
Image Space Adaptive Rendering

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Fabrice Rousselle

von Kanada

Leiter der Arbeit:

Prof. Dr. M. Zwicker
Universität Bern

Dr. J. Lehtinen
Aalto University

Image Space Adaptive Rendering

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Fabrice Rousselle

von Kanada

Leiter der Arbeit:

Prof. Dr. M. Zwicker
Universität Bern

Dr. J. Lehtinen
Aalto University

Von der Philosophisch-naturwissenschaftlichen Fakultät
angenommen.

Bern, 2014 Der Dekan:
Prof. Dr. S. Decurtins

i

Acknowledgments

Many people have helped me in various ways during the duration of
my thesis. First, I would like to thank my advisor, Matthias Zwicker,
who has been a great guide and inspiration over the last four years.
The extent and breadth of his knowledge and his understanding for
the constraints of having a family made this PhD a pleasant and fruit-
ful endeavor, for which I am deeply grateful. I would also like to thank
the external reviewer, Jaakko Lehtinen, for taking the time to read
and evaluate this thesis.

I would like to take the opportunity to thank the various members
of the CGG. In particular, Claude Knaus who contributed to this thesis
more than I can thank him for. I have greatly benefited from his
skills and knowledge, and enjoyed his company. I would also like to
particularly thank Marco Manzi, who also contributed greatly to this
thesis. Finally I would like to thank the other members of the CGG,
Daniel Donatsch for organizing the monthly PhD student meetings,
Daljit Singh Dhillon for sharing our office so pleasantly, Sonja Schär,
Wan-Yen Lo, and Peter Bertholet.

This work was financed in part by the Swiss National Science Foun-
dation under grant no. 200021 127166. The various implementations
of the framework presented in this thesis were done by extending
the open source renderer PBRT by Greg Humphreys and Matt Pharr,
which proved to be tremendously helpful.

I would like to thank my parents, Marie-France and Delphis Rous-
selle, who have supported me throughout the years, as well as my
mother-in-law, Sarita Goutorbe, whose enthusiasm for my studies and
generous personality have been greatly appreciated. Lastly, I would
like to thank my wife, Cynthia, for her relentless support and for
brightening my life. This thesis would not have existed without her,
and I dedicate it to her.

ii

Abstract

In this thesis, we develop an adaptive framework for Monte Carlo ren-
dering, and more specifically for Monte Carlo Path Tracing (MCPT)
and its derivatives. MCPT is attractive because it can handle a wide
variety of light transport effects, such as depth of field, motion blur, in-
direct illumination, participating media, and others, in an elegant and
unified framework. However, MCPT is a sampling-based approach,
and is only guaranteed to converge in the limit, as the sampling rate
grows to infinity. At finite sampling rates, MCPT renderings are often
plagued by noise artifacts that can be visually distracting.

The adaptive framework developed in this thesis leverages two
core strategies to address noise artifacts in renderings: adaptive sam-
pling and adaptive reconstruction. Adaptive sampling consists in in-
creasing the sampling rate on a per pixel basis, to ensure that each
pixel value is below a predefined error threshold. Adaptive reconstruc-
tion leverages the available samples on a per pixel basis, in an attempt
to have an optimal trade-off between minimizing the residual noise
artifacts and preserving the edges in the image. In our framework,
we greedily minimize the relative Mean Squared Error (MSE) of the
rendering by iterating over sampling and reconstruction steps. Given
an initial set of samples, the reconstruction step aims at producing
the rendering with the lowest rMSE on a per pixel basis, and the
next sampling step then further reduces the MSE by distributing addi-
tional samples according to the magnitude of the residual MSE of the
reconstruction. This iterative approach tightly couples the adaptive
sampling and adaptive reconstruction strategies, by ensuring that we
only sample densely regions of the image where adaptive reconstruc-
tion cannot properly resolve the noise.

In a first implementation of our framework, we demonstrate the
usefulness of our greedy error minimization using a simple recon-
struction scheme leveraging a filterbank of isotropic Gaussian filters.
In a second implementation, we integrate a powerful edge aware fil-
ter that can adapt to the anisotropy of the image. Finally, in a third
implementation, we leverage auxiliary feature buffers that encode

iii

scene information (such as surface normals, position, or texture), to
improve the robustness of the reconstruction in the presence of strong
noise.

iv

Contents

1 Introduction 1
1.1 Monte Carlo Path Tracing 3
1.2 Problem Statement . 7
1.3 Image-Space Adaptive Rendering 8
1.4 Summary of Contributions 9
1.5 Thesis Organization 11
1.6 Related Problems . 12

1.6.1 Improving ray tracing based methods 12
1.6.2 Alternative Rendering Methods 14

2 Rendering Theory 15
2.1 The Rendering Equation 16
2.2 The Three-Point Formulation 17
2.3 Path Integral Formulation 19

3 Statistical Tools 23
3.1 Random Variable . 23
3.2 Probability Density Function 24
3.3 Expected Value of a Random Variable 24
3.4 Variance of a Random Variance 25
3.5 Estimator Bias . 25
3.6 Monte Carlo Integration 26
3.7 A Pixel Mean as a Gaussian Variable 30
3.8 Estimating Variance 30

v

vi CONTENTS

3.8.1 Random Samples 31
3.8.2 Stratified Sampling 32
3.8.3 Quasi-Random Sampling 32

3.9 Mean Squared Error 33
3.9.1 Filter Variance Reduction and Bias 34
3.9.2 Stein’s Unbiased Risk Estimator 37

4 Adaptive rendering algorithms 39
4.1 A Priori Methods . 42

4.1.1 Gradient Analysis 42
4.1.2 Frequency Analysis 45
4.1.3 Light Field Structure 49
4.1.4 Summary Table 51

4.2 A Posteriori Methods 51
4.2.1 Error Metrics 53
4.2.2 Adaptive Sampling and Reconstruction 57
4.2.3 Summary Table 65

5 Image space denoising techniques 67
5.1 Parameter Estimation 70
5.2 Transform Domain Denoising 73
5.3 Regression . 75
5.4 Anistropic Diffusion 78
5.5 Bilateral Filter . 80

5.5.1 Original Formulation 80
5.5.2 Non-Local Means Filtering 82
5.5.3 Joint Filtering 84

5.6 BM3D Filtering . 85

6 Adaptive rendering using GEM 89
6.1 Algorithm Overview 93
6.2 Filter Selection . 93

6.2.1 Incremental MSE Minimization 95
6.2.2 Quadratic Approximation 96
6.2.3 Estimation from Noisy Data 98
6.2.4 Post-Processing the Filter Selection 102

CONTENTS vii

6.3 Sample Distribution 105
6.4 Implementation . 108
6.5 Results . 112
6.6 Conclusion . 120

7 Adaptive rendering using NLM 123
7.1 Algorithm Overview 125

7.1.1 The NL-Means Filter 127
7.1.2 Error Estimation 135
7.1.3 Sampling . 136

7.2 Implementation . 138
7.3 Results . 140
7.4 Conclusion . 147

8 Adaptive rendering using DFC 155
8.1 Overview . 157
8.2 Filter Weights from Color Buffer 160
8.3 Bilateral Weights from Feature Buffers 161
8.4 Filter Weighting using SURE 163
8.5 Algorithm . 167
8.6 Extensions . 168
8.7 Results . 169
8.8 Conclusions . 174

9 Conclusion 181

viii CONTENTS

List of Tables

4.1 Summary of the main characteristics of the a priori
methods cited . 52

4.2 Summary of the main characteristics of the a posteriori
methods cited . 66

6.1 Percentage of pixels in agreement with scale selection
obtained using exhaustive search, for both the incre-
mental approach and our approximation 98

7.1 Perceptual quality, measured using the SSIM metric,
for images of Figures 7.13 to 7.17 141

ix

x LIST OF TABLES

List of Figures

1.1 Paolo Uccello, Perspective study of a chalice, 15th century 2
1.2 Albrecht Dürer, Man drawing a lute, 1525 4
1.3 Physically-based rendering using Monte Carlo Path Trac-

ing . 5
1.4 Noise artifacts in Monte Carlo Path Tracing 6
1.5 Proposed framework overview 10

2.1 Geometry of the three-point formulation of the render-
ing equation . 19

4.1 Overview of the structure of Chapter 4 42
4.2 Irradiance caching vs. Monte Carlo Path Tracing 45
4.3 Frequency analysis of motion blur 46
4.4 Frequency bounds due to motion blur, as a function of

the velocities in the image plane 47
4.5 Overview of 5D covariance tracing 49
4.6 Reprojection of samples based on the local anisotropy

of the light field . 50
4.7 Adaptive sampling of indirect illumination using a per-

ceptually based error metric 60
4.8 Using feature buffers encoding scene information to

detect image space discontinuities 62

xi

xii LIST OF FIGURES

5.1 Noise reduction obtained by increasing the sampling
rate vs. increasing the filter neighborhood 69

5.2 Gaussian filtering of noisy data using parameter esti-
mation . 71

5.3 The Intersection of Confidence Intervals algorithm . . 72
5.4 Denoising using wavelet thresholding 74
5.5 Global and local regression analysis of a small set of

data points . 77
5.6 The bilateral filter, a combination of a spatial kernel

and a range kernel . 81
5.7 Denoising using the bilateral filter vs. the NL-Means filter 83
5.8 Impact of the patch size in the NL-Means filter 86

6.1 Minimizing the MSE in Monte Carlo rendering using
adaptive sampling and reconstruction in image space . 92

6.2 Overview of our framework 94
6.3 Scale selection using the exhaustive approach, the in-

cremental approach, and the incremental approach us-
ing the quadratic approximation 96

6.4 Histograms of bias, variance, and scale selector S, which
is the convolution of the former two 101

6.5 Histograms for the variance term under varying radii r
and sample count |P | 103

6.6 Illustration of outlier removal during post-processing
of the scale selection, and comparison of denoising us-
ing scale selection and wavelet thresholding 104

6.7 Filtering a binary stopping map 105
6.8 Selection maps using our method and ground truth

statistics for scenes of Figures 6.13 to 6.15 106
6.9 Selection maps using our method and ground truth

statistics for scenes of Figures 6.16 to 6.17 107
6.10 Sample densities obtained with the AWR algorithm,

our scale selection method, and scale selection using
ground truth statistics 109

LIST OF FIGURES xiii

6.11 Sample densities obtained for the “sibenik” scene by
varying γ . 114

6.12 Convergence plots over average number of samples per
pixel measured in average per-pixel MSE 115

6.13 Renderings of the “killeroos” scene using our GEM al-
gorithm and other methods 117

6.14 Renderings of the “plants-dusk” scene using our GEM
algorithm and other methods 118

6.15 Renderings of the “sibenik” scene using our GEM algo-
rithm and other methods 119

6.16 Renderings of the “toasters” scene using our GEM algo-
rithm and other methods 120

6.17 Renderings of the “yeahright” scene using our GEM
algorithm and other methods 121

7.1 Overview of our dual-buffer framework 126
7.2 Parameters of the NL-Means filter 129
7.3 Filtering a noisy uniform input using the single-buffer

approach and our dual-buffer approach 130
7.4 Filtering with low-discrepancy samples 133
7.5 Estimating the variance of low-discrepancy samples . . 134
7.6 A noisy ramp filtered using the standard NL-Means fil-

ter and our extended filter 135
7.7 Comparison of our error estimation with the ground

truth . 137
7.8 Sampling density maps with 32 samples per pixel on

average . 139
7.9 Convergence plots for various scenes 142
7.10 Filtering of a uniformly sampled image with 16 sam-

ples per pixel, using two patch sizes, f = 0 and f = 3 . 143
7.11 Filtering with the standard NL-Means formulation and

our own formulation which uses per-pixel variance es-
timates . 144

7.12 Filtering of the “conference” scene using varying filter
window sizes . 145

xiv LIST OF FIGURES

7.13 Renderings of the “killeroos” scene using our NLM al-
gorithm and other methods 149

7.14 Renderings of the “sibenik” scene using our NLM algo-
rithm and other methods 150

7.15 Renderings of the “plants-dusk” scene using our NLM
algorithm and other methods 151

7.16 Renderings of the “conference” scene using our NLM
algorithm and other methods 152

7.17 Renderings of the “sanmiguel” scene using our NLM
algorithm and other methods 153

8.1 Denoising Monte Carlo renderings using noisy color
and feature buffers . 156

8.2 Overview of our reconstruction balancing color and
feature information, using three candidate filters . . . 159

8.3 Effectiveness of feature prefiltering on a scene with
depth-of-field . 164

8.4 Filtered output for the “conference” scene without and
with the feature gradient 165

8.5 Closeups of filtered renderings with and without our
novel visibility and caustics features 170

8.6 Convergence plots for the scenes of Figures 8.9 to 8.11 171
8.7 Using the mean of BRDF samples instead of textures as

a feature . 172
8.8 Adaptive rendering of the “sibenik” scene using our

method and the SBF algorithm 173
8.9 Renderings of the “conference” scene using our DFC

algorithm and other methods 176
8.10 Renderings of the “sanmiguel” scene using our DFC

algorithm and other methods 177
8.11 Renderings of the “sibenik” scene using our DFC algo-

rithm and other methods 178
8.12 Renderings of the “teapot-metal” scene using our DFC

algorithm and other methods 179

LIST OF FIGURES xv

8.13 Renderings of the “dragonfog” scene using our DFC
algorithm and other methods 180

xvi LIST OF FIGURES

Chapter 1

Introduction

There is this tremendous mess of waves all over in space,
which is the light bouncing around the room, and going from
one thing to the other.

Richard Feynman

The aim for realism has, to various degrees, always been a part
of the figurative arts, and culminated in the realist and hyperrealist
movements. Throughout history, artists and scientists have attempted
to formalize the rules of nature, in order to better represent it and
understand it, and it is not surprising that the line between artist and
scientist would sometimes blur, such as with Leonardo da Vinci. A
striking example would be the discovery of linear perspective, which
lead to the famous experiment of Filippo Brunelleschi, an architect,
who painted around 1420 an exact replica of the Florentine Baptistery
as viewed from a specific viewpoint.

While Brunelleschi was interested in architectural studies, his ex-
periment actually had a profound impact on the art of the time, due
to the unprecedented realism it allowed. As an example, in Figure 1.1,
we have the study of a chalice in perspective by Paolo Uccello done
in the 15th century, which is strangely reminiscent of the wireframe
renderings of today’s modeling software.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Paolo Uccello, Perspective study of a chalice, 15th century.

The 1960s, thanks to the rising power of computers, saw the first
efforts in the field of computer graphics, and it is perhaps not coinci-
dental that one of the pioneers in computer graphics, Donald Green-
berg, is, like Brunelleschi, also an architect. As with linear perspective,
computer graphics went on to have a profound impact on the arts and
data visualization, and are now commonly used in the movie industry,
scientific visualization, video games, virtual museums, etc.

As the need for photo-realistic renderings (i.e. renderings that
would be indistinguishable from photographs) became more pressing,
in good part motivated by the growing use of digital special effects
in movies, the laws of optics were tightly integrated into rendering
systems. This resulted in today’s field of physically-based rendering,
which aims at faithfully modeling all aspects of light transport, includ-
ing the optics of the camera itself.

In order to make rendering tractable, it is common to consider
only geometrical optics, where light is modeled as a particle and prop-
agates along rays. This model cannot model wave optics effects such

1.1. MONTE CARLO PATH TRACING 3

as diffraction or interference, but otherwise offers a fairly accurate
approximation of light transport. One can also model the interaction
of light with the medium it propagates through using radiative trans-
fer theory, that considers the medium emission, absorption, and scat-
tering properties. These principles, geometrical optics and radiative
transfer, have been elegantly combined in the shape of the rendering
equation, as proposed in Kajiya’s seminal work [Kaj86]. The geomet-
rical optics model at the heart of the rendering equation naturally
gave way to the concept of path tracing, where light is gathered at
a receiver along specific directions. In practice, solving the render-
ing equation essentially consists in integrating, at every point of the
scene, all the light that is coming from all directions, and which could
have been emitted, reflected, scattered, etc. towards the receiver. How-
ever, despite the simplifying assumptions of geometrical optics, it is
not possible to solve the rendering equation in the general case, and
researchers have turned to numerical methods to evaluate it. One
algorithm, Monte Carlo path tracing (MCPT) and its extensions, has
proven to be particularly effective.

1.1 Monte Carlo Path Tracing

As the name suggests, MCPT combines Monte Carlo integration meth-
ods with the concept of path tracing. Monte Carlo integration is a well
know approach to numerically integrate functions, and is based on
random sampling. Essentially, it consists in averaging several samples
taken from a function to estimate its integral. In path tracing, a sam-
ple is the contribution of a light path, i.e. the radiance carried along
that path towards the camera. A light path is build by recursively
tracing lights rays through the scene. Ray tracing is conceptually very
simple: a light ray originates from a given point and is traced until
it somehow interacts with the scene (by reflecting off a surface, re-
fracting through glass, scattering in the fog, etc.). An early example
of ray tracing, illustrating the long history of this technique in the
context of realistic rendering, is given in Figure 1.2. As can be seen in

4 CHAPTER 1. INTRODUCTION

this figure, ray tracing faithfully captures the perspective view of com-
plex objects. Ray tracing can be easily generalized to build complex
paths that will handle a wide variety of light transport effects such
as area lights, participating media (fog, water, etc.), depth of field
(due to camera lens optics), indirect illumination, etc. To illustrate
this flexibility, we show in Figure 1.3 an image generated using MCPT
with the PBRT renderer [PH10] (PBRT being an acronym for Physi-
cally Based Ray Tracing). This figure also illustrates the scalability of
Monte Carlo integration, since this scene has a 9-dimensional sam-
pling space, where the sampling space dimensionality corresponds to
the number of parameters of the simulation: 2d sampling of the image
plane for anti-aliasing, 2d sampling of the lens to simulate depth of
field, 2d sampling of the hemisphere to capture the indirect illumina-
tion, 1d sampling inside the fog to account for single scattering, and
2d sampling of the area light producing soft shadows.

Figure 1.2: Albrecht Dürer, Man drawing a lute, 1525. Early applica-
tion of the principle of path tracing to produce a realistic rendering.

1.1. MONTE CARLO PATH TRACING 5

Figure 1.3: Physically-based rendering using Monte Carlo Path Trac-
ing. This scene features: area lighting, participating media (fog),
depth of field (simulating camera optics), and indirect illumination.
This rendering was produced using 32000 paths per pixel, and took
nearly 12 hours to compute.

The Appeal of Monte Carlo Path Tracing. There are three key fea-
tures to MCPT that make it particularly appealing for photo-realistic
rendering: (1) it is physically based, (2) it can simulate a wide variety
of effects in a unified framework, and (3) it is guaranteed to converge
(except in some pathological cases) to the right result. The first char-
acteristic, being physically based, refers to the fact that MCPT directly
builds upon the laws of geometrical optics. For instance, the direction
of a refracted ray of light can be computed using the indices of refrac-
tion on both sides of the refractive surface, or the attenuation of light
through a medium will be computed using Beer’s law. Relying on the
laws of physics allows for a faithful reproduction of the appearance
of real objects, provided we have accurate measurements of an object
attributes. The second characteristic, the applicability to a wide range
of effects, comes from the flexibility of the path tracing concept and
the generality of the Monte Carlo integration, which can handle inte-
gration domains of arbitrary dimensionality. The third characteristic,
the convergence to the right result, is also inherited from the use of

6 CHAPTER 1. INTRODUCTION

Monte Carlo integration, which is both consistent and unbiased. Be-
ing consistent means that Monte Carlo methods converge to the right
result as the number of samples grows to infinity. Being unbiased
means that the expected value of the Monte Carlo estimation is the
true integral value, in other terms, averaging multiple Monte Carlo
estimations also converge to the right integral value as the number
of estimations goes to infinity. While all these three characteristics
are essential (being physically based, the wide applicability, and the
convergence), the second one, that is that it can simulate a wide vari-
ety of effects in a unified framework, is arguably the most appealing
because it leads to a relatively simple implementation.

Figure 1.4: Same rendering as in Figure 1.3, but using 32 paths per
pixel, instead of 32000. The rendering time is considerably reduced
(42s instead of nearly 12 hours), but the output is now noticeably
noisy.

The Curse of Dimensionality. Leaving aside the issue of conver-
gence in pathological cases, which can be mitigated using more ad-
vanced path sampling algorithms, the main disadvantage of MCPT is
that it is inherently a noisy process, which converges rather slowly
to the right result. The noise in Monte Carlo integration correspond
to the estimation error due to considering only a finite number of

1.2. PROBLEM STATEMENT 7

samples, which leads to integral values that can be too high or too
low (or pixels that are too dark or too bright in the rendering context).
This noise can be reduced by increasing the number of samples and
vanishes in the limit, as the number of samples grows to infinity, but
the noise reduction is not linear with respect to the sampling rate.
Actually, to reduce the magnitude of noise by a factor two, we need
to increase the sampling rate by a factor of four. This leads to rapidly
increasing sampling budgets for non trivial scenes. For instance, the
rendering in Figure 1.3 was generated using 32000 paths per pixel,
and took nearly 12 hours to compute on a powerful workstation with
12 CPU cores. As shown in Figure 1.4, using only 32 paths per pixel
for the same scene yields a much more reasonable rendering time of
42 seconds, but the output is now noticeably noisy. This high compu-
tational cost, compared to the much more computationally efficient
systems based on rasterization, is the main factor slowing down the
adoption of MCPT. However, rasterization-based systems trade off
computational cost for an implementation cost, since they rely on
a collection of ad hoc hacks to approximate various light transport
effects. The exponential growth of computational power is progres-
sively shifting the outcome of this trade-off between computational
and implementation cost, and leading the industry to move to MCPT
for off-line rendering. This shift is perhaps best illustrated by Pixar’s
RenderMan renderer, with its seminal rasterization based rendering
architecture, REYES [CCC87], which has now added support for ray
tracing and used it in their movie Cars [CFLB06]. Yet, the compu-
tation cost of MCPT is still problematic for off-line rendering, and
prohibitive for interactive or realtime rendering.

1.2 Problem Statement

In this thesis, we are concerned with tackling the high computational
cost of MCPT, in order to mitigate the curse of dimensionality. Put
simply, our goal is to reduce the amount of noise in a rendering given
a fixed sample budget or vice-versa, improve image quality given a

8 CHAPTER 1. INTRODUCTION

fixed time budget.
It should be noted that we do not necessarily aim for an unbi-

ased rendering, but rather a rendering that strikes an optimal balance
between residual noise and bias. Ideally, the final output should be
visually indistinguishable from an actual converged rendering for a
human observer at a reasonable distance.

We wish to preserve the three key features of MCPT: (1) being
physically based, (2) handling of a wide variety of light transport
effects in a unified framework, and (3) estimation consistency at in-
creasing sampling rate. Ideally, the solution should also apply to more
sophisticated variants of MCPT such as photon mapping [Jen96],
Metropolis light transport [VG97], etc. It should also be applicable
with variance reduction methods (quasi MCPT [KK02a], multiple im-
portance sampling [VG95b], photon mapping [Jen96], etc.) that are
commonly used in the industry.

1.3 Image-Space Adaptive Rendering

We propose to reduce the noise in MCPT by employing an image-
space adaptive rendering framework. Working in image-space decou-
ples our framework from the dimensionality of the sampling space.
This implicitly shields our approach from the curse of dimensionality,
and ensures a constant overhead, independent of the scene complex-
ity. Adaptive rendering refers to the two basic strategies to remove
noise in a rendering: filtering and sampling. The adaptive sampling
strategy simply consists in increasing the sampling rate, i.e. evalu-
ating more light paths, in regions with a larger error (for instance
pixel variance, though we could consider perceptual errors, or some
other heuristic). The adaptive filtering strategy consists of estimating
a pixel as a weighted average of its neighborhood, but using weights
specially defined for this pixel and its neighborhood. This allows to
have edge-aware filters that prevent blurring over edges. In practice,
the adaptive filtering strategy is by far more computationally effective
at reducing noise, and we use adaptive sampling to complement the

1.4. SUMMARY OF CONTRIBUTIONS 9

filtering strategy in regions where it is failing.
The proposed framework operates iteratively, using a greedy er-

ror minimization approach, and is illustrated in Figure 1.5. In each
iteration, we sample the image plane, and then filter the result. We
then proceed to estimate the error in the filtered rendering, which is
used to define the adaptive sampling map (i.e. the per-pixel sampling
density) that will be used in the sampling step of the next iteration. By
adapting the sampling rate to the errors in the filtered rendering, we
tightly couple the sampling and filtering strategies, and ensure that
we only sample densely regions that cannot be properly reconstructed
through filtering.

The main two design decisions in this framework are what filter
to use, and what error metric should drive the adaptive sampling rate.
In this thesis, we only consider the Mean Squared Error (MSE) as
error metric, but experiment with filters of increasing complexity, and
efficiency.

1.4 Summary of Contributions

We present a framework for adaptive sampling and reconstruction
based on minimizing per-pixel MSE. In a greedy error minimiza-
tion procedure, we iterate over two steps: applying filters specifically
adapted to each individual pixel of the image and its neighborhood,
and distributing additional samples in an attempt to maximally re-
duce MSE in each iteration. This framework tightly couples the sam-
pling and filtering steps, ensuring that they complement each other’s
strength (namely, the low computation cost of filtering, and the un-
biased reconstruction of dense sampling). In the sampling step, our
main contribution is a strategy to distribute samples in each iteration,
in order to minimize MSE on a per-pixel basis.

In this thesis, we develop three variants of this framework, each
one using filtering approaches of increasing complexity and efficiency.
The first variant leverages scale selection using a filterbank of isotropic
Gaussian filters. Our main contribution in this approach is a robust

10 CHAPTER 1. INTRODUCTION

ADAPTIVE SAMPLING

ADAPTIVE FILTERING

Sample set Additional samples Error estimation

ReconstructionFiltering

BLACK BOX

Figure 1.5: Proposed framework overview. Our framework tightly
couples two core strategies: adaptive sampling and adaptive filtering.
In each iteration, we sample the image plane, and then filter the result.
We then estimate the error of the reconstruction, which we use to
define where additional samples should be taken. By increasing the
sampling rates in regions where adaptive filtering is less effective, we
ensure that the two strategies complement each other.

method to select the filter scale and estimate MSE. The second ap-
proach uses a generalized Non-Local Means (NL-Means) filter, which
is a robust non-linear filter that adapts itself to the signal. Our main
contributions in this variant are: (1) a generalization of the NL-Means
filter to handle data with non-uniform variance, (2) a dual-buffer strat-
egy that allows us to obtain error estimates to drive adaptive sampling,
and to extend our method to low-discrepancy sampling. The third

1.5. THESIS ORGANIZATION 11

variant extends the second one, by integrating scene feature buffers
(such as surface normals, position, direct visibility, etc.) to constrain
the filtering. Our main contributions in this third approach are: (1)
a pre-filtering strategy to handle noisy features, (2) a scale selection
strategy to robustly combine pixel color and feature constraints.

All three variants of our framework were implemented and com-
pared to other state of the art adaptive rendering methods on a variety
of scenes demonstrating a wide range of materials and light transport
effects.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2: brief overview of the rendering theory.

• Chapter 3: statistical tools used in our framework.

• Chapter 4: previous works, overview of the various adaptive
rendering strategies that have been explored throughout the
years.

• Chapter 5: previous works, overview of image space denoising
techniques that have been used in adaptive rendering frame-
works.

• Chapter 6: first implementation of our framework, leveraging
nonlinear isotropic filtering [RKZ11].

• Chapter 7: second implementation of our framework, leveraging
nonlinear anisotropic filtering [RKZ12].

• Chapter 8: third implementation of our framework, leveraging
nonlinear anisotropic filtering and accounting for scene features
to increase robustness [RMZ13].

• Chapter 9, conclusion and avenues for further research.

12 CHAPTER 1. INTRODUCTION

1.6 Related Problems

In this thesis, we develop a framework that aims to reduce the noise
of MCPT through adaptive rendering. There are, however, many other
techniques that have been proposed and which are often orthogonal
(and therefore can be combined) to the one we propose. We will
briefly present these techniques in this section. Lastly, we will present
alternative rendering methods that have been developed over the
years, including methods based on rasterization that have prevailed
in the industry for many years.

1.6.1 Improving ray tracing based methods

Sampling Patterns. At its core, MCPT is a sampling problem, and
the quality of sampling patterns is naturally a fundamental concern.
Initial research in this topic was concern in minimizing artifacts.
Stochastic sampling, and jittered sampling in particular [Coo86, DW85],
was introduced to address aliasing artifacts of regular sampling pat-
terns, by turning them into noise. Later work however, concentrated
specifically on improving the properties of the sample sets, namely
their discrepancy (which measures how evenly they are distributed
in the sampling domain). This has lead to work on stratified sam-
pling [Mit96], low-discrepancy sampling [KK02b], and Poisson-disk
sampling patterns [Mit87, Mit91, ODJ04].

Importance Sampling. In MCPT, so paths may be hard to sample
while having a large contribution to the overall shading. This would
be the case of an sky map, where the sun would carry almost all
the energy, while covering a very small solid angle. Uniformly sam-
pling such functions lead to very large energy spikes that yield very
noisy outputs. Additionally, if the paths carrying a large amount of
energy are very rare, they could be missed altogether. A common
solution for this type of problem is to use importance sampling, a
technique that samples more densely regions that contribute more to
the integral. This approach has been use to sample reflection func-

1.6. RELATED PROBLEMS 13

tions [LRR04], or environment maps [KK03, ARBJ03, ODJ04]. Meth-
ods have been designed to directly importance sample products of
functions [CJAMJ05, CETC06, RCL+08] (for instance, the product of
the reflection and lighting function) to great effect, but are generally
restricted in their applicability. One pitfall of importance sampling is
that it yields very bad results if the importance function is inappropri-
ately chosen. Multiple importance sampling [VG95b] addresses this
problem by combining multiple sampling techniques in a way that
minimizes the contribution of inefficient techniques. All results pre-
sented in this thesis were obtained using the PBRT renderer, which
employs multiple importance sampling.

Advanced Sampling Techniques. MCPT builds paths starting from
the camera. This is based on the observation that only paths reaching
the camera contribute to the final image. However, in cases where
the light source is hard to reach through random sampling, it is more
efficient to sample paths starting from the light source. Bidirectional
path tracing [LW93, VG95a] combines the two approaches, by sep-
arately tracing paths from the camera and from the light sources,
and connecting these. This results in a much more robust rendering
technique that preserves the key characteristics of MCPT. Commercial
renderers based on path tracing usually implement the bidirectional
variant. Metropolis light transport [VG97] was proposed to handle
scene where the light source is very difficult to reach, for instance
when light goes through a small slit. In such cases, bidirectional path
tracing is not sufficiently robust, since it is unlikely that randomly sam-
pled camera and light paths could be connected together. Metropolis
sampling solves this problem by mutating paths instead of randomly
generating paths from scratch. As soon as a valid path is found, i.e. a
path that connects the light to the camera, mutations allow to explore
the sampling space in the vicinity of this valid path. Lastly, photon
mapping [Jen96] proposes a idea similar to bidirectional path tracing,
by tracing individual photons emitted by the lights throughout the
scene. Tens of millions can be shot, and then stored in a data struc-
ture to be reused to render all pixels of this image, offsetting the cost

14 CHAPTER 1. INTRODUCTION

of shooting photons over many pixels. While we use mostly use MCPT
in this thesis, our proposed framework is also compatible with bidirec-
tional path tracing, Metropolis light transport, and photon mapping,
and we present some results using photon mapping in Chapter 8.

1.6.2 Alternative Rendering Methods

Rasterization. Methods based on rasterization have been, by far,
the most prevalent in the computer graphics industry. The core idea
in rasterization is to draw primitives (usually triangles) to the screen.
Rasterization algorithms can easily be parallelized on specialized
hardware, and produce high quality renderings at a low cost, which
makes them ideally suited for interactive or realtime applications,
such as games where they are used almost exclusively. Pixar’s REYES
architecture, which dates back to the 1980s, also made use of rasteri-
zation, instead of ray tracing, for performance reasons. The main issue
with rasterization based methods, is that they rely on a collection of
tricks to approximate various effects (depth of field, soft shadows,
etc.), and typically operate over multiple passes. Additionally, some
effects, such as reflection of nearby objects on curved surfaces, cannot
be easily approximated using rasterization, limiting its applicability.

Point Based Rendering. Global illumination is now commonly used
to enhance the realism of renderings, but is problematic to render us-
ing rasterization methods. A simple solution would be to render the
scene from the point of view of each pixel of the image, but this would
obviously be prohibitive. Point based global illumination [Chr08] al-
gorithms, where the scene is approximated using a hierarchical point
cloud (where high level nodes of the hierarchy represent a coarser
approximation of the geometry), offers an efficient solution. They
operate by rasterizing appropriate nodes of the point cloud hierar-
chy, which greatly improves efficiency, while offering a reasonably
accurate approximation of the global illumination solution. A similar
idea was previously used to approximate all lights in a scene using a
hierarchical cloud of lights [WFA+05, WABG06].

Chapter 2

Rendering Theory

Since this thesis is concerned with improving the efficiency of MCPT,
we propose in the current chapter to introduce the problem MCPT
was designed to solve, the rendering equation [Kaj86], as well as the
source of MCPT’s main artifact, the noise in rendered images.

The rendering equation was formulated in 1986 by James Kajiya
in his seminal paper [Kaj86]. In this work, Kajiya not only gave a con-
cise mathematical formulation of the rendering problem, but also pre-
sented a survey showing how previous work on ray tracing [Whi79],
distributed ray tracing [CPC84], and radiosity [GTGB84], could be
interpreted as approximate solutions to the rendering equation.

This chapter will present three different formulations of the ren-
dering equation: the directional formulation in Section 2.1, the three-
point formulation in Section 2.2, and the path integral formulation 2.3.
Each new formulation offers an increasingly flexible interpretation of
the rendering equation, and consequently offers an increasingly var-
ied set of sampling schemes, with the path integral formulation being
the most flexible.

15

16 CHAPTER 2. RENDERING THEORY

2.1 The Rendering Equation

Consider a point x onM, the union of all surfaces in the scene. The
outgoing radiance at x in direction ωo, Lo(x, ωo) is the sum of the
emitted radiance Le(x, ωo), and the scattered radiance Ls(x, ωo),

Lo(x, ωo) = Le(x, ωo) + Ls(x, ωo).

The emitted radiance Le, that is, the radiance emitted by light sources,
is given as part of the scene description, while the scattering Ls is com-
puted by integrating all incoming light and applying the Bidirectional
Reflectance Distribution Function (BRDF). The BRDF f(x, ωi → ωo)
is the ratio of reflected radiance along direction ωo to the irradiance
reaching x from direction ωi, and the scattering is

Ls(x, ωo) =

∫
H
Li(x, ωi)f(x, ωi → ωo) cos θidωi,

where H is the positive hemisphere of the surface at x, Li the incom-
ing radiance, f the BRDF, and θi the angle between ωi and the surface
normal at x. This leads to the directional form of the rendering equa-
tion,

Lo(x, ωo) = Le(x, ωo) +

∫
H
Li(x, ωi)f(x, ωi → ωo) cos θidωi. (2.1)

Consider a function xM , such that xM (x, ω) is the first intersection
point with the surfaces of the sceneM, when tracing a ray from x in
direction ω. Is is possible to rewrite the incoming radiance Li from
direction ω, as the outgoing radiance in direction −ω from the first
intersection point xM (x, ω),

Li(x, ω) = Lo(xM (x, ω),−ω). (2.2)

Equation 2.2 holds because radiance is constant along a ray in a
vacuum. Combining Equations 2.1 and 2.2, we get the following form

2.2. THE THREE-POINT FORMULATION 17

for the rendering equation:

Lo(x, ωo) =Le(x, ωo)

+

∫
H
Lo(xM (x, ω),−ω)f(x, ωi → ωo) cos θidωi.

