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Abstract

Generalized barycentric coordinate systems allow us to express the position of a
point in space with respect to a given polygon or higher dimensional polytope.
In such a system, a coordinate exists for each vertex of the polytope such that its
vertices are represented by unit vectors ei (where the coordinate associated with
the respective vertex is 1, and all other coordinates are 0). Coordinates thus have
a geometric meaning, which allows for the simplification of a number of tasks in
geometry processing.

Coordinate systems with respect to triangles have been around since the 19th

century, and have since been generalized; however, all of them have certain draw-
backs, and are often restricted to special types of polytopes. We eliminate most of
these restrictions and introduce a definition for 3D mean value coordinates that is
valid for arbitrary polyhedra in�3, with a straightforward generalization to higher
dimensions.

Furthermore, we extend the notion of barycentric coordinates in such a way as
to allow Hermite interpolation and investigate the capabilities of generalized bary-
centric coordinates for constructing generalized Bézier surfaces. Finally, we show
that barycentric coordinates can be used to obtain a novel formula for curvature
computation on surfaces.

Zusammenfassung

Verallgemeinerte baryzentrische Koordinatensysteme ermöglichen es, die Positi-
on eines Punktes im Raum in Bezug auf ein gegebenes Polygon oder ein höherdi-
mensionales Polytop auszudrücken. Ein solches Koordinatensystem enthält eine
Koordinate für jeden Eckpunkt des Polytops. Die Eckpunkte selbst werden durch
Einheitsvektoren ei dargestellt: Die zu dem jeweiligen Eckpunkt gehörige Koor-
dinate hat den Wert 1, alle anderen haben den Wert 0. In diesem Sinne haben
die Koordinaten eine geometrische Bedeutung und können viele Aufgaben in der
Geometrieverarbeitung vereinfachen.

Solche Koordinatensysteme sind, mit Bezug auf Dreiecke, bereits seit dem
19. Jahrhundert bekannt und wurden seither verallgemeinert. Dennoch haben alle
von ihnen gewisse Nachteile; oft sind sie auf bestimmte Typen von Polytopen
beschränkt. Wir schlagen eine Definition von 3D-Mittelwertkoordinaten vor, die
die meisten dieser Einschränkungen behebt. Insbesondere gilt sie für beliebige
Polyeder im �3 und kann ohne weiteres auf höhere Dimensionen verallgemeinert
werden.

Weiterhin erweitern wir den Begriff der baryzentrischen Koordinaten in ei-
ner Weise, die Hermite-Interpolation ermöglicht, wir untersuchen, wie baryzentri-
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sche Koordinaten zur Definition von verallgemeinerten Bézier-Flächen verwendet
werden können, und wir zeigen, dass baryzentrische Koordinaten benutzt werden
können, um eine neue Formel zur Berechnung der Krümmung einer Fläche zu
erhalten.
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Chapter 1

Introduction

One of the basic concepts in computer graphics and geometric modeling is loca-
tion. Whether during acquisition, processing, or visualization of geometric ob-
jects, all of these steps are directed at obtaining, modifying, or displaying the
location of object points. The mathematical tool to describe a location is an ap-
propriate coordinate system. To describe an object as a whole, usually a global co-
ordinate system is used. However, it is not desirable—or even possible—to work
with a global coordinate system during the entire graphics pipeline. If the object
is acquired by a laser range scan, it is usually necessary to perform a number of
scans, each with a different viewpoint, and each defining a different coordinate
system. In the animation stage, the decomposition of the object into parts, repre-
sented by a hierarchy of local coordinate systems, is often advantageous. When
a triangular mesh is rendered, the shading of the triangles is usually computed
by interpolating between its vertices. For this purpose, the points within a trian-
gle are represented in the barycentric coordinate system that is determined by the
triangle in question. The objective of this thesis is to extend the notion of bary-
centric coordinates from triangles to arbitrary polytopes and to explore possible
applications.

Barycentric coordinate systems are a special kind of local coordinate system.
While “standard” coordinate systems represent vectors as a linear combination of
certain basis vectors, barycentric coordinate systems (λi)n

i=1 represent points x as
a linear combination of a set of vertices vi,

∑

i

λivi = x.

The strength of barycentric coordinate systems lies in their geometric meaning
with respect to a given polytope. In particular, at a polytope vertex, the respective
coordinate is 1 and all other coordinates are 0. In this way, objects having roughly
the shape of a polytope can be described and manipulated in a direct and intuitive
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Figure 1.1: A polygon (bold) and three of its duals corresponding to three
different barycentric coordinate systems. The barycentric coordinate of a
vertex is obtained by dividing the length of the respective dual edge by the
distance to that edge.

way. We demonstrate the close relation of barycentric coordinates to geometry
by showing that many barycentric coordinates for polygons correspond to certain
dual polygons, see Figure 1.1.

Another way to regard barycentric coordinates is as the natural means of
achieving interpolation within polytopes. Linear interpolation is the simplest in-
terpolation scheme. If only two values f1 and f2 at points v1 and v2 are given, it
yields p f1+q f2 for a point pv1+qv2, p+q = 1. The iterative application of linear
interpolation leads to the de Casteljau algorithm, which allows the construction
of polynomials of arbitrarily high degree. Barycentric coordinates generalize the
concept of linear interpolation to more general domains than line segments. For
given values fi at points vi ∈ �n, the barycentric interpolation at a point x with
barycentric coordinates λi,

∑
i λi = 1, is

∑

i

λi fi.

Classical barycentric coordinates are defined with respect to (the vertices of)
triangles or, more generally, simplices. They were developed by Möbius [Möb27]
in the 19th century. Their generalization and application remain an active area of
research in geometric modeling and computer graphics until today. The notion of
barycentric coordinates has been extended from simplices to arbitrary polygons
and polytopes [Wac75, Flo03, JLW07], to point clouds [CFL82, Sib80, BIK∗97,
Sug99, HS00], and to smooth curves and (hyper-)surfaces [WSHD07, SJW07,
Bel06, Rus07, DF08]. Moreover, a general theory of planar barycentric coordi-
nates has been developed [FHK06].

The main application areas of barycentric coordinates are interpolation and de-
formation. For example, the character articulation in the film “Ratatouille” [Rat07]
is based on barycentric deformation using harmonic coordinates [JMD∗07]. The
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Figure 1.2: Color values were specified for the vertices of the cube and in-
terpolated with our 3D mean value coordinates in the whole �3 space. The
interpolated values are displayed in a plane intersecting the cube.

high number of vertices of the detailed character models is reduced to a much
smaller number of vertices of a control net. Only their movement must be spec-
ified. The barycentric interpolation takes care of moving the character vertices
along. This can be seen as reducing the number of degrees of freedom in a geo-
metric model to a “geometrically relevant” subset. In its abstract form, this idea
has been employed to minimize the dimension of a geometrically motivated sys-
tem of linear equations [HSL∗06].

However, the aforementioned types of barycentric coordinates are restricted to
convex polytopes, polytopes with simplicial faces, or lack other desirable proper-
ties. In this thesis, we want to generalize barycentric coordinates such that these
limitations are overcome. Let us now summarize our main contributions in greater
detail.

In Part I, we develop several new types of barycentric coordinates. In particular,
we introduce spherical barycentric coordinates which describe the location
of points on a sphere with respect to a given spherical polygon, just like
classical barycentric coordinates describe points in a plane with respect to
a given planar polygon. We prove that spherical mean value coordinates
are defined for (almost) arbitrary spherical polygons on the sphere. Further-
more, we extend 3D barycentric coordinates from polytopes with triangular
faces to arbitrary polytopes, and we show that 3D mean value coordinates
are well defined in the whole �3 space. Finally, we introduce higher order
barycentric coordinates, a modification of these and other 3D barycentric
coordinates, that allow the definition of interpolations with derivative con-
trol. This is especially useful in the context of deformations since transfor-
mations can be prescribed at the vertices. We present examples of barycen-
tric interpolation (Figure 1.2) and deformation (Figure 1.3).

In Part II, we explore the relationship between barycentric coordinates and
Bézier maps, which are a generalization of Bézier surfaces. We take ad-
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Figure 1.3: Deformations of the cow model using our higher order 3D mean
value coordinates. Here, different rotations around a control vertex at the
head of the cow were specified.

vantage of the fact that Bernstein polynomials, the main building blocks of
Bézier maps, can be expressed as polynomials in barycentric coordinates.
While Bernstein polynomials in three variables (the three barycentric coor-
dinates with respect to a triangle) are a standard tool for constructing tri-
angular Bézier surfaces, much less attention has been paid to the fact that
tensor product Bézier surfaces may be represented as polynomials in (gener-
alized) barycentric coordinates as well, namely in Wachspress coordinates.
These Wachspress coordinates with respect to a square are polynomials of
bidegree (1, 1) in (x, y) such that every Bernstein polynomial of bidegree
(n, n) can be expressed as a polynomial in Wachspress coordinates of de-
gree n. But Wachspress coordinates are not the only generalized barycen-
tric coordinates for a square. A popular alternative are Floater’s mean value
coordinates. Mean value coordinates are defined for all convex and non-
convex polygons, and we are no longer restricted to surface patches over
rectangular domains (Figure 1.4). We observe that they offer new, interest-
ing possibilities for the construction of Bézier surfaces.

In particular, we prove smoothness conditions for mean value Bézier maps.
However, most of our results are not only valid for these but also for the
construction of all other differentiable barycentric coordinates. This leads
to a whole family of different Bézier maps.

Part III reveals an unexpected connection between barycentric coordinates and
Discrete Differential Geometry, which is the field of finding and defining
discrete counterparts of curvature and other smooth notions of differential
geometry.

We suggest a novel approach to calculating the curvature of a smooth sur-
face with quadrature formulae, which are proven with the help of barycen-
tric coordinates. In particular, the mean curvature can be computed quite
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Figure 1.4: A generalized Bézier surface defined with mean value coordi-
nates.

simply:

H =
1

2π

∫ 2π

0
κ(φ) dφ =

∑

i

ωiκi, ωi B
tan βi−1 + tan βi∑
j(tan β j−1 + tan β j)

.

Here, κ(φ) and κi are normal curvatures in given directions, β j are the angles
included by these directions, and ωi are some kind of generalized barycen-
tric coordinate which determine H as a linear combination of κi within the
line segment [κmin, κmax]. We show that this quadrature and similar formulae
for the Gaussian curvature and the curvature tensor can be discretized easily
and give rise to a pointwise convergent curvature approximation for discrete
surfaces.

We conclude this introduction by giving an overview of the remainder of this
thesis. It consists of a brief summary of each of the chapters and the publications
on which these chapters are based.

Chapter 2 gives an introduction to barycentric coordinates. Chapter 3 in-
troduces spherical barycentric coordinates and explores their properties [LBS06,
LBS07b]. Chapter 4 shows how spherical barycentric coordinates can be used
to construct barycentric coordinates for arbitrary polytopes in three and more di-
mensions. We prove that 3D mean value coordinates are defined for the whole
�

3 space [LBS06, LBS07b]. In Chapter 5, higher order barycentric coordinates
are defined and constructed [LS08]. Chapter 6 describes generalized Bézier sur-
faces and shows how they extend classical Bézier surfaces [LS07]. In Chapter 7,
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we consider Bézier maps, a generalization of Bézier surfaces. We investigate
the possibilities of defining them on arbitrary polygons and polytopes as do-
mains [LBS08]. In Chapter 8, we analyze convergence properties of curvature
estimates for curves and suggest several new curvature formulae [LBS05b]. This
is the first step towards the development and analysis of the novel, quadrature-
based curvature estimation scheme for surfaces, which is presented in Chapter 9
[LBS07a, LBS05a]. We conclude the thesis in Chapter 10.



Part I

Generalized Barycentric
Coordinates





Chapter 2

Introduction to Generalized
Barycentric Coordinates

Barycentric coordinates were originally developed by Möbius [Möb27] in the
nineteenth century as a special kind of local coordinate that express the location
of a point with respect to a given triangle. Wachspress [Wac75] extended the no-
tion of barycentric coordinates to arbitrary convex polygons to construct a finite
element basis. In recent years, the research on barycentric coordinates has been
intensified and led to a general theory of barycentric coordinates and extensions
to higher dimensions [FKR05, FHK06, JSW05, JSWD05, JLW07]. Barycentric
coordinates are natural coordinates for polyhedra. Their applications range from
shading [Gou71, Pho75] over interpolation [JSW05, LBS06], finite element ap-
plications [AO06, SM06, WBG07], generalized Bézier surfaces [LS07, LBS08],
and parameterization methods [DMA02, SAPH04, SCOL∗04] to space deforma-
tions [SP86, JMD∗07, LKCOL07] and dimensionality reduction [HSL∗06].

In this chapter, we give an introduction to generalized barycentric coordinates
and present related work. We introduce a geometric interpretation for them, and
in Section 2.5, we recall the definition of a particularly interesting type of gener-
alized barycentric coordinate, the mean value coordinates. That section contains
a new proof that mean value coordinates are well defined in the whole plane and
serves as a prelude to subsequent chapters where we extend the notion of bary-
centric coordinates in several directions, as follows: In Chapter 3, we introduce
spherical barycentric coordinates. They are analogons of the classical barycen-
tric coordinates, but they are defined for polygons on a sphere instead of a plane.
We prove that spherical mean value coordinates are defined for arbitrary polygons
on the sphere, and we show that the vector coordinates in [JSWD05] are a special
case of our construction. One of the most interesting consequences is the possibil-
ity of constructing 3D coordinates for arbitrary polyhedra (Chapter 4). We prove
that the 3D mean value coordinates, which are constructed using spherical mean
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value coordinates, are well defined in the whole �3 space. Furthermore, we show
that the 3D mean value coordinates for triangular polyhedra in [FKR05, JSW05]
are a special case of our construction. We conclude this part with an extension of
the notion of barycentric coordinates that allows to interpolate derivatives (Chap-
ter 5).

2.1 Definition of Generalized Barycentric
Coordinates

In this section, we give a general (axiomatic) definition of generalized barycentric
coordinates. Since they are the principle theme of this thesis, we will drop the
adjective “generalized” in the future. If we want to consider the special case
of barycentric coordinates with respect to a triangle (or simplex) as defined by
Möbius [Möb27], we will refer to them as classical barycentric coordinates.

Let P = {v j} j=1..n be a point cloud or a polytope with vertices v j ∈ �n as shown
in Figure 2.1. Barycentric coordinates λi(x; P) = λi

(
x; {v j} j=1..n

)
of a point x with

respect to P are functions λi(x) : Ω → �, P ⊂ Ω ⊂ �n, which satisfy the two
axioms below.

Partition of unity.
∀x ∈ Ω

∑

i

λi(x; P) = 1. (2.1)

Linear precision.
∀x ∈ Ω

∑

i

λi(x; P)vi = x. (2.2)

This property ensures that a point x can be represented as a linear combi-
nation of the vertices vi with coefficients λi(x; P), justifying the designation
of these as coordinates. It is called “linear precision” since it ensures the
correct interpolation of all linear functions f :

∑

i

λi(x) f (vi) = f (x). (2.3)

Note that a polytope P contains some kind of connectivity information, in addi-
tion to the positional information of a pure point cloud P. This information may
be used in the definition of a specific set of barycentric coordinates to obtain co-
ordinates with enhanced geometrical meaning with respect to the given polytope.
We also use the notation λi or λi(x) if P and the point x are obvious from the
context. If P is a triangle or simplex, its barycentric coordinates are uniquely de-
termined by the above conditions. For more general P, the λi are no longer unique,



2.1 Definition of Generalized Barycentric Coordinates 11
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Figure 2.1: We are looking for coordinates λi such that
∑

i λivi = x.

and we have to consider additional criteria to choose between different coordinate
functions. A standard method to construct a set of barycentric coordinates is to
construct homogeneous coordinates wi first, which satisfy

∑

i

wi(vi − x) = 0. (2.2′)

They can be normalized to fulfill (2.1) as well if and only if
∑

i wi(x) , 0. After
normalization, (2.2) and (2.2′) are equivalent, and the coordinates satisfy the linear
precision property, too. We will use this method for the construction of barycentric
coordinates in Sections 2.3, 2.5, and 4.1.

We conclude this section by listing some other desirable properties for bary-
centric coordinates.

Domain. The domain Ω ⊂ �n should be as large as possible (possibly depending
on P), and the λi should be defined for as general P as possible.

Non-negativity.
∀i λi(x; P) ≥ 0. (2.4)

We would like to achieve (2.4) for a wide range of points x. This often
yields more intuitive behavior of the coordinates. If this property is fulfilled
within all convex polytopes, we call the respective λi(x) positive barycentric
coordinates.

Note that at least one coordinate must be negative for points x outside the
convex hull of P. This is implied by (2.2) since it represents a convex com-
bination for positive λi.

Smoothness. The coordinate functions λi should be as smooth as possible.

Similarity invariance. If ϕ : �n → �n is a similarity transformation (transla-
tion, rotation, reflection, uniform scaling, or a combination of these), then
∀x ∈ Ω λi

(
ϕ(x);ϕ(P)

)
= λi(x; P). This property is important for most of

the applications of barycentric coordinates. It is satisfied by all coordinates
considered in this thesis.
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2.2 Related Work

The construction of barycentric coordinates with respect to more than three (or
n + 1 in �n) vertices has been an active area of research for a long time. We
list some of the suggested coordinates in Table 2.1. The discrete harmonic coor-
dinates have been invented for polygons to create a discrete analog to harmonic
functions [PP93]. They have been generalized to polytopes with simplicial faces
in [JLW07], and together with the framework in [LBS06], it should be possible
to generalize them to arbitrary, convex polytopes. However, it has so far been
unclear as to how such a definition should look exactly. The coordinates in-
troduced by Wachspress [Wac75] to construct a finite element basis are defined
within arbitrary convex polygons P ⊂ �2 and on their boundary. They and their
generalizations to convex polytopes [War96, JSWD05] are represented by rational
polynomials.

The restriction to convex polytopes was overcome with the introduction of the
mean value coordinates [Hui91, Flo03]. Since then, mean value coordinates have
enjoyed ever increasing popularity in computer graphics and computational math-
ematics because they exhibit a variety of good properties. They are defined in the
whole plane, for convex and non-convex polygons, and can even be extended to
multiple polygons [HF06]. This allows interpolation and extrapolation in a wide
range of situations. However, the mean value coordinates are only C0-continuous
at the vertices (C∞ everywhere else). The special case of mean value coordinates
in a quadrilateral is explored in [HT04]. Generalizations to higher dimensions
are considered in [FKR05, JSW05, JLW07]. But these constructions work only
for polytopes with simplicial boundary, and the coordinates are in general not
positive with respect to non-convex polytopes. While the positive mean value
coordinates [LKCOL07] ensure positivity within arbitrary polytopes, they are no
longer smooth. Furthermore, due to the need to compute them on the graphics
card (to accelerate computation speed), they are only defined for polyhedra with
triangular boundary. Finally, they are only defined within the polytopes and on
their boundary. Although they could be defined outside the polytope, they lose
the linear precision property at these points, and can no longer be called coordi-
nates. Another solution was proposed by Joshi et al. [JMD∗07] with the harmonic
coordinates which are computed as a numerical solution of the Laplace equation.
This guarantees positivity and C∞-smoothness within arbitrary polytopes (C0 at
the boundary) and allows the specification of additional vertices, but leads to rela-
tively high computation times. An extension of these coordinates to points outside
the polytope has been suggested in [Rus07]. A classification of all homogeneous
coordinates for convex polytopes is given in [FHK06, JLW07].

An interesting alternative to the coordinates mentioned so far are the Green
coordinates [LLCO08]. They are not barycentric coordinates in our sense as they
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Table 2.1: Properties of some well-known coordinates. We state the domain
of the coordinates, we indicate whether the coordinates are positive within
convex polytopes (that is, whether they are positive coordinates) and within
arbitrary polytopes (coordinates that are not defined for non-convex poly-
topes are marked with “not applicable”, n/a), and we specify the degree of
smoothness for the coordinate functions within a polytope and at its ver-
tices.2 For a point cloud P, positivity is specified for points in the open con-
vex hull of P excluding the vertices, C(P) \ P, and smoothness for points
in C(P) and at the vertices, respectively. We compare the following coordi-
nates: the discrete harmonic coordinates [PP93, JLW07], the Wachspress co-
ordinates [MLBD02, JSWD05], the mean value coordinates [Flo03, LBS06],
the positive mean value coordinates [LKCOL07], the harmonic coordi-
nates [JMD∗07, Rus07], and the Sibson coordinates [Sib80, HS00]. Here,
we give references to the most general and easily implementable definitions.
These are not the original sources in all cases. Further information can be
found in the text.

Domain Positivity Smoothness
Discrete Harmonic x ∈ P, P convex polytope −/n/a C∞/C≥0

Wachspress x ∈ P, P convex polytope +/n/a C∞/C∞

Mean Value x ∈ �n, P arbitrary polytope +/− C∞/C0

Pos. Mean Value x ∈ P, P arbitrary polytope +/+ C0/C0

Harmonic x ∈ �n, P arbitrary polytope +/+ C∞/C0

Sibson x ∈ C(P), P point cloud + C1/C0

not only require a coordinate for each vertex, but for each face as well. However,
they allow the definition of an approximating function, which is, in a certain sense,
shape-preserving.

Note that all of the above coordinates depend not only on the vertices vi,
but also on a polytope whose vertices are the vi; that is, additional connectiv-
ity information is required. Coordinates that are based on natural neighbors in a
Voronoi diagram instead are the Laplacian or Non-Sibsonian [BIK∗97] and the
Sibson coordinates [Sib80]. Sibson coordinates are C0-continuous at the ver-
tices, C1-continuous on the Delaunay spheres, and C∞ elsewhere. They are at
the beginning of the family of the Hiyoshi standard natural neighbor coordi-
nates [HS00, BBU06], which exhibit Ck-smoothness at the Delaunay spheres.
In [ST04], it is shown that Laplacian coordinates and Wachspress coordinates
coincide on regular n-gons. An overview of barycentric coordinates from a finite

2The smoothness of discrete harmonic coordinates at the vertices is not known to the best of
our knowledge. However, it is at least C0.
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element point of view is given in [SM06].
Spherical barycentric coordinates constitute another variant of barycentric co-

ordinates. Analogous to planar barycentric coordinates that describe the posi-
tions of points in a plane with respect to the vertices of a given planar polygon,
spherical barycentric coordinates describe the positions of points on a sphere with
respect to the vertices of a given spherical polygon. They were first studied by
Möbius [Möb46] with respect to spherical triangles, and were introduced to com-
puter graphics by Alfeld et al. [ANS96]. Ju et al. [JSWD05] extended spherical
barycentric coordinates (they called them “vector coordinates”) from spherical
triangles to arbitrary convex, spherical polygons. However, non-convex spherical
polygons still posed a problem. The extension to arbitrary, spherical polygons is
the topic of Chapter 3.

2.3 A Geometric Interpretation for Planar
Barycentric Coordinates

We present a unified, geometric, and intuitive construction that explains the “linear
precision” property of an especially interesting one-parameter family of barycen-
tric coordinates that was introduced by Floater et al. [FHK06]. A different, but
equivalent, approach was recently presented in [SJW07]. With this construction,
we can derive analogons of the discrete harmonic, mean value, and Wachspress
coordinates for arbitrary dimensions. In this thesis, we use it in Sections 3.2
and 3.3.

Our construction is indicated in Figure 2.2. Consider a polygon with ver-
tices vi. It is always possible to construct a dual polygon (that may have self-
intersections) with respect to a vertex x whose edges are orthogonal to the line
segments xvi and whose vertices are given by the intersection points of two con-
secutive edges. In fact, there are infinitely many dual polygons since we can
choose the intersection point of the dual edges with the line given by xvi freely.
Since the normals of the dual edges are given by the edges xvi, we can employ a
theorem of Minkowski which states that the sum over the unit edge normals of a
polygon, weighted with the respective edge lengths, is zero. Hence, the lengths
ai of the dual edges yield homogeneous coordinates wi for x that satisfy (2.2′).
However, the edges xvi do not have unit length in general. Therefore, the exact
relationship between ai and wi is ai = riwi with ri = ‖xvi‖. Negative weights are
assigned to inversely oriented dual edges. The barycentric coordinates λi can be
obtained from the homogeneous coordinates wi by λi =

wi∑
j w j

.
In Figure 2.2, three particular choices for the intersection point of the dual

edges are depicted. On the left, the dual edges pass through the points vi, in the
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Figure 2.2: A polygon (bold) and three of its duals. These constructions yield
geometric definitions of the discrete harmonic, mean value, and Wachspress
coordinates (from left to right).

d
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d cosϕi+1
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Figure 2.3: We compute the edge length of a part of the dual polygon for the
discrete harmonic coordinates (shown in blue), d sin( π2−ϕi+1)

sin(π−αi)
=

ri+1−ri cosαi
sinαi

.

middle, the dual edges have constant distance to x, and on the right, the distance of
the dual edges to x is r−1

i . Using a little trigonometry, it is easy to show that these
choices correspond to the standard formulae for discrete harmonic, mean value,
and Wachspress coordinates [PP93, Flo03, MLBD02]. In fact, the respective in-
stances of this construction have been used to derive the discrete harmonic coordi-
nates (this is indicated in Section 9.3.2) and to extend the definition of Wachspress
coordinates to higher dimensions [JSWD05].

Now, it is natural to ask what kind of coordinates are obtained if the distance
of the dual edges to x is chosen as rp

i , p ∈ �. The answer, given as a formula, is

wi,p =
1
ri

(
rp

i−1 − rp
i cosαi−1

sinαi−1
+

rp
i+1 − rp

i cosαi

sinαi

)
, λi,p =

wi,p∑
i wi,p
,

compare Figure 2.3.
If we compare this to the one-parameter family of barycentric coordinates ŵi,p

from [FHK06], we see that wi,p =
1
2ŵi,p+1. Therefore, both families generate the
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same barycentric coordinates (after normalization), and the analysis by Floater
et al. applies to our family as well:

2.1 Corollary ([FHK06]). The only members of the one-parameter family wi,p

which are positive for all convex polygons are the Wachspress and the mean value
coordinates.

2.4 Coordinates in 3D
An appealing property of the geometric construction in the previous section is that
it can easily be generalized to higher dimensions, and barycentric coordinates for
polytopes with simplicial boundary can be derived. In the three-dimensional case,
the analogous weights wi,−1 lead to three-dimensional Wachspress coordinates for
arbitrary convex polyhedra, see [Grü67, JSWD05]. For general p, however, the
dual polyhedron and the corresponding weights wi,p can only be constructed for
polyhedra with triangular faces since four or more (dual) faces, corresponding
to a polygonal face with four or more vertices, do not intersect in a single point
in general. Furthermore, the dual polyhedron may have self-intersections, which
can lead to negative coordinates even for convex polyhedra if p , −1. The cor-
responding weights wi,p for p = 0 and p = 1 do not yield the mean value and
the discrete harmonic coordinates in 3D. For these reasons, we do not consider
this construction as a useful generalization of mean value coordinates and dis-
crete harmonic coordinates. We will develop a more suitable generalization in the
subsequent chapters.

For the sake of completeness, we give a closed formula for the weights wi,p

nevertheless.

wi,p(x) =
1
ri

∑

j∈N(i)

wi, j,p(x),

wi, j,p(x) =
d j,pd j+1,p − 1

2(d2
j,p + d2

j+1,p) cosα j

sinα j
, d j,p =

rp
j − rp

i cos θ j

sin θ j

where ri is the length of vi − x; θ j is the angle between vi − x and v j − x; α j is
the dihedral angle between the planes given by x, vi, v j and x, vi, v j+1; wi, j,p(x) is
the area of the quad determined by d j,p, d j+1,p, and α j, see Figure 2.4 for the case
p = 1.

2.5 Planar Mean Value Coordinates
In this section, we consider a particularly interesting instance of barycentric co-
ordinates, the mean value coordinates [Flo03]. We recall their definition and a
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θ j
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v j+1
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v j
d j+1

d jα j

Figure 2.4: Notation for the construction of 3D barycentric coordinates using
dual polyhedra.

theorem that they are well defined [HF06]. We use a different presentation of
the definition than Floater and present an alternative proof compared with the one
given by Hormann and Floater. Our representation has the advantage of being eas-
ily extendable to higher dimensions and serves as a building block for the results
in the following chapters.

