertices, Integer cellSize, Integer tableSize
Output :Vector hashIndices

1: for each v in inputVertices do
2: // map the vertex’s position into a cell of the grid
3: Integer discreteGridx = (Integer) f loor((double) v.x/cellSize)
4: Integer discreteGridy = (Integer) f loor((double) v.y/cellSize)
5: Integer discreteGridz = (Integer) f loor((double) v.z/cellSize)
6: // Obtain a hash value for the vertex’s position
7: hashIndices= (73856093∗discreteGridx ⊕19349663∗
8: discreteGridy ⊕83492791∗discreteGridz) mod tableSize
9: end for

In order to avoid cleaning up the grid and perform the hashing phase from scratch in each

frame. Temporal marks or so called timestamps are used to label each cell, where these

marks are associated with the moment each cell was last updated. Thus, an intersection

with primitives inside a given cell is considered only if it was updated in the current

iteration.

83

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

Figure 5.6: An example of 3D spatial hashing for an arm. Left. The arm mesh is
embedded in a spatial partitioning. The zoomed view shows a tetrahedron (in blue), its
bounding box (in red) and all cells affected by the tetrahedron’s bounding box (in green).
Right. In the hashing phase, all vertices of the arm mesh are mapped into their cell and
the hash table indices are computed for all cells covered by the tetrahedron’s bounding
box. Therefore, in the intersection phase, the tetrahedron is checked for intersection with
all vertices found at these hash indices.

Algorithm 7: Simple pseudo-code that hash tetrahedrons into the hash table
Input :Vector inputTetrahedra, Grid∗ gridIndices

1: for each t in inputTetrahedra do
2: // Compute the bounding box for a given tetrahedron
3: BoundingBox BBoxtetrahedron = findBoundingBox(t)
4: for each g i in gridIndices do
5: // Check if cell is affected by the tetrahedron’s bounding box
6: if intersection (BBoxtetrahedron, g i) then
7: gridIndices.insert(t.Index)
8: end if
9: end for

10: end for

5.3.1.2 Intersection Phase:

In a second phase, if a tetrahedron interferes with a cell, all associated vertices of that

cell are checked for collision with the tetrahedron. To speed up the intersection test: we

first test vertex v against the bounding box of tetrahedron t. If v is inside the bounding

box of t, then an actual vertex/tetrahedron intersection test has to be performed. If an

84

5.3. COLLISION DETECTION FOR ARTICULATED DEFORMABLE CHARACTERS

intersection of a vertex v with a tetrahedron is detected and v is part of the same mesh, a

self-intersection has been detected, but only if v is not part of the penetrated tetrahedron

itself. The actual intersection test computes barycentric coordinates of a vertex with

respect to the tetrahedron in order to detect, whether a vertex collides with the tetrahe-

dron or not. This phase detects all colliding vertices in the scene and provides the exact

position of a vertex inside a penetrated tetrahedron. This information can be employed

to handle collisions by adding inequality constraints to the system of constraints within

the position based skinning method.

The exact intersection test between a vertex position p = (x, y, z) and a tetrahedron

t spanned by four vertices with the following positions:

p1 = (x1, y1, z1)

p2 = (x2, y2, z2)

p3 = (x3, y3, z3)

p4 = (x4, y4, z4)

is performed by calculating barycentric coordinates of p with respect to t. These barycen-

tric coordinates b= (b1,b2,b3,b4) are:

(b1,b2,b3,b4)=
(

D1

D
,
D2

D
,
D3

D
,
D4

D

)
(5.2)

where the determinant D is computed as:

D =

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
If D = 0, the tetrahedron is degenerated and the collision test is aborted. Otherwise, If

D > 0 or D < 0 then D1,D2,D3 and D4 are computed as:

D1=

∣∣∣∣∣∣∣∣∣∣∣

x y z 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
D2 =

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x y z 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
85

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

D3 =

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x y z 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
D4 =

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x y z 1

∣∣∣∣∣∣∣∣∣∣∣
Finally, the vertex position p is inside the tetrahedron t if the barycentric coordinates

b= (b1,b2,b3,b4) of the vertex satisfies the following conditions:

b1 ≥ 0

b2 ≥ 0

b3 ≥ 0

b4 ≥ 0

b1 +b2 +b3 +b4 = 1

5.3.2 On-demand Hashing

Construction of the hash structure is performed in the hashing phase. This phase maps

all primitives into a hash table in O (n) time. While the intersection phase takes O (n·p ·q)

where p is the average number of cells intersected by a tetrahedron and q is the average

number of vertices per cell. In order to avoid constructing the hash table in each simula-

tion step (which would reduce the efficiency in case of large tables), we used a timestamp

to construct the table incrementally, inserted vertices are not removed from the table.

Instead vertices are relocated whenever they move to another hash index. Our goal is

to detect self-collisions on models deformed by position based skinning in an arbitrary

posture. Self-collision is the most time consuming part of the collision detection phase.

Hence, to speed up the self-collision detection process, we exploit the skeletal nature of

the deformation. In particular, we exploit the fact that the only thing that changes the

shape of the deformed skin during the animation are the bone rotations T j (all other data

are constant). It is therefore possible to base the hashing procedure solely on the actual

bone rotations. Moreover, most movement modes of skeletal models require rotation of a

body part around an axis that passes through the center of a joint, and such movements

are called angular movements (Section 5.1).

The common angular movements involve either an increase or a decrease in the angle

between the articulating bones. The principal angular movements are flexion, extension,

abduction and adduction. Flexion motion refers to a decrease in the angle between

articulating bones, while extension is the motion of increasing the joint angle between

articulating bones (Fig. 5.7). Abduction is a movement of the limbs/extremities away

86

5.3. COLLISION DETECTION FOR ARTICULATED DEFORMABLE CHARACTERS

Figure 5.7: Examples of flexion and extension motions. Flexion brings two adjoining long
bones closer to each other. While extension denotes rotation in the opposite direction of
flexion. (a), (b) and (c) Show flexion and extension movements of the knee, elbow and
neck joint, (d) shows the angle of the joint of the knee during flexion, where the angle
θ2 is indicating a possible self-collision. The hash table is partially reconstructed by
considering only the cells that are affected by the bounding box of the part that indicates
collisions (in green).

from the body, and adduction is movement toward the body (Fig. 5.8). Self-collisions

for skeletal meshes occur in very localized regions, which are often found near joints.

In addition to that, we observed that self-collisions usually happen during the flexion

and adduction movements. Therefore, the main idea behind our on-demand hashing

operation is to update the data structure (incrementally reconstruct the hash table)

only during the flexion and adduction motions. Accordingly, we consider the angles θi

between articulating bones during the animation, and we check if such angles would

allow self-collisions. Since the number of bones is usually orders of magnitude smaller

than the number of primitives, we perform a quick test based on the angles between the

articulating bones (angular displacement of the bones during the animation). Thus we

are able to discard reconstruction the hash table when such angles would not allow self-

collisions. This is of course much more efficient than performing the hashing operation

each time step. This quick test in case of flexion motion, relies on the relative angles

between the articulating bones. In case of adduction, it relies on the angles between the

bone segment and the midline of the character. The midline is estimated based on the

bounding box of the body.

The relative angle is computed automatically as the arc cosine of the dot product of

the two vectors: θ = arccos
a ·b

‖a‖‖b‖ . If the angle is decreasing (i.e. θ2 < θ1 in Fig. 5.7 (d))

and less than a pre-specified tolerance angle α, then hash table is reconstructed and all

primitives in same AABBs are tested for collisions. The tolerance angle α is in the range

87

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

Figure 5.8: Examples of abduction and adduction motions. Abduction is the movement of
a limb away from the midline. While adduction is the movement toward the midline. We
compute the angle between the bone segment and the midline, in order to check whether
the angle indicates a possible collision.

[π
3

,π
]
, is defined by the user, and may be dependent on the character. Instead of entirely

reconstructing the hash table, we reconstruct the table only in the part where an angle is

indicating a possible self-collision. Thus, the hash table is partially reconstructed by only

considering the primitives that are in the cells that affected by the bounding box of the

potentially colliding part (Fig. 5.7 (d)). In other words, rather than reconstructing the

hash table incrementally for the entire scene in each time step [Teschner et al., 2003],

we partially reconstruct the hash table based on the angular displacement of bones.

5.4 Localized Self-Collision Handling for Articulated
Soft Characters

In this section, we locally address the self-intersection problem in the areas around

the joints. As explained in Section 5.1, all joints in realistic characters are rotational,

where the rotational movement occurs in a plane and around an axis. Consequently, in

an initialization phase, we generate a plane qi for each joint ji of the skeleton that is

parallel to the axis of rotation of the joint ji (Fig. 5.9). Each plane has a constant size,

which is not modified during the motion. While we use transformation constraints, in

88

5.4. LOCALIZED SELF-COLLISION HANDLING FOR ARTICULATED SOFT
CHARACTERS

order to align each plane translation and orientation with its corresponding joint during

the motion (Fig. 5.10).

Figure 5.9: An example of the generation of planes for some joints of the skeleton for both
bipedal and quadrupedal characters, in order to address the self-intersection problem
between the skin parts.