This formulation has the advantage of making the recursive nature of
light transport more explicit. In particular, we see that the rendering
equation is actually an integral equation, that is, an equation where
one of the unknowns is an integral. Such equations generally do not
have an analytical solution, and must be solved numerically. Kajiya
therefore proposed the MCPT algorithm, based on a Neumann series
decomposition, which solves the rendering equation by recursively
sampling it: a ray is shot from the camera through the image plane un-
til it intersects the scene, and then a ray is shot from that intersection
in a random direction until it intersects the scene, and then another
ray is shot from that latest intersection, and so on until a stopping
criterion has been reached. The key advantage of MCPT, compared to
previous approximations to the solution of the rendering equation, is
that it considers all light transport effects, whereas previous methods
only considered a subset of effects. For instance, Whitted’s ray tracing
algorithm could not handle indirect illumination, apart for specular
reflection and refraction.

Lastly, we introduce the measurement equation, which we use to
compute the value Ij of a pixel j. The value of a pixel is the integral
of all incident radiance at the eye location e, multiplied by the pixel
importance function W j that weights the contribution along each
direction ωi to pixel j,

Ij =

∫
H
W j(ωi)L(e, ωi) cos θidωi.

2.2 The Three-Point Formulation

The directional formulation of the rendering equation leads to re-
cursive algorithms, such as MCPT, but some paths are very difficult

18 CHAPTER 2. RENDERING THEORY

to sample recursively, in particular in the presence of specular sur-
faces. The three-point formulation of the rendering equation is a step
towards the path integral formulation, which can be used to derive
more robust MC rendering algorithm beyond MCPT, such as bidirec-
tional path tracing, where paths are traced concurrently from the
camera and from the light sources.

Equation 2.1 formulates the rendering equation using a direc-
tional integral, the three-point form instead formulates it as a surface
integral. In this formulation, instead of considering radiance from a
point x in direction ω, we consider the radiance along a ray from x
to another point x′ of the scene,

L(x→ x′) = L(x, ω),

where ω is the unit vector pointing from x to x′. The BRDF can be
similarly rewritten as

f(x→ x′ → x′′) = f(x′, ωi → ωo),

where ωi is the unit vector pointing from x′ to x, and ωo is the unit
vector pointing from x′ to x′′.

We can now rewrite the rendering equation as an integral over
the scene surface areaM,

Lo(x
′ → x′′) = Le(x

′ → x′′)

+

∫
M
Lo(x→ x′)f(x→ x′ → x′′)G(x↔ x′)dx,

(2.3)

where G(x ↔ x′) is a geometry term accounting for the change of
integration parameters. Figure 2.1 illustrates the setup.

We can easily derive the relation between a directional element
dωi and a surface element dx,

dωi =
cosφ

||x− x′||2
dx. (2.4)

2.3. PATH INTEGRAL FORMULATION 19

x'

x

dx

dωi

φ

x'

x
φ

θi V(x' ↔ x)
||x-x'||2

Figure 2.1: The left image illustrates the change of variable, going
from directional integration to surface integration, as well as the rela-
tion of the area of elements on the hemisphere dωi and on the scene
surfaces dx. The right image illustrates the components of the geom-
etry term (see Equation 2.4). The geometry term models the relation
between the area of a surface element, dx, and a directional element,
dωi. The visibility term, V (x ↔ x′), is 1 if x and x′ are mutually
visible and 0 otherwise.

The geometry term G(x↔ x′) in Equation 2.3 combines Equation 2.4,
with the visibility term V (x↔ x′) seen in Figure 2.1, and the cosine
attenuation term cos θi,

G(x↔ x′) =
cos θi cosφ

||x− x′||2
V (x↔ x′).

Finally, the change of variable is used to rewrite the measurement
equation that gives the value Ij of pixel j as

Ij =

∫
M
W j(x→ e)L(x→ e)G(x→ e)dx. (2.5)

2.3 Path Integral Formulation

The path integral formulation of the rendering problem was proposed
by Veach [Vea97]. It shifts the point of view from that of recursively
sampling the integral equation, as is done in MCPT, to the idea of

20 CHAPTER 2. RENDERING THEORY

sampling paths themselves. This formulation was used to design pow-
erful extensions of MCPT, namely bidirectional path tracing [VG95a]
and Metropolis light transport [VG97].

While the results presented in this thesis make use of MCPT, and
not bidirectional path tracing or Metropolis light transport, we still
introduce the path integral formulation, since it offers a very simple in-
terpretation of the light transport problem. In practice, our framework
could be applied to bidirectional path tracing without any change.
However, Metropolis light transport could not be handled directly,
since it is substantially different from MCPT, and would therefore re-
quire a specifically designed adaptive framework, which could be an
interesting avenue for future work.

A path is defined as a set of vertices that starts at a light source
and, going through a pixel, ends at the camera. The set of all paths of
length k is denoted Ωk, and each path has the form

x̄ = x0x1 · · ·xk,

with 1 ≤ k ≤ ∞. Each point xi is a path vertex on a surface of the
scene (which could be a light source, the camera, or any other object
of the scene). Vertex x0 is on a light source, while vertex xk is the
camera. The path space Ω, which is the set of all paths, is the union
of all paths of all lengths,

Ω =

∞⋃
k=1

Ωk.

Noting fj(x̄) the contribution of a path x̄ to a pixel j, we can express
the value of a pixel j as

Ij =

∫
Ω

fj(x̄)dx̄, (2.6)

where fj(x̄) is the contribution of the path x̄ to the value Ij of pixel
j. We now write the path integral formulation, based on the mea-
surement equation of the three-point formulation (Equation 2.5), and

2.3. PATH INTEGRAL FORMULATION 21

recursively expand the radiance term:

Ij =

∞∑
k=1

∫
Mk

Le(x0 → x1)G(x0 ↔ x1)

k−1∏
i=1

f(xi−1 → xi → xi+1)

·G(xi ↔ xi+1)W j(xk−1 → xk)dx0 · · · dxk1 .
(2.7)

In Equation 2.6, the integration was done over Ω, the set of all paths
of all lengths. In Equation 2.7, this translates to the sum

∑∞
k=1, which

iterates over all path lengths, and the integral
∫
Mk , which corresponds

to the set of all paths of length k. The integration domain is Mk,
since each vertex of the path could be placed at any point of the scene
surfacesM.

The path integral in Equation 2.7 cannot be solved analytically
for non-trivial scenes, and must therefore be solved numerically. A
common approach is Monte Carlo (MC) integration, which we present
in Section 3.6, where paths are randomly sampled. It is precisely the
random sampling of paths that introduces the rendering noise that
we aim to reduce in this thesis.

22 CHAPTER 2. RENDERING THEORY

Chapter 3

Statistical Tools

The adaptive rendering framework developed in this thesis is empiri-
cal in nature. We start by randomly sampling the path integral, and
analyze the resulting set of samples, once the initial sampling is done.
The output of this analysis is used to drive the subsequent adaptive
filtering and sampling steps. This chapter presents the statistical tools
that are used to perform the analysis of the samples.

3.1 Random Variable

A random variable models the output of an uncertain process. The
value of the random variable is therefore not fixed, but can randomly
take any of a set of potential output values, called the sample space.
For instance, a random variable representing the output of rolling a
dice with six faces can take one of six values.

In MCPT, the sampling space corresponds to the set of paths that
light could follow through the scene, and each light path x̄ is a real-
ization of the high dimensional random variable X̄ resulting from a
random process that samples the high dimensional parameters of the
path.

23

24 CHAPTER 3. STATISTICAL TOOLS

3.2 Probability Density Function

The probability density function (PDF) of a random variable indicates
the relative likelihood of a given realization of the random variable,
that is, the relative likelihood of observing a given value. A PDF is
positive (or equal to zero) everywhere and integrates to one:

∫
p(x) =

1, and p(x) >= 0,∀x.
The probability of a random variable to take a value in a given

range is obtained by integrating its PDF over that range,

Pr[a ≤ X ≤ b] =

∫ b

a

p(x)dx. (3.1)

One interesting outcome of Equation 3.1 is that the probability of a
specific realization of a continuous random variable is zero, that is,
Pr [X = a] = 0.

Equation 3.1 illustrates the PDF on a one dimensional sampling
space. However, in rendering, paths are defined in a high dimensional
sampling space. The dimensionality of the rendering sampling space
depends on the light transport effects that are simulated, but for in-
stance a scene featuring depth of field and motion blur would have
a five dimensional sampling space (two dimensions for sampling the
image plane, two dimensions for sampling the lens aperture, and one
dimension for sampling time).

3.3 Expected Value of a Random Variable

The expected value of a random variable X is the integral of all the
values it can take over the sampling space Ω, weighted by its PDF,

E[X] =

∫
Ω

x p(x)dx.

In the general case, one cannot directly evaluate the expected value
of a random variable, since it may not have a closed form solution.

3.4. VARIANCE OF A RANDOM VARIANCE 25

The expected value of a measurable function f of X is computed as

E
[
f(X)

]
=

∫
Ω

f(x) p(x)dx.

In rendering, the expected value of a function of a random variable is
of particular interest, since each pixel value is actually the expected
value of the path contribution function defined in Section 2.3, fj(X̄),
which is a function of the random variable that represents the stochas-
tic sampling process.

3.4 Variance of a Random Variance

Variance is a measure of the spread of a random variable, or how far
it can deviate from the mean µ, and is computed as

Var [X] = E[(X − µ)2].

The mean µ is the expected value of the random variable, and the
variance can be reformulated as

Var [X] = E[(X − E[X])2] = E[X2]− E[X]2.

3.5 Estimator Bias

An estimator θ̂ is a statistic that is used to estimate a parameter θ
based on sampled data. The estimator θ̂ is to be distinguished from its
output, the estimate. The bias of a an estimator is a measure of any
systematic error that would prevent the estimator from converging to
the parameter being estimated, even using an infinitely large data set.
It is measured as the difference between the expected value of the
estimator E[θ̂] and the parameter θ:

Bias
[
θ̂
]

= E[θ̂]− θ.

26 CHAPTER 3. STATISTICAL TOOLS

An estimator is said to be unbiased if Bias
[
θ̂
]

= 0.
Let us now look at the bias of the mean of multiple independent

estimates,

Bias

 1

n

n∑
i=1

θ̂i

 =
1

n

n∑
i=1

Bias
[
θ̂i

]
= Bias

[
θ̂
]
, (3.2)

and its variance,

Var

 1

n

n∑
i=1

θ̂i

 =
1

n2

n∑
i=1

Var
[
θ̂i

]
=

1

n
Var

[
θ̂
]
. (3.3)

From Equations 3.2 and 3.3, we see that, if an estimator is unbiased,
averaging a growing number of independent estimates converges to
the right result. This result is useful for unbiased rendering algorithms
such as MCPT, since it allows easy parallelization of the rendering
process by computing multiple independent renderings on a cluster
of machines, and averaging the results to get a single rendering with
lower variance.

3.6 Monte Carlo Integration

We now very briefly present the concept of Monte Carlo integration,
which is central to MCPT. Monte Carlo integration is a numerical
approach to evaluating integrals by randomly sampling the integra-
tion domain. In its simplest implementation, one draws samples of a
random variable with uniform probability density, and averages their
contributions. We call samples drawn with a uniform probability den-
sity uniform samples. A one-dimensional integral

∫ b
a
f(x)dx could be

estimated using N uniform samples with the following Monte Carlo
estimator:

FN =
b− a
N

N∑
i=1

f(Xi),

3.6. MONTE CARLO INTEGRATION 27

where f(Xi) is the contribution of sample Xi. The Xi term corre-
sponds to independent and identically distributed random variables
used to model the process of drawing N samples of X. It is easy to
verify that the expected value of this estimator, E[FN], is an unbiased
estimator of our one-dimensional integral. Since samples are drawn
uniformly, the PDF is a constant, p = 1/(b− a). By applying the equa-
tion for the expected value, we have

E[FN] = E

b− a
N

N∑
i=1

f(Xi)

=
b− a
N

N∑
i=1

E
[
f(Xi)

]
=
b− a
N

N∑
i=1

∫ a

b

f(x)p(x)dx

=
1

N

N∑
i=1

∫ a

b

f(x)dx

=

∫ a

b

f(x)dx.

In practice, samples do not necessarily have to be generated using
a uniform PDF, but could use arbitrary PDFs, as long as the density is
non-zero and positive. This technique is called importance sampling,
and the Monte Carlo estimator becomes

FN =
1

N

N∑
i=1

f(Xi)

p(Xi)
,

where p(Xi) is the PDF used to draw the samples Xi. With the same
reasoning as before, we can show that the expected value of the new
estimator is the integral we want to evaluate. Importance sampling
can significantly reduce the estimator variance if the sampling PDF
(the importance function) is well chosen, that is if it has a similar

28 CHAPTER 3. STATISTICAL TOOLS

shape as the function we are integrating. The ideal importance func-
tion is proportional to the function itself, so that p(x) = cf(x), with c
a constant such that

∫
p(x)dx = 1, in which case the estimator has no

variance since f(Xi)/p(Xi) = c, and c is actually the integral value.
Note that importance sampling can actually increase the variance of
the estimator (and sometimes greatly) if the importance function is
badly chosen.

Let us go back to the problem of rendering, and in particular that
of estimating the path integral formulation of light transport (Equa-
tion 2.6), which we reproduce here:

Ij =

∫
Ω

fj(x̄)dx̄,

where x̄ is a path, fj(x̄) is the contribution of this path to pixel j, and
Ω is the set of all paths of all lengths. We see that this integral can be
directly evaluated using Monte Carlo integration,

Ij ≈
1

N

N∑
i=1

f(X̄i)

p(X̄i)
, (3.4)

where X̄i is a random sample path, and p(X̄i) the probability density
of the sample.

In rendering, each random sample path is a realization of a high
dimensional random variable, and that random variable is the set
of all the simulation parameters. The simulation parameters include
the screen position, the lens position (to simulate depth of field), the
time (to simulate motion blur), the light position, the polar coordi-
nates of the direction taken at each bounce in the scene, etc. Given
the high dimensionality of the sampling space, naive sampling would
lead to highly noisy renderings, and multiple variance reduction tech-
niques are commonly used. These variance reduction techniques can
be roughly split in two categories: advanced sampling techniques
and improved sample distributions. Note that most of these variance
reduction techniques are orthogonal to our framework.

As examples of advanced sampling technique that are commonly
used in rendering for Monte Carlo integration, we have importance

3.6. MONTE CARLO INTEGRATION 29

sampling [LRR04] or bidirectional path tracing [LW93]. However, we
will not discuss such techniques since they are orthogonal to the the
framework developed in this thesis.

Improved sample distributions aim at better covering the sam-
pling domain by preventing clumps of samples. Two common tech-
niques to obtain improved sample distributions are stratified sampling
and quasi-random sampling. In stratified sampling, the sampling do-
main is partitioned in non-overlapping strata, and a single sample
is put in each stratum. While this technique does not guarantee a
minimum distance between nearby samples, it does lead to a bet-
ter overall coverage of the sampling domain, and is also guaranteed
to give lower or equal variance to standard random sampling. In
quasi-random sampling, samples are taken from a predefined low-
discrepancy sequence [Nie92], designed to maximize the distance
between nearby samples. Unlike stratified sampling, quasi-random
sampling is not guaranteed to lower the variance of the Monte Carlo
estimator [Owe97], though it does most of the time. However, quasi-
random sampling generally performs better than stratified sampling
in practice, and sometimes significantly so. We discuss in Section 3.8,
how to compute the variance of a random variable when using strati-
fied and quasi-random sampling.

An important characteristic of Monte Carlo integration is that it is
unbiased, which makes MCPT an unbiased rendering algorithm. This
unbiasedness has two useful outcomes: 1) MCPT will converge to the
right result given infinitely many samples, and 2) independent MCPT
renderings could be averaged together to yields another rendering
with lower variance, allowing trivial parallelization of the rendering
process. In our framework, we do not preserve the unbiasedness of
MCPT, but we do preserve its consistency. In other words, our frame-
work will converge to the right result given infinitely samples, but av-
eraging independent renderings obtained with our framework would
not converge to the right result. The bias in our framework is due to
the filtering occurring during the adaptive reconstruction, which is
fundamentally biased as we show in the introduction of Chapter 5.

30 CHAPTER 3. STATISTICAL TOOLS

3.7 A Pixel Mean as a Gaussian Variable

A Gaussian variable is a random variable that has a Gaussian distri-
bution. It is bell-shaped, and defined solely by its mean and variance.
We propose to model each pixel value in an MCPT rendering using
this Gaussian model.

While this may appear to be a gross approximation given the wide
variety of sample distributions that can be observed in renderings, it
is actually appropriate since we’re not considering the sample distri-
bution, but rather the distribution of the sample mean. Indeed, as can
be seen in Equation 3.4, the value of each pixel is the mean of the
normalized path contributions f(X̄i)/p(X̄i) to that pixel. This fact
validates the Gaussian model, since, according to the central limit the-
orem, the distribution of the mean of sufficiently many independent
and identically distributed random variables is approximately Gaus-
sian distributed, regardless of the actual distributions of the random
variables.

3.8 Estimating Variance

In rendering, the variance of the random variable (the pixel mean in
our case) is not known in advance, since it depends on the specifici-
ties of the scene being rendered, and the variance has to be estimated
from the set of samples. In this section, we start by showing how to
compute the sample variance, assuming we have independent and
identically distributed samples. We then describe how we can esti-
mate the variance of correlated sample sets obtained using stratified
sampling or low discrepancy sampling. Stratified sampling and low
discrepancy sampling are two important cases, since they are very
commonly used in the computer graphics industry. Their use is moti-
vated by the fact that they reduce the variance of Monte Carlo estima-
tors, by ensuring that samples are more homogeneously distributed
in the sampling space.

3.8. ESTIMATING VARIANCE 31

3.8.1 Random Samples

We are interested in computing the variance of a random variable
using a set of sampled data, that is, a set of realizations of that random
variable. We can compute the variance of our sampled data set as:

S2 =
1

n

n∑
i=1

(Xi − X̄)2.

We will now relate this sample variance to the variance of the random
variable. First, we observe that the sample variance is itself a random
variable, and we can therefore compute its expected value:

S2 = E

 1

n

n∑
i=1

(Xi − X̄)2

 = E

 1

n

n∑
i=1

(
(Xi − µ)− (X̄ − µ)

)2
= E

 1

n

n∑
i=1

(
(Xi − µ)2 − 2(Xi − µ)(X̄ − µ) + (X̄ − µ)2

)
= E

 1

n

n∑
i=1

(Xi − µ)2

− 2 E
[
(X̄ − µ)2

]
+ E

[
(X̄ − µ)2

]

= E

 1

n

n∑
i=1

(Xi − µ)2

− E
[
(X̄ − µ)2

]
= Var [X]−Var

[
X̄
]

= Var [X]− 1

n
Var [X] =

n− 1

n
Var [X] .

As we see, the sample variance is actually a biased estimator the
variance of the random variable, which it underestimates by a factor
(n− 1)/n. We can easily correct this bias, which yields the corrected
sample variance, or unbiased sample variance:

s2 =
n

n− 1
S2 =

1

n− 1

n∑
i=1

(Xi − X̄)2.

32 CHAPTER 3. STATISTICAL TOOLS

3.8.2 Stratified Sampling

Let us now consider the problem of estimating the variance of an
estimator using stratified sampling. Stratification breaks down the
overall variance in two: the variance within each stratum, and the
variance between strata,

Vartotal = Varwithin + Varbetween.

Each stratum is evaluated independently, and we weight its contribu-
tion according to its size. For instance, to compute the mean µ of a
random variable X, using H strata, we use the following unbiased
estimator:

X̄str = W1X̄1 +W2X̄2 + · · ·+WHX̄H

=

H∑
h=1

WhX̄h.

We can then directly compute the variance of this stratified estimator,

Var
[
X̄str

]
= Var

 H∑
h=1

WhX̄h

=

H∑
h=1

Var
[
WhX̄h

]
=

H∑
h=1

W 2
hVar

[
X̄h

]
.

This derivation follows from the fact that the strata are sampled in-
dependently, which ensures that there is no covariance between the
strata.

3.8.3 Quasi-Random Sampling

Quasi-random sampling leverages low-discrepancy sequences [Nie92],
which attempt to maximize the distance between any pair of samples,

3.9. MEAN SQUARED ERROR 33

in order to maximize the coverage of the sampling space. This implic-
itly reduces the likelihood of having clump of samples, and therefore
the likelihood of under-sampled regions.

In rendering, Keller and collaborators were early proponents of us-
ing quasi-random sampling, and explored a variety of applications. In
particular, Kollig and Keller investigated quasi-Monte Carlo rendering,
and demonstrated it to be potentially significantly more effective at
reducing variance than stratified sampling [KK02a], in particular for
relatively low-dimensional sampling problems. Today, quasi-Monte
Carlo rendering is very widely used in the industry.

By construction, all samples in a quasi-random sequence are cor-
related (since their position is implicitly defined by that of the other
samples of the sequence), and it is therefore not possible to rely on the
traditional sample variance. We propose to use a dual-buffer approach
to solve this, where two renderings are generated using independent
low-discrepancy sequences. The per-pixel variance between the two
renderings is an unbiased, though very noisy, estimator of the sample
mean variance of each pixel. We describe our approach in more detail
in Section 7.1.1, and an improved implementation building on the
same idea in Section 8.2.

3.9 Mean Squared Error

The Mean Squared Error (MSE) of an estimator θ̂ is the metric used in
our framework to evaluate the quality of a reconstruction. While the
MSE is not a perfectly reliable predictor of perceptual errors [WBSS04b],
a recent survey of image quality metrics found it to be similarly useful
to other metrics [CHM+12].

The MSE of an estimator is directly related to its variance and
squared bias:

MSE
[
θ̂
]

= Var
[
θ̂
]2

+ Bias
[
θ̂
]2
. (3.5)

34 CHAPTER 3. STATISTICAL TOOLS

This follows from the definition of the MSE:

MSE
[
θ̂
]

= E[(θ̂ − θ)2] = E[((θ̂ − E[θ̂]) + (E[θ̂]− θ))2]

= E[(θ̂ − E[θ̂])2] + 2E[(θ̂ − E[θ̂])(E[θ̂]− θ)] + E[(E[θ̂]− θ)2]

= Var
[
θ̂
]

+ 2E[θ̂E[θ̂]− E[θ̂]2 − θ̂θ + E[θ̂]θ] + Bias
[
θ̂
]2

= Var
[
θ̂
]

+ Bias
[
θ̂
]2

An interesting outcome of Equation 3.5 is that we can evaluate
the accuracy of an estimator by independently studying its variance
and its squared bias. This is of particular importance in the context of
adaptive rendering, since we propose to reduce the variance of MCPT
renderings using adaptive filtering techniques. A filter is actually an
estimator, and we can therefore select the best of multiple filters if we
have access to their variance and bias. This will be the key of the first
implementation of our adaptive rendering framework, presented in
Chapter 6.

3.9.1 Filter Variance Reduction and Bias

As we just saw, we can evaluate the accuracy of a filter, as an estimator,
according to its variance and squared bias. Because of this, we would
be interested in defining the variance of a filter output, based on the
variance of its input. This amounts to measuring the filter variance
reduction potential. Later on, we will look at the bias of the filter.

Let us start with the definition of an image space filter, which
estimates each pixel value as a weighted average of its neighborhood.
Consider the estimation at pixel p,

f̂(p) =
∑

q∈N(p)

w(p, q)f(q), (3.6)

where q is a pixel in the neighborhood of p, N(p), and w(p, q) is the
weight of this neighbors. The weights are constrained to the range
[0, 1], 0 ≤ w(p, q) ≤ 1, and should sum up to 1,

∑
q∈N(p) w(p, q) = 1.

3.9. MEAN SQUARED ERROR 35

If the weights of the filter are fixed, then the variance of the filtered
image is

Var
[
f̂(p)

]
= Var

 ∑
q∈N(p)

w(p, q)f(q)

 =
∑

q∈N(p)

w(p, q)2 Var
[
f(q)

]
.

(3.7)

Assuming a uniform variance, that is, Var
[
f(q)

]
= c, the variance

reduction potential of the filter is given by
∑
q∈N(p) w(p, q)2. In prac-

tice, we are only guaranteed to lower the variance if the weights are
constrained to the range [0, 1], and if none of the neighbor pixels has
a larger variance than the central pixel.

The bias of a filter is linked to the difference between a pixel and
its neighborhood. Based on Equation 3.6, we can get the bias of a
filter,

Bias
[
f̂(p)

]
= E[f̂(p)]− E[f(p)]

= E

 ∑
q∈N(p)

w(p, q)f(q)

− E[f(p)]

=
∑

q∈N(p)

w(p, q)(E
[
f(q)

]
− E[f(p)])

=
∑

q∈N(p)

w(p, q)Bias
[
f(q)

]
.

In practice, the bias of the filter is the weighted average of the bias of
each neighbor used to estimate the center pixel. Given that bias can
be either positive or negative, it is quite possible that the overall bias
vanishes. For instance, an isotropic filter would not introduce any bias
when filtering a smooth gradient, since radially symmetric neighbors
would cancel out each other’s bias. In practice, we do not actually
know the bias induced by each neighbor contribution, and we have to
resort to other means of computing the filter bias. In Section 6.2.2, we
show how to estimate the bias when using isotropic Gaussian filters.

36 CHAPTER 3. STATISTICAL TOOLS

As an example, let us now consider the simple case of a box filter
covering a 2r+ 1× 2r+ 1 square neighborhood, where r is the radius
of the filter. The weights of the filter are constant and sum up to 1:

w(p, q) = 1/(2r + 1)2.

According to Equation 3.7, and assuming a uniform variance, the vari-
ance reduction of the box filter is:

∑
q∈N(p) w(p, q)2 = 1/(2r + 1)2.

For instance, a 3× 3 box filter would reduce the variance by a factor
of 9, a 5× 5 box filter by a factor 25, etc. To put things in perspective,
reducing variance by a factor of 9 through sampling would require
increasing the sampling rate by a factor of 9, a considerable computa-
tional effort. While it is tempting to use a larger filter for the improved
variance reduction, it will also lead to an increased bias. In rendering,
given the high dynamic range of the signal, the bias introduced by
some neighbors can be arbitrarily large.

We have discussed the case of image space filters with fixed weights,
but left aside the case of data-adaptive filters. A data-adaptive filter
is a filter whose weights depend on the content of some guide data
(which could be the data to be filtered itself), and usually aims at bet-
ter preserving edges in the signal, which in turn reduces the bias of
the filter. Unfortunately, our analysis of the variance of a filter does not
hold for data-adaptive filters that adapt to noisy input data. Indeed,
filter weights based on noisy data have variance, and are therefore
random variables whose variance will affect the filtered output. If
these noisy weights are applied to the noisy data they were derived
from, then this builds dependence between the random variables (that
is, a neighbor weight and its value), which further complexifies the
analysis of the filtered output variance. Therefore, to compute the vari-
ance of data-adaptive filters, we instead propose to use a two buffer
approach, where the filter variance is estimated using the variance
between two filtered buffers, and present it in Section 7.1.2.

3.9. MEAN SQUARED ERROR 37

3.9.2 Stein’s Unbiased Risk Estimator

In the previous section, we discussed means of independently estimat-
ing the bias and variance of an estimator, which are then summed
up to get its MSE. Stein’s Unbiased Risk Estimator (SURE) instead
directly estimates the MSE [Ste81]. The key aspect of SURE is that it
is an unbiased estimator of the MSE, and one can therefore minimize
SURE as a proxy for minimizing MSE.

Given y, an observation of x with a normal distribution N(x, σ2
y),

and F a weakly differentiable estimator, SURE is defined as:

SURE(F (y)) = ||F (y)− y||2 + 2σ2
y

dF (y)

dy
− σ2

y.

To get a better intuition of SURE, let us consider two cases. First, we
consider the case of the identity estimator, I(y) = y, with dI(y)

dy = 1.
Applying SURE to I gives:

SURE(I(y)) = ||I(y)− y||2 + 2σ2
y

dI(y)

dy
− σ2

y

= 0 + 2σ2
y − σ2

y = σ2
y.

In other terms, the MSE of the identity estimator is simply the vari-
ance of the input itself. Now, let us consider the case of an estimator,
G whose output does not depend on y at all, such that dG(y)

dy = 0.
Applying SURE to this estimator gives:

SURE(G(y)) = ||G(y)− y||2 + 2σ2
y

dG(y)

dy
− σ2

y

= ||G(y)− y||2 − σ2
y.

In other terms, the MSE ofG is given by measuring the squared differ-
ence between the estimate G(y) and the noisy input y, but subtracting
the variance of y, σ2

y, which is implicitly measured by ||G(y)− y||2.
We use SURE in the third implementation of our adaptive ren-

dering framework, presented in Chapter 8, to select between various
candidate filters on a per-pixel basis.

38 CHAPTER 3. STATISTICAL TOOLS

Chapter 4

Adaptive rendering
algorithms

In practice, “rendering” consists in solving the rendering equation,
introduced in Chapter 2. Since solving this equation involves evaluat-
ing high dimensional integrals with no analytical solution, researchers
have turned to numerical integration, which lead to MCPT, an algo-
rithm based on Monte Carlo methods. The two core parts of MCPT are
sampling and reconstruction. Sampling consists of generating paths
that span the whole integration domain, while reconstruction consists
in computing the image value at a given position as a weighted aver-
age of the contribution of nearby sampled paths, where each sample
weight is given by the pixel filter kernel.

The standard approach to MCPT is to perform uniform sampling
and reconstruction, that is, paths are generated with a uniform density
over the image plane, and a fixed reconstruction filter is used over the
whole image. Typical choices of pixel filters are the box or Gaussian
filters, or Mitchell’s filter [MN88]. While this standard approach to
MCPT could be considered to have solved the rendering problem
(at least for non pathological scenes), this is only true for infinite
sampling rates. In practice, sampling rates are finite and therefore

39

40 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

MCPT renderings are plagued with high frequency noise that can be
visually distracting. The adaptive rendering algorithms that will be
presented in this chapter all aim at reducing the level of noise in MCPT
renderings, and do so using two main strategies: adaptive sampling
and adaptive reconstruction. These strategies can be employed on
their own, but are often combined.

The first strategy for reducing rendering noise, adaptive sampling,
consists in increasing the sampling rate to the point where noise
artifacts are below a predefined error threshold. Since noise is not
uniform across the image plane (neither from a variance, nor from
a perceptual point of view), this naturally leads to non uniform sam-
pling rates, where some regions are sampled more densely than oth-
ers, hence the term adaptive sampling. Alternatively, instead of dis-
tributing samples until convergence, we can distribute a fixed sample
budget proportionally to the locally estimated error, which ensures
that the overall error is minimized. The key attribute and main dif-
ferentiation point between adaptive sampling methods is the error
metric they use. The seminal work of Don Mitchell [Mit87] consid-
ered a simple contrast metric, inspired by studies on human percep-
tion. Since then, other works have considered more advanced percep-
tual models [BM98, RPG99]. Ward et al.’s irradiance caching algo-
rithm [WRC88] used the magnitude of gradients to decide where to
put more samples. Many recent methods are based on frequency anal-
ysis theory, leveraging Nyquist’s sampling theorem [DHS+05], while
recent empirical methods often make use of relative MSE [RKZ11,
LWC12].

The second strategy for reducing rendering noise, adaptive recon-
struction, consists in using a reconstruction scheme adapted to the
local characteristics of each reconstruction location, with the goal of
generating the optimal reconstruction given a finite set of samples.
The relevant local characteristics are the level of noise and the frequen-
cies of the signal. For instance, noisy regions with a constant intensity
would be reconstructed with a filter with a wide support to minimize
variance, while regions with high frequencies would use a narrow sup-
port to prevent bias. Filter-based reconstruction, where a pixel value

41

is directly computed as a weighted average of nearby samples, is just
one approach among many. Alternative means of reconstruction have
also be considered in adaptive rendering, such as splatting [RW94],
transform domain denoising [ODR09], Poisson solvers [LKL+13], lo-
cal regression [BEM11], or anisotropic diffusion [McC99].

Surprisingly, the bulk of previous work in adaptive rendering has
been done in the last ten years, probably motivated by the rise in
popularity of MCPT and its derivatives. The recent surge of adaptive
rendering methods have arguably been sparked by Durand et al.’s fre-
quency analysis of light transport [DHS+05], and Hachisuka et al.’s
multidimensional sampling and reconstruction method [HJW+08].
These two papers are also representative of two fundamentally dif-
ferent approaches to adaptive rendering. The former would be an a
priori method, while the later would be an a posteriori method.

The main point differentiating a priori and a posteriori methods is
that a priori methods are analytical, and their behavior is governed by
an underlying model of the rendering problem, whereas a posteriori
methods are empirical, and their behavior is governed by the sampled
data gathered during the rendering process.

The rest of this chapter will attempt to give a broad overview of the
various adaptive rendering methods that have been proposed through-
out the years, based on our a priori vs. a posteriori classification, as
illustrated in Figure 4.1. Section 4.1 will cover a priori methods, and
the exposition will be split over Sections 4.1.1 to 4.1.3 according
to the type of analysis used (gradient, frequency, or light field struc-
ture analysis). Section 4.2 will cover a posteriori methods, and we will
start by describing the various error metrics used in Section 4.2.1, and
then the methods themselves in Section 4.2.2, classified according to
the strategies they use (adaptive sampling, adaptive reconstruction,
or both). Our exposition will be at a relatively high level, but Chap-
ter 5 will present in more details the main image space denoising
techniques used in adaptive rendering that are relevant to our own
work.

42 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

A priori methods

Gradient
analysis

Frequency
analysis

Light Field
analysis

A posteriori methods

Error
metrics

Adaptive
sampling & reconstruction

Figure 4.1: Overview of the structure of this chapter.

4.1 A Priori Methods

There is a wide array of information that a priori methods can lever-
age. For instance, the properties of the reflection of diffuse materials
has been extensively exploited in various methods. But other types of
information can be leveraged, such as the scene geometry, the camera
optics, the motion vectors, light field structure, and others.

By exploiting known aspects of specific light transport effects, a
priori methods can propose some strikingly efficient algorithms. This
is however a double edged sword, and these methods are in practice
constrained to a subset of light transport effects, in order to ensure
the analysis remains tractable. Consequently, a wide array of methods
have been proposed to handle an equally wide array of light transport
effects. Methods have been designed to handle indirect illumination,
depth of field, motion blur, soft shadows, sometimes restricted to dif-
fuse scenes, etc. While most methods handle only a single effect at
a time, some more recent ones have more general solutions that can
handle combinations of effects.

We will now present the main a priori methods, classified accord-
ing to the type of analysis they rely upon. We distinguish three main
types: gradient analysis, frequency analysis, and light field structure
analysis.