2.2 Definition. A (planar) polygon P = (v1 . . . vn) is given by a finite sequence
of distinct vertices vi ∈ �2 such that its edges (vi, vi+1), i = 1 . . . n do not inter-
sect. For an edge e, V(e) denotes the (two-element) set of indices i such that vi is
incident to e, and V(P) denotes the set of all vertex indices.

Note that this definition is not purely geometrical, but also contains some com-
binatorial structure, represented by the edges.

2.3 Algorithm (planar mean value coordinates). Mean value coordinates λi

for a point x ∈ �2 with respect to a polygon P can be defined in the following
way [Flo03]:

• An edge vector ve is assigned to each edge e of the polygon such that∑
e ve = 0. (ve can be considered as some kind of edge normal.)

For an edge e = (vi, vi+1), let �1
e ⊂ �1 be the oriented circular arc with end

points vi−x
‖vi−x‖ and vi+1−x

‖vi+1−x‖ . Let n : �1 → �2 be the outward unit normal vector
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of the circle. Then ve is defined as the integral of n over �1
e , see Figure 2.5

(left):

ve :=
∫

�
1
e

n dS .

• The edge vectors are distributed to their respective edge vertices by the
unique weights µe, j such that µe,i(vi − x) + µe,i+1(vi+1 − x) = ve for an edge
e = (vi, vi+1).

• The weights at each vertex vi are cumulated as wi := µei−1,i + µei,i where ei

denotes the edge (vi, vi+1).

• The weights are normalized to form a partition of unity:

λi :=
wi∑
j w j
. (2.5)

It is straightforward to show that the definition of ve has the closed form solu-
tion [Flo03]

ve = tan
αi

2

( vi − x
‖vi − x‖ +

vi+1 − x
‖vi+1 − x‖

)
(2.6)

where αi denotes the angle between vi − x and vi+1 − x. Distributing these edge
vectors to the vertices yields the formula proposed earlier [Flo03]:

wi =
tan αi−1

2 + tan αi
2

‖vi − x‖ . (2.7)

2.4 Remark. It is possible to choose different edge vectors ve such that
∑

e ve = 0.
In all cases, the construction guarantees that the wi are homogeneous coordinates.
Hence, the λi are barycentric coordinates. Possible choices for the edge vectors
are discussed in [JLW07].

To show that the above defined mean value coordinates are well defined, it is
necessary to ensure that the denominator in the normalization step (2.5) cannot
become zero. As shown in [HF06], this can be done in two steps:

• A refinement lemma is proven that states that the denominator does not
change if we refine our polygon by including additional vertices.

• For a particular refinement of the polygon, it is shown that the denominator
does not vanish.

We will give an alternative proof for the first step. It has the advantage of being
more general than the original proof in [HF06], and it can be easily generalized to
higher dimensions. The second step proceeds as in [HF06].
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Figure 2.5: Left: Definition of the edge vector ve. Right: Notation for Lem-
mas 2.5 and 2.6.

2.5 Lemma. Let u ∈ �2 be a point, let v j ∈ �2 be a set of points that lie on
a common line e that does not contain the origin, and let u =

∑
j µ jv j for some

coefficients µ j. Denote by (nk)k=0,1 an orthonormal basis of �2 such that n0 is the
normal vector of e, and let ξk and ζ jk be the coefficients of u and v j, respectively:
u =

∑
k ξknk, v j =

∑
k ζ jknk. We define ζ0 := ζ j0 > 0. (All ζ j0 are equal since the

v j lie on a common line with normal n0; the last inequality can be achieved by
choosing the orientation of n0 appropriately.) This setting is sketched in Figure 2.5
(right).

Then
∑

j µ j =
ξ0
ζ0
.

Proof. We have

u =
∑

j

µ jv j =

∑

j

µ jζ0n0 +

∑

j

µ jζ j1n1.

Since u has a unique representation in the basis (nk), the claim follows. �

2.6 Lemma. In the situation of Lemma 2.5, assume that u is given as the sum of
points, u =

∑
i ui, ui =

∑
j µi jv j ∈ �2.

Then
∑

j µ j =
∑

i j µi j.

Proof. Let ui =
∑

k ξiknk be the representations of ui in the basis (nk). From the
unique representation of u =

∑
k ξknk in this basis and the fact that u =

∑
i ui, we

can conclude ξ0 =
∑

i ξi0. Using Lemma 2.5 for u and the ui, we obtain
∑

j

µ j =
ξ0

ζ0
=

∑

i

ξi0

ζ0
=

∑

i j

µi j.

�
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2.7 Definition. A refinement P̂ = (̂vi)i=1..m of a polygon P = (vi)i=1..n is a polygon
such that (vi)i=1..n is a subsequence of (̂vi)i=1..m, all additional vertices v̂i of P̂ lie on
edges of P ( v̂i ∈ (v j, v j+1) for some j ) and P and P̂ bound the same area in �2.

This means that a refinement of a polygon leaves the geometry of the polygon
unchanged, only the combinatorial structure is refined. As desired, this does not
change the mean value coordinates essentially:

2.8 Lemma (refinement of planar polygons). Let P be a polygon, and let P̂ be a
refinement of P. Let wi and ŵi be the weights in step 3 of Algorithm 2.3 for P and
P̂.

Then
∑

i∈V(P) wi =
∑

i∈V(P̂) ŵi.

Proof. Let e be an edge of P, and let Ê be the set of edges in P̂ that compose
the refinement of e. From the definition of ve, it is obvious that ve =

∑
ê∈Ê vê.

Therefore, Lemma 2.6 implies that
∑

i∈V(e) µe,i =
∑

ê∈Ê, i∈V(ê) µ̂ê,i. By taking the sum
over all edges e, we obtain the claim. �

Note, that this lemma is not restricted to mean value coordinates but applies
to all kinds of coordinates as defined in [FHK06]. The reason is that the edge
vector for an edge e can always be expressed as the sum of the edge vectors of its
refinement [JLW07]. The following lemma, in contrast, is in general not true if
applied to other coordinates than mean value coordinates.

2.9 Lemma. Let e = (vi, vi+1) be an edge of a polygon P. Let µe,i and µe,i+1 be the
coefficients of its edge vector ve.

Then µe,i + µe,i+1 is greater than zero if and only if �1
e is positively oriented.

Proof. Without loss of generality let �1
e be positively oriented. Then ve is con-

tained in the cone defined by the convex hull of the v j − x, j ∈ V(e) = {i, i + 1}.
(The cone is indicated by the shaded area in the left part of Figure 2.5.) Since all
the ζ j0 = ζ0 are greater than zero by definition of n0, ξ0 must be greater than zero
as well. Therefore, the claim follows from Lemma 2.5. �

2.10 Theorem ([HF06]). Let P be a polygon. Then the planar mean value coor-
dinates with respect to P are well defined in �2.

Proof. Consider the denominator W :=
∑

i wi in Equation (2.5). We have to show
that W does not vanish if computed for an arbitrary x ∈ �2. We refine P by adding
all intersection points of rays from x through the vertices vi with the edges of P,
see Figure 2.6. According to Lemma 2.8, this does not change W. If we now
split the denominator of the refined polygon into partial sums µe B

∑
i∈V(e) µe,i

associated to the edges e, we know from Lemma 2.9 that the sign of these partial
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Figure 2.6: Refinement of a polygon such that all edges with negative weight
(-) are counterbalanced by an edge with positive weight (+)

sums depends only on the orientation of �1
e . From (2.6), we can see that the

absolute value of the partial sums decreases with increasing distance of e to x. By
grouping together edges that lie behind each other as seen from x, W =

∑
e µe splits

into sums of alternating sign and decreasing absolute value starting with a positive
number if x is inside and a negative number if x is outside the polygon. Hence, W
is positive inside and negative outside the polygon. In particular, W is not equal to
zero, and the theorem is proven. (For points x on an edge, a continuous extension
of the definition in Algorithm 2.3 exists.) For further details see [HF06]. �
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Chapter 3

Spherical Barycentric
Coordinates

In this chapter, we introduce spherical barycentric coordinates. Analogous to clas-
sical, planar barycentric coordinates that describe the positions of points in a plane
with respect to the vertices of a given planar polygon, spherical barycentric coor-
dinates describe the positions of points on a sphere with respect to the vertices
of a given spherical polygon. We show how arbitrary barycentric coordinates
from the family of planar barycentric coordinates [FHK06] can be defined on a
sphere (Section 3.1). In particular, we consider the special cases of spherical
Wachspress coordinates (Section 3.2) and spherical mean value coordinates (Sec-
tion 3.3), which inherit many good properties from their planar counterparts. We
show that the former coincide with the vector coordinates in [JSWD05], which are
defined for convex spherical polygons, and that the latter are defined for arbitrary
polygons on the whole sphere.

One of the most interesting consequences is the possibility of constructing 3D
barycentric coordinates for arbitrary polyhedra. This is the topic of Chapter 4.
Furthermore, spherical barycentric coordinates can be used for all applications,
such as Bézier surfaces and parameterization, where up until now only planar
barycentric coordinates were available.

3.1 Definition of Spherical Barycentric
Coordinates

In this section, we deal with the problem of finding (positive) coefficients λi for
vectors vi ∈ �3 such that their linear combination yields a given vector v ∈ �3.
It is sufficient to restrict ourselves to vectors of unit length. In this case, the λi

represent barycentric coordinates for v with respect to the vi on the unit sphere.
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First, we give a general introduction.
While Equations (2.1) and (2.2) are well-chosen to characterize planar bary-

centric coordinates, it is obviously not possible to fulfill both conditions if the
vertices vi and the point x = v are located on a sphere instead of a plane. This
is especially easy to see if P is a triangle with three vertices. (2.1) requires all
points described by

∑
i λivi to lie in the triangle plane while (2.2) demands that

this sum yields a point v that does not lie in this plane but on the sphere. A similar
observation was made in [BW92].

Consequently, we have to relax the above conditions. We follow the sugges-
tion by Alfeld et al. [ANS96] and replace (2.1) by

∑

i

λi(x) ≥ 1 (2.1′)

for x within convex polygons. Of course, by dividing by
∑

j λ j, we could also ob-
tain coordinates that constitute a partition of unity (2.1) instead of satisfying the
linear precision property (2.2) if desired. However, for our applications, in par-
ticular for constructing barycentric coordinates with respect to polyhedra, linear
precision is more important. Note that this property still implies that linear func-
tions defined on �3 are correctly interpolated (2.3). Constant functions, however,
cannot be correctly interpolated if a partition of unity (2.1) is not given. Never-
theless, these coordinates can be used for exact interpolation of spherical harmon-
ics of degree one. A different approach that preserves the partition of unity was
proposed in [BF01]. We call a set of coordinates λi satisfying conditions (2.1′)
and (2.2) spherical barycentric coordinates. If P is a triangle, a unique solution
exists obviously: the unique linear combination of the vectors v1, v2, and v3 such
that

∑3
i=1 λivi = v. A geometric interpretation of these spherical barycentric coor-

dinates was given in [ANS96].
To proceed, we need to define a spherical polygon.

3.1 Definition. A spherical polygon P = (v1 . . . vn) consists of a finite sequence of
distinct vertices vi ∈ �2 located on a sphere such that its edges (vi, vi+1), i = 1 . . . n
do not intersect. The edges are geodesic lines (these are the arcs of great circles
on the sphere) that connect the vertices vi and vi+1.

It is admissible if it contains no antipodal points on vertices or edges.

We consider a spherical polygon on the unit sphere centered at the origin.
Let v be a point on the sphere. Let vi be the intersection points of the tangent
plane Tv�

2 at v to the sphere and the line passing through the origin and vi (see
Figure 3.1). The points vi determine a polygon P (shown in boldface) in the plane
Tv�

2. (The map vi 7→ vi is a gnomonic projection. It is especially useful for our
purpose since it projects geodesics to straight lines.) Now, we can compute the
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Figure 3.1: Projection of a spherical polygon to the tangent plane at v.

planar barycentric coordinates λi of v with respect to P. The 3D position of v is
an affine linear function on Tv�

2. Consequently, any set λi of planar barycentric
coordinates yields, by Equations (2.1) and (2.2),

∑

i

λivi = v.

To obtain spherical barycentric coordinates λi(v) that satisfy the linear precision
property (2.2), we define them by

λi B 〈vi, vi〉λi,
∑

i

λivi = v (3.1)

where 〈·, ·〉 denotes the usual scalar product in �3. Note that 〈vi, vi〉 is just ±‖vi‖.
Although this value becomes very large and finally undefined if the angle θi be-
tween v and vi approaches π2 , this is usually compensated by a shrinkage of λi

such that the definition of λi can be extended continuously to the case θi =
π
2 . We

demonstrate this in Sections 3.2 and 3.3 for spherical Wachspress and spherical
mean value coordinates. Note that basically the same construction can be used to
obtain planar barycentric coordinates from spherical barycentric coordinates. It
follows that there is a bijective correspondence between planar barycentric coor-
dinates and spherical barycentric coordinates.

Finally, we remark that these coordinates can also be extended to vectors vi

and v of arbitrary length by defining

λi

(
v; (v j) j=1...n

)
B
‖v‖
‖vi‖
· λi

(
v
‖v‖ ;

( v j

‖v j‖
)

j=1...n

)
. (3.2)

3.2 Spherical Wachspress Coordinates
In this section, we show that the vector coordinates, introduced by Ju et al.
[JSWD05] to express a vector v as a linear combination of other vectors vi, coin-
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Figure 3.2: Bottom and side view of the polar dual.

cide with our spherical Wachspress coordinates. It is sufficient to consider only
vectors vi and v of unit length and to show that the coordinates coincide up to a
constant factor c. Then, it follows from (3.2) and (2.2), which hold for both sets
of coordinates, that they coincide for arbitrary vectors and that c = 1.

By (3.1) and Figure 3.1, spherical Wachspress coordinates are given by

λi =
1

cos θi
λi (3.3)

where λi are the planar Wachspress coordinates for the planar polygon with ver-
tices vi constructed in Section 3.1. We show now that the same formula holds for
the vector coordinates constructed in [JSWD05].

Ju et al.’s vector coordinates are defined for vectors vi that are the vertices of
a convex spherical polygon. The coordinates are proportional to the area βi of the
triangular faces of the polar dual. The polar dual is the convex polyhedron that
is bounded by the planes that have vi as normal and pass through the point v and
by the plane perpendicular to v with distance 1

‖v‖ to the point v (see Figure 3.2;
the polar dual is shown in blue). Let ṽ be the intersection point of v and the latter
plane. Let ṽi be the intersection points of the same plane and the rays (green)
determined by the vi. Let P̃ be the polygon (shown in red) formed by the ṽi. Then
ṽ and P̃ are, by construction, similar to v and P, the polygon defined in Section 3.1.
Therefore, the respective Wachspress coordinates coincide: λi(ṽ; P̃) = λi(v; P).
Note that the boundary polygon Q (solid blue in Figure 3.2, left) of the bottom
face of the polar dual is dual to P̃ (red) with respect to ṽ. That is, its edges ai are
orthogonal to ṽi − ṽ (see Chapter 2.3 for dual polygons).

The triangle areas βi can be computed (up to a factor 1
2 ) as the product of the

length ai of the edge ai and the respective height hi. The latter can be computed as
hi =

‖v‖−1

cos( π2−θi)
=
‖v‖−1

sin θi
. In the bottom face, the distance di of the edge ai to the center

ṽ is given by ‖v‖−1 tan(π2 − θi) = ‖v‖
−1 cot θi, and the distance of the intersection
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points ṽi to ṽ is given by ri = (1 − ‖v‖−1) tan θi. The product diri =
‖v‖−1
‖v‖2 is

independent of i. Therefore, Q is (up to scaling) that dual polygon of P̃ such that
the distance di of the edges ai to the center ṽ is inverse to the distance ri between
ṽi and ṽ (up to a constant factor). The edges of such a polygon have lengths ai

proportional to riλi (see Chapter 2.3). If we put everything together, we obtain the
following formula for the vector coordinates

βi =
1
2

aihi = c1rihiλi = c
λi

cos θi

with some constants c and c1. A comparison with Equation (3.3) concludes our
proof.

3.3 Spherical Mean Value Coordinates
Now we develop spherical mean value coordinates. They inherit positivity from
their planar counterparts: the λi(v) are positive if v is contained in the kernel of
the polygon given by the vi. If v is contained in the convex hull of the vi, this
can always be arranged by reordering the vertices vi with respect to their polar
angle around v. (The kernel is the region inside the polygon from which the
whole polygon is “visible”.) Furthermore, these coordinates are well defined for
arbitrary v and arbitrary admissible polygons.

Planar mean value coordinates are given by Floater’s formula [Flo03]

λi =
wi∑
j w j
, wi =

tan αi−1
2 + tan αi

2

ri
(3.4)

where αi is the signed angle between vi − v and vi+1 − v and ri is the distance
‖vi − v‖. As shown in Figure 3.1 (middle), αi is given as the dihedral, signed
angle between the planes determined by v, vi, and the origin, and v, vi+1, and the
origin, respectively. That is, αi is the signed angle between v × vi and v × vi+1.
The distance ri is given by ri = tan θi where θi is the angle between v and vi. By
inserting these terms into (3.4) and (3.1) and using 〈vi, vi〉 = 1

cos θi
, we obtain

λi(v) =
tan αi−1

2 + tan αi
2

sin θi

/∑

j

cot θ j

(
tan
α j−1

2
+ tan

α j

2

)
. (3.5)

Note that this formula gives us a continuous definition of λi for arbitrary v. In par-
ticular, it is valid for θi ≥ π2 although our geometric motivation in Figure 3.1 (left)
assumed angles θi < π2 . However, we can now give a geometric interpretation for
θi >

π
2 as well as indicated on the right of Figure 3.1. In this case, the intersection
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point of the tangent plane Tv�
2 and the line through vi+1 and the origin lies on the

“negative part” of that line, and we consider the vector vi+1 − v in the projected
polygon P as having negative length without changing its orientation; this means
that αi is effectively measured as the angle between vi−v and −(vi+1−v). It can be
seen that the planar mean value coordinates still satisfy linear precision (2.2) for
this case (for example, this is implied by the construction in Section 2.3). There-
fore, the derived spherical barycentric coordinates fulfill linear precision as well.

From (3.5), it is easy to see that the spherical mean value coordinates are well
defined and positive if v is inside a convex spherical polygon and θi <

π
2 for all θi.

For such polygons, inequality (2.1′) is implied by the triangle inequality.
Next, we show that the spherical mean value coordinates are well defined on

the whole sphere �2 for arbitrary admissible spherical polygons. Since the planar
mean value coordinates λi are well defined and the spherical mean value coordi-
nates are a scaled version of them, we can basically conclude that spherical mean
value coordinates are well defined, too. When doing so, one new difficulty occurs:
when a spherical polygon is projected to the tangent plane, more general polygons
may occur than considered so far, see Figures 3.1 (right) and 3.3. We need to show
that the results from Section 2.5 still hold in this case.

3.2 Definition. A projective polygon consists of a finite sequence of distinct ver-
tices vi ∈ �2 and a sequence of non-intersecting edges, given either by ei = {x =
pvi + qvi+1 ∈ �2|p + q = 1, p, q ∈ [0, 1]} or by ei = {x = pvi + qvi+1 ∈ �2|p + q =
1, p, q ∈ � \ (0, 1)}.

Such a polygon can be represented in polar coordinates as a sequence of dis-
tinct vertices v j = r j eiφ j with φ j ∈ [0, 2π) and r j ∈ � (including the negative
numbers). Using this notation, the complement of the line segment (v j, v j+1) is
chosen as edge e j if and only if the signs of r j and r j+1 differ, see Figure 3.3.
Without loss of generality let x be at the origin. Then we can define mean value
coordinates for projective polygons just as in Algorithm 2.3, and Formula (2.7)
becomes

wi =
tan αi−1

2 + tan αi
2

ri

with αi = φi+1 − φi.
Since projective polygons should actually be defined for the real projective

plane ��2 ⊃ �2, we can use the same proofs as in Section 2.5 if we take care
of the infinite points. The idea is that infinite points have infinite norm ri and
therefore weight zero. More accurately, we had to consider the limit of points that
approach infinity on a given edge. Doing this, we find out that Lemmas 2.5–2.8
still hold. Lemma 2.9 has to be stated more precisely as
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Figure 3.3: Two projective triangles with the same vertices but different
edges. The refinement in Theorem 3.4 and the sign of the edge weights are
indicated in grey.

3.3 Lemma. Let e = (vi, vi+1) be an edge that does not contain an infinite point in
its interior. Let µe,i and µe,i+1 be the coefficients of the respective edge vector ve.

Then µe,i + µe,i+1 is greater than zero if and only if the respective angle αi and
the distances ri and ri+1 have the same sign.

We can now state

3.4 Theorem. Planar mean value coordinates for projective polygons are well
defined.

Proof. In a first step, the projective polygon is refined at all infinite points. Then,
no edge contains an infinite point in its interior any more, and we can proceed as
in the proof of Theorem 2.10 using Lemmas 2.8 and 3.3. �

3.5 Corollary. Let P be an admissible spherical polygon. Then the spherical
mean value coordinates with respect to P are well defined on �2.

Proof. Since P is admissible, its projection P is a projective polygon (in particular,
the projection is still non-intersecting). Hence, the mean value coordinates with
respect to P are well defined by Theorem 3.4. �

3.4 Bézier Surfaces on Spherical Polygonal
Domains

Spherical barycentric coordinates can be used to construct Bézier surfaces on
spherical domains. For a triangulation of the sphere, this has been done in
[ANS96]. Our extension to arbitrary spherical polygons makes it possible to han-
dle arbitrary tessellations of a sphere. As in the planar case, the de Casteljau
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algorithm can be used to compute the spherical Bézier patches. The challenging
part is to ensure smoothness across the polygon boundaries of the tessellation. The
respective theory for planar tessellations is developed in part II. If it is combined
with the methods from [ANS96], it should be possible to define smooth Bézier
surfaces on polygonal tessellations of the sphere. However, the details of such a
construction remain future work.

3.5 Summary
We have introduced spherical barycentric coordinates. The special case of spheri-
cal Wachspress coordinates generalize Ju et al.’s vector coordinates. The spherical
mean value coordinates are defined not only for convex spherical polygons but for
arbitrary spherical polygons without antipodal points. We have shown that the
spherical mean value coordinates are well defined for such polygons.

In the next chapter, we show how spherical barycentric coordinates can be
used to construct 3D barycentric coordinates for polyhedra with arbitrary polygo-
nal faces. Before, this was not possible in this generality.



Chapter 4

Barycentric Coordinates for
Arbitrary Polyhedra

In this chapter, we extend 3D barycentric coordinates from polyhedra with trian-
gular faces to arbitrary polyhedra. This makes it possible to use barycentric co-
ordinates in conjunction with subdivision surfaces and conical meshes [LPW∗06].
In particular, we introduce 3D mean value coordinates and prove that they are
defined in the whole �3 space. We show that the 3D mean value coordinates for
triangular polyhedra in [FKR05, JSW05] are a special case of our construction.
Finally, we discuss several applications including interpolation, extrapolation, and
space deformations.

4.1 Barycentric Coordinates for Arbitrary
Polyhedra

First, we present the approach to computing barycentric coordinates for polyhedra
with triangular faces that was introduced in [JLW07]. Then, we show how bary-
centric coordinates for arbitrary polyhedra can be obtained by using the spherical
barycentric coordinates proposed in Section 3.1. 3D mean value coordinates are
computed by Equations (4.1)–(4.3).

4.1 Definition. A polyhedron P consists of a finite set of distinct vertices vi ∈ �3

and a set of non-intersecting faces that are bounded by planar polygons. F(vi)
denotes the set of faces incident to vi. For a face f, V(f) denotes the set of indices
i such that vi is incident to f, and V(P) denotes the set of all vertex indices.

Let x ∈ �3 be a point. Its barycentric coordinates with respect to a poly-
hedron with vertices vi consist of coordinate functions λ3D

i (x) that fulfill (2.1)
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and (2.2). Once more, we begin by constructing homogeneous coordinates wi that
satisfy (2.2′) and normalize them afterwards. This is done in four steps [JLW07]:

4.2 Algorithm (3D barycentric coordinates). Barycentric coordinates λ3D
i for a

point x ∈ �3 with respect to a polyhedron P can be defined in the following way:

• A face vector vf is assigned to each face f of the polyhedron such that∑
f vf = 0. (vf can be considered as some kind of face normal.)

• For each face f, its face vector vf is distributed to its respective face vertices
by choosing coefficients µf,i such that

∑
i∈V(f) µf,i(vi − x) = vf .

• The weights at each vertex vi are cumulated as wi :=
∑

f∈F(vi) µf,i.

• The weights are normalized to form a partition of unity:

λ3D
i :=

wi∑
j w j
.

Note that two choices need to be made in this procedure: the face vectors vf
in Step 1 and the coefficients µf,i in Step 2 are in general not uniquely defined. Ju
et al. [JLW07] discuss the choice of vf and suggest several definitions to obtain
Wachspress coordinates, mean value coordinates, discrete harmonic coordinates,
Voronoi coordinates, or any other barycentric coordinates. However, they consider
only the case of polyhedra with triangular faces, and in this case, the coefficients
µf,i are uniquely determined.

For the case of arbitrary polyhedra, we propose choosing spherical barycentric
coordinates λi(vf; Pf) as coefficients µf,i in Step 2 where Pf B (vi − x)i∈V(f) is the
boundary polygon of f, relative to x. Note that the vertices vi − x do not lie on
the unit sphere in general. Therefore, the λi refer to the generalized spherical
barycentric coordinates (3.2). It is clear from the construction that the wi satisfy
Equation (2.2′). It follows that the λ3D

i satisfy (2.1) and (2.2). In the next section,
we describe the necessary choices to obtain 3D mean value coordinates.

4.1.1 Mean value coordinates for arbitrary polyhedra
Mean value coordinates are the most flexible since they can be computed for non-
convex polyhedra with non-convex (planar) faces. The following construction of
the associated face vector is due to [FKR05, JSW05]. Let x ∈ �3 be a point. For
a face f, let Pf be the boundary polygon with respect to x as above. Let �2 be the
unit sphere centered at x. We know from Stokes’ theorem that the integral over
the outward unit normal n : �2 → �3 of this sphere is zero:

∫

�2
n dS = 0.
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For a face f, let �2
f ⊂ �2 be the spherical patch obtained by projecting f to �2.

Choose the orientation of �2
f consistently with the orientation of the boundary of

f. The patches �2
f tessellate the sphere �2, and we can define vf as the integral of

n over �2
f :

vf B

∫

�
2
f

n dS ,
∑

f

vf = 0.

θ2,3

u4

u3

n3,4

x

u1

u2

vf

Figure 4.1: The
face vector vf .

Let Qf be the spherical polygon that is obtained by project-
ing the vertices of Pf to �2. Let the vertices of Qf be u1, . . . un.
Another application of Stokes’ theorem yields the formula

vf =

n∑

i=1

1
2
θi,i+1ni,i+1 (4.1)

where θi,i+1 is the angle between ui and ui+1, and ni,i+1 B
ui×ui+1
‖ui×ui+1‖ is the oriented unit normal to the plane determined by
these vectors (Figure 4.1).

The construction of this face vector vf is essentially the
same as in the case of polyhedra with triangular faces which
was derived from the continuous case [FKR05, JSW05]. The
choice of the µf,i, however, can not be guided by the continuous
case since it reflects different possibilities to extend a function,
which is defined on the vertices of a polyhedron, to its faces.