Figure 5.10: Skin is deformed by position based skinning. Left. The skeleton is embedded
within the mesh in its initial position, where the plane is also attached to the elbow
joint. Middle. The collisions between the skin parts and the plane are detected using
the method described in Section 5.3 Right. Collision response constraints push the skin
along the plane normal, while the tetrahedral volume constraints preserve the volume of
the skin, leading to a localized muscle bulging effect.

In this configuration, planes separate the skin parts. Hence the collision between two

skin parts is defined by the contact point and orientation of the plane. The intersec-

tion test described in Section 5.3 returns these contact data. Inside the position based

89

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

skinning framework, we simulate the skin as a soft body that is represented by a set of

particles. In order to handle collisions on the detected candidate contact plane, for each

particle an inequality constraint C(p)≥ 0 is introduced into the position based skinning

system, where

C(p)= (p−qc) ·n (5.3)

In this equation qc is the contact point, n is the normal of the plane. The stiffness of this

constraint is equal to 1. Responding to the collision in this case is simply a matter of

pushing the particle position out to the surface of the plane along its normal, where the

correction of the particle position is:

∆p=−n‖p−qc‖ (5.4)

These additional constraints allow us to obtain localized self-intersection free deformation

in the areas around the joint. The collision response constraints push the skin along the

plane normal, while the tetrahedral volume constraints preserve the volume of the skin.

Consequently, the system of geometric constraints within the PBS framework, including

tetrahedral volume and collision response constraints is able to capture muscle bulging

behavior (Fig. 5.10).

5.5 Overall Algorithm

In this section, we summarize our method (in Alg. 8).

5.6 Experiments and Results

All experiments described in this section have been performed on a mass-market laptop

equipped with an Intel i5 2.50 GHz processor and 4GB RAM. We implemented the

on-demand hashing and the collision response in C++, and we tested our method on a

variety of articulated characters of different shapes. The animations are adapted from

[Abu Rumman & Fratarcangeli, 2015].

5.6.1 Collision Detection

We have evaluated our on-demand collision detection method on a variety of examples.

We also compare the performance of our method with the spatial hashing algorithm.

90

5.6. EXPERIMENTS AND RESULTS

Algorithm 8: Collision handling within position based skinning algorithm
Input :Mesh surfaceMesh, Matrices4x4 bindingweights,

// The Skeleton’s data structure consists of the following:
// Matrices4x4 currentbonesTransformations,
//Matrices4x4 restbonesTransformations and V ector Joints
Skeleton inputSkeleton,
Double ∆t,
Integer solverIterations

Output :Mesh surfaceMesh
1: generatetetrahedralMesh(Mesh surfaceMesh)
2: findBarycentricCoordinateForVertex(surfaceMesh,tetrahedralMesh)
3: for each ti in tetrahedralMesh do
4: defineGeometricConstraints(TetrahedralVolume)
5: end for
6: for each vi in tetrahedralMesh do
7: defineGeometricConstraints(Bind)
8: end for

Figure 5.11: Real-time self-collision detection for an articulated character deformed by
position based skinning: an animated sequence of a walking HORSE with a skeleton of 43
bones, 4K vertices and 6K tetrahedrons. All self-collisions are calculated in 2.1 ms per
frame, where self-collisions shown in red.

Spatial hashing updates the whole hash table after every frame, which can be inefficient.

On the other hand, our method uses a lazy procedure that updates the hash table in an

on-demand way, which outperforms spatial hashing (see Table 5.1). Figs. 5.11 and 5.12

show the HORSE and HUMAN models animated with a walking cycle. All colliding vertices

are detected in real-time and the mean computation times are reported in Table 5.1,

where we used 10 ms time steps and 12 iterations. The grid width that we employed was

slightly higher than the tetrahedron’s average edge length.

Figs. 5.14 and 5.13 show ARM and LEG models while bending, where the number of

iteration was 8 and all self-collisions are detected in real-time. The last scenario is a

posture of a bending ARM and a RIGID BODY (Fig. 5.15). Our method successfully detected

the collisions between the ARM model and the RIGID BODY, as well as the self-collisions

91

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

for each e i in tetrahedralMesh do
defineGeometricConstraints(Stretch)

end for
// For each joint position, we generate a quad
for each j i in inputSkeleton.Joints do

// Generate a quad mesh for each joint in the skeleton
Quad qi= generateQuad(j i)
// Define a parent constraint between the quad and corresponding joint
defineParentConstraints(j i,qi)

end for
for each animation frame do

// Loop through every vertex and compute blended positions through LBS
for each vi in tetrahedralMesh do

deformedVerticesi = inputVerticesi +bindingweightsi,j×
currentbonesTransformations×restbonesTransformations−1

j
end for
// Simulating the skin as a soft body using PBD
for each vi in tetrahedralMesh do

vi = v0
i

xi = x0
i

wi = 1/mi
end for
loop

for each vi in tetrahedralMesh do
// We apply gravity as external force
vi = vi +∆twiFext(xi)
pi = xi +∆tvi

end for
detectCollisionConstraints(xi →pi)
for all collidedVertices i do

generateCollisionConstraints(xi →pi)
end for
for solverIterations do

projectTetrahedralVolumeConstraints(C1, . . . ,Cm,pi, . . . ,pn)
projectBindConstraints(C1, . . . ,Cm,pi, . . . ,pn)
projectStretchConstraints(C1, . . . ,Cm,pi, . . . ,pn)
projectCollisionConstraints(C1, . . . ,Cm,pi, . . . ,pn)
detectCollisionConstraints(xi →pi)
for all collidedVertices i do

generateCollisionConstraints(xi →pi)
end for

end for
for all each vi in tetrahedralMesh do

vi = (pi −xi) /∆t
xi =pi

end for
velocityUpdate(vi, . . . ,vn)

end loop
UpdatesurfaceMeshVertices()

end for

92

5.6. EXPERIMENTS AND RESULTS

Figure 5.12: A back view of a walking HUMAN with a skeleton of 25 bones, 9K vertices
and 5K tetrahedrons. All the colliding vertices are computed in 3.93 ms per frame, where
the red patches indicate self-collisions.

Figure 5.13: An animated sequence of a bending LEG, where all colliding vertices are
computed in 1.7 ms per frame. Self-collisions shown in red.

on the ARM model. Please refer to the video for the complete animations and additional

results.

5.6.2 Collision Response

We demonstrate the deformation results of our collision response method with two differ-

ent models. The handling of self-collisions is shown in Fig. 5.16. In our experiments, we

used a 0.93 stiffness value for the collision constraints. Table 5.2 reports the mean com-

putation times of our method for ARM and LEG bending motion, including the skinning

93

https://vimeo.com/138406933

CHAPTER 5. COLLISION HANDLING FOR SOFT ARTICULATED CHARACTERS

Figure 5.14: An animated sequence of a bending ARM, where all self-collisions are
calculated in 1.702 ms per frame.

Figure 5.15: A bending ARM and a RIGID BODY, consisting of 4400 tetrahedrons and
132 tetrahedrons, respectively. Both the collisions and the self-collisions of the arm are
detected in 2.52 ms.

simulation, collision detection and collision response. We did not include forces/torques in

our collision response formulation. However, we present a simple and institutive method,

which handles self-intersections in real-time and offers considerable benefit such as the

bulging behavior.

94

sc
en

e
#

ve
rt

ic
es

#
te

tr
a

#
bo

ne
s

C
T

sk
in

ni
ng

[m
s]

C
T

on
−d

em
an

dH
as

hi
ng

[m
s]

C
T

to
ta

l
[m

s]
#

it
er

at
io

ns
fp

s o
n−

de
m

an
dH

as
hi

ng
C

T
S

pa
ti

al
H

as
hi

ng
fp

s S
pa

ti
al

H
as

hi
ng

H
U

M
A

N
95

28
49

98
25

6.
80

7
3.

93
10

.7
37

12
93

.1
36

5.
59

3
80

.6
4

A
R

M
42

11
44

00
3

4.
11

2
1.

70
2

5.
81

4
8

17
1.

99
8

2.
53

15
0.

55
7

A
R

M
+

R
IG

ID
B

O
D

Y
42

84
45

32
3

3.
79

2
2.

52
6.

31
2

8
15

8.
42

9
3.

10
14

5.
09

5
L

E
G

39
90

43
39

3
4.

10
8

1.
7

5.
80

8
8

17
2.

17
6

2.
47

15
2.

02
1

H
O

R
S

E
38

33
61

26
43

7.
69

2.
1

9.
79

12
10

2.
14

5
3.

35
90

.5
79

Ta
bl

e
5.

1:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
of

ou
r

on
-d

em
an

d
co

lli
si

on
de

te
ct

io
n

an
d

op
ti

m
iz

ed
sp

at
ia

lh
as

hi
ng

.#
ve

rt
ic

es
:n

um
be

r
of

in
it

ia
lv

er
ti

ce
s

in
th

e
re

nd
er

m
es

h,
#t

et
ra

:n
um

be
r

of
el

em
en

ts
in

th
e

te
tr

ah
ed

ra
lm

es
h,

fp
s o

n−
de

m
an

dH
as

hi
ng

:a
vg

.f
ra

m
e

ra
te

,
C

T
sk

in
ni

ng
:a

vg
.s

ki
nn

in
g

co
m

pu
ta

ti
on

ti
m

e
an

d
C

T
on

−d
em

an
dH

as
hi

ng
:a

vg
.c

om
pu

ta
ti

on
ti

m
e

of
ou

r
co

ll
is

io
n

de
te

ct
io

n
m

et
ho

d
du

ri
ng

1
se

c
si

m
ul

at
io

n,
w

he
re

(C
T

to
ta

l=
C

T
sk

in
ni

ng
+C

T
on

−d
em

an
dH

as
hi

ng
).