4.1.1 Gradient Analysis

Let us first define the gradient of a function, and then see how it can
be used to perform the two core tasks of adaptive rendering, that is,

4.1. A PRIORI METHODS 43

adaptive sampling and adaptive reconstruction.
The gradient of a function f is a vector whose components are the

partial derivatives of f . For instance, if f is defined in the Cartesian
system, its gradient is defined as

∇f =
δf

δx
i +

δf

δy
j +

δf

δz
k,

where i, j, and k are the standard unit vectors.
If we consider the problem of sampling, a small gradient indi-

cates that the function is locally constant, whereas a large gradient
indicates that the function value is changing rapidly. This suggests a
straightforward sampling scheme where regions with a large gradient
are sampled more densely than regions with a small gradient. This
will naturally lead to sparse sampling in constant regions, where local
correlation can be easily exploited in the reconstruction step. If we
consider the problem of reconstruction, the gradient can be used to
perform local extrapolation based on Taylor series, instead of simple
interpolation.

Irradiance Caching. In the late 80s, Ward et al. proposed an al-
gorithm for efficiently estimating diffuse interreflection that became
known as irradiance caching (IC) [WRC88]. This algorithm had a
very significant impact and has led to a long stream of publications,
and widespread industry use.

IC builds upon two facts, (1) indirect irradiance varies smoothly in
most regions, (2) Lambertian surfaces reflect light equally in all direc-
tions. The Lambertian assumption simplifies the rendering equation
to

Lo(x, ωo) =
ρ(x)

π

∫
Ω

Li(x, ωi) cos(θ) dωi =
ρ(x)

π
E(x),

where ρ(x) is the diffuse reflectance of the surface at position x,
Li(x, ωi) is the irradiance at position x from direction ωi, θ is the
angle between ωi and the surface normal at position x, and E(x) is

44 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

the irradiance at position x. We see that we can integrate the irradi-
ance, E(x), in a separate step, and only compute the shading (i.e. the
multiplication with the surface reflectance) afterwards.

The IC algorithm builds upon these two facts, by proposing to
interpolate high quality irradiance samples at sparse locations to re-
construct irradiance at all scene positions visible from the camera.
An upper-bound of the irradiance gradient, εi(x), is then used in this
interpolation scheme to inversely weight nearby irradiance samples,
so that an irradiance sample weight is computed as

wi(x) =
1

εi(x)
.

The irradiance gradient upper-bound is computed using a simple
model, called the “split-sphere” model because it considers the light-
ing from a half dark sphere. To detect when a new irradiance sample
should be computed, instead of interpolating the existing ones, a va-
lidity threshold is defined. If no nearby neighbor has a weight larger
than this validity threshold, irradiance is computed explicitly at the
current position, and the result is added to the irradiance cache for
later use. In practice, IC has a moderate memory overhead, while of-
fering drastic computation improvements. Figure 4.2 illustrates this
using the results from Ward et al.’s paper. In particular, we see that ir-
radiance is sampled densily along edges, but very sparsely in uniform
regions. The result is significantly smoother than the one using path
tracing.

Since its introduction, IC saw multiple improvements. Ward and
Heckbert derived the actual irradiance gradient estimate, instead of an
upper-bound, that they used to get smoother reconstruction using lin-
ear extrapolation with Taylor series [WH92]. Křivánek et al. extended
IC to handle low-frequency glossy materials [KGPB05], by storing
irradiance using spherical harmonics, instead of scalar, to preserve
the directional irradiance information. Jarosz et al. recently proposed
Hessian based irradiance extrapolation [JSKJ12], leveraging second
order derivatives for more accuracy in the Taylor expansion, and this
approach was further improved by Schwarzhaupt et al. [SJJ12]. De-
spite these improvements, IC remains a specialized method targeted

4.1. A PRIORI METHODS 45

Figure 4.2: Irradiance caching (left), compared to path tracing (right).
Irradiance caching yields a much smoother result thanks to the inter-
polation of high quality cache samples. Cache points are marked us-
ing blue spheres (middle). Discontinuities are densely sampled, while
smoothly varying regions are sparsely sampled. These images are
reproduced from [WRC88].

at handling indirect illumination constrained to diffuse or moderately
glossy materials. In contrast, our framework is meant to handle arbi-
trary light transport effects, as well as arbitrary materials.

4.1.2 Frequency Analysis

Adaptive rendering methods based on frequency analysis all aim to
leverage Nyquist’s sampling theorem, which states that, for a ban-
dlimited signal, a sampling rate of at least twice the signal bandwidth
ensures that no aliasing will occur. Nyquist’s sampling theorem also
solves the adaptive reconstruction part, since the filter should simply
be chosen so as not to overlap spectral replicas. This is a fundamental
result in signal processing, and a very strong theoretical basis, since it
guarantees the accuracy of the reconstruction. Figure 4.3 illustrates
how Nyquist’s theorem can be leveraged to handle motion blur and
derive a proper space-time filter and sampling rate, that achieves the
sparsest sampling density while preventing aliasing.

In rendering, the signal studied by frequency analysis methods
is the light field, and the analysis is usually done locally around an
individual light ray. All recent methods build on Chai et al’s work
on sampling for light field rendering [CTCS00], and Durand et al.’s

46 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

Figure 4.3: Frequency analysis of motion blur showing spectral repli-
cas due to sampling in the space-time spectral domain. The two axes,
Ωx and Ωt respectively correspond to the space and time dimensions.
Increasing the spatial sampling rate spreads the replicas along Ωx in
the spectral domain, ensuring they don’t overlap within the support
of the reconstruction filter (top row). Using a lower sampling rate
compacts the replicas, which causes aliasing artifacts due to spectral
overlap (middle row). By using a sheared reconstruction filter, the
signal is more tightly covered, which prevents aliasing (bottom row).
This figure is reproduced from [ETH+09].

frequency analysis of light transport [DHS+05].
The goal of frequency analysis is to define the bandlimits of the

light field spectrum. For instance, reflection off a Lambertian surface

4.1. A PRIORI METHODS 47

yield a low-frequency signal, whereas occlusions from nearby geome-
try produces hard shadows with high frequencies. In order to derive
the actual bounds of the spectrum, it is common to restrict the analysis
to a single light transport effect.

For instance, in the case of motion blur, Egan et al. [ETH+09] have
shown that the signal energy is mostly contained in a wedge defined
by the minimum and maximum velocities. Once the signal bandlimits
have been found, a corresponding filter, that covers as tightly as possi-
ble the signal can be derived. Finally, the optimal sampling rate is the
one that ensures that no overlap occurs in the support of the chosen
filter. We reproduce in Figure 4.4 a result from Egan et al. [ETH+09]
illustrating the wedge bounding the motion blurred signal in the fre-
quency domain.

Figure 4.4: Space-time and Fourier domain plots of a moving textured
2d plane. The space-time and Fourier plots correspond to a single scan
line of the image on the left. Because of perspective, velocities in the
image plane change across time, but a wedge based on the minimum
and maximum velocities bounds the resulting frequency spectrum.
These images are reproduced from [ETH+09].

Frequency analysis has been applied to many different effects.
Egan et al. have also studied soft shadows [EHDR11] and ambient oc-
clusion [EDR11], Soler et al. studied depth of field [SSD+09], Mehta
et al. studied soft shadows [MWR12] and diffuse indirect illumina-

48 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

tion [MWRD13].

One disadvantage of the frequency analysis methods just men-
tioned is that they only consider a single effect at a time, and offer
no way of handling combinations of effects (for instance, combining
motion blur and depth of field). However, recent work by Belcour et
al. [BSS+13] proposes a more general approach to frequency analysis.
Their approach models the frequency spectrum as a multidimensional
Gaussian and traces it through the scene. Each light interaction (trans-
port in free space, occlusion, reflection, etc.) is modeled as an operator
applied to the frequency spectrum. This allows to progressively up-
date the frequency spectrum, until the path reaches the image plane,
where frequency spectra are accumulated. Once the overall spectrum
is obtained, given sufficiently many individual spectra, it is projected
in the image plane in order to derive the appropriate sampling rate,
as well as the appropriate image space filter for the reconstruction.
See Figure 4.5 for an illustration. This effectively samples the fre-
quency spectrum, but allows to combine different effects, with the
only constraint that an operator must be defined for each interaction.
This method is a good example of a technique crossing the bridge
between a priori and a posteriori methods, since the operators repre-
senting light interactions are defined using prior knowledge, but the
actual frequency spectrum projected into each pixel is sampled, and
therefore only known a posteriori.

There are two significant drawbacks to frequency analysis meth-
ods. The first comes from their nature: they require an extensive
amount of prior information. For instance, for shading the frequency
spectra of all BRDFs and texture at every point of the scene are needed.
This imposes a large burden on the rendering pipeline and restricts
the applicability of the method. The second inconvenience is that the
analysis is only locally valid and fails near object boundaries, though
this issue can be mitigated through additional heuristics. In contrast,
the framework developed in this thesis builds exclusively on a posteri-
ori information, and is therefore much less intrusive for the rendering
pipeline and applicable to any scene. Additionally, in our framework,
filters are defined considering the contributions of a large neighbor-

4.1. A PRIORI METHODS 49

Figure 4.5: Tracing the frequency spectrum, modeled using 5d Gaus-
sians represented as covariance matrices, through the scene (a). The
resulting covariance matrices are accumulated in the image plane (b),
and used to define appropriate sampling rate (c) and filter bandwidth
(d). These images are reproduced from [BSS+13].

hood around each pixel, whereas frequency analysis only considers
the immediate vicinity of each ray. This allows us to build robust fil-
ters that cover a large neighborhood, while still correctly adapting to
the structures in the image.

4.1.3 Light Field Structure

Researchers have extensively studied the structure of light fields and
found that it often is highly anisotropic. The slope of the anisotropy
can be linked to various factors, such as depth [CTCS00], velocity [ETH+09],
blocker depth [EHDR11], or reflector depth [MWRD13].

Methods have been designed to explicitly exploit this anisotropy
by reprojecting samples in the high dimensional light field along these
slopes. This allows to take a sparse set of samples, and upsample it to
arbitrary rates. During reprojection, the sample value is untouched,
which assumes that the value is valid at the new position, as is the
case with Lambertian surfaces. For glossy materials, the reprojection
is improved by restricting the distance over which samples can be
reprojected according to the bandwidth of the material reflectance.

50 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

Lehtinen et al. proposed a method that could handle combinations
of motion blur, depth of field, and soft shadows [LAC+11], while of-
fering very good reconstructions, even for very sparse input sets. They
reproject samples at specific lens-time coordinates, along the know
anisotropy slopes, to obtain a scattered set of reprojected samples.
The key of their method is a robust criterion to detect occlusions, that
they use to accurately treat visibility of the reprojected samples. The
reprojection is illustrated in Figure 4.6, where we see samples be-
longing to two separate surfaces reprojected along their individual
slopes to a new position. As we see in the right image of Figure 4.6,
the algorithm only considers samples falling within a small radius R
of the reprojection location, corresponding to the dispersion of the
sample set. The idea is that stochastic sampling will leave holes with
a maximum radius R, and that these holes should be filled during
reconstruction.

Figure 4.6: Reprojection of samples based on the local anisotropy
of the light field (measured by the gradient dx

du). Only the samples
that reproject within a radius R of the reconstruction location are
considered. This figure is reproduced from [LAC+11].

Lehtinen et al. then extended this approach to reconstruction of
indirect illumination [LALD12], again by exploiting local anisotropy
in the light field.

Reprojection methods have two strong features. First, they are not
susceptible to noise in the sample set since they are guided by a prior
model of the light field anisotropy. Indeed Lehtinen et al. obtained

4.2. A POSTERIORI METHODS 51

good reconstructions even with a single sample per pixel. Second,
by operating directly on individual samples, they are able to accom-
modate conflicting anisotropy slopes. However, these methods are
restricted to a specific subset of effects. Our own framework has op-
posite properties. One the one hand, our framework is susceptible
to noise in the input, especially at very low sampling rates where
statistics are very unreliable, and our framework cannot accommo-
date conflicting anisotropy slopes, since we operate on pixels rather
than samples. For these reasons, we do not expect our framework to
match the presented reprojection methods on the subset of scenes
they can handle. On the other hand, our framework can be used on
scenes featuring arbitrary light transport effects and arbitrary materi-
als.

4.1.4 Summary Table

We summarize the main characteristics of the a priori methods cited
in this section in Table 4.1. As can be seen in this table, many effects
have been studied over the years, and methods based on studying
the light field (either its frequency spectrum or its structure), have
proved to be quite flexible. Still, all methods are restricted to a subset
of effects, sometimes even a single effect, though recent work shows
a clear trend towards generality.

4.2 A Posteriori Methods

Our own adaptive rendering framework belongs to the class of a pos-
teriori methods. These methods are empirical in nature, in the sense
that they start by producing a noisy rendering, which they then an-
alyze. This analysis relies only on the samples’ values (or the noisy
pixel values), and is then used to define an adaptive sampling strategy,
a locally adaptive filtering strategy, or both. The fact that the analysis
relies only on the sample values, but not on the various effects (and po-
tential combinations of effects) that lead to these observations, makes

52 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

Table 4.1: Summary of the main characteristics of the a priori meth-
ods cited. In the analysis types, “LF struct” stands for light field struc-
ture. In the light transport effects, “II” stands for indirect illumina-
tion (an additional “(G)” identifies methods that also support mod-
erately glossy surfaces), “MB” for motion blur, “SS” for soft shadows,
“AO” for ambient occlusion, and “DOF” for depth of field. In the sam-
pling strategies, “reproj” stands for reprojection. In the reconstruction
strategies, “IS” stands for image space, and “HD” for high dimensional
space. For high dimensional reconstructions, the dimensionality de-
pends on the effects being considered. For instance, reconstruction in
[ETH+09] is done in the space-time domain (3D), but reconstruction
in [LAC+11] is done in the space-lens-time domain (5D).

Method Analysis Effects Sampling Reconstruction

[WRC88] gradient II heuristic anisotropic IS
[WH92] gradient II heuristic anisotropic IS
[KGPB05] gradient II(G) heuristic anisotropic IS
[JSKJ12] Hessian II heuristic anisotropic IS
[SJJ12] Hessian II heuristic anisotropic IS
[ETH+09] frequency MB Nyquist anisotropic HD
[EHDR11] frequency SS Nyquist anisotropic HD
[EDR11] frequency AO reproj. anisotropic HD
[MWR12] frequency SS Nyquist axis-aligned IS
[MWRD13] frequency II(G) Nyquist axis-aligned IS
[BSS+13] frequency MB,DOF Nyquist anisotropic IS

SS
[LAC+11] LF struct. SS,MB reproj. anisotropic HD

DOF
[LALD12] LF struct. II(G),AO reproj. anisotropic HD

MB,DOF

this class of method generally applicable.

Adaptive rendering methods can be roughly classified into three

4.2. A POSTERIORI METHODS 53

categories: pure adaptive sampling methods, pure adaptive recon-
struction methods, and hybrid methods that combine adaptive sam-
pling and reconstruction. For adaptive sampling, the main differentia-
tion factor is the error metric used, while for adaptive reconstruction,
the main differentiation factor is the denoising technique used.

This section will present the main three error metrics used in a
posteriori methods, followed by a high level presentation of the main
adaptive rendering methods proposed over the years. However, we
will not explicitly cover the denoising techniques used for adaptive
reconstruction. Given the wealth of such denoising techniques, we
chose to cover this subject separately in Chapter 5, where we will
focus on the main image space techniques.

4.2.1 Error Metrics

The analysis in a posteriori methods relies on an error metric, which
will then guide the adaptive sampling, the adaptive reconstruction,
or both. For the sampling step, regions with a larger error will be
sampled more densely, and for the reconstruction step, regions with
a larger error will be denoised more aggressively.

Three metrics in particular have been relatively widely used over
the years: the contrast heuristic, perceptual models, and the MSE.

The Constrast Heuristic. The contrast heuristic was the metric used
in Mitchell’s seminal paper on adaptive sampling [Mit87], and later
on in multiple adaptive frameworks [HJW+08, ODR09, CWW+11].
Mitchell argued for the use of contrast rather than sample variance,
because contrast had been shown to be a better measure of the visual
perception of local variation. This contrast metric is computed as

C =
Imax − Imin
Imax + Imin

,

where Imax and Imin are, respectively, the maximum and minimum
intensity values of the recorded samples.

54 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

This contrast metric is directly related to the relative standard
deviation of the two-sample set {Imax, Imin}. To show this, we start
from the uncorrected sample variance definition,

S2
n =

1

n

n∑
i=1

(Ii − Ī)2.

The term “uncorrected” refers to the fact that this computation of
the sample variance is a biased estimator of the actual random vari-
able variance (see Section 3.8 for more information). For the set
{Imax, Imin}, we have n = 2, and

Ī∗ =
Imax + Imin

2
.

The subscript “ ∗ ” indicates that this estimation is for the two-sample
set containing only the maximum and minimum sample values. We
can then define the corresponding uncorrected sample variance,

S2
∗ = (Imax − Ī∗)2 + (Imin − Ī∗)2

=

(
Imax − Imin

2

)2

+

(
Imin − Imax

2

)2

=

(
Imax − Imin

2

)2

,

and the corresponding uncorrected relative sample standard devia-
tion, or coefficient of variation,

cv∗ =
S∗
Ī∗

=
Imax − Imin
Imax + Imin

= C.

The contrast metric therefore corresponds to a conservative estima-
tion of the uncorrected relative standard deviation that considers only
the two extreme sample values.

The main inconvenience of this metric is that it is very sensitive to
measurement noise, since outliers dominate the evaluation, i.e. the

4.2. A POSTERIORI METHODS 55

metric degenerates to C = 1 if Imax � Imin. In particular, C = 1
whenever Imin = 0. Given the large magnitude of outliers when
computing indirect illumination, and the relatively high rate of paths
carrying a null energy in scenes with light sources that are hard to
reach, we believe this metric is ill-suited for MCPT since it tends to
converge to C = 1 over the whole image plane for complex scenes.

Perceptual Metrics. Given that renderings are usually meant to be
viewed by human observers, it is natural to consider errors from a
perceptual point of view. The logic is that if an error is not noticeable
by a human observer, we should concentrate the rendering effort
elsewhere. This principle is at the core of many lossy compression
schemes for audio or video files and has also been leveraged by some
adaptive rendering scheme.

Bolin and Meyer [BM98] proposed a perceptually based adaptive
sampling algorithm. Their goal was two-fold: first, they wanted to
have an automated image evaluation that would allow a program
to detect and correct rendering artifacts without any input from the
user; second, they wanted to have the ability of prescribing the desired
visual quality, which would allow to mix rendering algorithms while
ensuring a uniform visual quality. They propose to use a simplified
vision model, based on the Haar wavelet decomposition, that can be
refined efficiently while rendering the scene, as samples are added.
Their system estimates the perceptual error by comparing to boundary
images which are obtained from the wavelet coefficients and their
variance, by adding or subtracting the noise standard deviation from
the coefficients. Samples are then placed in regions having the largest
predicted perceptual error.

Ramasubramanian et al. [RPG99] propose an adaptive sampling
algorithm that predicts the threshold of detectable artifacts. Their
model accounts for the fact that the human visual system is less sensi-
tive in regions with strong background illumination, high spatial fre-
quencies, and high contrast level. Ramasubramanian et al. observed
that the cost of evaluating the perceptual metric is prohibitive, even
for simplified models such as the one used by Bolin and Meyer, which

56 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

offsets the gain of the adaptive sampling. Consequently, Ramasubra-
manian et al. propose to use a pre-processing step that encodes the
spatially-dependent component of their model. While rendering, they
can then update the target luminance threshold without incurring
the cost of spatial analysis. They apply this approach to global illu-
mination. They pre-process the direct illumination solution, with the
addition of an approximative ambient term, to encode the response
to spatial frequencies and contrast, and then update the luminance
information as they render the global illumination. The main limita-
tion of this method is that it assumes a direct illumination solution is
readily available.

Perceptual metrics are undeniably valid choices, especially for
guiding adaptive sampling rates, however they are notoriously ex-
pensive, even though the method of Ramasubramanian et al. greatly
mitigates their cost at the expense of some approximations. Our own
framework does not make use of a perceptual metric, and this would
certainly be an interesting extension.

The Mean Squared Error, an Objective Metric. The MSE is the
metric we chose to use in our adaptive framework. It is very widely
used, mostly because it is very easy to compute, and usually a good
predictor of signal quality. Given an estimator Ô, its MSE is

MSE
[
Ô
]

= E[(Ô −O)2] = Var
[
Ô
]

+ Bias
[
Ô
]2
.

Please see Section 3.9 for a full derivation. The fact that the MSE is
directly related to the variance and bias of the estimator is particularly
useful, and was central to the first version of our adaptive framework
(see Section 6.2). Also, given that the variance of the sample mean
decreases linearly with the number of samples, i.e. Var

[
s2
n

]
= σ2/n,

we can predict the variance of the reconstructed image with more
samples (and therefore its MSE, assuming the same filter), which
can be used to estimate the expected error reduction of additional
samples.

In our framework, we make use of the relative MSE (rMSE),
rather than the MSE, to prevent bright regions from dominating the

4.2. A POSTERIORI METHODS 57

error estimation. This coarsely models the fact that human observers
are less sensitive to errors in very bright regions. The relative MSE is
computed as

rMSE
[
Ô
]

=
E[(Ô −O)2]

O2 + ε
,

where ε is a small value to prevent overweighting very dark regions,
as well as divisions by zero.

There has been some strong (and valid) criticism of MSE as an
error metric, as well as similar metrics such as absolute difference
or peak signal-to-noise ratio (PSNR). The main argument against the
MSE is that it is too sensitive to outliers. In their paper introducing the
Structural SIMilarity (SSIM) metric, Wang et al. [WBSS04b] present a
compeling illustration of various degraded images with very different
artifacts that all have the same MSE that underlines the shortcomings
of the MSE. Still, a recent study of state-of-the-art image quality met-
rics by Čad́ık et al. [CHM+12] showed that no image quality metric
performs better than the other, even including the absolute difference
metric, which is equivalent to the MSE.

4.2.2 Adaptive Sampling and Reconstruction

Historically, adaptive sampling long predated adaptive reconstruction.
Indeed, Whitted’s seminal paper on ray tracing [Whi79] in 1979 al-
ready proposed an adaptive sampling scheme. In contrast, the first
notable paper on adaptive reconstruction was Rushmeier and Ward’s
splatting algorithm [RW94], which was published in 1994. This is
most likely due to an aversion to the implicit bias introduced by
the denoising techniques used in adaptive reconstruction. Yet, recent
methods have shown that adaptive reconstruction can be strikingly
efficient, often significantly so compared to adaptive sampling, and
the current state of the art methods all combine adaptive sampling
and reconstruction.

A notable point of a posteriori adaptive rendering is that the vast
majority of methods proposed over the years operate on pixel values

58 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

in image space. This was a natural choice for the early methods, which
were severely constrained by the hardware at the time, both from a
computational point of view, and a memory point of view. However,
even the latest state-of-the-art methods operate on pixel values and in
image space. There are two known algorithms that operate on sample
values, rather than pixels: Sen and Darabi’s Random Parameter Filter-
ing (RPF) algorithm [SD12], and Hachisuka et al.’s Multidimensional
Adaptive Sampling and reconstruction (MDAS) algorithm [HJW+08].
The MDAS algorithm is also the only notable algorithm operating
in a high dimensional space, rather than image space. Both of these
algorithms (RPF and MDAS) are notoriously slow, which explains
the popularity of pixel based image space methods. Interestingly, re-
cent work on a priori methods, in particular the work of Mehta et
al. [MWR12, MWRD13] has argued in favor of simpler image space
reconstruction filters for performance reasons.

We will now present the main a posteriori adaptive rendering meth-
ods, starting with the adaptive sampling methods, then the adaptive
reconstruction methods, and finally the hybrid methods leveraging
both adaptive sampling and reconstruction, which are now prevalent.

Adaptive Sampling Methods. As previously mentioned, Whitted’s
paper on ray tracing already proposed an adaptive sampling scheme.
The idea was to evaluate the signal value at edges of a square region,
and subdivide it if the values differed too much. Kajiya’s rendering
equation paper [Kaj86], which introduced the path tracing algorithm,
mentioned the possibility of adaptive hierarchical integration. The
core idea was to recursively subdivide the sampling space according
to some subdivision threshold. Kajiya proposed a few threshold func-
tions, including one that would measure the variance in a subnode of
the hierarchy, but noted that no adaptive criteria had been found to
be particularly effective.

The following year, in 1987, Mitchell proposed his seminal work
on adaptive sampling [Mit87]. He noted that variance was not a good
adaptive criterion, since it could accurately indicate high frequency,
but not measure the perceptual impact. Instead, Mitchell proposed to

4.2. A POSTERIORI METHODS 59

use the contrast heuristic which more closely modeled the response of
the human eye to rapid changes in light intensity. Mitchell used this
contrast metric in a simple two-level sampling strategy, where pixels
are either sampled with a low density, or with a high density. The
image is then divided in supersampling cells containing eight or nine
low-density samples. The contrast metric is evaluated, in image space,
separately on the red, green, and blue channels, and if any channel
is higher than a predefined threshold (0.4, 0.3, and 0.6 respectively),
the whole cell is selected for high-density sampling. A lower contrast
threshold was used for green, since the human visual system is more
sensitive to green (the corresponding cone cells are more common
in the human retina). This simple adaptive sampling strategy was
shown to give good results combined with a basic ray tracer. Mitchell
observed that the adaptive sampling rate caused a problem during re-
construction, since densely sampled pixels would have a larger weight
(if the reconstruction pixel spans more than a single pixel). To solve
this issue, Mitchell rendered images on a subpixel grid, and then ap-
plied a recursive box filter which ensured gave uniform importance
to all pixels, no matter their sampling rate. We make use of a similar
subpixel grid strategy in our own framework (see Section 6.4).

While Mitchell’s contrast metric was inspired by studies on the
human visual system, it was still a very simple one. Logically, later
work proposed to use perceptual metrics that attempted to accurately
measure the human visual system response. This lead to the work of
Bolin and Meyer [BM98], Ramasubramanian et al. [RPG99], and Far-
rugia and Péroche [FP04]. All perceptually based methods share the
same common idea, that sampling density should be locally increased
until all pixels are below a pre-defined error threshold. Alternatively,
samples could be distributed to give a uniform error level across the
whole image plane, for a fixed sampling budget. As an example, we
reproduce in Figure 4.7 the result of Ramasubramanian et al’s method
which uses a perceptually based error metric to detect convergence.
Their method improves the indirect illumination solution until its arti-
facts are not perceptible when combined with the direct illumination
solution.

60 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

threshold map sample density

adaptive indirect illumination direct illumination +
adaptive indirect illumination

Figure 4.7: Adaptive sampling of indirect illumination using a per-
ceptually based error metric. A per-pixel luminance threshold under
which artifacts are not visible is computed (top-left). The resulting
sampling density (top-right) yields an indirect illumination solution
(bottom-left) with artifacts, that are not visible once added to the
direct illumination solution (bottom-right).These images are repro-
duced from [RPG99].

Perceptual models are obviously a very sound choice to guide adap-
tive sampling from a theoretical point of view. However, in practice,
their computational cost and inherent complexity mitigates their con-
tribution. Because of this, recent methods reverted to simpler metrics
to guide adaptive sampling, such as Mitchell’s contrast heuristic or,
more recently, the relative MSE.

4.2. A POSTERIORI METHODS 61

Adaptive Reconstruction Methods. Initial work on reconstruction
was not concerned with minimizing rendering noise, but instead with
minimizing aliasing artifacts. The focus was mainly on the spectral
properties of the reconstruction filter. Based on signal processing the-
ory, the goal of these early works was to approximate the ideal sinc
filter (which corresponds to a box filter in frequency space). A well
known result is Mitchell’s piecewise cubic filter [MN88]. Reconstruc-
tion in itself was not adaptive, but uniform. A single pixel filter was
chosen, and then used to reconstruct all pixels in the image.

While initial work on reconstruction was focused on aliasing ar-
tifacts, the focus of adaptive reconstruction is on minimizing noise
artifacts. As its name implies, adaptive reconstruction does not use a
fixed reconstruction filter for the whole image, but adapts the recon-
struction process to the local characteristics of the image. Rushmeier
and Ward proposed to distribute the energy of noise samples to their
neighborhood [RW94]. Given a measure of the amount of excess en-
ergy, a filter of appropriate size is defined. The size is determined so
that the amount of energy redistributed to each neighbor pixel does
not exceed a predefined threshold. The approach of Rushmeier and
Ward is an example of parameter estimation, with the parameter esti-
mated being the size of the filter in this case. The first implementation
of our filter employs a similar reconstruction scheme, based on a filter-
bank of isotropic Gaussian filters. One particularity of Rushmeier and
Ward’s algorithm, is that the filter is used to splat samples, instead of
gathering contribution from neighbor pixels. Since the filter weights
integrate to 1, this implicitly ensures energy preservation.

While Rushmeier and Ward’s method operated on samples, most
methods instead operate on pixel values. In this case, a noisy ren-
dering is first reconstructed using a standard uniform pixel filter,
and this noisy rendering is then denoised. This is the approach em-
ployed by McCool, who used anisotropic diffusion to perform denois-
ing [McC99]. Anisotropic diffusion was constrained by a conductance
map, built using a color coherence metric between adjacent pixels.
Because of noise in the rendering, the color coherence metric is not
always reliable. To improve it, McCool proposed enhancing the con-

62 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

ductance map using scene information stored in two feature buffers:
a depth buffer and a normal buffer, which respectively encoded the
depth and normal at the primary intersection point of each pixel.
These feature buffers, as well as the corresponding conductance maps,
are shown in Figure 4.8. The idea of using feature buffer to increase
the robustness of denoising proved to be particularly effective, and
current state-of-the-art methods heavily rely on such buffers.

Figure 4.8: Feature buffers store the depth of the primary inter-
section point (top left), and the normal of the primary intersection
point (top right). These buffers are then used to derive conductance
maps (bottom left and bottom right), that encode the image space
discontinuities contained in the feature buffers. Images reproduced
from [McC99].

Xu and Pattanaik [XP05] proposed to denoise MCPT renderings
using a bilateral filter, a structure aware filter (see Section 5.5 for a
full description of the filter). The weights of the bilateral filter are
defined by the affinity between pixels, which is a function of the spa-
tial distance, but also the photometric distance. This naturally pre-

4.2. A POSTERIORI METHODS 63

vents filtering across edges, since pixels on separate sides of an edge
have a large photometric distance. Unfortunately, the photometric
distance computation is unreliable in presence of noise, particularly
in the presence of outliers. Xu and Pattanaik proposed to compute the
photometric distance on a low-pass filtered version of the image, to
mitigate the impact of outliers.

Dammertz et al. [DSHL10], like Xu and Pattanaik, proposed a
method leveraging a structure aware filter. Instead of addressing the
noise issue with a pre-filtering pass as in the work of Xu and Pat-
tanaik, they instead used feature buffer as proposed by McCool. The
feature buffers are used in a cross-filtering scheme, that is, the affinity
between pixels is computed on the feature buffers, and the result-
ing weights are applied on the color buffer. This approach builds on
the fact that feature buffers are noise free in the absence of distri-
bution effects such as motion blur or depth of field. A similar idea
was developed by Bauszat et al. [BEM11], using local regression (see
Section 5.3 for a full description of local regression), based on the
values of feature buffers. Because they assume feature buffers to be
noise free, the methods of Dammertz et al. and Bauszat et al. have
a limited applicability. Given that both methods are concerned with
interactive rendering, this limitation is a decent trade-off. The goal
of our framework is fundamentally different, since we are concerned
with offline rendering where time budgets are much larger, but we
want to handle all effects supported by MCPT.

While cross-filtering using feature buffers is a robust solution
when the feature buffer is noise free, it breaks down when these
buffers are themselves noisy, which happens with distribution effects
such as motion blur or depth of field. Sen and Darabi [SD12] proposed
a method that would detect noisy features, by measuring their depen-
dency on the Monte Carlo random parameters. In their algorithm, the
noisier a feature is, the less it contributes to the affinity computation.
Sen and Darabi’s algorithm operates on individual samples, which
is computationally expensive. Our own framework operates on pixel
values, and has a drastically lower overhead.

64 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

Hybrid Methods. The most successful adaptive rendering methods
combine both adaptive sampling and adaptive reconstruction. The
first method to explicitly leverage both strategies was Hachisuka et
al.’s Multidimensional Adaptive Sampling and reconstruction (MDAS)
algorithm [HJW+08]. The MDAS algorithm made use of Mitchell’s
contrast heuristic to guide the adaptive sampling, while reconstruc-
tion was performed using nearest neighbor interpolation. The MDAS
algorithm is notable for being the only example of an a posteriori
method operating directly in the high dimensional sampling space.
Working in the high dimensional sampling space allowed sampling to
explicitly target high dimensional discontinuities, without resorting
to brute force sampling. This efficiency however, came at the cost of
scalability, since the cost of performing reconstruction grows exponen-
tially with the dimensionality in their algorithm. Consequently, while
the MDAS algorithm could in theory be applied to arbitrary scenes, in
practice it is restricted to scenes with a relatively low dimensionality
(5D or less).

Overbeck et al. proposed an image space algorithm which pro-
posed to render images directly in the wavelet domain. This allowed
a multi-scale analysis of the rendering as sampling was performed.
The adaptive sampling was also guided Mitchell’s contrast metric, but
combined with the wavelet coefficients. The contrast metric would
identify noise in smooth regions, while wavelet coefficients would
identify edge regions. Samples were then distributed at an appro-
priate scale of the wavelet decomposition (a coarse scale for noise
in smooth regions, and a fine scale for edges). Finally, a smooth re-
construction was obtained by wavelet thresholding, that is, setting to
zero small wavelet coefficients that encode noise (see Section 5.2 for
a description of wavelet thresholding).

Overbeck et al.’s algorithm was the main inspiration for our frame-
work. The first implementation of our framework used a similar multi-
scale approach, but using a filterbank of isotropic Gaussian filters in-
stead of wavelet decomposition (see Chapter 6 for all details). For
each pixel, we would select the filter yielding the smallest reconstruc-
tion MSE, and we estimated the MSE using an analytical model de-

4.2. A POSTERIORI METHODS 65

rived specifically for Gaussian filters. Using the MSE, instead of a
heuristic as in Overbeck et al.’s work, proved to be much more robust
and lead to significantly improved results, despite using a simpler
filtering scheme (isotropic Gaussians instead of wavelet threshold-
ing). Li et al. [LWC12] extended our work by using a filterbank of
cross-bilateral filters (leveraging feature buffers), instead of isotropic
Gaussians. They estimated the MSE of their cross-bilateral filters us-
ing Stein’s Unbiased Risk Estimate (SURE, see Section 3.9.2 for a full
description). The use of cross-bilateral filtering yielded significantly
improved results, but residual artifacts remained due to robustness
issues with noisy feature buffers. Following Li et al.’s work, the latest
implementation of our framework, presented in Chapter 8, uses SURE
to estimate the MSE of the filtered output.

Kalantari and Sen [KS13] proposed a generic framework that
could leverage state-of-the-art image denoising techniques, and ap-
ply them to MCPT renderings. The issue with classical image denois-
ing techniques is that they assume uniform variance across the im-
age plane, whereas the variance of MCPT renderings is highly non-
uniform. In order to leverage image denoising techniques, one has
first to reformulate them assuming non-uniform variance. Kalantari
and Sen’s approach proposed to simply perform multiple denoising
passes assuming a range of variance values, and then locally inter-
polate the various filtered images according to the actual variance
of each pixel. This algorithm gave good results, but could only be
applied after tone mapping (since most image denoising algorithms
assume low dynamic range images), and could not leverage feature
buffers.

4.2.3 Summary Table

Table 4.2 summarizes the main characteristics of the a posteriori meth-
ods cited in this section and the three implementations of our frame-
work. This table does not list the light transport effects supported,
since all cited methods are generic (though some, like [DSHL10] give
bad results if their assumption of noise free features is violated).