Therefore, just looking at the continuous case, we have several choices for the µf,i
which can be called 3D mean value coordinates with equal right. Nevertheless, it
seems reasonable to require additionally that the restriction of the coordinates to
the faces of the polyhedron yields the planar mean value coordinates of the respec-
tive faces. This can be achieved by choosing spherical mean value coordinates λi

for the coefficients µf,i (Section 4.1.2).
For each face f, the λi(vf; Pf) can easily be computed with (3.5) and (3.2). (In

these formulae, v = vf and θi is the angle between vf and ui.) We obtain

λi(vf; Pf) =
‖vf‖
‖vi − x‖ ·

tan αi−1
2 + tan αi

2

sin θi

/∑

j

cot θ j

(
tan α j−1

2 + tan α j

2

)
. (4.2)

Since the vertices vi, i ∈ V(f) of Pf are the boundary vertices of the planar face
f, the projected polygon Qf (the boundary of �2

f ) is contained in one hemisphere
of �2 and hence admissible. This ensures, by Corollary 3.5, that the λi are well
defined. This is true even if vf

‖vf‖ is not contained in the interior of Qf which may
happen for non-convex faces. Consequently, we can assign barycentric coordi-
nates λ3D

i to each vertex vi:

λ3D
i (x) B

wi(x)∑
j w j(x)

, wi(x) B
∑

f∈F(vi)

λi(vf; Pf). (4.3)
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By construction, they coincide with the mean value coordinates from [FKR05,
JSW05] if they are computed for polyhedra with triangular faces.

Finally, we show that the denominator in (4.3) does not vanish. It turns out
that the proof can be given along the same lines as in Section 2.5 for planar mean
value coordinates. Therefore, we indicate only the necessary changes.

It is easy to see that analogons of Lemmas 2.5–2.8 can be proven for polyhedra
by replacing lines and edges by planes and faces and so on. We obtain

4.3 Definition. A refinement P̂ of a polyhedron P is a polyhedron that contains
all the vertices of P and additional vertices and edges that lie on faces of P such
that P and P̂ bound the same volume in �3.

4.4 Lemma (refinement of polyhedra). Let P be a polyhedron, and let P̂ be a
refinement of P. Let wi and ŵi be the weights (4.3) of Algorithm 4.2 for P and P̂.

Then
∑

i∈V(P) wi =
∑

i∈V(P̂) ŵi.

The proofs for Lemma 2.9 and Theorem 2.10 carry over to the 3D case as well,
and we arrive at

4.5 Theorem. 3D mean value coordinates are well defined in �3.

Note that this theorem holds also for non-convex polyhedra with multiple com-
ponents (if these are oriented alternatingly, compare [HF06]). Also, we do not
require the faces to be simply connected.

4.1.2 Behavior of the mean value coordinates on the
faces

The denominator of Equation (4.2) becomes zero if x is contained in a face f of
the polyhedron. In this case, the face vector vf is orthogonal to f and Qf lies on
a great circle since its vertices vi−x

‖vi−x‖ lie in the plane determined by f. We show
now that the 3D mean value coordinates have nevertheless a continuous extension
to the faces and that this extension coincides with the 2D mean value coordinates
with respect to these faces. Assume that x approaches a point located on the face
f. Then vf approaches the face normal. For j ∈ V(f), we can conclude that the
denominator of the λ j(vf; Pf) defined in Equation (4.2) approaches zero and λ j

approaches infinity. Therefore, in the limit (due to the normalization)

λ3D
i (x) =



wi∑
j∈V(f) w j

, wi = λi(vf), i ∈ V(f)

0, otherwise.

This approaches the usual 2D mean value coordinates of x with respect to f.
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4.2 Higher Dimensions
Using barycentric coordinates for arbitrary polyhedra in �3, we can construct
spherical barycentric coordinates for arbitrary spherical polyhedra on the three-
dimensional sphere. These can then be used to obtain barycentric coordinates for
arbitrary polytopes in �4 and successively in higher dimensions. At each stage,
we must make a choice for the (hyper-)face vector and for the coefficients µf,i.
However, if we define the (hyper-)face vector as the integral of the outward unit
normal over a suitable part of the unit (hyper-)sphere and choose the spherical
mean value coordinates of the respective dimension as coefficients µf,i, we obtain a
generalization of the mean value coordinates to n dimensions. The proofs given in
this chapter carry over to n dimensions for this generalization so that we obtain all
the characteristic properties of mean value coordinates: They are positive within
convex polytopes, they have the whole �n space as domain, and they coincide
with the mean value coordinates of the respective lower dimension if restricted
to the (hyper-)faces of the polytope. To make this construction more precise, we
give a recursive definition for a polytope.

4.6 Definition. A solid one-dimensional polytope is a line segment. Its end points
are also called hyperfaces.

A (n + 1)-dimensional polytope P ⊂ �n+1 consists of a set F of solid n-
dimensional polytopes (rigidly embedded in �n+1), which are called the hyper-
faces of P, such that the interiors of the hyperfaces are disjoint and each (n − 1)-
dimensional hyperface of a hyperface in F coincides with exactly one of the other
(n − 1)-dimensional hyperfaces in F.

P divides �n+1 into an interior and an exterior part. The union of P and the
associated interior part of �n+1 is called a solid (n + 1)-dimensional polytope.

Note that we do not require that polytopes are connected. Therefore, the as-
sociated interior and exterior parts of �n+1 may have multiple connected compo-
nents as well. (Nevertheless, a hyperface should always separate a region labeled
as “interior” from a region labeled as “exterior”.) A 2-dimensional polytope is a
polygon, and a 3-dimensional polytope is a polyhedron.

4.3 Applications

4.3.1 Interpolation and extrapolation
The most direct application of mean value coordinates is their use for interpola-
tion and extrapolation using (2.3). In Figure 4.2, color values are specified at the
eight vertices of the cube. In (a) and (c), the values are interpolated on the faces.
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(a) (b) (c) (d)

Figure 4.2: An example of interpolation of color values using 3D mean value
coordinates. The color values are specified at the vertices of the cube. They
are interpolated on the faces ((a) and (c)) and on a plane passing through the
cube ((b) and (d)). If the cube is triangulated beforehand ((a) and (b)), the
interpolation is less smooth than with our method ((c) and (d)).

(a) (b) (c) (d)

Figure 4.3: An example of a space deformation using 3D mean value coor-
dinates with respect to the polygonal control mesh. If the control mesh is
triangulated beforehand, strong artifacts may be introduced ((a) and (b)).
No triangulation is necessary with our method ((c) and (d)).

In (b) and (d), the color values are interpolated and extrapolated on a plane that
passes through the cube. In (a) and (b), the cube was triangulated before the in-
terpolation. The piecewise linear structure of the interpolation on the triangles is
clearly visible. With our 3D mean value coordinates, a triangulation is no longer
necessary, and the resulting interpolation is much smoother.

4.3.2 Space deformations with 3D mean value coordi-
nates

Figure 4.3 shows an example how mean value coordinates can be used for space
deformations. We determine the mean value coordinates of the vertices of the
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Figure 4.4: The quadratic mean value Bernstein polynomials B2
2000, B2

1100, and
B2

1010 + B2
0101.

tube with respect to the black control mesh with vertices vi. Then we deform the
control mesh by moving the vertices to points wi and calculate the new location of
the tube by x =

∑
i λ

3D
i

(
x; (v j) j

)
wi. Note that we can compute these coordinates

for non-convex (control) meshes with non-convex faces ((c) and (d)). If all faces
are triangulated, the number of faces is nearly tripled, the result depends on the
chosen triangulation, and large artifacts may be introduced ((a) and (b)).

Although this approach is very simple, it is possible to obtain pleasing results.
These can be considerably improved by modifying the barycentric coordinates
such that derivatives are taken into account. This is discussed in detail in Chap-
ter 5.

4.3.3 Bernstein polynomials on polygons and polyhedra

In this section, we introduce Bernstein polynomials in mean value coordinates
on polygons. They can be used to define generalized Bézier surfaces. The full
theory, including examples of Bernstein polynomials on polyhedra, is developed
in Part II.

Bézier surfaces are defined by a linear combination of Bernstein polynomi-
als which are polynomials in barycentric coordinates. Using classical barycentric
coordinates, this was only possible for triangles. Using tensor product polynomi-
als, Bernstein polynomials can be defined on quadrangular domains as well, but
this leads to a higher degree of the polynomial. The only approaches for general
polygons that we are aware of are restricted to convex polygons [LD89, Gol02].

We can define mean value Bernstein polynomials for arbitrary polygons and
polyhedra. For a polygon or polyhedron with k vertices, the general form for the
Bernstein polynomials in the coordinates λ = (λ1, . . . λk) is

Bn
α(x) =

n!
α!
λα(x)
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where we use multi-indices α = (α1, . . . αk) ∈ �k with the notation α! B
α1! · · ·αk! and λα B λα1

1 · · · λ
αk
k . In Figure 4.4, we show some quadratic Bern-

stein polynomials on a square using mean value coordinates [Flo03].
Important properties of classical Bézier surfaces like the convex hull property

and the de Casteljau algorithm still hold in this extended setup.

4.4 Summary
We have shown that spherical mean value coordinates can be used to construct 3D
mean value coordinates for polyhedra with arbitrary polygonal faces while before
only 3D mean value coordinates for triangular polyhedra were known. The same
method can be used to construct mean value coordinates for arbitrary polytopes of
successively higher dimensions. We showed that the n-D mean value coordinates
are well defined. This concludes the generalization of mean value coordinates
from two to n dimensions.

In the future, it would be interesting to find a general theory for barycentric
coordinates for arbitrary polytopes similar to the one given in [FHK06, JLW07].
It should shed light on the relationship between “Euclidean” and spherical coor-
dinates. To construct the general 3D mean value coordinates, we had to make
two choices. First, we chose to use the “mean value” face vector as in [FKR05,
JSW05], then we chose spherical mean value coordinates as coefficients µf,i. How-
ever, we do not yet know which choices have to be made to obtain other types of
coordinates like the Warren-Wachspress coordinates [War96]. While it seems ob-
vious that the face vector of the respective type should be chosen by integrating
over the respective generating surface (see [JLW07] for details) to ensure consis-
tency with existing definitions, it is less obvious which choice is the “right” one
for the coefficients µf,i and which effects would result from different choices.



Chapter 5

Higher Order Barycentric
Coordinates

In recent years, a wide range of generalized barycentric coordinates has been sug-
gested. However, they usually lack control over derivatives. We show how the
notion of barycentric coordinates can be extended to specify derivatives at control
points. This is also known as Hermite interpolation. We introduce a method to
modify existing barycentric coordinates to higher order barycentric coordinates
and demonstrate, using higher order mean value coordinates, that our method, al-
though conceptually simple and easy to implement, can be used to give easy and
intuitive control at interactive frame rates over local space deformations such as
rotations.

5.1 Introduction

Barycentric coordinates have a wide range of applications as shown before. For
some of them, the currently available barycentric coordinates are sufficient. How-
ever, many others, like space deformations, are based on barycentric interpolation.
For these, it is often desirable to have a Hermite interpolation. That is, we want to
specify not only certain values at interpolation points but also the derivatives. One
way to do this for transfinite interpolation in the case that values and derivatives
are given for a boundary curve, is suggested by Dyken and Floater [DF08]. They
propose using a weighted combination of two transfinite barycentric interpola-
tion functions to achieve Hermite interpolation. We pursue a different approach
designed for Hermite interpolation at discrete points. We attain interpolation of
derivatives by modifying existing barycentric interpolation schemes. For space
deformations, this allows the specification of rotations and other linear transfor-
mations directly at a single point. Before, this had to be done by moving a whole
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group of control points. A survey of further interpolation techniques is given
in [Alf89].

In this chapter, we introduce higher order barycentric coordinates which can
be used for Hermite interpolation. To achieve this, the definition of barycentric
coordinates has to be adapted. We refer to the barycentric coordinates considered
so far as conventional barycentric coordinates to distinguish them from higher
order barycentric coordinates. Using the higher order coordinates, we gain better
local control over interpolations, and less control points are necessary compared
to conventional barycentric coordinates. Their name is due to their ability to in-
terpolate first order derivatives at the vertices while conventional coordinates only
interpolate zero order derivatives (values). However, it is not implied that an inter-
polation with precision of higher order is achieved with higher order barycentric
coordinates. They retain the linear precision property but are still not able to re-
produce quadratic or cubic polynomials exactly.

The main contributions of this chapter are:

• We give an axiomatic definition of higher order barycentric coordinates
(Section 5.2.2),

• we describe a method to modify conventional barycentric coordinates to
obtain higher order barycentric coordinates (Section 5.2.3),

• and we demonstrate the capabilities of our coordinates in the context of
space deformations (Section 5.3).

5.2 Construction of Higher Order Barycentric
Coordinates

In this section, we introduce higher order barycentric coordinates. We begin by
recapitulating the relevant properties of conventional barycentric coordinates from
an interpolation point of view to allow a better understanding of the way in which
our extension of the notion of barycentric coordinates fits into this framework.

5.2.1 Axioms for conventional barycentric coordinates
Barycentric coordinates with respect to a polytope or point cloud P = {v j} j=1...n,
v j ∈ �n, are a set of functions λi(x) = λi(x; P) : Ω → �, P ⊂ Ω ⊂ �n, which
satisfy the three axioms below.

Lagrange property λi(v j) = δi j. This property is the foundation of using bary-
centric coordinates for interpolation purposes. Given a set of barycentric
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coordinates λi and a set of function values fi, we obtain an interpolation
function

fλ,f(x) B
∑

i

λi(x) fi.

The Lagrange property is equivalent to vertex interpolation: fλ,f(vi) = fi.
Note that the Lagrange property was not required by our original defini-
tion in Chapter 2. However, all barycentric coordinates we know of satisfy
the Lagrange property as well. In particular, it is fulfilled by all positive
barycentric coordinates with respect to convex polygons [FHK06].

Partition of unity
∑

i λi = 1. This property yields constant precision for the in-
terpolation function. That is, constant functions can be reproduced exactly
from the interpolation values: Let fi = g(vi) for any constant function g.
Then fλ,f = g.

Linear precision. Linear functions can be reproduced exactly from the interpola-
tion values: Let fi = g(vi) for any linear function g. Then fλ,f = g. Together
with constant precision, we obtain affine precision and can reproduce affine
functions exactly.

Often the following additional properties are required.

Domain Ω = �n. The domain should be as large as possible. Wachspress coor-
dinates, for example, are only defined within convex polygons while mean
value coordinates are defined everywhere in �n.

Non-negativity ∀x ∈ Ω∀i λi(x) ≥ 0. Unfortunately, all known coordinates that
fulfill this property in full generality have deficits either with the domain
or the smoothness property.

Smoothness. The coordinate functions should be as smooth as possible.

A more detailed description of the interrelations of these properties can be
found in [FHK06].

5.2.2 Axioms for higher order barycentric coordinates
The interpolation function fλ,f does not allow the specification of any derivatives
since it blends only the constant terms fi. We suggest blending the first two terms
of the general Taylor series at the points vi instead by using the interpolation
function

fλ,f,D(x) B
∑

i

λi(x)( fi + Di(x − vi)) (5.1)
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where the Di are the linear functions (usually represented as matrices) which spec-
ify the derivatives at the vi.

To make sure that fλ,f,D interpolates the derivatives Di, the axioms for bary-
centric coordinates have to be modified as well.

Lagrange property λi(v j) = δi j. This property remains unmodified and implies
vertex interpolation: fλ,f,D(vi) = fi.

Partition of unity
∑

i λi = 1. This property remains unmodified as well. Further-
more, it directly implies affine precision in conjunction with our new in-
terpolation function fλ,f,D. However, the notion of affine precision has to
be adapted slightly to our new interpolation function: Let fi = g(vi) and
Di = ∇g(vi) for any affine function g. Then fλ,f,D = g.

Proof. We note that D B Di is independent of i for an affine function g and
fi + D(x − vi) = g(x). Using the partition of unity, we obtain fλ,f,D(x) =∑

i λi(x)g(x) = g(x). �

Consequently, linear precision is obsolete as an independent axiom.

Derivative property ∇λi(v j) = 0. This property is equivalent to derivative in-
terpolation ∇ fλ,f,D(vi) = Di: Using the Lagrange property, it simplifies to
Di+

∑
j ∇λ j(vi)( f j+D j(vi−v j)) = Di. Thus, ∀i∀ j ∇λi(v j) = 0 is a necessary

and sufficient condition.

The properties domain, non-negativity, and smoothness remain unchanged.

5.2.3 Construction of higher order barycentric coordi-
nates

The key observation for constructing higher order barycentric coordinates is that
the axioms of conventional and higher order barycentric coordinates differ mainly
by substituting derivative interpolation for linear precision (with respect to fλ,f).
Therefore, it is possible to obtain higher order barycentric coordinates by modify-
ing conventional barycentric coordinates λi. This can be done by first concatenat-
ing them with a function m : � → � such that m ◦ λi satisfies the Lagrange and
the derivative property. Afterwards, a normalization step is needed to reestablish
the partition of unity. Detailed conditions are given by the following theorem.

5.1 Theorem. Let λi be a set of functions that satisfy the Lagrange property,
partition of unity, and a Hölder condition with exponent α > 1

2 at the vertices
(|λi(v j) − λi(w)| < C‖v j − w‖α). Let m : � → [0,∞) be a non-negative, C1-
continuous function with m(0) = 0, m(1) = 1, and m′(0) = m′(1) = 0 such that
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m(x) > 0 for x > 0. Let furthermore be an ε > 0 given such that m is twice
differentiable in (−ε, ε) r {0} and in (1 − ε, 1 + ε) r {1}.

Then λho
i B

m ◦ λi∑
k m ◦ λk

is a set of higher order barycentric coordinate func-

tions. Furthermore, domain and positivity are preserved, and if the λi are C1-
continuous apart from the vertices, then the λho

i are C1-continuous everywhere.

The proof is contained in Appendix A.

5.2 Corollary. Planar higher order mean value coordinates exist and are C1-
continuous everywhere.

Proof. Given a function m with the properties that are required in Theorem 5.1
(see Section 5.3.2 for a possible choice), it remains to show that planar mean
value coordinates λi satisfy a Hölder condition with exponent α > 1

2 at the vertices.
While Hormann and Floater only state that the λi are C0, a closer examination of
their proof [HF06, Theorem 4.6] reveals that they are in fact Lipschitz continuous.
Therefore, they satisfy a Hölder condition with exponent α = 1. �

So far, we have not proven this corollary for mean value coordinates in higher
dimensions. Nevertheless, our experiments show that it holds for mean value
coordinates in �3 as well.

5.3 Higher Order Barycentric Coordinates for
Space Deformations

Our higher order barycentric coordinates allow a Hermite interpolation of arbi-
trary functions f : �n → �m at specified vertices vi (if values fi and derivatives
Di of the respective dimensions are given for each vertex). In particular, we can
create interpolating curves f : � → �m, image deformations f : �2 → �2, and
space deformations f : �3 → �3. In this section, we demonstrate the capabilities
of our Hermite interpolation method for space deformations as a representative
example.

5.3.1 Space deformations with barycentric coordinates

As pointed out by Joshi et al. [JMD∗07], barycentric coordinates are particularly
well-suited for space deformations using the function fλ,f : �3 → �3 of Sec-
tion 5.2.1. In practice, only the deformation of objects in the space�3 needs to be
computed. This is done in two steps:
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• The binding step: A control net (cage in the terminology of [JMD∗07]) is
bound to the object (for example a triangular mesh): For a given control net
with control points vi, the barycentric coordinates λi(p) are precomputed for
each point p of the object (for example at the mesh vertices).

• The deformation step: The deformation is specified by assigning new posi-
tions fi to each control point. Then, the points fλ,f(p) are calculated as the
new positions of the object points.

Both steps can be done in O(V ·P) time where V is the number of control points and
P is the number of object points. The deformation has the following properties:

• The object is not deformed by the binding step: The linear precision prop-
erty ensures that fλ,f = id�3 if fi = vi.

• Direct and intuitive control over local translations. The vertex interpolation
property allows the direct specification of new (control) point positions.

Higher order barycentric coordinates retain these properties (when the inter-
polation function fλ,f,D is used instead of fλ,f). Additionally they allow:

• Direct and intuitive control over local rotations and shears. The derivative
property allows us to specify the transformation directly at the vertices. For
example, a rotation around a vertex can be specified or undesired shears can
be prevented.

5.3.2 The choice of coordinates
Note that our axiomatic definition of higher order barycentric coordinates in Sec-
tion 5.2.2 defines not only a single set of these coordinates but a whole family of
them. Here, we discuss which of them are suitable choices for practical applica-
tions.

Of course, it is possible to construct the desired coordinates from scratch
such that they satisfy the axioms of Section 5.2.2. However, the ongoing re-
search for good conventional barycentric coordinates (which satisfy the axioms
of Section 5.2.1) shows that this is a difficult research topic on its own. We are
aware of only one known set of such coordinates, the Shepard weights λSh

i (x) =
1/‖x−vi‖2∑
j 1/‖x−v j‖2 [She68], the interpolation properties of which were studied in [Far86].

Unfortunately, they are not very well-suited for space deformations as it turned out
in our experiments. Therefore, we suggest taking the short-cut indicated in Sec-
tion 5.2.3 and constructing higher order coordinates by modifying conventional
barycentric coordinates. Furthermore, this allows us to take advantage of existing
implementations of these conventional coordinates.
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Before choosing one set of conventional coordinate functions as the basis for
our higher order coordinates, we recapitulate the strengths and weaknesses of
some prospective candidates.

• 3D mean value coordinates [FKR05, JSW05, LBS06] are defined every-
where in �3 for arbitrary polyhedra. They are only C0 at the vertices and
coordinate functions may become negative for non-convex polyhedra.

• Positive mean value coordinates [LKCOL07] are modified mean value co-
ordinates such that the coordinate functions are always non-negative. How-
ever, they introduce additional singularities and are only defined with re-
spect to triangular polyhedra due to the need to compute them on the graph-
ics card.

• Harmonic coordinates [JMD∗07] are obtained by solving Laplace equations
within the polyhedron. They are always non-negative and allow the spec-
ification of additional vertices within the polyhedron but are not defined
outside the polyhedron. Furthermore, the solving of the Laplace equa-
tions needs a comparably high preprocessing time. However, Rustamov
addressed the issue of computational time and proposed an extension to the
exterior of the polyhedron [Rus07].

• Natural neighbor based coordinates [Sib80, BIK∗97, HS00] depend only on
the positions of the vertices vi and not on the additional specification of a
polyhedron like the other methods. However, they are usually only defined
in the convex hull of the vertices and require the computation of a Voronoi
tessellation.

Taking all this into account, we decided to use 3D mean value coordinates
as the basis for higher order barycentric coordinates in our examples. They are
defined everywhere in �3, which turned out to be beneficial for our applications,
they are more flexible than the positive mean value coordinates, and their main
shortcomings vanish in the context of higher order coordinates while their bene-
fits are retained. Note, however, that Section 5.2.3 also provides a construction for
other types of higher order barycentric coordinates if other properties are consid-
ered more important. If, for example, coordinates are desired, which have control
vertices within the polyhedron or do not need a polyhedron at all, higher order
harmonic coordinates or higher order natural neighbor coordinates can be con-
structed.

Finally, we have to choose a modifying function m. We use the piecewise
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polynomial

m(x) =



0 if x < 0,
−2x2(x − 3

2 ) if 0 ≤ x < 1,
1 + (x − 1)2 if 1 ≤ x < 3

2 ,

x − 1
4 if x ≥ 3

2 .

In our first implementation, we used the polynomial −2x2(x − 3
2) on the whole

domain and obtained good results. However, to satisfy the conditions of Theo-
rem 5.1 and make sure that the denominator in the definition of the λho

i cannot
become zero, we changed m for x ≥ 1. To avoid m(x) changing x too drastically,
we introduced additional modifications for x < 0 and x ≥ 3

2 . This is possible
with minimal additional computational effort. However, different choices for m
are possible.

Therefore, we use m as above to derive higher order 3D mean value coordi-
nates from 3D mean value coordinates as described in Theorem 5.1. They have
the following properties:

• They are defined everywhere in �3. Therefore, they define a deformation
fλ,f,D : �3 → �3 on the whole space.

• They are expected to be smooth everywhere, analogous to Corollary 5.2.

• They are non-negative.

• When computing the coordinates of a point, it is automatically classified
as inside or outside the control mesh (by the sign of the denominator, see
[HF06, LBS07b]). This makes it easy to specify local deformations on par-
tial control nets.

5.3.3 Examples
We demonstrate the extended interpolation capabilities of higher order mean value
coordinates in Figure 5.1. In this figure, we did not perform any translations in
order to focus on the deformations that are possible by altering the derivative at a
single control point. Figure 5.2 shows additional examples of shears and rotations.
It can be clearly seen how angles are preserved under rotations.

Figure 5.3 shows how higher order mean value coordinates can be used for
partial deformations. It is possible to construct a control net around the whole
model where only those parts of it are “switched on” at a certain stage that are
actually to be deformed while the remainder of the model remains unchanged.
Figure 5.3 shows the basic building block for such a deformation system. Al-
though this can be done with other types of higher order barycentric coordinates
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Figure 5.1: We demonstrate the effects that can be achieved by changing a
single derivate in our control net. The top row shows the undeformed cow
model and our control net. Note that it consists of only six points and that
the control net penetrates the model. No care needs to be taken to enclose the
model within the control net. The middle row shows rotations at the control
point at the head around the red, green, and blue axis, respectively. This
is done by changing the derivative for that control point from the identity
matrix to the respective rotation matrix. The third row shows the effect of
scaling along the red, green, and blue axis by a factor of two.
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Figure 5.2: The cuboid shows how features can be preserved or manipulated.
The undeformed cuboid is at the top left. To the right of it, it is shown how
shears can be specified with higher order barycentric coordinates. However,
shears are often undesired. The image at the top right (with a close-up at the
bottom left) shows that the vertices of the cuboid (in particular their right
angles) are preserved under rotations. The bottom row (middle and right)
contains a translation. With conventional mean value coordinates (right), a
shear is introduced at the vertex while angles are preserved with higher order
coordinates.

as well, higher order mean value coordinates are especially appropriate for this
task since no additional effort is needed to find out if a particular point is inside or
outside of a (partial) control net. Note, however, that smoothness across the faces
can only be guaranteed here because the armadillo remains unchanged outside of
the control net. In more complex situations, an occasional rebinding might be
necessary between the deformation stages.

Since higher order barycentric coordinates are rather an extension than a di-
rect competitor of existing barycentric coordinate schemes which are not able
to interpolate rotations and other linear transformations directly, we only briefly
compare the two. Figure 5.2 shows how undesired shears during a translation are
prevented by higher order coordinates. In Figure 5.4, it can be seen that higher or-
der coordinates can achieve much smoother deformations with the same number
of control points by specifying rotations as derivatives. However, it can also be
seen that these rotations must be specified to achieve best results if the desired de-
formation involves such rotations. Figure 5.5 shows that higher order mean value
coordinates overcome a problem of conventional mean value coordinates that mo-
tivated the development of the positive mean value coordinates and the harmonic
coordinates. Like these, higher order mean value coordinate can handle highly
non-convex control nets without “repelling” artifacts. This is due to the choice of
m, which is always non-negative.

The only other higher order barycentric coordinates, we know of, are Shep-
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Figure 5.3: Higher order barycentric coordinates are well-suited for par-
tial deformations. Maximum local control over the deformation is gained by
deforming only the part of the model within the control net. Furthermore,
restricting the deformation enables large models like the armadillo to be de-
formed interactively. Using (higher order) mean value coordinates, mesh ver-
tices can be automatically classified as either inside or outside the control net
without additional cost, even in the case of complex control nets. The above
deformation was specified by moving and rotating the red control vertex. The
derivative constraints at the base of the pyramid ensure a smooth transition
between the deformed ear and the undeformed part of the armadillo.

ard’s coordinates. However, although they achieve similar results to higher order
mean value coordinates for simple control nets, they cannot handle complex, non-
convex situations as demonstrated in Figures 5.4 and 5.5. This is probably due
to their more global nature. Although higher order mean value coordinate are in
principle global as well, they take the structure of the control net into account
such that space points are mainly influenced by control points that are nearby—
measured within the control net.