C
T

S
pa

ti
al

H
as

hi
ng

:a
vg

.c
om

pu
ta

ti
on

ti
m

e
of

op
ti

m
iz

ed
sp

at
ia

lh
as

hi
ng

,
fp

s S
pa

ti
al

H
as

hi
ng

:a
vg

.f
ra

m
e

ra
te

of
us

in
g

op
ti

m
iz

ed
sp

at
ia

lh
as

hi
ng

to
de

te
ct

co
ll

is
io

ns
on

m
od

el
s

de
fo

rm
by

po
si

ti
on

ba
se

d
sk

in
ni

ng
.

F
ig

ur
e

5.
16

:
A

n
an

im
at

ed
se

qu
en

ce
of

a
be

nd
in

g
A

R
M

,w
he

re
ou

r
m

et
ho

ds
ha

nd
le

s
th

e
se

lf-
co

lli
si

on
of

up
pe

r
an

d
lo

w
er

ar
m

an
d

su
cc

es
sf

ul
ly

pr
es

er
ve

s
th

e
vo

lu
m

e.

sc
en

e
#

ve
rt

ic
es

#
te

tr
a

#
bo

ne
s

C
T

sk
in

ni
ng

[m
s]

C
T

on
−d

em
an

dH
as

hi
ng

[m
s]

C
T

co
ll

is
io

n r
es

po
ns

e
[m

s]
C

T
to

ta
l

[m
s]

#
it

er
at

io
ns

fp
s

A
R

M
42

11
44

00
3

6.
01

3.
50

1
4.

9
14

.4
11

22
69

.3
91

L
E

G
39

90
43

39
3

6.
09

3.
69

4.
53

14
.3

1
22

69
.9

9

Ta
bl

e
5.

2:
C

ol
lis

io
n

re
sp

on
se

pe
rf

or
m

an
ce

.#
ve

rt
ic

es
:n

um
be

r
of

in
it

ia
lv

er
ti

ce
s

in
th

e
re

nd
er

m
es

h,
#t

et
ra

:n
um

be
r

of
el

em
en

ts
in

th
e

te
tr

ah
ed

ra
lm

es
h,

fp
s:

av
g.

fr
am

e
ra

te
,C

T
sk

in
ni

ng
:a

vg
.s

ki
nn

in
g

co
m

pu
ta

ti
on

ti
m

e,
C

T
on

−d
em

an
dH

as
hi

ng
:a

vg
.c

om
pu

ta
ti

on
ti

m
e

of
co

ll
is

io
n

de
te

ct
io

n,
C

T
co

ll
is

io
nR

es
po

ns
e:

av
g.

co
m

pu
ta

ti
on

ti
m

e
of

ou
r

co
ll

is
io

n
re

sp
on

se
du

ri
ng

1
se

c
si

m
ul

at
io

n,
w

he
re

(C
T

to
ta

l=
C

T
sk

in
ni

ng
+C

T
on

−d
em

an
dH

as
hi

ng
+C

T
co

ll
is

io
nR

es
po

ns
e)

.

5.7. CONCLUSION

5.7 Conclusion

In the previous chapter, we presented interactive deformation model (position based

skinning, Chapter 4), which provides interesting effects, such as volume preservation

and jiggling. Unfortunately, PBS suffers from self-intersections, thus it fails to produce

convincing organic-like deformations near joints. This chapter presents a simple and

fast collision detection method for articulated deformable meshes, which used to locally

handle in real-time self-intersection on models deform by PBS. During the animation,

the skin is deformed using position based skinning. Then, the collision detection algo-

rithm gets the deformed vertices as input and finds all colliding vertices. Detecting the

collisions is based on spatial hashing [Teschner et al., 2003], and is performed before and

inside the constraint enforcement loop of position based skinning. Thus, our method does

not miss collision events during the solver loop. The intersection test provides the exact

position of a vertex inside a penetrated tetrahedron, and this information is employed

to estimate the contact point, and to compute collision response. Being based on spatial

hashing [Teschner et al., 2003], our collision detection method does not rely on any

preprocessing and it does not impose requirements on the characteristics of the meshes.

We exploit the skeletal nature of the deformation to incrementally reconstruct the hash

table only when required, using the on-demand hashing operation. This on-demand

hashing operation speeds up the full collision detection considerably when compared to

the original hashing operation [Rumman et al., 2015].

Collision response is done by detecting collisions between skin parts and planes, where

each plane is attached with its corresponding joint in the skeleton. Then, we gener-

ate temporary inequality constraints on-the-fly, and including them into the system

of constraints inside PBS framework. The geometric constraints within PBS including

tetrahedral volume and collision response constraints are able to capture muscles bulging

behavior. However, The inconsistency between these constraints may lead to noticeable

artefacts.

97

C
H

A
P

T
E

R

6
CONCLUSION AND FUTURE DIRECTIONS

Believable skin deformation for soft articulated characters is essential to enrich

the visual experience of the animation and for creating appealing character an-

imation in movie productions, computer games, and virtual reality applications.

The production of life-like deformations includes capturing a range of desirable effects,

like secondary motions, volume preservation, and contact deformations. In character

animation, the skin deformation of an articulated character is determined primarily

by an underlying skeleton, which leads to purely kinematic deformations. However, it

is important to simulate the secondary motion effects, as well as skin response due to

collisions. But, these effects are usually challenging to achieve in real time. Various

techniques have been proposed for performing skeleton-driven deformations, and others

with physically based skin deformation. However, none of these approaches addresses

the problem of creating believable skin deformation for soft articulated characters at

interactive rates. While also efficiently handling local collision response to capture skin

contact deformations.

In this dissertation, we have presented a novel two-layered deformation model for

soft articulated characters, called position based skinning (PBS). For each frame, the

skin is first deformed with a classic linear blend skinning (LBS) approach, which usually

99

CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

leads to unsightly artefacts like the well-known candy-wrapper effect and volume loss.

Then, we enforce some geometric constraints inside position based dynamics (PBD)

scheme, which displace the positions of the vertices to mimic the behavior of the skin.

Our system initializes the blend weights and the soft constraints automatically, so it does

not require a considerable set-up effort. Linear blend skinning deformer, improves the

convergence speed of the PBD solver, while PBD maintaining the elastic nature of the

character body. We employ a graph coloring algorithm for parallelizing the computation

of the geometric constraints. This leads to fast performances even in case of a fairly high

number of tetrahedrons. We mapped the tetrahedral mesh to the input skin geometry

for achieving high quality renderings. During the animation, our method preserves the

volume and allows for passive jiggling behavior. Our method allows the artists to define

specific areas of the body and decide on the amount of jiggling affecting them by tuning

a single scalar stiffness parameter.

To produce a convincing organic-like deformation near joints. We have presented a

simple and fast collision detection method for articulated deformable meshes, which used

to handle locally self-intersection on models deform by position based skinning (PBS).

During the animation, the skin is deformed using PBS. Then, the collision detection algo-

rithm gets the deformed vertices as input and finds all the colliding vertices. Detecting

the collisions is based on spatial hashing [Teschner et al., 2003], and is performed before

and inside the constraint enforcement loop of PBS. Thus, our method does not miss

collision events during the solver loop. The intersection test provides the exact position

of a vertex inside a penetrated tetrahedron and this information is employed to estimate

the contact point, and to compute collision response. Being based on spatial hashing

[Teschner et al., 2003], our collision detection method does not rely on any preprocessing

and it does not impose requirements on the characteristics of the meshes. We exploit the

skeletal nature of the deformation to incrementally reconstruct the hash table only when

required using the on demand hashing operation. The on demand hashing speeds up

the collision detection algorithm considerably when compared to the optimized spatial

hashing method.

Collision response is done by detecting collisions between skin parts and quads, where

each quad is attached with its corresponding joint in the skeleton. Then, we generate tem-

porary inequality constraints on-the-fly and including them into the system of constraints

inside PBS framework. The geometric constraints within PBS including tetrahedral

volume and collision response constraints are able to capture muscles bulging behavior.

100

6.1. DISCUSSION AND FUTURE WORK

However, the violent conflict between these constraints may lead noticeable artefacts.

6.1 Discussion and Future Work

In contrast to the existing methods, our system does not model the inner structure of

the human skin. However, using a combination of widely known and relatively simple

techniques, linear blend skinning and position based dynamics, we achieved believable

animations with a time performance suitable for interactive applications. Being based on

position based dynamics, the elastic behavior of the soft body deformer is influenced by

the number of iterations employed in the parallel Gauss-Seidel solver. We employed 12

iterations during our tests, but in general the artist has to heuristically choose a value

which depends on the topology and the polygonal resolution of the input mesh.

In our collision handling algorithm, we only consider the special case of self-intersection

near joints. Therefore, some assumptions will not apply in general case. For example, an

arm may still touch legs during an extension movement, but the method will not update

the hashing for this case. Then, the algorithm will not handle the collisions.

The geometric constraints inside PBS may suffer violence, which may lead to incon-

sistency and noticeable artefacts. To have more stable and accurate deformations, we

will accelerate our method using a GPU implementation based on [Fratarcangeli &

Pellacini, 2013].

