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Ach, rief Humboldt, was sei Wissenschaft denn dann?
Gauß sog an der Pfeife. Ein Mann allein am Schreibtisch. Ein Blatt Papier

vor sich, allenfalls noch ein Fernrohr, vor dem Fenster der klare Himmel.
Wenn dieser Mann nicht aufgebe, bevor er verstehe. Das sei vielleicht Wis-
senschaft.

– Daniel Kehlmann, Die Vermessung der Welt





A B S T R A C T

Digital representations of the real world are becoming more and
more important for different application domains. Individual objects,
excavation sites or even complete cities can be digitized with today’s
technology so that they can, for instance, be preserved as digital
cultural heritage, be used as a basis for map creation, or be integrated
into virtual environments for mission planning during emergency or
disaster response tasks. Robust and efficient surface reconstruction
algorithms are inevitable for these applications.

Surface-reconstructing growing neural gas (sgng) presented in this
dissertation constitutes an artificial neural network that takes a set of
sample points lying on an object’s surface as an input and iteratively
constructs a triangle mesh representing the original object’s surface. It
starts with an initial approximation that gets continuously refined. At
any time during execution, sgng instantly incorporates any modifica-
tions of the input data into the reconstruction. If images are available
that are registered to the input points, sgng assigns suitable textures
to the constructed triangles. The number of noticeable occlusion ar-
tifacts is reduced to a minimum by learning the required visibility
information from the input data.

Sgng is based on a family of closely related artificial neural networks.
These are presented in detail and illustrated by pseudocode and
examples. Sgng is derived according to a careful analysis of these
prior approaches. Results of an extensive evaluation indicate that sgng
improves significantly upon its predecessors and that it can compete
with other state-of-the-art reconstruction algorithms.
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† Used synonymously for the neural unit except in the self-organizing map.
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other:
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q Reconstruction quality
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t Number of the current iteration
tmax Maximum number of iterations
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d Sgng union operator
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1
I N T R O D U C T I O N

Reconstruction of 3d geometry is of major interest for different appli-
cation domains. Among others, reverse engineering, cultural heritage,
urban reconstruction, and surveying are striving for reconstructing
detailed digital geometric 3d models of existing real world objects.
If images of these objects are available, it is desirable to use them to
texture the models.

In this dissertation surface-reconstructing growing neural gas (sgng)
is presented, an iterative online algorithm that constructs a triangle
mesh from a set of sample points lying on an object’s surface. Sgng in-
stantly provides a coarse approximation of the object’s shape that gets
continuously refined. At any time during reconstruction, additional
data can be added to extend the model, and the mesh constructed
so far is readily available for visualization. If the sample points are
extracted from images, sgng uses them as textures for the resulting
triangle mesh. That way, fine details of the object’s surface are visible
even on an initially coarse approximation of the object’s shape.

1.1 motivation

Recent developments allow remotely piloted aircraft (rpa) to be used
in a variety of civil scenarios. If equipped with suitable payload, a
swarm of rpa can monitor pollution levels, serve as communication
hotspots or relays in order to increase a cellular network’s coverage or
bandwidth, or it can provide low-altitude aerial images for surveying
or to support map creation. Even autonomous package delivery was
considered recently by a major electronic commerce company.

Camera-equipped rpa are also especially useful for reconnaissance
during emergency or disaster situations or for search and rescue mis-
sions: Rpa can be used safely in situations that are too dangerous to
send human relief-units. Rpa can be sent to remote places immediately
while a response team is being assembled, and they can increase the
area covered by the mission. The aerial images acquired by the rpa are
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introduction

transmitted to the command and control center and are then used for
mission planning. In a common approach, the individual images are
assembled to create overview visualizations that are combined with
existing data, e.g., from geo-databases. However, three dimensional
data, i.e., 3d points, can be extracted from the images using stereopho-
togrammetry if the images are mutually overlapping. From this data a
suitable surface reconstruction algorithm can create textured 3d mod-
els to serve as a virtual environment of the operation area supporting
decision-making and eventually the units in the field [105, 116]. Even
the relief-units can be equipped with cameras providing additional
images, thus extending the virtual environment. To be useful in such
scenarios, surface reconstruction has to provide quick initial approx-
imations of the captured objects that will be continuously refined
whenever new data becomes available without discarding the model
constructed so far. Thus, especially during prolonged missions, using
an incremental online algorithm is inevitable.

Similar scenarios can be conceived for cultural heritage, archaeology,
or large scale urban reconstruction where a digital image library is
continuously updated either by experts or by crowd work. New
images are then automatically used to extend the reconstructed 3d
geometry. The model created so far can be displayed using suitable
rendering techniques. It provides information about the regions where
data is missing, and thus where additional data needs to be acquired.
An incremental online algorithm will incorporate the new data by
immediately extending the model, thus providing visual feedback
whether suitable images have been added. Impressive results for this
scenario have been achieved, but by using offline algorithms [2, 48].

Many of the state-of-the-art reconstruction algorithms do not work
in the desired way, neither incremental nor online, although data
acquisition itself is an incremental process: Whether laser scanning,
stereophotogrammetry, or mechanical probing is used, groups of
captured 3d points are provided sequentially. However, many recon-
struction algorithms require that the input data has been acquired
completely before reconstruction can start. Even if they are able to
adapt to modified or extended input data they have to recreate at least
parts of the model. Many require a regular sampling pattern, e.g., like
in depth images, whereas unorganized point clouds as obtained by
stereophotogrammetry are a way more general type of input.

In contrast to these approaches, online learning based reconstruction
algorithms are generally able to adapt to any modifications of the
input data while reconstructing the original surface. They can even
start reconstructing as soon as the first input points are available,
and they refine their results while more input points are generated.
However, existing online learning based approaches require a huge
number of input points and rely on post-processing steps for finalizing
the mesh representing the reconstructed surface for the points seen
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1.2 how to read this dissertation

so far. If continuous previewing is desired while acquiring data,
reconstruction has to be interrupted repeatedly for post-processing.
Thus, reconstruction gets costly.

Surface-reconstructing growing neural gas (sgng) that is presented in
this dissertation constitutes an artificial neural network that performs
online learning. Sgng has been designed with the aforementioned
iterative pipeline in mind, where data acquisition using overlapping
images, reconstruction, and visualization are executed in parallel.
Therefore, sgng iteratively constructs a triangle mesh even from unor-
ganized, sparse point clouds representing an object’s surface. Sgng
reduces the number of erroneously untriangulated holes to a mini-
mum by taking the constructed surface and geometric considerations
into account. Thus, at any time during the construction process a tri-
angle mesh is available, e.g., for visualization in order to direct further
data acquisition or mission planning. Furthermore, sgng instantly
adapts to any modifications of the input data: New input points may
be added, and existing points may be moved or even removed.

Besides approximating the shape and topology of the original sur-
face, sgng learns how to assign the available images as textures to the
triangles of the constructed mesh. By learning the visibility informa-
tion that is implicitly encoded in the input data, sgng does not rely on
knowing occluding triangles, as previous algorithms did that derived
occlusion from the constructed mesh. Thus, sgng reduces the number
of noticeable texturing artifacts to a minimum even if occluding ob-
jects are not represented by the input points at all. Sgng improves the
learned texture assignment whenever new images become available.

Sgng works incrementally: It operates at any time only locally on
a single input point and its neighborhood within the mesh. Thus, it
is very well suited even for massively parallel and out-of-core imple-
mentations. However, such implementations lie beyond the scope of
this dissertation and are therefore left for future work.

1.2 how to read this dissertation

In this section the reader of this dissertation is provided with a little
guidance: At first, the usage of margin notes in this work is described.
Then, the presentation of pseudocode in a literate programming ap-
proach is explained. Finally, the organization of this dissertation is
outlined by providing summaries of the individual chapters and by
suggesting suitable reading paths.

In this dissertation notes in the page margin are used frequently. Notes in the page
marginThey are intended as headlines in order to provide a more fine-grained

structure than the one that can be provided by chapters, sections, and
subsections. Furthermore, the series of margin notes of a section or
a subsection gives a very brief summary of the respective part of the
text. They therefore help the the reader navigate this dissertation.
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Many of the algorithms that are presented in this dissertation arePseudocode

illustrated by pseudocode. The pseudocode uses mostly mathematical
notation and formulae to be generally applicable. The assignment
operator ..= denotes an immediate update of a set, an attribute, or
a variable. In order to avoid that a reader has to switch frequently
between text and a separate listing, Knuth’s literate programming
approach is used [80]: Descriptive text and pseudocode are interleaved.
The syntax and the cross referencing scheme used in this dissertation
are very similar to the one used by Pharr and Humphreys [104].

The individual code fragments are named with a descriptive title
enclosed in angle brackets. Fragments’ names are used in the pseu-
docode to summarize a set of operations. In order to distinguish
between usage and definition, the symbol ≡ following a fragment’s
name indicates its definition, and the corresponding pseudocode is
indented. To provide an illustrative example, the fragment 〈Count to
10〉 presents the pseudocode for a function counting from 1 to 10.

〈Count to 10〉 ≡
〈Initialization A p. 6〉
while n < 10 do
〈Increment n A p. 6〉

end while
That way, a reader can understand the basic operation of the code at
the desired abstraction level without letting implementation details
obfuscate the intended information.

The implementation details of the other fragments—〈Initialization〉
and 〈Increment n〉 in the above example—may require more theoretical
background or a special context that has to be carefully described.
Several paragraphs may be required when describing real production
code, but it is straightforward for this example: At first a counter
variable n is initialized to zero.

〈Initialization〉 ≡ Ap. 6
n ..= 0

This counter variable is incremented in each iteration of the loop.

〈Increment n〉 ≡ Ap. 6
n ..= n + 1

Cross references are provided to help navigating the code. Whenever
a fragment is used, the page number where its definition can be found
is printed alongside the fragment’s title, preceded by a right arrow
(A). The places of a fragment’s usage are indicated by printing
the page reference(s) preceded by a left arrow ( A) at the top right
of the fragment’s definition. Both arrows thus indicate program
flow. Furthermore, notes in the page margin help the reader locate a
fragment’s definition.
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1.2 how to read this dissertation

Sometimes, the description of a fragment is split. This is done
in order to keep descriptive text and pseudocode close together, or
when further functionality is added to an existing fragment. In such
cases, the definition of a fragment is extended by a separate code
block indicated by the symbol +≡. If, for instance, the result of the
counting has to be printed in the above example, the fragment 〈Count
to 10〉 is extended by the required output.

〈Count to 10〉 +≡
print n

The following paragraphs outline the scope of this dissertation. Organization

They provide a short summary of the content and the contributions of
each chapter. Finally, sensible reading paths are suggested.

The remainder of this chapter gives an overview of existing surface Chapter 1

reconstruction techniques. Since sgng also provides automatic textur-
ing, several existing techniques for texturing a constructed triangle
mesh are also presented. The main contribution of each approach is
summarized. At the end of this chapter, the scientific publications are
outlined that the contributions of this dissertation are based upon.

Ch. 2 presents a taxonomy of fundamental artificial neural networks Chapter 2

that have been applied to surface reconstruction and that sgng is based
upon. The learning algorithm of each neural network is described
in detail and illustrated by pseudocode. Examples demonstrate the
capabilities and characteristics of the networks. That chapter provides
the theoretical background for the development of sgng. It covers
Kohonen’s self-organizing map [81, 82, 83] and ranges over neural gas
and the topology representing network by Martinetz et al. [91, 92, 93,
94] to Fritzke’s growing cell structures [49, 51, 53] and growing neural
gas [52]. The descriptions end with the growing self-reconstruction map
by do Rêgo et al. [41].

Ch. 3 evaluates the relationship of Hoppe’s progressive mesh [62] Chapter 3

and Fritzke’s growing cell structures (gcs) [49, 51, 53]. Both use edge
split operations to refine a coarser mesh. However, later extensions
making gcs suitable for surface reconstruction [70] add edge collapse
operations to remove superfluous vertices. Therefore, the constructed
mesh is by definition no progressive mesh anymore. In that chapter, an
improved vertex removal scheme is derived that enables the extended
gcs to construct a progressive mesh. The resulting data structure is
furthermore used as an acceleration structure to identify the closest
vertex and the second-closest vertex to an input point efficiently.

Ch. 4 presents the details of surface-reconstructing growing neural gas Chapter 4

(sgng). At first, sgng’s immediate predecessor, the growing self-recon-
struction map [41], is analyzed with special regard to its limitations that
are caused by competitive Hebbian learning [93]. From this analysis, the
requirements for sgng are derived. Afterwards, the sgng algorithm
is described in detail. Pseudocode is presented for each part of the
algorithm, as well as implementation details making sgng an efficient
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reconstruction algorithm. Suitable learning parameters for sgng are
determined before testing it with a publicly available benchmark [14]
and before comparing it to screened Poisson surface reconstruction by
Kazhdan and Hoppe [78]. Further improvements included in sgng
are evaluated in separate experiments. Finally, sgng is tested with
real-world data ranging from original range data from the Stanford
Scanning Repository [114] to point clouds extracted from images
taken in Paris, France. Results indicate that sgng improves upon its
predecessors and achieves similar or even better performance than
existing state-of-the-art reconstruction algorithms.

Ch. 5 presents a texturing extension for sgng. If sgng is usedChapter 5

to reconstruct objects from point clouds that have been extracted
from images, then the images can be assigned as textures to the
constructed triangles. That way, high-resolution visual details are
added already to the initially coarse approximation of an object’s
shape that sgng provides. At first, a straightforward way to learn
surface color is presented. Afterwards, a more widely applicable
algorithm is presented that selects suitable textures from the original
images while reducing the number of occlusion artifacts to a minimum.
Existing techniques derive visibility from the reconstructed geometry,
but it is hard to guarantee in real-world applications that occluders are
represented accurately in the input points and in the reconstruction. To
overcome this, the presented extension learns the visibility information
that is implicitly encoded in the input data. A visual evaluation using
the data sets from Paris, France, reveals that sgng with automatic
texture assignment provides good visual quality and successfully
reduces the number of occlusion artifacts as desired.

Ch. 6 concludes this dissertation and relates the results and findingsChapter 6

from the previous chapters to each other. Finally, further research
directions are presented that have been determined during the work
for this dissertation but that lie beyond the scope of this work.

If this dissertation is read from Ch. 1 to 6 then it provides the readerSuggested
reading paths with the motivation and the theoretical foundations for using surface-

reconstructing growing neural gas to reconstruct textured 3d objects
from unorganized point clouds in an iterative pipeline. However, the
individual chapters are intended to be mostly self-contained so that a
reader with a strong background in artificial neural networks based on
Kohonen’s self-organizing map may treat Ch. 2 merely as a reference
while reading Ch. 4 and 5. In order to apply the texturing extension to
other surface reconstruction algorithms, Ch. 5 provides a good starting
point, given that the reader is familiar with the basic algorithm of
sgng. At present, the algorithm that creates a progressive mesh while
learning, presented in Ch. 3, is restricted to be used in growing cell
structures. Integrating it into sgng has been beyond the scope of this
dissertation. That chapter may therefore also serve as a starting point
for future work.

8
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1.3 related work

Online surface reconstruction from unorganized point clouds using
an artificial neural network with integrated texture mapping is the
main focus of this dissertation. Therefore, the topics discussed in the
subsequent chapters have a majority of the related work in common.
It is presented here in order to provide a common context for the
techniques examined in the remainder of this dissertation. Additional
related work for specific subjects is presented when needed.

Since a large body of work has already been done, and since sur-
face reconstruction is still an active field of research, only a small
fraction of it can be covered in this dissertation. Nevertheless, several
important techniques are presented in this section to give a represen-
tative overview of the field. The reader is referred to several available
surveys and state of the art reports to find more information.

A good starting point for getting a detailed overview of the research Surveys

field of surface reconstruction is probably the recent state of the art
report by Berger et al. [15]. It focuses on algorithms that approximate
a surface from point clouds representing static objects. The report
categorizes the discussed algorithms with respect to priors and the
type of data imperfections that are addressed, as well as with respect
to the format that the reconstructed surface is represented in.

The survey by Musialski et al. [99] focuses on techniques that are
required for urban reconstruction. The survey categorizes the cov-
ered techniques with respect to their output type. It distinguishes
algorithms that reconstruct individual buildings and, if applicable,
corresponding semantics from algorithms for large-scale urban re-
construction up to massive city reconstruction. Besides presenting
algorithms from these two categories, the survey reviews techniques
for façade reconstruction. Finally, it provides a detailed explana-
tion about stereo vision, structure from motion, multi-view stereo,
and point cloud generation based on stereo vision. Therefore, that
survey does not only provide related work but also the theoretical
background for generating the data that is used as an input to the
algorithms presented this dissertation.

The state of the art report by Attene et al. [11] reviews techniques
for polygon mesh repairing. The individual techniques are grouped
by defects that they resolve, like noise, holes, intersections, and de-
generacies. Furthermore, the survey characterizes applications that
generate meshes by the defects that they commonly produce, and it
characterizes applications that use meshes, e.g., for visualization, by
the defects that need to be avoided. It thus helps choosing appropri-
ate mesh repairing algorithms when linking applications to form a
processing pipeline. Especially the presented techniques for removing
topological noise and for repairing non-manifold connectivity may
serve as possible extensions to sgng in order to improve the quality
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of early approximations from sparsely sampled input data. However,
integrating them is left for future work.

The survey by Cazals and Giesen [25] covers techniques for surface
reconstruction that are based on the Delaunay triangulation of the
input point samples. The presented algorithms construct a surface
that interpolates the input data. They pose strong requirements on
the input data, but they may provide provable guarantees for the
geometric and topological quality that the reconstruction of the surface
can achieve. The survey categorizes the presented algorithms by the
main approach they take, for instance, labeling the tetrahedra in the
Delaunay triangulation of an input point set into tetrahedra that lie
inside the volume or outside the volume that is enclosed by the surface
to be reconstructed. The monograph by Dey [35] provides another
overview on reconstruction techniques from the same field of research.

In a very popular reconstruction approach, the surface is repre-Implicit surfaces

sented implicitly by a function that is fitted to the input data. Distance
functions and indicator functions are most commonly used. The for-
mer assigns a value to each point that represents its distance to the
original surface. The latter assigns a constant value to points inside an
object and a different constant value to points outside an object. After-
wards the isosurface of a level set—often the zero-level set for distance
functions—of this function is generated and triangulated, given that
a triangle mesh is the intended output format. This output mesh is
approximating the input data, and it serves as the reconstruction of the
original object’s surface. Variations of marching cubes by Lorensen and
Cline [88] are commonly used for this purpose. However, it is known
to produce many triangles that are irregular or close to degenerate.

Tangent planes proposed by Hoppe et al. [64] is a straightforward
approach to estimate a distance function from a set of unorganized 3d
points. For each input point p a tangent plane is estimated by applying
principal component analysis to the group of k nearest neighbor points
of p. Afterwards, the tangent planes are oriented consistently to create
a piecewise linear approximation of the zero-level set of the desired
distance function. Finally, the function is evaluated at the vertices of a
prespecified cubical lattice for isosurface extraction.

Volumetric range image processing (vrip) proposed by Curless and
Levoy [30] uses range images as an input. From these range images
a cumulative signed distance function and a cumulative weight func-
tion are computed. The functions are then evaluated on a discrete
voxel grid, and an isosurface is extracted that represents the original
object’s surface. Finally, vrip employs hole filling in order to create a
watertight reconstruction.

Kazhdan [75] proposes to compute an indicator function in the
frequency domain. Later, Poisson surface reconstruction (psr) proposed
by Kazhdan et al. [79] poses surface reconstruction as a spatial Poisson
problem. For this purpose, the input points need to store at least
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an approximation of the oriented surface normals. A vector field is
computed from the input points and the corresponding normals. This
vector field is equal to the gradient of a smoothed indicator function
that assigns a value of one to points inside the original object and a
value of zero to points outside the object. An isosurface is extracted
from the vector field by a variant of marching cubes that was adapted
to an octree representation, leading to a watertight triangle mesh. An
out-of-core implementation of psr was proposed by Bolitho et al. [20]
that allows for handling huge data sets.

Recently, psr was refined to screened Poisson surface reconstruction
(spsr) by Kazhdan and Hoppe [78]. Additional positional constraints
are included so that deviations from the input data are penalized by an
additional energy term. That way, a mesh generated by spsr represents
the input data better than a mesh generated by psr. Furthermore, spsr
improves the algorithmic complexity using hierarchical clustering and
a conforming octree structure.

While vrip, psr, and spsr use signed distance functions directly, the
approach by Mullen et al. [97] creates an unsigned distance function as
a starting point that is more robust to outliers and noise. The function
is then discretized hierarchically in order to provide more detail close
to the surface. A sign is estimated in a similar hierarchical way. At
first, a coarse estimation is determined by ray shooting that is refined
in regions close to the surface. Finally, the surface is extracted using
Delaunay refinement by Boissonnat and Oudot [19].

The approach of Hornung and Kobbelt [67] also uses unsigned
distances as a starting point. A confidence map is computed from the
input points that, if evaluated on a voxel grid, yields the probability
that the original surface passes through a given voxel. The surface is
then extracted via a graph-cut proposed by the same authors [68].

Another group of algorithms originated from computational geom- Computational
geometryetry. These algorithms use the input data to partition the space that

an original object is embedded in. A subset of this partition is then
used to create a reconstruction of the original object.

In a very early paper two approaches are proposed by Boisson-
nat [18]. The first approach uses the fact that the surface of a three-
dimensional object is two-dimensional. The algorithm creates an initial
edge between a point and its closest neighbor. Afterwards, triangles
are created iteratively by picking suitable points from the input data
that have not been picked yet, and by connecting them to the existing
contour edges. The second approach uses the Delaunay triangulation
of the input points to start from. Afterwards, tetrahedra of the Delau-
nay triangulation are eliminated until all input points are located on
the boundary of the resulting polyhedral shape.

Three-dimensional α-shapes proposed by Edelsbrunner and Mücke [43]
also starts from the Delaunay triangulation of the set of input points.
This algorithm generalizes the notion of planar α-shapes introduced
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earlier by Edelsbrunner et al. [44]. In the 3d approach, intuitively, the
edges and faces of the tetrahedra are carved away by a ball of radius
α. The ball reaches all positions for which no input point is located
inside the ball. The remaining edges and faces represent the object to
be reconstructed for a given value of α. For an actual implementation
the valid α-intervals are precomputed for every edge and face of the
Delaunay triangulation.

The ball pivoting algorithm proposed by Bernardini et al. [16] is
closely related to α-shapes as it constructs a subset of an α-shape. At
first, three input points are selected in such a way that a ball with a
given radius that is touching the three points does not contain any
other point. These input points are then connected to create a first
seed triangle. Afterwards, the ball is pivoted around each contour
edge. When it touches a new input point it is connected to the respec-
tive edge in order to create a new triangle. A new seed triangle is
created once the ball has been pivoted around all edges. The algorithm
terminates if no such triangle can be created.

The crust algorithm proposed by Amenta et al. [5] uses a Voronoi-
filtered Delaunay triangulation in order to select the triangles that
represent the original surface. At first, the Voronoi cells of the input
points are computed. Afterwards, one (if the input point lies on
the convex hull of the input data) or two poles are determined for
each input point. These poles are represented by the vertices of a
point’s Voronoi cell that are farthest away from the point; one on the
inside of the original surface, one on the outside. Finally, the Delaunay
triangulation of the union of the set of input points and the set of poles
is computed. The surface of the original object is then represented by
the set of triangles of the Delaunay triangulation for which all three
vertices are input points.

Power crust proposed by Amenta et al. [7] modifies this approach. At
first, the poles are determined. Afterwards, the power diagram [12, 42]
of the poles is constructed, which constitutes a Voronoi diagram that
is weighted by the Euclidean distance of a pole to the corresponding
input point. Finally, the surface of the original object is represented by
the boundary separating the power diagram cells of the inner poles
from the power diagram cells of the outer poles.

Both algorithms, crust and power crust, come alongside very elab-
orate theoretical guarantees and have been extensively refined. To
mention only a few: Cocone by Amenta et al. [6] simplifies crust
by eliminating some computation steps. Tight Cocone by Dey and
Goswami [36] creates a watertight surface from a preliminary cocone
reconstruction. Dey and Goswami [37] provide theoretical guarantees
if the input data contains noise. Eigencrust by Kolluri et al. [84] im-
proves the resistance to noise by using a spectral partitioning scheme.

All of the algorithms presented above, the ones using implicit func-Iterative pipeline

tions and the ones from computational geometry, require the complete
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input data set to be available when they start. They therefore cannot
provide any preview during scanning that can be used to direct fur-
ther data acquisition. To give a first impression of the surface while
scanning an object, points are extracted from matched depth images
in a model-acquisition pipeline proposed by Rusinkiewicz et al. [109].
The points are then rendered using QSplat rendering proposed earlier
by Rusinkiewicz and Levoy [108]. However, the final mesh is still
constructed offline using vrip.

KinectFusion proposed by Newcombe et al. [100] basically provides a
gpu implementation of the above approach: Arbitrary, complex indoor
scenes are reconstructed in real-time using only a single Microsoft™
Kinect®. The acquired depth images are fused to create a single
model. Unlike the above approach using frame-to-frame tracking,
KinectFusion tracks against the full surface model acquired so far.
While this approach provides real-time preview that is well suited to
direct further data acquisition, it is restricted to depth images, whereas
unorganized point clouds are a way more general type of input.

A third group of algorithms that are suitable for surface recon- Learning

struction are based on machine learning techniques. The presenta-
tion focuses on techniques that use a neural network, since surface-
reconstructing growing neural gas that is presented in this dissertation
is based upon those. However, a recent approach using a different
learning scheme has been included for completeness.

Xiong et al. [133] recently proposed a surface reconstruction ap-
proach based on dictionary learning. A subset of input points that
is selected by Poisson disk sampling [29] serves as an initial set of ver-
tices for the mesh to be constructed. The connectivity and vertex
positions are then learned iteratively, switching between connectivity
learning, i.e., keeping the vertex positions fixed, and position learning,
i.e., keeping the connectivity fixed. Optimization is performed by
minimizing a sophisticated energy function including a point-to-mesh
metric and a regularization term, and by enforcing a manifold con-
straint. The number of vertices remains fixed during learning. Thus,
the approach cannot adapt to any modifications of the input data.
Other dictionary-based techniques have successfully been applied to
related tasks before. For instance, Gal et al. [55] use a dictionary of
shape priors for surface reconstruction, and Wang et al. [124] create a
dictionary representing sharp features for denoising.

Surface-reconstructing growing neural gas (sgng) is based on a family
of closely related neural networks that were not designed for surface
reconstruction in the first place, but that have been later applied to this
task. These algorithms are very well suited for an iterative pipeline.
They start learning as soon as the first input points are provided, and
they refine their results while more input points become available.

The self-organizing map (som) proposed by Kohonen [81, 82, 83] is
the most fundamental neural network that learns the positions of
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a prespecified number of neurons with a predefined connectivity
from the input data. Neural gas (ng) [91, 92, 94] and the topology
representing network (trn) [93] proposed by Martinetz et al. added
topology learning capabilities. Growing cell structures (gcs) proposed
by Fritzke [49, 51, 53] added the capability to automatically learn
the density of the neural network, i.e., the required number of neu-
rons. Finally, growing neural gas (gng) proposed by Fritzke [52, 53]
combines both, learning the density and the topology. A detailed de-
scription of these fundamental neural networks including a taxonomy
characterizing their capabilities is presented in Ch. 2.

Yu [134] was one of the first who applied Kohonen’s som to surface
reconstruction. The neurons of the network represent the vertices of
the triangle mesh to be constructed. The edges that are connecting the
neurons of the network represent the edges that are connecting the
vertices of the triangle mesh. Edge swap operations [65] are added in
order to improve the quality of the reconstructed mesh. Furthermore,
a multiresolution-learning scheme is used. An initial approximation of
the overall shape is determined with a low number of vertices. Once
the desired accuracy is reached, each face is split into four smaller
faces. Then, learning continues at a higher resolution, adding finer
detail. That way, the number of iterations performed with detailed
meshes, and thus with high computational cost, is reduced.

Várady et al. [119] applied Fritzke’s gcs to free-form surface recon-
struction and improved upon an earlier approach by Hoffmann and
Varady [60] that used Kohonen’s som. Instead of a triangle mesh, the
neural network represents the control mesh of a nurbs or a Bézier
surface. Thus, a new row or a new column is added to the control
mesh in order to refine the network.

Neural meshes have been introduced by Ivrissimtzis et al. for sur-
face reconstruction. Their first approach [70] modifies Fritzke’s gcs
by replacing the original neighbor learning scheme with tangential
smoothing [117]. Furthermore, the edge split that is used to add ver-
tices in active regions in gcs is replaced with a vertex split in order
to balance the valences of the vertices. Finally, removal of inactive
vertices is included. A later approach [71, 72, 73] introduces topol-
ogy modifications by removing triangles that have become too large
and by merging boundaries that are located close to each other. In
addition to the above improvements, neural mesh ensembles [74] have
been proposed in order to improve the reconstruction quality and the
performance by employing ensemble learning. Based on the above
neural meshes, Saleem [110] suggests a more efficient algorithm to lo-
cate active vertices for mesh refinement. Instead of using an activity
counter, the vertices are ordered in a list, and active vertices are moved
closer to the front of the list.