To be more specific, let’s look at the examples again. In Figure 5.4, points on
the faces of the control net are only influenced by mean value coordinates of the
vertices of the respective face. This keeps these points fixed to the face. Using
Shepard’s coordinates, all coordinates contribute to the deformed position and
points tend to move towards an average location. A similar effect can be seen in
Figure 5.5: Only in the immediate vicinity of a control point, the influence of the
respective Shepard coordinate is dominating and pulls part of the finger to the new
position. For points farther away from a specific control point, all coordinates are
roughly equal. Therefore, the respective parts of the middle finger remain in place
during the deformation since most of the control points are not moved. Using
mean value coordinates, however, the (interior of the) middle finger is mainly
influenced by the control points of the middle finger. Consequently, the whole
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Figure 5.4: We compare different types of barycentric coordinates using the
torus example from Figure 4.3. At the top left is the original model, the quar-
ter torus, and its control net. To its right is a deformation with conventional
3D mean value coordinates. The bottom row shows the same deformation
with higher order barycentric coordinates where additional rotations can be
specified at the control points (by 0, 30, 60, and 90 degrees, respectively). If
this is done (bottom left and middle), the result looks much smoother. Nev-
ertheless, the deformation at the bottom left, which was done with Shepard
interpolation, shows an undesired “shrinking” effect that does not occur with
higher order mean value coordinates shown to its right. However, if such
a rotational deformation is performed with higher order coordinates while
leaving the derivatives unchanged (as the identity), the deformation at the
bottom right is obtained.

Figure 5.5: Highly non-convex models like the hand (left) are difficult for
many conventional barycentric coordinate techniques. If mean value coordi-
nates are used (second to the left) a “repelling” effect occurs in the interior
of the control net when the ring finger is moved to the right. This is espe-
cially visible at the joint of the middle finger. Shepard interpolation (second
to the right) also fails to give a pleasing deformation. Higher order mean
value coordinates (right) create an interpolation without strong artefacts.



5.4 Summary and Future Work 51

finger follows the movement of the control points.

5.3.4 Running time
As noted in Section 5.3.1, both the binding and the interpolation step can be done
in O(V ·P) time. Since the interpolation function fλ,f,D for higher order barycentric
is slightly more complex than fλ,f , its evaluation also takes longer (by a constant
factor). Nevertheless, in our experience, this was still fast enough to allow inter-
active manipulation for most of our models by dragging and rotating our control
points on the screen. Only the hand model, with 50085 vertices and 334 con-
trol points was considerably slower. Here, the binding step took (once) 1:17 min
(compared to 1:14 min for the conventional mean value coordinates) on a AMD
AthlonTM 64 X2 Dual Core Processor 3800+ with 2 GHz. The deformation step
took slightly above 1 second for this model (compared to 0.8 seconds). Further
speed-ups are undoubtedly achievable. It would be possible, for example, to re-
compute only the contribution of those control points that were actually modified
when evaluating fλ,f,D. This would yield a running time of O(P).

5.4 Summary and Future Work
We introduced a new type of barycentric coordinates which we called higher or-
der barycentric coordinates, as they allow the interpolation of not only function
values, but linear functions. When used for space deformations, they introduce a
new means of manipulating objects. They can specify rotations and other linear
transformations directly without the need to “simulate” such a transformation by
moving a group of close-by control points. They can also be used to manipulate
only parts of an object since the derivative constraints ensure a smooth transition
between deformed and undeformed parts of the model.

Furthermore, we suggested a method for modifying existing barycentric coor-
dinates to create higher order barycentric coordinates. Therefore, they can be con-
sidered as a possible extension for existing coordinates rather than a completely
new type. If we nevertheless compare higher order mean value coordinates and
conventional barycentric coordinates, higher order mean value coordinates are
the only non-negative, C1-continuous (proven only for �2) barycentric coordinate
functions, which are defined everywhere in �n, that we know of. If we compare
them with Shepard’s coordinates, our coordinates are clearly superior with regard
to deformations since Shepard’s coordinates satisfy our definition of higher order
coordinates but can not capture the shape of an object.

Unfortunately, the higher order barycentric coordinates we introduced retain
one disadvantage of conventional barycentric coordinates: If several polytopes are
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used for the control net, the coordinates are in general not smooth across polytope
faces. This would be necessary to take full advantage of the method of partial
deformations described for the armadillo model. To change this, the derivative
property has to be extended such that the coordinate derivatives at the faces in the
direction orthogonal to these faces are zero as well. Details of such a construction
remain an opportunity for future work. We would also like to construct coordi-
nates of still higher order. By specifying not only first, but also second derivatives,
a bend, which is basically a change of rotations, could be determined at a single
control point. Furthermore, the space of higher order coordinates should be sys-
tematically explored as has been done for generalized barycentric coordinates with
respect to polytopes [FHK06, JLW07]. This would allow the selection of higher
order barycentric coordinates that are tailored to particular needs.
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Chapter 6

Mean Value Bézier Surfaces over
Quadratic Domains

Bernstein polynomials are a classical tool in Computer Aided Design to create
smooth maps with a high degree of local control. In particular, they are used to
define Bézier surfaces, which are parameterized surfaces whose parameterization
is given by a linear combination of Bernstein polynomials in barycentric coordi-
nates. Usually, Wachspress coordinates are used to obtain tensor product Bézier
surfaces. In this chapter, we investigate the potential of mean value coordinates
to design mean value Bézier surfaces over quadratic domains. When used to con-
struct Bézier patches, they offer additional control points without raising the poly-
nomial degree. In the next chapter, we will consider mean value Bézier surfaces
over arbitrary (polygonal) domains and generalize mean value Bézier surfaces to
mean value Bézier maps.

6.1 Bézier Theory and Barycentric
Coordinates

Bézier surfaces are based on the works of Bézier, de Casteljau, and Forrest [Béz68,
dC59, For72] and remain an important tool in Computer Aided Design today.
We use the more general notion of Bézier maps to denote polynomial functions
f : �d → �e in the form of simplicial Bézier maps

f (λ) =
∑

|α|=n

bαBn
α(λ) (6.1)

or tensor product Bézier maps

f (x) =
n∑

i1,...id=0

bi1...id

d∏

j=1

Bn
i j
(x j) (6.2)
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where λ B λ(x) are barycentric coordinates of x B (x1, . . . xd) with respect to a
domain simplex (or polytope) P ⊂ �d with vertices {v1, . . . vk} (k = d + 1 if P is
a simplex) while (6.2) is defined over the domain [0, 1]d. Furthermore, n is the
polynomial degree, bα ∈ �e and bi1...id ∈ �e are the control points, and Bn

α and Bn
i

are the Bernstein polynomials defined by

Bn
α(λ) =

n!
α!
λα , Bn

i (x) =
(
n
i

)
(1 − x)n−ixi (6.3)

where we use the standard multi-index notation α B (α1, . . . αk) ∈ �k with |α| B∑
i αi, α! B

∏
i αi!, and λα B

∏
i λ
αi
i . In this chapter, we focus mainly on Bézier

surfaces. In this case, d = 2, e = 3, and we denote the components of x = (x1, x2)
by (x, y).

The representations (6.1) and (6.2) are even more closely related to each other
than it may appear at a first glance. If we set

λW
1 (x) B (1 − x)(1 − y), λW

2 (x) B x(1 − y), λW
3 (x) B xy, λW

4 (x) B (1 − x)y,

we can express tensor product Bézier surfaces in the form of (6.1) as has been
noted in [LD89]. Using multi-indices α B (α1, α2, α3, α4) ∈ �4, we obtain

f (x) =
n∑

i, j=0

bi jBn
i (x)Bn

j(y) =
n∑

i, j=0

bi j

(
n
i

)(
n
j

)
(1 − x)n−ixi(1 − y)n− jy j (6.4)

=

n∑

i, j=0

bi j

∑

α2+α3=i
α3+α4= j
|α|=n

n!
α!

(1 − x)n−ixi(1 − y)n− jy j (6.5)

=

n∑

i, j=0

bi j

∑

α2+α3=i
α3+α4= j
|α|=n

n!
α!
λW(x)α =

∑

|α|=n

bα2+α3,α3+α4 Bn
α(λ

W(x)).

Since Bn
i (x)Bn

j(y) and Bn
α(λ

W(x)) form both a partition of unity, the equality of (6.4)
and (6.5) can be deduced by comparing the coefficients of

n∑

i, j=0

(
n
i

)(
n
j

)
(1 − x)n−ixi(1 − y)n− jy j

= 1

=

∑

|α|=n

n!
α!
λW(x)α =

n∑

i, j=0

( ∑

α2+α3=i
α3+α4= j
|α|=n

n!
α!

)
(1 − x)n−ixi(1 − y)n− jy j.
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Figure 6.1: Notation for the definition of mean value coordinates.

The coordinate functions λW
i are just the Wachspress coordinates [Wac75] with

respect to the unit square.
In this chapter, we explore the potential of substituting mean value coordi-

nates [Hui91, Flo03], which we denote by λi, for Wachspress coordinates in the
definition of Bézier surfaces. Using the notation from Fig. 6.1, they are defined
by

λi =
wi∑
j w j
, wi =

tan γi−1
2 + tan γi

2

‖x − vi‖
(6.6)

in the interior of a convex polygon, and they have a continuous extension to the
boundary [HF06]. We list some of their properties.

6.1 Proposition (Hormann & Floater [HF06]). Mean value coordinates λi are
positive barycentric coordinates. In particular, they are positive everywhere with-
in the unit square. In addition, they have the following properties:

1. Lagrange property: λi(v j) = δi j.

2. Smoothness: The λi are C∞ everywhere except at the vertices v j, where they
are only C0.

3. Linear independence: The functions (λi(x))4
i=1 are linearly independent.

4. Edge property: λi is linear along the edges of the unit square.

6.2 Proposition. The four mean value coordinate functions with respect to the
unit square [0, 1]2 are symmetric to themselves and to each other:

λ1(x, y) = λ1(y, x), λ3(x, y) = λ3(y, x),
λ2(x, y) = λ2(1 − y, 1 − x), λ4(x, y) = λ4(1 − y, 1 − x),
λ1(x, y) = λ2(1 − x, y) = λ3(1 − x, 1 − y) = λ4(x, 1 − y).

Although mean value coordinates are only C0 at the vertices, we can de-
fine partial derivatives by taking the limit over difference quotients within the
square. This yields by Proposition 6.1.4 ∂

∂xλ1(0, 0) = ∂
∂xλ1(1, 0) = ∂

∂yλ1(0, 0) =
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∂
∂yλ1(0, 1) = −1, ∂

∂xλ1(0, 1) = ∂
∂xλ1(1, 1) = ∂

∂yλ1(1, 0) = ∂
∂yλ1(1, 1) = 0, and respec-

tively for the other coordinate functions. But note that limy→0,y>0
∂
∂xλ1(0, y) , −1

and similarly for the other λi.1 Nevertheless, this is sufficient for our purposes
since we can nevertheless achieve higher continuity by taking appropriate combi-
nations of the λi. This is shown in the following section.

The advantage of mean value coordinates is that their Bernstein polynomi-
als Bn

α(λ) are in general different for different multi-indices α while the Bernstein
polynomials Bn

α(λ
W) and Bn

α′(λ
W) coincide if α2+α3 = α

′
2+α

′
3 and α3+α4 = α

′
3+α

′
4.

This means that it is possible to define a different kind of Bézier patch by using the
mean value coordinates of the unit square in (6.1) as suggested in [Flo03]. More-
over, these mean value Bézier patches have a greater number of control points
than traditional Bézier patches with the same polynomial degree. In the following
section, we will investigate the properties of mean value Bézier surfaces.

6.2 Mean Value Bézier Surfaces

Many of the properties of (triangular) Bézier surfaces can be proven by formal
manipulations of the barycentric coordinates λi. Therefore, the respective proofs
carry directly over to the case of generalized Bézier surfaces. In the following
theorem, we summarize some of these results.

6.3 Proposition. Let λi be barycentric coordinates with respect to a polytope P,
and let the Bernstein polynomials Bn

α and a Bézier map f be defined as in (6.3)
and (6.1). Then the following properties hold:

1. Bn
α(λ) =

∑k
i=1 λiBn−1

α−ei
(λ) (for any Bernstein polynomial Bm

β , |β| = m, we use
the convention Bm

β (λ) B 0 if one of the βi < 0).

2. Let (vi0 , vi1) be an edge of P, then the boundary curve f (λ((1 − t)vi0 + tvi1))
is a Bézier curve with control points (b(n− j)ei0+ jei1

)n
j=0.

3. {Bn
α} forms a partition of unity; if P is convex and the λi are positive coor-

dinates, the partition of unity is positive within P. In particular, this is true
for the mean value coordinates with respect to a square.

4. If P is convex and the λi are positive coordinates, the image of P under
f (λ(x)) is contained in the convex hull of the bα. In particular, this is true
for the mean value coordinates with respect to a square.

1Our numerical experiments gave a limit value of approximately −0.7.
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5. The de Casteljau algorithm works: let f (λ) =
∑
|α|=n bαBn

α(λ) be a Bézier
map with coefficients bα. For m ∈ � and a given β with |β| = n − m, let
bm
β (λ) B

∑
|α|=m bβ+αBm

α (λ). Then P(λ) = bn
0(λ) can be computed from the

b0
β(λ) = bβ via the recursive relation bm

β (λ) =
∑k

i=1 λibm−1
β+ei

(λ).

(ei denotes the multi-index with components (ei) j = δi j, and 0 denotes the multi-
index with components 0 j = 0.)

In the remainder of this chapter, we will consider the special case of planar
mean value coordinates λi with respect to a unit square P, k = 4. Next, we give
the derivatives of the Bernstein polynomials in λ.

6.4 Lemma. Let

Bn
α(λ) =


n!
α!λ
α if all αi ≥ 0,

0 otherwise.

Then
∂|β|

∂λβ
Bn
α(λ) B

∂|β|

∂λ
β1
1 ∂λ

β2
2 ∂λ

β3
3 ∂λ

β4
4

Bn
α(λ) =

n!
(n − |β|)! Bn−|β|

α−β (λ).

The computation of derivatives of mean value Bézier patches with respect
to x and y, which is important to join several Bézier patches smoothly, is more
challenging because these derivatives can not be expressed as a linear combination
of Bernstein polynomials as it is the case with tensor product Bézier surfaces.
Application of the chain rule yields:

6.5 Lemma. Let
f (λ) =

∑

|α|=n

bαBn
α(λ),

and define recursively

∆0,0bα(x) B bα,

∆r+1,sbα(x) B
4∑

i=1

∂

∂x
λi(x)∆r,sbα+ei(x),

∆r,s+1bα(x) B
4∑

i=1

∂

∂y
λi(x)∆r,sbα+ei(x).

Then the first derivatives of f are given by

∂

∂x
f (λ(x)) = n

∑

|α|=n−1

∆1,0bα(x)Bn−1
α (λ(x)),

∂

∂y
f (λ(x)) = n

∑

|α|=n−1

∆0,1bα(x)Bn−1
α (λ(x)).
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The second derivatives of f are given by

∂2

∂x2 f (λ(x)) = n
∑

|α|=n−1

∂

∂x
∆1,0bα(x) · Bn−1

α (λ(x))

+ n(n − 1)
∑

|α|=n−2

∆2,0bα(x)Bn−2
α (λ(x)),

∂2

∂y2 f (λ(x)) = n
∑

|α|=n−1

∂

∂y
∆0,1bα(x) · Bn−1

α (λ(x))

+ n(n − 1)
∑

|α|=n−2

∆0,2bα(x)Bn−2
α (λ(x)),

∂2

∂x∂y
f (λ(x)) = n

∑

|α|=n−1

∂

∂y
∆1,0bα(x) · Bn−1

α (λ(x))

+ n(n − 1)
∑

|α|=n−2

∆1,1bα(x)Bn−2
α (λ(x)).

We can now give continuity conditions for connecting mean value Bézier
patches.

6.6 Theorem (C0-continuity). Let

f (λ) =
∑

|α|=n

bαBn
α(λ), f ′(λ′) =

∑

|α|=n

b′αB
n
α(λ
′) (6.7)

where λ(x) is defined with respect to the square [0, 1]2, and λ′(x) is defined with
respect to the square [1, 2] × [0, 1]. These patches form a continuous surface iff
the control points at the connecting edge coincide, that is

b(n−i)e2+ie3 = b′(n−i)e1+ie4
∀i = 0 . . . n, (6.8)

see Figure 6.2. Respective conditions hold to join patches along the other domain
boundary edges.

Proof. This is an immediate consequence of Proposition 6.3.2. �

To compare higher order derivatives, we need to know more about the partial
derivatives of the mean value coordinates. Although the partial derivatives have
been computed in [DF08] for transfinite coordinates, a closed formula for the
polygonal case is not known. We circumvent the problem of finding an explicit
expression for the derivatives with the following lemma.
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Figure 6.2: Sketch of two cubic Bézier patches, which are connected with
C0-continuity. The control points marked with black dots must coincide.

6.7 Lemma. Let λ1, . . . λ4 be the mean value coordinates of the unit square. Then

∂

∂x
λ1(x) +

∂

∂x
λ2(x) =

∂

∂x
λ3(x) +

∂

∂x
λ4(x) = 0, (6.9)

−
(
∂

∂y
λ1(x) +

∂

∂y
λ2(x)

)
=
∂

∂y
λ3(x) +

∂

∂y
λ4(x) = 1,

−
(
∂

∂x
λ1(x) +

∂

∂x
λ4(x)

)
=
∂

∂x
λ2(x) +

∂

∂x
λ3(x) = 1, (6.10)

∂

∂y
λ1(x) +

∂

∂y
λ4(x) =

∂

∂y
λ2(x) +

∂

∂y
λ3(x) = 0.

Proof. The linear precision property (2.2) of the mean value coordinates implies
that linear functions f are correctly interpolated by

∑4
i=1 λi(x) f (vi) = f (x) where vi

are the vertices of the unit square. By choosing f (x) B y, we obtain λ3(x)+λ4(x) =
y. Differentiating by x yields the second equality in (6.9). Everything else follows
completely analogous and by using the partition of unity property (2.1). �

6.8 Theorem (C1-continuity I). A mean value Bézier patch f (λ) =
∑
|α|=n bαBn

α(λ)
is C1 everywhere (in particular at the vertices) iff it satisfies the smoothness con-
dition

b(n−1)ei+ei+2 = b(n−1)ei+ei+1 + b(n−1)ei+ei−1 − bnei , i = 1 . . . 4 (6.11)

(indices of e modulo 4), see Figure 6.3.

Proof. By the symmetry of the mean value coordinates, it is sufficient to prove
the claim at one vertex and for one partial derivative. By Lemma 6.5 (compare
also (6.16)), we obtain

lim
x→(1,1)

x,1

∂

∂x
f (λ(x)) = n

(
(bne3 − b(n−1)e3+e4) lim

x→(1,1)
x,1

∂

∂x
λ3(x)

+ (b(n−1)e3+e2 − b(n−1)e3+e1) lim
x→(1,1)

x,1

∂

∂x
λ2(x)

)
(6.12)
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Figure 6.3: Two equivalent sketches of a cubic Bézier patch, which is C1-
continuous at the top right corner. The control point differences indicated by
the two arrows must coincide.

Figure 6.4: Sketch of two cubic Bézier patches, which are connected with
C1-continuity. The control point differences indicated by pairs of arrows in a
common row must coincide. Note that each of the grey-shaded dots actually
represents two different control points. Therefore, six conditions have to be
met.

and
∂

∂x
f (λ(1, 1)) = n(bne3 − b(n−1)e3+e4). (6.13)

We have C1-continuity if and only if (6.12) and (6.13) are equal. Using (6.10), we
obtain the claim. �

6.9 Theorem (C1-continuity II). Let f and f ′ be given as in (6.7). Let us de-
note bi jkl B bie1+ je2+ke3+le4 and correspondingly for b′. Then f and f ′ form a
C1-continuous surface if (6.8) and (6.11) are satisfied and

b0,n−i,i,0 − b0,n−i,i−1,1 = b′n−i,0,1,i−1 − b′n−i,0,0,i ∀i = 1 . . . n (6.14)

and

b0,n−i,i,0 − b1,n−i−1,i,0 = b′n−i−1,1,0,i − b′n−i,0,0,i ∀i = 0 . . . n − 1, (6.15)

see Figure 6.4. Respective conditions hold to join patches along the other domain
boundary edges.
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Proof. The derivatives in y-direction coincide by Prop. 6.3.2. In x-direction, we
obtain by Lemma 6.5 and (6.9)

∂

∂x
f (λ(1, y)) =

n
( n−1∑

i=0

(b0,n−1−i,i+1,0 − b0,n−1−i,i,1)
(
n − 1

i

) (
∂

∂x
λ3 · λn−1−i

2 λi
3

)
(1, y)

+ (b0,n−i,i,0 − b1,n−1−i,i,0)
(
n − 1

i

) (
∂

∂x
λ2 · λn−1−i

2 λi
3

)
(1, y)

)
(6.16)

and

∂

∂x
f ′(λ′(1, y)) =

n
( n−1∑

i=0

(b′n−1−i,0,1,i − b′n−1−i,0,0,i+1)
(
n − 1

i

) (
∂

∂x
λ′3 · λ′1n−1−iλ′4

i

)
(1, y)

+ (b′n−1−i,1,0,i − b′n−i,0,0,i)
(
n − 1

i

) (
∂

∂x
λ′2 · λ′1n−1−iλ′4

i

)
(1, y)

)
.

By the symmetry of the coordinate functions, we obtain λn−1−i
2 (1, y) = λ′1

n−1−i(1, y),

λi
3(1, y) = λ′4

i(1, y), and ∂
∂xλ3(1, y) = − ∂

∂xλ
′
4(1, y)

(6.9)
=

∂
∂xλ
′
3(1, y). By comparing

the coefficients, we see that (6.14) and (6.15) are sufficient conditions for C1-
continuity. �

6.10 Theorem (C2-continuity I). Let f and f ′ be given as in (6.7). Then f and
f ′ form a C2-continuous surface (C1-continuous at the vertices) if (6.8), (6.14)
and (6.15) are satisfied, and, for all i = 0 . . . n − 1,

b0,n−1−i,i+1,0 + b1,n−1−i,i,0 − b0,n−1−i,i,1 − b0,n−i,i,0 = 0, (6.17)

and, for all i = 0 . . . n − 2,

b2,n−2−i,i,0 + b0,n−i,i,0 − 2b1,n−1−i,i,0 = b′n−2−i,2,0,i + b′n−i,0,0,i − 2b′n−1−i,1,0,i, (6.18)

b0,n−1−i,i+1,0 + b1,n−2−i,i,1 − b1,n−2−i,i+1,0 − b0,n−1−i,i,1

= b′n−1−i,0,0,i+1 + b′n−2−i,1,1,i − b′n−2−i,1,0,i+1 − b′n−1−i,0,1,i,

and

b0,n−2−i,i+2,0 + b0,n−2−i,i,2 − 2b0,n−2−i,i+1,1

= b′n−2−i,0,0,i+2 + b′n−2−i,0,2,i − 2b′n−2−i,0,1,i+1,
(6.19)

see Figure 6.5 (right). Respective conditions hold to join patches along the other
domain boundary edges.
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Figure 6.5: The control points involved in the conditions for C2-continuity.
(The grey control points actually represent two different control points.)
Left: the control points for C2-continuity at the top right corner of a cubic
Bézier patch. Right: the control points for two cubic Bézier patches con-
nected with C2-continuity.

Proof. The second derivatives in y-direction coincide by Prop. 6.3.2. In x-direction,
we obtain by Lemma 6.5 and by differentiating (6.9) and (6.10)

∂2

∂x2 f (λ(1, y)) =

n
( n−1∑

i=0

(b0,n−1−i,i+1,0 − b0,n−1−i,i,1 − b0,n−i,i,0 + b1,n−1−i,i,0)

·
(
n − 1

i

) (
∂2λ3

∂x2 λ
n−1−i
2 λi

3

) )
(1, y)

+n(n − 1)
( n−2∑

i=0

(b2,n−2−i,i,0 + b0,n−i,i,0 − 2b1,n−1−i,i,0)
(
n − 2

i

)((∂λ2

∂x

)2
λn−2−i

2 λi
3

)

+ (b0,n−1−i,i+1,0 + b1,n−2−i,i,1 − b1,n−2−i,i+1,0 − b0,n−1−i,i,1)

· 2
(
n − 2

i

)(
∂λ2

∂x
∂λ3

∂x
λn−2−i

2 λi
3

)

+ (b0,n−2−i,i+2,0 + b0,n−2−i,i,2 − 2b0,n−2−i,i+1,1)

·
(
n − 2

i

)((∂λ3

∂x

)2
λn−2−i

2 λi
3

))
(1, y)

(6.20)

and a similar term for ∂2

∂x2 f ′(λ′(1, y)). The rest follows again by comparing the

coefficients of f and f ′. With (6.14), (6.15), and ∂2

∂x2λ3(1, y) = ∂2

∂x2λ
′
4(1, y)

(6.9)
=

− ∂2

∂x2λ
′
3(1, y) we deduce (6.17) from the second line of (6.20). Note that (6.11) is a

special case of (6.17) and that an analogon of (6.17) holds for the control points b′α
as well because of (6.14) and (6.15). The other three lines of (6.20) lead to (6.18)–
(6.19). When computing the mixed derivatives of f and f ′, we observe that they
already coincide by (6.14) and (6.15). �
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6.11 Theorem (C2-continuity II). A mean value Bézier patch given by f (λ) =∑
|α|=n bαBn

α(λ) is C2 everywhere (in particular at the vertices) if it satisfies the
smoothness conditions (6.17) for i = 0, 1, n − 1, n and, additionally

b2,0,n−2,0 + b0,2,n−2,0 − 2b1,1,n−2,0 = b0,0,n,0 + b0,0,n−2,2 − 2b0,0,n−1,1, (6.21)

see Figure 6.5 (left). Respective conditions hold for the other vertices.

Proof. The proof proceeds along the lines of the proof of Theorem 6.8. We use
Lemma 6.5 to compute ∂2

∂x2 f (λ(1, 1)) and limx→(1,1), x,1
∂2

∂x2 f (λ(x)) and obtain (6.21)
by comparing the coefficients. Note that we obtain the condition

b2,0,n−2,0 + b0,2,n−2,0 − 2b1,1,n−2,0 = b0,1,n−1,0 + b1,0,n−2,1 − b1,0,n−1,0 − b0,1,n−2,1

as well, but this equation is already satisfied by (6.21) and (6.17). We get ad-
ditional constraints from evaluating ∂2

∂y2 f (λ(1, 1)) and limx→(1,1), x,1
∂2

∂y2 f (λ(x)) and

from comparing ∂2

∂x∂y f (λ(1, 1)) with its respective limit values. But again, these
constraints can already be deduced from (6.21) and (6.17). �

Theorems 6.10 and 6.11 together give sufficient conditions to join mean value
patches to form a C2-continuous surface.

6.3 Results
In Figure 6.6, we show a mean value Bézier surface that is constructed from four
patches of order 2. Here, only the conditions for C1-continuity along the common
boundaries were met ((6.8), (6.14), and (6.15)). The central vertex is only C0. As
a result, the joining lines and the central vertex are visible in the shading.

In Figure 6.7, we demonstrate that mean value Bézier surfaces and tensor prod-
uct Bézier surfaces are qualitatively comparable. These surfaces are constructed
from four patches of order 3, and the same control points were used in both cases.
Here, all constraints to achieve a C2-continuous surface were enforced, except for
the central vertex, which is only C1 for the mean value Bézier surface. This re-
sults in two visually indistinguishable surfaces. Only if we compare the isolines
of ∂

2

∂x2 f , the C1-continuous vertex can be discerned.

6.4 Summary and Future Work
We observe that mean value Bézier surfaces are well-suited for modeling sur-
faces. Although the advantage of the greater number of control points (compared
to tensor product Bézier surfaces of the same degree) is diminished by a greater
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Figure 6.6: A mean value Bézier surface constructed from four patches.
Here, only the conditions for C1-continuity along the common boundaries
and C0-continuity at the center vertex were met. This leads to an unpleasant
appearance.

number of constraints, we nevertheless obtain new, interesting possibilities for
surface construction. However, to ensure that the greater number of control points
corresponds to additional degrees of freedom, it has to be proven that the Bern-
stein polynomials in mean value coordinates are linearly independent. For linear
Bernstein polynomials, this is stated in Proposition 6.1. For quadratic Bernstein
polynomials on the square, we could show it by inspecting the ten different poly-
nomials. The general case, however, is still open. One additional benefit, which
does not depend on the linear independence of the mean value Bernstein polyno-
mials, is that mean value coordinates, and hence mean value Bézier patches, are
well-defined for all convex and non-convex polygons, and we are not restricted to
rectangular domains. This is explored further in the subsequent chapter.