101

REFERENCES

Abu Rumman, Nadine, & Fratarcangeli, Marco. 2014. Position Based Skinning of

Skeleton-driven Deformable Characters. Pages 83–90 of: Proceedings of the 30th
Spring Conference on Computer Graphics. SCCG ’14. New York, NY, USA: ACM.

Abu Rumman, Nadine, & Fratarcangeli, Marco. 2015. Position-Based Skinning for Soft

Articulated Characters. Computer Graphics Forum, 34(6), 240–250.

Alcantara, Dan A., Sharf, Andrei, Abbasinejad, Fatemeh, Sengupta, Shubhabrata,

Mitzenmacher, Michael, Owens, John D., & Amenta, Nina. 2009. Real-time Parallel

Hashing on the GPU. Pages 154:1–154:9 of: ACM SIGGRAPH Asia 2009 Papers.

SIGGRAPH Asia ’09. New York, NY, USA: ACM.

Alexa, Marc. 2002. Linear Combination of Transformations. Pages 380–387 of: Pro-
ceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’02. New York, NY, USA: ACM.

Allen, Brett, Curless, Brian, & Popović, Zoran. 2002. Articulated Body Deformation from

Range Scan Data. Pages 612–619 of: Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’02. New York, NY,

USA: ACM.

Angelidis, Alexis, & Singh, Karan. 2007. Kinodynamic skinning using volume-

preserving deformations. Pages 129–140 of: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA 2007, San Diego,
California, USA, August 2-4, 2007.

Aubert, Fabrice, & Bechmann, Dominique. 1997. Volume-preserving Space Deformation.

Comput. Graph., 21(5), 625–639.

Autodesk, Inc. 1990–2015. 3ds Max. http://www.autodesk.it/products/3ds-max/

overview.

103

http://www.autodesk.it/products/3ds-max/overview
http://www.autodesk.it/products/3ds-max/overview

Autodesk, Inc. 1998–2015. Maya. http://www.autodesk.com/products/maya/

overview.

Baraff, David. 1996. Linear-time Dynamics Using Lagrange Multipliers. Pages 137–146
of: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’96. New York, NY, USA: ACM.

Baran, Ilya, & Popović, Jovan. 2007. Automatic Rigging and Animation of 3D Characters.

In: ACM SIGGRAPH 2007 Papers. SIGGRAPH ’07. New York, NY, USA: ACM.

Bender, Jan, Müller, Matthias, Otaduy, Miguel A., & Teschner, Matthias. 2013. Position-

based Methods for the Simulation of Solid Objects in Computer Graphics. In:
EUROGRAPHICS 2013 State of the Art Reports. Eurographics Association.

Bender, Jan, M"uller, Matthias, Otaduy, Miguel A., Teschner, Matthias, & Macklin, Miles.

2014. A Survey on Position-Based Simulation Methods in Computer Graphics.

Computer Graphics Forum, 1–25.

Bender, Jan, Müller, Matthias, & Macklin, Miles. 2015. Position-Based Simulation

Methods in Computer Graphics. In: EUROGRAPHICS 2015 Tutorials. Eurographics

Association.

Bharaj, Gaurav, Thorm"ahlen, Thorsten, Seidel, Hans-Peter, & Theobalt, Christian. 2012.

Automatically Rigging Multi-component Characters. Comp. Graph. Forum, 31(2pt3),

755–764.

Bloor, M. I. G., & Wilson, M. J. 1990. Using Partial Differential Equations to Generate

Free-form Surfaces: 91787. Comput. Aided Des., 22(4), 202–212.

Boissonnat, Jean-Daniel, & Oudot, Steve. 2005. Provably Good Sampling and Meshing

of Surfaces. Graph. Models, 67(5), 405–451.

Botsch, Mario, & Kobbelt, Leif. 2003. Multiresolution Surface Representation Based on

Displacement Volumes. Computer Graphics Forum, 22(3), 483–491.

Bridson, Robert, Fedkiw, Ronald, & Anderson, John. 2002. Robust Treatment of Col-

lisions, Contact and Friction for Cloth Animation. ACM Trans. Graph., 21(3),

594–603.

Bro-nielsen, Morten, & Cotin, Stephane. 1996. Real-time Volumetric Deformable Models

for Surgery Simulation using Finite Elements and Condensation. Pages 57–66 of:
Computer Graphics Forum.

104

http://www.autodesk.com/products/maya/overview
http://www.autodesk.com/products/maya/overview

Capell, Steve, Green, Seth, Curless, Brian, Duchamp, Tom, & Popović, Zoran. 2002.

Interactive Skeleton-driven Dynamic Deformations. Pages 586–593 of: Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Techniques.

SIGGRAPH ’02. New York, NY, USA: ACM.

Capell, Steve, Burkhart, Matthew, Curless, Brian, Duchamp, Tom, & Popović, Zoran.

2005. Physically Based Rigging for Deformable Characters. Pages 301–310 of:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’05. New York, NY, USA: ACM.

Chadwick, J. E., Haumann, D. R., & Parent, R. E. 1989. Layered Construction for

Deformable Animated Characters. SIGGRAPH Comput. Graph., 23(3), 243–252.

Chen, Cheng-Hao, Lin, I-Chen, Tsai, Ming-Han, & Lu, Pin-Hua. 2011. Lattice-Based

Skinning and Deformation for Real-Time Skeleton-Driven Animation. Pages 306–
312 of: Proceedings of the 2011 12th International Conference on Computer-Aided
Design and Computer Graphics. CADGRAPHICS ’11. Washington, DC, USA: IEEE

Computer Society.

Chen, David T., & Zeltzer, David. 1992. Pump It Up: Computer Animation of a Biome-

chanically Based Model of Muscle Using the Finite Element Method. Pages 89–98 of:
Proceedings of the 19th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’92. New York, NY, USA: ACM.

Chen, Y., Zhu, Qing-Hong, Kaufman, A., & Muraki, S. 1998 (Jun). Physically-based

animation of volumetric objects. Pages 154–160 of: Computer Animation 98. Pro-
ceedings.

Clifford, W. 1882 (jun). Mathematical Papers. Tech. rept.

Coleman, Thomas F., & More, Jorge J. 1983. Estimation of sparse Jacobian matrices and

graph coloring problems. Journal of Numerical Analasis, 20, 187–209.

Coquillart, Sabine. 1990. Extended Free-form Deformation: A Sculpturing Tool for 3D

Geometric Modeling. Pages 187–196 of: Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’90. New York, NY,

USA: ACM.

De Aguiar, Edilson, Theobalt, Christian, Thrun, Sebastian, & Seidel, Hans-Peter. 2008.

Automatic Conversion of Mesh Animations into Skeleton-based Animations. Pages
389–397 of: Computer Graphics Forum, vol. 27. Wiley Online Library.

105

Demeure, Virginie, Niewiadomski, Rados law, & Pelachaud, Catherine. 2011. How is

Believability of a Virtual Agent Related to Warmth, Competence, Personification,

and Embodiment? Presence: Teleoper. Virtual Environ., 20(5), 431–448.

Desbrun, Mathieu, & Gascuel, Marie-Paule. 1995. Animating Soft Substances with

Implicit Surfaces. Pages 287–290 of: Proceedings of the 22Nd Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’95. New York, NY,

USA: ACM.

Dionne, Olivier, & de Lasa, Martin. 2013. Geodesic Voxel Binding for Produc-

tion Character Meshes. Pages 173–180 of: Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’13. New York,

NY, USA: ACM.

Dong, Feng, Clapworthy, G.J., Krokos, M.A., & Yao, Jialiang. 2002. An anatomy-based

approach to human muscle modeling and deformation. Visualization and Computer
Graphics, IEEE Transactions on, 8(2), 154–170.

Eitz, Mathias, & Lixu, Gu. 2007. Hierarchical Spatial Hashing for Real-time Collision

Detection. Pages 61–70 of: Proceedings of the IEEE International Conference on
Shape Modeling and Applications 2007. SMI ’07. Washington, DC, USA: IEEE

Computer Society.

Ericson, Christer. 2004. Real-Time Collision Detection (The Morgan Kaufmann Series
in Interactive 3-D Technology) (The Morgan Kaufmann Series in Interactive 3D
Technology). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Erleben, Kenny, Sporring, Jon, Henriksen, Knud, & Dohlman, Kenrik. 2005. Physics-
based Animation (Graphics Series). Rockland, MA, USA: Charles River Media,

Inc.

Feng, Wei-Wen, Kim, Byung-Uck, & Yu, Yizhou. 2008. Real-time Data Driven Defor-

mation Using Kernel Canonical Correlation Analysis. Pages 91:1–91:9 of: ACM
SIGGRAPH 2008 Papers. SIGGRAPH ’08. New York, NY, USA: ACM.

Forstmann, Sven, & Ohya, Jun. 2006. Fast skeletal animation by skinned arc-spline

based deformation. EG 2006 Short Papers, 1–4.

Forstmann, Sven, Ohya, Jun, Krohn-Grimberghe, Artus, & McDougall, Ryan. 2007. De-

formation Styles for Spline-based Skeletal Animation. Pages 141–150 of: Proceedings

106

of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

SCA ’07. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association.

Fratarcangeli, M., & Pellacini, F. 2015. Scalable Partitioning for Parallel Position Based

Dynamics. Computer Graphics Forum, 34(2), 405–413.