66 CHAPTER 4. ADAPTIVE RENDERING ALGORITHMS

Table 4.2: Summary of the main characteristics of the a posteriori
methods cited. The three implementations of our framework are iden-
tified with an “∗”. In the “Strategy” column, “AS” stands for Adaptive
Sampling, and “AR” for Adaptive Reconstruction. In the “Reconstruc-
tion” column, “IS” stands for Image Space, and “SS” for Sampling
Space (an additional “(F)” identifies methods that leverage informa-
tion contained in feature buffers). The “Metric” column indicates
the metric used to guide adaptive sampling, and is therefore empty
for methods performing only adaptive reconstruction. Adaptive re-
construction does require a metric to set the aggressiveness of the
denoising, and this metric is always the signal variance. In the “Re-
construction” column, “struct. aware denoising” refers to the use of
filters that adapt their weights to the signal value, in order to preserve
its structure, like the bilateral filter (see Section 5.5).

Method Strategy Metric Reconstruction

[Mit87] AS Contrast IS fixed pixel filter
[BM98] AS Perceptual IS fixed pixel filter
[RPG99] AS Perceptual IS fixed pixel filter
[FP04] AS Perceptual IS fixed pixel filter
[RW94] AR - IS parameter estimation
[McC99] AR - IS(F) anisotropic diffusion
[XP05] AR - IS struct. aware denoising
[DSHL10] AR - IS(F) struct. aware denoising
[BEM11] AR - IS local regression (F)
[SD12] AR - IS(F) struct. aware denoising
[HJW+08] AS+AR Contrast SS nearest neighbor
[ODR09] AS+AR Contrast IS wavelet thresholding
[RKZ11]∗ AS+AR MSE IS parameter estimation
[RKZ12]∗ AS+AR MSE IS struct. aware denoising
[LWC12] AS+AR MSE IS(F) struct. aware denoising

and parameter estimation
[RKZ11]∗ AS+AR MSE IS(F) struct. aware denoising

Chapter 5

Image space denoising
techniques

In this chapter, we present the main image space denoising techniques
that have been applied to the problem of reducing the variance of
MCPT renderings. The core idea of image denoising is to reduce vari-
ance by estimating each pixel as a weighted average of its neighbor-
hood,

û(p) =
∑

q∈N(p)

w(p, q)u(q), (5.1)

where p is the pixel considered, û(p) the filtered color value at pixel
p, N(p) is a square neighborhood centered on p, and u(q) the color
of the neighbor pixel q. This formulation can be trivially extended to
handle (R,G,B) triplets, but we will use the single-channel notation for
simplicity. Equation 5.1 builds on the assumption of local similarity,
which implies that nearby pixels are reasonably good predictors of
the value of a pixel.

Estimating the value of a pixel as a weighted average of its neigh-
borhood is a fundamentally biased process, where the color of each

67

68 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

neighbor q is used as an estimator for the color at pixel p. Conse-
quently, the bias of the filtered value, û(p), is the weighted average of
the bias at each neighbor q,

Bias
[
û(p)

]
=

∑
q∈N(p)

w(p, q)Bias
[
u(q)

]
=

∑
q∈N(p)

w(p, q)(E[u(q)]− E[u(p)]).

The main appeal of image space denoising techniques is that they
have a formidable variance reduction potential, at a very moderate
computational cost. The variance of the filter output is

Var

 ∑
q∈N(p)

w(p, q)u(q)

 =
∑

q∈N(p)

Var
[
w(p, q)u(q)

]
=

∑
q∈N(p)

w(p, q)2 Var
[
u(q)

]
.

In a simple case with constant variance, Var [Xi] = σ2, the sum of
the squared filter weights directly define the variance reduction of
the filter. For instance, for a 3 × 3 filter, we have

∑9
i=1(1/9)2 = 1/9,

i.e. the variance will be reduced by a factor of 9. To get a similar
variance reduction through sampling, one would have to increase the
sampling rate by a factor of 9. For MCPT, this would mean increasing
the rendering time by a factor of 9 as well, whereas the filtering cost
would generally be much lower. In practice, rendering times are often
in the order of minutes, or even hours, while filtering times are gen-
erally in the order of seconds. Figure 5.1 illustrates the two strategies
(increasing the sampling rate versus increasing the filter support) for
box filters of size 3× 3, 9× 9, and 27× 27. Figure 5.1 illustrates one
inconvenience of filtering, which is that it can only get rid of the low
frequencies of the noise using a very large filter support. The resid-
ual low-frequency noise is quite visible in smooth areas, as the result
using a 9×9 box filter illustrates. This will prove to be an important is-
sue, especially for video sequences where uncorrelated low-frequency

69

Var = (σ/1)2 Var = (σ/3)2 Var = (σ/9)2 Var = (σ/27)2

1 spp 32 spp 92 spp 272 spp

3× 3 9× 9 27× 27
box filter box filter box filter

Figure 5.1: Sampling a uniform gray image (f = 0.5) with added
Gaussian noise of standard deviation σ = 0.1. In the top row, we take
increasingly many samples, while in the second row with filter the
image obtained with 1 sample per pixel (spp) using increasingly large
box filters. For each column, the variance of both outputs is the same.

noise leads to large scale flickering that is very noticeable. Naturally,
the example given in Figure 5.1 is a simplified example, meant to
illustrate the appeal of filtering. In practice, our task will be much
more complicated, since filtering will be done in non uniform areas,
where edges must be preserved.

A full survey of denoising techniques would be prohibitive, and
we will therefore restrict ourselves to image space techniques that
have been used in adaptive rendering methods. Section 5.1 covers
parameter estimation, where the goal is to select the optimal param-
eters of the denoising filter. Section 5.2 covers transform domain
filtering, where processing occurs after transforming the image into a
sparse domain. Section 5.3 covers regression, where the image is re-
constructed by fitting observed values to a model. Section 5.4 covers

70 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

anisotropic diffusion, where the image is denoised using a constrained
diffusion process. Section 5.5 covers bilateral filtering, where weights
are based on a pairwise affinity model on individual pixels, and its ex-
tension, the non-local means filter, which extends the affinity model
to consider square patches of pixels. Lastly, Section 5.6 covers the
BM3D algorithm of Dabov et al. [DFKE07], an hybrid technique that
combines transform domain filtering with the spatial domain patch
matching of the non-local means filter.

5.1 Parameter Estimation

Given a filter with one or more parameters, the goal of parameter
estimation is to select the set of parameters yielding the best recon-
struction. Usually, parameter estimation is done on a single parameter
to simplify the analysis. The core question in parameter estimation is
defining a metric evaluating the quality of the reconstruction.

A common approach is to select the parameter yielding the lowest
MSE. Recall from Section 3.9 that the MSE of an estimator Ô is the
sum of its variance and squared bias

MSE
[
θ̂
]

= Var
[
θ̂
]2

+ Bias
[
θ̂
]2
.

A more aggressive filter will yield a lower variance, but also an in-
creased bias. The key is in finding the best balance between the two.
We illustrate the conflicting constraints of variance and bias in Fig-
ure 5.2, by filtering a simple 1D function corrupted with additive
Gaussian noise. In the left image, we added a significant amount of
noise, and in the right image, we added very little noise. We denoise
the noisy data (blue plot) using two Gaussian filters. The first one has
a small standard deviation (green plot, σ = 2), and the second one
has a large standard deviation (red plot, σ = 4). In the right image,
with little additive noise, both filters yields a smooth output, and the
larger bias introduced by the larger filter is obvious. In the left image,
with significant additive noise, the difference in variance reduction
of both filters is visible on the wide lobe: the small filter output has

5.1. PARAMETER ESTIMATION 71

significant residual variance, whereas the large filter output is smooth.

−2 0 2
0

0.2

0.4

0.6

0.8

noise σ: 0.10

ground truth

data

σ = 2

σ = 4

−2 0 2
0

0.2

0.4

0.6

0.8

noise σ: 0.01

Figure 5.2: Filtering noisy data corrupted with additive Gaussian
noise (blue plot) using Gaussian filters of varying standard deviation
(green and red plots). The smaller filter (green plot) is less biased, but
its output is still quite noisy on the left image where data has a high
variance. The larger filter yields a smooth output in both cases, but is
significantly biased. The wide lobe of the function is better resolved
by the larger filter in the left image, and by the smaller filter in the
right image, underlying the need to balance the variance reduction
and the increased biased, in order to minimize the overall MSE.

Parameter estimation based on MSE minimization raises the ques-
tion of estimating the MSE of the filtered output. This can be done
in an analytical way, which is the approach we use in the first imple-
mentation of our framework (see Chapter 6, Section 6.2), or using a
generic tool such as Stein’s Unbiased Risk Estimate (SURE, see Chap-
ter 3, Section 3.9.2 for more information).

Katkovnik proposed another approach for parameter selection, the
intersection of confidence interval (ICI) algorithm [Kat99]. The core
idea of ICI is to progressively adjust the parameter of the filter to make
it more aggressive, while verifying that each new filtered output is

72 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

consistent with the previous ones. Consistency is defined according
to each output confidence interval, based on the output value and its
variance. This process is illustrated in Figure 5.3. In the ICI algorithm,
the shifting center of each confidence interval models the growing
bias, while the shrinking interval range models the diminishing po-
tential variance gain.

h0 h1 h2 h3 h4 parameter

in
te

rs
e
ct

io
n

 o
f

co
n
fi
d

e
n

ce
 i
n

te
rv

a
ls

h0 h1 h2 h3 h4 parameter

in
te

rs
e
ct

io
n

 o
f

co
n
fi
d

e
n

ce
 i
n

te
rv

a
ls

estimated
mean

estimated
variance

Figure 5.3: The Intersection of Confidence Intervals (ICI). We pro-
gressively increase the aggressiveness of a filter by adjusting its pa-
rameter h, while ensuring consistency of the each filtered output with
all previous ones. Consistency is defined by checking for an existing
intersection over all confidence intervals. The confidence interval is
centered on the filtered value, while the interval range is proportional
to the filtered value variance. The shifting interval center models the
increased bias, while the shrinking interval models the diminishing
variance reduction potential. The ICI algorithm selects the last param-
eter value with a consistent output (h3 in this case).

Parameter estimation was used in multiple adaptive rendering al-
gorithms [RW94, RKZ11, LWC12]. In each case, it was used to define
the size of the filter neighborhood.

5.2. TRANSFORM DOMAIN DENOISING 73

5.2 Transform Domain Denoising

In transform domain denoising, the signal is transformed from the
spatial domain to an other domain where it has sparse support. Fil-
tering occurs in this sparse domain, where signal can be more easily
preserved, before transforming the signal back into the spatial do-
main. Transformation is performed by projecting the signal onto a set
of basis functions, and the inner product of the signal with each basis
functions defines the coefficients of the transform. A transform do-
main is said to have sparse support when most transform coefficients
have little to no magnitude.

The most direct approach to transform domain denoising is coef-
ficient thresholding, which we will illustrate using the wavelet trans-
form. However, the principle of coefficient thresholding holds for all
transforms. The wavelet transform encode both the frequencies of
the signal and their locations, along specific orientations based on the
wavelet basis used, and therefore allows for a local and anisotropic
processing of images at a specific frequency subband. The frequency
subband corresponds to the wavelet scale, where coarse scales encode
low frequencies, and finer scales encode high frequencies. Coefficient
thresholding consists in setting to zero coefficients assumed to be en-
coding noise, that is, coefficients with a magnitude smaller than the
noise standard deviation. Thresholded coefficients Ĉ are computed
as

Ĉ =

{
C, if |C| ≥ ασC
0, otherwise

where C are the wavelet coefficients, σC is the standard deviation
of the noise in the coefficients, and α is a user defined parameter
(typically between 1 and 3). Alternatively, it is possible to perform
soft thresholding by subtracting the noise from the coefficients,

Ĉ = sign(C) ·max (0, C − ασC) .

Figure 5.4 illustrates how the well-known Cohen-Daubechies-Feauveau
9/7 (CDF 9/7) wavelets can be used to decompose a noisy image, and

74 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

denoise it using soft thresholding. Thresholding can be improved by
choosing the α value leading to the lowest MSE, and Donoho and
Johnstone [DJ95] proposed to do this using SURE-based minimiza-
tion (see Chapter 3, Section 3.9.2 for a description of SURE). Wavelet

input (crop) noisy input wavelet coefficients

output (crop) denoised output reference

Figure 5.4: Denoising using wavelet thresholding. An image corrupted
with Gaussian noise of standard deviation σ = 0.1 is decomposed
using CDF 9/7 wavelets. The reconstruction after soft thresholding
of the coefficients is much smoother and preserves the main features
of the image. The crop output suffers from the well-known ringing
artifacts of wavelet thresholding.

thresholding has been used extensively for denoising, and particu-
larly in the current state of the art image space filter, BM3D, that will
be further detailed in Section 5.6. In the context of MCPT, wavelet
thresholding was used by Overbeck et al. [ODR09].

5.3. REGRESSION 75

Another successful wavelet domain denoising approach was pro-
posed by Portilla et al. [PSWS03]. Their algorithm builds on the ob-
servation that the amplitudes of nearby coefficients are strongly cor-
related, and that local clusters of coefficients can be modeled using
Gaussian Scale Mixtures (GSM). The GSM model is then used to di-
rectly estimate the expected value of each noisy coefficient.

The main inconvenience of basic wavelet domain denoising meth-
ods is that they are prone to ringing artifacts along edges, as well
as localized artifacts in smooth regions (both of which can be seen
in Figure 5.4). These artifacts occur following the thresholding of
fine scale (i.e. high frequency) coefficients, which are found along
edges. The ringing nature of these artifacts is directly related to
the shape of the wavelet bases. These artifacts highlight a funda-
mental issue with wavelets, which is that they can only efficiently
handle zero-dimensional singularities. However, in image processing,
zero-dimensional singularities (i.e. point singularities) are rare. The
most common singularities in images are 1-dimensional edges (lines),
which cannot be efficiently represented by conventional wavelets [CD99].
This observation has lead to other representation better suited for
such singularities, such as wedgelets [Don99], ridgelets [CD99], and
others.

In contrast to transform domain denoising, the three implementa-
tions of our filter (presented in Chapters 6, 7, and 8) operate directly
in the spatial domain, and therefore do not suffer from ringing ar-
tifacts due to manipulation of wavelet coefficients. In addition, the
implementations of our framework presented in Chapters 7 and 8
leverage a data-adaptive filter that directly encodes the edges of the
image.

5.3 Regression

Regression analysis can be used to estimate the relation between one
variable, and multiple other variables. Intuitively, the goal of a regres-
sion analysis is to predict the output y of a function f(x). This is

76 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

done by first establishing a plausible regression model, that is then
fitted onto the data in a least-squares sense. This idea is illustrated in
Figure 5.5, where we fit a small data set using polynomials of increas-
ing degrees. We perform both global and local regression. In global
regression, all data points have the same weight. In local regression,
data points near the evaluation point are given a larger weight when
fitting the model. Using local regression, even a simple polynomial
of degree 1 (a line) gives a smoothly varying reconstruction. As the
degree of the polynomial increases, it starts to fit more precisely the
input data. The “perfect” fit obtained using a polynomial of degree 6
is not necessarily desirable, as the data points could be noisy, in which
case the model would actually be fitting the measurement noise. This
is usually referred to as “over fitting”. Note that, when using a polyno-
mial of degree 6, the result of global and local regression is the same.
Some non-parametric methods for regression analysis (where the fit
model is derived from the data itself) exist, but they require larger
data sets.

Regression analysis is closely related to machine learning, since
it can be used to fit a model on training data, and then apply it to
predict the result on new data points. In the context of denoising,
regression analysis is used to smooth out a signal. For instance, in
Figure 5.5, the curves fitted using polynomials of degrees 1 and 2 are
smooth, but still follow the general trend of the data.

The guided image filter, introduced by He et al. [HST10], is based
on local regression analysis. Their approach builds on a local linear
model (that is, a polynomial of degree 1), combined with a guide
image. Formally, this filter computes the output q as a linear transform
of the guide image I in a window ωk, centered on the pixel k,

qi = akIi + bk,∀i ∈ ωk,

where (ak, bk) are the coefficients on the linear model and constant
in the window ωk. The coefficients of the linear model, (ak, bk), are
obtained using a least-squares fit to the input noisy data, p, with the

5.3. REGRESSION 77

0 2 4 6 8
0

1

2

3

4

5

6

7
polynomial of degree 1

global

local

0 2 4 6 8
0

1

2

3

4

5

6

7
polynomial of degree 2

0 2 4 6 8
0

1

2

3

4

5

6

7
polynomial of degree 6

Figure 5.5: Global and local regression analysis of a small set of data
points. In global regression, all data points are given the same weight
when fitting the model. In local regression, data points closer to the
evaluation point are given a larger weight when fitting the model.
The set is fit using polynomials of increasing degrees, which allow for
an increasingly closer fit of the data. Global regression highlights the
constraints of each model, but even the simple line model (polynomial
of degree 1) yields a smooth interpolation of the data points when
using local regression. As the degree of the polynomial increases, the
fit leads to very fast oscillations to accommodate the data points. This
results in over-fitting of the data, which usually makes the model less
useful when used to predict the output for new data points.

following cost function:

E(ak, bk) =
∑
i∈ωk

((akIi + bk − pi)2 + εa2
k),

where ε is a regularization parameter used to penalize large ak values.
As ε increases, ak will tend to zero, while bk will tend to be the mean of
all pixels in ωk. Inversely, as ε goes to zero, ak will tend to 1, while bk
will tend to 0. In practice, ε is chosen to be proportional to the variance
in the noisy input p. The advantage of the linear model is that it
naturally preserves the edges of the signal, since∇q = a∇I. The guide

78 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

image I could be the noisy image itself, but it doesn’t have to be. One
could use any other image as guide, and the guided image filter would
then effectively filter the input image while preserving the structure
of the guide. Using an alternate image as guide is particularly useful
in the context of MCPT, since one can easily extract feature buffers
(such as normal, depth, or texture buffers) that encode the edges of
the scene. These feature buffers make for robust guide images, since
they are generally much less noisy than the rendering itself. This
approach was proposed by Bauszat et al.[BEM11] to efficiently filter
the indirect illumination of MCPT renderings, using the normal, depth,
and texture buffers as guide. Effectively, their approach estimates the
filtered output as a linear combination of these three feature buffers.
While their approach gives reasonable results in practice, it assumes
that the rendered image can be obtained using a linear combination
of the feature buffers, which is not the case for glossy and specular
surfaces. In contrast, our framework makes use of a filter that assigns
a different weight to each neighbor and therefore can accommodate
arbitrary patterns caused by glossy or specular reflections.

5.4 Anistropic Diffusion

Isotropic diffusion solves the heat equation,

δu

δt
= α∆2u,

which relates how much a function u changes over time, δuδt , to its
spatial second derivative, ∆2u. Since the second derivative measures
the curvature of the signal, the smoothing due to diffusion is more
pronounced in regions of high curvature. The parameter α models
the conductance between nearby pixels, and effectively sets the rate
of the diffusion, which is performed in an iterative process. It can be
shown that this process is equivalent to Gaussian smoothing.

In anisotropic diffusion, proposed by Perona and Malik [PM90],
the conductance parameter α is replaced by a spatially varying func-

5.4. ANISTROPIC DIFFUSION 79

tion c(x, y),

δu

δt
= div(c(x, y)∇u) = ∇c · ∇u+ c(x, y)∆u,

where ∇u is the spatial gradient of u, and div is the divergence opera-
tor. The key is to define the conductance function, so that it prevents
diffusion across edges, that is, the conductance should be small at
edge locations. Perona and Malik proposed two conductance func-
tions,

c(||∆u||) = e−(||∆u||/K)2

and

c(||∆u||) =
1

1 +
(
||∆u||
K

)2 ,

where K is a user parameter controlling the sensitivity to edges. The
two proposed function assign a low conductance value when the spa-
tial gradient is large, which is the case at edges. The user parameter
K can be set either empirically, or, in the case of denoising, based on
the level of noise in the image.

Anisotropic diffusion was used by McCool [McC99] to denoise
Monte Carlo renderings, and improved the computation of the con-
ductance map by leveraging auxiliary feature buffers (encoding the
surface normals and depths) to more robustly detect edges. One incon-
venience of anisotropic diffusion is that noise can only be distributed
to connected neighbors. For instance, on a checkerboard surface, each
tile of the checkerboard is separated from the other ones, which effec-
tively limits the area over which smoothing can occur. In our frame-
work, we can make use of powerful filters, such as the bilateral filter
presented in Section 5.5, that can gather contributions from discon-
nected regions.

80 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

5.5 Bilateral Filter

The bilateral filter is a structure aware filter that was first introduced
by Tomasi and Manduchi [TM98], and its key idea is to combine
two kernels: a spatial kernel, that weights a neighbor contribution
according to its spatial distance, and a range kernel, that weights
a neighbor contribution according to its photometric similarity. The
combination of the two kernels yields a generalized distance function
that effectively measures the affinity between pixel pairs, and ensures
that the filter will preserve edges.

We will present the original version of the bilateral filter in Sec-
tion 5.5.1. In Section 5.5.2, we will present the non-local means filter
proposed by Buades et al. [BCM05], a generalization of the bilat-
eral filter with significantly increased robustness to noise. Lastly, in
Section 5.5.3, we will present the concept of joint filtering, which
was independently proposed by Eisemann and Durand [ED04] and
Petschnigg et al. [PSA+04], and where the range kernel is evaluated
on a separate guide image. In the context of MCPT, joint filtering
allows to filter a rendering while preserving edges encoded in feature
buffers (such as the normal, depth, or texture buffers).

5.5.1 Original Formulation

In its original formulation, the bilateral filter operates on pixel pairs.
The affinity between two pixels is a function of both their spatial
distance and their photometric distance, which are respectively mea-
sured using the spatial and range kernels. In principle, any kernel
could be used for the spatial and range components, but in prac-
tice these are generally Gaussian kernels. Figure 5.6, reproduced
from [KT09], illustrates how the bilateral filter can be used to fil-
ter a step function, and how it compares to a standard Gaussian filter.
The addition of the range kernel effectively prevents the filter from
crossing the edge. Using Gaussian kernels, the weights of the bilateral

5.5. BILATERAL FILTER 81

Spatial weight Range weight

Multiplication of range
and spatial weight

Input Output

Bilateral filter weights at the central pixel

Figure 5.6: The bilateral filter is a structure aware filter that combines
a spatial kernel and a range kernel. The spatial kernel gives larger
weights to nearby pixels, while the range kernel gives larger weights
to pixels with a similar value. The range weights encode the edge of
the signal, which is therefore preserved in the filtered output. Figure
reproduced from [KT09].

82 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

filter are obtained as

w(p, q) = exp

(
−1

2

||xp − xq||2

σ2
s

)
︸ ︷︷ ︸

spatial kernel

· exp

(
−1

2

(u(p)− u(q))2

σ2
r

)
︸ ︷︷ ︸

range kernel

.

The bilateral filter has been used extensively in image processing.
For instance, to do tone mapping [DD02], abstraction [WOG06], or
style transfer [BPD06]. It was was adapted by Xu and Patanaik [XP05]
to handle MCPT renderings. Xu and Patanaik observed that the bilat-
eral filter is ill-suited to handle outliers, since those have, by definition,
no affinity with their neighborhood and therefore cannot be filtered
out. They propose to first filter the image using a Gaussian filter to
reduce the magnitude of the outliers, and then compute the range
kernel using the image with suppressed outliers as a reference. This
improves the handling of outliers, at the expense of extra bias, since
edges are slightly blurred when computing the range kernel. In our
framework, instead of suppressing outliers, we take into account the
local variance when computing the range kernel. The high variance of
outliers ensures that our filtering is sufficiently aggressive to suppress
them.

5.5.2 Non-Local Means Filtering

One issue when using the bilateral filter to denoise an image, is that
the image noise affects the affinity measurement between pixel pairs,
and therefore the weights of the filter. Because of this propagation
of noise, the main characteristics of the image noise are preserved
in the filtered output. While it is possible to minimize the residual
noise artifacts by making the filter more aggressive, this comes at the
expense of some more bias. The non-local means (NL-Means) filter,
proposed by Buades et al., aims to address this issue.

The NL-Means filter builds on a key idea first explored by Efros
and Leung in the context of texture synthesis [EL99]. This idea is
deceptively simple and surprisingly effective: the weights of the NL-
Means filter are determined by the distance between square image

5.5. BILATERAL FILTER 83

patches, instead of individual pixel pairs. By averaging the distance
computation over all pixel pairs of the patches, measurement noise
is significantly reduced. For instance, with 7× 7 patches, we average
the distance computation over 49 pixel pairs, therefore reducing the
variance of the distance computation by a factor 49. This significantly
improves the robustness of the weight estimation and yields a much
improved denoising performance. Thanks to its increased robustness,
the NL-Means filter can consider pixels from a much larger region of
the input image with no significant impact to the filtered output. The
“non-local” in NL-Means, actually refers to this fact.

In Figure 5.7, we show the result of filtering the “barbara” im-
age with the bilateral filter, and with the NL-Means filter using 7× 7
patches. In practice, the NL-Means filtered output is significantly
smoother, while still preserving the edges in the image.

input bilateral filter NL-Means filter
with 7× 7 patches

Figure 5.7: Increased robustness of the NL-Means filter. The bilateral
filter weights encode some of the noise of the input, which is then
visible in the filtered output. In contrast, the patch based affinity
computation of the NL-Means filter eliminates most of the noise in
the affinity function, leading to a much smoother output, while still
preserving the edges of the image.

The NL-Means filter is at the core of the second implementation of
our framework, presented in Chapter 7, and we give the details of the

84 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

filter in Section 7.1.1. We also used the NL-Means filter in the third
implementation of our framework, presented in Chapter 8. This filter
was also used by Moon et al. [MJL+13], to filter MCPT renderings
using a virtual flash image. The virtual flash image captures many
edges of the scene, including interactions with specular surfaces, and
is used as a guide function to filter the noisy MCPT output. Since
the virtual flash image itself can be noisy, the authors compute the
weights using the NL-Means filter. The use and motivation for the
NL-Means filter in our framework and Moon et al.’s framework are
actually very similar.

5.5.3 Joint Filtering

Joint filtering, which is also called cross filtering, is a powerful idea
that proposes to filter one image using a second one as a guide. In the
context of rendering, common choices for guides are scene feature
buffers, such as surface normals, texture, and depth information. The
advantage of using such feature buffers as guide is that they are often
noise free, or at least much less noisy than the rendered output, and
therefore serve as reliable guides to detect edges.

Petschnigg et al. [PSA+04] introduced this idea in the context of
bilateral filtering, calling it joint bilateral filtering. Here the range ker-
nel is applied on the guide image, and the resulting bilateral weights
are applied to the noisy input. They applied this idea to denoising
photographs taken in low-light conditions, using another photograph
taken with a flash as guide. Eisemann and Durand [ED04] concurently
developped a very similar idea (i.e. denoising a photograph with a
bilateral filter using a second photograph taken with a flash as guide),
and coined the term cross-bilateral filtering.

All current state-of-the-art image space adaptive rendering meth-
ods build on the concept of joint bilateral filtering, and make use of
feature buffers to guide denoising. Examples includes filters devel-
opped by Dammertz et al. [DSHL10], Sen and Darabi [SD12], and Li
et al. [LWC12].

Joint bilateral filtering can be generalized trivially to joint NL-

5.6. BM3D FILTERING 85

Means filtering, and this is the basis of both Moon et al.’s method that
employs a virtual flash image to filter MCPT renderings [MJL+13], as
well as the latest implementation of our framework (see Chapter 8).

5.6 BM3D Filtering

The Block-Matching and 3D (BM3D) filtering algorithm by Dabov et
al. [DFKE07] is the current state-of-the-art in image space filtering,
and was used to great effect by Kalantari and Sen to filter MCPT
renderings [KS13]. A key characteristic of the BM3D algorithm is its
hybrid nature. It builds on the patch-based neighborhood search of
the NL-Means filter (“block-matching” here), and combines it with
wavelet thresholding. This effectively leverages the strengths of both
techniques, yielding great results.

The core idea of BM3D is to group similar patches together, which
are then stacked to create a relatively homogeneous 3D group. The
stack is then transformed from the spatial domain into a wavelet do-
main, where its denoised using wavelet thresholding (using the noise
standard deviation as threshold). After inverting the wavelet decom-
position, we get the denoised patches in the spatial domain, that can
be written back to the image. The key is that wavelet decomposi-
tion concentrates the signal energy in relatively few coefficients, and
allows a better separation of signal and noise.

The wavelet decomposition is composed of two successive decom-
positions. The first is a 2D transform (which operates on the individ-
ual patches that constitute the stack), and the second is a 1D trans-
form (that operates along the depth of the stack). A wide variety
of decompositions could be used, but, in practice, the 2D transform
used is generally the Discrete Cosine Transform (DCT), while the 1D
transform along the stack depth is the Hadamard transform. The DCT,
which is also used in many image and video compression schemes,
decomposes the signal into a sum of cosines functions of different
frequencies. The Hadamard transform is similar in spirit but operates
on 1D signals.

86 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

In Figure 5.8, we compare the output of the BM3D algorithm, with
the output of the NL-Means algorithm on the barbara image, and give
the corresponding PSNR (Peak Signal to Noise Ratio).

input BM3D NL-Means
PSNR: 20.30 PSNR: 30.65 PSNR: 29.00

Figure 5.8: Impact of changing the patch size in the NL-Means filter.
By setting the patch parameter f = 0, we emulate the behavior of
the bilateral filter (i.e. affinity is measured between pixel pairs, not
patches), and get a filtered output that encoded some of the input
noise. In contrast, setting f = 3 yields a much smoother output, while
still preserving the edges of the image.

When it comes to filtering MCPT renderings, BM3D suffers from
two significant limitations that mitigate its qualities. The first limita-
tion, is that there is no mechanism for leveraging auxiliary buffers
(such as the normal, depth, or texture buffers) in the BM3D filter,
which reduces its robustness in the presence of strong noise. The sec-
ond limitation is that the BM3D filter is ill-suited for filtering spike
noise (which is fairly common when rendering global illumination),
since the transformation into the wavelet domain spreads the noise of
each pixel to the whole 3D stack. Consequently, a single strong outlier
could dominate the whole stack and lead to excessive blurring. In
their method that filters MCPT renderings using BM3D, Kalantari and
Sen [KS13] sidestep this second issue by operating on tone-mapped
images, where the magnitude of outliers is significantly reduced, but

5.6. BM3D FILTERING 87

this comes at the expense of loss of energy. In contrast, our framework
operates directly on the high dynamic range input, and considers the
variance of each pixel individually, allowing to filter outliers aggres-
sively without affecting the rest of their neighborhood.

88 CHAPTER 5. IMAGE SPACE DENOISING TECHNIQUES

Chapter 6

Adaptive rendering using
greedy error
minimization

This chapter presents our GEM algorithm, which is the first implemen-
tation of our adaptive rendering framework. The name GEM stands
for Greedy Error Minimization, which our framework uses to drive
adaptive sampling. This algorithm was initially developed in 2011,
and the content of this chapter is reproduced from [RKZ11]. Chap-
ters 7 and 8 will present improved implementations that rely on more
advanced filtering techniques.

Monte Carlo techniques compute pixel colors by (quasi-)randomly
sampling an integration domain that covers all light paths transport-
ing light from a source to the camera. The integration domain may
include effects such as depth of field, motion blur, and light paths with
multiple interreflections. Unless one computes an excessive number
of samples, this often leads to high pixel variance and the typical noise
artifacts in Monte Carlo rendering. There are two main strategies to
address this. The first is to distribute samples in an optimal fashion,

89

90 CHAPTER 6. ADAPTIVE RENDERING USING GEM

with respect to the problem at hand. The second is to smooth out
noise by applying suitable filters. Both strategies can be applied in the
high dimensional space of light paths or in the image plane. We focus
on strategies that operate in the image plane.

We formulate the problem as follows: given a certain budget of
Monte Carlo samples, obtain an image that minimizes the MSE by
distributing samples in a suitable fashion in the image plane and
by filtering the image with appropriate filters. We can interpret this
as an optimization problem over the space of sample distributions
and image filters. Our core idea is to make the problem tractable
by restricting the space of filters to a discrete set of predetermined
filters per pixel. Each pixel may have a different set of filters, but the
set is predefined and not itself part of the optimization. We use a
simple greedy strategy to obtain an approximate solution to the MSE
minimization problem. Starting from an initial set of samples, we
iterate over two steps. First, for each pixel we select the filter from its
discrete set that minimizes the pixel MSE given the current samples.
Second, given the currently chosen pixel filters, we distribute a new
batch of samples that try to further reduce MSE as much as possible.
This process is repeated until a termination criterion is fulfilled.

To minimize pixel MSE we express it as the sum of the squared
bias, i.e., expected error, and variance. We define the set of filters at
each pixel such that it provides a trade-off between reducing vari-
ance and increasing bias. Then we attempt to minimize pixel MSE
by selecting the filter that offers an optimal compromise. The main
challenge in practice is that we only have access to noisy data to es-
timate bias and variance. Therefore, an important component of our
algorithm is a robust method to solve this filter selection problem.

We demonstrate and evaluate our framework using Gaussian fil-
ters at different scales as the smoothing filters. We describe simple but
effective methods to select filter scales at each pixel and to distribute
samples in each iteration, always attempting to minimize pixel MSE.
We evaluate the performance of our approach and its robustness to
noise by comparing it to images rendered using ground truth statis-
tics, i.e., bias, variance, and MSE values. We show that our method

91

to minimize MSE based on noisy data comes reasonably close to
the reference, and provides a significant improvement over previous
adaptive sampling and reconstruction algorithms. Our method is con-
sistent in that it converges to noise and bias free images as the number
of samples increases. Bias is only guaranteed to vanish in the limit,
however, as the number of samples goes to infinity. Our framework is
orthogonal to MCPT on a pixel-by-pixel basis, and we implemented it
on top of the PBRT renderer [PH10].

Figure 6.1 illustrates a typical result obtained using our algorithm,
as well as the outputs of the intermediate steps. In particular, the
top two rows of the insets show how the filtering and sampling steps
are complementing each other. Indeed, regions reconstructed using
small filters (dark pixels in the top row of the insets) correspond
to densily sampled regions (bright pixels in the second row of the
insets), and vice versa. The third row of the insets also shows how the
reconstruction is progressively refined through the iterations.

In summary, we make the following contributions:

• We present a framework for adaptive sampling and reconstruc-
tion based on minimizing per-pixel MSE. In a greedy error min-
imization procedure, we iterate over two steps: selecting pixel
filters from a set of smoothing filters to minimize pixel MSE,
and distributing new samples in an attempt to maximally re-
duce MSE in each iteration.

• We describe an implementation of our framework with Gaus-
sian smoothing filters at different scales. This includes robust
methods to select filter scales and estimate MSE, and a strategy
to distribute samples in each iteration.

• We evaluate our implementation by comparing it to results ob-
tained using ground truth statistics. We show that in many cases,
our approach comes reasonably close to ground truth.