Mean value coordinates were recently generalized to higher dimensions
[FKR05, JSW05, LBS06]. This allows the definition of mean value Bézier hyper-
patches on (hyper-)cubes. A smoothness analysis similar to the one presented in
this chapter can be done for the resulting hyper-surfaces.

Finally, we remark that most of our results are not only valid for constructing
Bézier surfaces with mean value coordinates but also for all other differentiable
barycentric coordinates as introduced in [FHK06]. This leads to a whole family of
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Figure 6.7: Comparison of a tensor product Bézier surface (left) and a mean
value Bézier surface (right). Both surfaces are visually indistinguishable,
which shows the high quality that is achievable with mean value Bézier sur-
faces. Only the close-up, showing isolines of ∂2

∂x2 f , reveals the fine differences.
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different Bézier surfaces. Nevertheless, the convex hull property requires a spe-
cial property of the mean value (and Wachspress) coordinates: positivity inside
the domain. This condition is only guaranteed for few other barycentric coordi-
nates [FHK06] and is the reason that we focused on mean value Bézier surfaces.

If Wachspress coordinates are used in our construction of Bézier surfaces, we
obtain constant functions for ∂

∂xλ
W and ∂

∂yλ
W, and the second derivatives vanish.

What remains are the well-known conditions of tensor product Bézier surfaces.



Chapter 7

Mean Value Bézier Maps

In this chapter, we extend the approach of the previous chapter in several direc-
tions. Most importantly, we drop the restriction to quadratic domains. This re-
quires the development of a new method to ensure smooth transitions between
patch boundaries. Second, we consider not only parameterized surfaces f : �2 →
�

3 but more general maps. This allows the use of these maps for space deforma-
tions and other purposes. For free-form deformations, it comes in handy that we
can define them on arbitrary (polyhedral) domains since the classical Bernstein
polynomials, defined only for simplices and parallelepipeds, can in general not
directly capture the shape of arbitrary objects. Finally, we want to be able to ap-
ply our theory not only to maps based on mean value coordinates but also to maps
based on other coordinates if desired.

With these extensions, we obtain smooth maps on arbitrary sets of polytopes
such that the restriction to each of the polytopes is a Bernstein polynomial in mean
value coordinates (or any other generalized barycentric coordinates).

7.1 Introduction
Bernstein polynomials are at the core of classical Computer Aided Design. They
were not only used for the construction of Bézier surfaces but also to define free-
form deformations of 3D space [Béz78, SP86]. More generally, they can be used
to construct any kind of smooth map that requires local control.

In this chapter, we consider general Bézier maps f : �d → �e. Important spe-
cial cases of Bézier maps are on the one hand Bézier curves and (hyper-)surfaces
where e > d and usually d = 1 or d = 2, which were considered in the previous
chapter. On the other hand, if d = e, we obtain space deformations. Sederberg
and Parry [SP86] used tensor product Bernstein polynomials defined on paral-
lelepipeds in �3 to specify such free-form deformations. In this case, the con-
trol points bi jk indicate the position and shape of the deformed parallelepiped.



70 7 Mean Value Bézier Maps

However, the restriction on the shape of the domain makes it sometimes diffi-
cult to adapt the deformation to complex real objects. This restriction can be
overcome by generalizing the barycentric coordinates λi in (6.1) from simplices
to more general polytopes. A first step in this direction was done by Loop and
DeRose [LD89] who introduced coordinate functions li in order to define Bézier
surfaces over regular k-gons. These coordinates are a special case of the Wachs-
press coordinates [Wac75] that are defined inside of arbitrary convex polygons and
were introduced to computer graphics by Meyer et al. [MLBD02]. A further gen-
eralization led to the definition of Wachspress coordinates for convex polytopes
of higher dimensions [War96, JSWD05].

Another generalization of classical barycentric coordinates are the mean value
coordinates [Hui91, Flo03], which were extended to higher dimensions later on
[FKR05, JSW05]. They have the advantage of being defined for arbitrary, con-
vex and non-convex, polytopes. Unfortunately, mean value coordinates are only
C0-continuous at vertices [HF06]. In the previous chapter, we addressed the latter
problem and showed that the higher order discontinuities at the vertices vanish in
the context of Bézier maps if the control points bα satisfy certain continuity con-
straints. This solution, however, is only valid for Bézier maps defined on a square
or (hyper-)cube. Thus, the mean value coordinates lost their greatest strength:
to be defined with respect to arbitrary polytopes. Another kind of coordinate
that have been used to define generalized Bézier surfaces are the Sibson coordi-
nates [Sib80, Far90]. Since they are defined on point clouds instead of polytopes,
they are not dependent on the connectivity of a particular polytope, but they can
not take advantage of such a structure either.

When constructing a smooth map consisting of several polynomials that are
defined on adjoining polytopes, we have to ensure that the respective polynomi-
als connect smoothly. For connecting simplicial and tensor product polynomials,
a well-developed theory is available. In [CG84], a smooth joint for a regular
pentagon is constructed. Loop and DeRose [LD89, Sections 6 and 7] show how
regular k-gons and triangles can be smoothly connected if Bernstein polynomials
in Wachspress coordinates are used. This approach is extended in [LD90] where
the control net for a complete surface is constructed. Unfortunately, their poly-
nomial representation algorithm requires coordinates that are rational polynomial
functions. The reason, in short, is that their proof uses the polarization of a poly-
nomial. Hence, it cannot be carried over to mean value Bézier maps (Bézier maps
based on mean value coordinates). Furthermore, their method does not cover the
case of general domain polygons but only regular k-gons.

In this chapter, we derive constraints on the control points of Bézier maps in
arbitrary generalized barycentric coordinates to obtain smooth transitions between
arbitrary domain polytopes. One essential requirement, as noted in [Gol04], is to
adopt an indexing scheme that is adapted to the given polytopes. We chose to
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use multi-indices (as has been done before in [LD89]). They correspond to the
Minkowski sum approach in [Gol04]. (The set of multi-indices of degree n for a
polytope with vertex set V corresponds to

⊕n
i=1 V .)

7.2 Theoretical Foundation
The basic idea for the construction of (generalized) Bézier maps is to insert (gen-
eralized) barycentric coordinates for polytopes in (6.1). Wachspress coordinates
and mean value coordinates are the most prominent positive barycentric coordi-
nates. Mean value Bézier maps have the advantage that their domain is not re-
stricted to convex polygons. But other positive (or even non-positive) barycentric
coordinates can be used as well to obtain further types of Bézier maps. A list of
important properties of these Bézier maps is given in Proposition 6.3.

To join several Bézier maps smoothly, it is important to know their derivatives.
In the remainder of the paper, we will assume that the λi are differentiable every-
where apart from the vertices vi. This is true in particular for Wachspress and
mean value coordinates. Using the chain rule, Lemma 6.4 implies immediately

7.1 Lemma. Let
f (λ) =

∑

|α|=n

bαBn
α(λ).

Then the first derivatives of f are given by

∂

∂xi
f (λ(x)) = n

∑

|α|=n−1

k∑

j=1

∂

∂xi
λ j(x)bα+e j B

n−1
α (λ(x)).

However, the derivatives ∂
∂xi
λ j are in general not easy to compute. The ap-

proach of the previous chapter is restricted to coordinates defined with respect to
a square. Since we want to have smooth transitions of Bézier maps defined on
arbitrary polytopes, we need a more general approach. In the following, we give
sufficient conditions for the control points bα to join arbitrary polytopes smoothly.

Basically, the control points at the common (hyper-)faces and adjacent to it
must be determined by affine functions Aβ and these functions must coincide
across these faces. This is visualized in Figure 7.1. The figure shows a Bézier
surface and its control net from several viewpoints. The domain consists of a pen-
tagon and an L-shaped hexagon that share two common edges (shown in black
below the surface). On the right, the control net is colored to indicate the smooth-
ness conditions. The parts of the control net that correspond to the three common
vertices of the two polygons are affine images of the domain polygons. They are
colored in blue, red, and green, respectively.
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We make this idea more precise in the following theorems. We begin by ex-
pressing the derivatives of a Bézier map with respect to the control points.

7.2 Theorem. Let f (λ) =
∑
|α|=n bαBn

α(λ) be a Bézier map defined with respect to
a polytope P with vertices vi. Assume that for every multi-index β with |β| = n − 1
an affine function Aβ exists such that bβ+ei = Aβ(vi) for all i = 1 . . . k.

Then, the derivative of f with respect to a differential operator ∂ ∈
{
∂
∂xi

}
is

∂ f (λ(x)) = n
∑

|β|=n−1

∂Aβ · Bn−1
β (λ(x)).

Proof. The proof consists of a direct calculation.

∂ f (λ(x)) = n
∑

|β|=n−1

k∑

i=1

∂λi(x)bβ+ei B
n−1
β (λ(x)) Lemma 7.1

= n
∑

|β|=n−1

k∑

i=1

∂λi(x)Aβ(vi)Bn−1
β (λ(x)) definition of Aβ

= n
∑

|β|=n−1

Bn−1
β (λ(x))∂

k∑

i=1

λi(x)Aβ(vi) linearity of ∂

= n
∑

|β|=n−1

Bn−1
β (λ(x))∂Aβ

( k∑

i=1

λi(x)vi

)
affine linearity of Aβ

= n
∑

|β|=n−1

Bn−1
β (λ(x))∂Aβ(x) linear precision (2.2) for λ(x)

= n
∑

|β|=n−1

Bn−1
β (λ(x))∂Aβ Aβ(x) has constant derivative.

(7.1)

�

In the same way, we can compute higher derivatives:

7.3 Corollary. In the situation of Theorem 7.2, assume that for every multi-index
γ with |γ| = n − 2 an affine function A′γ exists such that ∂Aγ+ei = A′γ(vi) for all
i = 1 . . . k.

Then, the derivative ∂′∂ f of f with respect to a differential operator ∂′ ∈
{
∂
∂xi

}

is
∂′∂ f (λ(x)) = n(n − 1)

∑

|γ|=n−2

∂′A′γ · Bn−2
γ (λ(x)).

Respective statements hold for the higher derivatives of f .
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Proof. Since 1
n∂ f (λ) =

∑
|β|=n−1 ∂AβBn−1

β (λ) is a Bézier map with coefficients ∂Aβ,
the claim follows immediately from Theorem 7.2. �

7.4 Corollary (Smooth mean value Bézier maps). Let f (λ) =
∑
|α|=n bαBn

α(λ)
be a Bézier map where the λi are the mean value coordinates with respect to a
polytope P with vertices vi. Assume that an affine function Ai exists such that
b(n−1)ei+e j = Ai(v j) for all j = 1 . . . k.

Then, the derivative of f with respect to any differential operator ∂ ∈
{
∂
∂xi

}
has

a continuous extension to vi and

lim
x→vi
∂ f (x) = n ∂Ai.

Respective statements hold for the higher derivatives of f .

Proof. We observe that the outer sum in (7.1) collapses to a single summand if
the limit x→ vi is considered. We obtain the claim from the remaining term. �

Finally, we obtain sufficient constraints on the bα to achieve smooth Bézier
maps across common (hyper-)faces of polytopes (common vertices or edges in the
case of polylines or polyhedra). Note that the extent, to which these constraints
are necessary as well, is not yet known.

7.5 Corollary (Continuity across polytope boundaries). Let f (λ) =∑
|α|=n bαBn

α(λ) and f ′(λ′) =
∑
|α|=n b′αB

n
α(λ
′) be Bézier maps defined with respect to

polytopes P and P′ that share a common (hyper-)face f (without loss of generality,
let corresponding vertices have the same indices; this implies λi(x) = λ′i(x) for all
i and x ∈ f). Let V B {vi j}lj=1 = {v′i j

}lj=1 be the vertex set of f, and let IV be the
set of all multi-indices β with |β| = n − 1 such that all non-zero entries βi of β
correspond to vertices in V , i < V ⇒ βi = 0. Assume that, for every multi-index
β ∈ IV , an affine function Aβ exists such that bβ+ei = Aβ(vi) for all i = 1 . . . k and
b′β+ei

= Aβ(v′i) for all i = 1 . . . k′.
Then, the derivative of f and f ′ at points x ∈ f with respect to a differential

operator ∂ ∈
{
∂
∂xi

}
is

∂ f (λ(x)) = ∂ f ′(λ′(x)) = n
∑

β∈IV

∂Aβ · Bn−1
β (λ(x)).

Respective statements hold for the higher derivatives of f and f ′.

Proof. Observe that (7.1) remains valid if we substitute the sum over all β ∈ IV

for the sum over all β with |β| = n − 1 (for x ∈ f). This implies the claim. �

For Bézier surfaces, it is often sufficient that the tangent plane varies smoothly
without requiring smoothness of the parameterization (“geometric continuity”). In
this case, slightly weaker constraints on the control points are sufficient.
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7.6 Corollary (Geometric continuity across polytope boundaries). In the situ-
ation of Corollary 7.5, let Q be any affine transformation of the domain �d that
keeps f fixed such that bβ+ei = Aβ(vi) for all i = 1 . . . k and b′β+ei

= Aβ(Qv′i) for all
i = 1 . . . k′.

Then ∂ f (λ) · ∂Q = ∂ f ′(λ′).

Proof. Factoring out Q in (7.1) yields the claim. �

7.3 Applications
In this section, we present several applications of mean value Bézier maps. Al-
though the results obtained in the previous section are general and hold for any
barycentric coordinates, Wachspress and mean value coordinates are the only
known positive three-point coordinates [FHK06]. Wachspress coordinates, how-
ever, have already been used to some extent in the past in the form of tensor prod-
uct Bézier maps (with parallelepipeds as domain) and S-patches [LD89] (with
regular k-gons as domain). Therefore, it seemed more appropriate to us to use
mean value Bézier maps to demonstrate our results.

In all our applications, we begin by specifying several domain polytopes and
their respective control points to achieve a smooth Bézier map f : �d → �e. To
determine the polytope in which a point x ∈ �d lies, we can use another property
of mean value coordinates: the mean value coordinates with respect to a polytope
P are defined in the whole space �d and the denominator (for normalization) in
the construction is positive if and only if x lies within P [HF06, LBS07b]. Thus,
we can automatically determine the polytope P containing x when computing the
mean value coordinates of x with respect to P.

7.3.1 Bézier curves and surfaces

If we choose d = 1 or d = 2 and e > d, Bézier maps specialize to Bézier curves
and surfaces. In the case d = 1, however, barycentric coordinates on the unique
1-dimensional polytope, which is the 1-simplex or line segment, are uniquely de-
termined (t and 1 − t on [0, 1]). Our results coincide with the well-known theory
for Bézier curves.

Therefore, we present an example of a mean value Bézier surface, that is a
mean value Bézier map f : �2 → �3. Figure 7.1 shows a C1-continuous Bézier
surface from several viewpoints. It consists of two patches of degree two. The
domain is the union of a pentagon and an L-shaped hexagon, which share two
common edges. Since the hexagon is not convex, some of the coordinates can
become negative, and we cannot guarantee that the Bézier surface is contained in
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Figure 7.1: Our method makes it possible to use non-convex polygons in the
construction of Bézier surfaces. We present three views of a Bézier surface
consisting of a pentagonal and an L-shaped hexagonal patch. Note that the
highlights vary smoothly across the common edges.

the convex hull of its control points. However, in practice, this posed no problem
in our experiments. Nevertheless, it is probably possible to construct cases in
which a mean value Bézier surface leaves the convex hull of its control points.

Note that the highlights vary smoothly across the common edges. The two
domain polygons are shown in black below the surface. The control nets, which
determine the shape of the surface, are also depicted. We followed the suggestion
in [LD89] and drew all polygons (bβ+ei)

k
i=1 with |β| = n − 1 = 1. (For drawing

purposes, we shifted the control net belonging to the pentagon slightly to make
sure that it does not overlap with the other one.) On the left and in the middle, we
colored the control net for the pentagon red and the control net for the hexagon
green. On the right, we chose common colors for those parts of the control net
that belong to a common vertex of both polygons. They can be discerned as affine
images of the domain.

7.3.2 Space deformations

A Bézier map with d = e is a space deformation of �d. While geometric con-
tinuity is often sufficient for Bézier curves and surfaces, we need “real” analytic
continuity to obtain a smooth space deformation. Even a discontinuity of the abso-
lute value of the derivative in a single direction may be clearly visible if a textured
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object is deformed.
To display a control polyhedron P, we note that each set (bβ+ei)

k
i=1 with |β| =

n − 1 corresponds naturally to the polyhedron with vertices (vi)k
i=1. Therefore, we

connect control points bβ+ei and bβ+e j if and only if (vi, v j) is an edge in P.
Figure 7.2 demonstrates a space deformation of�3. In (a), we show the cuboid

that we want to twist by 180◦. We align the control polyhedron with the edges of
the cuboid. (b) depicts the result if the twist is done directly with 3D mean value
coordinates (that is Bernstein polynomials of degree one). The lack of local con-
trol leads to a singularity. In (c), we include four additional vertices in the middle
of the long edges without changing the total shape of the control polyhedron. This
allows us better local control, but C1-discontinuities are introduced in the middle
and at the vertices. (The bead shaped reflection at the top left corner of the cuboid
indicates the C1-discontinuity of mean value coordinates at the vertices.) In (d),
we split the control net into two identical, adjoining control polyhedra and deform
them independently of each other. This gives us the desired local control but we
still have the C1-discontinuities. In (e), we use a Bézier map of degree three to join
the same two control polyhedra smoothly. It allows us to enforce C1-continuity
while maintaining local control. Observe that the C1-discontinuities at the ver-
tices have vanished as well. The control net shows how the continuity conditions
are satisfied here. The left-most and right-most part is an affine image of the do-
main cuboids to make the deformation smooth at the respective vertices. (The left
part is identically mapped, and the right part is rotated by 180◦ degree.) The two
middle “columns” are mapped by a common affine map (both are rotated by 90◦

degree) to ensure a smooth transition between the adjoining control polyhedra.
As an example for stretching, we consider the cuboid once more and stretch

its right half by a factor of two (Figure 7.3). To do this, we use the control net
from Figure 7.2(e) again (shown in blue). This time, we depict the underlying
triangle mesh of the cuboid as well (in black) to demonstrate that no discontinuity
is introduced in the middle of the cuboid but the stretching increases gradually.
Hence, a texture could be mapped to the stretched cuboid without artifacts due to
the stretching.

Figure 7.4 shows how a complex model can be handled by specifying a control
net that is adapted to the shape of the model. It also shows that Bézier maps of
different degrees can be mixed under certain circumstances. (Here, the body is
mapped identically.) While the body and left front leg is mapped by a degree one
map, the Bézier maps for the head and the right leg have degree three. Note that
we didn’t need to specify all the control points manually. We explain this in the
case of the head: The seven vertices of the head polyhedron can be classified into
two groups: the four vertices at the neck, which are connected to the body of the
cow, and the three remaining, “exterior” vertices. Since we consider a Bézier map
of order three, all control points can be classified as neck control points (if two
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(a)

(b)

(c)

(d)

(e)

Figure 7.2: A cuboid shall be twisted by 180◦. We present results of sev-
eral methods. The small picture on the left shows the corresponding control
net. (a) The undeformed cuboid. (b) Interpolation of the twist with 3D mean
value coordinates. (c) Interpolation of the twist with 3D mean value coordi-
nates using additional control points. (d) We split the cuboid into two halves
and interpolate both halves with 3D mean value coordinates. (e) Our method.
Although we use the same two halves as interpolation domains as in (d), the
use of third order polynomials allows us to control the smoothness. If we had
increased the number of control points without using higher order polynomi-
als, we would have introduced new discontinuities as in (c) and (d).
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Figure 7.3: A stretched cuboid.

Figure 7.4: The control net containing the cow consists of 6 polyhedra: one
for the body, one for the head, two for the front knees, and two for the front
legs (left). It demonstrates the ability of our method to handle complex con-
trol nets that are adapted to the shape of the object. We specified the deforma-
tion, which is C1-continuous, by moving the vertices of the control polyhedra.
The intermediate control points were computed automatically (right).

or three entries of the multi-index belong to neck vertices) or as exterior control
points (if two or three entries belong to exterior vertices). All neck control points
are mapped identically to ensure a smooth connection to the undeformed body of
the cow (Corollary 7.5), and all exterior control points are mapped by the linear
function defined by the deformation of the head polyhedron to capture the total
deformation and to make sure that the deformation is smooth at the three exterior
vertices as well (Corollary 7.4). However, the task of providing a general and
convenient method for the placement of the control points (for space deformations
and for Bézier surfaces) remains a topic for future research.
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7.4 Summary and Future Work
We developed criteria for the construction of smooth Bézier maps. A Bézier map
is a map that is piecewise (on a given polytope) a homogeneous polynomial in
generalized barycentric coordinates. We showed how the coefficients of the Bern-
stein polynomials can be chosen to enforce smoothness of any desired order across
common (hyper-)faces of the polytopes. We decided to develop the theory in full
generality although we mainly aim at Bézier maps in mean value coordinates.
This allows the use of our results for any other barycentric coordinates that might
come to the focus of attention in the future. Moreover, it shows that many re-
sults from the well developed field of simplicial and tensor product Bézier theory
can be considered as a special case of our findings if Wachspress coordinates are
used. Our indexing scheme, however, does not coincide with the traditional index-
ing scheme for tensor product Bézier maps. This sheds new light on the classical
theory, which will hopefully lead to a better understanding of the tensor product
Bézier maps as well.

Probably the most important examples of Bézier maps are Bézier curves
and surfaces and space deformations. We presented examples of mean value
Bézier surfaces and free-form deformations based on Bernstein polynomials in
mean value coordinates as possible applications. Nearly without additional ef-
fort, we can ensure that our Bézier maps exhibit the desired smoothness even at
the polytope vertices, although the mean value coordinates themselves are only
C0-continuous at these points. Thus, it is now possible to construct smooth mean
value Bézier maps with arbitrary polytopes as domains.

Nevertheless, a number of open questions remain. Foremost, some kind of
spline representation of Bézier maps has to be found that takes care of any conti-
nuity issues fully automatically. These splines should allow to place meaningful
control points directly during the design of surfaces and deformations without the
necessity to spend much time on the cumbersome process of satisfying the con-
tinuity constraints manually. Another issue that we did not discuss in the current
chapter are rational Bézier maps. The use of rational Bézier maps expanded the
capabilities of classical Bézier theory greatly. The same should be done for gen-
eralized Bézier maps.
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Part III

Curvature Estimation and
Barycentric Coordinates





Chapter 8

Asymptotic Analysis
of Discrete Normals and
Curvatures of Polylines

Accurate estimations of geometric properties of smooth curves and surfaces from
discrete approximations are important for many computer graphics and computer
vision applications. The (more complicated) case of surfaces is treated in the next
chapter. In this chapter, we will focus on investigating estimations for curves.

To assess and improve the quality of such an estimation, we assume that the
curve is known in general form. Then we can represent the curve by a Taylor series
expansion and compare its geometric properties with the corresponding discrete
approximations. In turn, we can either prove convergence of these approximations
towards the true properties as the edge lengths tend to zero, or we can get hints on
how to eliminate the error. In this chapter, we propose and study discrete schemes
for estimating tangent and normal vectors as well as curvature and torsion of a
smooth 3D curve approximated by a polyline. We thereby make some interesting
findings about connections between (smooth) classical curves and certain estima-
tion schemes for polylines.

8.1 Introduction

Reliable approximations of differential properties of a curve form the basis of
many algorithms in computer graphics and computer vision. Curvature, for ex-
ample, can be used to define the smoothness of a curve. Furthermore, the un-
derstanding of discrete normals and curvatures of curves is a precondition for the
even more important—and more difficult—task of understanding discrete normals
and curvatures of a surface. In this sense, this chapter also lays the foundation for
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reliable estimates of normals and curvatures on meshes.
The problem of estimating differential properties of discrete approximations

has already been treated in the classical literature of differential geometry [Sau70].
But in that context, the speed of convergence was not an issue, and often very sim-
ple approximations were used. For example, the tangent vector at a vertex was ap-
proximated linearly by an incident edge. Today, usually a weighted average of the
incident edges (or a weighted average of the edge normals, respectively) is used to
approximate tangent and normal vectors at a vertex of a polyline. Various weights
have been proposed for that purpose [ABS02, ABFH08]. Some popular schemes
are uniform weighting, weighting by edge lengths, and weighting by inverse edge
lengths. It was shown in [ABS02] that the last of these methods yields the best
results for planar curves. But this result holds not necessarily for space curves. In
particular, there exists no unique edge normal from which the (uniquely defined)
curve normal can be computed. For the estimation of curvature and torsion, var-
ious methods have been suggested by Boutin [Bou00]. With our approach, we
yield simpler formulae, which, nevertheless, exhibit at least the same accuracy.

There are basically two ways to evaluate the quality of any of these methods.
On the one hand, they can be applied to a specific polyline that interpolates an
analytical curve, and the result can be compared to the exact tangent vector (or
any other approximated geometric property) at the corresponding point. On the
other hand, an asymptotic analysis can be applied. In this case, the analytical
curve is given in general form, usually represented by a Taylor series expansion.
Then the outcome of the discrete approximation can again be compared to the
real tangent vector. Both methods have advantages and drawbacks. The first one
cannot state general results, but only for certain test curves. The second method
holds for all (analytical) curves and can give clues for design and improvement
of the approximations. But it is only helpful for dense polylines where dense is
not well defined. It has successfully been applied for planar curves [ABS02]; for
space curves, pioneering work has been done in [Bou00].

In real world applications, all these computations have often to be done in
the presence of noise. In this chapter, we assume that all points lie exactly on
a smooth curve since the definitions for differential properties are valid only in
that case. Though we make this assumption for the development of our discrete
approximation formulae, this does not mean that our work is useless for real data.
The estimation error of every approximation scheme is composed of a systematic
error, which is inherent in the utilized approximation scheme, and of an error
introduced by noise. The goal of this chapter is to minimize the former.

The main focus of this chapter is developing a mathematical apparatus for the
asymptotic analysis of arbitrary curves, and applying it to derive new, asymptoti-
cally correct estimations for tangents, normals, curvatures, and torsions of space
curves. A uniform evaluation of existing approaches and our newly proposed
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Figure 8.1: A space curve and its Frenet frame.

approximations is given. In particular, we prove the convergence of our approxi-
mations and can show their optimality in many cases. To estimate torsion, which
is a third derivative, we need at least four points for the approximation, but we
consider also estimations using five points to obtain better results. The case of
planar curves [ABS02] is consistently included.

8.2 Approximation of Space Curves

As shown in [ABS02], the (2-dimensional) Frenet frame of a planar curve can be
used to evaluate the discrete estimations of curve normals and curvatures. The
same method carries over to the case of space curves using the 3-dimensional
Frenet frame. We will show that the same formulae essentially still hold to com-
pute tangent vectors and curvatures of 3D curves. Nevertheless, it is necessary
to rederive these formulae for 3D curves since their asymptotic expansions are
more complex. They contain, for example additional terms involving torsion. We
suggest and assess several approximations for the Frenet frame, the curvature, and
the torsion of a space curve.

Let a smooth curve r be interpolated by five points P−2, P−1, P0, P1, and P2,
with the corresponding edges

−−−−−→
PiPi+1 denoted by c, d, e, and f, and their lengths

denoted by c, d, e, and f , see Figure 8.1. Then these edges can be expressed
by their Taylor expansions in the coordinate system given by the Frenet frame
of r with tangent t, normal n, and binormal b = t × n. Let further κ denote the
curvature at P0 and τ denote the torsion at the same point. The exact expansions
can be found in Appendix B.

First, we consider inverse edge lengths as weights for the edges:

8.1 Theorem (tangent vector). The tangent of the circle passing through P−1, P0

and P1 (see Figure 8.2) is a second order approximation of the real tangent of the
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Figure 8.2: The circle approximation.
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6
κτ +
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)
.