Fratarcangeli, Marco. 2012. Position-based facial animation synthesis. Computer Ani-
mation and Virtual Worlds, 23(3-4), 457–466.

Fratarcangeli, Marco, & Pellacini, Fabio. 2013. A GPU-Based Implementation of Position

Based Dynamics for Interactive Deformable Bodies. Journal of Graphics Tools,

17(3), 59–66.

Gain, James, & Bechmann, Dominique. 2008. A Survey of Spatial Deformation from a

User-centered Perspective. ACM Trans. Graph., 27(4), 107:1–107:21.

Galoppo, Nico, Otaduy, Miguel A., Tekin, Serhat, Gross, Markus H., & Lin, Ming C. 2007.

Soft Articulated Characters with Fast Contact Handling. Comput. Graph. Forum,

26(3), 243–253.

Gao, Ming, Mitchell, Nathan, & Sifakis, Eftychios. 2014. Steklov-Poincaré Skinning.

Pages 139–148 of: The Eurographics / ACM SIGGRAPH Symposium on Computer
Animation, SCA ’14, Copenhagen, Denmark, 2014.

Geijtenbeek, T., & Pronost, N. 2012. Interactive Character Animation Using Simulated

Physics: A State-of-the-Art Review. Computer Graphics Forum, 31(8), 2492–2515.

Gibson, Sarah F. F., & Mirtich, Brian. 1997. A survey of deformable modeling in computer
graphics. Tech. rept. TR-97-19, MERL, Cambridge, MA, 1997.

Gilles, Benjamin, Bousquet, Guillaume, Faure, Francois, & Pai, Dinesh K. 2011a. Frame-

based Elastic Models. ACM Trans. Graph., 30(2), 15:1–15:12.

Gilles, Benjamin, Bousquet, Guillaume, Faure, Francois, & Pai, Dinesh K. 2011b. Frame-

based Elastic Models. ACM Trans. Graph., 30(2), 15:1–15:12.

Girard, Michael, & Maciejewski, A. A. 1985. Computational Modeling for the Computer

Animation of Legged Figures. Pages 263–270 of: Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’85. New

York, NY, USA: ACM.

107

Goktekin, Tolga G., Reisch, Jon, Peachey, Darwyn, & Shah, Apurva. 2007. An Effects

Recipe for Rolling a Dough, Cracking an Egg and Pouring a Sauce. In: ACM
SIGGRAPH 2007 Sketches. SIGGRAPH ’07. New York, NY, USA: ACM.

Gottschalk, S., Lin, M. C., & Manocha, D. 1996. OBBTree: A Hierarchical Structure for

Rapid Interference Detection. Pages 171–180 of: Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’96. New

York, NY, USA: ACM.

Gottschalk, Stefan Aric. 2000. Collision Queries Using Oriented Bounding Boxes. Ph.D.

thesis. AAI9993311.

Gourret, J.-P., Thalmann, N. M., & Thalmann, D. 1989. Simulation of Object and Human

Skin Formations in a Grasping Task. Pages 21–30 of: Proceedings of the 16th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’89. New

York, NY, USA: ACM.

Govindaraju, Naga K., Knott, David, Jain, Nitin, Kabul, Ilknur, Tamstorf, Rasmus, Gayle,

Russell, Lin, Ming C., & Manocha, Dinesh. 2005. Interactive collision detection

between deformable models using chromatic decomposition. ACM Trans. Graph, 24,

991–999.

Gross, Ralph, & Shi, Jianbo. 2001. The CMU Motion of Body (MoBo) Database. Tech.

rept. CMU-RI-TR-01-18. Robotics Institute, Carnegie Mellon University.

Guskov, Igor, Sweldens, Wim, & Schröder, Peter. 1999. Multiresolution Signal Processing

for Meshes. Pages 325–334 of: Proceedings of the 26th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA:

ACM Press/Addison-Wesley Publishing Co.

Hahn, Fabian, Martin, Sebastian, Thomaszewski, Bernhard, Sumner, Robert, Coros,

Stelian, & Gross, Markus. 2012. Rig-space Physics. ACM Trans. Graph., 31(4),

72:1–72:8.

Hahn, Fabian, Thomaszewski, Bernhard, Coros, Stelian, Sumner, Robert, & Gross,

Markus. 2013. Efficient simulation of secondary motion in rig-space. In: Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA

’13.

He, Liang, Ortiz, Ricardo, Enquobahrie, Andinet, & Manocha, Dinesh. 2015. Interactive

continuous collision detection for topology changing models using dynamic clustering.

108

Pages 47–54 of: Proceedings of the 19th Symposium on Interactive 3D Graphics and
Games, San Francisco, CA, USA, February 27 - March 01, 2015.

Heim, Oliver, Marshall, Carl, & Lake, Adam. 2004. Fast Collision Detection for 3D

Bones-Based Articulated Characters. Pages 503–514 of: Kirmse, Andrew (ed), Game
Programming Gems 4. Charles River Media.

Hejl, Jim. 2004. Hardware Skinning with Quaternions. Pages 487–495 of: Kirmse,

Andrew (ed), Game Programming Gems 4. Charles River Media.

Hong, Min, Jung, S., Choi, Min-Hyung, & Welch, S.W.J. 2006. Fast Volume Preservation

for a Mass-Spring System. Computer Graphics and Applications, IEEE, 26(5),

83–91.

Hsu, William M., Hughes, John F., & Kaufman, Henry. 1992. Direct Manipulation of Free-

form Deformations. Pages 177–184 of: Proceedings of the 19th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’92. New York, NY,

USA: ACM.

Huang, Haoda, Zhao, Ling, Yin, KangKang, Qi, Yue, Yu, Yizhou, & Tong, Xin. 2011.

Controllable Hand Deformation from Sparse Examples with Rich Details. Pages
73–82 of: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. SCA ’11. New York, NY, USA: ACM.

Huang, Jin, Shi, Xiaohan, Liu, Xinguo, Zhou, Kun, Wei, Li-Yi, Teng, Shang-Hua, Bao,

Hujun, Guo, Baining, & Shum, Heung-Yeung. 2006. Subspace Gradient Domain

Mesh Deformation. ACM Trans. Graph., 25(3), 1126–1134.

Jacka, David, Reid, Ashley, Merry, Bruce, & Gain, James. 2007. A Comparison of Linear

Skinning Techniques for Character Animation. Pages 177–186 of: Proceedings of the
5th International Conference on Computer Graphics, Virtual Reality, Visualisation
and Interaction in Africa. AFRIGRAPH ’07. New York, NY, USA: ACM.

Jacobson, Alec, & Sorkine, Olga. 2011. Stretchable and Twistable Bones for Skeletal

Shape Deformation. Pages 165:1–165:8 of: Proceedings of the 2011 SIGGRAPH Asia
Conference. SA ’11. New York, NY, USA: ACM.

Jacobson, Alec, Baran, Ilya, Popović, Jovan, & Sorkine, Olga. 2011. Bounded Biharmonic

Weights for Real-time Deformation. ACM Trans. Graph., 30(4), 78:1–78:8.

109

Jacobson, Alec, Deng, Zhigang, Kavan, Ladislav, & Lewis, JP. 2014a. Skinning: Real-time

Shape Deformation. In: ACM SIGGRAPH 2014 Courses.

Jacobson, Alec, Panozzo, Daniele, Glauser, Oliver, Pradalier, Cédric, Hilliges, Otmar, &

Sorkine-Hornung, Olga. 2014b. Tangible and Modular Input Device for Character

Articulation. ACM Trans. Graph., 33(4), 82:1–82:12.

Jain, Sumit, & Liu, C. Karen. 2011. Controlling Physics-Based Characters Using Soft

Contacts. ACM Trans. Graph. (SIGGRAPH Asia), 30(Dec.), 163:1–163:10.

Jakobsen, Thomas. 2001. 2001) Advanced character physics. In: In Proceedings of the
Game Developers Conference 2001. CMP media.

James, Doug L., & Pai, Dinesh K. 1999. ArtDefo: Accurate Real Time Deformable

Objects. Pages 65–72 of: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co.

James, Doug L., & Pai, Dinesh K. 2004. BD-tree: Output-sensitive Collision Detection

for Reduced Deformable Models. Pages 393–398 of: ACM SIGGRAPH 2004 Papers.

SIGGRAPH ’04. New York, NY, USA: ACM.

James, Doug L., & Twigg, Christopher D. 2005. Skinning Mesh Animations. Pages
399–407 of: ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05. New York, NY, USA:

ACM.

Jiménez, P., Thomas, F., & Torras, C. 2000. 3D Collision Detection: A Survey. Computers
and Graphics, 25, 269–285.

Joshi, Pushkar, Meyer, Mark, DeRose, Tony, Green, Brian, & Sanocki, Tom. 2007. Har-

monic Coordinates for Character Articulation. ACM Trans. Graph., 26(3).

Ju, Tao, Schaefer, Scott, & Warren, Joe. 2005. Mean Value Coordinates for Closed

Triangular Meshes. ACM Trans. Graph., 24(3), 561–566.

Ju, Tao, Zhou, Qian-Yi, van de Panne, Michiel, Cohen-Or, Daniel, & Neumann, Ulrich.