To illustrate the efficiency of our proposed algorithm, we compare
its results to those of Overbeck et al.’s Adaptive Wavelet Rendering
(AWR) algorithm [ODR09], which was the state-of-the-art in image

92 CHAPTER 6. ADAPTIVE RENDERING USING GEM

Figure 6.1: We minimize MSE in Monte Carlo rendering using adap-
tive sampling and reconstruction in image space. We iterate over two
steps: given current samples, optimize over a set of filters at each pixel
to minimize MSE; then, given a filter at each pixel, distribute more
samples to further reduce MSE. Top-left: initialization with 4 samples
per pixel. Insets, each column is one iteration (top to bottom): filter
selection (smooth filters shaded white, sharp ones black), sample den-
sity map, reconstruction. Top-right: result at an average of 32 samples
per pixel. This image features single scattering participating media,
indirect illumination using photon mapping, depth of field, and area
lighting.

space adaptive rendering at the time we published our own algorithm.
The AWR algorithm has very similar design goals to our algorithm,
which makes it a natural comparison point. Indeed, both algorithms
operate in image space, couple adaptive sampling and reconstruction,
target offline rendering, and aim for a general solution applicable to
arbitrary scenes rendered using MCPT.

6.1. ALGORITHM OVERVIEW 93

6.1 Algorithm Overview

Ideally, we would like to solve the following problem: given a cer-
tain budget of Monte Carlo samples, obtain an image that minimizes
the MSE by distributing samples in a suitable fashion in the image
plane and by filtering the image with appropriate filters. This prob-
lem is probably intractable in general, because the space of potential
image filters is too large. A core idea is to make the problem more
manageable by restricting the potential filters to a discrete set of pre-
determined filters per pixel. Each pixel may have a different set of
filters, but the set is predefined and not itself part of the optimization.

Our framework uses a simple greedy strategy to solve the MSE
minimization problem, as illustrated in Figure 6.2. Starting from an
initial set of samples, we iterate over two steps. First, for each pixel
we select the filter from its discrete set that minimizes the pixel MSE
given the current samples. Second, given the currently chosen pixel fil-
ters, we distribute a new batch of samples that tries to further reduce
MSE as much as possible under the current selection of filters. This
process is repeated until a termination criterion is met, for example,
a given sample budget is reached.

In the following we describe an implementation of this framework
that uses the same set of filters for each pixel. In addition, the filters
compute a linear function of their input, and they are related by a
uniform scale. The smallest scale corresponds to the usual, unbiased
pixel filter that is used in standard rendering. Selecting appropriate
filters from this set allows us to minimize pixel MSE by making an
optimal trade-off between bias and variance. Filters at smaller scales
have little bias but much variance , and vice-versa for larger scales.
We next describe the two steps of our approach in detail, i.e., filter
selection (Section 6.2) and sample distribution (Section 6.3).

6.2 Filter Selection

In this section we describe how, at each pixel of a noisy image, we se-
lect a filter from our predefined set that attempts to minimize the pixel

94 CHAPTER 6. ADAPTIVE RENDERING USING GEM

Noisy image Filtered images

Reconstructed image

Additional samples

MSE estimation

Sample distribution

Initial samples

Scale selection map

Figure 6.2: Overview of our framework. We iterate over two steps to
minimize MSE: filter selection based on the noisy image on the right,
and distribution of new samples to greedily reduce MSE on the left.

MSE, that is, the sum of the squared bias and the variance. In Sec-
tion 6.2.1 we formulate an incremental MSE minimization strategy
that avoids explicit bias estimation. We then describe in Section 6.2.2
how we implement this strategy under the assumption that the true

6.2. FILTER SELECTION 95

image is locally a quadratic function. In Section 6.2.3 we analyze the
behavior of the resulting filter selector under noisy input, and finally
we describe a post-processing approach to greatly reduce erroneous
filter choices in Section 6.2.4.

6.2.1 Incremental MSE Minimization

In theory we could estimate bias and variance for each filter directly to
minimize MSE. It is very challenging, however, to guess the true bias
from noisy input. Hence, we avoid explicit bias estimation. Directly
estimating the variance is less problematic, because it does not require
knowledge of the true pixel value. Considering that the filters in our
set are related by uniform scaling, we can order them in a fine to
coarse, or sharp to smooth, manner according to their scales. A key
observation is that, for most pixels, the filter bias increases and the
variance decreases monotonically as we go from finer to coarser scales.
Assuming monotonicity, we find the filter with minimum MSE simply
by traversing the list of filters from fine to coarse. At each pixel, for
each pair of consecutive fine and coarse filters f and c, we compute
the change in MSE, ∆MSE [f → c], and stop when it is positive. Note
that the difference between the MSE of the fine and coarse scales is

∆MSE [f → c] = MSE [c]−MSE [f]

= Bias [c]
2 − Bias [f]

2︸ ︷︷ ︸
bias term

+ Var [c]−Var [f]︸ ︷︷ ︸
variance term

,

consisting of a bias and variance term. The crucial benefit of this ap-
proach is that we can well approximate the bias term without knowl-
edge of the true bias Bias [c] and Bias [f], as we will show in Sec-
tion 6.2.2.

We compare MSE minimization using exhaustive search over the
filters to MSE minimization based on the assumption of monotonic-
ity of bias and variance in Figure 6.3(a) and (b). We use a filter set
consisting of five scales of Gaussian filters at dyadic intervals. For the
sake of this comparison, we computed ground truth per-pixel bias and

96 CHAPTER 6. ADAPTIVE RENDERING USING GEM

(a) Exhaustive (b) Incremental (c) Our approx.

Figure 6.3: Results of scale selection using (a) minimization of the
MSE using exhaustive search, (b) the incremental approach, (c) our
incremental approach with bias computation using the quadratic ap-
proximation. We used five scales, where white indicates the coarsest
and black the finest scale.

variance for each filter by empirically gathering ground truth statis-
tics (of course, in practice ground truth statistics are not available; see
Section 6.2.3). We obtain ground truth bias by rendering a reference
image and, for each filter, computing the difference between the ref-
erence and filtered image. We obtain per-pixel variance by rendering
a noisy image with a limited number of 16 samples per pixel many
times. We then applied the filters to each noisy image and computed
empirical pixel variance over all filtered images. In the figure we visu-
alize the selected scales for both methods and observe that they agree
for 99.7% of the pixels.

6.2.2 Quadratic Approximation

We now show how we can compute the bias term without knowledge
of the true pixel value. Let us assume that the true image is a quadratic
function within the support of the coarse and fine filters f and c at
each pixel. In addition, we require the filters to have vanishing first
central moments. We denote the scale of the coarse and fine filter by
rc and rf . It is straightforward to show that in this case, there is a

6.2. FILTER SELECTION 97

simple relation between the bias of the filters based on their relative
scales [Sil86],

Bias [c] =
r2
c

r2
f

Bias [f] .

Let us denote the true value of the image by ξ, and, by slight abuse
of terminology, the filtered pixel value using the coarse filter by c and
the value using the fine filter by f . Then Bias [c] = c−ξ and Bias [f] =
f − ξ. Using the above relation between Bias [c] and Bias [f] we get
two equations in two unknowns, and we can eliminate ξ. After some
more algebraic manipulation, we find that we can express Bias [c]

2 −
Bias [f]

2 in terms of c− f as

Bias [c]
2 − Bias [f]

2 ≈
r2
f + r2

c

r2
f − r2

c

(c− f)2,

where the approximation is exact for quadratic image regions. Using
this approximation, we get the following expression for the change in
MSE,

S ≈
r2
f + r2

c

r2
f − r2

c

(c− f)2

︸ ︷︷ ︸
approximate bias term

+ Var [c]−Var [f]︸ ︷︷ ︸
variance term

. (6.1)

We call this our scale selector S using an approximate bias term. If
the scale selector is positive, we select the fine scale f ; otherwise, we
proceed to the next pair of coarser scales.

We compare MSE minimization using our scale selector S to the
two previous methods in Figure 6.3(c). Similar as above, we use fil-
tered reference images to evaluate the bias term and empirically estab-
lished ground truth pixel variances. For 82.8% of pixels our method
agrees with ground truth scale selection in (a), indicating that the
quadratic approximation is valid for most pixels. Results for the other
scenes of Figures 6.13 to 6.17 are given in Table 6.1.

98 CHAPTER 6. ADAPTIVE RENDERING USING GEM

Table 6.1: Percentage of pixels in agreement with scale selection ob-
tained using exhaustive search, for both the incremental approach
(Inc.) and our approximation (Our) for scenes of Figures 6.13 to 6.17.

Scene Inc. Our Scene Inc. Our

killeroos 97.7% 92.8% toasters 98.7% 91.9%
plants-dusk 95.5% 86.0% yeahright 98.2% 87.8%

6.2.3 Estimation from Noisy Data

Of course in practice, we do not have access to ground truth data
for the filtered pixel values, c and f , and their variances, Var [c] and
Var [f]. Instead, we need to estimate them from the noisy data avail-
able, i.e., the Monte Carlo samples that we acquired so far in the
iterative procedure. We denote these samples by si, i = {1 . . . k}. We
now express the filtered pixel values and their variances directly using
the Monte Carlo samples. Again, our equations are for an individual
pixel.

A filtered pixel value for, e.g., the fine filter is simply the weighted
average

f =
∑

i∈{1...k}

wfi si,

where wfi are the filter weights for each sample si. The expression for
the coarse filter is analogous. The pixel variance is

Var [f] =
∑

i∈{1...k}

(wfi)2Var [si] , (6.2)

where we use the squared filter weights, because the Monte Carlo sam-
ples are supposed to be uncorrelated. Again, the expression for Var [c]
is analogous. Unfortunately, Var [f] and Var [c] rely on the variances
of the Monte Carlo samples Var [si], which are not known. Therefore,
for each si we use the empirical variance over all samples that are

6.2. FILTER SELECTION 99

in the same pixel (i.e., square pixel region) as si. Let us denote this
subset of samples by P . Then

Var [si] ≈
1

|P | − 1

∑
j∈{P}

(sj − s̄)2, (6.3)

where s̄ is the mean of the samples in P , and |P | is the number of
samples in the pixel.

We have now expressed our scale selector S in Equation 6.1 di-
rectly using the Monte Carlo samples. Interpreting the Monte Carlo
samples as random variables, S is itself a random variable. This opens
up the possibility to analyze the behavior of S under given assump-
tions about the random samples. Unfortunately, even for normally
distributed si, its density is highly complex and not easily amenable
to analytical investigation.1

Empirical Analysis. We analyze the probability density of the scale
selector S using an empirical experiment. We use independent and
identically distributed samples si that sample a constant 1D function
with value zero and additive noise, for simplicity. The 1D function
consists of one million “pixels”. We use Gaussian filters for f and c
with a fixed relative scale of two. The free input parameters of our
experiment are:

• The noise variance of the random samples si.

• A radius r for the fine filter, which determines the weights wci
and wfi .

• The number of samples per pixel |P | used to estimate empirical
sample variance Var [si].

1For normally distributed Monte Carlo samples si, their empirical variance follows a
chi-square distribution. The variance of the filters Var [c] and Var [f] is then a weighted
sum of random variables with chi-square distribution. The difference Var [c]−Var [f]
would be a convolution of the densities of Var [c] and Var [f] if these were independent,
but since they share the same Monte Carlo samples, they are not independent and the
distribution of their difference is more complicated, etc.

100 CHAPTER 6. ADAPTIVE RENDERING USING GEM

For this experiment, the ideal decision of the scale selector S is
to always select the coarse scale (i.e., S is negative), since the true
bias for all filters is zero and going to a coarser scale reduces variance.
Because of the noisy si, however, the scale selector will occasionally
make a wrong decision. We call the probability that the selector is
positive and makes a wrong decision the error rate of the selector.
Our goal now is twofold: First, to understand how the error rate is
related to the parameters of the experiment; and second, to derive a
single user specified parameter that directly controls the error rate,
independent of the input parameters.

Before discussing the results of the experiment, we point out that
the bias and variance terms in the scale selector are independent ran-
dom variables, because a weighted sum of samples (as in the bias
term) is independent from the empirical variance of the samples (as
in the variance term). Therefore, the probability density of the scale
selector is a convolution of the densities of the bias and the variance
term, and we can study these separately. In Figure 6.4 we plot the
histograms of the bias and variance terms and the histogram for the
scale selector. The histograms are collected from the one million 1D
“pixels” in our experiment. The error rate is simply the area under
the histogram of the scale selector over the positive part of the hori-
zontal axis, indicated by the area shaded in gray. We now summarize
the observations we made in our experiment by varying the input
parameters.

Sample Variance. The error rate remains constant under different
variances of the random samples si. This is because the bias and
variance terms are both proportional to the variance of the samples.
Consequently, the scale selector, which is the sum of the two, is scaled
as well. But scaling a random variable does not change the probability
that it is larger (or smaller) than zero, hence the error rate remains
constant.

Filter Radius. The error rate depends weakly on the filter radius
r. Larger scales lead to slightly lower error rates. We observed that

6.2. FILTER SELECTION 101

−1 0 1
0

1

2

−1 −0.5 0
0

2

4

0.5 1
0

2

4

Bias term Variance term Scale selection

* =

Figure 6.4: Histograms of bias, variance, and scale selector S, which
is the convolution of the former two. The horizontal axes indicate the
values of the random variables, and the vertical axes the relative fre-
quencies of the corresponding values. The parameters are: normally
distributed samples with variance 10, number of samples per pixel
|P | = 32, and a filter scale factor r = 1.

the bias term is scaled inversely proportional to r. The variance term,
however, is not scaled exactly the same. Instead, the density of the
variance term becomes slightly sharper with larger radii as illustrated
in Figure 6.5(a). Because the error rate is based on the convolution of
the densities of the bias and variance terms, it will be slightly reduced
for larger filters due to the sharpening of the variance term.

Number of Samples per Pixel. The error rate remains largely con-
stant under different numbers of samples per pixel |P |, except for low
sample counts, where the error rate increases. We observed that the
bias term is again scaled inverse proportionally to |P |. The variance
term is scaled similarly, but for low sample counts the shape of its
density is significantly different as visualized in Figure 6.5(b). We
have observed that this mismatch leads to significantly higher error
rates for low sample counts.

Intuitive Parameterization. Based on the above observations, we
introduce an intuitive user specified parameter γ that allows the user

102 CHAPTER 6. ADAPTIVE RENDERING USING GEM

to directly indicate the desired error rate for constant inputs. This can
be achieved easily by weighting (i.e., scaling) the bias and variance
terms relative to each other. We apply a weight consisting of two fac-
tors ρ and z(γ) to the bias term. The factor ρ compensates for low
sample counts, while z(γ) controls the error rate. Both are empiri-
cally determined. We found that a factor ρ = (1− 1/|P |) works well
in practice to compensate for the effect of low sample counts. Using
experimentation, we determined the factor z(γ) such that the user pa-
rameter γ approximately achieves the desired error rate. We manually
found an appropriate mapping to be z(γ) = − log(1 − (1.9γ)(1/

√
2))

valid in the range γ ∈ 0 < γ < 0.4. Error rates above 0.4 are not in-
teresting in practice. An alternative would be to tabulate the relation
between γ and the error rate to provide an intuitive user parameter.

6.2.4 Post-Processing the Filter Selection

Controlling the error rate is useful to adjust the trade-off between
bias and variance, but any non-zero error rate will produce a given
percentage of wrong filter selection decisions that will be noticeable
as spikes in the reconstructed image. Therefore, we post-process the
filter selections to remove these outliers. We illustrate the process
in Figure 6.6, where we filter a 1D signal consisting of two boxes
with uniform noise, evaluated at 250 1D pixels. Each pixel received 32
samples that we used to estimate empirical pixel variance. Our filter
set consists of Gaussian filters at eight scales related by scaling factors
of
√

2. Figure 6.6(a) depicts the noisy input signal and the 8 filtered
inputs. We show the reconstructed signal in Figure 6.6(b).

We represent the results of our scale selectors as binary stopping
maps for each pair of scales at each pixel. This is shown as one row
per filter pair in Figure 6.6(c). A value of 1 (shaded gray) means that
we should stop and use the fine scale, and 0 (black) indicates that
going to the coarse scale is estimated to reduce MSE. An important
observation is that outliers appear as isolated clusters of zeros or
ones, where the size of the clusters is related to the size of the pair of
filter scales. Hence, we can remove outliers by additionally filtering

6.2. FILTER SELECTION 103

−1.5 −1 −0.5 0
0

5

10

(a) Varying radii
r={red=1, green=1.4, blue=2}

−10 −5 0
0

0.5

1

(b) Varying sample count
|P|={red=4,green=8,blue=16}

Figure 6.5: Histograms for the variance term under varying (a) radii
r and (b) sample count |P |. In (a) we illustrate that the variance
distribution is not inversely proportional to the radii. We scale the
distributions for radii r = 1.4 and r = 2 with factors 1.4 and 2 to
match the distribution of r = 1. We depict the result with dotted lines,
showing that the variance distribution becomes slightly sharper for
larger filters. In (b) we provide a similar visualization for different
sample counts |P |. We scale the histograms for |P | = 4 and |P | = 8
with factors 1/4 and 1/2 to match the histogram for |P | = 16. The
results (dotted lines) show that the scaled distributions are less sharp
than the true distribution.

each map (row), where we choose the size of the outlier removal filter
according to the size of the pair of scales. In practice we obtained good
results with Gaussian filters of the same size as the coarse scale. Then
we round the filtered map back to binary. In practice, we ignore the
center pixel of the outlier filter, because this dominates the result too
much for small outlier removal filters. A more thorough investigation
to determine optimal outlier removal filters is an interesting topic for
future research. The final filter selection at each pixel is the finest
scale with value 1 (gray in the figure). This process works well in

104 CHAPTER 6. ADAPTIVE RENDERING USING GEM

ours
avg.
AWR
avg.

100 200

0

0.5

1

100 200

0

0.5

1

(a) Noisy input, 8 filter scales (b) Reconstructions

(c) Stopping maps for each pair of scales, fine to coarse from 0-7
Before filtering After filtering

0→1
1→2
2→3
3→4
4→5
5→6
6→7
7→8

0→1
1→2
2→3
3→4
4→5
5→6
6→7
7→8

100 200100 200

Figure 6.6: Illustration of outlier removal during post-processing: (a)
noisy input with 8 filter scales, (b) reconstructions (including average
over 200 runs) of our approach and wavelet soft thresholding, (c)
binary stopping maps for each pair of scales.

practice because the scale selector guarantees a low outlier rate.
Figure 6.6 also includes a comparison to soft wavelet threshold-

ing using Daubechies wavelets as used by Overbeck et al. [ODR09].
For both methods we show the reconstruction of the noisy signal on
the left, and the average reconstruction by generating the noisy sig-
nal 200 times. The average per-pixel MSE for wavelet thresholding
is 7.6× 10−3, and for our method it is 2.5× 10−3. The average recon-
struction from Wavelet thresholding also contains ringing artifacts,
which stem from aliasing in the wavelet decomposition.

Figure 6.7 visualizes postprocessing using a 2D example, where

6.3. SAMPLE DISTRIBUTION 105

Before filtering After filtering Reference

Figure 6.7: Filtering a binary stopping map from scale 2 to 3 for
the “sibenik” scene. Left: before outlier removal; middle: after post-
processing; right: reference from ground truth statistics.

we show the stopping map from scale 2 to 3. The input data uses 32
noisy samples per pixel. We remove most outliers without losing any
features from the unfiltered map. In Figures 6.8 and 6.9 we compare
the performance of our complete filter selection procedure to selection
maps obtained by minimizing MSE according to empirical ground
truth statistics collected from a large number of samples, similar as
in Figure 6.3. We use five filters at dyadic scales. The coarsest scale is
visualized in white, the finest one in black. Our maps were computed
using a uniform sample distribution of 32 samples per pixel. We lose
some detail compared to ground truth, but reliably retain the main
features. All maps were obtained by setting the error rate parameter
γ to 0.2 and using outlier removal.

6.3 Sample Distribution

The goal of the sample distribution is to place new samples in the im-
age plane, such that the relative MSE given the current per-pixel filter
selection is reduced as much as possible. The idea is to select the m
pixels, whose relative MSE can be improved the most by distributing
n new samples over the support of their selected filters.

106 CHAPTER 6. ADAPTIVE RENDERING USING GEM
O

ur
m

et
ho

d
G

ro
un

d
Tr

ut
h

Figure 6.8: Selection maps for five scales using our method (top)
and ground truth statistics (bottom). Our method selects filters using
statistics from 32 samples per pixel, while ground truth statistics are
collected from a large number of samples. We show final renderings
in Figures 6.13 to 6.15.

We estimate the MSE of a selected filter based on the same ap-
proach as in Section 6.2. We simply accumulate the estimated MSE
differences until we reach the selected filter. The MSE of the finest
scale is estimated as its variance, since the finest scale is considered
unbiased as it uses the pixel filter requested by the user. We com-
pute relative MSE by dividing the estimated MSE by the squared
value of the selected scale plus a small constant ε = 0.001 to prevent
overemphasizing very dark image areas. Because (relative) MSE is
inversely proportional to the number of samples contributing to a
filter, adding n samples over the support of a filter that received a
total of ns samples from previous iterations reduces (relative) MSE
by a factor ns/(n+ns). Therefore, after some algebraic manipulation
we find that the reduction in relative MSE after adding n samples is

6.3. SAMPLE DISTRIBUTION 107

O
ur

m
et

ho
d

G
ro

un
d

Tr
ut

h

Figure 6.9: Selection maps for five scales using our method (top)
and ground truth statistics (bottom). Our method selects filters using
statistics from 32 samples per pixel, while ground truth statistics are
collected from a large number of samples. We show final renderings
in Figures 6.16 to 6.17.

(relative MSE) · n/(n+ ns).

We maintain a priority queue of pixels according to their potential
error reduction. In each iteration, we retrievem pixels from the queue
and distribute samples over their filters. The assumption behind our
computation of potential MSE improvement is that the filters of these
pixels do not overlap, but we do not enforce this. We randomly select
n pixels in the support of each filter, where we use importance sam-
pling according to the filter weights. We then draw one (or more, if
the pixel was chosen several times) additional sample for each of the
selected pixels. We maintain the total number of samples per pixel
to be able to compute the potential MSE improvement as required
above.

108 CHAPTER 6. ADAPTIVE RENDERING USING GEM

Figure 6.10 visualizes the sample distribution generated by our
algorithm using an error rate of γ = 0.2 and with an average of 32 sam-
ples per pixel. We compare our sample map to a “ground truth map”,
which is obtained using the same algorithm but with ground truth
statistics for MSE estimation, as for the comparison in Figures 6.3, 6.8
and 6.9. We also include the distribution obtained from AWR in the
comparison. We observe that our approach exhibits more adaptivity.
The AWR algorithm also produces density peaks aligned with the
subsampled wavelet grids. In contrast, our method operates at full
resolution for all filter scales, which leads to a smoother sample dis-
tribution.

6.4 Implementation

We now detail some important aspects of our implementation: com-
putation of filter scales and their bias and variances, image recon-
struction from a sub-pixel grid to accommodate non-uniform sample
distributions, additional details concerning final reconstruction, and
a brief description how we integrate our method in PBRT.

Computation of Scales and Their Statistics. Computing filter scales
and their variances directly using the Monte Carlo samples as de-
scribed in Section 6.2.3 would be expensive in terms of computation
and storage. Instead, we store only the finest filter scale and the mean
of the empirical sample variances in each pixel and update them in
each iteration. Updating the finest filter scale is straightforward. Since
variance decreases linearly with the number of samples, using Equa-
tion 6.3 the mean variance of pixel p is

Var [p] ≈ 1

|P |
1

|P | − 1

∑
j∈{P}

(si − s̄)2.

We update pixel mean variances from one iteration step to the next
by maintaining the necessary terms separately.

6.4. IMPLEMENTATION 109

AWR GEM Ground truth

Figure 6.10: Sample densities with an average of 32 samples per pixel
obtained with the AWR algorithm, our scale selection method, and
scale selection using ground truth statistics. The AWR method samples
smooth regions more densely. Our algorithm (GEM) better detects
smooth regions and distributes more samples in the high-frequency
regions, approximating the ground truth distribution more closely.

In each iteration we compute the coarser scales and their variances
by further filtering the finest scale and the mean pixel variances. For
the variances at a given scale we filter the initial pixel mean variances
Var [p] using the squared version of that scale filter. This method is
valid if the initial pixel mean variances are uncorrelated [ODR09].
Since we estimate these using samples landing within each individual
square pixel, i.e., the estimates do not share any samples, there is no
correlation as required.

In our implementation we use Gaussian filters and their squares.
Since both are separable, filtering is efficient. We do not perform any

110 CHAPTER 6. ADAPTIVE RENDERING USING GEM

local updates but simply filter the complete finest scale and the pixel
mean variances after each iteration. As an important detail, our im-
plementation also allows us to use an arbitrary pixel filter employed
by the renderer as our finest scale, while only the coarser scales are
Gaussian filtered. We compute the bias term for pairs of coarser scales
as described in Section 6.2.2. To compute the bias term for the transi-
tion from the pixel filter to the first Gaussian filtered scale, note that
the pixel filter is unbiased by definition. Therefore, the bias term here
is simply the squared difference between the pixel filter and the first
Gaussian filtered scale. In practice, we use the pixel filter employed
by the renderer as the finest scale, in addition to four Gaussian filters
at dyadic scales.

Filtering Non-Uniform Sample Distributions. In our sample den-
sity maps, we have sharp and significant changes across image edges.
Therefore, adjacent pixels may receive significantly different numbers
of samples, which could severely bias the reconstruction if not handled
correctly. Following the work of Mitchell [Mit87], we store samples
on a subpixel grid. Each individual subpixel value is obtained using a
subpixel box filter, which is valid provided the sample distribution is
uniform over the subpixel. We use a subpixel grid resolution of 4× 4.
At low sample counts, the subpixel grid has many holes that we must
fill. We use a simple two-step pull-push strategy, where we fill empty
sub-pixels with the mean value of the samples in the whole pixel.
To minimize the number of holes in the subpixel grid, we distribute
images samples using scrambled low-discrepancy sequences [KK02b].
Other dimensions are still sampled using pure uniform random distri-
butions. We then apply our filters on the subpixel resolution.

Final Reconstruction. To optimize final image quality we use a
slightly modified filter selection procedure in the last iteration of our
procedure (Figure 6.2). First, we use eight Gaussian filters related by
a factor of

√
2, as opposed to four filters related by a factor of 2 dur-

ing the previous iterations. The standard deviation of the finest scale
is 1.0 during the adaptive phase and

√
2 during the final reconstruc-

6.4. IMPLEMENTATION 111

tion. The increased number of scales reduces seams that may appear
at transitions between scales in the final reconstruction. We found
that using more scales during the adaptive process does not reduce
error, but comes at a performance penalty. Second, we use a larger
Gaussian filter for filtering the binary stopping map during the final
reconstruction. While we use the coarser scale Gaussian filter during
the adaptive phase, we double this size for the final reconstruction. Us-
ing smaller filters during the adaptive process better samples clusters
of outliers, while using larger filters during the final reconstruction
ensures we smooth out most of the remaining outliers. Third, when
filtering the binary stopping maps we use the filtered binary value
only if it leads to selecting the coarser scale. By disregarding filtered
binary values that switch to stopping at the finer scale we suppress
spike noise more effectively.

Integration with PBRT. We have implemented our algorithm using
PBRT to demonstrate its compatibility with standard Monte Carlo ray
tracers. Our implementation consists of a scale selector and an adap-
tive sampler. The adaptive sampler implements the existing PBRT
Sampler interface. It has two states: “initialization” and “adaptive”.
Rendering starts with the “initialization” phase, where each pixel is
sampled uniformly using 4 samples per pixel. After initial sampling,
the scale selector first computes the filtered scales and the correspond-
ing variances as described above. It then uses the scale selector from
Section 6.2.3 and the post-processing algorithm from Section 6.2.4
to determine the scale for each pixel that minimizes the MSE. Dur-
ing the “adaptive” phase of the sampler, all pixels are first ranked
according to their estimated improvement in relative MSE, which is
established as described in Section 6.3. We then select the m pixels
with the highest estimated improvement. In our implementation, the
user specifies a desired average number of samples per pixel n that
should be distributed over the iterations. We performed 8 iterations
in all our results. Hence, for an image composed of M pixels, we
distribute N = M(n − 4)/8 samples per iteration, over m = N/n
pixels, and each selected pixel receives n samples. The n samples are

112 CHAPTER 6. ADAPTIVE RENDERING USING GEM

distributed over the selected filter scale as described in Section 6.3.

6.5 Results

We generated all results on a dual 4-cores XEON system at 2.50GHz,
with 8GB of RAM, using 8 threads. We implemented both our ap-
proach and the AWR algorithm on top of PBRT [PH10]. For our
method, we set the error rate parameter γ to 0.1 for all scenes. For
the AWR algorithm, we use the Daubechies 9/7 wavelets, a smooth-
ing constant cs = 1, and renormalization factor of 1.05 as suggested
in the original paper. Due to the limited amount of samples drawn
per iteration with the AWR algorithm (from 64 to 2048), our imple-
mentation scales poorly to 8 cores, which dramatically decreases its
performance.

We present results from five test scenes using a wide range of ef-
fects, geometries and materials. The “killeroos” scene showcases the
impact of motion blur. The “plants-dusk” scene uses environment light-
ing with a very complex geometry. The “yeahright” scene shows glossy
materials, a model with fine geometric details, environment light-
ing, and one-bounce indirect illumination. The “plants-dusk”, “toaster”
and “sibenik” scenes were used in the original AWR paper [ODR09].
We modified the “sibenik” scene to have an environment light (seen
by refraction through the windows) and a single area light over the
gargoyle.

We compare the following four methods:

• NAIVE: Uniform sample distribution and filter using finest ker-
nel. This is the default PBRT behavior.

• AWR: Adaptive sample distribution and reconstruction using
wavelet coefficient shrinkage [ODR09].

• GEM: Our proposed greedy error minimization approach with
adaptive sampling and filter selection.

• GEM-GRD: Our proposed greedy error minimization approach
with adaptive sampling and filter selection, but with ground

6.5. RESULTS 113

truth bias and variance values. This is to illustrate the best re-
sults we could theoretically achieve with our technique.

In Figure 6.11 we illustrate the impact of γ, the single user pa-
rameter of our method, on the “sibenik” scene. Intuitively, γ controls
the error rate for filter selection in uniform areas. Lower γ values pro-
duces smoother results in uniform areas, but they tend to blur across
edges. Larger γ values preserve edges better, but exhibit artifacts due
to outliers in uniform areas. The experiment shows that the MSE
remains relatively constant for a wide range of γ values from about
0.20 to 0.30, meaning that scale selection and outlier removal operate
effectively. For lower γ values, scale selection tends to pick filters that
are too smooth. For higher values, the error rate in uniform areas be-
comes too large, such that we are not able to remove outliers robustly
any more.

In Figure 6.12 we report on the convergence of the four methods
measured in terms of relative MSE to a reference image produced
with PBRT. We compute relative pixel MSE as (img−ref)2/(ref2+ε),
and we report the average error over the images. We set ε = 0.01 to
prevent over-weighting of errors in very dark regions. Our algorithm
explicitly attempts to minimize this error, which AWR does not. We
acknowledge that relative mean squared error is not a perfect measure
for image quality, but we believe it is still a useful indicator for the
convergence rate of a method.

For all scenes, our method consistently improves upon both the
NAIVE and AWR approaches. The AWR method usually improves
the MSE at lower samples counts, however converges slowly to the
right solution. Several factors could cause this behavior. First, the
functional variance estimate in AWR only considers the maximum and
minimum sample values within a pixel. This essentially maximizes the
impact of outliers, both bright and dark. Another source of error are
ringing effects in dark regions, emphasized by the relative error metric.
Finally, using the standard parameters for AWR tends to overblur
images, leading to smooth results, but not necessarily low numerical
error. This is apparent as AWR has low error initially for scenes with
large uniform, but noisy areas (“killeroos”, “sibenik”). In contrast, the

114 CHAPTER 6. ADAPTIVE RENDERING USING GEM

γ = 0.04 γ = 0.20 γ = 0.36

MSE: 0.004262 MSE: 0.002081 MSE: 0.002237

Figure 6.11: Top: sample densities obtained for the “sibenik” scene by
varying γ. Low values yield a better reconstruction of smooth regions,
which leaves more samples to resolve edges. High values yields more
uniform sample densities, since outliers are draining more samples.

error remains high for the “plants-dusk” scene, which contains a lot
of high frequency details.

Figure 6.12 evaluates the performance of our and AWR’s adap-
tive filtering techniques used with standard uniform sampling. In
the “killeroos” and “plants-dusk” scenes, uniform sampling performs
significantly worse than adaptive sampling. Adaptive sampling only
slightly improves the MSE of the “sibenik” scene, despite the appar-
ent adaptivity of our sample distribution (see Figure 6.11). Even with
reference statistics we observe a similar behavior. This may be be-
cause most of the error is due to variance in uniform regions, which
is filtered effectively without adaptive sampling.

6.5. RESULTS 115

Adaptive Uniform
ki

lle
ro

os

16 32 64 128 25616 32 64 128 256

2.0e-03
1.5e-03
1.0e-03
5.0e-04

2.0e-03
1.5e-03
1.0e-03
5.0e-04Re

la
tiv

e
M

SE NAIVE
AWR
GEM
GEM-GRD

16 32 64 128 25616 32 64 128 256

2.0e-03
1.5e-03
1.0e-03
5.0e-04

2.0e-03
1.5e-03
1.0e-03
5.0e-04Re

la
tiv

e
M

SE

si
be

ni
k

16 32 64 128 25616 32 64 128 256

5.0e-03

1.0e-02

1.5e-02

2.0e-02

Re
la

tiv
e

M
SE

16 32 64 128 25616 32 64 128 256

5.0e-03

1.0e-02

1.5e-02

2.0e-02

Re
la

tiv
e

M
SE

pl
an

ts
-d

us
k

16 32 64 128 25616 32 64 128 256
Samples per Pixel

2.0e-04

4.0e-04

6.0e-04

2.0e-04

4.0e-04

6.0e-04

Re
la

tiv
e

M
SE

16 32 64 128 25616 32 64 128 256
Samples per Pixel

2.0e-04

4.0e-04

6.0e-04

2.0e-04

4.0e-04

6.0e-04

Re
la

tiv
e

M
SE

Figure 6.12: Convergence plots over average number of samples per
pixel measured in average per-pixel MSE. Left: adaptively distributed
samples; right: uniformly distributed samples with adaptive recon-
struction only. The NAIVE method is shown as a reference. AWR is the
algorithm proposed by Overbeck et al. [ODR09], GEM is our proposed
approach, and GEM-GRD is our approach using ground truth statis-
tics. For scenes with a combination of noisy areas and high frequency
details, such as the “killeroos” and the “plants-dusk” scenes, adaptive
sampling provides a significant improvement. For the “sibenik” scene,
where noise is equally distributed across the image and there are
large uniform areas, adaptive sampling yields only a slight improve-
ment, even with the reference statistics. AWR behaves similarly, but
has consistently lower convergence rates.

In Figures 6.13 to 6.17 we present results obtained with the naive
approach, the AWR algorithm, our method and the ground truth adap-
tive result obtained by minimizing the ground truth MSE. Results
obtained with the AWR algorithm frequently show ringing artifacts

116 CHAPTER 6. ADAPTIVE RENDERING USING GEM

caused by aliasing in the Daubechies wavelet decomposition. Ringing
is most evident at the edge between the animal ear and the back-
ground in the “killeroos” scene (Figure 6.13). AWR tends to over-
smooth images with many details, which is best visible in the “plants-
dusk” scene (Figure 6.14). The algorithm performs extremely well in
uniform regions, which are reconstructed virtually noise free.