This estimation is optimal among all three-point approximations of the tangent
in the sense that the quadratic term in the normal component cannot be different
from the one that shows up here. Also, this is the only linear combination of d and
e that yields a second order approximation.

Proof. The equation can be derived directly from the Taylor expansions in Ap-
pendix B. If there were curves with other quadratic terms, we could gain a tangent
estimation and in turn an estimation of the normal for planar curves of the same
accuracy, but this is not possible, see [ABS02].

The last statement of the proposition can easily be derived by using the Taylor
expansions of d and e from Appendix B. �

Note that in the planar case the knowledge of the tangent and the normal is
equivalent. Therefore, every tangent formula can be used to compute normals
of plane curves. In 3D, however, the computation of normals is more difficult
because the oscillating plane is unknown. It can be done after estimating the
binormals which determine that plane. A more direct approach is to compute the
curvature vector, for example by using finite differences.

8.2 Theorem (curvature vector). The finite difference approach yields a linear
approximation of the true curvature vector and thus of the true normal vector. If



8.2 Approximation of Space Curves 87

all edges have equal length, the convergence is quadratic.
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)
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+ n
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)
.

(8.2)

Furthermore, this is the only linear combination of d and e, that yields a (at least)
linear approximation of the real normal vector.

Proof. Again all claims can directly be proven from the Taylor expansions given
in Appendix B. �

From the curvature vector, we gain the curvature as the norm. Another possi-
bility is to estimate the curvature by angle approximation. That approach is based
on the definition of curvature as the rate of angular change of the tangent vector
along the curve.

8.3 Theorem (curvature). Let ϕ be the angle between d and e, see Figure 8.1.
Curvature, estimated using the discrete curvature vector (8.2) or angle approxi-
mation, respectively, converges linearly towards the true curvature. If all edges
have equal length, the convergence is quadratic.

κ̄ B ‖k̄‖ = κ + e − d
3
κ′ +

d2 − de + e2

12
κ′′

− d2
+ de + e2

36
κτ2
+

d2 − 2de + e2

32
κ3 + O(d, e)3,

κ̂ B
2ϕ

d + e
= κ +

e − d
3
κ′ +

d2 − de + e2

12
(κ′′ +

κ3

2
)

− d2
+ de + e2

36
κτ2
+ O(d, e)3.

These estimations are optimal among all three-point approximations in the sense
that the linear terms cannot be different from the ones that show up here.

Proof. Again the equations can be derived from Appendix B and optimality can
be reduced to the planar case [ABS02]. �
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Yet another way to estimate the curvature is as the inverse of the radius of the
circle passing through P−1, P0 and P1. This has been done in [Bou00] and yields

κ̃ = κ +
e − d

3
κ′ +

d2 − de + e2

12
κ′′ − d2

+ de + e2

36
κτ2
+ O(d, e)3.

Since sinϕ equals ϕ up to quadratic error, we can compute an approximation
for κ as

2‖d × e‖
de(d + e)

≈ κ̂

without significant loss of accuracy.
Also note that for d = e the expansion of the angle approximation becomes

κ̂ = κ +
e2

12
(κ′′ +

κ3

2
− κτ2) + O(e4),

see Appendix B, and here the quadratic term vanishes for a special class of curves
called elastica, characterized by minimizing the bending energy

∫
κ2ds −→ min

while fixing end points. They were introduced by Euler [Eul44] and have applica-
tions in computer graphics as well as in computer vision today [CMP04, Mum94,
Hor83].

8.4 Theorem (Euler’s elastica). The curvature estimation κ̂ converges of fourth
order for elastica if all edges have equal length.

In fact, the lower order error terms vanish for an even broader class of curves,
see Appendix D for a derivation.

Binormals bi at Pi can be estimated by the normal of the plane defined by
three consecutive points, Pi−1, Pi, and Pi+1, for example b0 =

d×e
‖d×e‖ . Now we apply

the method of angle approximation to these binormals to compute the torsion τ̂e
(located at the edge e) from the angle ηe between b0 and b1. A straight-forward
approximation of ηe is ‖b1 × b0‖ = sin ηe. However, computing the norm of the
cross product is computationally rather expensive, and, even worse, yields always
positive values whereas torsion is a signed property. Hence, we exploit the fact
from the Frenet equations that db

ds = τn. This implies that b1×b0 is approximately
orthogonal to n and, since (t,n,b) is an orthonormal basis, approximately aligned
with t, and we define η̂e B 〈b1 × b0, t̃〉 where t̃ denotes the tangent approximation
from equation (8.1). In fact η̂e = ηe + O(d, e, f )3 (because ηe depends linearly on
d, e and f , and sin ηe approximates ηe up to second order). We define analogously
η̂d from b−1 and b0 and get (see Appendix B for the Taylor expansion of η̂e)
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8.5 Theorem (torsion, four points). Using four of the five points P−2, P−1, P0,
P1, and P2, torsion can be approximated linearly as follows:

τ̂d B
3η̂d

c + d + e
= τ − c − e

6
κ′

κ
τ − c + 2d − e

4
τ′ + O(c, d, e)2,

τ̂e B
3η̂e

d + e + f
= τ +

f − d
6
κ′

κ
τ − d − 2e − f

4
τ′ + O(d, e, f )2.

It is interesting to compare the above estimation τ̂e with the results from
Boutin [Bou00], who uses the same four points. Let g be the distance ‖−−−→P0P2‖.
Then

τ̃1 = τ +
d − e + 3g

6
κ′

κ
τ +

e − d + g
4

τ′ + O(d, e, f )2

and τ̃2 = τ +
d + e + g

6
κ′

κ
τ +

e − d + g
4

τ′ + O(d, e, f )2.

Our approximation is more symmetric in the sense that the first linear error
term vanishes if all edge lengths are equal. By estimating torsion using the angle
between b−1 and b1, we can even get a (rational) expression completely without
linear terms if d = e and c = f .

τ̃ B
3η̃

c + 2(d + e) + f
= τ − c2

+ cd + d2 − e2 − e f − f 2

6(c + 2(d + e) + f )
κ′

κ
τ

− c2
+ 3cd + 3d2 − 3e2 − 3e f − f 2

4(c + 2(d + e) + f )
τ′ + O(c, d, e, f )2.

A better way to obtain such a symmetric expression is to take the (unique)
weighted average of τ̂d and τ̂e such that the term involving τ′ vanishes completely
and the term involving κ

′

κ
τ vanishes for d = e and c = f :

τ̂ B
1

c + d + e + f
(
( f + 2e − d)τd + (c + 2d − e)τe

)

= τ − ce − e2
+ d2 − d f

3(c + d + e + f )
κ′

κ
τ + O(c, d, e, f )2.

It can be improved further by estimating κ
′

κ
τ and eliminating the corresponding

error term. In that way, we can get a five-point approximation of the torsion at
P0 that converges quadratically for arbitrary edge lengths. For this purpose, we
approximate curvatures at P−1 and P1 from the angles ϕ−1 between c and d, and
ϕ1 between e and f:

κ−1 B
2ϕ−1

c + d
= κ − c + 2d

3
κ′ + O(c, d)2

and κ1 B
2ϕ1

e + f
= κ +

f + 2e
3
κ′ + O(e, f )2.



90 8 Discrete Normals and Curvatures of Polylines

From this, we get five-point estimates for the curvature

κ5 B
1

c + 2(d + e) + f
((2e + f )κ−1 + (c + 2d)κ1) = κ + O(c, d, e, f )2,

for its derivative (this formula was also suggested in [Bou00])

κ′5 B
3

c + 2(d + e) + f
(κ1 − κ−1) = κ′ + O(c, d, e, f ),

and finally

8.6 Theorem (torsion, five points). Using the five points P−2, P−1, P0, P1, and
P2, we can obtain a second order approximation for torsion:

τ5 B τ̂ +
ce − d f + d2 − e2

3(c + d + e + f )
κ′5
κ5
τ̂ = τ + O(c, d, e, f )2.

Here, τ̂, κ5, and κ′5 are defined as above.

8.3 Summary and Future Work
We have presented a mathematical framework to develop and evaluate approxima-
tion schemes to estimate differential properties of discrete curves. Its application
yielded several formulae to estimate curvature, torsion, and the Frenet frame of
a space curve, such that they converge towards their smooth counterparts as edge
lengths tend to zero. Furthermore, we proved the optimality of our estimates in
many cases. Thus, we provided a useful toolbox for the analysis of polylines in
the three-dimensional space.

Possible future work is the extension of our research on the asymptotic prop-
erties of estimations of curvature and torsion of curves on surfaces. Also, the
influence of noise on normal and curvature estimations has to be taken into ac-
count.



Chapter 9

Exact and Interpolatory
Quadratures for Curvature

Tensor Estimation

The computation of the curvature of smooth surfaces has a long history in differ-
ential geometry and is essential for many geometric modeling applications such as
feature detection. We present a novel approach to calculating the mean curvature
from arbitrary normal curvatures. Then, we demonstrate how the same method
can be used to obtain new formulae to compute the Gaussian curvature and the
curvature tensor. We compute the respective curvature integrals as a weighted
sum. To obtain the correct weights in this quadrature, we make use of the periodic
structure of the normal curvatures and apply barycentric coordinates. Finally, we
derive an approximation formula for the curvature of discrete data like meshes
and show its convergence if quadratically converging normals are available.

9.1 Introduction

The first attempts to define and determine the curvature of a surface date back at
least to the eighteenth century. While a curve has only a single curvature value at
each point, there are an infinite number of curvatures for every surface point: one
curvature value for every tangential direction of the surface at a given point. The
average of all these curvatures is defined as mean curvature H.

Euler was the first who recognized that the principal directions tmax and tmin

of maximal and minimal curvature κmax and κmin are orthogonal to each other and
that every other directional curvature (also called normal curvature) κ(φ) can be
derived from these curvatures and the angle φ between tmax and the curvature
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direction of κ(φ)

κ(φ) = κmax cos2 φ + κmin sin2 φ. (9.1)

This relationship is now known as Euler’s formula. In the nineteenth century,
Gauß introduced a local surface quantity that received the name Gaussian cur-
vature K and measures the deviation from flatness at a given point. In computer
graphics, mean curvature, Gaussian curvature, and principal directions together
are often referred to as the curvature tensor [MDSB03, Tau95a]. We will use this
notion throughout this chapter but want to remark that it does not coincide with
the (Riemann) curvature tensor used in differential geometry but rather with the
shape operator or Weingarten map. We will present new closed form formulae
for mean and Gaussian curvature and give a new formula for the curvature tensor
(shape operator) matrix as well.

Nowadays, reliable curvature computation is important for many computer
graphics and geometric modeling applications, and several recent articles present
closed form curvature formulae [Gol05, XB03]. The mean curvature vector is
related to the Laplace-Beltrami operator, and its computation is the core of many
smoothing and fairing algorithms [DMSB99, Tau95b]; the principal directions
can be used for “geometrically meaningful” remeshing [ACSD∗03]. The curvature
tensor is essential for many more tasks, like mesh segmentation, feature detection,
and non-photorealistic rendering [DFRS03, GG01, HPW05, OBS04].

The field of finding and defining discrete counterparts of these smooth notions
is often called Discrete Differential Geometry. Roughly, two approaches can be
distinguished: either differential properties are redefined for discrete data while
trying to preserve global characteristics or formulae from (smooth) differential
geometry are discretized with the focus on preserving local (pointwise) properties.
We elaborate further on these approaches in Section 9.1.2.

Our contribution belongs to classical and discrete differential geometry. We
derive a novel curvature formula and use it to propose a new curvature approxi-
mation for discrete data. This is explained in more detail in the following section.

9.1.1 Main contributions and discussion

A quadrature of an integral is an approximation of this integral as a weighted sum,∫
f (x) dx ≈ ∑

i ωi f (xi). In this chapter, we are particularly interested in integral
representations of surface curvatures. We consider the mean curvature

H =
1

2π

∫ 2π

0
κ(φ) dφ, (9.2)
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the Gaussian curvature (the integral representation of which appeared before in
[MT98])

K = 3H2 − 1
π

∫ 2π

0
κ(φ)2 dφ, (9.3)

and the Taubin integral representation of the curvature tensor (“Taubin tensor”)

M =
1

2π

∫ 2π

0
κ(φ)t(φ)t(φ)t dφ. (9.4)

It is defined as the integral of the curvature weighted covariance matrix of the
tangent vector t(φ) over the angle φ between t(φ) and tmax, and it has the principal
directions as eigenvectors with the eigenvalues equal to linear combinations of the
principal curvatures [Tau95a].

We will derive novel weights that enable for the first time to obtain exact
quadratures of these (and further) curvature integrals by making use of their peri-
odic structure. Only minor restrictions regarding the number and positions of the
samples φi will be made.

Let P be a point of a smooth surface, let κi B κ(φi) be the normal curvatures
at P in the tangential directions ti, and let βi B φi+1 − φi be the angle between
ti and ti+1 (compare Figure 9.1 on the left hand side). First, we will present a
formula to compute the mean curvature H at the surface point P by a quadrature
of integral (9.2). It is a generalization of the not-so-well-known formula

H =
1
n

∑

i

κi

that holds if all angles βi are equal. This, again, is a generalization of

H =
1
2

(κmax + κmin).

Our formula will be proven in Theorem 9.2; it is already stated here to give an
outlook on our results.

Mean curvature is given by the weighted sum of normal curvatures:

H =
∑

i

ωiκi, ωi B
tan βi−1 + tan βi∑
j(tan β j−1 + tan β j)

. (9.5)

Similar results are obtained for the Gaussian curvature and the Taubin tensor M.
The ωi can be seen as a kind of barycentric coordinate: they determine H as a

linear combination of normal curvatures κi within the line segment [κmin, κmax]. If
necessary (for example, because all the κi are smaller than H, that is, they belong
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Figure 9.1: Left and Middle: Angles in the tangent plane and a mesh. Right:
Change of the normal curvature around a point.

to the grey area in Figure 9.1 (right)), then some of the weightsωi become negative
automatically.

In practice, the quadrature formula (9.5) leads to the following discrete ap-
proximation of H (given for a mesh to simplify the notation):

H ≈
∑

i

tanαi−1 + tanαi∑
j(tanα j−1 + tanα j)

ki (9.6)

where αi is the angle between two consecutive outward edges ai in the one-ring
around P (see Figure 9.4 (left) and Figure 9.1 (middle) for the relationship of αi

and βi) and ki B 2
〈 ai

a2
i
,n

〉
is an approximation of the normal curvature κi using

the edges ai of length ai and the normal n at P. We will discuss the influence of
normal approximations for n in Section 9.3.

Our quadrature can be used to calculate integrals over all “Euler-like” formu-
lae

M(φ) = M1 cos2 φ + M2 sin2 φ.

Such formulae occur repeatedly in the literature to describe surface related quan-
tities. Blaschke [Bla56, §24.III] showed that the curvature radius of the osculat-
ing cylindrical surface along a given tangent vector is described this way. (This
statement can be considered as dual to Euler’s formula (9.1).) Pottmann et al.
[PHYK05, 7.1] derived this relationship for curvature related moments at a sur-
face point. An especially important example is the Laplacian of a function f
defined on the surface. After expressing it as the integral

∫
∂2 f
∂t(φ)2 dφ, we get the

following quadrature identity:

∆ f = 2
∑

i

ωi
∂2 f
∂ti

2 .

The same technique extends also to other integrals with “trigonometric” inte-
grands. We applied it to the integrals (9.3) and (9.4) to obtain exact formulae
and, in turn, discrete approximations of the Gaussian curvature and of the curva-
ture tensor.
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9.1 Remark. Now, the question arises whether the previous results generalize
to higher dimensions. An analog of the Euler formula (9.1) for the directional
curvature in direction t for three-dimensional manifolds is given by

κ(t ) = κmax cos2 φmax + κmed cos2 φmed + κmin cos2 φmin

where φmax, φmed, and φmin are the angles between t and the respective principal
directions tmax, tmed, and tmin with principal curvatures κmax ≥ κmed ≥ κmin. Cor-
responding formulae hold for n-dimensional manifolds. The integral formula for
the mean curvature follows easily:

H =
κmax + κmed + κmin

3
=

1
4π

∫

S2
κ(t ) dS .

Similar integral representations can be obtained for the other coefficients of the
characteristic polynomial of the shape operator. Nevertheless, we were not able to
derive a discrete quadrature formula similar to (9.5) to calculate the above integral.
This topic needs still further research.

Let us now summarize our contributions:

• we derive quadrature identities for trigonometric integrals; in particular, we
present exact formulae for the mean curvature, the Gaussian curvature, the
curvature tensor, and the Laplacian (Section 9.2),

• we show how these quadratures can be used to obtain fast and reliable ap-
proximations of the curvature of a smooth surface interpolated by discrete
data like a triangle mesh (Section 9.2.6),

• extending the work of Chapter 8 from curves to surfaces, we present a
framework designed to enable an easy and meaningful representation of
the Taylor series expansion of an analytic surface interpolated by discrete
data (Appendix C),

• we use this framework to analyze the convergence speed of common estima-
tions for normal vectors and our curvature approximations, and we suggest
a new normal estimation based on our analysis (Section 9.3),

• and we prove the convergence of our curvature approximations for arbitrary
aspect ratios if the normal vector is known with quadratic accuracy and
confirm the result experimentally (Section 9.4).
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Figure 9.2: The curvature function whose integral (9.2) defines the mean cur-
vature. The piecewise linear function used by the trapezoidal rule shows con-
siderable deviation.

9.1.2 Related work
Quadratures

A classical quadrature formula is given by the trapezoidal rule that integrates the
piecewise linear function that is given by connecting sample points by straight
lines as shown in Figure 9.2. It was used for curvature estimation in [WB01] but
yields a relatively large error for highly periodic functions with only a few sam-
ples which is the case for our curvature integrals. More sophisticated methods
like the Newton-Cotes formulae, Gaussian quadrature, or Romberg integration
have higher precision and are even exact on certain function classes, but they re-
quire the evaluation of the given function at a high number of prescribed sample
positions [PVTF02]. Our quadrature formula is the first one that is exact for cur-
vature integrals, given an arbitrary number (≥ 3) of (nearly) arbitrary samples.
Consequently, the derived formulae to compute surface curvature are new as well.

Curvature estimation

A great number of papers on normal and curvature approximation on polygonal
meshes exist. Various types of convergence theorems are proven therein. Meek
and Walton [MW00] showed the pointwise convergence of triangle normals to-
wards the real normals provided that the shape of the triangles doesn’t change too
much. Morvan and Thibert [MT04] proved that it is sufficient for convergence
of triangle mesh normals that no triangle angle approaches π. This condition had
already been imposed earlier in the context of finite elements [BA76].

In the field of curvature estimation, “local” algorithms try to recover the cur-
vature of a smooth surface, which is interpolated by a mesh at the vertices. This
is done either by interpolating a small environment by a polynomial and comput-
ing its curvature or by discretizing a more or less special curvature definition for
smooth surfaces. Cazals and Pouget [CP03] showed that polynomial fitting leads
to asymptotically correct results. But this method needs at least five neighbor-
ing points and is comparatively time consuming since a (small) system of equa-
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tions has to be solved. The former problem was solved by Goldfeather and In-
terrante [GI04] by taking the normals at each point into account. This came at
the cost of losing the proven convergence, especially if the normals are not ex-
actly known. Another approach is taken by Pottmann et al. [PWHY08] where
differential quantities are extracted from integral invariants.

The cotangent formula [MDSB03] is probably the most widely used discrete
approximation for the Laplace-Beltrami operator (and the mean curvature vec-
tor). Since the formula arises naturally when finite elements are used to approx-
imate the Dirichlet energy [Duf59, PP93], it was rediscovered several times. Za-
yer [Zay07] gives a historical survey of the formula. Given convergent normals, a
weak convergence of the cotangent formula in an appropriate Sobolev space was
proven [Dzi88, HPW06]. This weak convergence justifies the successful use of
the cotangent formula in finite element approximations of the Laplace-Beltrami
operator theoretically. However, the cotangent formula, like many other com-
mon definitions of the discrete mean curvature vector, converge pointwise to the
Laplace-Beltrami operator only if the mesh satisfies certain regularity conditions
at the vertices as stated in Theorem 9.10 and shown in [Xu04]. If the cotangent
weights are used in combination with the classical angle deficit formula, conver-
gence is only given for special cases as well, see also [Xu06a].

This motivates the search for further curvature approximations that converge
in norm. These “global” algorithms focus on preserving global characteristics like
the Gauß-Bonnet theorem and are usually rather stable but not necessarily point-
wise convergent for denser meshes with smaller edge lengths. The prime example
is the work of Cohen-Steiner and Morvan [CSM03] who gave discrete definitions
for the mean curvature, the Gaussian curvature, and the curvature tensor. If they
are integrated over a (small) area and the interpolating points are connected by a
restricted Delaunay triangulation, the resulting values converge towards the inte-
grals over the respective smooth curvatures. A similar definition was suggested
by Hildebrandt and Polthier [HP04].

A third type of approximations of the Laplace-Beltrami operator and there-
fore of the mean curvature vector is used in the field of machine learning, see
[HAvL07] and references therein. The so called graph Laplacian at a certain point
is usually influenced by all point samples of the surface while the before men-
tioned methods use only samples from a small neighborhood (the one-ring of a
vertex in the case of meshes). Convergence results using graph Laplacians usu-
ally consider convergence in probability. A special case is the mesh Laplacian,
which is actually a family Lh of Laplacian operators such that LhMh converges
pointwise towards ∆S if Mh is a family of meshes, which converges towards a
given surface S [BSW08]. A comparison of several discrete Laplace operators
and their properties is given in [WMKG07].

Opposed to most of the other methods, we require stronger (quadratic) con-
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vergence of the normals to derive a stronger result: our mean curvature (function)
estimate is pointwise convergent. The same is true for our approximations of the
Gaussian curvature and the curvature tensor. A similar result was proven by Meek
and Walton [MW00] for the spherical image method to compute the Gaussian
curvature. But the spherical image method is restricted to the computation of the
Gaussian curvature while our quadrature method is much more general.

There have been earlier approaches to approximate the integrals (9.2), (9.3),
and (9.4) [HS03, Tau95a, WB01]. But since they lacked exact weights for the
discretization of these integrals by a sum, they introduced systematic errors at
irregular vertices. We believe that our quadrature formulae can initiate renewed
interest in the classical approach by Taubin, especially as the progress in acquisi-
tion techniques makes it possible to obtain better and better normals directly from
the scanning process [NRDR05]. Many more approaches for curvature computa-
tion exist. While numerical experiments demonstrate sometimes good results, a
comprehensive theoretical analysis of convergence properties remains usually an
open issue [MS92, Mar98, Rus04, TRZS04, GGRZ06].

Nevertheless, when applied to spheres, considerably better results can be
achieved: Max [Max99] derived weights for the triangle normals that yield ex-
act vertex normals under arbitrary conditions instead of linear convergence. Xu
[Xu06b] suggested a modification of the mean curvature vector by Meyer et al.
[MDSB03] that converges on a sphere for each mesh configuration. The angle
deficit formula in the version of Meyer et al. [MDSB03] (modified in the same
way as the mean curvature vector) is also convergent on spheres as has been shown
in [MD02].

9.2 Exact Quadratures for Curvature Integrals
In this section, we derive the exact quadrature formula for the mean curvature
integral (9.2) after introducing the necessary notation. Then we show how this
technique can be used to obtain exact formulae for the Gaussian curvature and the
curvature tensor. Finally, we deduce approximations for curvature computation
on discrete data.

9.2.1 Notation
Given a point P on a smooth surface S, consider its tangent plane that is spanned
by the two unit vectors in the principal directions tmax and tmin, see Figure 9.1 on
the left hand side. The curvatures in these directions are given by κmax and κmin,
respectively. Assume now that ti, i = 1 . . . n, are further unit tangent vectors.
Let φi be the angle between tmax and ti measured counter-clockwise and let βi B
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φi+1 − φi (indices modulo n) be the angle between ti+1 and ti. Let κi be the normal
curvature of S at P in direction ti. More general, let t(φ) be the unit tangent vector
with angle φ to tmax and κ(φ) the normal curvature in that direction. Now we will
show how the surface curvature can be computed only from the knowledge of the
κi and βi. Discrete estimations for κi and βi are given in Section 9.2.6.

9.2.2 Mean curvature
First, we present a quadrature formula

∑
j ω jκ j for the mean curvature integral

H = 1
2π

∫ 2π

0
κ(φ) dφ with certain weights ω j that add up to one.

9.2 Theorem (mean curvature). The mean curvature is given by the weighted
sum of normal curvatures

H =
∑

j

ω jκ j, ω j B
tan β j−1 + tan β j∑
k(tan βk−1 + tan βk)

(9.7)

if the denominator of the ω j is non-zero.

The fact that our formula depends on the denominator being non-zero is a
sign of its correctness. In this way, configurations with insufficient data for the
curvature computation are detected. See Section 9.3.4 for a discussion.

Proof. First, let the ω j be arbitrary weights with
∑

j ω j = 1. Euler’s formula (9.1)
yields

∑

j

ω jκ j = κmax

∑

j

ω j cos2 φ j + κmin

∑

j

ω j sin2 φ j

= κmax

∑

j

ω j
1 + cos 2φ j

2
+ κmin

∑

j

ω j
1 − cos 2φ j

2

=
κmax + κmin

2
+
κmax − κmin

2
Re

(∑

j

ω j e2iφ j
)
.

The term on the left is equal to the mean curvature; therefore, it is sufficient to
find weights such that

∑
j ω j e2iφ j = 0.

In Figure 9.3, the situation is sketched. On the left hand side, the unit vectors
e2iφ j are shown. After a rotation of these vectors by an angle of π2 (shown on the
right hand side), we obtain immediately that ω j B

tan β j−1+tan β j∑
k(tan βk−1+tan βk) is a possible

solution. (This is a special case of a theorem of Minkowski.)
This can also be seen as a problem of finding generalized barycentric coor-

dinates for the origin of the complex plane, given the vertices e2iφ j . Mean value
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Figure 9.3: Computation of weights for the mean curvature quadrature.

coordinates [Flo03], Wachspress coordinates [Wac75, MLBD02], Sibson’s natu-
ral neighbors [Sib80], and discrete harmonic coordinates (Section 9.3.2) all yield
the same weights as above in our situation. �

Note, that H does not necessarily lie in the convex hull of the κ j (that is the
minimal interval I ⊂ � containing all the κ j). In these cases, some of the weights
ω j automatically get negative values. This is necessary to represent H as a linear
combination of the κ j. In Theorem 9.10, we indicate an example where negative
weights are inevitable.

It is well known that the mean curvature vector can be obtained as (half of)
the Laplacian applied to the position function x that parameterizes the surface,
Hn = 1

2∆x. And in fact, our proof can also be applied to yield a new formula to
calculate the two-dimensional Laplacian.

9.3 Corollary. Let f : �2 −→ � be a smooth function. Let f j j =
∂2 f
∂t j

2 be the

second derivative of f in direction t j. Then the Laplacian of f can be computed
with the weights given in (9.7)

∆ f = 2
∑

j

ω j f j j

if the denominator of the ω j is non-zero.

It may seem strange that we used coordinates in the 2-dimensional plane to
prove the correctness of weights in a 1-dimensional sum (

∑
j ω j cos 2φ j

!
= 0).

However, we do not know the principal directions. Therefore, the φ j are only
known up to a constant, and a second dimension is implicitly added. We will now
give a proof of Corollary 9.3 that makes this relationship more explicit.
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Proof. We consider again arbitrary weights ω j with
∑

j ω j = 1.
∑

j

ω j f j j = fxx

∑

j

ω j cos2 φ j + fyy

∑

j

ω j sin2 φ j + 2 fxy

∑

j

ω j sin φ j cos φ j

= fxx

∑

j

ω j
1 + cos 2φ j

2
+ fyy

∑

j

ω j
1 − cos 2φ j

2
+ 2 fxy

∑

j

ω j
sin 2φ j

2

=
1
2
∆ f +

fxx − fyy

2
Re

(∑

j

ω j e2iφ j
)
+ fxy Im

(∑
ω j e2iφ j

)
.