Smart growing cells (sgc) proposed by Annuth and Bohn [8] extend
neural meshes. They introduce aggressive cut out for removing triangles
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in what they call degenerated regions of the mesh. Sgc labels regions
as degenerated in which the valence of a vertex is too high or that
contain too many acute-angled triangles. After removing the trian-
gles, the resulting boundary is repaired. Furthermore, sgc improves
the boundary merging process of neural meshes. Finally, sgc adapts
the density of the constructed mesh to the curvature of the original
surface and improves the reconstruction quality of sharp features. A
tumble tree proposed by Annuth and Bohn [9] is used to locate active
vertices for mesh refinement efficiently. The same authors compare
the performance of their sgc to an implementation based on Fritzke’s
gng [10], and evaluate the parallelization potentials of the algorithms.

Melato et al. [95] evaluate the applicability of trn by Martinetz and
Schulten and Fritzke’s gng to surface reconstruction. In their imple-
mentation the vertex positions are optimized and the interconnecting
edges are created during learning. The triangle faces are constructed
in a post-processing step after learning has been finished.

Meshing growing neural gas proposed by Holdstein and Fischer [61]
employs a very similar approach. At first, noisy input data is filtered
by curvature analysis. Then, Fritzke’s gng is used to learn vertex posi-
tions and interconnecting edges. Afterwards, the required triangles
are constructed during a post-processing step. Holdstein and Fischer
furthermore propose to adaptively refine the constructed triangle
mesh in user-selected regions.

The approach proposed by Fišer et al. [47] improves the nearest-
neighbor search that is required in Fritzke’s gng. A growing uniform
grid is used to reduce the computational complexity of the algorithm.
Furthermore, handling of a vertex’ activity is improved in order to
reduce reconstruction times.

The growing self-reconstruction map (gsrm) proposed by do Rêgo
et al. [39, 40, 41] is the immediate predecessor of sgng that is pre-
sented in this dissertation. Gsrm improves upon Fritzke’s gng by
creating some triangles during learning. Gsrm aims at avoiding self-
intersections and non-manifold edges with more than two adjacent
triangles. Furthermore, obtuse triangles are removed once they are
detected in order to improve the quality of the reconstructed mesh.
However, gsrm still requires a post-processing step to complete learn-
ing the topology and to triangulate remaining holes. Gsrm is covered
in detail in Sec. 2.8. The growing self-organizing surface map proposed
by DalleMole et al. [31, 32, 33] is closely related to gsrm. However, the
former implements a different connection-learning rule.

Recently, Orts-Escolano et al. [101, 102] proposed an algorithm that
extends gsrm. In addition to creating only single triangles adjacent to
an edge, the algorithm triangulates quadrangles and pentagons once
they are detected during learning. While it leaves fewer holes untri-
angulated, their approach still requires additional processing steps to
finalize the topology once learning has been finished. However, some
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higher-order polygons cannot be closed at all. Nevertheless, Orts-
Escolano et al. integrate a straightforward method to approximate
color and normal information.

Learning algorithms that rely on post-processing to complete the
triangle mesh are not very well suited for an iterative pipeline where
data acquisition, reconstruction, and visualization are executed in
parallel: Learning has to be interrupted repeatedly for post-processing
while acquiring data. Thus, reconstruction gets costly. Iterative al-
gorithms that keep the number of vertices fixed can provide visual
feedback while reconstructing. However, reconstruction has to be
restarted from scratch whenever the input data was modified. Sgng
that is presented in this dissertation overcomes these shortcomings in
order to provide visual feedback while acquiring further data.

None of the existing reconstruction techniques support texture as-Texture assignment

signment directly, although point clouds with registered images are
available by now: Points can be extracted from images, for instance,
using multi-view stereo [54] or structure from motion (sfm) [130]. Fur-
thermore, modern 3d scanners provide rgb images that are registered
to the points. Sgng automatically assigns the image as a texture to
a triangle that provides the most perpendicular view of the triangle
and that most likely shows the unoccluded triangle. Therefore, sgng
even allows for incremental textured preview while acquiring data,
reducing the number of occlusion artifacts to a minimum. Texture
assignment is integrated into sgng learning. Other related techniques
exist, but would have to be executed after reconstruction has finished.

Lempitsky and Ivanov [85] propose an approach for assigning im-
ages as textures to the triangles of the mesh using mesh-based Markov
random field (mrf) energy optimization. Suitable texture coordinates
are obtained by projecting the triangles into the images. An energy
function is used to select the image as a texture that provides the most
perpendicular view of a triangle and that reduces the noticeability of
seams between different textures on adjacent triangles. Minimization
is done via α-expansion graph cuts [21]. The proposed technique
reduces the overall length of texture seams, placing the seams into
regions where only little texture misalignment occurs.

Sinha et al. [113] use a very similar approach, but define the mrf
on a texel grid. A more sophisticated energy function is used in their
approach that also considers the depth values encoded in the point
cloud in order to reduce the number of artifacts due to occluders that
are not reconstructed accurately. Furthermore, a user may label image
regions as suitable or unsuitable for texturing by brushing.

Abdelhafiz [1] proposes an approach that selects the image as a
texture that provides the most perpendicular view of a triangle and
in which the projected area of the triangle is largest. Two steps of
occlusion handling are applied. The first uses the depth information
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acquired from the reconstructed object in order to determine which
triangles are visible in an image. The second relies on color similarities.

The approach by Gal et al. [56] improves upon the approach by
Lempitsky and Ivanov [85]. The former adds a set of local image
transformations to the search space for optimization. That way, the
number of noticeable artifacts due to misalignments and inaccurate
reconstruction is reduced to a minimum. However, the approach does
not address any artifacts that are caused by occlusion.

Musialski et al. [98] propose a system for generating façade ortho-
textures from perspective images taken with hand-held cameras. The
approach automatically constructs façade planes and aligns the images
by sfm. User input is required to define the extent of each façade.
Some occlusion artifacts are avoided automatically by using the depth
information obtained from sfm. Similar to the approach by Sinha
et al. [113], a user can interactively remove image regions that are
unsuitable for texturing.

Dellepiane et al. [34] warp the images locally to compensate for
small inaccuracies in reconstruction and texture alignment. Their
approach computes the optical flow between overlapping images.
Since the camera positions vary too much for direct computation, the
algorithm performs pair-wise computations, projecting one image
onto the reconstructed object and then into the image space of the
second image. Afterwards, a displacement for the pixels in the first
image is computed in the image space of the second image. The
displacement is then projected via the reconstructed object into the
image space of the first image. However, occlusions are not handled.

Birsak et al. [17] propose a pipeline for assigning photos as textures
to a triangle mesh. Their approach improves upon the algorithm of
Lempitsky and Ivanov [85] including the masks for the images that
have been proposed by Callieri et al. [23]. These masks allow for select-
ing images with better quality by considering, for instance, a pixel’s
distance to the image borders or a pixel’s focusing. Furthermore, a
user can provide a stencil mask, excluding parts of the photos. In
addition to that, the approach handles occlusion by first rendering a
depth map using the reconstructed object. Afterwards, an image is
considered as a texture for a triangle only if the triangle is visible in
the image according to the depth map. This approach is similar to the
one proposed by Chen et al. [26] and requires that all occluders are
reconstructed accurately.

In addition to the texture assignment and occlusion handling pre-
sented above, each of the approaches employs techniques that reduce
the noticeability of texture seams by blending and leveling. Integrat-
ing them into sgng is beyond the scope of this dissertation and has
therefore been left for future work.

17



introduction

1.4 scientific publications

The contributions presented in this dissertation are based on the
following publications:

A first sketch of the intended processing pipeline in which sgng
will be used and a virtual reality-based simulation framework for the
pipeline have been presented at the joint virtual reality conference of
Egve - Icat - EuroVr (Jvrc’10) [115]. Prototypic results of iterative
surface reconstruction from unorganized point clouds using a self-
organizing map in the intended pipeline have been presented at the
international symposium on virtual reality innovations (Isvri’11) [116].

The evaluation and the relationship of growing cell structures (gcs)
and a progressive mesh (pm) as well as the intuitive approach for letting
gcs learn a pm that is described in Ch. 3 have been presented at the
33rd annual conference of the European association for computer
graphics (Eg’12) [121].

A first version of sgng, the reconstruction algorithm presented in
Ch. 4, has been published as a technical report by the department of
computer science of the University of Muenster [122]. A prototypic
sketch of the texturing extension presented in Ch. 5 has been presented
at the first Eurographics workshop on urban data modelling and
visualisation (Udmv’13) [123]. The complete version of sgng as well
as the improved texturing extension will be presented at the shape
modeling international conference (Smi’15). The corresponding article
is published in Computers & Graphics [120].
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2
F U N D A M E N TA L A RT I F I C I A L N E U R A L N E T W O R K S

Surface-reconstructing growing neural gas (sgng), the reconstruction al-
gorithm that is proposed in this dissertation, is intended to fit seam-
lessly into an iterative processing pipeline where scanning, reconstruc-
tion, and visualization are executed in parallel. Sgng is based on an
artificial neural network that allows for continuous online learning.

In order to make this dissertation self-contained, the learning algo-
rithms and the capabilities and characteristics of a family of related
neural networks are presented in this chapter: The fundamental algo-
rithm is described on the basis of a very early approach. Each network
discussed afterwards adds a certain feature to the learning algorithm
up to the immediate predecessor of sgng. This chapter summarizes
the information from the original publications in a consistent way
in order to provide the theoretical background for the subsequent
chapters.

2.1 history and taxonomy

Kohonen’s self-organizing map (som) [81, 82, 83] proposed in 1981 is 1981: SOM

the most fundamental type of the neural networks that are used for
learning-based surface reconstruction, and that are summarized in
this chapter. Som iteratively learns the positions of a fixed number
of vertices that are connected in a mesh with a prespecified topology.
Yu [134] was the first to apply som for surface reconstruction. He pro-
poses edge swap and multiresolution learning to make the algorithm
more effective and more efficient.

In order to also learn the topology of the mesh Martinetz et al. [91, 1991: NG

92, 94] proposed neural gas (ng) in 1991. The vertex positions are
learned in a similar way as in som. However, after the position learning
phase has been finished, edges are created in a post-processing step
according to a competitive Hebbian learning (chl) rule.

Shortly after ng was developed, Fritzke [49, 51, 53] proposed growing 1992: GCS

cell structures (gcs) in 1992. Gcs constructs a mesh from an initial,
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Figure 2.1: The relation of the fundamental neural networks and their
capabilities to learn the topology and the network size.

k-dimensional simplex, i.e., a line (k = 1), a triangle (k = 2), or a
tetrahedron (k = 3), depending on the surface to be reconstructed. The
homeomorphic type of the constructed mesh is therefore prespecified,
and as in som it will not be changed during learning. In contrast to
som, gcs is able to adapt the number of vertices to the distribution
of the input data: Vertices are added by an edge split or removed
by an edge collapse. Such a growing scheme allows for simplified
learning rules for the vertex positions. Gcs was used later for surface
reconstruction among others by Várady et al. [119], by Ivrissimtzis
et al. [70], and by Annuth and Bohn [8].

In 1994 Martinetz and Schulten [93] refined their ng to the topology1994: TRN

representing network (trn) by combining both position and topology
learning into the iterative phase. That way the entire set of edges is
created during learning without relying on post-processing steps.

After having developed the growing scheme for gcs, Fritzke [52, 53]1995: GNG

combined it with the capabilities of the recently developed trn into
his growing neural gas (gng) in 1995. He proposed a network that is
able to construct a mesh with both the topology and the number of
vertices learned from the input data. Gng was later used for surface
reconstruction among others by Holdstein and Fischer [61], and by
do Rêgo et al. [39, 40, 41]. The former create the desired triangles
during a post-processing step after gng learning has finished, similar
to the post-processing step used in ng.

In 2010 the growing self-reconstruction map (gsrm) was proposed by2010: GSRM

do Rêgo et al. [39, 40, 41]. Gsrm is used as a basis for the devel-
opment of sgng. The former creates some of the desired triangles
during the learning process. However, gsrm cannot create all triangles
during learning as the underlying ng, trn, and gng, and thus still
requires a post-processing step to complete the triangle mesh. There-
fore gsrm is not particularly well suited for continuous online surface
reconstruction.

Fig. 2.1 gives an overview of the relationships between the above
artificial neural networks and their capabilities to learn the topology
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and the network size, i.e., the number of vertices. Since gcs modifies
vertex connectivity while learning, it is considered to be slightly more
versatile in terms of the constructed topology than som. Since trn
creates edges and gsrm creates triangles during the main learning
loop, they are considered to be slightly more versatile in terms of the
constructed topology than ng or gng, respectively. Gng and gsrm are
considered to be slightly less versatile in terms of the network size
than gcs, since both rely on the topology learning steps to remove
superfluous vertices instead of addressing them explicitly.

2.2 the basic reconstruction algorithm

The artificial neural networks that are outlined in the subsequent
sections learn the positions of a set V of neural units or vertices from
a set P of unorganized input points. The vertices are connected by
a set E of edges according to a prespecified or learned topology to
create a mesh. Some of the networks even create a set F of triangles.

All the networks share the same basic reconstruction algorithm: In
the beginning the network is initialized, i.e., the initial sets of vertices,
edges and, if applicable, faces are created. Afterwards, learning is
iterated in a loop for a prespecified number tmax of iterations or until
a predefined convergence criterion is met. In each iteration t an input
point pξt

is selected randomly from the set P of input points. Then, the
neural network adapts the vertex positions and, if the network allows
for it, the topology to the selected input point according to specific
learning rules. If the neural network relies on a post-processing step,
it is applied after the learning loop has finished.

〈Reconstruction〉 ≡
〈Initialization〉
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

〈Updates according to pξt
〉

end for each
〈Post-processing step (if applicable)〉

The individual reconstruction algorithms of all networks are presented
in detail in the subsequent subsections.

Vertex positions, edges, sets, etc. are initialized in the beginning
and updated in each iteration of the learning algorithm. In order to
keep the notation concise the assignment operator ..= is used for this
purpose. The instruction

x ..= x + y

calculates x + y and assigns the result to x afterwards, similar to x=x+y

in a programming language like, e.g., C.
The artificial neural networks described in this chapter are gener-

ally able to operate in arbitrary dimensional spaces. However, this
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Figure 2.2: Input point sets used in the examples (gray area).

work focuses on reconstruction of 2d surfaces embedded in 3d space.
The following descriptions therefore use 3d positions. Nevertheless,
extensions to higher dimensional spaces are straightforward.

The characteristics of each neural network is illustrated with twoExamples

examples that are using input data sampled from surfaces with dif-
ferent genera. For the sake of clarity of the figures only input points
of the form

[
x y 0

] > ∈ R3 are used. In the first example the input
points are sampled uniformly at random from a square (Fig. 2.2(a))

P = {
[
x y 0

] > | x, y ∈ [0, 1]} . (2.1)

In the second example the input points are sampled uniformly—with
respect to the surface area—at random from an annulus (Fig. 2.2(b))

P = {p ∈ P | ‖p−
[
0.5 0.5 0

] >‖ ∈ [
√

0.125, 0.5]} . (2.2)

2.3 self-organizing map

Kohonen’s self-organizing map (som) [81, 82, 83] is the most fundamen-
tal artificial neural network that is related to the final reconstruction
algorithm proposed in this dissertation. The reconstruction algorithm
consists of two phases.

〈SOM reconstruction〉 ≡
〈SOM initialization A p. 23〉
〈SOM learning A p. 24〉

During initialization a set V of neural units vi,j ∈ V is created thatSOM initialization

are arranged in a rectangular grid of h rows and w columns (Fig. 2.3(a)).
In order to create a mesh representing a 2d surface h, w ≥ 2. To each
unit vi,j ∈ V its normalized 2d location ui,j =

[
ri,j si,j

] > ∈ [0, 1]2 in
the neural network is assigned. These 2d locations will not be modified
during learning. Since each unit of the neural network represents a
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(a) Locations and connectivity of

the units in the neural network.
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(b) Initial positions and connectiv-

ity of the vertices in the mesh.

Figure 2.3: Initial configuration of som reconstructing a square (gray):
The individual units ( ) of the neural network are arranged
in a regular grid inside the network (a). The vertices ( )
of the initial triangle mesh are placed at the positions of
randomly selected input points (b).

vertex in the mesh to be constructed, a 3d position vi,j ∈ R3—in the
space into which the original surface is embedded—is assigned to
each unit. The vertices of the initial mesh share the connectivity of
the neural units in the neural network: An edge that is connecting
a pair of neural units is also connecting the pair of vertices that are
represented by the units. The positions vi,j of the vertices are initialized
to the positions of randomly selected input points (Fig. 2.3(b)). The 3d
positions vi,j will be optimized during learning.

〈SOM initialization〉 ≡ Ap. 22
V ..= {vi,j | i = 1, . . . , h , j = 1, . . . , w} , i , j , h , w ∈ N

u : V 7AR2 where u(vi,j) = ui,j
..=
[

j−1
w−1

i−1
h−1

]
>

v : V 7AR3 where v(vi,j) = vi,j
..= pξi,j

∈ P

The shorthands ui,j and vi,j are used instead of u(vi,j) and v(vi,j),
respectively, in the remainder of this work.

To define the topology of the neural network and thus the mesh to
be constructed, a set E of horizontal, vertical, and diagonal edges is
created in the neural network (Fig. 2.3(a)).

〈SOM initialization〉 +≡ Ap. 22
E ..= {(vk,l , vk,l+1) | vk,l , vk,l+1 ∈ V } ∪

{(vk,l , vk+1,l) | vk,l , vk+1,l ∈ V } ∪
{(vk,l , vk+1,l+1) | vk,l , vk+1,l+1 ∈ V }

Since the vertices in the constructed mesh share the connectivity of the
neural units, the initial triangle mesh is randomly folded (Fig. 2.3(b)).

Online learning is iterated in a loop for a prespecified number tmax SOM learning

of iterations. Alternatively, a predefined convergence criterion can be
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Table 2.1: Learning parameters used in the som examples.

Parameter Value

Step size εi . . . ε f 0.5 . . . 0.005
Standard deviation of lateral influence σi . . . σf 1.0 . . . 0.01
Maximum number of iterations tmax 30 000

used, for instance, a prespecified maximal mean distance between the
input points and the vertex positions.

In each iteration t of som learning an input point pξt
is selected

randomly from the set P ⊂ R3 of input points. Afterwards, the 3d
positions assigned to the neural units are adapted to pξt

.

〈SOM learning〉 ≡ Ap. 22
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

〈SOM position updates A p. 24〉
end for each

For the selected input point pξt
the best matching, i.e., closest, unitSOM position

updates vb ∈ V with respect to the assigned 3d position vb and the `2-norm
‖·‖ is determined. Then, the 3d position vi of each unit vi ∈ V is
adapted to pξt

.

〈SOM position updates〉 ≡ Ap. 24
vb = arg minvi∈V ‖vi − pξt

‖
vi

..= vi − ε(t) · hσ(t, vi, vb) · (vi − pξt
) , ∀vi ∈ V

This update rule uses a time dependent step size specifying the overall
adaptation rate. To be consistent with the description of ng by Mar-
tinetz et al. [92, 94] in Sec. 2.4 the following time dependence is used
here:

ε : NA [0, 1] , where ε(t) = εi ·
(

ε f

εi

)t·t−1
max

.

Initially, ε(t = 0) = εi. It decreases monotonically over time t ∈ N in
such a way that ε(t = tmax) = ε f . Furthermore, the update rule of
som uses a time dependent neighborhood function

hσ : N× V × V A [0, 1] ,

where hσ(t, vi, vb) = exp
(
−‖ui − ub‖2

2σ(t)2

)
specifying a lateral influence among the neural units. The lateral
influence is related to the distance of a unit vi to vb in the neural
network. It is modeled by a Gaussian [83, 94] centered at the 2d
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(a) ε(t) (b) hσ(t, vi, vb) (c) ε(t) · hσ(t, vi, vb)

Figure 2.4: Step size (a), lateral influence (b), and combined learning
rate (c) of som (Tab. 2.1), plotted against the distance of vi
to vb and the normalized number of iterations.

location ub of the best matching unit vb in the network, with a time
dependent standard deviation

σ : NAR , where σ(t) = σi ·
(

σf

σi

)t·t−1
max

. (2.3)

Thus, hσ(t, vi, vb) = 1 ⇐⇒ vi = vb, and 0 ≤ hσ(t, vi, vb) < 1
otherwise. Initially, σ(t = 0) = σi. It decreases monotonically over
time t ∈ N in such a way that σ(t = tmax) = σf . Since the step
size ε(t), the value of the lateral influence hσ(t, vi, vb), and the radius
around the best matching unit in which hσ has an effect are initially
large, som can create an ordered map, i.e., unfold the mesh. Since all
three monotonically decrease over time, som initially performs large
updates that get smaller the longer the algorithm is running.

Fig. 2.3 shows an example of an initial som configuration. The Example for
som learningnetwork contains 121 connected neural units that are arranged in

a regular 11 by 11 grid. The learning parameters that are used in
the reconstruction examples are set to the values that Martinetz and
Schulten [93] used (Tab. 2.1), in order to be comparable with the next
two neural networks. The initial standard deviation of the lateral
influence was set to half the value that Martinetz and Schulten used
in order to emphasize the characteristics of som in the examples.

Fig. 2.4 shows plots for the step size, the lateral influence, and
the combined learning rate. In order to give an impression of the
progression of the respective function in the neural network and over
time, the value of the respective function is plotted on the z-axis against
the distance of a unit vi to the best matching unit vb on the x-axis, and
the number t of iterations normalized to the maximum number tmax of
iterations on the y-axis. The distance of the units is computed from the
2d locations ui and ub of the units in the neural network. As required
for the creation of an ordered map from the random initialization, all
three functions decrease monotonically over time. The step size ε(t)
is constant over 2d distance to vb, but the lateral influence hσ(t, vi, vb)
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and thus the combined learning rate monotonically decrease over
distance.

In the first example the input points P ⊂ P (Eq. 2.1) are drawn
uniformly at random from a square. Fig. 2.5 shows the resulting mesh
after different numbers of iterations. It can easily be seen that the
constructed mesh shrinks but unfolds itself during the first iterations
(Fig. 2.5(a)–(d)) due to a wide lateral influence. Afterwards, while the
lateral influence is narrowing down to only the best matching unit,
the vertices spread out (Fig. 2.5(e)–(g)) until they are fairly evenly
distributed across the input square (Fig. 2.5(h)).

If σ(t)A 0 and thus hσ(t, vi, vb)A δvj,vb the Kronecker delta, thenRelation to k-means
clustering som learning will become equivalent to an online, stochastic variant

of the k-means clustering algorithm [87, 90]. In that case, the learning
rules of som minimize the overall position error of the vertices in the
mesh by a stochastic gradient descent on an energy function

E = ∑
vi∈V

∑
pk∈Pvi

‖vi − pk‖2 . (2.4)

Here Pvi ⊆ P contains all input points that are located in the Voronoi
cell of vi, i.e., all input points that are closer to the 3d position vi
assigned to vertex vi than to the 3d position assigned to any other
vertex with respect to the `2-norm. Unfortunately, the above energy
function has several local minima leading to folded meshes.

In order to create an ordered map, i.e., a mesh that is not folded,Lateral influence
leads to ordered map and thus to avoid the undesired local minima, the units in the neural

network may not be affected independently of each other as Koho-
nen [83] noted. Therefore, som accounts for the topological relation
among the neural units by using an initially large but monotonically
decreasing lateral influence hσ(t, vi, vb). Due to this lateral influence,
the learning rules cannot be described as a gradient descent on a
single energy function anymore—neither one like (Eq. 2.4) nor any
other one—as Erwin et al. [45] proved.

In fact, using a wide lateral influence with σ(t) 6= 0 in early itera-
tions is crucial for som, since the 3d positions are initialized randomly.
Otherwise, with hσ(t, vi, vb) 6= 0 only for vi = vb in all iterations, the
mesh will not be unfolded at all (Fig. 2.6(a)). If a constant but narrow
lateral influence is used in such a way that only the best matching
unit and its directly connected neighbors are affected, the mesh will
be unfolded only partially by som learning (Fig. 2.6(b)). Nevertheless,
the latter concept is used later in algorithms that induce an initial
ordering of the vertices by construction (Sec. 2.6–2.8).

The topology of the surface that is reconstructed by som is prede-Predefined topology

fined by the initial topology of the network. It is not modified during
learning. For an illustration the input points P ⊂ P (Eq. 2.2) are
drawn uniformly at random from an annulus in the second example.
Fig. 2.7 shows the resulting mesh after different numbers of iterations.
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Figure 2.5: Som reconstructing a square.
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Figure 2.6: Meshes created by 30 000 iterations of som learning using
different lateral influences: An input point is affecting (a)
only the best matching unit, (b) only the best matching
unit and its direct topological neighbors.

As in the previous example the mesh initially shrinks (Fig. 2.7(a)–(e))
and eventually unfolds itself (Fig. 2.7(f), (g)). Finally, nearly all vertices
are located on or close to the input annulus (Fig. 2.7(h)). However, it
can easily be seen that som is unable to reconstruct the topology of
the input data: The learning algorithm yields a mesh that bridges the
hole of the annulus.

2.4 neural gas
with subsequent competitive hebbian learning

The iterative updates of the vertex positions in som yield very good
results if the predefined topology of the network matches the topology
of the input data. To learn arbitrary topologies Martinetz et al. [91,
92, 94] proposed neural gas (ng) that creates all of the edges, i.e., the
topology, in a separate post-processing step using competitive Hebbian
learning (chl). The basic reconstruction algorithm of ng is similar to
that of Kohonen’s som.

〈NG reconstruction〉 ≡
〈NG initialization A p. 30〉
〈NG position learning A p. 30〉
〈NG topology learning A p. 32〉

In ng—and in all the following networks—the neural units and
the vertices of the mesh to be constructed do not need to be treated
separately anymore. Furthermore, the 2d location of a unit in the
network is not required. That way, notation gets simplified in such a
way that vi simultaneously refers to the neural unit and the related
vertex position. Thus, from now on V ⊂ R3 for the set of vertices.

During initialization a set V of n vertices vi ∈ V ⊂ R3 is created. InNG initialization

order to create a mesh representing a 2d surface, n ≥ 3. The positions
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Figure 2.7: Som reconstructing an annulus.
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y
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Figure 2.8: Initial configuration of ng reconstructing a square.

vi of the vertices are initialized to the positions of n randomly selected
input points (Fig. 2.8). The vertex positions will be optimized during
learning, but edges will be created only in the post-processing step
after position learning has finished.

〈NG initialization〉 ≡ App. 28, 35
V ..= {v1 , . . . , vn} , vi

..= pξi
∈ P , i , n ∈ N , n ≥ 3

E ..= ∅

As for som, online learning is iterated in a loop for a prespecifiedNG position learning

number tmax of iterations. Alternatively, a predefined convergence
criterion can be used, for instance, a prespecified maximal mean
distance between the input points and the vertex positions. However,
the update rules for vertex positions of ng differ from that of som.

In each iteration t of ng learning an input point pξt
is selected

randomly from the set P ⊂ R3 of input points. Afterwards, the vertex
positions are adapted to the selected input point.

〈NG position learning〉 ≡ Ap. 28
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

〈NG position updates A p. 31〉
end for each

For the selected input point pξt
a neighborhood ranking (V ) =NG position updates

(vi0 , . . . , vin−1) is created in such a way that the entries vim in (V ) are
sorted according to their distance to pξt

in ascending order

‖vim − pξt
‖ ≤ ‖vim+1 − pξt

‖ , m ∈ {0, 1, . . . , n− 2} ,

i.e., vi0 is the vertex closest to pξt
, and vin−1 is the vertex farthest away

from pξt
with respect to the `2-norm. Let a function k yield the rank

of a vertex vik in the neighborhood ranking (V )

k : V × P × V ∗A {0, 1, . . . , |V | − 1} ,
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2.4 neural gas with subsequent chl

Table 2.2: Learning parameters used in the ng examples.

Parameter Value

Step size εi . . . ε f 0.5 . . . 0.005
Width of lateral influence λi . . . λ f 10.0 . . . 0.01
Maximum number of iterations tmax 30 000

where V ∗ denotes the set of all conceivable vertex sets. Then, the som
update rule can be rewritten using a new neighborhood function

hλ : N×NA [0, 1]

yielding the lateral influence of a unit according to its rank.

〈NG position updates〉 ≡ App. 30, 35

vi
..= vi − ε(t) · hλ

(
t, k(vi, pξt

, V )
)
· (vi − pξt

) , ∀vi ∈ V

Similar to the lateral influence of som Martinetz et al. used a Gaus-
sian for hλ that is centered at k = 0 with a time-dependent standard
deviation σ(t) =

√
0.5λ(t):

hλ

(
t, k(vi, pξt

, V )
)
= exp

(
−

k(vi, pξt
, V )

λ(t)

)
,

where λ(t) uses the same time dependence as the standard deviation
σ(t) in som (Eq. 2.3):

λ : NAR where λ(t) = λi ·
(

λ f

λi

)t·t−1
max

.

Initially, λ(t = 0) = λi. It decreases monotonically over time t ∈ N in
such a way that λ(t = tmax) = λ f .

Similar to som, if λ(t)A 0 and thus hλ

(
t, k(vi, pξt

, V )
)
A δk,0 the Relation to k-means

clustering,
energy function

Kronecker delta, then ng learning will also become equivalent to an
online, stochastic variant of the k-means clustering algorithm [87, 90].
However, in contrast to som, ng will on average execute a stochastic
gradient descent on a single energy function even if λ(t) 6= 0. Details
can be found in the work of Martinetz et al. [94].

After the position learning phase has been finished, the topology NG topology learning

of the original surface is learned. For this purpose edge creation is
iterated in a loop for a prespecified number t′max of iterations. If a
finite set of input points is used, t′max should be set to the number
of input points so that each point will be presented once to learn the
entire topological information.