2008. Reusable Skinning Templates Using Cage-based Deformations. ACM Trans.
Graph., 27(5), 122:1–122:10.

Jund, Thomas, Cazier, David, & Dufourd, Jean-Francois. 2009. Particle-based forecast

mechanism for continuous collision detection in deformable environments. Pages

110

147–158 of: SPM ’09: 2009 SIAM/ACM Joint Conference on Geometric and Physical
Modeling. New York, NY, USA: ACM.

Kavan, Ladislav, & Sorkine, Olga. 2012. Elasticity-inspired Deformers for Character

Articulation. ACM Trans. Graph., 31(6), 196:1–196:8.

Kavan, Ladislav, & Zara, Jiri. 2003. Real Time Skin Deformation with Bones Blending.

In: The 11-th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision’2003, WSCG 2003, in co-operation with EURO-
GRAPHICS and IFIP working group 5.10 on Computer Graphics and Virtual Worlds,
University of West Bohemia, Campus Bory, Plzen-Bory, Czech Republic, February
3-7, 2003.

Kavan, Ladislav, & Zara, Jiri. 2005. Fast Collision Detection for Skeletally Deformable

Models. Computer Graphics Forum, 24(3), 363–372.

Kavan, Ladislav, & Zára, Jiří. 2005. Spherical Blend Skinning: A Real-time Deforma-

tion of Articulated Models. Pages 9–16 of: Proceedings of the 2005 Symposium on
Interactive 3D Graphics and Games. I3D ’05. New York, NY, USA: ACM.

Kavan, Ladislav, O’Sullivan, Carol, & Žára, Jiří. 2006. Efficient Collision Detection for

Spherical Blend Skinning. Pages 147–156 of: Proceedings of the 4th International
Conference on Computer Graphics and Interactive Techniques in Australasia and
Southeast Asia. GRAPHITE ’06. New York, NY, USA: ACM.

Kavan, Ladislav, Collins, Steven, Zára, Jiří, & O’Sullivan, Carol. 2007. Skinning with

Dual Quaternions. Pages 39–46 of: Proceedings of the 2007 Symposium on Interactive
3D Graphics and Games. I3D ’07. New York, NY, USA: ACM.

Kavan, Ladislav, Collins, Steven, Zára, Jiří, & O’Sullivan, Carol. 2008. Geometric

Skinning with Approximate Dual Quaternion Blending. ACM Trans. Graph., 27(4),

105:1–105:23.

Kavan, Ladislav, Collins, Steven, & O’Sullivan, Carol. 2009. Automatic Linearization

of Nonlinear Skinning. Pages 49–56 of: Proceedings of the 2009 Symposium on
Interactive 3D Graphics and Games. I3D ’09. New York, NY, USA: ACM.

Kenwright, Ben. 2012. A Beginners Guide to Dual-Quaternions: What They Are, How

They Work, and How to Use Them for 3D. In: Character Hierarchies‚Äù, The 20th
International Conference on Computer Graphics, Visualization and Computer Vision,
WSCG 2012 Communication Proceedings,pp.1-13.

111

Kim, Junggon, & Pollard, Nancy S. 2011. Fast Simulation of Skeleton-driven Deformable

Body Characters. ACM Trans. Graph., 30(5), 121:1–121:19.

Kim, Theodore, & James, Doug L. 2011. Physics-based Character Skinning Using Multi-

domain Subspace Deformations. Pages 63–72 of: Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’11. New

York, NY, USA: ACM.

Kim, YoungBeom, & Han, JungHyun. 2014. Bulging-free dual quaternion skinning.

Journal of Visualization and Computer Animation, 25(3-4), 323–331.

Klosowski, James T., Held, Martin, Mitchell, Joseph S. B., Sowizral, Henry, & Zikan,

Karel. 1998. Efficient Collision Detection Using Bounding Volume Hierarchies of

k-DOPs. IEEE Transactions on Visualization and Computer Graphics, 4(1), 21–36.

Komatsu, Koji. 1988. Human skin model capable of natural shape variation. The Visual
Computer, 3(5), 265–271.

Kry, Paul G., James, Doug L., & Pai, Dinesh K. 2002. EigenSkin: Real Time Large

Deformation Character Skinning in Hardware. Pages 153–159 of: Proceedings of the
2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA

’02. New York, NY, USA: ACM.

Kurihara, Tsuneya, & Miyata, Natsuki. 2004. Modeling Deformable Human Hands

from Medical Images. Pages 355–363 of: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’04. Aire-la-Ville,

Switzerland, Switzerland: Eurographics Association.

Larboulette, Caroline, Cani, Marie-Paule, & Arnaldi, Bruno. 2005. Dynamic skinning:

adding real-time dynamic effects to an existing character animation. Pages 87–93
of: SCCG.

Larsson, Thomas, & Akenine-Möller, Tomas. 2001. Collision Detection for Continuously

Deforming Bodies. Pages 325–333 of: Proceedings of Eurographics 2001.

Larsson, Thomas, & Akenine-Möller, Tomas. 2003. Efficient collision detection for models

deformed by morphing. The Visual Computer, 19(2-3), 164–174.

Larsson, Thomas, & Akenine-Möller, Tomas. 2006. A Dynamic Bounding Volume Hierar-

chy for Generalized Collision Detection. Comput. Graph., 30(3), 450–459.

112

Lasseter, John. 1987. Principles of Traditional Animation Applied to 3D Computer

Animation. SIGGRAPH Comput. Graph., 21(4), 35–44.

Le, Binh Huy, & Deng, Zhigang. 2012. Smooth Skinning Decomposition with Rigid Bones.

ACM Trans. Graph., 31(6), 199:1–199:10.

Le, Binh Huy, & Deng, Zhigang. 2014. Robust and Accurate Skeletal Rigging from Mesh

Sequences. ACM Trans. Graph., 33(4), 84:1–84:10.

Lee, Gene S., & Hanner, Frank. 2009. Practical Experiences with Pose Space Deformation.

Pages 43:1–43:1 of: ACM SIGGRAPH ASIA 2009 Sketches. SIGGRAPH ASIA ’09.

New York, NY, USA: ACM.

Lee, Gene S., Lin, Andy, Schiller, Matt, Peters, Scott, McLaughlin, Mark, & Hanner,

Frank. 2013. Enhanced Dual Quaternion Skinning for Production Use. Pages 9:1–9:1
of: ACM SIGGRAPH 2013 Talks. SIGGRAPH ’13. New York, NY, USA: ACM.

Lee, Sung-Hee, Sifakis, Eftychios, & Terzopoulos, Demetri. 2009. Comprehensive Biome-

chanical Modeling and Simulation of the Upper Body. ACM Trans. Graph., 28(4),

99:1–99:17.

Lee, Yuencheng, Terzopoulos, Demetri, & Waters, Keith. 1995. Realistic Modeling for

Facial Animation. Pages 55–62 of: Proceedings of the 22Nd Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’95. New York, NY,

USA: ACM.

Lewis, J. P., Cordner, Matt, & Fong, Nickson. 2000. Pose Space Deformation: A Unified

Approach to Shape Interpolation and Skeleton-driven Deformation. Pages 165–172
of: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’00. New York, NY, USA: ACM Press/Addison-Wesley

Publishing Co.

Lin, Ming C., & Manocha, Dinesh. 2003. Collision and Proximity Queries. CRC Press

LLC, Boca Raton, FL, ch. 35.

Lipman, Yaron, Kopf, Johannes, Cohen-Or, Daniel, & Levin, David. 2007a. GPU-assisted

Positive Mean Value Coordinates for Mesh Deformations. Pages 117–123 of: Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing. SGP ’07.

Aire-la-Ville, Switzerland, Switzerland: Eurographics Association.

113

Lipman, Yaron, Cohen-Or, Daniel, Gal, Ran, & Levin, David. 2007b. Volume and Shape

Preservation via Moving Frame Manipulation. ACM Trans. Graph., 26(1).

Liu, Libin, Yin, KangKang, Wang, Bin, & Guo, Baining. 2013a. Simulation and Control

of Skeleton-driven Soft Body Characters. ACM Trans. Graph., 32(6), 215:1–215:8.

Liu, Tiantian, Bargteil, Adam W., O’Brien, James F., & Kavan, Ladislav. 2013b. Fast

Simulation of Mass-spring Systems. ACM Trans. Graph., 32(6), 214:1–214:7.

Luque, Rodrigo G., Comba, João L. D., & Freitas, Carla M. D. S. 2005. Broad-phase

Collision Detection Using Semi-adjusting BSP-trees. Pages 179–186 of: Proceedings
of the 2005 Symposium on Interactive 3D Graphics and Games. I3D ’05. New York,

NY, USA: ACM.

Maciel, Anderson, Boulic, Ronan, & Thalmann, Daniel. 2007. Efficient Collision Detection

Within Deforming Spherical Sliding Contact. IEEE Transactions on Visualization
and Computer Graphics, 13(3), 518–529.

Madera, F. A., Day, A. M., & Laycock, S. D. 2006. Collision Detection for Deformable

Objects using Octrees. In: Lever, Louise M., & McDerby, Mary (eds), Theory and
Practice of Computer Graphics 2006. The Eurographics Association.

Magnenat-Thalmann, N., Laperrière, R., & Thalmann, D. 1988. Joint-dependent Local

Deformations for Hand Animation and Object Grasping. Pages 26–33 of: Proceedings
on Graphics Interface ’88. Toronto, Ont., Canada, Canada: Canadian Information

Processing Society.