Again, the weights in (9.7), yield
∑

j ω j e2iφ j = 0 as desired. �

9.2.3 Gaussian curvature
Next, we want to compute the integral G B 1

2π

∫ 2π

0
κ(φ)2 dφ = 3

2 H2 − 1
2 K to obtain

the Gaussian curvature K = 3H2 − 2G as defined in (9.3). Again with Euler’s
formula (9.1), we obtain an approximation of this integral:

G̃ B
∑

j

ω̃ jκ
2
j =

3
2

H2 − 1
2

K

+

∑

j

ω̃ j

(4 cos 2φ j + cos 4φ j

8
κ2max −

4 cos 2φ j − cos 4φ j

8
κ2min −

cos 4φ j

4
K
)
.

Now the weights

ω̃ j B
tan 2β j−1 + tan 2β j∑
k(tan 2βk−1 + tan 2βk)

(9.8)

yield
∑

j ω̃ j e4iφ j = 0 and therefore
∑

j ω̃ j sin 4φ j =
∑

j ω̃ j cos 4φ j = 0. With the
notation Σcos B

1
2

∑
j ω̃ j cos 2φ j, we get

G̃ =
3
2

H2 − 1
2

K + 2H(κmax − κmin)Σcos.

If we use the weights ω̃ j for the estimation of H we obtain the same error term:

H̃ B
∑

j

ω̃ jκ j = H + (κmax − κmin)Σcos.

Therefore, we can compute the exact value of K:

9.4 Theorem (Gaussian curvature). The Gaussian curvature can be computed
from the mean curvature H and the corrected weighted sum of squares of normal
curvatures with the weights defined in (9.8)

K = 3H2 − 2G̃ + 4H(H̃ − H) = 3H2 − 2
∑

j

ω̃ jκ
2
j + 4H(

∑

j

ω̃ jκ j − H)

if the denominator of the ω̃ j is non-zero.
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9.2.4 The Taubin tensor
Now, we show how the matrix M, defined by integral (9.4), which was introduced
by Taubin [Tau95a] to compute the curvature tensor, can be evaluated exactly. Af-
terwards, we will give an alternative method to compute the principal curvatures
and directions.

Let T B (n, tmax, tmin) be the orthogonal matrix with the columns given by the
unit normal and the unit tangent vectors of the principal directions at the surface

point P. In [Tau95a], it was shown that M = T
(

0 0 0
0 λ1 0
0 0 λ2

)
Tt and that the eigenvalues

λ1 and λ2 are related to the principal curvatures by κmax = 3λ1−λ2 and κmin = 3λ2−
λ1. To compute a discrete approximation of integral (9.4), we use the weights (9.8)
together with Euler’s formula (9.1) and obtain

M̃ B
∑

j

ω̃ jκ jt jt j
t
= T


0 0 0
0 λ1 + κmaxΣcos HΣsin

0 HΣsin λ2 − κminΣcos

 Tt

with Σcos B
1
2

∑
j ω̃ j cos 2φ j and Σsin B

1
2

∑
j ω̃ j sin 2φ j. Again, we want to com-

pute the error terms and subtract them afterwards, as we did when computing the
Gaussian curvature. However, the task is trickier this time since the error terms
are given in a coordinate system yet unknown.

But let us define the error matrix

Ẽ B
∑

j

ω̃ jt jt j
t
= T


0 0 0
0 1

2 + Σcos Σsin

0 Σsin
1
2 − Σcos

 Tt.

After restriction of the matrices to the tangent plane by a Householder transforma-
tion Q as done in [Tau95a], we can eliminate most of the error terms and control
the remaining ones by computing:

QM̃Q
t − H(QẼQ

t − 1
2


0 0 0
0 1 0
0 0 1

)

= QT


0 0 0
0 λ1 +

κmax−κmin
2 Σcos 0

0 0 λ2 +
κmax−κmin

2 Σcos

 (QT)t. (9.9)

Now all the desired information can be extracted:

9.5 Theorem (curvature tensor). The matrix defined in Equation (9.9) has the
surface normal and the principal directions as eigenvectors. The eigenvalues µ1
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and µ2 that correspond to the latter two eigenvectors are related to the principal
curvatures by

κmax = 3µ1 − µ2 − (H̃ − H), κmin = 3µ2 − µ1 − (H̃ − H).

9.2.5 Direct computation of principal curvatures and di-
rections

Once we know mean and Gaussian curvature, there is also a more direct approach
to obtain principal curvatures and directions. First, we can compute the principal
curvatures by κmax = H+

√
H2 − K and κmin = H−

√
H2 − K. Now we use Euler’s

formula (9.1) in the form κi = (κmax − κmin) cos2 φi + κmin. When solving for φi we
get two solutions for every i (modulo π). Since the correct solutions indicate the
same principal direction tmax for all i, they can easily be determined. The principal
directions are then uniquely given by the φi.

9.2.6 Practical curvature tensor estimation

In this section, we describe how the above quadratures can be used to obtain cur-
vature approximations for discrete data. To simplify the notation (in particular the
definition of a neighborhood and a normal), we specify our estimates for (triangu-
lar) meshes only. But note that the formulae are also valid for point clouds since
we rely only on the relative position of points and not on the connectivity that is
defined by edges and faces of a mesh. We will prove the convergence of these
formulae in Section 9.3.3.

Let P be a vertex of a mesh whose one-ring is given by vertices Qi such that P
and the Qi interpolate the surface S. Let n be the (possibly estimated) normal at
P and let ai be the edge connecting P and Qi with length ai B ‖ai‖. Furthermore,
let αi be the angle between ai and ai+1, see Figure 9.4 (left). The middle part of
Figure 9.1 indicates the relationship of αi and βi.

Using this notation, we can define the following approximations for the normal
curvature κi and the weights ωi and ω̃i:

ki B 2
〈ai,n〉

a2
i

, wi B
tanαi−1 + tanαi∑
j(tanα j−1 + tanα j)

, and w̃i B
tan 2αi−1 + tan 2αi∑
j(tan 2α j−1 + tan 2α j)

.

(9.10)
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Thus, we get the curvature estimates

H ≈
∑

i

wiki and K ≈ 3H2 − 2
∑

i

w̃ik2
i + 4H(

∑

i

w̃iki − H). (9.11)

Using the normalized projection of ai to the tangent plane as an estimation for the
tangent vector

ti ≈
ai − 〈ai,n〉n
‖ai − 〈ai,n〉n‖

we can calculate M̃ and Ẽ in the (discrete) Taubin integral representation (9.9) of
the curvature tensor. Means to increase the numerical stability are discussed in
Section 9.3.4.

The approach of Section 9.2.5 can be used with approximated values for H
and K as well. In this case, we have to check whether H2−K ≥ 0. If this is not the
case, we assume κmin = κmax = H. Furthermore, the principal directions, obtained
from the correct solution for the φi, do not coincide exactly. Therefore, we look
for an “accumulation point” of the possible principal directions and choose this
direction as tmax.

9.3 Asymptotic Analysis

Our approach to assess discrete approximation schemes for normal vectors and
curvatures is to compare the normal vector (curvature) of an arbitrary analyti-
cal surface S with the estimated normal (curvature) at the same point. For this
purpose we express the discrete normal (curvature) with respect to the Darboux
frame, that is the coordinate system consisting of the exact normal vector n, a
tangential vector t, and v = n × t. Then, good approximations for the normal and
the curvature would look like this:

nestimated = (1 + ε)n + ε′t + ε′′v and κestimated = κ + ε
′′′

where each ε is supposed to be small and should tend to zero if a denser mesh is
regarded. In contrast to other methods, we express everything in terms of mesh
and surface properties without depending on a specific parameterization domain.

Consider again a mesh interpolating S and a mesh vertex P. Let the one-ring
be given by vertices Qi, edges ai with length ai and included angles αi as indicated
in Figure 9.4. For each Qi, we use the Darboux frame (ti, vi,n) where ti is the
tangential vector in the direction of ai. Finally, we denote the normal curvature
and geodesic torsion along ti, with κi and τi, respectively (see Appendix C for
details).
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Figure 9.4: Left: One-ring of a vertex. Right: Example of a regular vertex.

9.3.1 Averaging of face normals
Using these notations, the normal of an incident triangle at P is given as

ai × ai+1

‖ai × ai+1‖
= n

(
1 + O(ai, ai+1)2

)

− vi

( ai+1

2 sinαi
κi+1 + O(ai, ai+1)2

)
+ ti

(
O(ai, ai+1)2

)

+ vi+1

( ai

2 sinαi
κi + O(ai, ai+1)2

)
+ ti+1

(
O(ai, ai+1)2

)
, (9.12)

see Appendix C. This shows that the triangle normal, and therefore every normal
computed as a weighted average of the triangle normals in the one-ring of P,
converges linearly to the real normal.

Since the coordinate systems (ti, vi,n) chosen by us are adapted to the mesh
structure, it is now easy to derive further convergence results. First, we prove
quadratic convergence for regular vertices. These shall be vertices of even valence,
where opposing edges have the same length, and opposing angles are equal, see
Figure 9.4 (right). More rigorously, we define

9.6 Definition (regular vertex). Let P be a mesh vertex of valence n = 2m with
incident edges ai of length ai. Let αi be the angle between ai and ai+1. Then P is
called regular iff

ai = ai+m and αi = αi+m

for all i = 1 . . .m.

For regular vertices we can conclude

vi+m = −vi + O(a j)2
j and κi+m = κi + O(a j)2

j ,

see Appendix C. Therefore, the linear terms cancel out when summing up all facet
normals of the faces incident at P. Summarizing, we generalize a result by Meek
and Walton [MW00]:
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9.7 Theorem (mesh normals). Let P be a mesh vertex with incident edges ai of
length ai connecting P with Qi. Let αi be the angle between ai and ai+1 and let
ni B

ai×ai+1
‖ai×ai+1‖ . Let wi be weights depending only on edge lengths and included

angles. Then
( n∑

i=1

wini

)/∥∥∥∥
n∑

i=1

wini

∥∥∥∥

converges linearly to the real normal as the edge lengths ai tend to zero if all
αi are bounded within (0, π) (meaning that there is a δ > 0 such that always
δ < αi < π − δ for all αi).

If P is a regular vertex, the convergence is quadratic.

Proof. We have already shown the linear convergence. For regular vertices, the
linear terms in (9.12) cancel, and we obtain the claim. �

We have also computed the angular error of the facet normal ni, for details see
Appendix C. It seems sensible to us to interpret the inverse of that approximated
error as confidence values for the respective normals, giving higher confidence
to triangles whose normals are closer to the real normal. Using these values as
weights for the faces incident at P yields

n ≈
(∑

i

sinαi

di
ni

)/∥∥∥∥
∑

i

sinαi

di
ni

∥∥∥∥

where di is the length of the triangle edge opposing P, see the left hand side of
Figure 9.4.

Further examples for the weights wi of Theorem 9.7 are area weights, uniform
weights, and spherical weights [Max99].

9.3.2 Averaging of edges
Now we turn our attention to the mean curvature vector k at P. We use an approx-
imation similar to the one in the paper by Meyer et al. [MDSB03]. That is, we
approximate the integral over the mean curvature vector in a certain environment
of P and divide by the corresponding area A. Using the notation of Figure 9.6
(left), let wi B cot γi+cot δi and let A B 1

8

∑
i wia2

i be the Voronoi area of P within
the one-ring of P. The area A can be computed in terms of γi and δi because
ηi =

π
2 − γi. We define

k B
1

4A

∑

i

wiai = 2
∑

i wiai∑
i wia2

i

≈ Hn.

The same formula has been investigated by Xu [Xu06b].
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Figure 9.5: Voronoi areas, as computed by the formula 1
8 (r2 cot ρ + s2 cotσ),

give an exact tiling of the triangle. Shown are the “Voronoi areas” of an a)
obtuse angle, and b) acute angle.

In contrast to Meyer et al. [MDSB03] where a “mixed region” for A has been
used to ensure that it lies completely within the one-ring of P, we use always
the Voronoi region. The reason for this becomes clear in Theorems 9.9 and 9.10
where we show why these regions determine the “right” area.

9.8 Remark. Note that our approach is still compatible with the derivation given
in [MDSB03]: the boundary of our “Voronoi region” (dashed lines in Figures 9.5
and 9.6) passes through the midpoints of the edges ai, and all “Voronoi regions”
of the complete mesh together guarantee a perfect tessellation without overlap-
ping if we admit “negative areas”: even though the Voronoi cell at the obtuse
angle exceeds the area of the triangle in Figure 9.5 a), this is compensated for
by the “Voronoi cells” at the acute angles that count the same area negative (Fig-
ure 9.5 b)).

9.9 Theorem (mean curvature vector I). Let P be a mesh vertex and k be the
approximated mean curvature vector at P as above. Then k converges linearly
towards a normal vector of S at P.

If P is regular, the convergence is quadratic.

Proof. Using the Taylor series of ai
ai

in Appendix C, we get

4A · k =
∑

i

wiai =

∑

i

ti

(
wiai −

wia3
i

8
κ2i + O(a4

i )
)

+

∑

i

vi

(
−

wia3
i

6
κiτi + O(a4

i )
)

+n
∑

i

(
wi

a2
i

2
κi + wi

a3
i

6
κ′i + O(a4

i )
)
.
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Figure 9.6: Left: Cotangent weights and Voronoi region. Right: Complete
Voronoi region.

Therefore, all that remains to show (for linear convergence) is
∑

i wiaiti = O(ai)3.
Since all the angles and consequently the weights wi converge quadratically to
the respective values in the tangent plane, we may assume that the one-ring of
P is already planar and aiti = ai. In that sense, we have to show that the wi are
homogeneous coordinates. We sketch the proof in the following.

Let ()⊥ be the π2 counter-clockwise rotation. Then we can show equivalently
that (

∑
i wiai)⊥ =

∑
i wia⊥i = 0. From ηi =

π
2 − γi, we conclude ( 1

2 cot γiai)⊥ = hi,

where hi is the part of the Voronoi edge separating P and Qi that connects
−−→
PQi

to the circumcenter of the triangle 4PQiQi+1, see Figure 9.6 (left). This means
that we need to show that the sum of the boundary edges of the Voronoi region
is zero. This can easily be seen from Figure 9.6 (right) (and has previously been
used in [PP93]). Note that this may not be a Voronoi region in the usual sense but
it retains the important property that it forms a closed curve. We obtain

4A · k =
∑

i

ti

(
−

wia3
i

8
κ2i + O(ai−1, ai, ai+1)3

)

+

∑

i

vi

(
−

wia3
i

6
κiτi + O(a4

i )
)

+n
∑

i

(
wi

a2
i

2
κi + wi

a3
i

6
κ′i + O(a4

i )
)
.

(9.13)

For regular vertices, we know ai = ai+m and αi = αi+m, and therefore, wi =

wi+m, κi ≈ κi+m, τi ≈ τi+m, ti ≈ ti+m, and vi ≈ vi+m, see Appendix C. This means
that the third order terms, which are explicitly given in the tangential components
of (9.13), vanish, and a careful examination shows that the O(ai−1, ai, ai+1)3 terms,
stemming from the computations above, cancel as well. �
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Figure 9.7: Left: A vertex of valence 3 for which negative weights are re-
quired. Right: Estimation of the curvature of a sphere.

Note, that it is also immediately possible to derive the convergence of k on
spheres to the true mean curvature vector (particularly ‖k‖ = H) from (9.13).
This follows from the fact that

∑
i wia2

i /2
4A = 1. Nevertheless, on arbitrary surfaces,

k converges towards the correct mean curvature vector only under additional as-
sumptions.

9.10 Theorem (mean curvature vector II). Let

k = 2
∑

i(cot γi + cot δi)ai∑
i(cot γi + cot δi)a2

i

be the mean curvature vector at P as defined above. Let all edge lengths ai be
equal and let all angles αi be equal. Then ‖k‖ converges linearly towards the real
mean curvature.

If the edge lengths ai and angles αi are varying then ‖k‖ will in general not
converge towards the correct mean curvature.

Proof. Under the assumption that all the ai and αi are equal, the angles γi and the
angles δi (given by Figure 9.6, left) and therefore the weights wi = cot γi+cot δi are
equal as well. Using (9.13), we obtain ‖k‖ = ∑

i
wia2

i∑
i wia2

i
κi+O(ai) = 1

n

∑
i κi+O(ai) =

H + O(a j) j. The last equation is well-known. It is a special case of Theorem 9.2
with all βi equal up to a quadratic error (βi = αi + O(ai, ai+1)2, see Appendix C).

For the general case, Figure 9.7 (left) indicates a counter-example. If κi < H
along all (three) edges, then ‖k‖ < H as well (because all the weights wi are
positive in this example). �

Further special cases, in which k converges towards the mean curvature vector
are discussed in [Xu04]. We conclude that the cotangent weights are not perfectly
appropriate to get the correct mean curvature for differing edge lengths and angles,
even though they are well suited to obtain the correct normal. (Using the original,
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unmodified formula in [MDSB03] does not ameliorate the situation.) This moti-
vates the question: can we approximate the mean curvature better if the normal
vector is already known? The answer is “yes” (this is shown in Section 9.3.3).

9.11 Remark. Another drawback of the cotangent weights is, that they fail at
boundary vertices. Since our analysis shows that only the normal component is
important, it is most likely that the result of the cotangent weights can be improved
(especially for boundary vertices) by taking only the normal component instead of
the norm of the curvature vector (with respect to the true or an estimated normal
vector).

9.3.3 Curvature estimation using quadratures

The Taylor expansions in Appendix C lead to the following proposition.

9.12 Proposition. With the notations from Sections 9.2.1 and 9.2.6 the approxi-
mations

αi ≈ βi, wi ≈ ωi, and w̃i ≈ ω̃i

converge quadratically as the edge lengths ai tend to zero. The normalized edge

ai

ai
≈ ti

converges linearly, and its projection to the tangent plane

ai − 〈ai,n〉n
‖ai − 〈ai,n〉n‖

≈ ti (9.14)

converges quadratically if the normal vector approximation n converges quadrat-
ically towards the true normal. Furthermore, the curvature approximation

ki = 2
〈ai,n〉

a2
i

≈ κi

converges linearly if n converges quadratically.

9.13 Remark. If βi is approximated by the angle between the estimated tangent
vectors (9.14), a slightly smaller, but still quadratic, error is achieved. In our
experiments, we didn’t observe a significant difference; therefore, we used the
simpler approximation αi.

Now, we can derive corresponding results for our curvature approximations.
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9.14 Corollary. Let P be a mesh vertex interpolating a smooth surface S as in
Section 9.2.6. If n is a quadratic approximation of the true normal vector of S
at P, then the approximations for H and K as given in Equation (9.11) converge
linearly towards the real values of H and K:
∑

i

wiki = H + O(ai)i and 3H2 − 2
∑

i

w̃ik2
i + 4H(

∑

i

w̃iki − H) = K + O(ai)i.

If we use the approximations from Proposition 9.12 for ω̃i, κi, and ti to approxi-
mate the matrices M̃ and Ẽ, then the corresponding approximation of the Taubin
integral representation of the curvature tensor (9.9) satisfies Theorem 9.5 up to a
linear error, and we can obtain a linear approximation of the curvature tensor.

The preceding statements hold for arbitrary, but bounded (during the conver-
gence) aspect ratios in the one-ring of P provided that the weights ωi and ω̃i exist
(that is, the denominators are non-zero; see Section 9.3.4 for a discussion).

If P is regular, then the vector

2
∑

i

tanαi−1 + tanαi∑
j(tanα j−1 + tanα j)

ai

a2
i

converges linearly towards the mean curvature vector at P (regardless of n).

Proof. The first paragraph follows immediately from Proposition 9.12 and Theo-
rems 9.2, 9.4, and 9.5. The last statement holds, because the lower order tangential
components of ai

a2
i

vanish for regular vertices as can be seen in Appendix C and the
normal component contains the approximation of H from Equation (9.11). �

9.15 Proposition. If the normals are approximated with spherical weights
[Max99] in combination with (9.11) to estimate the curvature of a sphere, they
yield the exact values of mean and Gaussian curvature.

Proof. For a sphere, spherical weights yield exact normals. Let γi be the angle
between the inward pointing normal n and an edge ai. Then it is easy to see
that the length of ai is ai = 2r cos γi and the normal component n B 〈ai,n〉 of
ai is n = 2r cos2 γi for a sphere of radius r, see Figure 9.7 (right). Therefore,
ki = 2 n

a2
i
=

1
r = κi and the claims follow. �

9.3.4 Necessary conditions and implementation details
A general problem when computing the curvature of a surface from few samples
is that the data may be insufficient to determine the curvature uniquely. This was
discussed by Cazals and Pouget [CP03] as the necessity that the interpolating
problem is poised in order to find a unique fitting polynomial. In our quadrature
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formulae, the denominators of the weights (9.7) and (9.8), respectively, become
zero if insufficient data is available. This happens for example if only two samples
are available or if two consecutive angles add up to π, that is βi−1 + βi = π, for all
i. Nevertheless, in some of these cases, the data would be sufficient to compute at
least the mean curvature, for example if βi =

π
2 for all i. In the future, we would

like to find weights that are well defined for these cases as well.
If we compute the approximations (9.10) and the value of the denominator is

zero or close to zero, this leads to numerical problems. To cope with a situation of
a very small denominator for a vertex, we omit some of the edges in the one-ring
of that vertex. Since our quadratures are exact (if the κi and βi are known), we can
apply our formulae for any subset (≥ 3) of the edges, and the quadratures yield
the same result. In practice, however, numerical issues can lead to quite different
results for different edge (sub)sets. Our experiments yielded a proportional rela-
tionship between the absolute value of the denominator and the reliability of the
result. Therefore, we chose that subset of edges in the one-ring such that the de-
nominator becomes maximal. (Remember that we only need three edges to apply
our method.) This improved our results for these cases substantially.

9.4 Experimental Results

It remains to show that our new weights are not only of theoretical value, but also
of practical use. To that end, we present at first detailed results of our quadra-
ture method to compute the mean curvature; afterwards, we briefly compare our
method and existing approaches to compute the curvature tensor.

9.4.1 Convergence properties

The top row of Figure 9.8 demonstrates that our method converges even for irregu-
lar meshes. We sampled the graph of f (u, v) = 0.1 e2u+v−v2

(the same function was
used by Cazals and Pouget [CP03]) and computed the root-mean-square error and
maximum error while increasing the sampling density. More precisely, the graph
of f is sampled at (x, y, f (x, y)) where the points (x, y) lie on a randomly perturbed
rectangular grid of side length h within [−2, 2]× [−2, 2]. The perturbation is done
by adding a vector of random direction and length 0.3h to each point (x, y). During
the experiments, we decreased h from 0.128 to 0.002. Figure 9.8 depicts the graph
of f for h = 0.128 at the top left and the measured errors at the top right. Our
tangent weights show a linear convergence as predicted in Theorem 9.14 while
conventional cotangent weights [MDSB03] do not converge.
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9.4.2 Error distribution

We applied our newly proposed formula for mean curvature approximation to
several meshes whose vertices interpolate smooth surfaces of constant mean cur-
vature. For these meshes, it is especially easy to compare the estimated values
with the true values. We studied the following methods: cotangent weights using
a mixed area as proposed by [MDSB03] and tangent weights as defined in Theo-
rem 9.2. Since, for the last method, knowledge of the normal vectors is necessary,
we compared the results when using the true normals which were available for
our test surfaces, and using estimated normals with spherical weights [Max99] to
study the case where the true normals are unknown. The mesh of a catenoid (1575
vertices, 126 on the boundary) and the corresponding histogram of computed cur-
vature values are depicted in Figure 9.8 (bottom).

Here, the result of the preceding convergence analysis is confirmed. While
the cotangent weights mean curvature estimations are scattered over a large range
of values (Root Mean Square error: 0.37, maximum error: 10.6), the tangent
weights method gave good approximations of the correct value zero (RMS: 0.10,
max: 0.53). Also, the importance of a good normal approximation could be seen
here: using the estimated normals, the tangent and cotangent weights led to similar
results (RMS: 0.20, max: 1.7 for tangent weights with estimated normals). But
note that the correct zero value seems to be avoided by the cotangent method. This
is probably an inherent problem of computing the mean curvature as the norm of
a vector (compare Remark 9.11 for a possible solution).

We also computed the curvature of several spheres to verify Proposition 9.15.
In all cases, the maximum error was smaller than 10−10.

9.4.3 Curvature tensor

We tested our algorithm to compute the Taubin integral representation of the cur-
vature tensor (9.4) on a model of a torus with Gaussian curvature varying from
−1 to 1

3 (Figure 9.9). The results are given in Table 9.1. We measured the root-
mean-square error and the maximum error for the mean curvature H, the Gaussian
curvature K, and the angular deviation θ of the principal directions in radians, and
the time in seconds computed on a 1.8 GHz CPU (Intel Xeon). No optimiza-
tion to achieve especially short running times was done for our algorithm. We
compared the following methods: (a) cotangent weights to compute the mean cur-
vature [MDSB03], (b) our tangent weights to compute the mean curvature (Sec-
tion 9.2.2), the Gaussian curvature (Section 9.2.3), and the principal directions
(Section 9.2.5) (the time is measured for computing one, two, or all three columns
(from left), respectively) (c) the original Taubin method [Tau95a], (d) the Taubin
tensor computed by exact quadrature as presented in this chapter (Section 9.2.4),
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Figure 9.8: Comparison of cotangent weights and our tangent weights. Top:
The graph of f (u, v) = 0.1 e2u+v−v2 and the measured root-mean-square and
maximum error when the sampling density is increased. Bottom: A catenoid
(constant mean curvature zero) and the corresponding curvature distribu-
tion. The leftmost and rightmost columns in the histogram count not only the
vertices of the specified curvature but also all vertices with lower or higher
curvature, respectively.
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Figure 9.9: The mesh of a rectangularly tessellated torus with 3969 vertices.

Table 9.1: RMS error (maximum error in brackets) and time for the torus
model; italicized methods are developed in this chapter.

H K θ T (s)
(a) cotangent weights 0.00057 (0.0049) – – 0.10
(b) tangent weights 0.00081 (0.0013) 0.042 (0.11) 0.14 (0.29) 0.10/0.18/0.27
(c) Taubin (classic) 0.082 (0.10) 0.38 (0.80) 0.16 (0.30) 0.10
(d) Taubin (quadr.) 0.00081 (0.0013) 0.052 (0.18) 0.14 (0.19) 0.26
(e) GI (cubic) 0.0046 (0.012) 0.0079 (0.017) 0.0018 (0.0024) 0.57

(e) cubic polynomial fitting as done by Goldfeather and Interrante [GI04]. Here,
all computations were done with the exact normals known.

If only the mean curvature is of interest, our method is competitive with all
other methods. The real power of our method can be observed by comparing (c)
and (d) in Table 9.1. The only difference lies in the discretization of the inte-
gral. The small, but decisive, change in the weights improves the Taubin tensor
by orders of magnitude of accuracy while it retains relatively short running times.
Nevertheless, method (b) yields similar results in a shorter time for the mean and
Gaussian curvature. Comparing our method (d) with the approach of Goldfeather
and Interrante (e), it can be seen that method (e) offers the best results for com-
puting the principal directions. But if only the mean and Gaussian curvature are
of interest, our approach yields good results and short running times, especially if
good normals are available. Our approach combines high accuracy and relatively
fast computation.

We ran additional tests with exact mean and Gaussian curvature to find out
how much the angular error in our methods is affected by the errors in the compu-
tation of H and K. It turned out that method (d) improves only to a small degree
(angular error RMS: 0.12, max: 0.16) while method (b) profits strongly from cor-
rect values of H and K (angular error RMS: 0.00049, max: 0.0028). Note, that we
still used approximated values for the normal curvatures in both cases.



116 9 Quadratures for Curvature Tensor Estimation

9.5 Summary and Future Work
We have presented an approach for the exact computation of curvature integrals
that leads to quite impressive results and relies only on elementary mathematics.
Our experiments showed short running times and often superior results compared
to existing methods. While many approaches yield satisfactory results for regular
meshes (only), our weights can deal with arbitrary aspect ratios. Furthermore, the
method is proven to converge if normal vectors of at least quadratic accuracy are
available.