In each iteration t′ a point pξt′
is selected randomly from the set

P of input points. For the selected pξt′
the closest vertex vb and the

second-closest vertex vc are determined with respect to the `2-norm.
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If these vertices are not yet connected by an edge, a new edge (vb, vc)

connecting both will be created.

〈NG topology learning〉 ≡ Ap. 28
for each t′ ∈ {1, 2, . . . , t′max} do

randomly select pξt′
∈ P

vb = arg minvi∈V ‖vi − pξt′
‖

vc = arg minvi∈V \{vb} ‖vi − pξt′
‖

E ..=E ∪ {(vb, vc)}
end for each

Martinetz and Schulten prove that the set of edges that is createdRelation to Delaunay
triangulation during the ng topology learning phase forms a subset of the set of

edges that are present in the Delaunay triangulation of the vertices in
V [91, 93]. The proof is sketched only roughly here for the sake of a
concise description. Details can be found in the original work.

Any edge connecting two vertices vi, vj ∈ V is present in the Delau-
nay triangulation of the vertices in V iff their Voronoi polyhedra* Dvi

and Dvj are adjacent. For the proof Martinetz and Schulten introduce
a second-order Voronoi polyhedron Dvi ,vj that contains all points that
are closer to both vi and vj than to any other vertex vk 6= vi, vj. This
allows for a straightforward proof that two Voronoi cells Dvi and Dvj

are adjacent iff the second-order Voronoi cell Dvi ,vj is not empty.
During ng topology learning Dvb,vc is obviously not empty since it

contains at least pξt′
that was sampled from the surface to be recon-

structed. Thus, Dvb and Dvc are adjacent, and finally the edge (vb, vc)

is present in the Delaunay triangulation of the vertices. However, some
Dvi ,vj might not contain any selected pξt′

∈ P , thus ng topology learn-
ing does not create all of the edges that are present in the Delaunay
triangulation. This fact is used later for motivating the development
of surface-reconstructing growing neural gas in Sec. 4.1.

Fig. 2.8 shows an example of an initial ng configuration. TheExamples for
NG learning network contains 121 vertices that are placed at the position of ran-

domly selected input points. The learning parameters that are used
in the reconstruction examples are set to the values that Martinetz
and Schulten [93] used (Tab. 2.2). For the figures ng position learning
was interrupted after prespecified numbers t′max of iterations. Then,
topology learning was executed for t′max iterations. Afterwards, the
reconstruction was restarted from scratch.

In the first example the input points P ⊂ P (Eq. 2.1) are drawn
uniformly at random from a square. Fig. 2.9 shows the resulting mesh
after different numbers of iterations. It can easily be seen that the
vertices tend to form clusters during the first iterations (Fig. 2.9(a)–(d))
due to a wide lateral influence. They do not collapse to a single small

* Since Voronoi polyhedra are also called Dirichlet regions, the symbol D is used to
avoid confusion with the set V of vertices.
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Figure 2.9: Ng reconstructing a square.

33



fundamental artificial neural networks

y

x
(a) t′max = 10 iterations

y

x
(b) t′max = 30 iterations

y

x
(c) t′max = 100 iterations

y

x
(d) t′max = 300 iterations

y

x
(e) t′max = 1000 iterations

y

x
(f) t′max = 3000 iterations

y

x
(g) t′max = 10 000 iterations

y

x
(h) t′max = 30 000 iterations

Figure 2.10: Ng reconstructing an annulus.

34



2.5 topology representing network

cluster as they do in som. While the lateral influence is narrowing
down to only the best matching unit, the vertices spread out (Fig. 2.9(e)–
(g)) until they are fairly evenly distributed across the input square (Fig.
2.9(h)). The more input points are selected during topology learning,
the more edges are created. Eventually, the constructed mesh is nearly
completely triangulated (Fig. 2.9(h)). However, some higher-order
polygons cannot be triangulated by the chl rule.

The topology of the surface that is reconstructed by ng is not prede- Arbitrary topologies

fined as it was for som. Instead, it is created during the final topology
learning phase. This is illustrated in the second example where the
input points P ⊂ P (Eq. 2.2) are drawn uniformly at random from an
annulus. Fig. 2.10 shows the resulting mesh after different numbers
of iterations. As in the previous example, the vertices form clusters
initially (Fig. 2.10(a), (b)), form a ring (Fig. 2.10(c)–(e)) and eventually
spread out (Fig. 2.10(f), (g)). Finally, all vertices are located on the
annulus (Fig. 2.10(h)), with the hole reconstructed correctly. As before,
some higher-order polygons remain untriangulated.

2.5 topology representing network

Ng does not simultaneously provide the complete mesh with opti-
mized vertex positions and a learned topology at any time during the
reconstruction process. Instead, it relies on a post-processing step to
create the necessary edges. To allow for topology adjustments in each
learning iteration Martinetz and Schulten [93] proposed the topology
representing network (trn). Trn uses the same initialization as (Sec. 2.4),
and a learning algorithm that is almost identical to that of ng.

〈TRN reconstruction〉 ≡
〈NG initialization A p. 30〉
〈TRN learning A p. 35〉

As before, online learning is iterated in a loop for a prespecified TRN learning

number tmax of iterations. Alternatively, a predefined convergence
criterion can be used, for instance, a prespecified maximal mean
distance between the input points and the vertex positions.

In each iteration t of trn learning an input point pξt
is selected

randomly from the set P ⊂ R3 of input points, and the vertex positions
are adapted according to the learning rule of ng. In contrast to ng, the
selected input point is used to modify the topology of the constructed
mesh in the very same iteration.

〈TRN learning〉 ≡ Ap. 35
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

〈NG position updates A p. 31〉
〈TRN topology updates A p. 36〉

end for each
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In trn edges are created according to the same chl rule that wasTRN topology
updates used for ng. Thus, in each iteration a new edge (vb, vc) is created, if it

does not yet exist, so that the closest vertex vb and the second-closest
vertex vc for pξt

are connected. Upon creation, the new edge is present
in the Delaunay triangulation of the vertices.

However, during trn learning, two connected vertices might be
moved to positions where they do no longer form the pair of closest
and second-closest vertex for any input point. Therefore, they are no
longer connected in the respective Delaunay triangulation. Thus, trn
eventually disconnects such vertices by removing obsolete edges.

〈TRN topology updates〉 ≡ App. 35, 47
vb = arg minvi∈V ‖vi − pξt

‖
vc = arg minvi∈V \{vb} ‖vi − pξt

‖
E ..= E ∪ {(vb, vc)}
〈TRN obsolete edge removal A p. 36〉

To enable disconnecting vertices, each edge (vk, vl) ∈ E keeps trackTRN obsolete edge
removal of its age a:

a : E 7AN , with a
(
(vk, vl)

)
..= 0 for a new edge (vk, vl) .

The age of the edge connecting the closest vertex vb and the second-
closest vertex vc is reset to zero in each iteration, whether it already
existed or was just created. The age of all other edges emanating from
vb is incremented by one. If two connected vertices vk, vl do no longer
form the pair of closest and second-closest vertex for any input point,
and thus need to be disconnected, the age of the edge (vk, vl) will
increase since it is not reset to zero anymore. If the age exceeds a
predefined threshold amax(t), the edge is deleted. This threshold uses
the same time dependence as, e.g., the step size in som or ng:

amax : NAR , where amax(t) = amaxi ·
(amax f

amaxi

)t·t−1
max

.

Initially, amax(t = 0) = amaxi . It decreases monotonically over time
t ∈ N in such a way that amax(t = tmax) = amax f .

〈TRN obsolete edge removal〉 ≡ App. 36, 53
a
(
(vb, vc)

)
..= 0

a
(
(vb, vn)

)
..= a

(
(vb, vn)

)
+ 1 , ∀(vb, vn) ∈ E \ (vb, vc)

Eamax = {(vk, vl) ∈ E | a
(
(vk, vl)

)
> amax(t)}

E ..= E \ Eamax

For the trn examples the same initial configuration as for ng isExamples for
TRN reconstruction used with 121 vertices that are placed at the position of randomly

selected input points (Fig. 2.8). The learning parameters that are used
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Table 2.3: Learning parameters used in the trn examples.

Parameter Value

Step size εi . . . ε f 0.5 . . . 0.005
Width of lateral influence λi . . . λ f 10.0 . . . 0.01
Maximum edge age amax,i . . . amax, f 12.0 . . . 242.0
Maximum number of iterations tmax 30 000

in the reconstruction examples are set to the values that Martinetz and
Schulten [93] used (Tab. 2.3).

In the first example the input points P ⊂ P (Eq. 2.1) are drawn
uniformly at random from a square. Fig. 2.11 shows the resulting
mesh after different numbers of iterations. It can easily be seen that
the vertices are located at exactly the same positions as during ng
learning, since the topology updates do not affect the position updates
in trn. However, trn creates a different set of edges. It creates
more edges than ng in early iterations (Fig. 2.11(c)–(e)). Since edges
are created during learning, some of them intersect. Eventually, the
intersections are removed during later iterations (Fig. 2.11(f), (g)). The
final mesh consists of many triangles (Fig. 2.11(h)), but more higher-
order polygons remain untriangulated than in the final mesh that was
constructed by ng.

In the second example the input points P ⊂ P (Eq. 2.2) are drawn
uniformly at random from an annulus. Fig. 2.12 shows the resulting
mesh after different numbers of iterations. As in the previous example,
the vertices form clusters initially (Fig. 2.12(a), (b)), form a ring (Fig.
2.12(c)–(e)), and eventually spread out (Fig. 2.12(f), (g)). Finally, all
vertices are located on the annulus (Fig. 2.12(h)), with the hole recon-
structed correctly. As before, there are some higher order polygons
that remain untriangulated, some more than in the example for ng.

2.6 growing cell structures

Although som produces very good results, it is unable to create meshes
of arbitrary sizes: The number of vertices is fixed and has to be
predefined according to the specific task. Building upon som learning
rules, Fritzke [49, 51, 53] proposed growing cell structures (gcs) in order
to create meshes with an arbitrary size.

Since gcs starts with only a single k-dimensional simplex and re-
fines it locally in a predefined way, gcs creates an ordered map by
construction. That way, the lateral influence for position updates
does only need to have local support without any time dependence,
leading to reduced complexity and thus shorter running times. Trian-
gles can be integrated into gcs in a straightforward way for surface
reconstruction [70]. Therefore they are included in this description.
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Figure 2.11: Trn reconstructing a square.
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Figure 2.12: Trn reconstructing an annulus.
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Figure 2.13: Initial configuration of gcs reconstructing a square.

The reconstruction algorithm of gcs consists of two phases.

〈GCS reconstruction〉 ≡
〈GCS initialization A p. 40〉
〈GCS learning A p. 41〉

During initialization a set V of k + 1 vertices vi ∈ V ⊂ R3 is created,GCS initialization

with k = 2 if a surface has to be created that is homeomorphic to
a disc, and with k = 3 for a surface that is homeomorphic to a
sphere. The positions vi of the vertices are initialized to the positions
of randomly selected input points (Fig. 2.13). The vertex positions will
be optimized during learning. Edges are created in such a way that all
pairs of initial vertices are connected once. For surface reconstruction,
triangular faces are created accordingly, so that the initial mesh forms a
k-dimensional simplex, i.e., a triangle (k = 2) or a tetrahedron (k = 3).

〈GCS initialization〉 ≡ Ap. 40
V ..= {v1 , . . . , vk+1} , vi

..= pξi
∈ P ,

i ∈ {1, 2, . . . , k + 1} , k ∈ {2, 3}
E ..= {(vi, vj) ∈ V 2 | vi 6= vj}
F ..= {4(vl , vm, vn) ∈ V 3 | (vl , vm), (vm, vn), (vn, vl) ∈ E}

As before, online learning is iterated in a loop for a prespecifiedGCS learning

number tmax of iterations. Alternatively, a predefined convergence cri-
terion can be used, for instance, a prespecified number of constructed
vertices or triangles, or a prespecified maximal mean distance between
the input points and the constructed mesh.

In each iteration t of gcs learning an input point pξt
is selected

randomly from the set P ⊂ R3 of input points. For the selected input
point pξt

the best matching, i.e., closest, vertex vb ∈ V with respect to
the `2-norm ‖·‖ is determined. Afterwards, the vertex positions are
adapted to pξt

. Finally, gcs checks whether the density of the mesh
constructed so far needs to be modified in order to match the input
points better, i.e., if vertices need to be added or removed.
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〈GCS learning〉 ≡ Ap. 40
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

vb = arg minvi∈V ‖vi − pξt
‖

〈GCS position updates A p. 41〉
〈GCS density updates A p. 41〉

end for each
Let N yield the set of vertices that are directly connected to another GCS position updates

vertex by an edge

N : V 7AP(V ) , with N (vi) = Nvi = {vn ∈ V | (vi, vn) ∈ E} ,

where P(·) denotes the power set. The shorthand Nvi is used instead
of N (vi) in the remainder of this dissertation.

Since gcs creates an ordered map by construction, only the best
matching vertex vb that is closest to pξt

and its directly connected
neighbors vn ∈ Nvb are adapted to pξt

according to update rules using
constant step sizes β for vb, and η for its neighbors, with β, η ∈ [0, 1].
In practice, to achieve good results β� η.

〈GCS position updates〉 ≡ App. 41, 47, 52, 90
vb

..= vb − β(vb − pξt
)

vn
..= vn − η(vn − pξt

) , ∀vn ∈ Nvb

In order to adapt the density of the constructed mesh to the density GCS density updates

of the input points, each vertex vi ∈ V keeps track of its activity τ and
the number ϑ of the last iteration it was selected as best match:

τ : V 7AR , τ(vi) ≥ 0 , with τ(vi) ..= 0 initially (2.5)

ϑ : V 7AN , with ϑ(vi) ..= t initially . (2.6)

Whenever a vertex is selected best match for an input point, its activity
is incremented by one. To weight activity in recent iterations stronger
τ decays over time by a constant factor α ∈ [0, 1].

〈GCS density updates〉 ≡ Ap. 41
τ(vb) ..= τ(vb) + 1
ϑ(vb) ..= t

〈GCS mesh refinement A p. 42〉
〈GCS mesh coarsening A p. 43〉
τ(vi) ..= ατ(vi) , ∀vi ∈ V

Whenever the number of iterations is an integer multiple of a prede- GCS mesh refinement

fined parameter λs, a new vertex vo is added to the mesh. It is placed
in the middle of the longest edge (vm, vn) emanating from the most
active vertex vm. In order to preserve the topology of the constructed
mesh the new vertex is created by splitting the edge (vm, vn) and its
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Figure 2.14: Splitting edge (vm, vn), collapsing edge (vo, vm).

adjacent triangles (Fig. 2.14 left to right). Activity is distributed among
the existing and the new vertices according to the number |Nvo | of
neighbors of the new vertex.

〈GCS mesh refinement〉 ≡ Ap. 41
if t ≡ 0 (mod λs) then

vm = arg maxvi∈V τ(vi)

vn = arg maxvj∈Nvm
‖vm − vj‖

V ..= V ∪ {vo
..= vm+vn

2 }
split edge (vm, vn) with new vertex vo

τ(vk) ..= (1− 1
|Nvo | ) · τ(vk) , ∀vk ∈ Nvo

τ(vo) ..= 1
|No | ∑vk∈No

τ(vk)

end if

The edge split creates the new vertex vo, and it deletes the existing
edge (vm, vn) and the triangles adjacent to it. Afterwards, new edges
are inserted so that vo is connected to vm and vn, and to their common
neighbors. Finally, triangles are created for each loop of three edges
that contains vo.

Ivrissimtzis et al. [70] added a topology preserving removal ofGCS mesh coarsening

inactive vertices to gcs: Whenever the number of iterations is an
integer multiple of a predefined parameter λc, the set Vo ⊂ V of
inactive vertices vo ∈ Vo is removed from the mesh. A vertex is
considered inactive, if it was not selected as best matching vertex for
any input point for a number of ∆ϑmax iterations in a row. If vertices
and input points are distributed uniformly, a vertex is likely selected
best match in µ of µ · |V | iterations, where |V | denotes the number of
vertices in the mesh. Thus, ∆ϑmax = µ · |V | yields a suitable threshold
to detect inactivity robustly.

In order to preserve the topology of the constructed mesh, inactive
vertices vo ∈ Vo are removed by collapsing an edge (vo, vm) and its
adjacent triangles (Fig. 2.14 right to left). The edge (vo, vm) is selected
in such a way that the topological type of the constructed mesh is
preserved, and that the valences of the affected vertices are as close to
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Table 2.4: Learning parameters used in the gcs examples.

Parameter Value

Step size (best match vb) β 0.06
Step size (direct neighbors vn ∈ Nvb) η 0.002
Activity decay α 0.95
Inactivity threshold ∆ϑmax 6 · |V |
Iterations for split and collapse λs, λc 100

six as possible. Hoppe et al. [65] defined criteria for the former, and
Ivrissimtzis et al. [70] introduced a regularity error Ec for the latter:

Ec : E AR , Ec
(
(vo, vm)

)
≥ 0 ,

with Ec
(
(vo, vm)

)
=

(|Nvm |+ |Nvo | − 10)2 + (|Nvr | − 7)2 + (|Nvs | − 7)2 , (2.7)

where |Nvk | denotes the number of neighbors of a vertex vk, and vo

denotes the inactive vertex, vm denotes the other endpoint of the
selected edge, and vr, vs denote the two affected neighbors (Fig. 2.14
right). Gcs selects the vm that causes the lowest Ec

(
(vo, vm)

)
.

〈GCS mesh coarsening〉 ≡ Ap. 41
if t ≡ 0 (mod λc) then

Vo = {vo ∈ V | ϑ(vo) < t− ∆ϑmax}
for each vo ∈ Vo do

V +
o = {vl ∈ Nvo | collapsing (vo, vl) is valid [65]}

if |V +
o | > 0 then

vm = arg minvl∈V +
o

Ec
(
(vo, vl)

)
collapse edge (vo, vm) removing vertex vo

end if
end for each

end if

An edge collapse first deletes the edge (vo, vm) and its adjacent trian-
gles. Additionally, the edges connecting vo to the common neighbors
of vm and vo are deleted, but their adjacent triangles are preserved
and attached to vm. Afterwards, the remaining edges emanating from
vo and their adjacent triangles are detached from vo and attached to
vm. Finally, the inactive vertex vo is deleted.

Fig. 2.13 shows an example of an initial gcs configuration with Examples for
GCS learningk = 2. The network initially contains three vertices that are placed at

the positions of three randomly selected input points. The learning
parameters that are used in the reconstruction examples are set to the
values that Fritzke [51] used except for ∆ϑmax (Tab. 2.4).

In the first example the input points P ⊂ P (Eq. 2.1) are drawn
uniformly at random from a square. Fig. 2.15 shows the resulting mesh
after different numbers of iterations. During the first 99 iterations the
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Figure 2.15: Gcs reconstructing a square.
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Figure 2.16: Gcs reconstructing an annulus.
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initial triangle grows to match the input points better (Fig. 2.15(a)).
It is split once t ≥ λs (Fig. 2.15(b)). Afterwards, the triangles grow
again (Fig. 2.15(c)). This process is repeated during the subsequent
iterations (Fig. 2.15(d)–(g)) until the refined mesh covers the square
almost completely (Fig. 2.15(h)). The constructed triangles have very
different sizes. Quite a few are elongated, some are even close to
degenerate. Furthermore, several fold-overs occur.

In the second example the input points P ⊂ P (Eq. 2.2) are drawn
uniformly at random from an annulus. Fig. 2.16 shows the resulting
mesh after different numbers of iterations. The initial triangle grows
and is split with the process repeating as in the first example (Fig.
2.16(a)–(g)). Eventually, all of the constructed vertices are located on
or close to the annulus (Fig. 2.16(h)). The constructed triangles have
very different sizes. Quite a few are elongated, some are even close to
degenerate. It can easily be seen that gcs is unable to reconstruct the
topology of the input data: The learning algorithm constructs a mesh
that bridges the hole in the center of the annulus. Furthermore, there
are many fold-overs and some gaps.

2.7 growing neural gas

Som, ng, trn, and gcs are suitable for surface reconstruction, but they
are rather inflexible: For som, ng, and trn the number of vertices
in the constructed mesh needs to be prespecified and remains fixed
during learning. For som and gcs the topology of the surface needs
to be prespecified and remains fixed. However, ng and trn learn the
topology, and gcs learns the number of vertices.

In order to construct meshes with arbitrary topology and an arbitrary
number of vertices Fritzke introduced growing neural gas (gng) [52, 53]
which combines the capabilities of trn and gcs. Similar to gcs, gng
creates an ordered map by construction. That way, the lateral influence
for position updates does only need to have local support without
any time dependence, leading to reduced complexity and thus shorter
running times compared to trn.

The reconstruction algorithm of gng is a combination of the algo-
rithms used in trn and gcs. It consists of two phases.

〈GNG reconstruction〉 ≡
〈GNG initialization A p. 47〉
〈GNG learning A p. 47〉

During initialization a set V of two vertices vi ∈ V ⊂ R3 is created.GNG initialization

The positions vi of the vertices are initialized to the positions of two
randomly selected input points (Fig. 2.17). The vertex positions will
be optimized during learning. No edges are created as in ng and trn,
since they are created during learning.
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Figure 2.17: Initial configuration of gng reconstructing a square.

〈GNG initialization〉 ≡ Ap. 46
V ..= {v1 , v2} , vi

..= pξi
∈ P , i ∈ {1, 2}

E ..= ∅

As before, online learning is iterated in a loop for a prespecified GNG learning

number tmax of iterations. Alternatively, a predefined convergence cri-
terion can be used, for instance, a prespecified number of constructed
vertices, or a prespecified maximal mean distance between the input
points and the vertex positions.

In each iteration t of gng learning an input point pξt
is selected

randomly from the set P ⊂ R3 of input points. For the selected
input point pξt

the best matching, i.e., closest, vertex vb ∈ V , and the
second-best matching vertex vc ∈ V with respect to the `2-norm ‖·‖
are determined. In order to adapt the density of the constructed mesh
to the density of the input points, each vertex vi ∈ V keeps track of
its activity τ (Eq. 2.5) that decays over time like in gcs. The activity of
the best matching vertex is incremented by its squared distance to the
input point. Afterwards, the vertex positions are updated according
to the position update rules of gcs, the topology is updated according
to the topology update rules of trn, and the density is updated in a
similar way as in gcs.

〈GNG learning〉 ≡ Ap. 46
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

vb = arg minvi∈V ‖vi − pξt
‖

vc = arg minvi∈V \{vb} ‖vi − pξt
‖

τ(vb) ..= τ(vb) + ‖vb − pξt
‖2

〈GCS position updates A p. 41〉
〈TRN topology updates A p. 36〉
〈GNG density updates A p. 48〉
τ(vi) ..= ατ(vi) , ∀vi ∈ V

end for each
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Table 2.5: Learning parameters used in the gng examples.

Parameter Value

Step size (best match vb) β 0.2
Step size (direct neighbors vn ∈ Nvb) η 0.006
Maximum edge age amax 50
Activity decay α 0.995
Iterations until mesh refinement λs 100
Activity factor on mesh refinement αs 0.5

Whenever the number of iterations is an integer multiple of aGNG density updates

predefined parameter λs, a new vertex vo is added to the constructed
mesh. It is placed in the middle of the edge (vm, vn) connecting the
most active vertex vm to its most active neighbor vn. Afterwards, vo is
connected to vm and vn, whereas the original edge (vm, vn) is deleted.
Finally, the activity of vm and vn is decreased by a prespecified factor
αs. The activity of the new vertex is initialized with the activity of vm.

〈GNG density updates〉 ≡ App. 47, 53
if t ≡ 0 (mod λs) then

vm = arg maxvi∈V τ(vi)

vn = arg maxvi∈Nvm
τ(vi)

V ..= V ∪ {vo
..= vm+vn

2 }
E ..= (E ∪ {(vm, vo), (vo, vn)}) \ (vm, vn)

τ(vm) ..= αsτ(vm)

τ(vn) ..= αsτ(vn)

τ(vo) ..= τ(vm)

end if
Fig. 2.17 shows an example of an initial gng configuration. TheExamples for

GNG learning network initially contains two vertices that are placed at the position
of two randomly selected input points. The learning parameters that
are used in the reconstruction examples are set to the values that
Fritzke [52] used (Tab. 2.5).

In the first example the input points P ⊂ P (Eq. 2.1) are drawn
uniformly at random from a square. Fig. 2.18 shows the resulting
mesh after different numbers of iterations. In the first iteration both
initial vertices get connected by an edge. During the first 99 iterations
this line segment moves and gets longer so that the vertices match the
input points better (Fig. 2.18(a)). It is split and it bends once t ≥ λs

(Fig. 2.18(b)). The vertices get connected to a first triangle during the
next few iterations (Fig. 2.18(c)). Afterwards, the constructed mesh is
refined repeatedly. The vertices spread out, new edges are added and
obsolete ones are deleted (Fig. 2.18(d)–(g)). Eventually, the constructed
mesh covers the input square almost completely (Fig. 2.18(h)). Some
intersecting edges exist. Many triangles have been created with only
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Figure 2.18: Gng reconstructing a square.
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Figure 2.19: Gng reconstructing an annulus.
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Figure 2.20: Initial configuration of gsrm reconstructing a square.

very few being degenerate. However, several higher order polygons
remain untriangulated. Only few edges intersect. The triangulation
created by gng (Fig. 2.18(h)) is apparently much more regular than
the one created by gcs (Fig. 2.15(h)).

In the second example the input points P ⊂ P (Eq. 2.2) are drawn
uniformly at random from an annulus. Fig. 2.19 shows the resulting
mesh after different numbers of iterations. The characteristics of the
results are very similar to the square example. However, at first a
ring of connected vertices is created (Fig. 2.19(a)–(e)). Eventually, the
vertices spread out (Fig. 2.19(f), (g)). Finally, all constructed vertices
are located on the input annulus (Fig. 2.19(h)). As before, some
intersecting edges exist, and many triangles have been created with
only very few being degenerate, but several higher-order polygons
remain untriangulated.

2.8 growing self-reconstruction map

Gng combines the quality of trn with the growing mechanism of gcs,
but does not create triangular faces during learning. To overcome
this—at least to some extent—do Rêgo et al. [41] proposed the grow-
ing self-reconstruction map (gsrm) that extends gng by creating some
triangles during learning and the remaining ones during a separate
post-processing step, similar to the one used in ng (Sec. 2.4).

The basic reconstruction algorithm of gsrm consists of three phases.

〈GSRM reconstruction〉 ≡
〈GSRM initialization A p. 52〉
〈GSRM learning A p. 52〉
〈GSRM post-processing A p. 54〉

Gsrm is initialized in a similar way as gng. During initialization GSRM initialization

a set V of three vertices vi ∈ V ⊂ R3 is created, instead of two as in
gng. The positions vi of the vertices are initialized to the positions of
three randomly selected input points (Fig. 2.20). No edges are created
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as in ng, trn, and gng, since they are created during learning. Finally,
an initially empty set of triangles is created.

〈GSRM initialization〉 ≡ Ap. 51
V ..= {v1 , v2 , v3} , vi

..= pξi
∈ P , i ∈ {1, 2, 3}

E ..= ∅
F ..= ∅

Gsrm uses a learning algorithm that resembles the one of gng.GSRM learning

However, gsrm topology updates create triangles and use extended
edge creation and removal schemes. For gsrm notation is extended:
Let Fe(·) yield the set of faces that are adjacent to an edge:

Fe : E A P(F ) ,

with Fe
(
(vi, vj)

)
= {4(vi, vj, vk) ∈ F | vk ∈ Nvi ∩Nvj} ,

where P(·) denotes the power set.
As before, online learning is iterated in a loop for a prespecified

number tmax of iterations. Alternatively, a predefined convergence cri-
terion can be used, for instance, a prespecified number of constructed
vertices or triangles, or a prespecified maximal mean distance between
the input points and the constructed mesh.

In each iteration t of gsrm learning an input point pξt
is selected

randomly from the set P ⊂ R3 of input points. For the selected input
point pξt

the best matching, i.e., closest, vertex vb ∈ V , and the second-
best matching vertex vc ∈ V with respect to the `2-norm ‖·‖ are
determined. In order to update the density of the constructed mesh
according to the density of the input points, each vertex vi ∈ V keeps
track of its activity τ (Eq. 2.5) that decays over time. The activity of
the best matching vertex is incremented by its squared distance to the
input point. Afterwards, the vertex positions are updated according
to the position update rules of gcs. Then, the topology is updated
according to a more elaborate rule than in trn and gng. Finally, the
density is updated as in gng, with the extensions that the adjacent
faces are deleted whenever an edge is deleted, and that the activity of
the new vertex is interpolated*.

〈GSRM learning〉 ≡ Ap. 51
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

vb = arg minvi∈V ‖vi − pξt
‖

vc = arg minvi∈V \{vb} ‖vi − pξt
‖

τ(vb) ..= τ(vb) + ‖vb − pξt
‖2

〈GCS position updates A p. 41〉
〈GSRM topology and surface updates A p. 53〉

* Thus, add F ..= F \ Fe
(
(vm, vn)

)
and τ(vo) ..= τ(vm)+τ(vn)

2 .
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〈GNG density updates A p. 48〉*

τ(vi) ..= ατ(vi) , ∀vi ∈ V
end for each

In gsrm edges are created similar to the original chl rule that was GSRM topology and
surface updatesalready used in trn and in gng. However, do Rêgo et al. [41] extended

chl in order to make it better suited for surface reconstruction: In each
iteration a new edge (vb, vc) is created if it does not yet exist, and—in
addition to the original chl rule—if the best vb and the second-best
matching vertex vc do not share more than two common neighbors.
If they shared three or more neighbors and were connected by a new
edge, then three or more faces would be created adjacent to that edge,
violating the desired 2-manifold property of the constructed mesh.