Magnenat-Thalmann, Nadia, Seo, Hyewon, & Cordier, Frederic. 2004. Automatic Model-

ing of Virtual Humans and Body Clothing. J. Comput. Sci. Technol., 19(5), 575–584.

McAdams, Aleka, Zhu, Yongning, Selle, Andrew, Empey, Mark, Tamstorf, Rasmus, Teran,

Joseph, & Sifakis, Eftychios. 2011. Efficient Elasticity for Character Skinning with

Contact and Collisions. ACM Trans. Graph., 30(4), 37:1–37:12.

McLaughlin, Tim, Cutler, Larry, & Coleman, David. 2011. Character Rigging, Defor-

mations, and Simulations in Film and Game Production. Pages 5:1–5:18 of: ACM
SIGGRAPH 2011 Courses. SIGGRAPH ’11. New York, NY, USA: ACM.

Merry, Bruce, Marais, Patrick, & Gain, James. 2006. Animation Space: A Truly Linear

Framework for Character Animation. ACM Trans. Graph., 25(4), 1400–1423.

114

Mezger, J., Kimmerle, S., & Etzmuß, O. 2003. Hierarchical Techniques in Collision

Detection for Cloth Animation. Journal of WSCG, 11, 322–329.

Milliron, Tim, Jensen, Robert J., Barzel, Ronen, & Finkelstein, Adam. 2002. A Framework

for Geometric Warps and Deformations. ACM Trans. Graph., 21(1), 20–51.

Min, Kyung-Ha, Baek, Seung-Min, Lee, Gun A, Choi, Haeock, & Park, Chan-Mo. 2000.

Anatomically-based modeling and animation of human upper limbs. In: Proceedings
of International Conference on Human Modeling and Animation.

Mohr, Alex, & Gleicher, Michael. 2003. Building Efficient, Accurate Character Skins

from Examples. Pages 562–568 of: ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03.

New York, NY, USA: ACM.

Moore, P., & Molloy, D. 2007 (Sept). A Survey of Computer-Based Deformable Models.

Pages 55–66 of: Machine Vision and Image Processing Conference, 2007. IMVIP 2007.
International.

Müller, Matthias, & Gross, Markus. 2004. Interactive Virtual Materials. Pages 239–246
of: Proceedings of Graphics Interface 2004. GI ’04. School of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer

Communications Society.

Müller, Matthias, Dorsey, Julie, McMillan, Leonard, Jagnow, Robert, & Cutler, Barbara.

2002. Stable Real-time Deformations. Pages 49–54 of: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. New York, NY,

USA: ACM.

Müller, Matthias, Heidelberger, Bruno, Hennix, Marcus, & Ratcliff, John. 2007. Position

Based Dynamics. J. Vis. Comun. Image Represent., 18(2), 109–118.

Nealen, Andrew, Mueller, Matthias, Keiser, Richard, Boxerman, Eddy, & Carlson, Mark.

2006. Physically Based Deformable Models in Computer Graphics. Computer
Graphics Forum, 25(4), 809–836.

Nieto, JesusR., & Susin, Antonio. 2013. Cage Based Deformations: A Survey. Pages 75–99
of: Deformation Models. Lecture Notes in Computational Vision and Biomechanics,

vol. 7. Springer Netherlands.

Otaduy, Miguel A., Chassot, Olivier, Steinemann, Denis, & Gross, Markus. 2007. Bal-

anced Hierarchies for Collision Detection between Fracturing Objects. Proc. of the
IEEE Virtual Reality Conference, 83–90.

115

Park, Sang Il, & Hodgins, Jessica K. 2006. Capturing and Animating Skin Deformation

in Human Motion. Pages 881–889 of: ACM SIGGRAPH 2006 Papers. SIGGRAPH

’06. New York, NY, USA: ACM.

Park, Sang Il, & Hodgins, Jessica K. 2008. Data-driven Modeling of Skin and Muscle

Deformation. Pages 96:1–96:6 of: ACM SIGGRAPH 2008 Papers. SIGGRAPH ’08.

New York, NY, USA: ACM.

Pentland, Alex, & Williams, John. 1989. Good vibrations: model dynamics for graphics

and animation. Pages 215–222 of: SIGGRAPH.

Pons-Moll, Gerard, Romero, Javier, Mahmood, Naureen, & Black, Michael J. 2015. Dyna:

A Model of Dynamic Human Shape in Motion. ACM Trans. Graph., 34(4), 120:1–

120:14.

Popović, Jovan, Seitz, Steven M., & Erdmann, Michael. 2003. Motion Sketching for

Control of Rigid-body Simulations. ACM Trans. Graph., 22(4), 1034–1054.

Provot, Xavier. 1997. Collision and self-collision handling in cloth model dedicated to

design garments. Pages 177–189 of: Thalmann, Daniel, & van de Panne, Michiel

(eds), Computer Animation and Simulation ‚Äô97. Eurographics. Springer Vienna.

Reddy, Junuthula Narasimha. 93. An introduction to the finite element method. McGraw-

Hill series in mechanical engineering. New York, NY: McGraw-Hill Higher Educa-

tion.

Rhee, Taehyun, Lewis, John P., & Neumann, Ulrich. 2006. Real-Time Weighted Pose-

Space Deformation on the GPU. Comput. Graph. Forum, 25(3), 439–448.

Rohmer, Damien, Hahmann, Stefanie, & Cani, Marie-Paule. 2008. Local Volume Preser-

vation for Skinned Characters. Comput. Graph. Forum, 27(7), 1919–1927.

Rohmer, Damien, Hahmann, Stefanie, & Cani, Marie-Paule. 2009. Exact Volume Pre-

serving Skinning with Shape Control. Pages 83–92 of: Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’09. New

York, NY, USA: ACM.

Rumman, Nadine Abu, & Fratarcangeli, Marco. 2016. State of the Art in Skinning

Techniques for Articulated Deformable Characters. Pages 200–212 of: Proceedings
of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 1: GRAPP,.

116

Rumman, Nadine Abu, Schaerf, Marco, & Bechmann, Dominique. 2015. Collision De-

tection for Articulated Deformable Characters. Pages 215–220 of: Proceedings of
the 8th ACM SIGGRAPH Conference on Motion in Games. MIG ’15. New York, NY,

USA: ACM.

Savoye, Yann, & Franco, Jean-Sébastien. 2010. CageIK: Dual-Laplacian Cage-based

Inverse Kinematics. Pages 280–289 of: Proceedings of the 6th International Confer-
ence on Articulated Motion and Deformable Objects. AMDO’10. Berlin, Heidelberg:

Springer-Verlag.

Schumacher, Christian, Thomaszewski, Bernhard, Coros, Stelian, Martin, Sebastian,

Sumner, Robert, & Gross, Markus. 2012. Efficient Simulation of Example-based

Materials. Pages 1–8 of: Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation. SCA ’12. Aire-la-Ville, Switzerland, Switzerland:

Eurographics Association.

Schvartzman, Sara C., Gascón, Jorge, & Otaduy, Miguel A. 2009. Bounded Normal Trees

for Reduced Deformations of Triangulated Surfaces. Pages 75–82 of: Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

SCA ’09. New York, NY, USA: ACM.

Schvartzman, Sara C., Pérez, Álvaro G., & Otaduy, Miguel A. 2010. Star-contours for

Efficient Hierarchical Self-collision Detection. ACM Trans. Graph., 29(4), 80:1–80:8.

Sederberg, Thomas W., & Parry, Scott R. 1986. Free-form Deformation of Solid Geometric

Models. Pages 151–160 of: Proceedings of the 13th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’86. New York, NY, USA: ACM.

Shabana, Ahmed A. 1989. Dynamics of multibody systems. New York, New York:

Cambridge University Press.

Sheth, Rahul, Lu, Wenlong, Yu, Yue, & Fedkiw, Ronald. 2015. Fully Momentum-

conserving Reduced Deformable Bodies with Collision, Contact, Articulation, and

Skinning. Pages 45–54 of: Proceedings of the 14th ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. SCA ’15. New York, NY, USA: ACM.

Shi, Xiaohan, Zhou, Kun, Tong, Yiying, Desbrun, Mathieu, Bao, Hujun, & Guo, Baining.

2008. Example-based Dynamic Skinning in Real Time. ACM Trans. Graph., 27(3),

29:1–29:8.

117

Shinar, Tamar, Schroeder, Craig, & Fedkiw, Ronald. 2008. Two-way Coupling of Rigid

and Deformable Bodies. Pages 95–103 of: Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’08. Aire-la-Ville,

Switzerland, Switzerland: Eurographics Association.

Si, Hang. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw., 41(2), 11:1–11:36.

Sifakis, Eftychios, & Barbic, Jernej. 2012. FEM Simulation of 3D Deformable Solids:

A Practitioner’s Guide to Theory, Discretization and Model Reduction. Pages 20:1–
20:50 of: ACM SIGGRAPH 2012 Courses. SIGGRAPH ’12. New York, NY, USA:

ACM.

Singh, Karan, & Kokkevis, Evangelos. 2000. Skinning Characters using Surface-Oriented

Free-Form Deformations. Pages 35–42 of: In Graphics Interface 2000.

Sloan, Peter-Pike J., Rose, III, Charles F., & Cohen, Michael F. 2001. Shape by Example.