The power of our approach becomes especially clear when comparing the er-
ror of the Taubin tensor computed with our weights and the original weights. The
change in the discretization of the integral improves the result by orders of mag-
nitude of accuracy. While at present, we are not able to compete with Goldfeather
and Interrante (except for the mean curvature), our formula exhibits mathematical
elegance and simplicity. By the modular structure of method (b), the already short
running time can be further reduced if only the curvatures, and not the principal
directions, are of interest.

Furthermore, we introduced a framework for the asymptotic analysis of differ-
ential properties of discrete surfaces. Using it, we have shown that all commonly
used weighting schemes for estimating vertex normals on a mesh from the nor-
mals of the incident faces converge linearly towards the true normal in general and
quadratically at regular vertices. The same is true for the mean curvature vector
in the variant suggested in this chapter.

In the future, we hope to find a way to compute the tangent weights without
explicit evaluation of numerator and denominator to make their computation more
stable. Furthermore, we plan to examine the influence of noise on normal and
curvature estimations. It would also be interesting to obtain extensions of our
main formula (9.5) to nonlinear Laplacians similar to those considered in [Wei94,
DW06].



Chapter 10

Conclusions

Barycentric coordinates constitute a fascinating research topic, the investigation
of which is not yet complete. In this final chapter, we summarize our results
once more and point out possible directions for future research. We intend to
complement the summaries of the individual chapters and put them into a broader
context.

In the first part, we aimed to remove shortcomings of previously existing bary-
centric coordinate systems. The spherical barycentric coordinates transfer the
concept of barycentric coordinates from Euclidean spaces to spheres. Although
spherical barycentric coordinates are not new, very little work exists in this direc-
tion, for example Möbius’ coordinates for spherical triangles [Möb46] and Ju et
al.’s vector coordinates [JSWD05], which are defined for convex spherical poly-
gons. Our scheme, in contrast, allows the definition of counterparts of any Eu-
clidean barycentric coordinates in the spherical domain. In particular, we intro-
duced spherical mean value coordinates, which are defined for arbitrary spherical
polygons without antipodal points. Besides being valuable on their own, for ex-
ample for the interpolation of vectors, these coordinates proved to be useful in the
construction of general 3D barycentric coordinates, in particular 3D mean value
coordinates.

While only 3D mean value coordinates for triangular polyhedra were known
so far, we gave a definition of 3D mean value coordinates for arbitrary polygonal
polyhedra. We noted that these coordinates are no longer uniquely determined by
the integral definition, which was used in previous work. This definition for mean
value interpolation is based on a distance weighted integral of a function on the
polyhedron. In the discrete scenario, function values are only given at the vertices
of the polyhedron. For triangular meshes, this function could be extended to the
faces by linear interpolation. This is in general not possible for general polygonal
faces. Therefore, we chose to define 3D mean value coordinates for polygonal
meshes in a way that 2D mean value interpolation is used on the faces.
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Our approach allows us to define other types of 3D barycentric coordinates for
polygonal meshes as well. In these cases, it seems promising to choose the same
type of interpolation on polygonal faces as shall be achieved for the polyhedron.
Nevertheless, determining the “best” choice remains an open problem. For ex-
ample, we could not prove that the 3D Wachspress coordinates obtained with this
approach coincide with the known 3D Warren-Wachspress coordinates. Although
we cannot know how these issues will be solved in the future, our framework
to construct barycentric coordinates is versatile enough to support all possible
choices, and it allows an easy generalization to polytopes in higher dimensions.

An extension of the notion of barycentric coordinates, which we called higher
order barycentric coordinates, allows us to interpolate not only function values
but linear functions. When used for space deformations, they introduce new
means to manipulate objects. They can specify rotations and other linear transfor-
mations directly without the need to “simulate” such a transformation by moving
a group of nearby control points. We suggested a method to modify existing bary-
centric coordinates to create higher order barycentric coordinates. Therefore, they
might rather be considered a possible extension of existing coordinates than a
completely new type. If we, nevertheless, compare higher order mean value coor-
dinates and conventional barycentric coordinates, higher order mean value coor-
dinates retain the good properties of conventional mean value coordinates without
most of their shortcomings.

However, our higher order barycentric coordinates retain one disadvantage of
classical barycentric coordinates as well: if the control net consists of several ad-
joining parts, the coordinates are in general not smooth across polytope faces.
This would be necessary to deform several parts of a model independently of each
other with barycentric space deformation. Although this problem can be resolved
by changing the derivative axiom, the actual construction of such coordinates re-
mains future work.

Our definitions of spherical coordinates, 3D coordinates, and higher order co-
ordinates allow the construction of a wide range of related coordinates. However,
it would be desirable to explore the space of these coordinates systematically, sim-
ilar to the analysis done in [FHK06, JLW07]. In this way, it would be possible to
select barycentric coordinates that are tailored to particular needs.

Furthermore, we considered generalized Bézier maps. A generalized Bézier
map is a map that is piecewise (on a given polytope) a homogeneous polynomial in
generalized barycentric coordinates. We showed how the coefficients of the Bern-
stein polynomials have to be chosen to enforce smoothness of any desired order
across common (hyper-)faces of polytopes. We decided to develop the theory in
full generality although we mainly aimed at Bézier maps in mean value coordi-
nates which are defined with respect to polytopes of arbitrary shape. This allows
the use of our results for any other barycentric coordinates that might become the
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focus of attention in the future. Moreover, it shows that many results from the well
developed field of simplicial and tensor product Bézier theory can be considered
as a special case of our findings if Wachspress coordinates are used. Our index-
ing scheme, however, does not coincide with the traditional indexing scheme for
tensor product Bézier maps. This sheds new light on the classical theory, which
will hopefully lead to a better understanding of the tensor product Bézier maps as
well.

Probably the most important examples of Bézier maps are Bézier curves and
surfaces, and space deformations. We observe that mean value Bézier surfaces
are qualitatively comparable to tensor product surfaces, and hence well-suited
for modeling surfaces. Although the advantage of the greater number of control
points (compared to tensor product Bézier surfaces of the same degree) is dimin-
ished by a greater number of constraints, we nevertheless obtain new, interesting
possibilities for surface construction.

However, a number of open questions remain. Foremost, some kind of spline
representation of Bézier maps has to be found that resolves any continuity is-
sues fully automatically. These splines should allow the placement of meaningful
control points directly during the design of surfaces and deformations without
needing to spend much time on the cumbersome process of satisfying the con-
tinuity constraints manually. Another issue that we did not discuss are rational
Bézier maps. The use of rational Bézier maps greatly expanded the capabilities of
classical Bézier theory. The same should be done for generalized Bézier maps.

Let us now briefly compare the two approaches for space deformation pre-
sented in this thesis: (higher order) barycentric coordinates and Bézier maps. We
believe that both have their merits. Higher order barycentric coordinates yield
an easy and intuitive user interface to control the deformation. Furthermore, no
additional complexity is imposed if control nets of complex topology are used.
However, if a high degree of local control is desired, and the control net is divided
into several smaller control nets, usually only C0-continuity is guaranteed across
the boundaries of the polyhedra. Bézier maps can achieve continuity of arbitrary
order, and further guarantees, like the convex hull property, can be given. This
comes at the cost of having a high number of continuity conditions for the control
points. Satisfying all of them simultaneously can be difficult unless and until a
better representation for them is found.

Finally, we have presented several approximations for differential properties of
curves and surfaces. Our main result in this field is the development of quadrature
formulae for surface curvatures, which lead to novel approximations for the cur-
vature of discrete surfaces. Our experiments showed short running times and often
superior results compared to existing methods. While many approaches yield sat-
isfactory results for regular meshes (only), our weights can deal with arbitrary
aspect ratios. The power of our approach becomes apparent when the Taubin ten-
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sor, which is based on a curvature integral, is computed with our weights instead
of the original weights. The change in the discretization of the integral improves
the result by orders of magnitude of accuracy. Moreover, our method is proven to
converge if normal vectors of at least quadratic accuracy are available.

Furthermore, we introduced a framework for the asymptotic analysis of dif-
ferential properties of discrete curves and surfaces. Its application yielded several
formulae to estimate curvature, torsion, and the Frenet frame of a space curve,
such that they converge towards their smooth counterparts as edge lengths tend
to zero. We proved the optimality of our estimates in many cases. Moreover, we
have shown that all commonly used weighting schemes for estimating vertex nor-
mals on a mesh from the normals of the incident faces converge linearly towards
the true normal in general and quadratically at regular vertices. The same is true
for the mean curvature vector in the variant suggested in this paper.

An important task for future work is to find a way to compute the tangent
weights without explicit evaluation of the numerator and the denominator in our
curvature formulae in order to make their computation more stable. Furthermore,
the asymptotic properties of estimations of curvature and torsion of curves on
surfaces and the influence of noise on our estimations should be explored.



Appendix A

Proof of Theorem 5.1

To prove the theorem, we check the axioms.

Lagrange property. Using the Lagrange property of λi and m(0) = 0, m(1) = 1,
we obtain

m ◦ λi∑
k m ◦ λk

(v j) =
m(δi j)∑
k m(δk j)

= δi j.

Partition of unity.
∑

i

m ◦ λi∑
k m ◦ λk

=

∑
i m ◦ λi∑
k m ◦ λk

= 1.

Derivative property. If the λi are differentiable at the vertices, the derivative
property can be proven by

∇ m ◦ λi∑
k m ◦ λk

(v j)

=
∇(m ◦ λi)(v j) ·

∑
k m ◦ λk(v j) − m ◦ λi(v j) ·

∑
k ∇(m ◦ λk)(v j)

(
∑

k m ◦ λk(v j))2

= m′(λi(v j)) · ∇λi(v j) − m(λi(v j)) ·
∑

k

m′(λk(v j)) · ∇λk(v j) = 0

since m′(0) = m′(1) = 0. If the λi are not differentiable, we have to resort to
computing the derivatives of m ◦ λi(v j) in the above equation as the limit of
difference quotients. In the following, we use the definition of the difference
quotient, we add 0, we use the Taylor formula of m, we use the Hölder
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condition, we combine the terms, and use α > 1
2 .

| ∂
∂xk

(m ◦ λi)(v j)| = lim
h→0

|m ◦ λi(v j + hek) − m ◦ λi(v j)|
|h|

= lim
h→0

∣∣∣∣m
(
λi(v j) +

(
λi(v j + hek) − λi(v j)

))
− m

(
λi(v j)

)∣∣∣∣
|h|

= lim
h→0

1
|h|

∣∣∣∣m
(
λi(v j)

)
+

(
λi(v j + hek) − λi(v j)

)
m′

(
λi(v j)

)

+
1
2

(
λi(v j + hek) − λi(v j)

)2
m′′(ξ) − m

(
λi(v j)

)∣∣∣∣

≤ lim
h→0

1
2C|h|2α|m′′(ξ)|

|h| = lim
h→0

1
2

C|h|2α−1|m′′(ξ)| = 0.

Domain. Since m is defined everywhere in �, m ◦ λi is defined on the domain of
λi. Furthermore, the denominator is always greater than zero, because m is
non-negative, maps positive numbers to positive numbers, and at least one
λi(x) is positive for every x because the λi form a partition of unity.

Non-negativity. Since m(x) > 0 for x > 0 and the denominator is greater than
zero, positivity is preserved.

Smoothness. Since m is C1-continuous everywhere, the C1-continuity of the co-
ordinate functions apart from the vertices is preserved. At the vertices, C1-
continuity has been proven for the derivative property.



Appendix B

Taylor Series Expansion of
Space Curves

In this appendix, we conduct an asymptotic analysis of an arbitrary space curve
r(s), with r(si) = Pi, s0 = 0, interpolated by a polyline as in Figure 8.1. Our
treatment is based on the work of Anoshkina et al. [ABS02], but we have to take
into account the higher complexity of three-dimensional space; in particular, the
notion of torsion has no meaning for planar curves.

We assume without loss of generality that the curve is parameterized by arc
length. This facilitates the problem to express discrete properties in geometrically
meaningful terms like curvature and torsion by using Taylor series along with the
well known Frenet equations [dC76, Koe90]

dt
ds
= κn,

db
ds
= τn,

dn
ds
= −κt − τb, (B.1)

where t, n and b are the unit tangent, the unit normal and the unit binormal vector,
respectively, and κ and τ are curvature and torsion, respectively. (We omit the
position s since the equations hold for all (fixed) s and we are interested only in
the case s = 0, anyway.) Differentiating the curve r(s) then yields

r′ = t, r′′ = t′ = κn, r′′′ = (κn)′ = κ′n − κ2t − κτb,
r(4)
= −3κκ′t + (κ′′ − κ3 − κτ2)n − (2κ′τ + κτ′)b,

r(5)
= (κ4 + κ2τ2 − 4κκ′′ − 3(κ′)2)t

− (6κ2κ′ + 3κττ′ + 3κ′τ2 − κ′′′)n
+ (κ3τ + κτ3 − κτ′′ − 3κ′τ′ − 3κ′′τ)b,

and so on. Now we can use Taylor expansion to express the edge e =
−−−→
P0P1 =
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r(s1) − r(0) in the local canonical form [Kre59, Sau70]:

e = s1r′ +
s2

1

2
r′′ +

s3
1

6
r′′′ +

s4
1

24
r(4)
+

s5
1

120
r(5)
+ O(s6

1)

= t
(
s1 −

s3
1

6
κ2 −

s4
1

8
κκ′

s5
1

120
(
κ4 + κ2τ2 − 4κκ′′ − 3(κ′)2)

+ O(s6
1)
)

+ n
( s2

1

2
κ +

s3
1

6
κ′ +

s4
1

24
(κ′′ − κ3 − κτ2)

−
s5

1

120
(6κ2κ′ + 3κττ′ + 3κ′τ2 − κ′′′) + O(s6

1)
)

+ b
(
−

s3
1

6
κτ −

s4
1

24
(2κ′τ + κτ′)

s5
1

120
(κ3τ + κτ3 − κτ′′ − 3κ′τ′ − 3κ′′τ) + O(s6

1)
)
.

In the next step, we express e in terms of its length e without using the possi-
bly unknown geodesic length s1. Since (t,n,b) is an orthonormal basis, we can
compute e in terms of s1 by

‖e‖2 = s2
1 −

s4
1

12
κ2 −

s5
1

12
κκ′ +

s6
1

360
(κ4 + κ2τ2 − 9κκ′′ − 8(κ′)2) + O(s7

1),

e B ‖e‖ = s1 −
s3

1

24
κ2 −

s4
1

24
κκ′ +

s5
1

5760
(3κ4 + 8κ2τ2 − 72κκ′′ − 64(κ′)2) + O(s6

1).

After inverting the Taylor series for e, we obtain

s1 = e +
e3

24
κ2 +

e4

24
κκ′ +

e5

5760
(27κ4 − 8κ2τ2

+ 72κκ′′ + 64(κ′)2) + O(e6).

Substituting the expansion of s1 into the formula for e and dividing by e yields

e
e
= t

(
1 − e2

8
κ2 − e3

12
κκ′ − e4

1152
(
9κ4 − 8κ2τ2

+ 24κκ′′ + 16(κ′)2)
+ O(e5)

)

+ n
(e
2
κ +

e2

6
κ′ +

e3

24
(κ′′ − κτ2) +

e4

240
(3κ2κ′ − 6κττ′ − 6κ′τ2

+ 2κ′′′) + O(e5)
)

+ b
(
−e2

6
κτ − e3

24
(2κ′τ + κτ′)

− e4

240
(3κ3τ − 2κτ3

+ 2κτ′′ + 6κ′τ′ + 6κ′′τ) + O(e5)
)
.
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In a similar fashion, we obtain f
f from the difference of two Taylor expansions,

f = r(s1 + (s2 − s1)) − r(s1),

f
f
= t

(
1 − f 2

+ 4 f e + 4e2

8
κ2 − f 3

+ 5 f 2e + 9 f e2
+ 6e3

12
κκ′ + O(e, f )4

)

+ n
( f + 2e

2
κ +

f 2
+ 3 f e + 3e2

6
κ′ − f 2e + 2 f e2

+ e3

8
κ3

+
f 3
+ 4 f 2e + 6 f e2

+ 4e3

24
(κ′′ − κτ2) + O(e, f )4

)

+ b
(
− f 2
+ 3 f e + 3e2

6
κτ − f 3

+ 4 f 2e + 6 f e2
+ 4e3

24
(2κ′τ + κτ′) + O(e, f )4

)
,

and in the same way we get the expressions for d
d and c

c :

d
d
= t

(
1 − d2

8
κ2 +

d3

12
κκ′ + O(d4)

)

+ n
(
−d

2
κ +

d2

6
κ′ − d3

24
(κ′′ − κτ2) + O(d4)

)

+ b
(
−d2

6
κτ +

d3

24
(2κ′τ + κτ′) + O(d4)

)
,

c
c
= t

(
1 − c2

+ 4cd + 4d2

8
κ2 +

c3
+ 5c2d + 9cd2

+ 6d3

12
κκ′ + O(c, d)4

)

+ n
(
−c + 2d

2
κ +

c2
+ 3cd + 3d2

6
κ′ +

c2d + 2cd2
+ d3

8
κ3

− c3
+ 4c2d + 6cd2

+ 4d3

24
(κ′′ − κτ2) + O(c, d)4

)

+ b
(
−c2
+ 3cd + 3d2

6
κτ +

c3
+ 4c2d + 6cd2

+ 4d3

24
(2κ′τ + κτ′) + O(c, d)4

)
.

Using these series, we can compute the cross product of d
d and e

e :

d
d
× e

e
= t

(d2e + de2

12
κ2τ + O(d, e)4

)

+ n
(e2 − d2

6
κτ +

d3
+ e3

24
(2κ′τ + κτ′) + O(d, e)4

)

+ b
(d + e

2
κ +

e2 − d2

6
κ′ +

d3
+ e3

24
(κ′′ − κτ2) − d2e + de2

16
κ3 + O(d, e)4

)
.

Note that the quadratic terms vanish for d = e. The same is true for fourth order
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terms:

d
d
× e

e
d=e
= t

(e3

6
κ2τ + O(e5)

)

+n
( e3

12
(2κ′τ + κτ′) + O(e5)

)

+b
(
eκ +

e3

12
(κ′′ − κτ2) − e3

8
κ3 + O(e5)

)
.

Since the norm of the above vector equals sinϕ, we obtain

sinϕ =
d + e

2
κ − d2 − e2

6
κ′ +

(d − e)(d2 − e2)
36

κτ2

+
d3
+ e3

24
(κ′′ − κτ2) − d2e + de2

16
κ3 + O(d, e)4,

ϕ =
d + e

2
κ − d2 − e2

6
κ′ +

d3
+ e3

48
(κ3 − 2

3
κτ2
+ 2κ′′)

− d2e + de2

36
κτ2
+ O(d, e)4,

and for d = e

ϕ
d=e
= eκ +

e3

24
(2κ′′ + κ3 − 2κτ2) + O(e5).

We can also compute the normalized binormals at P0, P−1, and P1 by

b0 B
d × e
‖d × e‖ =

d
d ×

e
e

sinϕ
= t

(de
6
κτ + O(d, e)3

)

+ n
(e − d

3
τ +

d2 − de + e2

12
τ′

+
d2
+ de + e2

18
κ′

κ
τ + O(d, e)3

)

+ b
(
1 − (d − e)2

18
τ2
+ O(d, e)3

)
,

b−1 B
c × d
||c × d|| = t

(
−cd + d2

6
κτ + O(c, d)3

)

+ n
(
−c + 2d

3
τ +

c2
+ 3cd + 3d2

12
τ′

+
c2
+ cd + d2

18
κ′

κ
τ + O(c, d)3

)

+ b
(
1 − c2

+ 4cd + 4d2

18
τ2
+ O(c, d)3

)
,
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and

b1 B
e × f
||e × f|| = t

(
− f e + e2

6
κτ + O(e, f )3

)

+ n
( f + 2e

3
τ +

f 2
+ 3 f e + 3e2

12
τ′

+
f 2
+ f e + e2

18
κ′

κ
τ + O(e, f )3

)

+ b
(
1 − f 2

+ 4 f e + 4e2

18
τ2
+ O(e, f )3

)
.

With those, in turn, we can estimate the angle between two consecutive binormals
as

η̂e = 〈b1 × b0, t̃〉 =
d + e + f

3
τ − d2

+ de − e f − f 2

18
κ′

κ
τ

− d2 − de − 2e2 − 3e f − f 2

12
τ′ + O(d, e, f )3

where t̃ is the tangent approximation from equation (8.1).
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Appendix C

Taylor Series Expansion of
Geodesics

Given an arbitrary, smooth surface curve r(s), parameterized by arc length s,
we can analyze it using Taylor series along with the so called Darboux frame
(t(s), v(s),n(s)) where t(s) is the unit tangent vector of the curve, n(s) is the unit
surface normal, and v(s) B n(s)× t(s) is defined by the cross product. The behav-
ior of the Darboux frame along the curve is governed by the following modified
Frenet-Serret equations [dC76, Koe90]


dt/ ds
dv/ ds
dn/ ds

 =


0 κg κn
−κg 0 τ

−κn −τ 0




t
v
n



where κn is the normal curvature, κg is the geodesic curvature, and τ is the geodesic
torsion of the curve. (We omit the position s, since the equations hold for all
(fixed) s and we are interested only in the case s = 0, anyway.) Thus for the
geodesic gi(s) with gi(0) = P and gi(s1) = Qi as defined in Section 9.3, compare
also Figure 9.1 (middle), we have

dti

ds
= κin,

dvi

ds
= τin,

dn
ds
= −κiti − τivi,

where κi(s) and τi(s) are the normal curvature and geodesic torsion of gi(s), re-
spectively.

Note that these are exactly the same equations as for the space curves given
in (B.1), only with a slightly different meaning of κi and τi compared to κ and
τ. Therefore, we have (formally) exactly the same Taylor series expansions for
ai =
−−→
PQi = gi(s1) − gi(0) and ai B ‖ai‖ as for e and e in Appendix B. Finally, we
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arrive at

ai

ai
=ti

(
1 −

a2
i

8
κ2i + O(a3

i )
)

+vi

(
−

a2
i

6
κiτi + O(a3

i )
)

+n
(ai

2
κi +

a2
i

6
κ′i + O(a3

i )
)
.

Let βi be the angle between ti and ti+1 (indices taken modulo n), see Figure 9.1
on the left hand side. Now we can compute the normal of an incident triangle at
P as

ai

ai
× ai+1

ai+1
= sin βin

(
1 −

a2
i

8
κ2i −

a2
i+1

8
κ2i+1 + O(ai, ai+1)3

)

+ cos βin
(
−

a2
i+1

6
κi+1τi+1 + O(ai, ai+1)3

)

− vi

(ai+1

2
κi+1 +

a2
i+1

6
κ′i+1 + O(ai, ai+1)3

)

− cos βin
(
−

a2
i

6
κiτi + O(ai, ai+1)3

)

+ sin βin
(
O(ai, ai+1)3

)

+ ti

(
O(ai, ai+1)3

)

+ vi+1

(ai

2
κi +

a2
i

6
κ′i + O(ai, ai+1)3

)

− ti+1

(
O(ai, ai+1)3

)
.

The norm of this vector
∥∥∥∥

ai

ai
× ai+1

ai+1

∥∥∥∥ = sin βi + (
1

sin βi
− sin βi)

(a2
i

8
κ2i +

a2
i+1

8
κ2i+1

)

+ cos βi

(a2
i

6
κiτi −

a2
i+1

6
κi+1τi+1

)
− cot βi

(aiai+1

4
κiκi+1

)
+ O(ai, ai+1)3

equals the sine of the angle αi between ai and ai+1 and we conclude sinαi =

sin βi + O(ai, ai+1)2 and αi = βi + O(ai, ai+1)2 (compare also [MD02]).
But we can also use this result to compute the face normal ai×ai+1

‖ai×ai+1‖ =(ai
ai
× ai+1

ai+1

)
/ sinαi (as done in Section 9.3.1). Now suppose ai = ai+m and αi = αi+m.

We know

2
i+m−1∑

j=i

α j =

2m∑

j=1

α j =

2m∑

j=1

β j + O(a j)2
= 2π + O(a j)2

j .
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Therefore, we get

βi,i+m B

i+m−1∑

j=i

βi =

i+m−1∑

j=i

αi + O(a j)2
= π + O(a j)2

j ,

vi+m = cos βi,i+mvi − sin βi,i+mti = −vi
(
1 + O(a j)2

j
)
+ ti

(
O(a j)2

j
)
,

and ti+m = cos βi,i+mti + sin βi,i+mvi = −ti
(
1 + O(a j)2

j
)
+ vi

(
O(a j)2

j
)
,

where βi j is the counter-clockwise angle between ti and t j. Using Euler’s formula

κ = κmax cos2 θ + κmin sin2 θ

for curvature and the corresponding

τ = (κmax − κmin) cos θ sin θ

for torsion, we obtain

κi+m = κi + O(a j)2
j and τi+m = τi + O(a j)2

j .

We can also use our computations to gain an estimation of the angular error of
the triangle normal ni B

ai×ai+1
‖ai×ai+1‖ . We compute the scalar product with the normal

n at P and obtain, up to a third order term,

〈ni,n〉 = 1 − 1
8 sin2 αi

(a2
i κ

2
i + a2

i+1κ
2
i+1 − 2aiai+1κiκi+1 cosαi).

This is the cosine of the angle. Therefore, the angular error has to be

1
2 sinαi

·
√

a2
i κ

2
i + a2

i+1κ
2
i+1 − 2aiai+1κiκi+1 cosαi

up to a second order error. Because the curvature is unknown anyway, we simplify
the term by setting κi = κi+1 = 1, and we get

1
2 sinαi

√
a2

i + a2
i+1 − 2aiai+1 cosαi

as an approximated error term. We note that the square root equals the length of
the edge di opposing P, see Figure 9.4 (left).
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Appendix D

Euler’s Elastica for Space
Curves

In this section, we will derive necessary conditions for a space curve r(s) to be an
elastica, that means

∫
κ2ds −→ min

while fixing positions and tangents of the two end points. Thereby, we follow
the treatment given in [BAYY99] and [Mum94] for elastica in the plane. Never-
theless, the situation for elastica in the three-dimensional space is more complex
since torsion has to be considered as well. Therefore, we have to derive the criteria
for 3D elastica anew.

We consider a small perturbation of r(s)

r̂(s) B r(s) + ε
(
h(s)n + k(s)b

)

where r(s) is an elastica parameterized by arc length s, h(s) and k(s) are real
functions with compact support, and ε is a real number. Using the Frenet equa-
tions (B.1) we get

dr̂
ds
= t + ε

(−hκt + (h′ + kτ)n + (k′ − hτ)b
)
.

Let r̂(ŝ) be a parameterization of r̂ by arc length. Then

dŝ =
∥∥∥∥

dr̂
ds

∥∥∥∥ds = (1 − εhκ + O(ε2))ds.
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Therefore, we have

t̂ =
dr̂
dŝ
=

dr̂
ds

ds
dŝ
= t + ε

(
(h′ + kτ)n + (k′ − hτ)b

)
+ O(ε2),

κ̂n̂ =
dt̂
dŝ
=

dt̂
ds

ds
dŝ
= κn + ε(−h′κ − kκτ)t + ε(h(κ2 − τ2) + h′′ + kτ′ + 2k′τ)n

+ ε(−hτ′ − 2h′τ − kτ2
+ k′′)b + O(ε2),

and

κ̂2 = ‖κ̂n̂‖2 = κ2 + 2εκ
(
h(κ2 − τ2) + h′′ + kτ′ + 2k′τ

)
+ O(ε2).

Now we can compute, using integration by parts:

∫
κ̂2dŝ =

∫
κ2dŝ + ε

∫
h(2κ3 + 2κ′′ − 2κτ2) − 2k(κτ′ + 2κ′τ)dŝ + O(ε2)

=

∫
κ2ds + ε

∫
h(κ3 + 2κ′′ − 2κτ2) − 2k(κτ′ + 2κ′τ)ds + O(ε2).

Because h(s) and k(s) are arbitrary functions with compact support and the integral∫
κ2ds is minimal for r(s), this shows:

κ′′ +
κ3

2
− κτ2

= 0 and κ′τ +
κτ′

2
= 0,

which is a generalization of the conditions for 2D elastica.
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