Furthermore, if vb and vc share two common neighbors vi, vj that
are connected, then the connecting edge (vi, vj) and its adjacent trian-
gles will be removed before creating the new edge (vb, vc). That way,
overlapping or intersecting edges are avoided.

If the new edge (vb, vc) generates one or two loops of three edges,
and if each of the edges in the respective loop has less than two adja-
cent triangles, then a new triangle will be created for the respective
loop. In order to improve the quality of the constructed mesh, ob-
tuse triangles are removed. Finally, obsolete edges are detected and
removed by aging as in trn and gng, with the extension that the
adjacent faces are deleted whenever an edge is deleted†.

〈GSRM topology and surface updates〉 ≡ App. 52, 54
if Nvb ∩Nvc = {vi, vj} ∧ (vi, vj) ∈ E then

F ..= F \ Fe
(
(vi, vj)

)
E ..= E \ {(vi, vj)}

end if

if |Nvb ∩Nvc | ≤ 2∧ (vb, vc) 6∈ E then
E ..= E ∪ {(vb, vc)}
F ..= F ∪ {4(vb, vc, vn) | vn ∈ Nvb ∩Nvc ,

|Fe
(
(vc, vn)

)
| < 2 ,

|Fe
(
(vn, vb)

)
| < 2}

else if (vb, vc) ∈ E then
〈GSRM obtuse triangle removal A p. 54〉

end if
〈TRN obsolete edge removal A p. 36〉†

Whenever the edge (vb, vc) already existed, then for each edge GSRM obtuse triangle
removal(vb, vi) emanating from vb the Thales circle in the plane that contains

vb, vc, and vi is determined in order to detect and remove obtuse
triangles. If vc lies inside that circle, the triangle4(vb, vi, vc) is obtuse,

* Thus, add F ..= F \ Fe
(
(vm, vn)

)
and τ(vo) ..= τ(vm)+τ(vn)

2 .
† Thus, add F ..= F \ Fe

(
(vk, vl)

)
, ∀(vk, vl) ∈ Eamax .
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Table 2.6: Learning parameters used in the gsrm examples.

Parameter Value

Step size (best match vb) β 0.05
Step size (direct neighbors vn ∈ Nvb) η 0.0006
Maximum edge age amax 30
Activity decay α 0.9995
Iterations until mesh refinement λs 200
Activity factor on mesh refinement αs 0.5

i.e., one of its angles is greater than 90°. Thus, edge (vb, vi) and its
adjacent triangles are deleted.

〈GSRM obtuse triangle removal〉 ≡ Ap. 53
Eo = {(vb, vi) ∈ E | ‖ vb+vi

2 − vc‖ < ‖vb−vi‖
2 }

F ..= F \ Fe
(
(vb, vi)

)
, ∀(vb, vi) ∈ Eo

E ..= E \ Eo

The topology updates of gsrm leave several higher-order polygonsGSRM

post-processing untriangulated, similar to ng, trn, and gng. In order to triangulate
the constructed mesh, do Rêgo et al. [41] execute a post-processing
step after the learning loop has finished. This post-processing step is
similar to the one that was used to created the edges in ng. Basically,
the gsrm topology and surface updates are reused without the edge
aging and removal steps. However, as in ng, this chl-based topology
learning still leaves some higher-order polygons untriangulated. These
are triangulated by adding suitable triangle fans.

〈GSRM post-processing〉 ≡ Ap. 51
〈GSRM topology and surface updates A p. 53〉*
Triangulate higher-order polygons

Fig. 2.20 shows an example of an initial gsrm configuration. TheExamples for
GSRM learning network initially contains three vertices that are placed at the position

of three randomly selected input points. The learning parameters
that are used in the reconstruction examples are set to the values that
do Rêgo et al. [41] used (Tab. 2.6). The post-processing step is not used
in the following examples making the results comparable to sgng that
is proposed later in this dissertation (Ch. 4), and that is based on gsrm.

In the first example the input points P ⊂ P (Eq. 2.1) are drawn
uniformly at random from a square. Fig. 2.21 shows the resulting mesh
after different numbers of iterations. During the first 99 iterations
the three initial vertices get connected by edges. Once the edge loop
is closed, a triangular face is added (dark gray) (Fig. 2.21(a)). One
edge is split once t ≥ λs. Due to the split the triangle is removed
leaving an untriangulated four-loop of edges (Fig. 2.21(b)). Afterwards,

* Without edge aging and removal.
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Figure 2.21: Gsrm reconstructing a square.
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Figure 2.22: Gsrm reconstructing an annulus.
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the constructed mesh is refined repeatedly, while the vertices spread
out and new edges are added (Fig. 2.21(c), (d)). Eventually, edges
are added that create loops of three edges and thus triangles (Fig.
2.21(e)–(g)). Finally, the vertices are distributed fairly evenly across the
input square, but only few triangles are created during learning (Fig.
2.21(h)). Thus, post-processing is inevitable for gsrm. Nevertheless,
most of the triangles that are created during learning are of similar
size with only few irregularities.

In the second example the input points P ⊂ P (Eq. 2.2) are drawn
uniformly at random from an annulus. Fig. 2.22 shows the resulting
mesh after different numbers of iterations. The characteristics of the
results are very similar to the square example: The triangle created
during early iterations is split and deleted (Fig. 2.22(a), (b)), and
a ring of connected vertices is created (Fig. 2.22(c)–(f)). Eventually,
the vertices spread out and triangles and higher-order polygons that
remain untriangulated are created (Fig. 2.22(g), (h)). As in the previous
example, only few triangles are created during learning.
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3
G R O W I N G C E L L S T R U C T U R E S
LEARN PROGRESSIVE MESHES *

Several related artificial neural networks that can be used to recon-
struct a surface from an unstructured point cloud have been presented
in the previous chapter. One of them, growing cell structures (gcs), au-
tomatically adapts the density of the constructed mesh to the density
of the input points by applying edge split and edge collapse operations
(Sec. 2.6). Ivrissimtzis et al. [70] replaced the former operation with the
very closely related vertex split in order to improve the quality of the
constructed mesh. The same pair of operations—vertex split and edge
collapse—is used when generating a progressive mesh (pm) proposed by
Hoppe [62]. Thus, gcs and pm are related.

This relationship is examined in this chapter, and the learning algo-
rithm of gcs is modified using a binary tree of vertex split operations
in order to create a pm directly. Thus, the constructed triangle meshes
share the features of a pm, e.g., continuous level of detail, geomorphs,
and compact storage, at any time during learning. Additionally, the
binary tree induces a bounding volume hierarchy (bvh) for the nearest
neighbor search that is required in gcs. Its performance is similar to
the performance of an octree that is commonly used in gcs.

3.1 progressive meshes

At first, three operations edge split, vertex split, and edge collapse are
examined closely.

Ivrissimtzis et al. [70] note that the edge split that is used in Fritzke’s Edge split

gcs [50, 51] does not distribute the valences of the vertices well. There-
fore, they replace the edge split with a vertex split. Fig. 3.1 illustrates
the difference between the two: For an edge split (Fig. 3.1, center to left)

* Parts of this chapter have been published in [121] Tom Vierjahn, Guido Lorenz,
Sina Mostafawy, and Klaus Hinrichs. Growing cell structures learning a progressive
mesh during surface reconstruction – a top-down approach. In Eurographics 2012 -
Short Papers, 2012. doi: 10.2312/conf/EG2012/short/029-032.
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Figure 3.1: Edge split es(·) and edge collapse ec(·) versus vertex split
vs(·) and edge collapse operations.

in the original gcs the longest edge emanating from vm, i.e., (vm, vn),
is split by adding a new vertex vo in the middle of the edge. For this
purpose the edge and its adjacent triangles are deleted. Afterwards,
new edges are inserted so that the new vertex vo is connected to vm

and vn, and to their common neighbors. Finally, a triangle is created
for each loop of three edges that contains vo. Thus, the valence of vm

does not change during an edge split, the valence of each of the com-
mon neighbors of vm, vn is incremented by one, and the new vertex
vo has a valence of 4, whereas a valence of 6 is desirable in order to
create a mesh containing regular triangles.

The vertex split that is used by Ivrissimtzis et al. [70] (Fig. 3.1, centerVertex split

to right) also adds a new vertex vo. This time, intuitively, by dupli-
cating the edge strip (vr, vm), (vm, vs)—indicated by the double line
in Fig. 3.1 (center)—and assigning the name vo to the copy of vm.
Afterwards, vo is moved to its desired position and connected to vm

by a new edge. Finally, new triangles 4(vm, vo, vs) and 4(vm, vr, vo)

are inserted to close the respective edge loops. By carefully selecting
vr and vs in such a way that the star of edges emanating from vm is
approximately split in half, some of the edges that are emanating from
vm are transferred to vo. Thus, valences of vm and vo are balanced,
their difference is at most one, and eventually the resulting triangles
will be more regular.

While an edge split es(vm, vn) is unambiguously defined by specify-
ing its source vertex vm and its target vertex vn, a vertex split requires
different vertices to be specified: Besides the source vertex, the vertex
vo that is created by the vertex split needs to be specified instead of the
target vertex. Furthermore, the left vertex vs and the right vertex vr,
in the direction of the split from vm to vn (Fig. 3.1), need to be speci-
fied in order to unambiguously define a vertex split vs(vm, vs, vr, vo).
Both operations es(vm, vn) and vs(vm, vs, vr, vo) are equivalent, iff
vo =

1
2 (vm + vn) and vs, vr are the common neighbors of vm, vn.

While in general edge split and vertex split are different, both opera-Edge collapse

tions share the same inverse: the edge collapse (Fig. 3.1, left to center,
right to center). An edge collapse removes a vertex vo from the mesh
by first deleting the edge (vo, vm) and its adjacent triangles. Addi-
tionally, the edges connecting vo to the common neighbors of vm, vo

are deleted, but their adjacent triangles are preserved and attached
to vm. Afterwards, the remaining edges emanating from vo and their
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3.1 progressive meshes

adjacent triangles are detached from vo and attached to vm. Finally,
the vertex vo is deleted. An edge collapse ec(vo, vm) is unambiguously
defined by specifying its source vertex vo and its target vertex vm.

Let M = (V , E , F ) denote a mesh consisting of a set V of vertices, Mesh
transformationsa set E of edges, and a set F of triangles. Then, a vertex split vs(·)

constitutes a transformation turning M into a transformed mesh M ′ =
(V ′, E ′, F ′) consisting of a transformed set V ′ of vertices, a transformed
set E ′ of edges, and a transformed set F ′ of triangles:

M
vs(·)

GGGGGA M ′ ,

or using function notation

M ′ = vs(·)(M ) .

The same applies to an edge collapse ec(·):

M ′ ec(·)
GGGGA M ,

or using function notation

M = ec(·)(M ′) .

Consequently, let ec(·) = vs−1(·) ⇐⇒ ec−1(·) = vs(·), then

M
vs(·)

GGGGGA M ′ ec(·)
GGGGA M , or M =

(
ec(·) ◦ vs(·)

)(
M
)

.

The application of a transformation is called move from M to M ′.
Composition is not commutative. If

M =
(
ec(vo, vm) ◦ vs(vm, · , · , vo)

)(
M
)

is defined, then (
vs(vm, · , · , vo) ◦ ec(vo, vm)

)(
M
)

is not, since vo 6∈ M .

Hoppe et al. [65] defined a legal move in the context of mesh op- Legal moves

timization to be a move that does not change the topological type
of the mesh that it is applied to, i.e., that does not create holes or
non-manifold edges. This definition is also used here. A vertex split
does not change the topological type of M and is thus always a legal
move. In contrast, an edge collapse may change the topological type of
M . Therefore, tests have to be performed in order to make sure that
the desired edge collapse is a legal move.

Hoppe et al. [65] list three conditions for testing whether an edge
collapse is a legal move. They prove the conjunction of them to be
a necessary and sufficient condition for a legal move [66]. For this
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Figure 3.2: A legal (a) and an illegal (b) edge collapse ec (vo, vm).

purpose additional definitions are made: An edge (vm, vo) ∈ E is
defined to be a boundary edge if there exists only one4(vm, vo, vk) ∈ F
adjacent to it. Furthermore, a vertex vm is defined to be a boundary
vertex if there exists a boundary edge (vm, vl) ∈ E . Let M denote a
mesh with M = (V , E , F ). Let furthermore vm, vo ∈ V and (vm, vo) ∈
E . Then, an edge collapse ec(vo, vm) that is applied to M in such a way
that M ′ = ec(vo, vm)(M ) with M ′ = (V ′, E ′, F ′) is a legal move, iff

• ∀vk ∈ Nvm ∩Nvo : 4(vm, vo, vk) ∈ F , and

• if vm, vo are boundary vertices, (vm, vo) is a boundary edge, and

• |V | > 4 if neither vm nor vo are boundary vertices, or
|V | > 3 if either vm or vo are boundary vertices.

The last condition is strengthened to |V | > 4 for practical purposes
in gcs. It holds true in all but the very first iterations, since the con-
structed mesh grows. The second condition holds true by construction
in gcs if watertight objects are reconstructed. The first condition is
explicitly checked.

Fig. 3.2 shows an example for a legal and an illegal edge collapse
ec(vo, vm). The same set of vertices is used for both examples, but
their connectivity is slightly different. The figure shows a part of
a completely triangulated mesh, but triangles are not depicted for
the sake of clarity. Thus, neither vm nor vo are boundary vertices,
indicated by the dotted lines that are denoting further edges. The
edge (vm, vo) is not a boundary edge. Furthermore, |V | > 4. Thus the
second and the third conditions are satisfied.

In Fig. 3.2(a) vm, vo share two common neighbors vr, vs. Both tri-
angles 4(vm, vo, vr),4(vm, vo, vs) ∈ F . Thus, all three conditions
hold true, and ec(vo, vm) is a legal move. In contrast, in Fig. 3.2(b)
vm, vo share three common neighbors vr, vs, vt. Only the triangles
4(vm, vo, vr),4(vm, vo, vs) ∈ F , but 4(vm, vo, vt) 6∈ F . Thus, the first
condition is violated, and this time ec(vo, vm) is not a legal move.

If the edge collapse ec(vo, vm) is applied to the latter mesh anyway,
duplicate coincident triangles and edges will be introduced that will
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most likely cause an implementation of gcs to crash. If such duplicate
faces and edges are resolved correctly, the edge collapse will change
the topological type of the mesh: Edge (vs, vt) ∈ E ′ will be a bound-
ary edge, although (vs, vt) ∈ E is not. Furthermore, (vm, vt) ∈ E ′

will have three adjacent faces although (vm, vt), (vo, vt) ∈ E had two
adjacent faces each.

Thus, whenever an inactive vertex is to be removed in gcs by an
edge collapse, at first the set of legal moves is determined that remove
the vertex. If no legal edge collapse exists, removal of the inactive vertex
is deferred to a later iteration. Otherwise the edge collapse that causes
the lowest regularity error is applied to the constructed mesh. See
Sec. 2.6 for details.

With the above definitions available, Hoppe [62] notes that apply- Progressive mesh

ing a sequence of n edge collapse operations to a triangle mesh M n

transforms M n into a coarser mesh M0

M n ec1
GGGA M n−1 ec2

GGGA . . .
ecn−1

GGGGGA M 1 ecn
GGGA M 0 ,

or using function notation

M 0 =
(
ecn ◦ . . . ◦ ec1

)(
M n) ,

with each eci = ec(·) using individual vertices as source and target.
Consequently, since each eci is invertible, any mesh M n is represented
by an initial, simple mesh M 0 and a sequence of vertex split operations

M 0 vs1
GGGA M 1 vs2

GGGA . . .
vsn−1

GGGGGA M n−1 vsn
GGGA M n ,

or using function notation

M n =
(
vsn ◦ . . . ◦ vs1

)(
M 0) ,

with each vsi = vs(·) using individual vertices as source, new, left,
and right vertex. The tuple (M 0, f ) with f = vsn ◦ . . . ◦ vs1 is called
progressive mesh (pm) representation of M n.

A pm representation has several practical features. Geomorphs can
be implemented in a straightforward way, creating smooth visual
transitions from any M i to any M i+j. Furthermore, meshes can be
transmitted progressively and in a compressed format, e.g., from/to
disk, over a network connection, or onto the gpu*. Finally, a pm allows
for selective refinement and continuous level of detail.

Hoppe [62] proposes a preprocess to construct a pm based on his
mesh optimization approach [65]. In that approach the sequence
of edge collapse operations is determined by minimizing an energy
function that penalizes large distance errors and large numbers of
vertices, and that adds a regularization term. However, many other

* Progressive meshes are for instance included in the Microsoft® Direct3d® api [96].
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error metrics that are used to find suitable simplification steps exist [57,
63, 86, 131]. Xia and Varshney introduce a hierarchical merge tree
to create a pm representation of a detailed triangle mesh [132]. A
precomputed pm can be refined in parallel [69], and the level of detail
can be used during rendering [103]. Since gcs produces a sequence of
vertex split operations, it is well suited to create a pm. A modification
to the original learning algorithm is presented in this chapter that
enables gcs to construct a pm while learning.

3.2 problem statement

Using gcs to construct M n representing an original surface is regarded
as a transformation

M n = f (M 0)

of the initial mesh M 0, i.e., the tetrahedron or a single triangle. How-
ever, f is then composed not only of vertex split operations, but also
of edge collapse operations. Thus in general, the tuple (M 0, f ) that
is created by gcs is no pm representation of M n, but very similar to
such a representation. Level of detail (lod) can still be achieved by
subsequently applying the inverted vertex split and edge collapse oper-
ations of f−1 to M n = (V n, En, F n). But whenever an edge collapse of
f is inverted during the lod steps from the fine mesh M n towards
the coarser mesh M 0, the number of vertices is increased. Since these
superfluous vertices do not belong to V n, they would have to be stored
separately. To overcome this, the edge collapse operations of gcs are
replaced by a more general vertex removal in such a way that gcs
iteratively learns a pm representation.

Until the first inactive vertex vo is removed from a mesh M m, only
vertex split operations have been performed so far. Thus the corre-
sponding transformation

f = vsm ◦ . . . ◦ vs1

that has been recorded in order to construct M m = f (M 0) is a compo-
sition of vertex split operations. Instead of applying an edge collapse to
M m that removes vo, i.e., recording ecm+1 ◦ f , an alternative transfor-
mation f ′ is determined that does not produce the inactive vertex vo

from M 0 in the first place. Thus, vo is erased from history.

3.3 an intuitive approach

Let M m = f (M 0) denote the triangle mesh that has been constructed
so far with gcs by applying

f = vsm ◦ . . . ◦ vsk ◦ . . . ◦ vs1
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to the initial mesh M 0. Let furthermore vo denote the inactive vertex
to be removed, and let vsk = vs(vm, vs, vr, vp) denote the latest vertex
split that affected vo either as the source vertex, i.e., vm = vo, or as the
new vertex, i.e., vp = vo. Then, f can be rewritten as

f = h ◦ vsk ◦ g ,

where

g = vsk−1 ◦ . . . ◦ vs1

h = vsm ◦ . . . ◦ vsk+1 .

In order to remove the inactive vertex from the mesh M m the in-
verted transformation

(h ◦ vsk)
−1 = vs−1

k ◦ h−1 = vs−1
k ◦ vs−1

k+1 ◦ . . . ◦ vs−1
m

is applied to M m simplifying it to M k−1 with the set V k−1 of vertices.
If vsk affected vo as the new vertex, i.e., vp = vo, then vo 6∈ V k−1, since
vo has been removed by reverting vsk . Thus, vo is deleted.

If on the other hand vsk affected vo as the source vertex, i.e., vm = vo,
then vo ∈ V k−1, and it is thus still connected in M k−1. Therefore, vo

cannot be deleted. Instead its neighbor vp is deleted since vp 6∈ V k−1

after reverting vsk. Afterwards, vo takes the role of vp in the mesh.
For this purpose vo is moved to the position of vp. Furthermore, the
activity of vp and if applicable any other attributes are transferred to
vo. Thus, if vsk affects vo as the source vertex, removal of vo is replaced
by removal of its neighbor vp. As a consequence every reference to vp

in the transformations of h is replaced by a reference to vo.
Special care has also to be taken if no vsk exists, since vo ∈ V 0, and

vo is neither affected as the source vertex nor as the new vertex by any
vertex split recorded so far. In this case f is rewritten as f = h ◦ vs1,
and f−1 is applied to M m, simplifying it to the initial mesh M 0, with
the initial set V 0 of vertices, and vo still connected in the mesh. As in
the previous case, vo takes the role of the new vertex that is created
by the vertex split that is reverted last, this time vs1.

Finally, all vertex split operations of h are reapplied to M k−1 in order
to get back a detailed mesh M m′ reusing the original vertex positions
and if applicable other attributes from the vertices in V m with one
caveat: Since a vertex has been deleted, some vr or vs might have
become invalid in some vsi = vs(vm, vr, vs, vp) of h. Thus, these vsi
are repaired by determining new suitable right and left vertices vr, vs

in such a way that valences get distributed evenly. To emphasize this,
the composition of the repaired operations is denoted by h′.

Let M c = (V c, E c, F c) denote the mesh produced by removing vo

from M m by an edge collapse as in the original gcs, and let M m′ =

(V m′ , Em′ , F m′) denote the mesh produced by removing vo from M m
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with the new technique. Then, |V m′ | = |V c|, |Em′ | = |E c| and |F m′ | =
|F c|. Furthermore, the learned positions of the vertices in M m′ are the
same as those in M c. So, M m′ is similar to M c and the transformation
h′ ◦ g is the desired one. By construction all operations of h′ ◦ g
are vertex split operations, and thus the tuple

(
M 0, (h′ ◦ g)

)
is a pm

representation of M m′ .

3.4 split tree

Gcs with the modified vertex removal from the previous section
creates a composition of vertex split operations vsi = vs(vm, vr, vs, vp)

refining a coarse, initial mesh to a detailed one. Connecting the
individual operations of that composition with respect to their source
vertices vm and their new vertices vp creates a binary tree. This tree is
automatically learned during the modified gcs surface reconstruction
process and is referred to as a split tree. Since it contains only vertex
split operations by definition, it is—in combination with an initial
mesh—a representation of a detailed mesh that is equivalent to a pm.

Basically, the split tree is related to the merge tree that Xia and
Varshney [132] use. However, in contrast to their approach, the split
tree is constructed top-down in the modified gcs. Furthermore, it uses
the vertex split operations as internal nodes connected by edges that
represent the vertices. Therefore, a split tree constitutes an operator
tree. The vertices of the initial mesh M 0 are represented by the edges
leaving the root node R of the tree, whereas the vertices of the detailed
mesh M n are represented by the leaf nodes of the tree. Thus, the root
node is i-ary, with i = |V 0| the number of initial vertices in M 0. Fig.
3.3 shows the first 8 vertex split operations that are executed in the gcs
example (Fig. 2.15). Fig. 3.4 shows the corresponding split tree.

3.5 the optimized approach

In Sec. 3.3 an intuitive approach to letting gcs learn a pm has been
presented. A closer examination of the algorithm indicates that there
is room for optimization leading to a more efficient algorithm: In the
intuitive approach an inactive vertex vo is removed by reverting all
recent vertex split operations up to the latest vsk that affected vo as
the source or the new vertex. Afterwards, all operations but vsk are
reapplied. That way, many vertices, edges, and triangles are discon-
nected and reconnected, and running time depends on the number
of operations that have been recorded after vsk. To optimize vertex
removal, some key observations are used. These observations and the
drawn conclusions that are leading to the desired optimizations are
presented in the following.

Both vertex split and edge collapse have only local influence on theLocal influence

mesh. During a vertex split a new vertex is inserted in the middle
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Figure 3.3: The first 8 vertex split operations that are executed in the
gcs example (Fig. 2.15). The index i of each vertex vi is
printed in the circles that are representing the vertices. A
non-existent left or right vertex is denoted by ε.
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Figure 3.5: The regions of neighborhood defined by branch vs1 of the
split tree immediately before (a) and after (b) vs8 is applied
to the mesh.

of the edge connecting a source vertex vm to one of its neighbors
(cf. Sec. 3.1). Thus, by construction, the triangle mesh is modified
only inside the polygon that is bounded by the directly connected
neighbors of vm (Fig. 3.1). The same applies to an edge collapse, since
it is the inverse of a vertex split. Thus, removing an inactive vertex
influences the mesh only locally.

Consequently, each branch of the learned split tree defines a local,
continuous, hole-free region of neighborhood on the surface of the
constructed mesh. Fig. 3.5 shows these regions of neighborhood for
branch vs1 of the previous example’s split tree. A region defined by
one branch can only be subdivided by vertex split operations that are
added to the same branch. It cannot be subdivided by adding a vertex
split to a different branch. The region that corresponds to vs6 in Fig.
3.5(a), for instance, contains vertices v2 and v9. Only a vertex split
affecting v2 or v9 as the source vertex subdivides the region, i.e., vs8

in this case (Fig. 3.5(b)). Vertex split operations affecting a vertex as the
source vertex that lies outside a region only move the boundary of the
respective region. In this example, applying vs8 moves the boundary
of the region corresponding to vs2 and causes it to shrink.

From these regions of neighborhood and the local influence of the
operations a first optimization strategy is devised: Let vsk denote the
latest vertex split that affects the vertex to be removed either as the
source vertex or as the new vertex. Then, only those operations need
to be reverted that are located in the branch below vsk.

The first optimization strategy reduces the number of operationsImmediate revert

that are reverted and reapplied, and thus reduces the number of edges
and triangles that are disconnected and reconnected. However, in the
worst case, vsk might be the child of the root node of the split tree.
Thus still a significant number of operations is reverted and reapplied.
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In total, the intuitive approach and the first optimization strategy
both remove a single vertex split from the split tree. Since this operation
has only local influence, a second optimization strategy is devised:
Let vsk again denote the latest vertex split that affects the vertex to
be removed either as the source vertex or as the new vertex. Then,
vsk might be invertible and thus removed from the split tree directly.
However, in practice, many vertices and thus the respective vertex split
cannot be removed, since the respective reversal is illegal. Thus, the
respective removal is deferred until the operation has become legal.

Deferring removal reduces the quality of the mesh. In order to More candidates

improve the quality a third optimization strategy is devised: Inactivity
is caused by a triangle mesh that has become too dense so that some
vertices are moved to locations where they are no longer activated by
any input point. The original gcs removes the inactive vertex and thus
reduces the number of vertices

It turns out that this can be addressed differently if vsk cannot be
reverted: Instead of removing the inactive vertex vo, it might be legal
to remove one of its neighbors vn by reverting the latest vertex split
that affected vn as the source vertex or as the new vertex. Afterwards,
vo is moved to the former position of vn, replacing it. That way the
number of candidate reversals is increased, and it is more likely that a
legal edge collapse is found. Thus, inactive vertices are removed earlier.

These strategies lead to a working surface reconstruction algorithm, Practical
consequencesreverting only one vertex split during each vertex removal, directly,

without disconnecting and reconnecting numerous vertices, edges and
triangles. The triangle mesh is still represented by a split tree at any
learning step. Unfortunately, after a certain number of vertex removals
using the above algorithm, relying only on the criteria for legality by
Hoppe et al. [65], the split tree cannot be reverted any more in order
to get back to a coarser mesh. Thus, many desired features of the
progressive mesh representation are not applicable directly anymore,
e.g., continuous level of detail.

3.6 simulated reversal

The set of criteria whether it is legal to revert a vertex split defined
by Hoppe et al. [65] is not applied only to a single vertex split, but
to the complete composition of vertex split operations. That way the
algorithm ensures that the split tree remains revertible at any time
during reconstruction.

For any vertex vi of a triangle mesh an ordered sequence (nvi) = Sequence of
neighbors(vj, . . . , vz) of neighbors vj, . . . , vz ∈ Nvi , i.e., vertices that are directly

connected to vi, is determined. The elements in each sequence are
ordered counter-clockwise around vi. For the vertices affected by the
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reversal of vertex split vs(vm, vs, vr, vo) (Fig. 3.1, right to center) the
sequences are:

(nvm) = (vo, vs, . . . , vr)

(nvo) = (vm, vr, . . . , vs)

(nvr) = (vm, . . . , vo)

(nvs) = (vm, vo, . . .)

(nvq) = (vo, . . .) , ∀vq ∈ Nvo \ {vm, vr, vs} .

Let

(nvm) = (vo, vs, (n̂vm), vr)

(nvo) = (vm, vr, (n̂vo), vs) ,

with (n̂vm) and (n̂vo) explicitly denoting the inner parts of the respec-
tive sequences.

In order to simulate the consequences of reverting the vertex splitSimulated collapse

vs(vm, vs, vr, vo), new sequences are determined from the above ones
by removing or replacing vo in the same way that the reversal affects
the neighborhood in the mesh:

(n′vm
) = ((n̂vo), vs, (n̂vm), vr)

(n′vr
) = (vm, . . .)

(n′vs
) = (vm, . . .)

(n′vq
) = (vm, . . .) , ∀vq ∈ Nvo \ {vm, vr, vs} .

If afterwards an element vk appears more than once in any of the
above sequences (n′vi

), then reverting the vertex split will be illegal.
Otherwise, reverting the vertex split will be legal.