Pages 135–143 of: Proceedings of the 2001 Symposium on Interactive 3D Graphics.

I3D ’01. New York, NY, USA: ACM.

Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., & Seidel, H.-P. 2004. Laplacian

Surface Editing. Pages 175–184 of: Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing. SGP ’04. New York, NY, USA:

ACM.

Spillmann, J., Becker, M., & Teschner, M. 2007. Efficient Updates of Bounding Sphere

Hierarchies for Geometrically Deformable Models. Journal of Visual Communication
and Image Representation, 18(2), 101–108.

Stam, J. 2009 (Aug). Nucleus: Towards a unified dynamics solver for computer graphics.

Pages 1–11 of: Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics
’09. 11th IEEE International Conference on.

Stewart, D. E., & Trinkle, J. C. 1996. An Implicit Time-Stepping Scheme For Rigid Body

Dynamics With Inelastic Collisions And Coulomb Friction. International Journal
for Numerical Methods in Engineering, 39(15), 2673–2691.

Sud, Avneesh, Govindaraju, Naga, Gayle, Russell, Kabul, Ilknur, & Manocha, Dinesh.

2006. Fast proximity computation among deformable models using discrete Voronoi

diagrams. ACM Trans. Graph. (Proc ACM SIGGRAPH, 25, 1144–1153.

118

Sueda, Shinjiro, Kaufman, Andrew, & Pai, Dinesh K. 2008. Musculotendon Simulation

for Hand Animation. ACM Trans. Graph., 27(3), 83:1–83:8.

Teller, Seth J., & Sequin, Carlo H. 1991. Visibility Preprocessing For Interactive Walk-

throughs. Pages 61–69 of: IN: COMPUTER GRAPHICS (SIGGRAPH 91 PROCEED-
INGS.

Teng, Yun, Otaduy, Miguel A., & Kim, Theodore. 2014. Simulating Articulated Subspace

Self-contact. ACM Trans. Graph., 33(4), 106:1–106:9.

Terzopoulos, Demetri, Platt, John, Barr, Alan, & Fleischer, Kurt. 1987. Elastically

Deformable Models. SIGGRAPH Comput. Graph., 21(4), 205–214.

Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann,

A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Strasser, W., & Volino, P. 2005.

Collision Detection for Deformable Objects. Computer Graphics Forum, 24(1), 61–81.

Teschner, Matthias, Heidelberger, Bruno, Müller, Matthias, Pomerantes, Danat, & Gross,

Markus H. 2003. Optimized Spatial Hashing for Collision Detection of Deformable

Objects. Pages 47–54 of: Proceedings of the Vision, Modeling, and Visualization
Conference 2003 (VMV 2003), München, Germany, November 19-21, 2003.

Thomas, Frank, & Johnston, Ollie. 1981. The illusion of life : Disney animation. New

York: Disney Editions.

Turk, Greg. 1989. Interactive collision detection for molecular graphics. Tech. rept.

Turner, Russell, & Gobbetti, Enrico. 1998. Interactive Construction and Animation

of Layered Elastically Deformable Characters. Computer Graphics Forum, 17(2),

135–152.

Turner, Russell, & Thalmann, Daniel. 1993. The Elastic Surface Layer Model for

Animated Character Construction. Pages 399–412 of: Proceedings of Computer
Graphics International ’93. SpringerVerlag.

Vaillant, Rodolphe, Barthe, Loïc, Guennebaud, Gaël, Cani, Marie-Paule, Rohmer, Damien,

Wyvill, Brian, Gourmel, Olivier, & Paulin, Mathias. 2013. Implicit Skinning: Real-

time Skin Deformation with Contact Modeling. ACM Trans. Graph., 32(4), 125:1–

125:12.

119

Vaillant, Rodolphe, Guennebaud, Gäel, Barthe, Loïc, Wyvill, Brian, & Cani, Marie-Paule.

2014. Robust Iso-surface Tracking for Interactive Character Skinning. ACM Trans.
Graph., 33(6), 189:1–189:11.

van den Bergen, Gino. 1998. Efficient Collision Detection of Complex Deformable Models

Using AABB Trees. J. Graph. Tools, 2(4), 1–13.

Verlet, Loup. 1968. Computer "Experiments" on Classical Fluids. II. Equilibrium Corre-

lation Functions. Phys. Rev., 165(Jan), 201–214.

Volino, Pascal, & Thalmann, Nadia Magnenat. 1994. Efficient self-collision detection

on smoothly discretized surface animations using geometrical shape regularity.

Computer Graphics Forum, 13(3), 155–166.

von Funck, Wolfram, Theisel, Holger, & Seidel, Hans-Peter. 2006. Vector Field Based

Shape Deformations. ACM Trans. Graph., 25(3), 1118–1125.

von Funck, Wolfram, Theisel, Holger, & Seidel, Hans-Peter. 2008. Volume-preserving

Mesh Skinning. Pages 409–414 of: Proceedings of the Vision, Modeling, and Visual-
ization Conference 2008, VMV 2008, Konstanz, Germany, October 8-10, 2008.

Walter, Marcelo, & Fournier, Alain. 1997. Growing and Animating Polygonal Models of

Animals. Computer Graphics Forum, 16(3), 151–158.

Wang, Robert Y., Pulli, Kari, & Popović, Jovan. 2007. Real-time Enveloping with Rota-

tional Regression. ACM Trans. Graph., 26(3).

Wang, Xiaohuan Corina, & Phillips, Cary. 2002. Multi-weight Enveloping: Least-squares

Approximation Techniques for Skin Animation. Pages 129–138 of: Proceedings of the
2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA

’02. New York, NY, USA: ACM.

Wareham, Rich, & Lasenby, Joan. 2008. Bone Glow: An Improved Method for the

Assignment of Weights for Mesh Deformation. Pages 63–71 of: AMDO.

Weber, Ofir, Sorkine, Olga, Lipman, Yaron, & Gotsman, Craig. 2007. Context-Aware

Skeletal Shape Deformation. Comput. Graph. Forum, 26(3), 265–274.

Wilhelms, Jane. 1994. Modeling Animals with Bones, Muscles, and Skin. Tech. rept.

University of California.

120

Yang, Xiaosong, Somasekharan, Arun, & Zhang, Jian J. 2006. Curve skeleton skinning for

human and creature characters. Computer Animation and Virtual Worlds, 17(3-4),

281–292.

Ye, Yuting, & Liu, C. Karen. 2012. Synthesis of Detailed Hand Manipulations Using

Contact Sampling. ACM Trans. Graph., 31(4), 41:1–41:10.

Zachmann, Gabriel. 1995. The BoxTree: Exact and Fast Collision Detection of Arbitrary

Polyhedra. Pages 104–112 of: In SIVE Workshop.

Zachmann, Gabriel, & Langetepe, E. 2002. Geometric Data Structures for Computer

Graphics. In: Proceedings of Eurographics 2002 Tutorials. The Eurographics

Association. Tutorial.

Zachmann, Gabriel, & Weller, René. 2006 (14–17 June). Kinetic Bounding Volume

Hierarchies for Deformable Objects. In: ACM International Conference on Virtual
Reality Continuum and Its Applications (VRCIA).

Zhang, Dongliang, & Yuen, M.M.F. 2000. Collision detection for clothed human animation.

Pages 328–337 of: Computer Graphics and Applications, 2000. Proceedings. The
Eighth Pacific Conference on.

Zhou, Kun, Huang, Jin, Snyder, John, Liu, Xinguo, Bao, Hujun, Guo, Baining, & Shum,

Heung-Yeung. 2005. Large Mesh Deformation Using the Volumetric Graph Lapla-

cian. Pages 496–503 of: ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05. New York,

NY, USA: ACM.

121

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Skin Deformation
	Collision Handling
	Contributions
	Publications
	Organization

	Literature Review
	Skeleton-based Skinning Methods
	Geometric Skinning Techniques
	Example-based Skinning Methods

	Volume Preserving Skinning Methods
	Physics-based Methods
	Deformable and Soft Bodies Simulations
	Physically based Skinning

	Collision Handling for Deformable Bodies
	Collision Detection
	Collision Response

	Conclusion

	Layered Skin Deformation
	Layered Skin Deformation Framework
	Skeleton-based Deformations
	Linear Blend Skinning
	Dual Quaternion Skinning

	Physics-based Deformation
	Time Integration
	Physics-Based Simulation Techniques

	Conclusion

	Position based Skinning for Soft Articulated Characters
	Position Based Skinning
	Method Overview

	Linear Blend Skinning
	Position-based Dynamics
	Geometric Constraints

	Final Algorithm
	Gauss-Seidel Solver
	Parallel Position Based Skinning
	Soft Control
	Experiments and Results
	Visual quality
	Performance

	Comparison and Limitations
	Conclusion

	Collision Handling for Soft Articulated Characters
	Biomechanical Basis of Articulated Characters
	Classification of Joints
	Axes of Rotation and Types of Movement

	Collision Handling for Soft Articulated Characters
	Method Overview

	Collision Detection for Articulated Deformable Characters
	Optimized Spatial Partitioning
	On-demand Hashing

	Localized Self-Collision Handling for Articulated Soft Characters
	Overall Algorithm
	Experiments and Results
	Collision Detection
	Collision Response

	Conclusion

	Conclusion and Future Directions
	Discussion and Future Work

	References