Our method gives high quality results both visually and numeri-
cally, offering a good compromise between noise and sharpness. We
filter more conservatively across edges retaining most high frequency
information, but still manage to smooth uniform regions effectively.
The “toaster” scene is a good example: we maintain the sharp edges
of the model, but have slightly noisy smooth shadow transition on
the ground. For all five scenes, our method gives results which are
visually close to the solution obtained using ground truth statistics.

We evaluated the performance overhead of our method with the
Google CPU Profiler, since this tool supports multi-threaded applica-
tions. For our simplest scene (“toasters”), we spend 4.36% of render-
ing time in our adaptive sampler and filter selection algorithms. Since
our algorithm is independent of scene complexity, this is indicative of
a worst case scenario. If measured in terms of samples rendered per
second, there is often a larger discrepancy between our adaptive ren-
dering performance and the uniform one. We believe the reason for
this is that adaptive sampling tends to generate more “difficult” sam-
ples in average than uniform sampling. For instance, for the “killeroos”
scene, our adaptive sampler targets the animals (∼ 33K primitives
each) much more than the ground and back wall, which yields a cor-
respondingly larger cost per sample.

Discussion and Limitations. Our algorithm relies heavily on the
estimated variance to guide the adaptive sampling scheme. In tests
using two samples per pixel in the initialization phase, we obtained
very similar results to those reported in Figure 12 (an improvement of
up to 3% of the MSE, depending on the scene), illustrating our algo-
rithm robustness to noise in the initial variance estimate. Regardless,
our algorithm has difficulties handling regions where light paths are

6.5. RESULTS 117

GEM NAIVE AWR

0.001515, 43 spp (227s) 0.001208, 32 spp

GEM GEM-GRD REFERENCE

0.000142, 32 spp (226s) 0.000127, 32 spp 4096 spp

Figure 6.13: Result for the “killeroos” scene at 1024× 1024 pixels. We
indicate MSE and rendering times in seconds. Timing data for the
AWR is omitted since our implementation does not scale to multiple
CPUs. We adjusted the number of samples in the “NAIVE” method to
match the rendering times of our “GEM” method, providing an equal
time comparison.

unlikely to be found by brute force sampling. There, it tends to sys-
tematically underestimate the variance, which leads to undersampling
and filtering artifacts. The dark regions of the “sibenik” scene, where
more than 95% of the samples carry a null radiance, present such a
case. Our method also cannot reconcile the need to filter overlapping
elements in the same pixel using different kernels. The “killeroos”

118 CHAPTER 6. ADAPTIVE RENDERING USING GEM

GEM NAIVE AWR

0.000364, 51 spp (303s) 0.000680, 32 spp

GEM GEM-GRD REFERENCE

0.000173, 32 spp (308s) 0.000136, 32 spp 4096 spp

Figure 6.14: Result for the “plants-dusk” scene at 1024× 1024 pixels.
We indicate MSE and rendering times in seconds. Timing data for the
AWR is omitted since our implementation does not scale to multiple
CPUs. We adjusted the number of samples in the “NAIVE” method to
match the rendering times of our “GEM” method, providing an equal
time comparison.

scene features sharp lines which illustrate this fact (Figure 6.13). One
can still faintly see the lines through the blurred animal head in the
4096 spp rendering, while they are mostly blurred out in our result.
Also, the soft shadow cast by the animal is filtered heavily, except
around the sharp lines, resulting in an increased noise level in our
reconstruction. In other words, given contradictory filtering require-

6.5. RESULTS 119

GEM NAIVE AWR

0.0013980, 38 spp (112s) 0.004300, 32 spp

GEM GEM-GRD REFERENCE

0.002081, 32 spp (113s) 0.001516, 32 spp 4096 spp

Figure 6.15: Result for the “sibenik” scene at 1024× 1024 pixels. We
indicate MSE and rendering times in seconds. Timing data for the
AWR is omitted since our implementation does not scale to multiple
CPUs. We adjusted the number of samples in the “NAIVE” method to
match the rendering times of our “GEM” method, providing an equal
time comparison.

ments, our algorithm preserves the most prominent feature. Nonethe-
less, the adaptive process of our method assigns more samples to
these difficult regions, mitigating the problem.

120 CHAPTER 6. ADAPTIVE RENDERING USING GEM

GEM NAIVE AWR

0.001387, 50 spp (69s) 0.000521, 32 spp

GEM GEM-GRD REFERENCE

0.000178, 32 spp (68s) 0.000153, 32 spp 4096 spp

Figure 6.16: Result for the “toasters” scene at 1024× 1024 pixels. We
indicate MSE and rendering times in seconds. Timing data for the
AWR is omitted since our implementation does not scale to multiple
CPUs. We adjusted the number of samples in the “NAIVE” method to
match the rendering times of our “GEM” method, providing an equal
time comparison.

6.6 Conclusion

In this chapter, we described a versatile adaptive sampling and re-
construction algorithm that greedily minimizes MSE in Monte Carlo
rendering. The method provides significant improvement in terms of
numerical error and image quality over previous work. A key compo-

6.6. CONCLUSION 121

GEM NAIVE AWR

0.001392, 65 spp (82s) 0.001649, 32 spp

GEM GEM-GRD REFERENCE

0.000165, 32 spp (82s) 0.000127, 32 spp 4096 spp

Figure 6.17: Result for the “yeahright” scene at 1024 × 1024 pixels.
We indicate MSE and rendering times in seconds. Timing data for the
AWR is omitted since our implementation does not scale to multiple
CPUs. We adjusted the number of samples in the “NAIVE” method to
match the rendering times of our “GEM” method, providing an equal
time comparison.

nent is a robust filter selection procedure that minimizes pixel MSE
over a set of discrete filters. A main limitation of our approach is that,
similar as AWR, our variance estimation assumes that the Monte Carlo
renderer generates random samples. As a consequence, we will over-
estimate variances for low discrepancy sequences or stratified samples.
One could heuristically reweight our variance term to account for this,

122 CHAPTER 6. ADAPTIVE RENDERING USING GEM

but a more thorough solution would be desirable. A weakness of our
approach is that we cannot filter noise close to edges because we only
use isotropic filters.

When this work was initially published, we noted that an inter-
esting avenue for improvement would be to extend our approach to
more general filters, such as cross-bilateral kernels. This has been
done by Li et al. in their paper titled SURE-based Optimization for
Adaptive Sampling and Reconstruction [LWC12], where they use a
filterbank of cross-bilateral filters with varying support.

In the next chapter, we’ll present an improved implementation of
our adaptive framework that addresses the two main shortcomings
of the GEM algorithm, that is, the restriction to pure random samples
and to isotropic Gaussian filters.

Chapter 7

Adaptive rendering using
non-local means filtering

This chapter presents our NLM algorithm, which is the second im-
plementation of our adaptive framework. The name NLM refers to
the fact that this implementation makes use of the NL-Means fil-
ter [BCM05] to denoise renderings. It builds upon the same image
space iterative approach as our previous GEM algorithm (see Chap-
ter 6), but addresses its two main shortcomings: the use of a filter-
bank of isotropic Gaussian filters, which prevented efficient filtering
along edges, and the restriction to pure random sampling, whereas
modern renderers use low-discrepancy sampling techniques that can
sometimes substantially reduce the variance. Our NLM algorithm was
initially developed in 2012, and the content of this chapter is repro-
duced from [RKZ12].

The algorithm we develop in this chapter builds on the observa-
tion that previous image space adaptive rendering methods, such as
our GEM algorithm (see Chapter 6) and Overbeck et al.’s AWR algo-
rithm [ODR09], are based on image denoising techniques that are
not competitive with the state of the art in image processing. For ex-
ample, the AWR algorithm uses straightforward wavelet shrinkage,

123

124 CHAPTER 7. ADAPTIVE RENDERING USING NLM

and our GEM algorithm is based on adaptive bandwidth selection
with isotropic Gaussian filters. Both techniques leave ample room for
improvement, as we show in this chapter.

The main contribution of our approach is to extend an image de-
noising filter that is competitive with the state of the art in image pro-
cessing and employ it in an adaptive rendering framework. We show
that our approach is more robust under severe noise than previous
techniques, significantly reducing numerical error and visual artifacts.
In addition, our approach is more effective at removing noise even in
complex image regions while minimizing the smoothing of image fea-
tures. Finally, our technique is compatible with efficient low discrep-
ancy sampling while previous techniques assumed random sampling,
which affords additional improvements in output quality. Our tech-
nique shares the advantages of other image based approaches. It can
deal with arbitrary light transport and lens effects, and it only requires
the Monte Carlo samples as its input such that it is straightforward to
implement it on top of existing renderers.

Our framework builds on an iterative strategy consisting of three
components in each iteration step. First, we distribute a given bud-
get of Monte Carlo samples over the image. We sample the image
uniformly in the initial iteration step, while consecutive iterations em-
ploy adaptive sampling. Second, we filter the image to reduce noise.
Finally, we estimate the error remaining in the filtered image to drive
adaptive sampling in the next iteration step. The effectiveness of this
scheme largely hinges on the denoising filter. A core idea in our ap-
proach is to extend and adapt the non-local means filter [BCM05],
which is competitive with the state of the art in image denoising, to
our adaptive rendering framework. A challenge in applying such a
filter for adaptive rendering is the need to obtain an error estimate
to drive adaptive sampling. We address this issue using a dual-buffer
strategy: we simply split the samples into two sets that we render
and filter in two separate image buffers. The difference between the
filtered buffers serves as an effective error estimate. Hence we demon-
strate that it is possible to employ sophisticated denoising filters for
adaptive rendering, and our results show significant improvements

7.1. ALGORITHM OVERVIEW 125

over previous work. In summary we make the following contributions:

• An adaptive rendering framework based on non-local means fil-
tering. We demonstrate significant improvements in numerical
error and visual quality compared to previous work.

• A dual-buffer strategy for non-local means filtering. This allows
us to obtain error estimates to drive adaptive sampling, and to
extend our method to low-discrepancy sampling.

• Extensions of the non-local means filter to adapt it to denoise
images produced by Monte Carlo rendering.

7.1 Algorithm Overview

The objective of our algorithm is to optimize rendering quality given
a user specified sampling budget. Figure 7.1 gives a visual overview
of our method. We build on image space adaptive sampling and fil-
tering using an iterative scheme, where each iteration is composed of
three steps: (1) sampling, (2) filtering, and (3) estimating the resid-
ual error. In each subsequent iteration we use the error estimate from
the previous one to drive adaptive sampling, where we distribute a
predetermined fraction of the sample budget each time. We bootstrap
the algorithm in the first iteration by sampling the image uniformly. A
key component of our approach is the denoising filter in step two. We
use a variant of the NL-Means filter tailored to our adaptive rendering
framework. During the iteration we keep track of per-pixel statistics
including sample count and empirical variance, in addition to the
usual pixel value. We use these statistics to adapt the NL-Means filter
to local image characteristics. In addition, we operate on two image
buffers (indicated in red and green in Figure 7.1), instead of one, each
receiving half of the samples. This is a key idea of our method that
allows us to improve filtering quality and obtain simple but effective
error estimates to drive adaptive sampling.

We next describe the main components of our algorithm. We re-
view the original NL-Means formulation and introduce our extensions

126 CHAPTER 7. ADAPTIVE RENDERING USING NLM

1. Sampling 2. Filtering

3. Error Estimation

Noisy Images Pixel Variance

Sampling Map Filtered Images

Estimated Error Estimated Variance

Figure 7.1: Overview of our dual-buffer framework. We indicate the
two buffers with red and green borders. We iterate over three steps:
sampling, filtering, and error estimation. In the filtering step, we first
estimate the pixel variances using the noisy buffers. Then we denoise
the buffers with our variant of NL-Means filtering. In the error estima-
tion step, we first estimate the residual variance in the filtered buffers,
and then derive the potential error reduction afforded by placing an
additional sample per pixel. In the sampling step, we distribute a set
of samples according to the estimated errors in each buffer. We iterate
until the sample budget is exhausted.

in Section 7.1.1. Section 7.1.2 covers our error estimation technique,
and Section 7.1.3 describes our adaptive sampling scheme.

7.1. ALGORITHM OVERVIEW 127

7.1.1 The NL-Means Filter

The NL-Means filter [BCM05] is a non-linear, edge-preserving filter
that computes each output pixel as a weighted sum of input pixels.
The set of input pixels contributing to one output pixel may originate
from a large region in the input image, hence the term non-local. A key
feature of the NL-Means filter is that the weights are determined by
the distance between small image patches, as illustrated in Figure 7.2.
The NL-Means filter is a generalization of the bilateral filter [TM98],
which considers distances between pairs of pixel values, instead of
small patches, to compute filter weights. This extension leads to much
improved denoising performance, and NL-Means and its variants are
among the most successful denoising algorithms.

We propose several key extensions to the original filter formulation
that allow us to use it effectively in an adaptive rendering framework:

• dual-buffered filtering (Section 7.1.1),

• support for non-uniform variance (Section 7.1.1),

• symmetric distance computation to better handle gradients (Sec-
tion 7.1.1).

We start by giving a definition of the original NL-Means filter, and
then detail our extensions and their impact on the filtering process.

The NL-Means filter computes the filtered value û(p) of a pixel p
in a color image u = (u1, u2, u3) as a weighted average of pixels in
the square neighborhood of size 2r + 1 × 2r + 1 centered on p, as
illustrated in Figure 7.2,

ûi(p) =
1

C(p)

∑
q∈N(p)

ui(q)w(p, q), (7.1)

where N(p) is the square neighborhood centered on p, w(p, q) is the
weight of the contribution of q to p, i is the index of the color channel,
and C(p) is a normalization factor,

C(p) =
∑

q∈N(p)

w(p, q).

128 CHAPTER 7. ADAPTIVE RENDERING USING NLM

The weight w(p, q) of a neighbor q is based on the distance between a
pair of small patches of size 2f + 1× 2f + 1 centered at p and q. The
patch distance d2(P (p), P (q)) is the average of the per-pixel and per
color channel squared distances d2

i (p, q) over the patches,

d2
i (p, q) = (ui(p)− ui(q))2, (7.2)

d2(P (p), P (q)) =
1

3(2f + 1)2

3∑
i=1

∑
n∈P (0)

d2
i (p+ n, q + n), (7.3)

where P (p) and P (q) are the patches centered on p and q, P (0) rep-
resents the offsets to each pixel within a patch.

An important observation is that, because the input signal is noisy,
the measured squared distances are biased. Therefore, the original NL-
Means filter [BCM05] subtracts the variance of the measured squared
distances to cancel out the noise contribution from the patch distance.
Assuming uniform pixel noise with variance σ2 and uncorrelated pix-
els p and q, the modified patch distance is

max(0, d2(P (p), P (q))− 2σ2).

The weight w(p, q) of the contribution of pixel q to p is then obtained
using an exponential kernel,

w(p, q) = exp−
max(0,d2(P (p),P (q))−2σ2)

k22σ2 ,

where k is a user specified damping factor that controls the strength
of the filter. A lower k value yields a more conservative filter.

We also use the patchwise extension that was proposed by Buades
et al. [BCM05], which produces slightly smoother outputs. Instead of
weighting only the pixel p at the center of the patch with the weight
w(p, q), we weight all pixels in the patch centered at p with w(p, q).
Each pair of pixels occurs in 2f + 1× 2f + 1 patches, each time with
a distinct weight w(p + n, q + n), where n is the offset of p and q in
the patch. In the patchwise implementation the final weight W (p, q)
for a pair of pixels is simply the average over all weights that involve

7.1. ALGORITHM OVERVIEW 129

2r+1

2f+1

2f+1

p

q

N(p)

P(p)

P(q)

d²(P(p),P(q))

Figure 7.2: NL-Means computes the filtered value û(p) of pixel p as
a weighted average of all pixels q in a square neighborhood of size
2r + 1× 2r + 1. The weight between p and q is based on the squared
distance d2(P (p), P (q)) between the pair of patches P (p) and P (q) of
size 2f + 1× 2f + 1 centered on p and q.

these two pixels,

W (p, q) =
1

(2f + 1)2

∑
n∈P (0)

w(p+ n, q + n).

Dual-Buffer Filtering

Dual-buffered filtering is our key modification to NL-Means that en-
ables most of our other extensions and allows us to employ it in an
adaptive rendering framework. We observe that in the original NL-
Means approach the filter weights and the input signal are correlated.
This makes it challenging to analyze the error introduced by the fil-
ter. In addition, since the filter weights not only adapt to the signal
but also to the noise, some noise tends to be preserved in the output.
We address both issues with our dual-buffered implementation. We
maintain two image buffers, A and B, that receive half the samples
in each iteration of our framework (Figure 7.1). We also store pixel

130 CHAPTER 7. ADAPTIVE RENDERING USING NLM

statistics including the number of samples and the empirical sample
variance separately in each buffer. We then use the two buffers to
cross filter each other, that is, we use the filter weights computed
from buffer A to filter buffer B, and vice versa. The final output is
the average of the two filtered buffers. Our approach eliminates the
correlation between the filter weights and the noise, and we get much
improved filtering as shown in Figure 7.3. In addition, the per-pixel
differences between the buffers serve as a basis for our variance and
error estimation components that we describe next.

Noisy data Single-buffer Dual-buffer

MSE: 7.890E-3 MSE: 0.069E-3 MSE: 0.027E-3

Figure 7.3: Filtering a noisy uniform input (left), using the single-
buffer approach (center), or our dual-buffer approach (right). Using
a single buffer tends to preserve structures from the noisy input be-
cause of the correlation between filter weights and input. The filter
parameters are r = 10, f = 3 pixels, and k = 0.45. We list the mean
squared error (MSE) under each image.

Non-Uniform Variance

While the original NL-Means formulation assumes uniform noise over
input images, Monte Carlo rendering generally leads to highly non-
uniform noise patterns. The type of noise and its magnitude depend
on the scene geometry, object materials, and light transport and lens
effects. Therefore, let us denote per-pixel variance of color channel i at

7.1. ALGORITHM OVERVIEW 131

pixel p by Vari[p], replacing the uniform variance σ from Section 7.1.1.
We modify the previous per-pixel squared distance computation by
performing variance cancellation and normalization on a per-pixel
basis,

d2
i (p, q) =

(ui(p)− ui(q))2 − α(Vari[p] + Vari[q, p])

ε+ k2(Vari[p] + Vari[q])
, (7.4)

where α controls the strength of variance cancellation. In addition,
we define Vari[q, p] = min(Vari[q],Vari[p]) to clamp the variance
at position q to the variance at p. This ensures that the potentially
large variance of brighter neighbors does not cancel out the measured
squared difference, and it prevents bright regions from blurring into
dark ones. Note that with Vari[p] = Vari[q] = σ2 we fall back to the
original definition. We set ε = 10−10 to prevent divisions by 0. The
value of ε must be very small in order to preserve features in dark
areas. Finally, the patch distance is computed as in Equation 7.3, and
the weight w(p, q) of the contribution of pixel q to p is now simply

w(p, q) = exp−max(0,d2(P (p),P (q))) . (7.5)

Additionally, we set to zero weights W (p, q) below a threshold of
0.05, to help preserve fine features in noisy areas where non-feature
neighbors can greatly outnumber feature neighbors, dominating the
result even with very low weights.

Variance Estimation. Estimating the pixel variance Var [p] is a key
component of our algorithm (we omit the index i of the color chan-
nel for better readability from now on). Assuming that samples are
drawn from a random distribution, we could estimate the pixel vari-
ance using the empirical variance of the samples contributing to the
pixel, which we denote by Σ[p], as in our GEM algorithm (see Sec-
tion 6.4). Random sampling, however, may lead to significantly higher
variance than more sophisticated sampling strategies such as low-
discrepancy sequences [KK02b]. Therefore, we develop a simple ap-
proach to support low-discrepancy sampling in our framework, taking

132 CHAPTER 7. ADAPTIVE RENDERING USING NLM

advantage of our two buffers. The same idea was developed by Sijbers
et al. [SDDVA+98] to estimate the variance in magnetic resonance
images, but assuming uniform variance across the image.

We obtain an initial estimate ∆[p] of the pixel variance Var [p]
using the squared difference between the two buffers, ∆[p] = (A(p)−
B(p))2/2. This is an unbiased estimate, but it is rather noisy because
it is based on just two samples, that is, the two buffers. We found that
we can improve our results, as illustrated in Figure 7.4, by applying
an additional smoothing step to the initial variance estimates ∆[p].
The intuition behind our smoothing approach is that the empirical
sample variances Σ[p] have a structure similar to the actual pixel
variances, but Σ[p] may be strongly biased. Therefore, we smooth the
initial estimates ∆[p] by cross filtering them with the empirical sample
variances Σ[p], that is, we compute NL-Means filter weights using Σ[p]
and apply them to filter ∆[p]. We illustrate the process in Figure 7.5.

To obtain the filter weights we also need the variance of Σ[p],
which we compute as the difference between Σ[p] from buffers A and
B. We compute pixel distances as in Equation 7.4, but using Σ and
its variance estimate. Because the variance estimate for Σ is noisy, we
set α = 4 in Equation 7.4 to discard all differences lower than two
standard deviations. We use a small neighborhood with r = 1, a patch
size of f = 3, and k = 0.45. The small neighborhood ensures that the
variance peaks, which are aligned with the outliers pixel values, are
preserved. Since the filtering tends to increase the variance estimate
of pixels neighboring noisy regions, we also clamp the filtered value
of ∆[p] so that it does not exceed Σ[p].

Symmetric Distance

Our symmetric distance computation is designed to improve the filter-
ing of smooth gradients. Because the original NL-Means formulation
tends to constrain the filter to neighbors orthogonal to the gradient
direction, as we illustrate in Figure 7.6, it often results in distracting
artifacts in otherwise smooth gradients. Our extension builds on the
observation that, in a smooth gradient, all pixel differences are radi-

7.1. ALGORITHM OVERVIEW 133

∆[p] as Var [p] Filtered ∆[p] as Var [p]

MSE: 9.742E-3 MSE: 1.809E-3

Figure 7.4: Filtering with low-discrepancy samples. In the left image,
we directly used the squared difference ∆[p] between our two buffers
as an estimate of the pixel variance Var [p] in the NL-Means filter.
In the right image we cross-filtered ∆[p] using the sample variance
Σ[p] to obtain a smoother estimate for Var [p]. The unfiltered buffer
variance ∆[p] is too noisy to reliably estimate pixel distances, whereas
our filtered variance yields a smooth output.

ally symmetric with respect to the center pixel. The error introduced
by the contribution of a given neighbor is canceled by the contribu-
tion of the radially symmetric neighbor. We exploit radial symmetry
in the signal by defining a modified distance to a pair of symmetric
neighbors q1 and q2,

d2
i (p, q̄) =

(ui(p)− ui(q̄))2 − (Vari[p] + Vari[p, q̄])

Vari[p] + Vari[q̄]
, (7.6)

where

ui(q̄) = (ui(q1) + ui(q2))/2,

Vari[q̄] = (Vari[q1] + Vari[q2])/4,

Vari[p, q̄] = (Vari[p, q1] + Vari[p, q2])/4.

Note that Vari[q̄] is half the mean variance of pixels q1 and q2, since
the effective sampling rate doubles when we compute ui(q̄). Using

134 CHAPTER 7. ADAPTIVE RENDERING USING NLM

(a) Sample variance Σ[p] (b) Buffer variance ∆[p]

(c) Filtered ∆[p], used as Var [p] (d) Reference

Figure 7.5: Estimating Var [p]. We use the sample variance Σ[p] (a)
to cross-filter the inter-buffer variance ∆[p] (b), an unbiased but very
noisy estimate of the true variance. The resulting filtered variance
(c) is our estimate for Var [p]. It is a reasonable approximation of the
reference variance (d) as computed over 100 images.

these squared symmetric distances we compute the corresponding
symmetric weight w(p, q̄) as before.

In practice we always compute the asymmetric distances to both
q1 and q2 as in Equation 7.4 and the corresponding weights w(p, q1)
and w(p, q2), in addition to the symmetric weight w(p, q̄). Only if
the symmetric weight is larger the sum of both asymmetric weights,
we set both w(p, q1) and w(p, q2) to w(p, q̄). Otherwise we keep the
asymmetric weights. This prevents the use of the symmetric weights
if we do not have enough confidence in the symmetry of the data.

7.1. ALGORITHM OVERVIEW 135

Noisy data Standard Symmetric

MSE: 2.546E-3 MSE: 0.122E-3 MSE:0.034E-3

Figure 7.6: A noisy ramp (top left), filtered using the standard NL-
Means filter (middle column) and our extended filter including sym-
metric distances (right column). The corresponding filters for the
center pixel are shown in the bottom row. The standard filter is con-
strained to neighbors orthogonal to the gradient direction, while our
extended variant has a much larger effective support. The filter pa-
rameters are r = 10, f = 3, and k = 0.45.

7.1.2 Error Estimation

The error in the filtered image consists of residual variance and bias
introduced by the filtering. An analytical error analysis of the NL-
Means filtered output, however, is rather complicated because the
filter weights are both noisy and correlated with one another. Instead,
we directly estimate the error as the squared relative difference be-
tween the two filtered buffers Â and B̂. We use the relative difference

136 CHAPTER 7. ADAPTIVE RENDERING USING NLM

to prevent overweighting differences in bright image regions. We es-
timate the error E separately for each buffer (for simplicity we omit
the buffer index from the notation). The error of the filtered buffer Â
is

E =
(Â− B̂)2

ε+ Â2
,

where ε = 10−3 is an offset to prevent divisions by 0. Note that our
estimate accounts for variance but not bias in the error. We do not
attempt to estimate bias because the NL-Means filter tries to avoid
bias by design. In Figure 7.7 we compare our estimated error to the
ground truth error, that is, the relative squared distance to the refer-
ence image. Our estimate captures the main features of the ground
truth error, but may miss some small image details that are smoothed
out in both buffers. These details can only be resolved with a larger
number of samples per pixel.

Because we use the error estimation in the next sampling step to
guide the distribution of samples, we additionally weight it according
to the potential error reduction obtained by adding a single sample in
each pixel. Given that the pixel variance is inversely proportional to
the number of samples, adding one sample to a pixel p will decrease
the variance by a factor of 1/(1 +np), where np is the number of sam-
ples already contributing to the filtered value of p. The new sample
will also contribute to the pixels in the neighborhood of p, whose fil-
ter weights include p. Consequently, the error weight of an additional
sample in p is

W (p) =

∑
N(p) w(p, q)

1 + np
,

and the weighted error of p is simply W (p)E(p).

7.1.3 Sampling

We allocate an equal fraction of the total sample budget to each itera-
tion. We split the number of samples in each iteration evenly over the
two image buffers and distribute samples according to the same de-
sired per-pixel sample density in each buffer. We represent the desired

7.1. ALGORITHM OVERVIEW 137

sibenik plants-dusk sanmiguel
G

ro
un

d
Tr

ut
h

Es
ti

m
at

ed

Figure 7.7: Comparison of our error estimation using the relative
squared difference between the two filtered buffers and the relative
squared difference to the reference image, using uniform distributions
of 32 samples per pixel.

sample density using a sampling map that specifies for each pixel the
number of additional samples to draw.

For the initial iteration we use a uniform sampling density. For
the subsequent iterations we obtain the sampling map as follows. We
sum the weighted error maps of both buffers, and smooth it using a
small Gaussian kernel with σ = 0.8. This smoothing step allows pixels
that missed a rare event (for instance a fast moving object), to still be
sampled if their neighbors recorded the event, effectively filling holes
in our sampling map. We then normalize the sampling map to sum up
to N/2, where N is the sample budget per iteration, which gives us
the number of samples to be drawn per pixel. Finally, we clamp the
per-pixel sample count to a predefined value to prevent pixels with
very large errors from draining too many samples. For each pixel,

138 CHAPTER 7. ADAPTIVE RENDERING USING NLM

we use the fractional part of the sample count as the probability of
drawing an additional sample. For instance, if we need to draw 3.2
samples in a pixel, we have a 80% chance of drawing 3 samples, and a
20% chance of drawing 4 samples. The rounding error is propagated
from pixel to pixel, to ensure that the overall average is maintained.

We show the sample density maps obtained with our algorithm for
a set of test scenes in Figure 7.8. This figure also shows ground truth
sample density maps obtained using ground truth error maps, that
is, the relative squared difference to a reference image. The density
maps are similar in both cases, but the MSE is lower when driving the
sampling using the ground truth error. We presume this is because
the ground truth error captures the bias introduced by the filtering,
while our estimation does not.

7.2 Implementation

We integrated our algorithm in the PBRT [PH10] framework. We
implemented a dual-buffered film interface, along with a new sampler
and denoiser. The renderer of PBRT was also modified to perform
sampling over multiple iterations. We accelerate NL-Means filtering
by exploiting the fact that all operations on pixel patches amount
to averaging per-pixel values over a patch. This averaging could be
performed in constant time using summed area tables [LWC+08],
or in linear time using separable box filters. We use a box filter for
numerical stability. Consequently, the cost of our implementation is
mostly driven by the filter window size, while the patch size has a
negligible impact. This brings the cost of the filter in line with that
of a bilateral filter. Given the embarrassingly parallel nature of the
filter, we ported it to CUDA to further improve performance. We suffer
some overhead due to data transfer between the CPU and the GPU
at each iteration, but this could be eliminated by using the NVIDIA
OptiX [PBD+10] framework instead of PBRT to do the raytracing.

Our weighted error estimation, which we use to drive the adaptive
sampling, assumes that the bias introduced by our filter is negligible.

7.2. IMPLEMENTATION 139

sibenik plants-dusk sanmiguel
G

ro
un

d
Tr

ut
h

MSE: 0.839E-3 MSE: 0.072E-3 MSE: 24.104E-3

Es
ti

m
at

ed

MSE: 1.076E-3 MSE: 0.088E-3 MSE: 25.583E-3

Figure 7.8: Sampling density maps with 32 samples per pixel on aver-
age. The top row shows maps obtained by driving the sampling with
the squared difference to the reference image. The bottom row shows
maps obtained with our estimated error. We list MSE values of the
corresponding renderings under each image.

To minimize the amount of bias, we use a very conservative filter to
drive sampling, and a more aggressive one for final reconstruction.
During the iteration we use parameters r = 7 and α = 0.5 in Equa-
tion 7.4. For final reconstruction we use r = 10 and α = 1. In both
cases we use f = 3 and k = 0.45. To ensure that our reconstruction of
pixel values accounts for the sharply varying sample densities across
image edges, we use a subpixel grid and simple push-pull filtering
to fill subpixel holes, similarly to the implementation of our GEM
algorithm (see Section 6.4).

140 CHAPTER 7. ADAPTIVE RENDERING USING NLM

7.3 Results

We evaluate our algorithm (NLM) on a set of five test scenes and
compare our results to our previous GEM algorithm (see Chapter 6),
and unfiltered uniform low-discrepancy sampling (LD). Our test ma-
chine is a dual 4-core XEON system at 2.50GHz, with 8GB of RAM,
and a GeForce GTX580 GPU. All three methods are implemented on
top of PBRT, using 8 threads. For the GEM algorithm we use the de-
fault suggested settings. For our algorithm we use four iterations, one
with uniform sampling followed by three with adaptive sampling, and
the parameters mentioned in Section 7.2. Each iteration is assigned
one fourth of the total sample budget. We report the relative mean
squared error (MSE), but also provide the perceptually based struc-
tural similarity (SSIM) [WBSS04a] with respect to the reference in
Table 7.1. The MSE is computed directly on the high-dynamic range
data, while the SSIM is computed on tone-mapped images. Our tone
mapping is a simple gamma correction, using γ = 2.2, followed by
clamping to the range [0, 1].

We provide convergence plots for standard low-discrepancy sam-
pling with no filtering (LD), the GEM algorithm, and our own method
(NLM) in Figure 7.9. For our method we provide convergence plots
using both adaptive sampling and uniform sampling. Our method
consistently yields the lowest MSE value. The gain of adaptive sam-
pling depends on scene complexity. In scenes such as the “conference”
scene, where noise can be filtered out effectively over large regions,
the adaptive sampling offers a marked improvement. The “killeroos”
scene is similar, where noise is restricted to limited regions that the
adaptive sampler targets extensively. On complex scenes such as the
“sanmiguel” scene, too many features need to be sampled, negating
any potential gain of the adaptive sampling.

In Figure 7.10, we show the impact of the patch-based distance
computation of the NL-Means filter. To isolate the impact on the fil-
tering, we used uniform sampling, instead of adaptive sampling. By
setting the patch size parameter to f = 0, we get the same behav-
ior as the bilateral filter, minus the spatial component of its distance

7.3. RESULTS 141

Table 7.1: Perceptual quality, measured using the SSIM metric, for
images of Figures 7.13 to 7.17. Values range from 0 to 1000, where
1000 indicates a perfect match with the reference. The SSIM metric
is based on tone-mapped images using gamma correction (γ = 2.2)
and clamping to the range [0, 1]. The LD column uses uniform low-
discrepancy sampling with no filtering. The GEM column uses the
method described in Chapter 6 with adaptive random sampling. The
NLM column uses our method with adaptive low-discrepancy sam-
pling.

Scene LD GEM NLM

Full Inset Full Inset Full Inset
killines 961 853 993 956 997 987
plants-dusk 971 962 990 912 996 975
sibenik 650 650 935 912 969 956
conference 523 416 914 877 970 963
sanmiguel20 755 532 844 793 891 863

computation. The resulting image has significantly more residual vari-
ance and bias because of the unreliable distance estimates than when
setting f = 3, which is the value we use for all other results.

To illustrate the need for the per-pixel variance estimate used in
our formulation of the NL-Means filter, we show in Figure 7.11 the
result of filtering the “sibenik” scene (uniformly sampled using 32
samples per pixels) with a uniform variance estimate for all pixels
in the image. In this case, we used the mean pixel variance (com-
puted over the entire image) to guide the filtering. As expected, some
regions are then correctly filtered, while others are over- or under-
filtered. Some other value may yield a better result, but it would have
to be hand-tuned and there would always remain an implicit trade-off
between over- and under-filtered regions.