Suppose that a sequence of vertex split operations has been recordedSimulated removal

during gcs so that

M n = ( f )(M 0) = (h ◦ vsk ◦ g)(M 0)

= (vsn ◦ . . . ◦ vsk+1 ◦ vsk ◦ vsk−1 . . . ◦ vs1)(M 0) .

Then, checking whether vsk can be removed from f directly while leav-
ing the remaining f ′ invertible, leads to a two-step simulation using
the above algorithm: First, simulate the consequences of reverting only
vsk and check whether reversal will be legal. Second, simulate the con-
sequences of reverting h and check after each individual operation has
been reverted if it will be legal. If both are legal, revert vsk. That way,
no vertices, edges, and triangles are disconnected and reconnected,
but running time still depends on the number of operations that have
been recorded after vsk, and for which reversal has to be simulated.

In order to reduce the number of operations to be simulated, theReducing complexity

findings from the previous subsection are used. Intuitively, they

70
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suggest that only a subset of operations needs to be simulated: The
vertex split operations in the branch below the operation to be reverted.
While this works well in many cases, the resulting split tree is not
revertible in general. Some more operations need to be simulated.

As noted, reverting the k-th vertex split vsk = vs(vm, vs, vr, vo) affects
the set Nvs of vertices, with

Nvs = (Nvm ∪Nvo) \ {vm, vo} .

For each vertex in Nvs the latest vertex split operation of f is determined
that affected the respective vertex either as the source vertex or as the
new vertex. Let Sj denote this set:

Sj = {vsj = vs(v′m, v′s, v′r, v′o) | v′m, v′o ∈ Nvs} .

Every vertex split vsj ∈ Sj is affected directly by reverting vsk. Some
of the vsj ∈ Sj might be located in a branch below a parent vertex split
vsp with p > k. Let Sp denote the set of these parents:

Sp = {vsp | vsj ∈ Sj in branch below vsp, k < p < j} .

It has been discovered, that the set S of vertex split operations, with

S = {vsi | vsi in branch below vsk}∪
Sj ∪ {vsi | vsi in branch below vsj ∈ Sj}∪

Sp ∪ {vsi | vsi in branch below vsp ∈ Sp} ,

contains the set of all vertex split operations that might not be revertible
anymore after directly removing vsk from the split tree. By construc-
tion, they are either directly affected by removing vsk or indirectly
affected by reverting h after removing vsk.

Using S , the number of vertex split operations that are simulated is
reduced: The optimized algorithm from the previous subsection is
applied only to those operations of h that are members of S . Since S
contains only the nodes of a subset of branches of a binary tree, the
time needed to perform a single vertex removal is reduced. It thus
does not depend on the total number of operations that have been
recorded after vsk anymore, but only on the size of a subset of those
operations that is smaller on average.

3.7 implicit bounding volume hierarchy

During gcs learning the best matching, i.e., closest, vertex vb is deter-
mined for each randomly selected input point pξt

with respect to the
`2-norm. Finding vb requires a nearest neighbor search involving all
vertices in V . The straightforward way to find vb uses a linear search
over V . With an increasing number of vertices this becomes infeasible.
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Figure 3.6: The bvh that is implicitly defined by the split tree with the
aabbs slightly enlarged for the sake of clarity (a). Finding
the initial radius r for the nearest neighbor search (b).

There are several data structures, e.g., octrees, bvhs, kd-trees [111,Using the split tree

135], helping efficiently search for vb in a large set of vertices. All
require that a separate data structure is maintained. In contrast, as
noted earlier, the split tree that is created automatically during learning
implicitly creates a hierarchy of regions of neighborhood. The tree
stores the source vertex and the newly created vertex as children
of the same operation. Since the latter vertex is always created in
the immediate vicinity of the source vertex on the surface of the
constructed mesh, the structure of the tree naturally suggests itself
as a basis for nearest neighbor searching. Extending each internal
node with a bounding box that contains all vertices in the branch
below the respective node results in a suitable bvh. The split tree
implicitly dictates the hierarchy of the bounding volumes so that no
time consuming hierarchy creation algorithms like the one proposed
by Goldsmith and Salmon [58] have to be applied. Furthermore,
bottom-up or top-down approaches that are regularly used to create
a bvh are not applicable in an efficient way, since new vertices are
inserted frequently during gcs learning.

The split tree representation of the mesh constructed so far dictatesCreating the bvh

the hierarchy of bounding volumes. Thus, for hierarchy creation an
aabb is added to each inner node of the tree. The aabb of each node
encloses all aabb of all of its child nodes. By definition the aabb of a
leaf node is set-up in such a way that it encloses only the vertex itself.
The root node R of the split tree does not need any bounding box for
the algorithm to work.

The hierarchy is created in an incremental way. If a vertex split is
applied to the mesh, the aabb of the corresponding node is computed
in such a way that it encloses only the source vertex and the newly
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created vertex. If a vertex is moved, the aabb it is contained in is
updated. In both cases the aabbs of the parent nodes are updated
accordingly, if necessary. Each update affects only a single path up to
the root node of the split tree. Fig. 3.6a shows the bvh induced by the
split tree from the previous example.

The best matching vertex vb for an input point pξt
is found by a Nearest neighbor

searchrecursive branch and bound search in the bvh defined by the split tree.
The algorithm traverses the split tree starting at the root node R and
searches for vb inside a ball with radius r around pξt

. While searching,
r is iteratively reduced. Initially, r = ∞. Let n denote the node that is
currently processed, and let A(n) denote its aabb. Let furthermore ε

denote an non-existent vertex, similar to nullptr in C++.

〈Find vb〉 ≡
r ..= ∞
n = R
vb = ε

findNN(pξt
, r, n, vb)

At first, the smallest radius r of a ball around pξt
is determined in

such a way that the ball is just large enough to contain an aabb of one
of the node’s children. Let B yield the required ball

B : P ×R 7A P(R) , with B(p, r) = {x ∈ R3 | ‖x− p‖ ≤ r} ,

where P(·) denotes the power set.

〈findNN’s definition〉 ≡
function findNN(in p, inout r, inout n, inout vb)

for each child node c of n do
r′ = min{d ∈ R | B(p, d) ∩ A(c) = A(c)}
r ..= min(r, r′)

end for each
Fig. 3.6b shows an example for the split tree’s root node R and a point
pξt

. There, the smallest ball around pξt
is just large enough to contain

the aabb corresponding to vs5.

Afterwards, the aabb of each child node of vs5 is checked if it is
intersected by or contained in the ball with radius r around pξt

. If an
intersection with the aabb of a leaf node is detected, the corresponding
vertex is stored as the closest vertex found so far. Otherwise, if an
intersection with a child node’s aabb is detected, the respective branch
is traversed as before, further reducing r and potentially finding a
vertex that is located closer to pξt

. If no intersection has been detected,
the respective branch is skipped. In the example of Fig. 3.6b the
branches of vs3 and vs6 are skipped. Consequently, only the vertices
v1, v4, v5, v8, v10 are considered during nearest neighbor search.
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Table 3.1: Results of the progressive mesh experiments.

Cathedral Bunny Buddha Lucy

Median time / s gcs ot 258.1 199.4 241.3 192.2
intuit. ot 446.7 680.9 608.8 656.0
optim. ot 243.4 201.3 243.7 207.8
optim. st 250.0 208.0 252.7 237.0

Delaunay Tri. / % gcs ot 82.2 91.6 80.1 86.9
intuit. ot 76.1 70.5 49.7 50.5
optim. ot 79.8 91.6 78.3 82.9
optim. st 79.8 91.6 78.3 82.9

Val. 5–7 Vert. / % gcs ot 77.8 83.3 75.0 80.5
intuit. ot 73.7 75.3 64.1 65.6
optim. ot 78.8 84.0 75.1 79.2
optim. st 78.8 84.0 75.1 79.2

〈findNN’s definition〉 +≡
for each child node c of n do

if B(p, r) ∩ A(c) 6= ∅ then
if c is leaf then

vb = vertex corresponding to c
r ..= ‖vb − p‖

else
findNN(p, r, c, vb)

end if
end if

end for each
end function

After traversing or skipping all child branches, the vertex vb that
is closest to pξt

has been found among the vertices in the branch
below the current node. Since initially the root node R and a radius of
infinity are used, calling findNN recursively finds the best matching
vertex vb and its distance r to pξt

efficiently by branch and bound.

3.8 results

The algorithms presented in this chapter are evaluated in terms of
running times and reconstruction quality. For this purpose, the orig-
inal gcs using an octree for nearest neighbor search is used as a
baseline. Furthermore, the performance of the intuitive approach to
pm-generating gcs using an octree for nearest neighbor search, and
the performance of the optimized algorithm using either an octree or
the split tree for nearest neighbor search are determined.

All techniques have been implemented in C++ and compiled with
Microsoft® Visual Studio® 2010. They have been executed on a
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Figure 3.7: Median reconstruction times of pm-generating gcs using
the split tree (solid) and an octree (dashed) for nearest
neighbor search. Original gcs as a baseline (dotted).
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Figure 3.8: Distribution of running times. Vertex removal: original
gcs (c), intuitive approach (ia), split tree (st). Acceleration
structure: octree (ot) split tree (st).
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Dell® workstation with a 3 GHz Intel® Xeon® x5675 cpu, 12 GB ram
running Windows® 7 Enterprise, using only a single cpu core. Meshes
with 20 000 vertices have been constructed from four point clouds:
Bunny, Happy Buddha, and Lucy obtained from the Stanford scanning
repository [114], and a point cloud sampled from a synthetic model
of the cathedral of Paderborn, Germany. Each reconstruction has been
tested with 100 different random seeds.

The intuitive approach significantly reduces performance. MedianReconstruction times
(octree) reconstruction times are increased by factors between 1.7 for Cathedral

and 3.4 for Bunny and Lucy (Tab. 3.1). Furthermore, the running times
vary over a very wide range for Cathedral and Bunny and still over a
serious range for Buddha and Lucy (Fig. 3.8).

The optimized algorithm based on a split tree effectively removes
this running time overhead. Its performance is similar to the original
gcs (Fig. 3.7, dotted and dashed). Median running times increased
slightly by 1 % from 199.4 s using gcs to 201.3 s using the new, op-
timized split tree algorithm for Bunny and even decreased by 6 %
from 258.1 s using gcs to 243.4 s for Cathedral. For Buddha and Lucy,
median running times increased only slightly by 1 % from 241.3 s to
243.7 s for Buddha and by 8 % from 192.2 s to 207.8 s for Lucy. The
box plots of Fig. 3.8 show that the interquartile ranges for gcs and the
optimized split tree approach overlap. Thus, there is no significant
overhead when learning a progressive mesh during surface reconstruc-
tion, directly. While deviation of running times increased significantly
with the intuitive approach, deviation of running times increased only
slightly for all meshes with the new optimized split tree algorithm.

Reconstruction quality is evaluated in terms of regularity. Thus,Quality

the ratio of the constructed triangles that are Delaunay triangles, and
the ratio of the constructed regular vertices, i.e., vertices that have a
valence in the range from 5 to 7, are determined.

Using the intuitive approach to vertex removal reduces median
reconstruction quality. Both, the ratio of Delaunay triangles and the
ratio of regular vertices are significantly reduced for Buddha and
Lucy (Tab. 3.1). For Cathedral and Bunny both quality measurements
are slightly less reduced. In contrast, the optimized approach to ver-
tex removal using the split tree reduces median quality only slightly
compared to gcs. The intuitive approach introduces a large varia-
tion in both quality measures (Fig. 3.9, 3.10). With the optimized
approach quality varies in a similar range as with the original gcs,
with overlapping interquartile ranges.

Replacing the octree by the split tree for nearest neighbor searchSplit tree for nearest
neighbor search does not impose significant running time overheads (Tab. 3.1). The

interquartile ranges of the box plots overlap (Fig. 3.8). Median running
times increased slightly by 3 % from 243.4 s using an Octree to 250.0 s
using the bvh defined in the split tree for the cathedral, by 3 % from
201.3 s to 208.0 s for Bunny, and by 4 % from 243.7 s to 252.7 s for

76



3.9 discussion

Figure 3.11: Automatically learned level of detail: Reconstruction of
Stanford Bunny and Paderborn Cathedral with 20 000
triangles (far left). Using the implicit level of detail, each
mesh can be simplified to, e.g., 324 triangles (far right),
preserving the overall shape.

Buddha. For the high-resolution point cloud of Lucy, running times
increased by 14 % from 207.8 s to 237.0 s.

The plots in Fig. 3.7 compare the running times when using an
octree (dashed) and using the bvh from the split tree (solid) for all
four point clouds while reconstructing different numbers of vertices.
The curves are similar for all meshes. Since both Octree and bvh of
the split tree find the same vertices, quality of the reconstruction does
not change at all (Tab. 3.1, Fig. 3.9, 3.10).

With the optimized vertex removal based on the split tree, a se- Level of detail

quence of level of detail steps is automatically learned during recon-
struction. At any time, the reconstructed mesh can be reduced to a
coarser mesh preserving the shape of the reconstructed object with
a fairly good visual quality. However, a quadric error metric similar
to that proposed by Garland and Heckbert [57] needed to be used
to improve the position of the remaining vertex vm after reverting
a vertex split. Fig. 3.11 shows level of detail sequences for Stanford
Bunny and Paderborn Cathedral, reducing meshes of 20 000 triangles
to coarser meshes of 324 triangles.

3.9 discussion

The optimized vertex removal based on the split tree enables gcs to
efficiently learn a pm during surface reconstruction. The modifications
to the classical gcs algorithm do not introduce significant running
time overheads. Quality in terms of regularity is only slightly reduced.
However, it depends on the selected random seed, i.e., the order in
which the input points are selected. Nevertheless, all the features
of a pm are readily available for the reconstructed triangle mesh at
any time during gcs surface reconstruction, without applying any
additional processing steps afterwards.

The bvh that is defined by the split tree and is thus iteratively created
during surface reconstruction allows for an efficient nearest neighbor

77



gcs learn progressive meshes

search without having to rely on a separate data structure or on
separate hierarchy creating algorithms. In practice, the binary split tree
turns out to be unbalanced during gcs surface reconstruction. It is very
likely that it does not define an optimal bvh as it could be achieved
with other algorithms. However, experiments have demonstrated
that its performance is similar to the performance of an octree that is
commonly used in gcs. Thus, any further improvements to gcs that
lead to a balanced or improved split tree may increase the performance
of nearest neighbor search, as well.

Since the split tree is implicitly learned, neither heuristics have to
be applied nor assumptions have to be made in order to determine
the octree’s depth and the number of vertices per cell. Thus, the bvh
defined by the split tree is better suited than an octree for surface
reconstruction from incrementally refined point clouds. Using the
split tree for nearest neighbor search is not limited to gcs surface
reconstruction. Since a split tree is an alternative representation of a
pm, it is very likely useful for nearest neighbor search in any pm.

Basically, in this chapter, no new operations have been added to
gcs. Instead, only the vertex removal process has been modified
based on an analysis of the underlying processes. Thus, it has been
demonstrated that gcs implicitly share all the features of a progressive
mesh and define their own acceleration structure for nearest neighbor
search. However, in the future some effort has to be spent in order
to improve the quality of the pm that is learned by gcs, and in order
to generalize the split tree to other types of neural networks that are
used for surface reconstruction.
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4
S U R FA C E - R E C O N S T R U C T I N G
GROWING NEURAL GAS *

In this chapter surface-reconstructing growing neural gas (sgng) is pro-
posed, a learning-based artificial neural network that iteratively con-
structs a triangle mesh from a set of sample points lying on an object’s
surface. From these input points sgng automatically approximates
the shape and the topology of the surface. By expressing topological
neighborhood via triangles, sgng constructs a triangle mesh entirely
during online learning and does not need any post-processing to
close untriangulated holes. Thus, sgng is well suited for long-running
applications that require an iterative pipeline where scanning, recon-
struction, and visualization are executed in parallel.

Results indicate that sgng is a widely applicable reconstruction
algorithm. It improves upon its predecessors and achieves similar or
even better performance in terms of smaller reconstruction errors and
better reconstruction quality than existing state-of-the-art reconstruc-
tion algorithms. If the input points are updated repeatedly during
reconstruction, sgng performs even faster than existing techniques.

4.1 analysis of prior art

In recent approaches to surface reconstruction that are based on neural
networks the fundamental algorithm that is used for approximating
an original object’s shape is related to Kohonen’s self-organizing map
(som) [81, 82, 83]. In those approaches the algorithm that is used for
approximating an original object’s topology is based on competitive
Hebbian learning (chl) [93]. A taxonomy of the fundamental neural
networks with detailed descriptions of their learning algorithms is
presented in Ch. 2. In this section, the chl-based predecessors of

* Substantial parts of this chapter appeared in [120] Tom Vierjahn and Klaus Hinrichs.
Surface-reconstructing growing neural gas: A method for online construction of
textured triangle meshes. Computers & Graphics, pp. –, 2015. doi: 10.1016/j.cag.2015.
05.016.
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sgng, are carefully analyzed in order to motivate and derive the sgng
algorithm.

The position updates, i.e., moving the closest vertex vb and itsPosition updates

directly connected neighbors vn ∈ Nvb towards the selected input
point, let prior approaches construct a smooth approximation of the
original surface’s shape. These updates work well for watertight
meshes and internal vertices, but hinder the predecessors of sgng to
tightly fit the boundaries of an open surface. Since the update rules

vb
..= vb − β(vb − pξt

)

vn
..= vn − η(vn − pξt

) , ∀vn ∈ Nvb

implement exponential moving averages, eventually each vertex is
located approximately at the average position of the input points in
its Voronoi cell. Consequently, many input points are lying beyond
the boundaries of the constructed mesh. To overcome this, sgng
introduces an additional fitting step that moves boundary edges so that
the constructed mesh represents the original surface better (Sec. 4.3).

With its capability to create some triangles while constructing theTopology updates

output mesh representing an original surface, growing self-reconstruc-
tion map (gsrm) greatly improves over former surface reconstruction
algorithms that are based on growing neural gas (gng) [52] by Fritzke:
Previous work for instance by Melato et al. [95] or by Holdstein and
Fischer [61] did not create any triangles during learning but only
during post-processing. A recent extension to gsrm [101, 102] creates
even more triangles during learning.

However, using chl and age-based edge removal in a stochastic
reconstruction algorithm like the above introduces higher-order poly-
gons to the mesh, since some edges are deleted simply by chance [53].
Thus, several holes are created during reconstruction that chl often
cannot close [31]. Their size may even increase during the subsequent
iterations. In addition to that, gsrm and the recent extension [101, 102]
delete obtuse triangles that contain the best and the second-best match-
ing vertex as soon as they are detected. However, some triangles and
edges may become obtuse for a few iterations in a row only due to the
stochastic nature of the algorithm. Deleting them as soon as they are
detected introduces additional undesired holes. Therefore, gsrm and
related algorithms apply an additional topology learning phase and
a post-processing step to triangulate the remaining holes that have a
boundary of more than three edges. However, this is time-consuming,
and it still leaves more and more holes untriangulated the sparser the
input point cloud is. Finally, if continuous reconstruction and visual-
ization is desired, it needs to be interrupted repeatedly for—possibly
ineffective—post-processing.

Fig. 4.1 illustrates the iterative construction of an output triangle
mesh by gsrm before post-processing is applied: From approximately
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(a) |V | = 150 (b) |V | = 300

(c) |V | = 600 (d) |V | = 1.25 · 103

(e) |V | = 2.5 · 103 (f) |V | = 5 · 103

(g) |V | = 10 · 103 (h) |V | = 20 · 103

Figure 4.1: Intermediate results of gsrm reconstructions of Stanford
Bunny from approximately 2.9 · 106 input points without
post-processing.
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(a) |P | ≈ 2.9 · 106, |V | = 20 · 103

(b) |P | = 1.0 · 106, |V | = 20 · 103

(c) |P | = 0.3 · 106, |V | = 20 · 103

(d) |P | = 0.1 · 106, |V | = 20 · 103

Figure 4.2: Gsrm reconstructions of Stanford Bunny from different
numbers of input points: Before (left in each subfigure)
and after post-processing (right in each subfigure). The
sparser the input point cloud, the more holes remain untri-
angulated. Results for sgng reconstructions of same sets
of input points are presented in Fig. 4.15.
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2.9 · 106 input points sampled from the reconstruction of Stanford
Bunny provided by the Stanford Scanning Repository [114], a rough
approximation with 150 vertices is created instantly (Fig. 4.1(a)). This
initial approximation gets continuously refined up to 20 · 103 vertices
in this example (Fig. 4.1(h)). During the whole reconstruction process
the constructed mesh contains many untriangulated higher-order
polygons. Thus the mesh is not well suited for live visualization while
reconstructing. Fig. 4.2 illustrates the effect of post-processing for
gsrm reconstructions of Stanford Bunny. Post-processing is effective if
the input point cloud is extraordinarily dense. Fig. 4.2(a) reproduces
the results of the original experiment conducted by do Rêgo et al. [41]:
There, an extremely dense point cloud with approximately 2.9 · 106

points [39] is used. A mesh with 20 · 103 vertices (left) is constructed
from that point cloud. During post-processing the remaining holes
are closed by triangulating the higher-order polygons (right). While
this works well for the dense point cloud, post-processing gets more
and more ineffective if the original object is sampled less densely
(Fig. 4.2(b)–(d)): Several holes remain untriangulated even after post-
processing. For reference, the original range data set of Stanford
Bunny [114] contains approximately 362 · 103 points.

In order to derive a suitable new algorithm, the reason why gsrm CHL in a stochastic
algorithmleaves higher order polygons untriangulated is examined. The findings

are also applicable to other techniques that use topology updates based
on chl, for instance the topology representing network (trn) and gng.
For this experiment the movement and the distribution of the vertices
are investigated under controlled conditions: Only the position update
rules of trn [93], gng, and gsrm are used during the automatic
iterations. Topology updates, i.e., edge removals, are performed
manually. Fig. 4.3 presents the constructed mesh at different steps in
order to illustrate the limitations of prior chl-based algorithms.

Fig. 4.3(a) shows the initial mesh for this experiment. A set of 4096
input points is used that were sampled uniformly at random from
a square (gray). These points are randomly presented to the neural
network using epochs: Each point is presented once before any point
is picked a second time. Initially and after each topology update
the algorithm executes 10 epochs, i.e., 40 960 iterations, in order to
reach a steady state. Since the reconstruction algorithm operates
in a stochastic manner where the vertices keep moving, their mean
positions during the subsequent 30 epochs, i.e., 122 880 iterations, are
determined to capture trends. The figures show these mean vertex
positions for clarity. The result of the first learning phase is presented
in Fig. 4.3(b): The vertices have moved slightly to be approximately
equally distributed across the input square.

Trn, gng, and gsrm increase the age of edges that are incident to
the best matching vertex for an input point but that are not incident
to the second-best matching vertex. By resetting the age of the edge
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y

x
(a) Initial setup.

y

x
(b) First steady state.

y

x
(c) First steady state with second-

order Voronoi regions.

y

x
(d) Second steady state with

second-order Voronoi regions.

y

x
(e) Second steady state with

second-order Voronoi regions.
Influence on other regions.

y

x
(f) Third steady state with second-

order Voronoi regions.

Figure 4.3: Illustration of the reasons why gsrm and closely related
techniques leave more and more higher order polygons
untriangulated. The gray area depicts the distribution of
the input points. The vertices ( ) and edges ( ) of the
constructed mesh are printed black. The boundaries of
the second-order Voronoi regions of pairs of vertices are
printed white.

84



4.1 analysis of prior art

that is connecting the best and the second-best matching vertex, and,
if necessary, by creating such an edge, the edges that are not triggered
by any input point get older. They are eventually deleted once their
age exceeds a predefined threshold that needs to be fine-tuned for the
specific reconstruction task. See Sec. 2.5, 2.7, and 2.8 for details.

In Fig. 4.3(c) the set of input points is decomposed into the second-
order Voronoi regions (enclosed by white lines) of the vertices. Points
in such a region are closer to one pair of vertices than to any other
vertex in the mesh. Thus, they share the same best and second-best
matching vertex, or vice versa. The points from a single second-order
Voronoi region therefore cause the age of a single edge to be reset. It
can clearly be seen that the regions have very different sizes. Thus,
assuming uniformly distributed input points, the age of some edges
is likely to be reset more often than the age of other edges, depending
on the size of the second-order Voronoi regions. If too low an age
threshold is selected, an edge corresponding to a small second-order
Voronoi region will likely be removed before it has been triggered by
an input point. On the other hand, if too high a threshold is selected,
the neural network will not be able to learn the topology correctly.

The second-order Voronoi regions are getting particularly small in
places where vertices are locally arranged on or close to a circle. Such
a configuration can be found in Fig. 4.3(c): The central region (dark
gray) is by far the smallest region. Such a small region contains only
very few input points, if any. Thus, the corresponding edge (thicker,
double line) is very likely getting too old before it is triggered by an
input point. It is thus removed creating an untriangulated quadrangle.
The removal of this edge causes the now unconnected vertices to move
apart during subsequent iterations (Fig. 4.3(d)) due to the update rules
for the neighbors of vb. This may cause the corresponding second-
order Voronoi region to shrink. Thus, it gets increasingly unlikely that
the missing edge is recreated. In fact, in Fig. 4.3(d) the original region
vanished and was replaced by the second-order Voronoi region of the
other two vertices of the untriangulated quadrangle.

This effect spreads: The sizes of other regions have changed as
well. In Fig. 4.3(e) the two next larger regions and their corresponding
edges are highlighted. Since these regions shrank after the removal
of an edge, the associated edges might now get too old due to an
inadequately selected threshold or an adverse distribution of the
input points. The removal of these edges turns the untriangulated
quadrangle into an untriangulated hexagon, causes the lower left inner
vertex to move outward in subsequent iterations, and thus causes the
second-order Voronoi regions corresponding to the removed edges to
shrink even further (Fig. 4.3(f)). Therefore, it becomes unlikely that the
edges are recreated. This effect can be seen in the example figures that
were used to illustrate trn, gng, and gsrm in Sec. 2.5, 2.7 and 2.8. It
can also be observed in real-world reconstruction tasks. Therefore, the
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constructed mesh cannot be used for visualization at any time during
reconstruction without applying suitable post-processing steps.

Sgng addresses this and reduces the number of untriangulated
holes to a minimum during reconstruction by applying surface-aware
topology updates, and by using an edge and triangle removal scheme
based on more general geometric considerations that furthermore
takes the stochastic nature of the algorithm into account (Sec. 4.3.2,
4.3.3). Furthermore, sgng detects all obtuse triangles containing the
best matching vertex instead of only those that contain the best and
the second-best matching vertex.

Gsrm computes the activity τ(vi) of a vertex in terms of accumu-Activity

lated squared position errors. The activity of the best matching vertex
vb is incremented by the squared Euclidean distance of vb to the
currently selected input point pξt

:

τ(vb) ..= τ(vb) + ‖vb − pξt
‖2 .

Therefore, the mesh is refined in regions where the vertices moved
large distances, thus increasing the impact of noise and sparse outliers.
The activity of the vertices is reduced in each iteration by a constant
factor 0 < α < 1 leading to a decay over time:

τ(vi) ..= ατ(vi) , ∀vi ∈ V .

In contrast to gsrm, sgng adapts the density of the mesh to the
density of the input points balancing the influence of noise and outliers
better. For this purpose, sgng uses a constant activity increment
(Sec. 4.3.4), allowing for sorting the vertices by activity more efficiently.
Furthermore, activity does not decay in sgng, reducing complexity
to be sub-quadratic. Unlike gsrm, but similar to a variant of growing
cell structures (gcs) [51], sgng adds vertices to the mesh by splitting
the longest edge emanating from the most active vertex in order to
construct more regular triangles.

Inactivity is not addressed directly in gsrm. Instead, gsrm relies onInactivity

topology updates to remove inactive vertices. If a vertex gets inactive,
it is not selected as best or second-best matching vertex anymore.
Thus, the age of none of the edges that are emanating from it is reset
to zero anymore. Consequently, they get older and are eventually
removed. Once the inactive vertex gets isolated, it is removed from
the constructed mesh. Since gsrm modifies the topology in order to
remove inactive vertices, additional holes are introduced that need
to be closed during post-processing. Furthermore, topology learning
cannot detect inactive vertices that are not connected directly to the
best matching vertex, since it operates only locally for efficiency.

Sgng handles inactivity separately: Inactive vertices that are caused
by too dense a reconstruction, or that are located at inversions or
protuberances are removed without changing the topology of the
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constructed mesh (Sec. 4.3.4). For this purpose, edge collapse operations
are used, similar to a prior extension to gcs [70]. Therefore, inactive
vertices that are located in a hole of the original surface are removed
while keeping the surface intact at first. The desired hole is created by
topology learning in later iterations.

4.2 requirements and features

The input points do not need to store any information about the
surface normal for an sgng reconstruction. The density of the input
points needs to be locally homogeneous, however it may vary across
the original surface. Constructed triangles will be smaller in regions
with higher point density than in regions with lower density. If a
triangle gets so small that no input point is located in the vicinity of its
surface anymore, sgng will remove the triangle and create a hole. In
order to limit the density of the constructed mesh and thus in order to
avoid erroneously untriangulated holes that are caused by too dense a
reconstruction, the minimal ratio of the number of input points per
constructed vertex should be limited. A minimal ratio of 4 turned out
to be practical, leaving only very few holes untriangulated in regions
where the vertex density exceeds the point density.

Sgng is robust to noise, if the variation of the noise is small com-
pared to the size of the constructed triangles, otherwise overfitting
will occur. Currently, estimating the amount of noise is left to the
operator by setting an appropriate point to vertex ratio. Automatic
noise estimation during sgng reconstruction is left for future work.