Renderings of our five test scenes are shown in Figures 7.13 to 7.17.
We performed equal rendering time comparisons to account for the

142 CHAPTER 7. ADAPTIVE RENDERING USING NLM

pl
an

ts
-d

us
k

16 32 64 128 25616 32 64 128 256

5.0e-05

1.0e-04

1.5e-04

2.0e-04

2.5e-04

R
el

at
iv

e
M

S
E LD

GEM
NLM

sa
nm

ig
ue

l

16 32 64 128 25616 32 64 128 256

2.0e-02

4.0e-02

6.0e-02

2.0e-02

4.0e-02

6.0e-02

R
el

at
iv

e
M

S
E

co
nf

er
en

ce

16 32 64 128 25616 32 64 128 256

Samples per Pixel

2.0e-03

6.0e-03

1.0e-02

1.4e-02

2.0e-03

6.0e-03

1.0e-02

1.4e-02

R
el

at
iv

e
M

S
E

Figure 7.9: Convergence plots for the scenes of Figures 7.15 to 7.17.
For our method, we show the convergence using adaptive sampling
(solid line), and uniform sampling (dashed line). In all scenes, our
method consistently improves upon the GEM algorithm. The gain
of adaptive sampling with our method is constrained by the scene
complexity. For the “conference” scene, the MSE of the LD method is
too high to appear on the plot.

overhead of each method. We rendered all scenes at a resolution of
1024 × 1024 pixels. The “killeroos” scene illustrates the efficiency of
our method for relatively low-dimensional cases including motion
blur and area lighting. Our use of low-discrepancy samples coupled
with the anisotropy of our filter provides a significant improvement
over the GEM algorithm. The “sibenik” scene illustrates the case of a
moderately noisy scene. It is path-traced and features area lighting,
depth of field, and single-bounce indirect illumination. The GEM algo-

7.3. RESULTS 143

unfiltered f = 0 f = 3

MSE: 0.706E-3 MSE: 0.786E-3 MSE: 0.218E-3

Figure 7.10: Filtering of a uniformly sampled image with 16 samples
per pixel, using two patch sizes, f = 0 and f = 3. By setting f = 0,
we obtain the same behavior as the bilateral filter, minus the spatial
component of its distance computation. In both cases, we set k = 0.45
and r = 10. The smaller patch size is not sufficient to compute robust
pixel distances, leading to a significantly degraded image.

rithm gives very good results in smooth regions of the scene, but has
difficulties handling noise along the many sharp edges. Our method
gives similar results in smooth regions, but is much more effective at
resolving sharp edges. The “plants-dusk” scene features environment
lighting and depth of field. In the focused grass region shown in the
close-up, the GEM algorithm produces an overly blurry image and
increases the MSE compared to uniform low-discrepancy sampling,
illustrating the limitation of the isotropic filters used in GEM. Our
method, on the other hand, preserves the small anisotropic features
while further removing some of the residual noise. The “conference”
scene highlights the robustness of our method to severe noise. To this
end we rendered the scene using a path-tracer, even though it would
be appropriate in practice to use a more sophisticated rendering al-
gorithm that produces less noise in the first place. The scene features
single-bounce indirect illumination and moderately glossy materials.
The GEM method cannot reliably select the appropriate bandwidth
in the presence of such high levels of noise, which leads to jarring fil-

144 CHAPTER 7. ADAPTIVE RENDERING USING NLM

uniform per-pixel
variance variance reference

MSE: 4.248E-3 MSE: 1.260E-3

Figure 7.11: Filtering of the “sibenik” scene (uniformly sampled using
32 samples per pixels) with the standard NL-Means formulation which
assumes a uniform variance across the image (left column) and our
own formulation which uses per-pixel variance estimates (middle
column). The reference rendering is given in the right column. While
filtering using a uniform variance estimate (the mean pixel variance
over the image in this case) works for some regions, many end up
over- or under-filtered.

tering artifacts, while our method can still produce a pleasing image
with few obvious artifacts. Also, the GEM algorithm tends to suppress
noise spikes, producing darker patches on the top of the table. In con-
trast, our dual-buffered strategy, which decorrelates the filter weights
from the noise, maintains the correct luminance by smoothing spikes
instead of suppressing them. To ensure that the contribution of spikes

7.3. RESULTS 145

was sufficiently distributed, we increased the filter window size to
r = 20 for this scene (instead of r = 10 for the others). We show
renderings of this scene using other window sizes in Figure 7.12. The
“sanmiguel” scene illustrates the behavior of our method with highly
complex scenes. It is path-traced and features environment lighting,
single-bounce indirect illumination, and complex textured geometry.
Here again, our algorithm significantly improves upon the results of
the GEM algorithm. Noisy features in particular, such as the chande-
lier in the inset, are much better preserved by our algorithm.

r = 10 r = 20 r = 30

MSE: 2.292E-3 MSE: 1.809E-3 MSE: 1.722E-3

Figure 7.12: Filtering of the “conference” scene using varying filter
window sizes. With a smaller window size, the spike contributions to
their neighborhoods are not sufficiently spread out, yielding a higher
MSE.

The computational overhead of our method is largely dominated
by the cost of the filtering step. For each iteration, we filter the pixel
variance, and we cross filter the two image buffers. The pixel variance
is filtered with r = 1, while the image buffers are cross filtered using
either r = 7 (for the intermediate iterations), or r = 10 (for the final
iteration). The total filtering cost over the four iterations amounts to
8.5s (1.9s per intermediate iteration, and 2.8s for the final iteration).
For the “conference” scene we use r = 20 to cross-filter the buffers
during the final iteration, which increases the total filtering cost to
16.5s, the final iteration taking 10.8s. For our simplest test scene,

146 CHAPTER 7. ADAPTIVE RENDERING USING NLM

“sibenik”, the overall overhead of our method represented less than
10% of the total rendering time, while reducing the MSE by a factor
of 8.6 compared to standard low-discrepancy sampling.

Temporal Coherence. Temporal coherence is an important concern
when considering video sequences, since inconsistencies between
frames will produce flickering artifacts. For unfiltered video sequences
these artifacts appear as fine grained temporal noise, but filtered se-
quences can produce disturbing flickering artifacts because of low-
frequency errors. These affect large image patches and are very no-
ticeable. We greatly mitigate these low-frequency artifacts by using a
straight-forward space-time extension of the NL-Means filter [BCM08],
which simply extends a pixel neighborhood to also include pixels from
adjacent frames. Inter-pixel distances are still computed over spatial
patches centered on the respective pixels, but the extended neighbor-
hood leverages the full spatio-temporal data set and increases tempo-
ral coherence. We believe there is room for further improvement of
the temporal filtering, and this would be a fruitful avenue for future
work.

Discussion and Limitations. The efficiency of our adaptive sample
distribution is quite dependent on the accuracy of the pixel statistics.
For scenes featuring moderate to high noise levels, we found it prefer-
able to use a larger set of samples in the first iteration. This lead us
to our current approach of distributing evenly the sampling budget
over each iteration. Still, for the “killeroos” and “plants-dusk” scenes,
rendered using only 16 samples per pixel, each buffer has only two
samples per pixel after the first iteration, illustrating our method’s ro-
bustness to sparsely sampled data. The main limitation of our method
is its image-based nature. While this offers some compelling computa-
tional advantages, it limits the adaptivity of both the sampling and the
filtering. Overlapping elements with different anisotropy should be
processed with different filters, which our method cannot accommo-
date. Similarly, we rely on brute force sampling, which can be highly
inefficient when noise comes from a small subset of the sampling do-

7.4. CONCLUSION 147

main. Our variance estimation for low-discrepancy samples offered
significant improvements for all of our test scenes compared to ran-
dom sampling. Nevertheless, it could be made more accurate to better
handle scenes with very high frequencies, or sharp spikes of noise. In
particular, we drive the cross filtering in part using a very noisy esti-
mate of the variance of the pixel variance computed using only two
samples, the two buffers’ pixel variance estimates. We believe that
an estimation based on the sample distribution kurtosis may lead to
a more robust filtering. In the presence of strong noise spikes, we
need to use a large filter window to spread out the spike contribution
which can lead to an increased bias. Since noise spikes are often due
to indirect light, it should be beneficial to filter separately the direct
and indirect illuminations, using a larger filter only for the indirect
illumination.

7.4 Conclusion

We described a robust and versatile adaptive method for Monte Carlo
rendering that builds upon the core adaptive framework of the GEM
algorithm, while offering significant improvement in terms of both
numerical error and visual quality. The two key characteristics of
our method are its powerful non-linear filter, which can adapt to the
anisotropy in the image, and its ability to process samples drawn
from low-discrepancy sequences, whereas previous work was limited
to samples drawn from a random distribution. The main limitation
of our method, inherent to its image-space nature, is that it relies on
brute force sampling to resolve noise, which is highly inefficient when
useful light paths are difficult to find.

Quite a few paths are opened to improve our method. On the
sampling side, it would be interesting to experiment with more ro-
bust sampling methods, such as Metropolis Light Transport [VG97].
Another venue of research would be to extend our adaptive sampling
to the time domain in order to directly process animations, instead
of individual frames. We could also augment the distance computa-

148 CHAPTER 7. ADAPTIVE RENDERING USING NLM

tion by comparing both the pixel mean and the pixel sample variance,
which may improve the robustness of the filtering for low-contrast
regions where the pixel mean provides insufficient constraints. Simi-
larly, we could augment the distance computation by leveraging scene
information such as each sample’s normal, depth, etc.

It is this last idea, augmenting the distance computation using
scene information, that we explored in the latest implementation of
our adaptive framework, which we present in the next chapter.

7.4. CONCLUSION 149

NLM LD GEM

22 spp (108s) 15 spp (108s)

MSE Full: 0.907E-3 MSE Full: 0.291E-3

MSE Inset: 18.548E-3 MSE Inset: 4.994E-3

NLM REFERENCE

16 spp (105s) 32’000 spp

MSE Full: 0.068E-3

MSE Inset: 1.524E-3

Figure 7.13: Renderings of the “killeroos” scene using a variety of
methods. Non-filtered uniform low-discrepancy sampling (LD); our
previous method described in Chapter 6 (GEM); our method with
adaptive low-discrepancy sampling (NLM). All results for a given
scene have an equal rendering time, to account for each method over-
head. We use the default filtering window size, r = 10. The MSE
values are listed under each image and the corresponding SSIM val-
ues are given in Table 7.1.

150 CHAPTER 7. ADAPTIVE RENDERING USING NLM

NLM LD GEM

37 spp (111s) 27 spp (113s)

MSE Full: 9.287E-3 MSE Full: 2.081E-3

MSE Inset: 21.203E-3 MSE Inset: 5.390E-3

NLM REFERENCE

32 spp (110s) 32’000 spp

MSE Full: 1.076E-3

MSE Inset: 2.401E-3

Figure 7.14: Renderings of the “sibenik” scene using a variety of meth-
ods. Non-filtered uniform low-discrepancy sampling (LD); our previ-
ous method described in Chapter 6 (GEM); our method with adaptive
low-discrepancy sampling (NLM). All results for a given scene have
an equal rendering time, to account for each method overhead. We
use the default filtering window size, r = 10. The MSE values are
listed under each image and the corresponding SSIM values are given
in Table 7.1.

7.4. CONCLUSION 151

NLM LD GEM

24 spp (139s) 14 spp (145s)

MSE Full: 0.417E-3 MSE Full: 0.290E-3

MSE Inset: 0.720E-3 MSE Inset: 2.233E-3

NLM REFERENCE

16 spp (139s) 32’000 spp

MSE Full: 0.172E-3

MSE Inset: 0.470E-3

Figure 7.15: Renderings of the “plants-dusk” scene using a variety of
methods. Non-filtered uniform low-discrepancy sampling (LD); our
previous method described in Chapter 6 (GEM); our method with
adaptive low-discrepancy sampling (NLM). All results for a given
scene have an equal rendering time, to account for each method over-
head. We use the default filtering window size, r = 10. The MSE
values are listed under each image and the corresponding SSIM val-
ues are given in Table 7.1.

152 CHAPTER 7. ADAPTIVE RENDERING USING NLM

NLM LD GEM

140 spp (311s) 126 spp (308s)

MSE Full: 73.532E-3 MSE Full: 6.766E-3

MSE Inset: 46.348E-3 MSE Inset: 4.071E-3

NLM REFERENCE

128 spp (308s) 32’000 spp

MSE Full: 1.809E-3

MSE Inset: 1.123E-3

Figure 7.16: Renderings of the “conference” scene using a variety of
methods. Non-filtered uniform low-discrepancy sampling (LD); our
previous method described in Chapter 6 (GEM); our method with
adaptive low-discrepancy sampling (NLM). All results for a given
scene have an equal rendering time, to account for each method over-
head. We use a larger filtering window size, r = 20 (instead of the
default r = 10) to ensure the noise spikes are sufficiently spread out.
The MSE values are listed under each image and the corresponding
SSIM values are given in Table 7.1.

7.4. CONCLUSION 153

NLM LD GEM

142 spp (619s) 119 spp (625s)

MSE Full: 20.820E-3 MSE Full: 14.353E-3

MSE Inset: 17.574E-3 MSE Inset: 6.668E-3

NLM REFERENCE

128 spp (616s) 32’000 spp

MSE Full: 8.761E-3

MSE Inset: 4.251E-3

Figure 7.17: Renderings of the “sanmiguel” scene using a variety of
methods. Non-filtered uniform low-discrepancy sampling (LD); our
previous method described in Chapter 6 (GEM); our method with
adaptive low-discrepancy sampling (NLM). All results for a given
scene have an equal rendering time, to account for each method over-
head. We use the default filtering window size, r = 10. The MSE
values are listed under each image and the corresponding SSIM val-
ues are given in Table 7.1.

154 CHAPTER 7. ADAPTIVE RENDERING USING NLM

Chapter 8

Adaptive rendering using
pixel color and feature
information

This chapter presents our DFC algorithm, the third, and last, imple-
mentation of our adaptive framework. The name DFC stands for De-
noising using Features and Color information. This algorithm was
developed in 2013 and the content of this chapter is reproduced
from [RMZ13].

Image space adaptive rendering methods have proved to be sur-
prisingly effective at addressing noise artifacts in Monte Carlo render-
ings. These methods are appealing because they are relatively easy to
implement, mostly orthogonal to other variance reduction techniques,
applicable to general light transport effects, computationally efficient,
and often competitive with more specialized approaches targeting
specific rendering effects. A particularly successful idea is to use fea-
ture buffers, such as per-pixel normals, textures, or depth, to compute
denoising filter weights. Feature buffers are highly correlated with the
rendered image, since they represent most edges in the image, but

155

156 CHAPTER 8. ADAPTIVE RENDERING USING DFC

Texture Caustic Visibility Normal

Noisy Color Filtered ColorNoisy Color Filtered Color

Figure 8.1: We propose a method to denoise Monte Carlo renderings
using noisy color (top left) and feature buffers (bottom: texture, caus-
tic, visibility, normal) as an input. We construct a denoising filter by
combining color and feature information using a SURE error estimate.
Our result (top right) improve visually and quantitatively over the
previous state-of-the-art.

they are usually much less noisy than the color output of the Monte
Carlo renderer. Therefore, filters based on feature buffers effectively
remove noise while preserving most edges. Unfortunately, they are
prone to blurring image details that are not well represented by the
features. Feature buffers have been used to improve denoising in the
context of anisotropic diffusion, guided image filtering, which is based
on local regression, and cross-bilateral filtering.

In this chapter we present a method to robustly combine color and
feature buffers to improve denoising performance. We use a filtering
framework based on NL-Means filter weights for color buffers and

8.1. OVERVIEW 157

bilateral weights for feature buffers. We control the influence of color
and feature buffers by adjusting the parameters of the NL-Means
and bilateral filters. To combine color and feature information, we
evaluate three candidate filters using different parameters designed
to provide a trade-off between fidelity to image detail and robustness
to noise. Then we compute a weighted average of the candidate filters
on a per-pixel basis using a SURE-based error estimate to minimize
the output error. We deal with noisy features by denoising them first
in a separate step using an NL-Means filter. This allows us to include
novel features, such as a caustics buffer shown in Figure 8.1, and a
direct visibility feature. We demonstrate that our approach leads to
significant improvements both in subjective and quantitative errors
compared to the previous state-of-the-art. In summary, we make the
following contributions:

• We propose to combine color and feature buffers to improve
image space denoising of Monte Carlo renderings.

• We implement this idea based on NL-Means and cross-bilateral
filtering, and a SURE-based error estimate.

• We propose to deal with noisy features by denoising them in a
separate step. This allows us to introduce novel features such
as caustics and direct visibility.

• We demonstrate significant subjective and numerical improve-
ments in image quality over the previous state-of-the-art.

• We extend our approach to adaptive sampling and space-time
filtering for animations.

8.1 Overview

Filtering based on feature buffers, such as per-pixel normal, texture,
or depth, has proven extremely effective, in particular for images ren-
dered with very few samples per pixel and high noise levels in the

158 CHAPTER 8. ADAPTIVE RENDERING USING DFC

Monte Carlo output [SD12, LWC12]. On the other hand, image de-
tails that are not represented in the feature buffers tend to be blurred
by such approaches. Hence our main idea is to construct a filter that
implements a balance between filtering using color and feature infor-
mation. In general, our filter computes a weighted average of neigh-
boring pixels. The filtered color values F (p) = (F1(p), F2(p), F3(p))
of a pixel p in a color image u(p) = (u1(p), u2(p), u3(p)) are

Fi(p) =
1

C(p)

∑
q∈N(p)

ui(q)w(p, q), (8.1)

where N(p) is a 2r + 1 × 2r + 1 square neighborhood centered on
p, w(p, q) is the weight of the contribution of neighboring pixel q to
p, i is the index of the color channel, and C(p) =

∑
q∈N(p) w(p, q) is

a normalization factor. The fundamental challenge is to determine
suitable weights w(p, q).

In our approach, illustrated in Figure 8.2, we construct three can-
didate filters, which we call the FIRST, SECOND, and THIRD candidate
filter. We design the filters such that the FIRST filter is most sensitive
to details in the color buffer, but also most sensitive to its noise; the
THIRD filter is least sensitive to noise in the colors, but also least sen-
sitive to its details; and the SECOND filter is in between. Then we
compute the final filter as a weighted average of the candidate filters
using a SURE-based per-pixel error estimate. We build the candidate
filters from two types of weights, called color and feature weights. We
obtain the color weights as NL-Means weights from the noisy color
output of the Monte Carlo renderer as described in Section 8.2. We
compute the feature weights as bilateral weights from the feature
buffers, as presented in Section 8.3. In Section 8.4 we then describe
how we construct the FIRST, SECOND, and THIRD candidate filters
from the color and feature weights, and how we compute the candi-
date filter averaging weights using SURE error estimation. We provide
a summary of our algorithm in Section 8.5, and in Section 8.6 we
present extensions to adaptive sampling and space-time filtering for
animations.

8.1. OVERVIEW 159

Input

FIRST candidate

SURE estimate SURE estimate SURE estimate

Averaging weights Filtered output Reference

SECOND candidate THIRD candidate

Figure 8.2: Our main idea is to filter using a balance of color and
feature information. We evaluate three candidate filters designed to
provide a trade-off between sensitivity to image detail and robustness
to noise. We compute averaging weights for the candidate filters at
each pixel using a SURE-based error estimation. The color coding of
the weights corresponds to the three candidates.

160 CHAPTER 8. ADAPTIVE RENDERING USING DFC

8.2 NL-Means Weights from Color Buffer

Our color weightswc are based on NL-Means filtering [BCM05], which
has proven effective for denoising Monte Carlo renderings because it
can easily be generalized to spatially varying variances typical in such
data (see Section 7.1.1). We compute the NL-Means weights from the
noisy color output of the Monte Carlo renderer, and per-pixel variance
estimates. We next review NL-Means weights computation and then
describe our per-pixel variance estimates.

NL-Means Weights. NL-Means weights for a pixel p and a neighbor
q are determined based on the distance d2

c(P (p), P (q)) between a pair
of small patches P (p) and P (q) of size 2f + 1× 2f + 1 centered at p
and q,

d2
c(P (p), P (q)) =

1

3(2f + 1)2

3∑
i=1

∑
n∈P (0)

∆2
i (p+ n, q + n),

where ∆2
i (p+n, q+n) is is a per-pixel distance in color channel i and

n ∈ P (0) are the offsets to each pixel within a patch. We follow the
approach used in our NLM algorithm (see Section 7.1.1) and define
the per-pixel distance as

∆2
i (p, q) =

(ui(p)− ui(q))2 − (Vari[p] + Vari[q, p])

ε+ k2
c (Vari[p] + Vari[q])

.

The term (ui(p) − ui(q))2 measures the squared difference between
the color values at pixels p and q. Since ui(p) and ui(q) are noisy
this consistently overestimates the true squared difference. Hence, we
subtract a variance cancellation term (Vari[p] + Vari[q, p]) to remove
this bias, similar as proposed originally for NL-Means [BCM05], where
Vari[p] is a variance estimate for the sample mean in pixel p, and
Vari[q, p] = min(Vari[q],Vari[p]). The denominator ε + k2

c (Vari[p] +
Vari[q]) is a normalization factor, where ε is a small value to prevent
division by zero, and kc is a user specified factor that controls the

8.3. BILATERAL WEIGHTS FROM FEATURE BUFFERS 161

sensitivity of the filter to color differences. Larger values of kc lead
to more aggressive filtering. Finally, we obtain our color filter weight
wc(p, q) of the contribution of pixel q to p using an exponential kernel,

wc(p, q) = exp−max(0,d2c(P (p),P (q))) . (8.2)

Variance Estimation. In the case of random sampling, we could esti-
mate the variances Vari of pixel means simply by considering the sam-
ple variance within each pixel. This approach is not suitable, however,
to support low-discrepancy sampling where it will consistently over-
estimate the variance. In our previous NLM algorithm, we addressed
this problem by splitting the noisy color samples into two half-buffers
and computing the empirical variance of these half-buffers (see Sec-
tion 7.1.1). While this is an unbiased estimate of the pixel variance, it
is also very noisy and leads to poor NL-Means filtering performance
if used directly. To address this, we observe that the sample variance
exhibits the detailed structure of the actual spatially non-uniform vari-
ance, but with a systematic bias. Hence we attempt to remove this
bias by simply scaling the sample variance to match the magnitude of
the two-buffer variance. We smooth both the sample variance and the
two-buffer variance with a large, 21× 21 box filter and then compute
the ratio between the two on a per-pixel basis. We then apply this ra-
tio on the initial unfiltered sample variance. This results in a variance
estimate with the lower noise of the sample variance, and the correct
magnitude of the two-buffer variance.

8.3 Bilateral Weights from Feature Buffers

We determine the feature weights wf using the feature buffers and bi-
lateral weights. An important distinction compared to previous work
exploiting feature buffers [LWC12, SD12] is that we deal with noisy
features by first prefiltering them separately. We next describe our fea-
ture prefiltering technique, and then the computation of the bilateral
weights using the prefiltered features.

162 CHAPTER 8. ADAPTIVE RENDERING USING DFC

Feature Prefiltering. Our prefiltering approach exploits the fact
that features can be denoised effectively because their dynamic range,
and hence their variance, is typically limited. We apply an NL-Means
filter as described in the previous section including the same method
to estimate the input variance, although using individual features in-
stead of color as input. We choose window radius r = 5, patch radius
f = 3, and sensitivity kc = 1.0 for all features.

Output Variance Estimation. To determine the bilateral weights
we will also require the residual variance of the prefiltered features,
that is, we need the per-pixel variance of the prefiltered output. We
obtain the output variance using a two-buffer approach similar to
Section 8.2. We split the feature data into two half-buffers that we
both filter using the same NL-Means weights determined from the
complete data, as described above. Note that given fixed weights,
the filter (see Equation 8.1) is linear, and averaging the filtered half-
buffers is equivalent to filtering the full data. By processing the half-
buffers, however, we can estimate the residual per-pixel variance as
the squared per-pixel difference between the filtered half-buffers. We
further reduce noise in this two-buffer variance estimate by smoothing
it with a small Gaussian kernel with standard deviation of 0.5 pixels.

Bilateral Weights. We denote feature buffers such as normals, tex-
tures, or depth, denoised and normalized to unit range, as fj . The
feature distance Φ2

j (p, q) for feature j between pixels p and q is based
on the squared feature difference including variance cancellation sim-
ilar to Section 8.2,

Φ2
j (p, q) =

(fj(p)− fj(q))2 − (Varj [p] + Varj [p, q])

k2
f max(τ,max(Varj [p], ‖Gradj [p]‖2))

,

normalized by two factors. First, the user parameter kf controls the
sensitivity of the filter to feature differences. The second factor de-
pends on the residual variance of the prefiltered feature (as described
above) denoted by Varj [p] and the squared gradient magnitude ‖Gradj [p]‖2,

8.4. FILTER WEIGHTING USING SURE 163

thresholded to a minimum value τ . This factor normalizes the feature
distance relative to residual noise left in the filtered feature and the
local feature contrast, measured by its gradient magnitude. Finally, we
obtain an overall distance df (p, q) by taking the maximum distance
over all M features,

d2
f (p, q) = argmax

j∈[1...M]

Φ2
j (p, q),

and the final feature weight wf (p, q) is obtained using an exponential
kernel, similar as in Section 8.2,

wf (p, q) = exp−d
2
f (p,q) . (8.3)

We illustrate the benefit of our feature prefiltering step in Fig-
ure 8.3 on a simple scene with depth of field. With prefiltering, we
effectively remove noise in out-of-focus regions, while preserving de-
tail otherwise. Feature prefiltering allows us to exploit novel types of
features that tend to be too noisy to be useful without prefiltering.
For the “rings” scene in Figure 8.1 we define a caustics feature as the
per-pixel density of caustic photons. We also introduce a direct illu-
mination visibility feature as the fraction of shadow rays that hit any
light source over all direct shadow rays evaluated in a pixel. Figure 8.4
illustrates how considering the feature gradient in the distance nor-
malization improves filtering performance. Without the gradient term
feature weights along edges are too restrictive, preventing effective
filtering.

8.4 Filter Weighting using SURE

We use a SURE-based approach [Ste81] to estimate the mean squared
error (MSE) of three candidate filters, which we design to provide a
trade-off between fidelity to image detail and robustness to noise. We
then leverage the error estimate to compute a weighted average of the
candidate filters minimizing the error on a per-pixel basis. We next
describe the candidate filters, the SURE-based error estimate, and the
computation of the per-pixel filter averaging weights.

164 CHAPTER 8. ADAPTIVE RENDERING USING DFC

input input (closeup) reference

no prefiltering no prefiltering with prefiltering
kf = 1.0 kf = 3.0 kf = 0.6

Figure 8.3: We show the effectiveness of feature prefiltering on a
scene with depth-of-field, which leads to noisy features. We use only
the texture feature. The left quad is in-focus and noise free, while
the right quad is out-of-focus and noisy (top left). Our approach with
prefiltering preserves detail in the in-focus-region while effectively
denoising the out-of-focus region (bottom right). Without prefilter-
ing the bilateral feature weights fail to distinguish between noise
and texture detail. While smaller kf values preserve texture detail,
they cannot remove the noise (bottom left). Larger kf values yield
smoother results but blur out the details (bottom middle).

Candidate Filters. Our FIRST, SECOND, and THIRD candidate fil-
ters (Figure 8.2) differ in their color sensitivity kc and patch radius
f . The FIRST filter uses kc = 0.45 and a small patch radius of f = 1,
which makes it sensitive to small image detail but also less robust to

8.4. FILTER WEIGHTING USING SURE 165

input without gradient with gradient

Figure 8.4: Filtered output for the “conference” scene without (middle
image) and with the feature gradient (right image). Including the
gradient term improves filtering along edges.

noise. The SECOND filter is the same except that it uses a larger patch
radius f = 3. Hence it is more robust to noise but less effective at
filtering intricate image detail at low noise levels. The THIRD filter
has kc = ∞, which means that the color information does not influ-
ence the filter weights and the patch size f is irrelevant. This filter is
most robust towards noise since its weights completely ignore color
information. However, it fails to recover image detail that is not repre-
sented in the features. All filters use feature sensitivity kf = 0.6 and
the same window radius r, which is the only parameter we expose to
the user. We determine the final filter weights by taking the minimum
of the color and feature weights, that is

w(p, q) = min(wc(p, q), wf (p, q)). (8.4)

SURE Error Estimate. We explain the SURE error estimate by ex-
tending our notation from Equation 8.1 for a generic color image filter.
Let us interpret the output Fui(p) of the filter at pixel p as a function
of the noisy value ui of color channel i at p. The SURE error estimator

166 CHAPTER 8. ADAPTIVE RENDERING USING DFC

at pixel p is then

SURE(p) =

3∑
i=1

‖Fui(p)− ui‖2 − σ2
i + 2σ2

i

dFui(p)

dui
(8.5)

where σ2
i is the true variance of the pixel mean of color channel

i. Since our color weights wc include discontinuous terms, they are
technically not differentiable. But we found that a finite difference
approximation of the derivatives still leads to reliable error estimates
in practice. Hence we approximate dFui(p)/ dui as,

dFui(p)

dui
≈ Fui+δ(p)− Fui(p)

δ
, where δ = 0.01× ui.

Candidate Filter Averaging. While SURE provides an unbiased er-
ror estimate, it is very noisy and needs to be filtered for per-pixel
error minimization. A straightforward approach would be to spatially
smooth the error estimate until its variance is low enough to reliably
determine the best candidate filter on a per-pixel basis. Unfortunately,
in our typical data the SURE estimate tends to be contaminated by
strong outliers. This requires large spatial smoothing filters, introduc-
ing bias in the per-pixel error estimates.

Instead, we achieved better results with a two-step strategy that is
more robust to outliers in the initial error estimate. In a first step, we
smooth the error estimate with a small kernel and obtain three binary
selection maps for the candidate filters, containing a 1 in each pixel if
the filter had lowest error, and 0 otherwise. Since the FIRST candidate
filter is most sensitive to noise it may occur that it preserves noise,
but the SURE estimate does not register the error. We avoid such
residual noise by selecting the FIRST candidate only if it filters more
than the SECOND, that is, the derivative term in the SURE estimate
is lower for the FIRST candidate. In the second step we smooth the
binary maps with a larger kernel. This approach has the advantage
that the binary selection maps suppress outliers, which allows us to
use smaller smoothing kernels in the second step. We found that the

8.5. ALGORITHM 167

smoothing step of the initial error estimate is necessary to obtain
sufficiently discriminatory binary maps.

8.5 Algorithm

We summarize our algorithm in Algorithm 1. The workhorse of our
filtering pipeline, which we use to compute the three candidate filters
and some auxiliary filtering, is the function

[out , d out d in] = flt(in, u, var u, f [], var f [], p).

It filters an input in by constructing color weights (Equation 8.2)
from a color buffer u with variance var u, and feature weights (Equa-
tion 8.3) from a set of feature buffers f [] with variances var f [], and
taking their minimum as in Equation 8.4. The function also returns
the derivative d out d in that is needed for the SURE estimate (Equa-
tion 8.5). The parameter values are specified in the structure p. We
further assume that the input in and output out of the filter consist
of two half-buffers to support two-buffer output variance estimation
(Section 8.3, output variance estimation). We implement the SURE
error estimate (Equation 8.5) in a function

SURE (u, var u, F, dF du)

that takes a noisy buffer u with its variance var u, and its filtered
version F with derivative dF du as input. The algorithm also uses
an auxiliary function scale svar that takes a buffer (consisting of
two half-buffers) and its sample variance as input and implements
the sample variance scaling technique described in Section 8.2. Fi-
nally, the function buffer var computes the two-buffer variance of
a buffer (consisting of two half-buffers) smoothed with a Gaussian
kernel (Section 8.3, output variance estimation). In addition to the
steps described so far, our algorithm includes a final filtering pass that
removes residual noise (lines 27− 29), which we detect by computing
the two buffer variance of the output. This residual noise is typically
located along edges, where the filter is more constrained.

168 CHAPTER 8. ADAPTIVE RENDERING USING DFC

8.6 Extensions

Adaptive Sampling. We follow the same adaptive sampling strat-
egy as in our NLM algorithm (see Chapter 7), which we summarize
here. We distribute samples over multiple iterations, each having an
equal share of the sample budget. The first iteration performs uni-
form sampling, and the subsequent ones perform adaptive sampling.
In the adaptive iterations, the sampling density is proportional to the
estimated relative MSE returned by SURE, scaled by a weight W . The
weight W represents the error reduction potential of a single sample,
and accounts for the number of samples used in the filter, as well as
the filter support,

W (p) =

∑
q∈N(p) w(p, q)

1 + np
,

where p is a pixel,N(p) the filter window around p, w(p, q) the weight
of a neighbor q within the window, and np the number of samples
already contributing to the filtered value of p. The resulting weighted
error is quite noisy, so we filter it aggressively with our flt function
and parameters r = 10, kc = 1.0, and kf = ∞. Lastly we clamp the
number of samples allocated to each pixel to a fixed value to prevent
spending too many samples on outliers.

Space-time Filtering for Animations. Filtering animations on a
per-frame basis suffers from disturbing flickering artifacts due to low-
frequency residual noise. We can greatly mitigate these problems by
space-time filtering. We implement space-time filtering in our frame-
work by extending our filtering window from a spatial to a spatio-
temporal window across several frames, as proposed by Buades et
al. [BCM08]. Otherwise our algorithm remains the same as before.

8.7. RESULTS 169

8.7 Results

We integrated our method as an extension of the PBRT rendering
framework [PH10] and implemented the filtering operations them-
selves in CUDA for GPU acceleration. The complexity of each filter-
ing step is proportional to image resolution, window radius f , and
patch radius r. For an image resolution of 1024 × 1024 pixels and
user specified window radius r = 10, the complete filtering pipeline
summarized in Algorithm 1 takes 5.4 seconds on an NVidia GeForce
GTX TITAN GPU, and 8.0 seconds on a Geforce GTX 580 GPU. All
timings reported below were measured on a workstation with dual
6-core Intel Xeon processor at 2.3 GHz, 12 rendering threads, and a
Geforce GTX TITAN GPU.

The “rings” scene in Figure 8.1 is rendered using PBRT’s photon
mapper using 32 samples per pixel, 450k caustic photons, 1000k in-
direct photons, and 4 final gather rays per sample. It took 869s to
render, and 19.5s to filter with a window radius r = 20 (the filtering
cost is higher for this scene, since we have the additional caustics
buffer and a larger window radius). It uses our novel caustics feature,
which stores the density of caustics photons. We use ray differentials
to compute pixel-sized radiance estimation radii to avoid blurring of
caustics. Figure 8.5 further highlights the contribution of our novel
features. We show closeups of the “sanmiguel” scene filtered with and
without the visibility feature, and the “rings” scene with and without
the caustics feature. Including the novel features clearly improves our
results.

Figure 8.6 contains log-log convergence plots for the “sibenik”,
“conference”, and “sanmiguel” scenes. We show results for our com-
plete filter using uniform sampling (DFC in cyan) and adaptive sam-
pling (dotted cyan), our candidate filters (red, green, and blue), and
the work by Li et al. [LWC12] (SBF in magenta). The plots indicate
that our SURE-based weighted averaging of the candidate filters con-
sistently improves the error of the individual candidate filters. It is
also interesting that both our FIRST and SECOND filters generally
outperform SBF, which underlines the usefulness of including color

170 CHAPTER 8. ADAPTIVE RENDERING USING DFC

input no visibility with visibility feature

input no caustics with caustics feature

Figure 8.5: Closeups of “sanmiguel” filtered with and without the
visibility feature, and “rings” with and without the caustics feature.
The features shown on the right (before prefiltering) help preserving
important details.

weights in the filter.
In Figure 8.7 we use the mean of the BRDF samples as a feature

buffer instead of a texture. The BRDF value is readily available in a
raytracer independent of rendered materials, whereas a texture may
not be well-defined or easily extracted for many materials. While the
mean of the BRDF samples is typically noisier than a texture, we can
still handle this case with our feature prefiltering approach, although
finer details may not be preserved as well.