Sgng guarantees that there will be at most two triangles adjacent
to any edge. However, in order to quickly create visually meaningful,
initial approximations of sparsely sampled input data, sgng tolerates
self intersections and the existence of more than one topological disk
adjacent to a vertex. Since further input points can be added at any
time during reconstruction, sgng will resolve such cases automatically
once the original surface is sampled densely enough. It deliberately
does not guarantee that the constructed mesh will be manifold. Other-
wise, for instance hourglass-like shapes needed to be sampled much
more densely before reconstruction could start.

The basic update rules for positions in gcs, gng, and gsrm are Local surface
smoothnessstill used in sgng. They implement an exponential moving average

of the recently presented input points. Thus, the constructed mesh
eventually approximates the input points smoothly by construction.

Sgng supports this smooth approximation by constructing the sur-
face that is smoothest whenever sgng has to select from more than
one surface configuration. By enforcing global smoothness the overall
computational complexity would increase, and sharp features would
be overly smoothed. However, maximizing local smoothness of two
adjacent faces can be integrated in a straightforward way and is used
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nk

nlvk

vi vl

vj

(a)

ϕk,l
nl

nk

(b)

Figure 4.4: Evaluating smoothness: Unit normals nk, nl of the adja-
cent triangles 4(vk, vi, vj), 4(vl , vj, vi) (a). Smoothness is
defined in terms of the dihedral angle ϕk,l (b).

as a guideline when creating triangles. Local smoothness is related to
the cosine of the dihedral angle ϕk,l between two triangles4(vi, vj, vk)

and 4(vl , vj, vi) adjacent to their common edge (vi, vj) (Fig. 4.4):

cos ϕk,l = n>k nl

Here nk and nl denote the unit normals of the triangles 4(vk, vi, vj)

and 4(vl , vj, vi), respectively

nk =
(vi − vk)× (vj − vk)

‖(vi − vk)× (vj − vk)‖

nl =
(vj − vl)× (vi − vl)

‖(vj − vl)× (vi − vl)‖
.

Thus, maximizing the dihedral angle maximizes local smoothness.

Like its predecessors sgng creates a set V of vertices, a set E ofA mesh for learning,
a submesh for
visualization

edges, and a set F of faces. In contrast to its predecessors sgng
iteratively constructs a mesh that can be used for visualization at any
time during reconstruction.

However, a distinction is made between the mesh M that is used
during reconstruction and the triangle mesh M4 to be exported, e.g.,
for visualization. Let M = (V , E , F ) contain the complete sets of
faces, edges, and triangles. Then, M4 = (V4, E4, F ) contains subsets
V4 ⊆ V of vertices and E4 ⊆ E that are used by the triangles in F

V4 = {vi ∈ V | ∃vj, vk ∈ V : 4(vi, vj, vk) ∈ F }
E4 = {(vi, vj) ∈ E | ∃vk ∈ V : 4(vi, vj, vk) ∈ F } .

Therefore, M4 contains only the vertices and edges that are required
to create the triangles representing the original object’s surface. M
may contain (many) additional vertices and edges that are required
to explore the input data, and that serve as candidates for triangle
creation in later iterations in order to create a better, i.e., smoother and
more regular, surface.
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y

x

Figure 4.5: Initial configuration of sgng reconstructing a square.

4.3 the reconstruction algorithm

The sgng reconstruction algorithm is based on the one used by gsrm
and has been derived from the findings of the previous analysis of
prior art. The new algorithm is described in this chapter. From a
high-level perspective it is still similar to all the algorithms based on
an artificial neural network that have been presented in Ch. 2.

〈SGNG reconstruction〉 ≡
〈SGNG initialization A p. 89〉
〈SGNG learning A p. 90〉

Sgng reuses the initialization routine of gng. For convenience it SGNG initialization

is repeated here: A set V of two vertices vi ∈ V ⊂ R3 is created.
The positions vi of the vertices are initialized to the positions of two
randomly selected input points (Fig. 4.5). The vertex positions will be
optimized during learning. No edges are created. In addition to gng
initialization, an empty set of triangles is created. Edges and triangles
will be created during learning.

〈SGNG initialization〉 ≡ Ap. 89
V ..= {v1 , v2} , vi

..= pξi
∈ P , i ∈ {1, 2}

E ..= ∅
F ..= ∅

As before, online learning is iterated in a loop for a prespecified SGNG learning

number tmax of iterations. Alternatively, a predefined convergence cri-
terion can be used, for instance, a prespecified number of constructed
vertices or triangles, or a prespecified maximal mean distance between
the input points and the triangle mesh.

In each iteration t of sgng learning an input point pξt
is selected

randomly from the set P ⊂ R3 of input points. For the selected
input point pξt

the best matching, i.e., closest, vertex vb ∈ V , and
the second-best matching vertex vc ∈ V with respect to the `2-norm
‖·‖ are determined. Afterwards, the vertex positions are updated
according to the position update rules of gcs. Then, the new fitting
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vb v∗i

vc

p′ξt

Figure 4.6: Additional fitting step introduced by Sgng.

step is used to match boundaries of the original surface more tightly
and as a regularization. Finally, the topology and the density of the
constructed mesh are updated according to new rules replacing the
ones from gsrm.

〈SGNG learning〉 ≡ Ap. 89
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

vb = arg minvi∈V ‖vi − pξt
‖

vc = arg minvi∈V \{vb} ‖vi − pξt
‖

〈GCS position updates A p. 41〉
〈SGNG boundary fitting A p. 90〉
〈SGNG topology: create edges, triangles A pp. 91, 92〉
〈SGNG topology: delete edges, triangles A pp. 94, 95〉
〈SGNG density updates A p. 97〉

end for each

4.3.1 Boundary Fitting

If there are any triangles adjacent to the edge connecting vb and
vc, the triangle 4(vb, vc, v∗i ) whose third vertex v∗i is closest to the
current input point pξt

is determined. Afterwards, p′ξt
is computed

by projecting pξt
into the plane through vb, vc, v∗i . Finally, the trilinear

coordinates [128, 129] of p′ξt
with respect to4(vb, vc, v∗i ) are computed.

If any of them are negative, p′ξt
lies outside the triangle. In this case, the

respective edges are moved towards p′ξt
by moving their vertices along

the other edges of the triangle (Fig. 4.6) according to the previously
used update rate β.

〈SGNG boundary fitting〉 ≡ Ap. 90
if Fe

(
(vb, vc)

)
6= ∅ then

Vi = {vi | 4(vb, vc, vi) ∈ Fe
(
(vb, vc)

)
}

v∗i = arg minvi∈Vi ‖vi − pξt
‖

p′ξt
= projection of pξt

into plane through vb, vc, v∗i[
x y z

] > = tril. coord’s of p′ξt
w.r.t. 4(vb, vc, v∗i ),

s.t. x corresponds to (vb, vc),
y corresponds to (vc, v∗i ),
z corresponds to (v∗i , vb)
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Figure 4.7: The only triangulations of a four-edge loop, requiring ei-
ther edge (vb, vc) (a), or edge (vi, vj) (b).

if x < 0 then
vb

..= vb − β · x · (vb − v∗i )
vc

..= vc − β · x · (vc − v∗i )
end if
ditto for y, z

end if

4.3.2 Topology: Create Edges, Triangles

During learning, for a randomly selected input point the best matching,
i.e., closest vertex vb and the second-best matching vertex vc are
determined. Due to the findings from the previous analysis of prior
art, sgng connects vb and vc with a surface and preserves it during
reconstruction. Therefore, new topology and surface updates are
used. In the following pseudocode fragments Nvb denotes the set of
neighbors of vb, and Nvc denotes the set of neighbors of vc. Then,
the set of common neighbors of vb and vc is equal to the intersection
Nvb ∩Nvc of both sets. In order to later remove undesired edges and
triangles, each edge (vi, vj) keeps track of a penalty value

ae : E 7AN , with ae
(
(vi, vj)

)
..= 0 for a new edge .

Assume for the moment that each edge will have at most two The basic algorithm

adjacent triangles even if new triangles are created. Later on, it is
described how to enforce this by a special union operator d.

If vb and vc do not share a common neighbor, no triangles are |Nvb ∩Nvc | = 0

created. Only the edge (vb, vc) will be added, if it does not yet exist.
Its penalty ae

(
(vb, vc)

)
is reset to zero, no matter if the edge already

existed or was just created.

〈SGNG topology: create edges, triangles〉 ≡ Ap. 90
if Nvb∩Nvc = ∅ then

E ..= E ∪ {(vb, vc)}
ae
(
(vb, vc)

)
..= 0
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If vb and vc share one common neighbor vi, the edge (vb, vc) and|Nvb ∩Nvc | = 1

the triangle 4(vb, vi, vc) will be created, if they do not yet exist. The
penalty ae

(
(vb, vc)

)
of the edge (vb, vc) is reset to zero.

〈SGNG topology: create edges, triangles〉 +≡ Ap. 90
else if Nvb ∩Nvc = {vi} then

E ..= E ∪ {(vb, vc)}
F ..= F d {4(vb, vi, vc)}
ae
(
(vb, vc)

)
..= 0

If vb, vc share two or more common neighbors sgng selects the two|Nvb ∩Nvc | ≥ 2

most active ones, vi, vj. These represent the original surface best, since
they have been selected most frequently as best match to an input
point. In this case, two different surface configurations exist:

• the triangles 4(vb, vi, vc) and 4(vb, vc, vj) (Fig. 4.7(a))

• the triangles 4(vb, vi, vj) and 4(vc, vj, vi) (Fig. 4.7(b))

The former requires edge (vb, vc) to be present, the latter edge (vi, vj).
Sgng selects the edge of both candidates that creates the smoothest
surface, i.e., at which the larger dihedral angle (ϕ(vb, vc) or ϕ(vi, vj))
will be located. If necessary, the required edge and its adjacent tri-
angles are created accordingly. d does not add any triangles if the
corresponding required edge already has two adjacent triangles. The
penalty ae

(
(vb, vc)

)
or ae(vi, vj) of the edge (vb, vc) or (vi, vj), respec-

tively, is reset to zero. Any existing but no longer desired edge and its
adjacent triangles are deleted.

In addition to the above, sgng detects configurations where vb is
part of a not yet triangulated 4-loop. If none of the edges of that 4-loop
has two adjacent triangles, it will be triangulated automatically.

〈SGNG topology: create edges, triangles〉 +≡ Ap. 90
else
{vi, vj} = {vi, vj ∈ Nvb ∩Nvc | most active}
if ϕ(vb, vc) ≥ ϕ(vi, vj) then

E ..= E ∪ {(vb, vc)}
F ..= F d {4(vb, vi, vc) , 4(vb, vc, vj)}
ae
(
(vb, vc)

)
..= 0

else
E ..= E ∪ {(vi, vj)}
F ..= F d {4(vb, vi, vj) , 4(vc, vj, vi)}
ae
(
(vi, vj)

)
..= 0

end if
delete no longer desired edge and triangles

end if
The previous algorithm determines the edge that is required toThe special union

operator d connect vb and vc with a surface. Whenever a triangle has to be created
adjacent to such a required edge in order to fill a 3-loop, one or both of
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Figure 4.8: Enforcing the 2-adjacent-triangle guarantee: If triangle
4(vb, vi, vc) has to be created but the edge (vb, vi) has
two adjacent triangles (left), sgng will pick the smoothest
surface configuration from all potential ones (right).

the other edges of the loop might already have two adjacent triangles.
Then, creation of the new triangle would violate the guarantee that
each edge has at most two adjacent triangles. Therefore, sgng uses
a union operator d that complies with this guarantee. d picks the
smoothest surface configuration, i.e., the configuration with the largest
dihedral angles, and it creates and removes triangles accordingly.

Assume for instance that vb and vc share one common neighbor vi,
that the edge (vb, vc) was just created, and that the basic algorithm
requests to add a new triangle 4(vb, vi, vc):

F ..= F d {4(vb, vi, vc)} . (4.1)

Let there be no triangles adjacent to the edge (vi, vc), but let there be
two triangles 4(vb, vk, vi) and 4(vb, vi, vl) adjacent to the other edge
(vb, vi) (Fig. 4.8 left). Creating the new triangle would add a third
triangle adjacent to (vb, vi) and thus violate the above guarantee.

By also taking the edge (vb, vi) and the vertices vk and vl into
account, three different valid surface configurations exist:

• triangles 4(vb, vk, vi) and 4(vb, vi, vl)

• triangles 4(vb, vk, vi) and 4(vb, vi, vc)

• triangles 4(vb, vl , vi) and 4(vb, vi, vc)

Sgng evaluates the dihedral angles for all three configurations and
picks the smoothest, i.e., the one which generates the largest dihedral
angle—the second in case of Fig. 4.8 right. In this case the union
operator d (Eq. 4.1) thus evaluates to

F d {4(vb, vi, vc)} = (F \ {4(vb, vi, vl)}) ∪ {4(vb, vi, vc)} .

The number of potential surface configurations that are evaluated will
increase if vb and vi share more common neighbors. This concept is ex-
tended in a straightforward manner even to configurations where both
of the existing edges (vb, vi) and (vi, vc) have two adjacent triangles.
Then, the sum of the respective dihedral angles is maximized.

Sgng might produce some edges that have no adjacent triangles.
These edges increase the number of potential surface configurations
in future iterations and thus help construct the mesh that fits the
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input data best. However, these edges will eventually be deleted in
subsequent iterations and will not be part of the final mesh.

4.3.3 Topology: Delete Edges, Triangles

Sgng introduces new surface-aware removal schemes for triangles and
edges. Three different, undesired geometric cases are addressed: Tri-
angles that are covering holes in the original surface, obtuse triangles,
and isolated edges, i.e., edges without adjacent triangles. Since these
may be caused by the stochastic nature of the algorithm they may exist
for a few iterations. Sgng penalizes undesired triangles and edges
whenever they are detected instead of deleting them instantly.

To enable deleting edges and thus triangles, each edge keeps trackEdge penalties

of its penalty ae. Whenever the edge and triangle creation algorithm
from the previous subsection determines that an edge is required for
the selected surface configuration, its penalty is reset to zero. If an
edge is determined to be undesired, its penalty is incremented by one.
Once the penalty assigned to an edge exceeds a predefined threshold
amax, the edge and any triangles adjacent to it are deleted.

〈SGNG topology: delete edges, triangles〉 ≡ Ap. 90
Eu

..= ∅
〈SGNG detect isolated edges, update Eu A p. 94〉
〈SGNG detect obtuse triangles, update Eu A p. 95〉
ae
(
(vb, vk)

)
..= ae

(
(vb, vk)

)
+ 1 , ∀(vb, vk) ∈ Eu

Eamax = {(vb, vk) ∈ E | ae
(
(vb, vk)

)
> amax}

F ..= F \ Fe
(
(vb, vk)

)
, ∀(vb, vk) ∈ Eamax

E ..= E \ Eamax

V ..= V \ {vr ∈ V | ∀vs ∈ V : (vr, vs) 6∈ E}
Isolated edges, i.e., edges with no adjacent triangles, are requiredIsolated edges

especially during early iterations at the beginning of a reconstruction
process or whenever new points are added to the point cloud in order
to explore the input data. However, when no triangles are created
adjacent to an edge, it is not required to construct a surface. Isolated
edges are handled in a straightforward manner: If any edge emanating
from the best matching vertex vb has no adjacent triangles, its penalty
ae(·) is incremented by one.

〈SGNG detect isolated edges, update Eu〉 ≡ Ap. 94
Eu

..= Eu ∪ {(vb, vk) ∈ E |
∀vl ∈ V : 4(vb, vk, vl) 6∈ F }

Obtuse triangles are handled by determining the Thales circle forObtuse triangles

any edge (vb, vi) that is emanating from vb (Fig. 4.9). If another di-
rectly connected neighbor vj 6= vi of vb lies inside that circle, the
corresponding triangle 4(vb, vi, vj) is obtuse, i.e., one of its angles is
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vb vi

vj

γ

(a)

vb vk

vl
γ

(b)

Figure 4.9: The Thales circle is used to detect obtuse triangles (γ >
90°): 4(vb, vi, vj) is obtuse, and is thus penalized (a).
4(vb, vk, vl) is more regular, and is thus preserved (b).

greater than 90°. The penalty ae
(
(vb, vi)

)
of the edge (vb, vi) that is

causing the triangle to be obtuse is incremented by one. The penalty
is incremented even if 4(vb, vi, vj) 6∈ F , since the respective trian-
gle might be created in subsequent iterations. That way sgng later
constructs more regular triangles.

〈SGNG detect obtuse triangles, update Eu〉 ≡ Ap. 94
for each vi ∈ Nvb do

if ∃vj ∈ Nvb \ {vi} : ‖vj − vb+vi
2 ‖ < ‖vb − vb+vi

2 ‖ then
Eu

..= Eu ∪ {(vb, vi)}
end if

end for each

Triangles that are covering holes in the original surface cannot Triangle penalties

be removed by removing one of its edges, since the edge might be
necessary to represent the boundary of the original surface. Therefore,
each triangle 4(vi, vj, vk) keeps track of a separate penalty value

a4 : F 7AN , with a4
(
4(vi, vj, vk)

)
..= 0 for a new triangle .

In contrast to the penalty assigned to the edges the penalty assigned
to the triangles may not be reset to zero. Otherwise triangles that
are covering holes will not be detected robustly. Once the penalty
assigned to a triangle exceeds a predefined threshold, the triangle is
deleted. It turned out that it is practical to also use amax as a threshold.

〈SGNG topology: delete edges, triangles〉 +≡ Ap. 90
〈SGNG detect triangles covering holes, update a4(·) A p. 96〉
Famax = {4(vi, vj, vk) ∈ F | a4

(
4(vi, vj, vk)

)
> amax}

F ..= F \ Famax

Once the edge and triangle creation step from the previous subsec- Triangles
covering holestion has determined that an edge is required to construct the desired

surface configuration, the triangles adjacent to this edge are checked
if they are representing the input data. Let (vl , vm) denote the re-
quired edge. Then, there are at most two triangles 4(vl , vm, vn) and
4(vl , vm, vo) adjacent to it. If both exist, the penalty of the triangle
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whose third vertex (vn or vo) is closer to the current pξt
is decremented

by one, the penalty of the other is incremented by one. If only one
of these triangles exists, its penalty is decremented. Decrementing is
clamped so that a4(·) ≥ 0, denoted by the operator 	.

〈SGNG detect triangles covering holes, update a4(·)〉 ≡ Ap. 95
if Fe

(
(vl , vm)

)
= {4(vl , vm, vn),4(vl , vm, vo)} then

if ‖vn − pξt
‖ ≤ ‖vo − pξt

‖ then
a4
(
4(vl , vm, vn)

)
..= a4

(
4(vl , vm, vn)

)
	 1

a4
(
4(vl , vm, vo)

)
..= a4

(
4(vl , vm, vo)

)
+ 1

else
a4
(
4(vl , vm, vn)

)
..= a4

(
4(vl , vm, vn)

)
+ 1

a4
(
4(vl , vm, vo)

)
..= a4

(
4(vl , vm, vo)

)
	 1

end if
else if Fe

(
(vl , vm)

)
= {4(vl , vm, vn)} then

a4
(
4(vl , vm, vn)

)
..= a4

(
4(vl , vm, vn)

)
	 1

end if

4.3.4 Density Updates: Add, Delete Vertices

During sgng learning the density of the constructed mesh is adjusted
in such a way that the reconstructed surface approximates the input
points better. Vertices are added in regions with too much vertex
activity τ(·), whereas inactive vertices are removed. For this purpose
each vertex keeps track of its activity τ, a value denoting how often
the vertex has been selected best match:

τ : V 7AN , with τ(v) ..= 0 initially .

The activity τ of a vertex is incremented by one, whenever it is selected
best match for an input point.

Inactivity is addressed explicitly in sgng, without changing the
topology of the constructed mesh, i.e., cutting holes. Thus, vertices at
protuberances, at inversions, or in regions that have been reconstructed
too densely are removed while keeping the surface intact. For this
purpose each vertex keeps track of the number ϑ of the last iteration
it was selected as best match:

ϑ : V 7AN , with ϑ(v) ..= t initially .

The value ϑ of the best matching vertex is updated in each iteration.

The density of the mesh is modified, whenever the number of input
points processed so far is an integer multiple of a parameter λ. Activity
and inactivity are addressed in the same iteration.
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Figure 4.10: Splitting edge (vm, vn), collapsing edge (vo, vm).

〈SGNG density updates〉 ≡ Ap. 90
τ(vb) ..= τ(vb) + 1
ϑ(vb) ..= t
if t ≡ 0 (mod λ) then
〈SGNG mesh refinement A p. 97〉
〈SGNG mesh coarsening A p. 98〉

end if

A new vertex vo is added in regions with too much vertex activity. SGNG mesh
refinementFor this purpose the most active vertex of the triangle mesh is deter-

mined. The new vertex vo is added in the middle of the longest edge
(vm, vn) emanating from the most active vertex vm. To preserve the
constructed topology, the new vertex is created by splitting the edge
(vm, vn) and its adjacent triangles (Fig. 4.10 left to right). Activity of
the three vertices vm, vn, vo is set to the activity of the least active
vertex of the mesh. Therefore, other regions with high activity will be
handled before any of the three vertices becomes most active again.
Thus, refinement is distributed globally across the triangle mesh.

〈SGNG mesh refinement〉 ≡ Ap. 97
vm = arg maxvi∈V τ(vi)

vn = arg maxvj∈Nvm
‖vm − vj‖

V ..= V ∪ {vo
..= vm+vn

2 }
split edge (vm, vn) with new vertex vo

τ(vm), τ(vn), τ(vo) ..= minvk∈V \{vo} τ(vk)

Vertices are removed in regions with too little vertex activity. For SGNG mesh
coarseningthis purpose a set of inactive vertices is determined. A vertex is

considered inactive, if it was not selected best match for a certain
number ∆tmax · |V | of iterations in a row. To preserve the constructed
topology, an inactive vertex vo is removed by collapsing one of the
edges emanating from vo (Fig. 4.10 right to left). For this purpose,
sgng determines the set Vm ⊆ Nvo of target vertices that are directly
connected to vo, onto which vo may be collapsed while preserving the
topological type of the constructed mesh. Hoppe et al. [65] defined
criteria for this (Sec. 3.1). After that, sgng picks that edge from the
above set, for which an edge collapse maximizes regularity of the mesh,
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Table 4.1: Learning parameters used in the sgng examples.

Parameter Value

Step size (best match vb) β 0.1
Step size (direct neighbors vn ∈ Nvb) η 0.01
Maximum edge/triangle penalty amax 20
Iterations until density update λ 100
Vertex inactivity threshold (used as ∆tmax · |V |) ∆tmax 12

i.e., minimizes the sum of squared differences to valence six of the
affected vertices:

Ec : E AR

with Ec
(
(vo, vm)

)
=

(|Nvm |+ |Nvo | − |Nvm ∩Nvo | − 8)2 + ∑
vk∈Nvm∩Nvo

(|Nvk | − 7)2 ,

where |Nvk | denotes the number of neighbors of a vertex vk, vo denotes
the inactive vertex, and vm denotes the other endpoint of the selected
edge (Fig. 4.10 right).

〈SGNG mesh coarsening〉 ≡ Ap. 97
Vo = {vo ∈ V | ϑ(vo) < t− ∆tmax · |V |}
for each vo ∈ Vo do

V +
o = {vl ∈ Nvo | collapsing (vo, vl) is valid [65]}

if |V +
o | > 0 then

vm = arg minvl∈V +
o

Ec
(
(vo, vl)

)
collapse edge (vo, vm) removing vertex vo

V ..= V \ {vo}
end if

end for each

Sgng keeps the reconstructed surface intact as long as possible: If a
vertex becomes inactive, because it has been moved into a hole that is
present in the input data, sgng will first remove the vertex with the
above technique. Topology updates in later iterations will detect that
the resulting triangles are covering a hole and remove them.

4.4 examples for sgng learning

In order to illustrate the characteristics of the proposed sgng and to
show the difference to the existing algorithms that are described in
Ch. 2, examples are presented in this subsection. The same data sets
are used as before to make the results comparable. Fig. 4.5 shows
an example of an initial sgng configuration. The network initially
contains two randomly placed vertices. The learning parameters that
are used in these reconstruction examples are collected in Tab. 4.1.

98
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These values have been determined in a separate experiment that is
described later (Sec. 4.6).

Sgng exports only those edges and vertices as the final constructed
mesh that have adjacent triangles (Sec. 4.2). Additional edges and
vertices with no adjacent triangles are needed in early iterations to let
sgng explore the data. Such edges and vertices are denoted by dotted
lines ( ) and white-filled circles ( ), respectively, in Fig. 4.11, 4.12.

In the first example the input points P ⊂ P (Eq. 2.1) are drawn SGNG reconstructing
a squareuniformly at random from a square. Fig. 4.11 shows the resulting

mesh after different numbers of iterations. At first, the results are very
similar to those of gng. In the first iteration both initial vertices get
connected by an edge. During the first 99 iterations this line segment
moves and gets longer to match the input points better (Fig. 4.11(a)).
It is split and it bends once t ≥ λ (Fig. 4.11(b)). The vertices get
connected to a first three-loop during the next few iterations, and a
triangular face is added to the mesh (Fig. 4.11(c)). Afterwards, the
constructed mesh is refined repeatedly. The vertices spread out, new
edges are added and obsolete ones are deleted (Fig. 4.11(d)–(g)). In
contrast to gsrm edge splits do not remove any desired triangles and
thus do not leave untriangulated n-loops of edges. Eventually, the ver-
tices are distributed fairly evenly across the input square (Fig. 4.11(h)).
The constructed triangles have very similar sizes with only few irregu-
larities. Almost no triangles are being degenerate. Furthermore, sgng
creates all desired triangles during learning. Thus, post-processing
steps that are inevitable for gsrm are obsolete with sgng.

In the second example the input points P ⊂ P (Eq. 2.2) are SGNG reconstructing
an annulusdrawn uniformly at random from an annulus. Fig. 4.12 shows the

resulting mesh after different numbers of iterations. The characteristics
of the results are very similar to the square example. At first, a
triangulated quadrangle is created (Fig. 4.12(d)). In the early iterations,
the density and distribution of the constructed vertices do not match
the density and distribution of the input points, leading to holes
and overlapping edges (Fig. 4.12(e)). However, sgng recovers easily
from this configuration during the next few iterations constructing a
triangulated disk (Fig. 4.12(f)) and afterwards an annulus (Fig. 4.12(g)).
Finally, all constructed vertices are fairly evenly distributed across
the input annulus with the hole being correctly reconstructed (Fig.
4.12(h)). As in the previous example the constructed triangles have
very similar sizes with only few irregularities. Almost no triangles
are being degenerate. Furthermore, sgng creates all desired triangles
during learning without requiring any post-processing steps.

4.5 implementation details

During implementation of sgng, some care must be taken to achieve
runtime efficiency. For the sake of clarity, the sgng algorithm pre-
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Figure 4.11: Sgng reconstructing a square.
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Figure 4.12: Sgng reconstructing an annulus.
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sented so far was described without referring to implementation
details. However, many design decisions have been made with an
efficient implementation in mind. To make the results presented in this
dissertation reproducible, important details about the implementation
are outlined in this section. A pseudocode that is very similar to C++
is used for this purpose.

Custom data structures for the constructed mesh, its triangles, its
edges, and its vertices have been designed for sgng in order to support
the required operations with low overhead.

〈SGNG data structures〉 ≡
〈SGNG Mesh class A pp. 102, 103〉
〈SGNG Vertex class A pp. 103, 104〉
〈SGNG Edge class A p. 102〉
〈SGNG Triangle class A p. 102〉
〈SGNG OctreeNode class A p. 103〉

The constructed mesh maintains lists of vertices, edges, and trian-Mesh class

gles. In order to handle activity and inactivity of vertices, two separate
vertex lists are required. Details are presented later.

〈SGNG Mesh class〉 ≡ Ap. 102
Vertex* pFirstActiveVertex; // V , Activity list
Vertex* pFirstInactiveVertex; // V , Inactivity list
list<Edge*> pEdges; // E
list<Triangle*> pTriangles; // F

Each triangle stores pointers to the three adjacent edges. TheTriangle class

vertices and adjacent triangles are accessible via these edges. In order
to detect and remove obsolete triangles, each triangle stores the penalty
assigned to it.

〈SGNG Triangle class〉 ≡ Ap. 102
Edge* pAdjEdges[3]; // (v0, v1), (v1, v2), (v2, v0)

int* penalty; // a4
(
4(v0, v1, v2)

)
Each edge stores pointers to the two vertices that it is connecting,Edge class

and pointers to at most two adjacent triangles. Finally, each edge keeps
track of its penalty in order to detect and remove obsolete edges.

〈SGNG Edge class〉 ≡ Ap. 102
Vertex* pVertices[2]; // v0, v1

Triangle* pAdjTriangles[2];

int penalty; // ae
(
(v0, v1)

)
Besides its 3d position each vertex stores a list of pointers to theVertex class

edges emanating from it. Thus, sgng efficiently checks if two given
vertices are already connected by an edge. Furthermore, sgng effi-
ciently determines the set of neighbors of a single given vertex and the
set of common neighbors of two given vertices. Sgng also efficiently
checks whether a given triangle already exists. Finally, each vertex
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v keeps track of its activity τ(v) and the number ϑ(v) of the last
iteration in which it was selected as best match.

〈SGNG Vertex class〉 ≡ Ap. 102
float position[3]; // v
list<Edge*> pEdges[2];

int activity; // τ(v)
int lastIterBestMatch; // ϑ(v)

With the above data structures both edge split and edge collapse are
implemented efficiently. The vertices that are affected by both op-
erations are found via the set of common neighbors of the vertices
that are connected by the respective edge. Furthermore, the data
structures allow for efficient neighbor search and efficient detection of
undesired edges and triangles. The set of edges that are emanating
from the best matching vertex is used to find the neighbors of the best
matching vertex that are affected by position updates. The same set of
emanating edges is used when checking for undesired edges. Only
the triangles adjacent to the edges emanating from the best matching
vertex are considered when checking for undesired triangles.

Vertex positions are stored in the leaf nodes of an octree that is vb, vc

dynamically updated during reconstruction. That way the best and
the second-best matching vertex for a randomly selected input point
are found efficiently.

〈SGNG Mesh class〉 +≡ Ap. 102
OctreeNode* pOctreeRoot;

A leaf node contains at most eight vertices. Nodes are split when
necessary, and collapsed when possible. The depth of the octree is
not limited. Whenever a vertex is moved beyond or a new vertex is
placed outside the bounds of the root node, the octree grows upwards
by creating a new root node having the old root node as one of its
child nodes.

〈SGNG OctreeNode class〉 ≡ Ap. 102
OctreeNode* pParent;

float bounds[6];

bool isLeaf;

union {

OctreeNode* pChildNodes[8];

Vertex* pVertices[8]; }

To facilitate the dynamic updates each vertex stores a pointer to the
octree node it is currently located in. That way, sgng efficiently checks
whether a vertex has been moved beyond the bounds of the respective
node and whether parts of the octree have to be updated.

〈SGNG Vertex class〉 +≡ Ap. 102
OctreeNode* pOctreeNode;
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Sgng organizes the vertices in two lists: The entries in the activityVertex activity
and inactivity list are sorted with respect to the activity of the corresponding vertices,

and the entries in the inactivity list are sorted with respect to the
number of the last iteration in which the corresponding vertices were
created or selected as best match. Thus, the most active vertex is
located at the front of the first list, and inactive vertices are located at
the end of the second list.

Whenever a vertex is selected as best match, its activity is incre-
mented by one, and its position in the activity list is readjusted. Si-
multaneously, it is moved to the front of the inactivity list. A density
update resets the activity of the affected vertices to the smallest activ-
ity value in the mesh. The vertices are thus moved to the end of the
activity list. Each vertex stores pointers to its immediate predecessor
and successor in both lists. That way, separate list nodes do not need
to be allocated, and thus memory requirements are reduced.

〈SGNG Vertex class〉 +≡ Ap. 102
Vertex* pPrevVtxInActivityList;

Vertex* pNextVtxInActivityList;

Vertex* pPrevVtxInInactivityList;

Vertex* pNextVtxInInactivityList;

4.6 experiments and results

At first, suitable reconstruction parameters for sgng were determined
that were then used in all subsequent experiments (Tab. 4.1). These
parameters were also used in the examples presented earlier. After-
wards, experiments were conducted in order to illustrate the effect of
the new boundary fitting and to demonstrate that sgng can handle
input data that is locally homogeneous but that has a globally varying
density. In order to verify the performance of sgng, and to compare it
to other surface reconstruction techniques, sgng was tested with the
benchmark provided by Berger et al. [13, 14]. By repeating their er-
ror distribution experiments for Poisson surface reconstruction (psr) the
results for sgng can be related to the results of other state-of-the-art
reconstruction techniques that were tested in the original benchmark.

Sgng is compared to gsrm in order to verify whether the new algo-
rithm does indeed improve the reconstruction process. Furthermore,
sgng is compared to screened Poisson surface reconstruction (spsr) [78]
as a state-of-the-art baseline. This comparison focuses mainly on it-
erative reconstructions providing preview while reconstructing from
real-world data. At present spsr is designed to construct only water-
tight meshes. However, its authors provide a trimming tool to remove
undesired triangles. To make comparison fair, this trimming tool
was used in the experiments. In addition to creating high-resolution
renderings of the reconstructed surfaces for visual comparison, the
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median reconstruction time of ten executions was determined in the
experiments. Additionally the mean relative error normalized to the
length of the diagonal of the bounding box was evaluated. Finally, the
angle distribution and the reconstruction quality were computed.

Sgng was implemented in C++ and executed as a 64 bit-application
on a single cpu core. It was not especially fine-tuned for run-time
performance. However, a dynamic octree was used to determine
vb and vc. Gsrm was implemented and configured according to
the original paper [41], triangulating 3- to 7-loops during post-pro-
cessing. The dynamic octree and the new activity updates of sgng
were used to make comparison fair. Psr version 2 [76] as provided
with the benchmark, and the recent spsr version 6.13 [77] were used.
Experiments were run on an Apple® MacBook Pro® with a 2.6 GHz
Intel® Core™ i7-4960hq cpu, 16 GB 1600 MHz ddr3 ram, running
Mac OS X® 10.9.

The mean distance between the input points and the constructed Reconstruction error

triangles was computed as an error measure. That way, the overall
deviation of the output mesh from the input points is tracked better
than using the Hausdorff distance. The latter yields only the largest
deviation and is thus prone to outliers.

The metro tool [27] could not be used directly due to data incom-
patibilities. Thus, the measurement process was rebuilt: Monte Carlo
sampling from MeshLab [28] was used to create a set S of 3d samples
lying on the triangles of each exported mesh. The number |S | of
samples was equal to the number |P | of input points used to construct
the respective mesh. Afterwards, two mean distance values were
computed: The first indicating the mean distance from an input point
pi ∈ P to the closest sample sj ∈ S , the second indicating the mean
distance from a sample to the closest input point. To be compara-
ble throughout the experiments, both values were normalized to the
length of the diagonal of the bounding box of the point cloud, dP , or
of the set of samples, dS , respectively. The greater value of the two
mean distance values was selected as the error value e:

e = max

{
1
|P |

|P |
∑
i=1

min
sj∈S

‖pi − sj‖
dP

,
1
|S |

|S |
∑
j=1

min
pi∈P

‖pi − sj‖
dS

}
.

Reconstruction quality was evaluated in terms of triangle shape: Reconstruction
qualityThe more regular, i.e., the closer to equilateral the triangles, the better.

Therefore, the ratio of the radii of the incircle and the circumcircle of
a triangle was used as a quality measure, normalized to the ratio of
an equilateral triangle.

Let a, b, c denote the lengths of the sides of a triangle, then for the
area A of the triangle [125],

A =
1
4

√
(a + b + c)(b + c− a)(c + a− b)(a + b− c) ,
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Figure 4.13: Contour plot of reconstruction quality values for all valid
triangle configurations. The abscissa and ordinate specify
two of the three inner angles. marks the quality value
(q = 1.0) of equilateral tringles, and marks the quality
value (q ≈ 0.828) of half-square triangles.

Table 4.2: Characteristic quality values

Type of triangle Quality (q)

Equilateral 1.0
Half-square ≈0.828
Isosceles, top angle ≈ 34.1° ≈0.828
Isosceles, top angle < 26.5° or > 100.8° <0.707
Isosceles, top angle < 16.9° or > 117.2° <0.5

its inradius r, and its circumradius R [126, 127]

r =
2A

a + b + c
, R =

abc
4A

,

and thus

q =
2r
R

=
16A2

(a + b + c) · abc
∈ [0, 1] ,

where the factor of 2 is used for normalization so that q = 1 for
equilateral triangles. The contour plot in Fig. 4.13 gives an overview
of the quality values for different angle configurations in a triangle.
Tab. 4.2 lists characteristic quality values for some triangle types.

In order to determine a set of suitable parameter values for theDetermining suitable
parameter values experiments, sgng reconstructions that were created with various

combinations of parameter values were evaluated. To make sure that
the subsequent experiments yielded results that are related to the
generalization capabilities of sgng, a different data set was used here:
A set of 200 · 103 points sampled from the Armadillo reconstructions
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Figure 4.14: Influence of the learning parameters of sgng on (nor-
malized) reconstruction time (t (tnorm), solid), error (e,
dashed), quality (q, dotted), and relative number of bound-
ary edges (b, dash-dotted). The parameter values used in
the experiments are highlighted by a vertical gray line.

from Stanford Scanning Repository [114]. Sgng constructed meshes
with 50 · 103 vertices.

Fig. 4.14 shows plots revealing the relationships between the learn-
ing parameters and reconstruction time t (solid), error e (dashed), and
quality q (dotted). The leftmost plot uses tnorm, the time normalized to
the result at ∆tmax = 12 for each tested value of λ, to account for the
proportionality relationship of t and λ. Since a point to vertex ratio of
4 was used here, sgng leaves a small number of holes untriangulated
in regions where the vertex density exceeds the point density. The
number of holes is represented by the relative number b of bound-
ary edges in the lower right plot. From the plots a set of suitable
parameter values (β = 0.1, η = 0.01, λ = 100, ∆tmax = 12, amax = 20)
(Tab. 4.1) was determined as trade-offs between speed, quality, error,
and the number of erroneously untriangulated holes. A vertical gray
line highlights these values in the plots.

The experiment that was conducted earlier in order to demonstrate Comparison to GSRM

the influence of the input data’s density to gsrm reconstructions
(Fig. 4.2) was repeated for sgng. Fig. 4.15 shows renderings of sgng
reconstructions of Stanford Bunny with 20 · 103 vertices from different
numbers of input points. While the gsrm reconstructions contain
holes for sparser input data, the new topology learning (Sec. 4.3.2,
4.3.3) enables sgng to construct a hole-free triangle mesh even from
sparse input data that can be used directly for visualization at any time
during learning. In addition to that, sgng is faster than gsrm (Tab. 4.3).
While the post-processing of gsrm took longer the sparser the input
data was, running times of sgng are almost constant independent
of the number of input points. For fairness, λ = 200 for both gsrm
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(a) |P | ≈ 2.9 · 106 (b) |P | = 1.0 · 106

(c) |P | = 0.3 · 106 (d) |P | = 0.1 · 106

Figure 4.15: Sgng reconstructions of Stanford Bunny with 20 · 103 ver-
tices from different numbers of input points. Results for
gsrm reconstructions of same sets of input points are
presented in Fig. 4.2.

and sgng in this experiment, since this value was used in the original
paper by do Rêgo et al. [41].

In order to evaluate the effect of the newly introduced boundary fit-Effect of additional
boundary fitting ting (Sec. 4.3) a set of 12 000 input points was used that were sampled

from a square with an area of 1 square unit. From these input points
sgng constructed two meshes containing 100 vertices each: the first
without, the second with the additional boundary fitting. Fig. 4.16
presents the constructed meshes that both approximate the original
square. The input points are overlaid for reference. Without boundary
fitting (Fig. 4.16(a)) sgng constructs a mesh with a surface area of
approximately 0.72 square units. With boundary fitting (Fig. 4.16(b))
sgng constructs a mesh with a surface area of approximately 0.81
square units. Therefore, the newly introduced boundary fitting re-
duces the error in terms of surface area and thus improves boundary
accuracy—by 32 % in this experiment.

An experiment was conducted in order to demonstrate that sgngVarying point
density can handle input data robustly even if its density is locally homo-

geneous but varies across the original surface. For this purpose a
torus was sampled with four different densities (Fig. 4.17(a)) yielding
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4.6 experiments and results

Table 4.3: Running times in seconds for gsrm and sgng reconstructions
of Stanford Bunny with |V | = 20 · 103.

Gsrm Sgng

|P | / 106 2.9 0.3 0.1 2.9 0.3 0.1

Reconstruction 9.7 9.3 8.7 15.5 15.2 15.1
Post-Processing 8.9 17.3 43.0 – – –

Total 18.6 26.6 51.7 15.5 15.2 15.1

(a) Without boundary fitting. (b) With boundary fitting.

Figure 4.16: Effect of additional boundary fitting: Sgng reconstruc-
tions of a square with overlaid input points.

(a) (b)

Figure 4.17: Torus with varying point density. (a) Input points: Upper
right 1479 points, lower right 5878 points, lower left 2955
points, upper left 11 723 points. (b) Sgng reconstruction
with overlaid wireframe.
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Figure 4.18: Plots for the error distribution experiments using the
benchmark test provided by [14].

a total of 22 035 input points. Using the above learning parameters
sgng constructed a smooth surface with 5508 vertices from these input
points that approximates the original torus (Fig. 4.17(b)). Due to the
new topology learning (Sec. 4.3.2, 4.3.3) and the improved density
learning (Sec. 4.3.4) sgng is robust to the varying density of the input
points: Constructed triangles are smaller in regions with greater point
density than in regions with lower density. Since even in the sparsely
sampled regions the triangles are large compared to the distance of
the input points, there are no untriangulated holes in the constructed
surface. If the settings of sgng were changed in such a way that more
and thus smaller triangles were constructed, sgng would leave some
holes untriangulated. However, this could be detected easily during
iterative reconstruction, and an operator could adjust the parameters
accordingly without having to restart reconstruction from scratch.

In order to compare sgng to other surface reconstruction tech-Benchmark tests

niques, sgng was evaluated using the error distribution tests of a
publicly available benchmark [14]. The test for psr was repeated as a
verification: The results that were published by Berger et al. [14] could
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Figure 4.19: Number |V | of vertices (top row) and mean error e (bot-
tom row) of sgng (black) and spsr (gray) reconstructions
versus median time.

be reproduced. The results of psr thus serve as a link to the results
of the other techniques that Berger et al. tested. In addition to gsrm,
spsr was also tested, since sgng is compared to it. Fig. 4.18 presents
the results. Spsr performed slightly better than psr in terms of mean
and Hausdorff distance, but led to slightly larger angular errors. Since
the point clouds that were used in the benchmark are too sparse for
hole-free gsrm reconstructions, these caused large errors.

Sgng yielded results that are comparable to those presented by
Berger et al.: In terms of mean distance, Hausdorff distance, and mean
angle deviation for Gargoyle, Dancing Children, and Quasimoto sgng
performed similar to psr, and thus similar to or better than half of the
algorithms that were tested in the original benchmark [14]. For the
Anchor and Daratech data sets performance of sgng was even better:
Sgng outperformed psr in terms of mean and Hausdorff distance,
with similar results as spsr.

In the original benchmark psr reconstruction took 36.83 s, averaged
across all point clouds [14]. In the experiment that was repeated
here psr reconstruction took 36.91 s. Thus, running times can be
compared directly to the results of the other techniques that were
tested in the original benchmark. For comparison, in this experi-
ment, spsr reconstruction with the same settings as psr took 130.79 s,
gsrm reconstruction took 103.68 s including post-processing, and sgng
reconstruction took 19.66 s.

Sgng is compared to spsr using six real-world data sets: The origi- Real-world
reconstruction
experiments

nal range data of Stanford Bunny and Happy Buddha from Stanford
Scanning Repository [114], and the Arch, Cemetery, Fountain, and
Statues data sets created by a combination of VisualSFM [130] and
CMVS/PMVS [54] from photos taken in Paris, France. Stanford Bunny
and Happy Buddha are used for single-shot reconstructions. The
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Table 4.4: Results for sgng and spsr reconstructions.
Bunny Buddha

Sgng Spsr Sgng Spsr

Points (iterative steps) 362 230 (1 St.) 1 098 870 (1 St.)
Vertices 46 634 93 732
Time / s 20.9 14.6 50.0 33.0
Mean rel. error / 10−3 0.9 1.0 0.7 1.0

Arch Cemetery

Sgng Spsr Sgng Spsr

Points (iterative steps) 407 229 (10 St.) 380 840 (9 St.)
Vertices 101 808 104 670 95 210 88 303
Time / s 69.2 249.2 53.8 180.3
Mean rel. error / 10−3 1.0 3.1 2.1 3.2

Fountain Statues

Sgng Spsr Sgng Spsr

Points (iterative steps) 567 920 (16 St.) 497 489 (4 St.)
Vertices 140 000 69 248 124 373 97 408
Time / s 99.4 339.8 74.5 88.2
Mean rel. error / 10−3 1.0 3.5 0.8 3.0

remaining data sets are used in experiments that constitute a mock-up
of the intended application of sgng: An interactive pipeline where
data acquisition and reconstruction with continuous preview are ex-
ecuted in parallel. For this purpose incremental input point clouds
are constructed by adding only one photo at a time. To determine the
net reconstruction time in such a pipeline, the experiments start with
the initial point cloud. Further input points for the next incremental
step are added once a point to vertex ratio of 4 is reached (sgng)
or the previous reconstruction task has been finished (spsr). Sgng
is configured to use the previously determined learning parameters.
Spsr uses a 1283 voxel grid for Bunny and a 2563 voxel grid for the
other data sets. For Buddha a trimming value of 9 is used, for the
other data sets a value of 7 is used.

Fig. 4.19 and Tab. 4.4 present the results of these experiments. Spsr
is faster than sgng by a factor of approximately 1.5 for single-shot
reconstructions of Bunny and Buddha. However, it can be seen in
the plots in Fig. 4.19 that sgng instantly provides an approximate
reconstruction that gets continuously refined. For the single-shot re-
constructions of Bunny and Buddha the error of sgng is slightly lower
than the error of spsr. The former gets reduced during learning with
a steep initial decay. For iterative reconstructions of Arch, Cemetery,
and Fountain that are updated frequently sgng is faster than spsr by
a factor of 3.4 to 3.6 and still by a factor of 1.1 for the Statues data set
with only 3 updates during reconstruction. Again, the error of sgng is
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considerably smaller than the error of spsr. The former gets reduced
during learning with a steep initial decay, but increases temporarily
every time new points are added.

Besides the above measurements the visual appearance of the Visual evaluation

reconstructions is evaluated. Fig. 4.20–4.32 present the results. For
each iterative reconstruction a photo is presented as an overview (Fig.
4.24(a), 4.26(a), 4.28(a), 4.30(a)) as well as the complete point cloud
(Fig. 4.24(b), 4.26(b), 4.28(b), 4.30(b)) created from the input images.

Sgng constructs a mesh that visually represents the input data more
accurately than spsr. The latter tends to oversmooth the data (Fig.
4.20(a)) while sgng reconstructs finer details with the same number of
vertices (Fig. 4.20(b)): The bulges on the side and the rear foot, and
the bumps near the mouth of Stanford Bunny are more prominent for
sgng than for spsr. The quality of the triangles that are constructed
by sgng on the one hand and by spsr on the other hand is different
(Fig. 4.21): Sgng constructs a fairly regular triangle mesh, that can
be seen in a close-up of the left eye of Stanford Bunny (Fig. 4.21(b)).
In contrast, spsr constructs many right angled triangles. Quite a few
are even close to degenerate (Fig. 4.21(a)). However, this is caused by
marching cubes that is known to construct a considerable amount of
irregular triangles.

Holes that are present in the input data are reconstructed much
better by sgng than by spsr: On the bottom of the original Stanford
Bunny clay figure there are two holes for balancing the pressure during
baking. Additionally, some parts of the bottom surface were not
captured while scanning and are thus missing from the input points.
Sgng correctly reconstructs the two holes (Fig. 4.32(b)) and reveals the
missing data without any modifications to the learning parameters.
In contrast, spsr bridges those parts and the accompanying trimming
tool is needed to reopen at least the holes partially (Fig. 4.32(a)). Thus,
regions with missing input data cannot be determined from an spsr
reconstruction with sufficient certainty, whereas those regions are
clearly apparent in an sgng reconstruction.

The difference in visual accuracy of sgng and spsr becomes also
apparent in the reconstructions of Happy Buddha. The sgng recon-
struction (Fig. 4.23) reproduces the wrinkles of the cloth better than
the spsr reconstruction (Fig. 4.22). Spsr bridges the coat and the base
on the right side of the statue. Furthermore, even the trimmed spsr
reconstruction does not track the boundaries of the original object
well, and some overshooting of the underlying distance function’s
zero-set becomes apparent: The right foot of Happy Buddha seems
to be sunken into the base of the figure with spsr (Fig. 4.22) mak-
ing it appear soft. Although there is a considerable amount of noise
contained in the Buddha data set, with its current settings sgng fits
a fairly smooth surface to the input points without creating spikes
or other artifacts that are due to overfitting (Fig. 4.23). Furthermore,
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.20: Reconstructions of Stanford Bunny.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.21: Close-up of the left eye of Stanford Bunny.
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Figure 4.22: Spsr reconstruction of Happy Buddha.
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Figure 4.23: Sgng reconstruction of Happy Buddha.
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(a) Photo.

(b) Point Cloud.

Figure 4.24: Arch: Exemplary photo and complete point cloud.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.25: Arch: Constructed triangle meshes.
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(a) Photo.

(b) Point Cloud.

Figure 4.26: Cemetery: Exemplary photo and complete point cloud.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.27: Cemetery: Constructed triangle meshes.
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(a) Photo.

(b) Point Cloud.

Figure 4.28: Fountain: Exemplary photo and complete point cloud.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.29: Fountain: Constructed triangle meshes.
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(a) Photo.

(b) Point Cloud.

Figure 4.30: Statues: Exemplary photo and complete point cloud.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.31: Statues: Constructed triangle meshes.
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(a) Spsr. (b) Sgng.

Figure 4.32: View of the bottom of Stanford Bunny.

sgng tracks the boundary tightly within the variation of the input
data’s noise. Thus the reconstruction does not mislead a viewer about
the materials of the original object. Finally, sgng does not bridge
empty regions of the input data, except for one triangle in the back,
erroneously bridging the coat and the base.

The reconstructions of the remaining, larger real-world objects fur-
ther underline the visual accuracy of sgng reconstructions in compari-
son to spsr reconstructions. Parts of the original object that are not
captured by the respective point cloud (Fig. 4.24(b), 4.26(b), 4.28(b),
4.30(b)) are bridged in the spsr reconstructions (Fig. 4.25(a), 4.27(a),
4.29(a), 4.31(a)), although the accompanying trimming tool was used
with a high trimming value. Therefore, details in bridged regions
might be missed since an operator cannot decide by examining the
reconstruction where data has to be added. In contrast, the sgng
reconstructions (Fig. 4.25(b), 4.27(b), 4.29(b), 4.31(b)) track the input
point clouds well: Parts of the original object that are not captured
by the respective point cloud are left empty in the constructed mesh.
From these reconstructions an operator can decide where further data
needs to be acquired in order to complete the reconstruction. Thus,
eventually no details will be missing. Furthermore, the spsr recon-
structions look smoothed. Due to this smoothness they appear to be
rather small and made from soft materials. In combination with the
already mentioned overshooting the spsr reconstructions look rather
like a mold for the object than like the object itself. In contrast, the
sgng reconstructions look crisp and provide a much better impression
of material and size.

Sgng constructs fairly regular triangles: The normalized angleTriangle quality

distributions of the individual experiments (Fig. 4.33(a) left, solid
black) concentrate around 53°. This high regularity is reflected in
a high triangle quality: The normalized quality distributions of the
individual sgng experiments (Fig. 4.33(a) right) concentrate at q ≈ 0.98.
In contrast to these results, spsr features half-square triangles: The
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normalized angle distributions of the individual experiments (Fig.
4.33(b) left) concentrate around 45° and 89°. This is also reflected
by the triangle quality: The normalized quality distributions of the
individual spsr experiments (Fig. 4.33(b) right) concentrate at q ≈ 0.84.

The different triangle configurations that sgng and spsr create can
be evaluated in greater detail using the contour plots in Fig. 4.34, 4.35.
The plots give an overview of the frequency of triangle configurations,
by identifying the most common 25 % (black), 50 % (gray), and 75 %
(light gray) configurations of the triangles in the constructed mesh. It
can clearly be seen that sgng and spsr produce significantly different
distributions of triangle configurations. The most common 25 % of
triangle configurations that are constructed by sgng are very close to
that of regular triangles for all data sets (Fig. 4.34(a), 4.34(c), 4.35(a),
4.35(c), 4.35(e), 4.35(g)). Even the most common 75 % of triangle
configurations that are constructed by sgng are still pretty close to
that. In contrast, the most common 25 % of triangle configurations that
are constructed by spsr are very close to that of right-angled, isosceles
triangles for all reconstructions (Fig. 4.34(b) 4.34(d), 4.35(b), 4.35(d),
4.35(f), 4.35(h)). Although the close to regular configurations are
among the most common 50 % of triangle configurations for some spsr
reconstructions, there are also elongated, right-angled configurations
in every spsr reconstruction. Furthermore, even degenerate, right-
angled configurations are among the most common 75 % of triangle
configurations that are constructed by spsr.

The irregular triangles constructed by spsr are caused by marching
cubes that is used to triangulate the zero-set of the computed distance
function. In order to provide a less biased comparison, the angle
distributions of sgng are additionally compared to the results of
the dictionary-learning approach by Xiong et al. [133] (Fig. 4.33(a)
left, dashed gray) and to results of Singular Cocone reconstruction by
Dey and Wang [38] (Fig. 4.33(a) left, dashed light gray). The curves
are reproduced from the histograms published by Xiong et al. [133]
in order to provide a direct comparison. The peaks in the angle
distributions created by sgng are located at a slightly smaller angle
than in both the dictionary-learning approach and in Singular Cocone
reconstruction. However, the distribution achievable with sgng is much
steeper, thus considerably fewer acute or obtuse triangles are created.

4.7 discussion

In this chapter sgng has been proposed and evaluated, an online
learning-based artificial neural network that iteratively constructs a tri-
angle mesh from an unorganized point cloud representing an object’s
surface. Sgng instantly provides a rough approximation of the original
surface that gets continuously refined up to an accurate reconstruction.
Since all desired triangles are created during learning and not during
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(a) Surface-Reconstructing Growing Neural Gas (solid black), dictionary learn-
ing [133] (dashed gray), Singular Cocone Dey and Wang [38] (dashed light gray).
The latter two are reproduced from the histograms published by Xiong et al. [133].
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(b) Screened Poisson Surface Reconstruction.

Figure 4.33: Normalized angle and quality distributions.
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(a) Sgng: Stanford Bunny.
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(b) spsr: Stanford Bunny.
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(c) Sgng: Happy Buddha.
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(d) spsr: Happy Buddha.

Figure 4.34: Contour plots displaying the relative frequency of triangle
configurations that are created by sgng and spsr. The
most common 25 % of configurations are enclosed by
a black contour. The most common 50 % and 75 % of
configurations are enclosed by a gray and a light gray
contour, respectively.
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(a) Sgng: Arch.
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(b) spsr: Arch.
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(c) Sgng: Cemetery.
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(d) spsr: Cemetery.
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(e) Sgng: Fountain.
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(f) spsr: Fountain.
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(g) Sgng: Statues.
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(h) spsr: Statues.

Figure 4.35: Contour plots displaying the relative frequency of triangle
configurations that are created by sgng and spsr. The
most common 25 % of configurations are enclosed by
a black contour. The most common 50 % and 75 % of
configurations are enclosed by a gray and a light gray
contour, respectively.
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post-processing, sgng is well suited for an iterative pipeline where
scanning, reconstruction, and visualization are executed in parallel:
At any time modifications to the input data are incorporated instantly
into the reconstruction without additional overhead. That way, with
sgng an operator or an automatic process will be able to direct further
data acquisition without waiting for a reconstruction to be finished.
In order to provide visually meaningful initial approximations sgng
tolerates self-intersections and that the constructed mesh may become
non-manifold. However, adding a guarantee to sgng that the con-
structed mesh will be manifold, once the input data is dense enough,
is left for future work.

An extensive evaluation has confirmed that sgng improves signifi-
cantly upon its predecessor gsrm. Furthermore, results of a benchmark
test have confirmed that sgng can compete with other state-of-the-art
surface reconstruction algorithms. Although sgng is intended to be
used as an online algorithm providing iterative preview while acquir-
ing data, the reconstruction error of sgng is low while the quality of
the constructed mesh is high. Sgng visually represents the input data
much better than spsr, a state-of-the-art offline algorithm. The con-
structed meshes contain mostly regular triangles, outperforming spsr,
Singular Cocone, and a recent dictionary-learning approach. However,
a comparison to several more recent surface reconstruction techniques
is left for future work. Sgng is robust to noise as long as the variation
of the noise is smaller than the average triangle size. Furthermore, the
additional fitting step lets sgng fit data boundaries tightly. Finally,
the new topology learning enables sgng to correctly represent empty
regions of the input data.

Sgng does not extrapolate missing data: Holes are created whenever
the vertex density exceeds the point density. Nevertheless, to overcome
this, further input data can be added, and the learning parameters can
be adjusted at any time during reconstruction. However, experiments
indicate that the learning parameters of sgng do not need to be
specifically adjusted for each input data set: Leaving them unchanged
for all experiments consistently produced good results.

Since sgng uses a variant of chl and approximates the positions
of the input points, it cannot yet reconstruct very fine structures or
sharp features, if these are sampled too sparsely: The latter will be
smoothed, the former will lead to holes and wrinkles. With the current
update rules, input data has to be very dense in such regions in order
to avoid these errors. Approximating such features more accurately is
left for future work.

It is very likely that the current implementation of sgng leaves room
for optimization: Profiling revealed that the 2-nearest neighbor search
in the adaptive octree to find the best and the second-best matching
vertices dominates running time. Furthermore, a considerable number
of cache misses was reported. It is planned to examine the sgng
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algorithm in order to find a way to address both bottlenecks and to
further streamline the reconstruction process. Since sgng operates
only locally and evaluates only one input point at a time in a stochastic
way, it is very likely that the algorithm can be executed massively in
parallel, implemented as an out-of-core algorithm. Thus, even a gpu
implementation is conceivable. In order to improve performance in
terms of smaller reconstruction error and better reconstruction quality
even further, other learning objectives or even dual representations of
sgng have to be examined.

It might be advantageous if the iteratively refined triangle meshes
constructed by sgng were fed back into the point extraction process.
That way at first only a very coarse set of feature points has to be
extracted, matched and converted into 3d points. The iteratively
refined surface that is constructed by sgng could then be used to direct
extraction of a denser set of feature points. Thus, a combination of
point extraction and sgng could operate in an integrated, incremental
coarse to fine approach, with reduced processing power and memory
requirements—maybe even on mobile platforms.
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5
L E A R N I N G T H E T E X T U R E A S S I G N M E N T *

If the input points that have been acquired for surface reconstruction
provide color information about the original object, then the previ-
ously proposed surface-reconstructing growing neural gas (sgng) can
learn vertex colors from this information. Furthermore, if images of
the original object are available that are registered to the input points,
then these images can be used as textures for the constructed mesh.

A coloring and a texturing extension to sgng are presented in this
chapter. While the former is a straightforward way to add visual detail
to the constructed mesh, the latter enables sgng to automatically learn
how to assign suitable high-resolution textures to the constructed
triangles. By learning visibility from the input data instead of deriving
it from the constructed mesh, sgng reduces the number of noticeable
occlusion artifacts to a minimum. Whenever new images become
available, they are immediately incorporated into the model being
learned, refining the result, without interrupting the reconstruction
process. That way, even a textured mesh is available for visualization
at any time during reconstruction.

5.1 problem statement

Sgng is originally intended to be used as a surface reconstruction
algorithm using 3d input data that has been extracted from a set of
images. The images can stem, for instance, from aerial photography
using remotely-piloted aircraft, or from crowd work using digital cam-
eras or smart phones. If the input images are mutually overlapping,

* Substantial parts of this chapter appeared in [120] Tom Vierjahn and Klaus Hinrichs.
Surface-reconstructing growing neural gas: A method for online construction of
textured triangle meshes. Computers & Graphics, pp. –, 2015. doi: 10.1016/j.cag.2015.
05.016.
A first prototype was sketched in [123] Tom Vierjahn, Jan Roters, Manuel Moser,
Klaus Hinrichs, and Sina Mostafawy. Online reconstruction of textured triangle
meshes from aerial images. In 1st Eurographics Workshop Urban Data Modelling and
Visualisation, pp. 1–4, 2013. doi: 10.2312/UDMV/UDMV13/001-004.
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then 3d input points can be extracted by stereophotogrammetry or by
structure from motion [130] for subsequent surface reconstruction. For
this purpose, at first, special feature points are identified in each image.
The features are then matched across the images according to their
feature descriptors so that each feature in a group of matching features
represents the same point on the original object. Many suitable feature
descriptors exist, including CenSurE [3], freak [4], brief [24], sift [89],
and daisy [118]. After matching the features, epipolar geometry is
used to compute the points’ 3d positions and the cameras’ extrinsic
and intrinsic parameters from the matching features’ 2d locations
inside the images [107]. Real-world data is prone to imperfections like
noise, drifts, or sensor inaccuracies. Feature matching may introduce
additional artifacts like outliers. Thus, robust estimation techniques
like Festgpu [106], a gpu implementation of ransac, [46] are used to
compute as accurate a solution as possible efficiently.

The process sketched above creates a set of 3d input points for sub-
sequent surface reconstruction and relates every point to a 2d location
in two or more images. Thus, sgng is not restricted to reconstruct
an original object’s shape and topology. Sgng can also learn the ob-
ject’s surface color. Related results have been presented for instance
for reconstructions of historic sites in Rome from community photo
collections [2, 48]. However, these approaches used fundamentally
different reconstruction and texturing techniques.

Extracting the set P of 3d points from a set T of images yields forAvailable data

each input image Ti ∈ T which points pj ∈ P are visible in it. Thus,
the indicator function

[pj visible in Ti] =

{
1 , if pj is visible in Ti

0 , otherwise
(5.1)

is defined for all pairs of Ti ∈ T and pj ∈ P . Consequently, a set
Tpj
⊆ T is defined for each input point pj that contains only those

images that show pj:

Tpj
= {Ti ∈ T | [pj visible in Ti] = 1} .

Furthermore, point extraction computes a mapping

wp : P × T 7AR2 , with wp(pj, Ti) =

{
wpj,Ti , if Ti ∈ Tpj

undefined , otherwise ,

yielding a point’s 2d location wpj,Ti inside an image Ti if the point pj
is visible in the image. Determining the color at wpj,Ti in the image
Ti is straightforward. Let each image constitute a mapping from 2d
locations inside the image to colors, for instance in rgb space,

Ti : R2 7AR3 , with
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Ti(wpj,Ti) =

{
color at wpj,Ti , if wpj,Ti inside image

undefined , otherwise .

If wpj,Ti has sub-pixel accuracy, then a suitable interpolation scheme
needs to be applied, e.g., linear interpolation. Finally, a color, for
instance in rgb space, is assigned to each point by a mapping

cp : P 7AR3 , with cp(pj) =
1
|Tpj
| ∑

Ti∈Tpj

Ti(wpj,Ti) ,

yielding the average color of the pixels that are showing a point. The
shorthand cpj

= cp(pj) is used in the remainder of this dissertation.

5.2 learning vertex colors and texture coordinates

Sgng approximates an original object’s shape by learning vertex posi-
tions from the input points’ positions by an algorithm that—intuitive-
ly—resembles a variant of k-means clustering [87, 90] using stochastic
gradient descent. Learning vertex colors and interpolating them across
the triangles as an approximation for the original object’s color can
be integrated into the reconstruction algorithm in a similar fashion.
The same applies to learning texture coordinates inside the individual
images. The derivation is outlined in the following.

Sgng as a learning algorithm minimizes an objective function. To be Objective function

precise, Erwin et al. [45] prove that there does not exist a single energy
function for gradient descent in a self-organizing map (som). A similar
argument might apply to sgng, since it uses a neighbor learning
scheme that is related to the one used in som. However, a closer
examination lies beyond the scope of this dissertation. Nevertheless,
for the sake of an intuitive illustration, existence of such a single
energy function is assumed here. Let E denote this energy function

E : V ∗ 7AR , with E(V ) = ∑
v∈V

∑
p∈Pv

‖v− p‖2 ,

where V ∗ denotes the set of all conceivable vertex sets, and where
Pv ⊆ P denotes the set of all points that are located in the Voronoi cell
of vertex v. Applying gradient descent leads to the update rule

v ..= v− β′ · ∇E = v− β · ∑
p∈Pv

(v− p) , ∀v ∈ V .

Presenting the points one by one, one after the other, in random order,
leads to a stochastic gradient descent, with the already known update
rule for the best matching vertex vb according to the point pξt

that is
randomly selected in iteration t

vb
..= vb − β · (vb − pξt

) .
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A beautiful derivation of the above is presented by Singer and War-
muth [112], but for training a mixture of Gaussians.

With this intuition, learning vertex colors is derived, leading toVertex colors

an approach that is similar to the one presented by Orts-Escolano
et al. [101, 102]. Let cv denote the mapping to be learned, assigning a
color, for instance in rgb space, to a vertex

cv : V 7AR3 ,

with cv(vi) = undefined initially. The shorthand cvi = cv(vi) is used
in the remainder of this dissertation. Vertex colors are optimized
independently of the vertex positions, in order to avoid that color
influences the constructed shape. This leads to an energy function

E′ : V ∗ 7AR , with E′(V ) = ∑
v∈V

∑
p∈Pv

‖v− p‖2 + ‖cv − cp‖2 .

According to the above rationale an additional update rule for vertex
colors is derived

cvb
..= cvb − β · (cvb − cpξt

) .

Taking the neighbor learning of sgng into account and replacing vertex
positions with vertex colors leads to the color-learning rule for the
directly connected neighbors of vb

cvn
..= cvn − η · (cvn − cpξt

) , ∀vn ∈ Nvb .

If cvi = undefined, cpξt
is assigned to cvi as an initial approximation.

The above derivation can be reused for letting the vertices in theTexture coordinates

constructed mesh learn texture coordinates from the 2d locations of
the input points in the images. Then, sgng keeps track of a mapping

wv : V × T 7AR2

yielding a vertex’ learned texture coordinates wv(vj, Ti) inside an im-
age Ti, with wv(vj, Ti) = undefined initially. The shorthand wvj,Ti =

wv(vj, Ti) is used in the remainder of this dissertation.

Applying the same rationale that was used to derive the color
learning rules leads to update rules for texture coordinates: For the
best matching vertex vb

wvb,Ti
..= wvb,Ti − β · (wvb,Ti −wpξt

,Ti) , ∀Ti ∈ Tpξt
,

and for the directly connected neighbors of vb

wvn,Ti
..= wvn,Ti − η · (wvn,Ti −wpξt

,Ti) , ∀Ti ∈ Tpξt
, ∀vn ∈ Nvb .

If wvj,Ti = undefined, wpξt
,Ti is assigned to wvj,Ti as an approximation.
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n4

b4

gTi oTi

αi,4

θi,4

Figure 5.1: Selecting the image Ti that provides the most perpendicular
view of the triangle 4.

Learning vertex colors or texture coordinates as presented above Practical
considerationsand interpolating them across the triangles leads to a colored or tex-

tured triangle mesh—given that suitable textures for the triangles are
selected. However, the level of detail in terms of color and the accuracy
in terms of texture coordinates are coupled to the number and thus to
the size of the constructed triangles, since vertex colors and texture
coordinates are interpolated across them: The smaller the triangles, the
more details in terms of color and texture coordinates are achievable.
Thus, a large number of triangles is required for visually appealing,
sharp, colored or textured results containing fine details, although
a rather low number of triangles might be sufficient to represent a
desired level of geometric detail. This coupling is also apparent in the
results of other algorithms that determine vertex colors from the input
points, for instance, in ssd-c [22]. Nevertheless, especially integrating
color learning into sgng significantly improves the visual quality of
the results without increasing implementation complexity or adding a
severe overhead to the reconstruction algorithm. However, in the next
section a texturing approach is presented, that is well suited even for
low-resolution triangle meshes.

5.3 assigning suitable textures

In order to provide better accuracy, sgng computes texture coordinates
for the vertices by projecting the constructed triangles into the input
images using the previously determined attributes of the cameras.
In order to avoid noticeable artifacts, the image that is assigned as a
texture to a given triangle has to be carefully selected from the set of
input images. Blending, and leveling techniques [17, 34, 56] should be
applied to balance different exposure and lighting conditions. There
are many such techniques readily available. However, integrating
them is left for future work.

In order to minimize perspective distortions sgng aims at assigning Finding the most
perpendicular viewthe image as a texture to a triangle that provides the most perpendicu-

lar view of the triangle. For this purpose, a suitable metric ⊥(4, Ti)

that is similar to the form factor in Radiosity [59] is derived from the
position oTi and the unit gaze direction gTi

of the original camera that
captured Ti ∈ T , and from the barycenter b4 and the unit normal n4
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of the triangle 4 (Fig. 5.1):

⊥(4, Ti) =

(
n4 · (oTi − b4)

)
·
(
gTi
· (b4 − oTi)

)
(oTi − b4) · (oTi − b4)

= cos αi,4 · cos θi,4 .

The image T4 to be used for texturing a given triangle is then found
by maximizing ⊥(4, Ti) over all Ti ∈ T

T4 = arg max
Ti∈T
⊥(4, Ti) .

While maximizing only ⊥(4, Ti) works well for reconstructions
from clean scans of simple, convex objects, it is not well suited for
the general case, since it does not handle occlusions, neither by other
objects nor by self-occlusion. Therefore, real-world applications will
suffer from noticeable artifacts. These artifacts can be avoided with ex-
isting techniques only if occluding surface parts are represented by the
input points and if those are reconstructed accurately. Both can hardly
be guaranteed in real-world applications. Since sgng reconstructs
objects incrementally and in a stochastic way, occluding triangles are
not necessarily created accurately at any time. Fortunately, visibility
information is implicitly encoded in the input points and can therefore
be learned during sgng reconstruction.

Each vertex learns its visibility in an image from the input points.Avoiding occlusion
artifacts The visibility is then used to select the image that is suitable for

texturing a triangle without creating noticeable occlusion artifacts,
even if occluding surfaces are not represented in the input points.

Let Pv denote the set of all points that are located in the Voronoi
cell of a vertex v. Then, the probability that this vertex is visible in a
given image Ti is estimated by the ratio of the points of Pv that are
visible in Ti

P(v visible in Ti | Ti) ≈
∑p∈Pv

[p visible in Ti]

|Pv|
,

with [p visible in Ti] denoting the indicator function (Eq. 5.1). Having
learned the visibility, optimization is extended to assign the image
T4 as a texture to a triangle 4 with vertices v ∈ 4 that provides the
most perpendicular view of the triangle and that most likely shows
the unoccluded triangle:

T4 = arg max
Ti∈T

(
⊥(4, Ti) · ∏

v∈4
P(v visible in Ti | Ti)

)
.
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Table 5.1: Images available for the point clouds.

Image Num. Num.
Data Set Resolution Camera Images Textures

Arch 3888 × 2592 eos 400d 25 10
Cemetery 3264 × 2448 iPhone 5 14 9
Fountain 3264 × 2448 iPhone 5 30 11
Statues 3888 × 2592 eos 400d 9 5

5.4 results

The reconstruction experiments with the Arch, Cemetery, Fountain,
and Statues data sets that were performed earlier (Sec. 4.6) were
repeated using the texture assignment extension of sgng presented
above. Each point cloud was created from photos by a combination of
VisualSFM [130] and CMVS/PMVS [54]. Thus, the visibility information
for the input points in the original images is readily available. Tab. 5.1
lists further details for the images available with the input point clouds.
Fig. 5.2, 5.3 present thumbnails of the images as an overview. The
photos were taken in Paris, France, with a Canon® Digital Rebel xti
(eos 400d) dslr or with the built-in camera of an Apple® iPhone® 5.

Sgng successfully assigns suitable textures to the constructed trian- Visual quality

gles with the extension presented in this chapter. Fig. 5.4–5.9 present
the results. Original photos (Fig. 5.4(a), 5.5(a), 5.7(a), 5.8(a), 5.9(a))
that were not used as textures for the constructed triangle meshes are
presented alongside the textured reconstructions (Fig. 5.4(b), 5.5(b),
5.7(b), 5.8(b), 5.9(b)). In order to alleviate visual evaluation the virtual
camera used for rendering the reconstruction was aligned with and
matched to the original camera used for taking the photo. Two differ-
ent pairs of photo and reconstruction are presented for the Fountain
data set due to the size of the original object. Since the original photos
were leveled only manually, slight color and exposure mismatches are
noticeable on the textured triangle meshes. However, no geometric
misalignments or distortions are visible. Even the inscription on the
tomb of the Cemetery data set is clearly legible (Fig. 5.6(b)).

Sgng successfully reduces the number of occlusion artifacts to Occlusion artifacts

a minimum by taking visibility into account. Textures are selected
in such a way that the people walking in front of the Arch and the
Fountain and that are visible in the original photos (Fig. 5.2(a), 5.3(a))
are not visible in the textures assigned to the constructed meshes (Fig.
5.4(b), 5.7(b), 5.8(b)). Static occluders are also handled correctly by
sgng. Fig. 5.6 presents the effect of learning the visibility showing
close-ups of the textured reconstructions for the Cemetery data set.
If only the most perpendicular view is used to select the textures,
occlusion artifacts become clearly apparent (Fig. 5.6(a)): The blue
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Table 5.2: Running times for sgng without and with textures.

Arch Cemetery

Points (iterative steps) 407 229 (10 St.) 380 840 (9 St.)
Vertices 101 808 95 210
Time (without textures) / s 69.2 53.8
Time (with textures) / s 89.1 72.1
Overhead / s 19.9 18.3
Relative Overhead 10−5 s 2.0 2.1

Fountain Statues

Points (iterative steps) 567 920 (16 St.) 497 489 (4 St.)
Vertices 140 000 124 373
Time (without textures) / s 99.4 74.5
Time (with textures) / s 132.3 90.9
Overhead / s 32.9 16.4
Relative Overhead / 10−5 s 2.1 2.6

shore and the pillars that are supporting the roof of the tomb are
projected onto the tomb. By also learning the visibility information
from the input points the number of these artifacts is reduced to a
minimum (Fig. 5.6(b)): No details on the tomb are covered by projected
images of the shore or the pillars. The same applies to the two statues
in front of the Fountain (Fig. 5.7(a), 5.8(a)) that are not projected to
the back. Instead, sgng correctly selects those images as textures that
show the unoccluded base of the Fountain (Fig. 5.7(b), 5.8(b)).

The texturing extension introduces an overhead to sgng. EachOverhead

vertex needs to keep track of its visibility in the input images. Thus,
more memory is required. The running time overhead was evalu-
ated explicitly. As in the experiments for sgng (Sec. 4.6) the median
running times of ten executions were determined. Learning the tex-
ture assignment takes additional 16.4 s to 32.9 s for the tested data
sets. Tab. 5.2 presents the results. For a better overview some of the
numbers of Tab. 4.4 are repeated.

Taking a closer look at the running times suggests that the overhead
is related to the number of constructed vertices and the number of
images used as textures (Tab. 5.1). Thus, the overhead appears to
be related to the amount of additional data to be maintained and
learned in order to enable texture assignment. As an indicator for this
relationship, the bottom row of Tab. 5.2 presents the relative overhead,
i.e., the difference of the running times divided by the product of the
number of constructed vertices and the number of images used for
texturing (Tab. 5.1). For all tested data sets the values of the relative
overhead are in the same order of magnitude. However, a closer
examination is deferred to future work.
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(a) Arch

(b) Cemetery

Figure 5.2: Thumbnails of the original photos – part 1.
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(a) Fountain

(b) Statues

Figure 5.3: Thumbnails of the original photos – part 2.
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(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.4: Arch: Photo and textured sgng reconstruction.
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(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.5: Cemetery: Photo and textured sgng reconstruction.
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(a) Using only the most perpendicular view.

(b) Additionally using the learned visibility.

Figure 5.6: Cemetery: Close-ups of textured sgng reconstructions.
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(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.7: Fountain: Photo and textured sgng reconstruction.
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(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.8: Fountain: Photo and textured sgng reconstruction.
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(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.9: Statues: Photo and textured sgng reconstruction.

148



5.5 discussion

5.5 discussion

The texturing extension that has been presented in this chapter en-
ables sgng to construct textured triangle meshes if the input points
have been extracted from images, or if images are available that are
registered to the points. That way further visual details are automati-
cally added to the reconstructions that can be used for visualization
at any time during the execution. Whenever new images are added
during reconstruction, they are instantly considered as candidates
for texturing the triangles. Once sgng has learned that a new image
provides a better view of a triangle, the image that has been used as a
texture so far is replaced by the new one.

Sgng successfully reduces the number of occlusion artifacts to a min-
imum by learning the visibility information that is implicitly encoded
in the input points. That way, no separate techniques for occlusion
handling are required that might rely on accurately reconstructed
occluders—a guarantee that is hard to fulfill in real-world applica-
tions, especially when using iterative and stochastic reconstruction
approaches. Although the learned visibility leads to a fairly good
texturing, some seams remain visible due to unmatched exposures
and illuminations of the photos. Integrating existing leveling, blending
and warping techniques will most likely alleviate this.

The current implementation of the texture assignment increases the
time that is required to construct the triangle mesh from the input
points. Evaluation suggests that this overhead is related to the amount
of additional data that has to be maintained and learned. Improving
data structures and memory management will most likely reduce
this overhead and thus improve performance. However, even with
the current implementation sgng still outperforms screened Poisson
surface reconstruction in terms of running times for the data sets with
frequent updates during reconstruction. Only the Statues data set
takes slightly longer, but with the benefit of included textures.
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C O N C L U S I O N A N D F U T U R E W O R K

Surface-reconstructing growing neural gas (sgng) has been presented in
this dissertation as a technique for online surface reconstruction from
unorganized point clouds that is based on an artificial neural network.
The theoretical background for sgng and its relation to other existing
artificial neural networks that are used for surface reconstruction have
been explained in detail. An in-depth analysis of the characteristics
and shortcomings of prior algorithms has been used to derive the sgng
algorithm. Finally, a texturing extension for sgng has been presented.

Unlike its predecessors sgng expresses topological neighborhood
via triangles. That way sgng successfully constructs a triangle mesh
entirely during online learning, reducing the number of untriangu-
lated holes to a minimum. By taking geometric considerations into
account, a mesh with fairly regular triangles is constructed that at
first approximates an original object’s shape and that is iteratively
refined afterwards. An extensive evaluation has confirmed that sgng
improves significantly upon its predecessor and that it can compete
with other state-of-the-art surface reconstruction algorithms.

The texturing extension enables sgng to assign suitable textures to
the constructed triangles if the input points have been extracted from
images. That way further visual detail is automatically added to the
reconstruction of the original object’s surface. Sgng does not rely on
the reconstructed geometry to determine visibility. Instead, visibility
is learned directly from the information that is implicitly contained in
the input data. Thus, the number of noticeable occlusion artifacts is
reduced to a minimum. A visual evaluation has confirmed that sgng
yields good texturing quality. No severe geometric misalignments or
distortions are visible.

Sgng allows for modifications of the input data at any time during
reconstruction and instantly incorporates them without having to
restart from scratch. Thus, sgng is very well suited for an iterative
pipeline, where data acquisition, reconstruction, and visualization
are executed in parallel. Such a pipeline can be used for instance in
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emergency or disaster management scenarios, where it is crucial to get
an immediate overview of the situation and to be able to add further
data whenever needed. Especially during long running scenarios sgng
will play out its full strength.

The texturing extension does not yet use elaborate techniques for
leveling or blending. Thus, some texture seams remain visible due
to unmatched exposures and illuminations of the photos. Literature
provides a wealth of suitable techniques that can be incorporated
into sgng. The descriptions and algorithmic details that have been
presented in this dissertation will serve as a good basis for future work
in this direction.

Memory management and data handling have turned out to be a
bottleneck in both parts of the current implementation of sgng: in
reconstruction and in texturing. Running time in the former is domi-
nated by the 2-nearest neighbor search. Overhead in terms of running
time of the latter mostly depends on the number of constructed ver-
tices and the number of textures in use. Some effort will be required
to streamline the current implementation in this regard and thus to
improve performance.

Currently, an adaptive octree is used in sgng to find the two vertices
that are closest to an input point. It is maintained as a separate data
structure. Since the vertices of the constructed mesh are continuously
moved during the iterations of sgng reconstruction, many updates of
the cells’ boundaries are required as well as many vertex relocations
between cells. A split tree has been developed and presented in this
dissertation that serves as an efficient replacement for the octree
in growing cell structures (gcs) by providing a hierarchy of bounding
boxes. This hierarchy is automatically created during mesh refinement.
It is very likely that the presented split tree can be adapted in such
a way that it serves as an acceleration structure also for sgng since
the learning algorithms of sgng and gcs are closely related. However,
some improvements to the algorithm are required in order to create a
balanced tree. These improvements and the adaptation of the split tree
to sgng have been beyond the scope of this work. They remain to be
addressed in future work.

Feeding back the constructed textured triangle meshes into the point
extraction process might be advantageous. That way, the geometric
information reconstructed by sgng may help the point extraction
process generate a denser set of samples and register the images better.
Furthermore, the idle times of one process could be used by the other.
The combination of both would lead to an integrated, incremental
coarse to fine approach, maybe with reduced processing power and
memory requirements—perhaps even on mobile platforms.

Creating a dual representation of sgng is an interesting task that
presents itself for future work, since the current algorithm—like its
predecessors—exhibits a systematic error: In sgng the vertices’ po-
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sitions are optimized in such a way that their distance to the input
points is minimized. Thus, the corresponding learning rules smooth
sharp features if the constructed mesh contains too few vertices. Nev-
ertheless, sgng aims at reconstructing an original object’s surface.
Consequently, in contrast to the current approach, the surface ele-
ments, i.e., the constructed triangles, should be optimized in such a
way that their distance to the input points is minimized. A straightfor-
ward integration of additional planar fitting made sgng prone to noise,
leading to many wrinkles. It is thus planned to investigate a more
robust technique for dual sgng surface reconstruction. The details
presented in this dissertation will serve as a good starting point.
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free-form modelling of scattered data by dynamic neural net-
works. J. Geometry and Graph., 3:177–183, 1999.

[120] Tom Vierjahn and Klaus Hinrichs. Surface-reconstructing grow-
ing neural gas: A method for online construction of textured
triangle meshes. Computers & Graphics, pp. –, 2015. doi:
10.1016/j.cag.2015.05.016.

[121] Tom Vierjahn, Guido Lorenz, Sina Mostafawy, and Klaus Hin-
richs. Growing cell structures learning a progressive mesh
during surface reconstruction – a top-down approach. In Eu-
rographics 2012 - Short Papers, 2012. doi: 10.2312/conf/EG2012/
short/029-032.

[122] Tom Vierjahn, Niklas Henrich, Klaus Hinrichs, and Sina
Mostafawy. sgng: Online surface reconstruction based on grow-
ing neural gas. Tech. rep., Dept. Computer Science, Univ. Muen-
ster, Germany, 2013.

[123] Tom Vierjahn, Jan Roters, Manuel Moser, Klaus Hinrichs, and
Sina Mostafawy. Online reconstruction of textured triangle
meshes from aerial images. In 1st Eurographics Workshop Urban
Data Modelling and Visualisation, pp. 1–4, 2013. doi: 10.2312/
UDMV/UDMV13/001-004.

[124] Ruimin Wang, Zhouwang Yang, Ligang Liu, Jiansong Deng,
and Falai Chen. Decoupling noise and features via weighted
`1-analysis compressed sensing. ACM Trans. Graph., 33(2):18:1–
18:12, 2014. doi: 10.1145/2557449.

[125] Eric W. Weisstein. Triangle area, 2015. URL http://mathworld.

wolfram.com/TriangleArea.html (last checked 2015-06-17).

[126] Eric W. Weisstein. Circumradius, 2015. URL http://mathworld.

wolfram.com/Circumradius.html (last checked 2015-06-17).

[127] Eric W. Weisstein. Inradius, 2015. URL http://mathworld.

wolfram.com/Inradius.html (last checked 2015-06-17).

[128] Eric W. Weisstein. Trilinear coordinates, 2015. URL
http://mathworld.wolfram.com/TrilinearCoordinates.html

(last checked 2015-06-17).

[129] William Allen Whitworth. Trilinear coordinates and other meth-
ods of modern analytical geometry of two dimensions: an elementary
treatise. Deighton, Cambridge, 1866.

[130] Changchang Wu. Towards linear-time incremental structure
from motion. In Proc. Int. Conf. 3D Vision, pp. 127–134, 2013. doi:
10.1109/3DV.2013.25.

166

http://mathworld.wolfram.com/TriangleArea.html
http://mathworld.wolfram.com/TriangleArea.html
http://mathworld.wolfram.com/Circumradius.html
http://mathworld.wolfram.com/Circumradius.html
http://mathworld.wolfram.com/Inradius.html
http://mathworld.wolfram.com/Inradius.html
http://mathworld.wolfram.com/TrilinearCoordinates.html


bibliography

[131] Yong Wu, Yuanjun He, and Hongming Cai. Qem-based mesh
simplification with global geometry features preserved. In Proc.
2nd Int. Conf. Comput. Graph. and interactive techniques in Aus-
tralasia and South East Asia, pp. 50–57, 2004. doi: 10.1145/988834.
988843.

[132] Julie C. Xia and Amitabh Varshney. Dynamic view-dependent
simplification for polygonal models. In Proc. 7th Conf. Visualiza-
tion ’96, pp. 327–ff., 1996. doi: 10.1109/VISUAL.1996.568126.

[133] Shiyao Xiong, Juyong Zhang, Jianmin Zheng, Jianfei Cai, and
Ligang Liu. Robust surface reconstruction via dictionary
learning. ACM Trans. Graph., 33(6):201:1–201:12, 2014. doi:
10.1145/2661229.2661263.

[134] Yizhou Yu. Surface reconstruction from unorganized points
using self-organizing neural networks. In Proc. IEEE Conf. Visu-
alization 99, Late Breaking Hot Topics, pp. 61–64, 1999.

[135] Gabriel Zachmann and Elmar Langetepe. Geometric data struc-
tures for computer graphics. In Proc. of ACM SIGGRAPH – Tuto-
rial. 2003. URL http://www.gabrielzachmann.org/ (last checked
2015-06-17).

167

http://www.gabrielzachmann.org/

	Preface
	Introduction
	Motivation
	How to Read This Dissertation
	Related Work
	Scientific Publications

	Fundamental Artificial Neural Networks
	History and Taxonomy
	The Basic Reconstruction Algorithm
	SOM
	NG with Subsequent Chl
	Topology Representing Network
	GCS
	GNG
	Growing Self-Reconstruction Map

	GCS Learn Progressive Meshes
	Progressive Meshes
	Problem Statement
	An Intuitive Approach
	Split Tree
	The Optimized Approach
	Simulated Reversal
	Implicit Bounding Volume Hierarchy
	Results
	Discussion

	Surface-Reconstructing Growing Neural Gas
	Analysis of Prior Art
	Requirements and Features
	The sGng Reconstruction Algorithm
	Boundary Fitting
	Topology: Create Edges, Triangles
	Topology: Delete Edges, Triangles
	Density: Add, Delete Vertices

	Examples for Sgng Learning
	Implementation Details
	Experiments and Results
	Discussion

	Learning the Texture Assignment
	Problem Statement
	Learning Vertex Colors and Texture Coordinates
	Assigning Suitable Textures
	Results
	Discussion

	Conclusion and Future Work