In Figure 8.8, we illustrate our adaptive rendering scheme on the
“sibenik” scene with an average of 16 samples per pixels. We also
compare to SBF using the original authors’ implementation. Adaptive
sampling improves our MSE by roughly 18% compared to the result
presented in Figure 8.11 with uniform sampling. The convergence
plots of Figure 8.6 also indicate the MSE obtained with adaptive
sampling with dotted lines, showing a consistent improvement over

8.7. RESULTS 171

si
be

ni
k

16 32 64 128 25616 32 64 128 256

2.5e-04

5.0e-04

1.0e-03

2.0e-03

R
el

at
iv

e
M

S
E LD

SBF
DFC

co
nf

er
en

ce

16 32 64 128 25616 32 64 128 256

1.0e-03

2.0e-03

4.0e-03

8.0e-03
R

el
at

iv
e

M
S

E

sa
nm

ig
ue

l

16 32 64 128 25616 32 64 128 256

Samples per Pixel

8.0e-03

1.6e-02

3.2e-02

6.4e-02

R
el

at
iv

e
M

S
E

Figure 8.6: Convergence plots for the scenes of Figures 8.9 to 8.11 for
our method and the SURE-based approach by Li et al. [LWC12]. For
our method, we show the errors of the FIRST, SECOND, and THIRD
candidate filters and the final output. We indicate results from adap-
tive sampling with dotted lines.

uniform sampling.
In Figures 8.9 to 8.13, we compare rendering with low-discrepancy

sampling and no filtering (LD), the approach by Li et al. [LWC12]
(SBF) using the implementation provided by the authors, and our
technique (DFC) at roughly equal render time. We also include a ref-
erence image (REFERENCE). We use uniform sampling in this compar-
ison since we found that SBF often gave worse results with adaptive
sampling. Our feature buffers include texture, depth, normal, and vis-
ibility. We attribute our improvements over previous work to three
main factors: the consideration of the color buffer to construct the

172 CHAPTER 8. ADAPTIVE RENDERING USING DFC

input texture BRDF

Full: 290E-3 Full: 28.0E-3 Full: 28.3E-3
Inset: 311E-3 Inset: 21.7E-3 Inset: 22.4E-3

Figure 8.7: Using the mean of BRDF samples instead of textures as a
feature, with the “sanmiguel” scene at 32 samples per pixel. The fea-
ture buffers are given in the top row, with the corresponding filtered
output and MSE values below. Noise in the BRDF samples may lead
to loss of some fine texture details at low sampling rates.

final filter, the use of the visibility feature, and the improved handling
of noisy features. The “conference” scene highlights the benefits of
the visibility feature. We preserve the shadows, while SBF, which does
not use visibility features, is not able to do so. For this scene we used
a larger window radius of r = 20 to remove spike noise. In the com-
parison with SBF we obtain a much lower MSE. In the “sanmiguel”
scene, our filter yields a smoother result while preserving the foliage
details as well as the small direct shadow details, which SBF blurs be-
cause of the absence of the visibility feature. In the “sibenik” scene we

8.7. RESULTS 173

LD OUR SBF

Full: 38.8; Inset: 44.9 Full: 1.10; Inset: 1.63 Full: 2.71; Inset: 4.27

35 spp (35.2s) 16 spp (36.5s) 15.49 spp (38.2s)

Figure 8.8: Adaptive rendering of the “sibenik” scene at an average
of 16 spp using our method and the SBF algorithm, including MSE
values (multiplied by 10E3) and sampling density maps. The bottom
left image is the reference.

obtain results largely free of artifacts in out-of-focus regions, where
typically all features are noisy. In contrast, SBF suffers from residual
noise in these areas. In the “teapot-metal” scene, our filter can better
preserve the chaotic structure of the floor, as well as the glossy high-
lights that are not captured in the feature buffers. The “dragonfog”
scene includes participating media to demonstrate the flexibility of
our approach in dealing with a variety of rendering effects, and was
also filtered with a window radius r = 20.

A limitation of our approach is that at very low sampling rates,
typically less than 10 spp, the color weights tend to become less useful

174 CHAPTER 8. ADAPTIVE RENDERING USING DFC

and SURE-error estimation less reliable because of excessive variance
in the color buffer. In such situations it is possible that our final filter
using candidate filter averaging fails to improve the global MSE over
the best candidate filter. At such low sampling rates it also becomes
challenging to prefilter noisy features such as the visibility. In these
cases the filter parameters need to be adjusted to obtain reasonable
results. It is important to note, however, that all images were rendered
using fixed parameters as in Algorithm 1.

8.8 Conclusions

We have presented a method for denoising Monte Carlo renderings by
constructing filters using a combination of color and feature informa-
tion. We construct three candidate filters based on NL-Means weights
for color buffers and cross-bilateral weights for feature buffers. We
determine robust averaging weights of the three candidate filters on
a per-pixel basis using SURE error estimation. We also introduce a
novel approach to dealing with noisy features using a prefiltering step,
and we apply it to new caustics and visibility features. Together, candi-
date filter weighting including color information, feature prefiltering,
and the novel caustics and visibility features provide significant im-
provements in terms of both visual and numerical quality over the
previous state-of-the-art. While the computational cost of our filter is
insignificant in the context of off-line rendering, the technique is not
suitable for interactive rendering. In the future, we will explore ex-
tensions of our approach targeted at real-time applications. It would
also be interesting to further improve methods targeted at extremely
low sampling rates.

8.8. CONCLUSIONS 175

Algorithm 1: D E N O I S E

Input: Noisy color buffer c with sample variance svar c; set of M noisy feature
buffers f [] with sample variances svar f []; window radius R

Output: Denoised image pass2
begin1

/* Sample variance scaling. */
var c = scale svar(svar c, c)2
for all features j = 1 . . .M do3

var f [j] = scale svar(svar f [j], f [j])4

/* Feature prefiltering. */
p = {kc = 1, kf =∞, f = 3, r = 5}5
for all features j = 1 . . .M do6

flt f [j] = flt(f [j], f [j], var f [j],nil ,nil , p)7
var flt f [j] = buffer var(flt f [j])8

/* Candidate filters. */
p = {kc = 0.45, kf = 0.6, f = 1, r = R, τ = 10E − 3}9
[r , d r] = flt(c, c, var c,flt f [], var flt f [], p)10
p = {kc = 0.45, kf = 0.6, f = 3, r = R, τ = 10E − 3}11
[g, d g] = flt(c, c, var c,flt f [], var flt f [], p)12
p = {kc =∞, kf = 0.6, f = 1, r = R, τ = 10E − 4}13
[b, d b] = flt(c, c, var c,flt f [], var flt f [], p)14
/* Filtered SURE error estimates. */
p = {kc = 1.0, kf =∞, f = 1, r = 1, τ = 10E − 3}15
e r = flt(SURE(c, var c, r , d r), c, var c,nil ,nil , p)16
e g = flt(SURE(c, var c, g, d g), c, var c,nil ,nil , p)17
e b = flt(SURE(c, var c, b, d b), c, var c,nil ,nil , p)18
/* Binary selection maps. */
sel r = e r < e g && e r < e b && d r < d g ? 1 : 019
sel g = e g < e r && e g < e b ? 1 : 020
sel b = e b < e r && e g < e b ? 1 : 021
/* Filter selection maps. */
p = {kc = 1, kf =∞, f = 1, r = 5, τ = 10E − 3}22
sel r = flt(sel r , c, var c,nil ,nil , p)23
sel g = flt(sel g, c, var c,nil ,nil , p)24
sel b = flt(sel b, c, var c,nil ,nil , p)25
/* Candidate filter averaging. */
pass1 = r ∗ sel r + g ∗ sel g + b ∗ sel b26
/* Second pass filtering. */
p = {kc = 0.45, kf =∞, f = 1, r = R, τ = 10E − 4}27
var pass1 = buffer var(pass1)28
pass2 = flt(pass1 , pass1 , var pass1 ,nil ,nil , p)29

end30

176 CHAPTER 8. ADAPTIVE RENDERING USING DFC

DFC LD SBF

152 spp (100s) 128 spp (104s)

MSE Full: 208E-3 MSE Full: 4.56E-3

MSE Inset: 134E-3 MSE Inset: 8.150E-3

DFC REFERENCE

128 spp (104s) 256’000 spp

MSE Full: 1.70E-3

MSE Inset: 5.81E-3

Figure 8.9: Renderings of the “conference” scene, comparing our ap-
proach (DFC) to path tracing with low-discrepancy (LD) and the
SURE-based approach by Li et al. [LWC12] (SBF). Images are ren-
dered at a resolution of 1024 × 1024 using PBRT at roughly equal
render time. Under each image, we give the number of samples per
pixel (spp), rendering time in seconds, and MSE. We provide consis-
tently better MSE values, which we attribute to three main factors:
the consideration of the color buffer to construct the final filter, the
use of visibility features, and the improved handling of noisy features.

8.8. CONCLUSIONS 177

DFC LD SBF

36 spp (55s) 32 spp (67s)

MSE Full: 283E-3 MSE Full: 43.3E-3

MSE Inset: 319E-3 MSE Inset: 71.8E-3

DFC REFERENCE

32 spp (57s) 64’000 spp

MSE Full: 28.4E-3

MSE Inset: 39.0E-3

Figure 8.10: Renderings of the “sanmiguel” scene, comparing our
approach (DFC) to path tracing with low-discrepancy (LD) and the
SURE-based approach by Li et al. [LWC12] (SBF). Images are ren-
dered at a resolution of 1024 × 1024 using PBRT at roughly equal
render time. Under each image, we give the number of samples per
pixel (spp), rendering time in seconds, and MSE. We provide consis-
tently better MSE values, which we attribute to three main factors:
the consideration of the color buffer to construct the final filter, the
use of visibility features, and the improved handling of noisy features.

178 CHAPTER 8. ADAPTIVE RENDERING USING DFC

DFC LD SBF

25 spp (24s) 16 spp (34s)

MSE Full: 59.0E-3 MSE Full: 2.07E-3

MSE Inset: 51.0E-3 MSE Inset: 4.37E-3

DFC REFERENCE

16 spp (25s) 32’000 spp

MSE Full: 1.32E-3

MSE Inset: 3.02E-3

Figure 8.11: Renderings of the “sibenik” scene, comparing our ap-
proach (DFC) to path tracing with low-discrepancy (LD) and the
SURE-based approach by Li et al. [LWC12] (SBF). Images are ren-
dered at a resolution of 1024 × 1024 using PBRT at roughly equal
render time. Under each image, we give the number of samples per
pixel (spp), rendering time in seconds, and MSE. We provide consis-
tently better MSE values, which we attribute to three main factors:
the consideration of the color buffer to construct the final filter, the
use of visibility features, and the improved handling of noisy features.

8.8. CONCLUSIONS 179

DFC LD SBF

33 spp (19s) 16 spp (29s)

MSE Full: 179E-3 MSE Full: 89.2E-3

MSE Inset: 148E-3 MSE Inset: 105E-3

DFC REFERENCE

16 spp (19s) 4’000 spp

MSE Full: 64.0E-3

MSE Inset: 50.1E-3

Figure 8.12: Renderings of the “teapot-metal” scene, comparing our
approach (DFC) to path tracing with low-discrepancy (LD) and the
SURE-based approach by Li et al. [LWC12] (SBF). Images are ren-
dered at a resolution of 1024 × 1024 using PBRT at roughly equal
render time. Under each image, we give the number of samples per
pixel (spp), rendering time in seconds, and MSE. We provide consis-
tently better MSE values, which we attribute to three main factors:
the consideration of the color buffer to construct the final filter, the
use of visibility features, and the improved handling of noisy features.

180 CHAPTER 8. ADAPTIVE RENDERING USING DFC

DFC LD SBF

51 spp (62s) 32 spp (58s)

MSE Full: 46.0E-3 MSE Full: 2.35E-3

MSE Inset: 138E-3 MSE Inset: 3.44E-3

DFC REFERENCE

32 spp (59s) 32’000 spp

MSE Full: 1.56E-3

MSE Inset: 1.72E-3

Figure 8.13: Renderings of the “dragonfog” scene, comparing our
approach (DFC) to path tracing with low-discrepancy (LD) and the
SURE-based approach by Li et al. [LWC12] (SBF). Images are ren-
dered at a resolution of 1024 × 1024 using PBRT at roughly equal
render time. Under each image, we give the number of samples per
pixel (spp), rendering time in seconds, and MSE. We provide consis-
tently better MSE values, which we attribute to three main factors:
the consideration of the color buffer to construct the final filter, the
use of visibility features, and the improved handling of noisy features.

Chapter 9

Conclusion

To conclude, we will reflect back on the initial problement of this the-
sis, and evaluate its main results in this light. We will then summarize
the main avenues for further research.

In Chapter 1, when presenting our problem statement, we men-
tionned that we wanted to tackle the high computational cost of
MCPT, while preserving its physically based nature, its ability at han-
dling a wide array of light transport effects, and its consistency. Essen-
tially, we wanted to preserve all appealing characteristics of MCPT,
save for its unbiasedness.

Let us start by looking at the overall goal, lowering the compu-
tational cost of MCPT. While our focus was not on realtime, or even
interactive, rendering, we still designed our framework to have a mod-
est overhead. This lead to a framework operating in image space, and
operating on pixels, rather than individual samples. This choice had
the direct result of indeed offering a light computational overhead.
For instance, the filtering step of our GEM algorithm would take a
fraction of second once implemented on a GPU, and the filtering step
of our DFC algorithm takes 5 seconds, which is negligeable for offline
rendering. Our adaptive framework design also has the advantage of
having a low memory overhead, which allow us to apply our filtering

181

182 CHAPTER 9. CONCLUSION

techniques as a post-process, since we can easily store all data on
the disk. In contrast, methods that operate directly on sample values
scale badly to high sampling rates and are generally more intrusive to
the rendering process. Lastly, the overhead of our framework depends
only on the rendering resolution and filter window size, but not on
the scene complexity.

Let us now look at the attributes of MCPT we wanted to preserve.
First, MCPT’s physically based nature is simply not affected by our
adaptive framework, which is orthogonal to the rendering itself. Sec-
ond, MCPT’s ability at handling a wide variety of light transport effects
is preserved thanks to the statistical nature of our approach. In our
framework, each path contribution is considered as a generic sample,
independently of how it was generated. The use of scene information
in our DFC algorithm breaks somewhat this convention, but the var-
ious feature buffers are still handled in a uniform way, and the only
feature specific aspect comes in the extraction of the feature itself.
Third, MCPT’s consistency is preserved by having the aggressiveness
of the filtering step of our framework proportional to the variance
in the rendering. As the sampling rate goes to infinity, the variance
vanishes and our filter behaves as the identity transform, leaving the
rendering untouched, which ensures the consistency of the overall
approach.

While we did meet our initial goal, doing so constrained our frame-
work design, which lead to some notable shortcomings in practice.
The image space nature of our algorithm prevents us from leveraging
high dimensional shearing patterns, such as those generated by mo-
tion blur. Similarly, operating on pixels instead of samples, prevents
us from adapting our filtering step to conflicting constrains. Consider
for instance the case of a focused scene observed through an out of
focus fence. Ideally, we would want to filter heavily the out of focus
fence, while using a much more conservative filter for the focused
scene behind, but this is not possible in our current design. Lastly, our
framework efficiency is highly dependant on the quality of the statis-
tics gathered, in particular the per pixel variance of the rendering.
This makes our framework ill suited at low sampling rates, where es-

183

timates of statistics such as variance are very unreliable. Lastly, some
important perceptual cues, such as secondary shadows due to indirect
illumination, often have a relatively small magnitude, which is easily
drowned by noise and therefore harder to preserve.

Despite these shortcomings, our adaptive framework, in partic-
ular the DFC algorithm, is remarkably robust and efficient. Image
space adaptive rendering has been surprisingly neglected for a long
time, but saw a largely increased interest over the last five years. We
found such techniques, and our own DFC algorithm in particular, to
be particularly efficient and worthy of further investigation. We be-
lieve these techniques will greatly facilitate the deployment of MCPT
and its derivatives in production environments, and be a key enabler
of these techniques in interactive or realtime scenarios. For future
work, we believe our adaptive framework could be extended to op-
erate in an augmented space, where data is not processed in image
space, nor directly in the sampling space, but in an alternative space
that allows a better segmentation of data while still using a relatively
low dimensionality to keep the computational overhead in control.
We would also be interested in experimenting with state of the art
image space filters that recently came out of the image processing
community. Lastly, we believe that focus should be given to produc-
ing a new framework tailored specifically for video sequences, which
could efficiently leverage the formidable data redundancy inherent in
video.

184 CHAPTER 9. CONCLUSION

Bibliography

[ARBJ03] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie,
and Henrik Wann Jensen. Structured importance
sampling of environment maps. ACM Trans. Graph.,
22(3):605–612, July 2003.

[BCM05] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel.
A review of image denoising algorithms, with a new
one. Multiscale Modeling & Simulation, 4(2):490–530,
2005.

[BCM08] A. Buades, B. Coll, and J.M. Morel. Nonlocal image
and movie denoising. International Journal of Computer
Vision, 76(2):123–139, 2008.

[BEM11] Pablo Bauszat, Martin Eisemann, and Marcus Mag-
nor. Guided image filtering for interactive high-
quality global illumination. Computer Graphics Forum,
30(4):1361–1368, 2011.

[BM98] Mark R. Bolin and Gary W. Meyer. A perceptually based
adaptive sampling algorithm. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’98, pages 299–309, New York,
NY, USA, 1998. ACM.

[BPD06] Soonmin Bae, Sylvain Paris, and Frédo Durand. Two-
scale tone management for photographic look. In ACM

185

186 BIBLIOGRAPHY

Transactions on Graphics (TOG), volume 25, pages 637–
645. ACM, 2006.

[BSS+13] Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas
Holzschuch, and Fredo Durand. 5d covariance trac-
ing for efficient defocus and motion blur. ACM Trans.
Graph., 32(3):31:1–31:18, July 2013.

[CCC87] Robert L. Cook, Loren Carpenter, and Edwin Catmull.
The reyes image rendering architecture. SIGGRAPH
Comput. Graph., 21(4):95–102, August 1987.

[CD99] Emmanuel J Candès and David L Donoho. Ridgelets: A
key to higher-dimensional intermittency? Philosoph-
ical Transactions of the Royal Society of London. Se-
ries A: Mathematical, Physical and Engineering Sciences,
357(1760):2495–2509, 1999.

[CETC06] David Cline, Parris K. Egbert, Justin F. Talbot, and
David L. Cardon. Two stage importance sampling for
direct lighting. In Proceedings of the 17th Eurograph-
ics Conference on Rendering Techniques, EGSR’06, pages
103–113, Aire-la-Ville, Switzerland, Switzerland, 2006.
Eurographics Association.

[CFLB06] Per H Christensen, Julian Fong, David M Laur, and Dana
Batali. Ray tracing for the moviecars’. In Interactive
Ray Tracing 2006, IEEE Symposium on, pages 1–6. IEEE,
2006.

[CHM+12] Martin Cad́ık, Robert Herzog, RafałMantiuk, Karol
Myszkowski, and Hans-Peter Seidel. New measure-
ments reveal weaknesses of image quality metrics in
evaluating graphics artifacts. ACM Trans. Graph.,
31(6):147:1–147:10, November 2012.

[Chr08] P Christensen. Point-based approximate color bleeding.
Pixar Technical Notes, 2(5):6, 2008.

BIBLIOGRAPHY 187

[CJAMJ05] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-
Möller, and Henrik Wann Jensen. Wavelet importance
sampling: Efficiently evaluating products of complex
functions. ACM Trans. Graph., 24(3):1166–1175, July
2005.

[Coo86] Robert L. Cook. Stochastic sampling in computer graph-
ics. ACM Trans. Graph., 5(1):51–72, January 1986.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter.
Distributed ray tracing. SIGGRAPH Comput. Graph.,
18(3):137–145, January 1984.

[CTCS00] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and
Heung-Yeung Shum. Plenoptic sampling. In Proceedings
of the 27th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’00, pages 307–318,
New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[CWW+11] Jiating Chen, Bin Wang, Yuxiang Wang, Ryan S. Over-
beck, Jun-Hai Yong, and Wenping Wang. Efficient
depth-of-field rendering with adaptive sampling and
multiscale reconstruction. Computer Graphics Forum,
30(6):1667–1680, 2011.

[DD02] Frédo Durand and Julie Dorsey. Fast bilateral filtering
for the display of high-dynamic-range images. In ACM
Transactions on Graphics (TOG), volume 21, pages 257–
266. ACM, 2002.

[DFKE07] K.. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-
age denoising by sparse 3-d transform-domain collabo-
rative filtering. Image Processing, IEEE Transactions on,
16(8):2080–2095, 2007.

[DHS+05] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric
Chan, and François X. Sillion. A frequency analysis of

188 BIBLIOGRAPHY

light transport. ACM Trans. Graph., 24(3):1115–1126,
July 2005.

[DJ95] David L Donoho and Iain M Johnstone. Adapting to
unknown smoothness via wavelet shrinkage. Journal
of the american statistical association, 90(432):1200–
1224, 1995.

[Don99] David L Donoho. Wedgelets: Nearly minimax estima-
tion of edges. The Annals of Statistics, 27(3):859–897,
1999.

[DSHL10] Holger Dammertz, Daniel Sewtz, Johannes Hanika, and
Hendrik P. A. Lensch. Edge-avoiding à-trous wavelet
transform for fast global illumination filtering. In Pro-
ceedings of the Conference on High Performance Graph-
ics, HPG ’10, pages 67–75, Aire-la-Ville, Switzerland,
Switzerland, 2010. Eurographics Association.

[DW85] Mark A. Z. Dippé and Erling Henry Wold. Antialias-
ing through stochastic sampling. SIGGRAPH Comput.
Graph., 19(3):69–78, July 1985.

[ED04] Elmar Eisemann and Frédo Durand. Flash photogra-
phy enhancement via intrinsic relighting. ACM Trans.
Graph., 23(3):673–678, August 2004.

[EDR11] Kevin Egan, Frédo Durand, and Ravi Ramamoorthi.
Practical filtering for efficient ray-traced directional oc-
clusion. ACM Trans. Graph., 30(6):180:1–180:10, De-
cember 2011.

[EHDR11] Kevin Egan, Florian Hecht, Frédo Durand, and Ravi Ra-
mamoorthi. Frequency analysis and sheared filtering
for shadow light fields of complex occluders. ACM
Trans. Graph., 30(2):9:1–9:13, April 2011.

[EL99] A.A. Efros and T.K. Leung. Texture synthesis by non-
parametric sampling. In Computer Vision, 1999. The

BIBLIOGRAPHY 189

Proceedings of the Seventh IEEE International Conference
on, volume 2, pages 1033–1038 vol.2, 1999.

[ETH+09] Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo
Durand, and Ravi Ramamoorthi. Frequency analysis
and sheared reconstruction for rendering motion blur.
ACM Trans. Graph., 28(3):93:1–93:13, July 2009.

[FP04] Jean-Philippe Farrugia and Bernard Péroche. A progres-
sive rendering algorithm using an adaptive perceptu-
ally based image metric. In Computer Graphics Forum,
volume 23, pages 605–614. Wiley Online Library, 2004.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Green-
berg, and Bennett Battaile. Modeling the interaction
of light between diffuse surfaces. SIGGRAPH Comput.
Graph., 18(3):213–222, January 1984.

[HJW+08] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter
Weistroffer, Kevin Dale, Greg Humphreys, Matthias
Zwicker, and Henrik Wann Jensen. Multidimensional
adaptive sampling and reconstruction for ray tracing.
ACM Trans. Graph., 27(3):33:1–33:10, August 2008.

[HST10] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image
filtering. In Proceedings of the 11th European Conference
on Computer Vision: Part I, ECCV’10, pages 1–14, Berlin,
Heidelberg, 2010. Springer-Verlag.

[Jen96] Henrik Wann Jensen. Global illumination using pho-
ton maps. In Rendering Techniques’ 96, pages 21–30.
Springer, 1996.

[JSKJ12] Wojciech Jarosz, Volker Schönefeld, Leif Kobbelt, and
Henrik Wann Jensen. Theory, analysis and applica-
tions of 2d global illumination. ACM Trans. Graph.,
31(5):125:1–125:21, September 2012.

190 BIBLIOGRAPHY

[Kaj86] James T. Kajiya. The rendering equation. SIGGRAPH
Comput. Graph., 20(4):143–150, August 1986.

[Kat99] Vladimir Katkovnik. A new method for varying adap-
tive bandwidth selection. IEEE Transactions on Signal
Processing, 47(9):2567–2571, 1999.

[KGPB05] Jaroslav Krivanek, Pascal Gautron, Sumanta Pattanaik,
and Kadi Bouatouch. Radiance caching for efficient
global illumination computation. Visualization and
Computer Graphics, IEEE Transactions on, 11(5):550–
561, 2005.

[KK02a] Thomas Kollig and Alexander Keller. Efficient mul-
tidimensional sampling. Computer Graphics Forum,
21(3):557–563, 2002.

[KK02b] Thomas Kollig and Alexander Keller. Efficient mul-
tidimensional sampling. Computer Graphics Forum,
21(3):557–563, 2002.

[KK03] Thomas Kollig and Alexander Keller. Efficient illumina-
tion by high dynamic range images. In Proceedings of
the 14th Eurographics Workshop on Rendering, EGRW
’03, pages 45–50, Aire-la-Ville, Switzerland, Switzer-
land, 2003. Eurographics Association.

[KS13] Nima Khademi Kalantari and Pradeep Sen. Removing
the noise in monte carlo rendering with general im-
age denoising algorithms. Computer Graphics Forum,
32(2pt1):93–102, 2013.

[KT09] Pierre Kornprobst and Jack Tumblin. Bilateral filtering:
Theory and applications. Now Publishers Inc, 2009.

[LAC+11] Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine,
and Frédo Durand. Temporal light field reconstruction
for rendering distribution effects. ACM Trans. Graph.,
30(4):55:1–55:12, July 2011.

BIBLIOGRAPHY 191

[LALD12] Jaakko Lehtinen, Timo Aila, Samuli Laine, and Frédo
Durand. Reconstructing the indirect light field for
global illumination. ACM Trans. Graph., 31(4):51:1–
51:10, July 2012.

[LKL+13] Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika
Aittala, Frédo Durand, and Timo Aila. Gradient-
domain metropolis light transport. ACM Trans. Graph.,
32(4):95:1–95:12, July 2013.

[LRR04] Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ra-
mamoorthi. Efficient brdf importance sampling using a
factored representation. ACM Trans. Graph., 23(3):496–
505, August 2004.

[LW93] Eric P Lafortune and Yves D Willems. Bi-directional
path tracing. In Proceedings of CompuGraphics, vol-
ume 93, pages 145–153, 1993.

[LWC+08] Y.L. Liu, J. Wang, X. Chen, Y.W. Guo, and Q.S. Peng. A
robust and fast non-local means algorithm for image
denoising. Journal of Computer Science and Technology,
23(2):270–279, 2008.

[LWC12] Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. Sure-
based optimization for adaptive sampling and recon-
struction. ACM Trans. Graph., 31(6):194:1–194:9,
November 2012.

[McC99] Michael D. McCool. Anisotropic diffusion for monte
carlo noise reduction. ACM Trans. Graph., 18(2):171–
194, April 1999.

[Mit87] Don P. Mitchell. Generating antialiased images at
low sampling densities. SIGGRAPH Comput. Graph.,
21(4):65–72, August 1987.

192 BIBLIOGRAPHY

[Mit91] Don P. Mitchell. Spectrally optimal sampling for dis-
tribution ray tracing. SIGGRAPH Comput. Graph.,
25(4):157–164, July 1991.

[Mit96] Don P. Mitchell. Consequences of stratified sampling in
graphics. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’96, pages 277–280, New York, NY, USA, 1996.
ACM.

[MJL+13] Bochang Moon, Jong Yun Jun, JongHyeob Lee, Kunho
Kim, Toshiya Hachisuka, and Sung-Eui Yoon. Robust
image denoising using a virtual flash image for monte
carlo ray tracing. Computer Graphics Forum, 32(1):139–
151, 2013.

[MN88] Don P. Mitchell and Arun N. Netravali. Reconstruc-
tion filters in computer-graphics. SIGGRAPH Comput.
Graph., 22(4):221–228, June 1988.

[MWR12] Soham Uday Mehta, Brandon Wang, and Ravi Ra-
mamoorthi. Axis-aligned filtering for interactive sam-
pled soft shadows. ACM Trans. Graph., 31(6):163:1–
163:10, November 2012.

[MWRD13] Soham Uday Mehta, Brandon Wang, Ravi Ramamoor-
thi, and Fredo Durand. Axis-aligned filtering for inter-
active physically-based diffuse indirect lighting. ACM
Trans. Graph., 32(4):96:1–96:12, July 2013.

[Nie92] Harald Niederreiter. Quasi-Monte Carlo Methods. Wiley
Online Library, 1992.

[ODJ04] Victor Ostromoukhov, Charles Donohue, and Pierre-
Marc Jodoin. Fast hierarchical importance sampling
with blue noise properties. ACM Trans. Graph.,
23(3):488–495, August 2004.

BIBLIOGRAPHY 193

[ODR09] Ryan S. Overbeck, Craig Donner, and Ravi Ramamoor-
thi. Adaptive wavelet rendering. ACM Trans. Graph.,
28(5):140:1–140:12, December 2009.

[Owe97] Art B Owen. Monte carlo variance of scrambled
net quadrature. SIAM Journal on Numerical Analysis,
34(5):1884–1910, 1997.

[PBD+10] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko
Friedrich, Jared Hoberock, David Luebke, David McAl-
lister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. Optix: A general purpose ray trac-
ing engine. ACM Trans. Graph., 29(4):66:1–66:13, July
2010.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Ren-
dering, Second Edition: From Theory To Implementation.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2nd edition, 2010.

[PM90] Pietro Perona and Jitendra Malik. Scale-space and
edge detection using anisotropic diffusion. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
12(7):629–639, 1990.

[PSA+04] Georg Petschnigg, Richard Szeliski, Maneesh Agrawala,
Michael Cohen, Hugues Hoppe, and Kentaro Toyama.
Digital photography with flash and no-flash image pairs.
ACM Trans. Graph., 23(3):664–672, August 2004.

[PSWS03] Javier Portilla, Vasily Strela, Martin J Wainwright, and
Eero P Simoncelli. Image denoising using scale mix-
tures of gaussians in the wavelet domain. Image Pro-
cessing, IEEE Transactions on, 12(11):1338–1351, 2003.

[RCL+08] Fabrice Rousselle, Petrik Clarberg, Luc Leblanc, Victor
Ostromoukhov, and Pierre Poulin. Efficient product
sampling using hierarchical thresholding. The Visual
Computer, 24(7-9):465–474, 2008.

194 BIBLIOGRAPHY

[RKZ11] Fabrice Rousselle, Claude Knaus, and Matthias Zwicker.
Adaptive sampling and reconstruction using greedy er-
ror minimization. ACM Trans. Graph., 30(6):159:1–
159:12, December 2011.

[RKZ12] Fabrice Rousselle, Claude Knaus, and Matthias Zwicker.
Adaptive rendering with non-local means filtering.
ACM Trans. Graph., 31(6):195:1–195:11, November
2012.

[RMZ13] Fabrice Rousselle, Marco Manzi, and Matthias Zwicker.
Robust denoising using feature and color information.
Computer Graphics Forum, 32(7):121–130, 2013.

[RPG99] Mahesh Ramasubramanian, Sumanta N. Pattanaik, and
Donald P. Greenberg. A perceptually based physical
error metric for realistic image synthesis. In Proceedings
of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’99, pages 73–82,
New York, NY, USA, 1999. ACM Press/Addison-Wesley
Publishing Co.

[RW94] Holly E. Rushmeier and Gregory J. Ward. Energy pre-
serving non-linear filters. In Proceedings of the 21st
annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’94, pages 131–138, New York,
NY, USA, 1994. ACM.

[SD12] Pradeep Sen and Soheil Darabi. On filtering the noise
from the random parameters in monte carlo rendering.
ACM Trans. Graph., 31(3):18:1–18:15, June 2012.

[SDDVA+98] J. Sijbers, AJ Den Dekker, J. Van Audekerke, M. Verhoye,
and D. Van Dyck. Estimation of the noise in magnitude
mr images. Magnetic Resonance Imaging, 16(1):87–90,
1998.

[Sil86] B.W. Silverman. Density estimation for statistics and
data analysis, volume 26. Chapman & Hall/CRC, 1986.

BIBLIOGRAPHY 195

[SJJ12] Jorge Schwarzhaupt, Henrik Wann Jensen, and Woj-
ciech Jarosz. Practical hessian-based error control for
irradiance caching. ACM Trans. Graph., 31(6):193:1–
193:10, November 2012.

[SSD+09] Cyril Soler, Kartic Subr, Frédo Durand, Nicolas
Holzschuch, and François Sillion. Fourier depth of
field. ACM Trans. Graph., 28(2):18:1–18:12, May
2009.

[Ste81] Charles M Stein. Estimation of the mean of a multivari-
ate normal distribution. The annals of Statistics, pages
1135–1151, 1981.

[TM98] C. Tomasi and R. Manduchi. Bilateral filtering for gray
and color images. In Computer Vision, 1998. Sixth In-
ternational Conference on, pages 839–846, 1998.

[Vea97] Eric Veach. Robust Monte Carlo methods for light trans-
port simulation. PhD thesis, Stanford University, 1997.

[VG95a] Eric Veach and Leonidas Guibas. Bidirectional estima-
tors for light transport. In Photorealistic Rendering Tech-
niques, pages 145–167. Springer, 1995.

[VG95b] Eric Veach and Leonidas J. Guibas. Optimally com-
bining sampling techniques for monte carlo rendering.
In Proceedings of the 22Nd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’95, pages 419–428, New York, NY, USA, 1995. ACM.

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light
transport. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, SIG-
GRAPH ’97, pages 65–76, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

196 BIBLIOGRAPHY

[WABG06] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P.
Greenberg. Multidimensional lightcuts. ACM Trans.
Graph., 25(3):1081–1088, July 2006.

[WBSS04a] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-
celli. Image quality assessment: from error visibility
to structural similarity. Image Processing, IEEE Transac-
tions on, 13(4):600 –612, april 2004.

[WBSS04b] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: From error vis-
ibility to structural similarity. Image Processing, IEEE
Transactions on, 13(4):600–612, 2004.

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree,
Kavita Bala, Michael Donikian, and Donald P. Green-
berg. Lightcuts: A scalable approach to illumination.
ACM Trans. Graph., 24(3):1098–1107, July 2005.

[WH92] Gregory J Ward and Paul Heckbert. Irradiance gradi-
ents. In Third Eurographics Workshop on Rendering,
volume 8598. Alan Chalmers and Derek Paddon, 1992.

[Whi79] Turner Whitted. An improved illumination model for
shaded display. SIGGRAPH Comput. Graph., 13(2):14–,
August 1979.

[WOG06] Holger Winnemöller, Sven C Olsen, and Bruce Gooch.
Real-time video abstraction. ACM Transactions On
Graphics (TOG), 25(3):1221–1226, 2006.

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D.
Clear. A ray tracing solution for diffuse interreflection.
SIGGRAPH Comput. Graph., 22(4):85–92, June 1988.

[XP05] R. Xu and S.N. Pattanaik. A novel monte carlo noise
reduction operator. Computer Graphics and Applications,
IEEE, 25(2):31–35, 2005.

Curriculum Vitae

Personal Information

Name Fabrice Rousselle

Citizenship Canadian, French

Date of birth June 14, 1977

Place of birth Montreal, Canada

Education

11/2009–2/2014 Ph.D., Computer Science
Computer Graphics Group, University of Bern
Bern, BE, Switzerland

Thesis : Image Space Adaptive Rendering
Adviser : Prof. Matthias Zwicker

1/2005–10/2007 M.S., Computer Science
University of Montreal
Montreal, QC, Canada

Thesis : Hierarchical Product Sampling
Advisor : Prof. Victor Ostromoukhov

11/1996–5/2000 B.S., Computer Engineering
Ecole Polytechnique de Montréal
Montreal, QC, Canada

Professional Experience

9/2007–9/2009 Research Assistant
Peripheral Systems Laboratory, Ecole Polytech-
nique Fédérale de Lausanne
Lausanne, VD, Switzerland

6/2000–12/2004 Programmer (C++) in the video group.
Matrox Electronic Systems Ltd.
Dorval, QC, Canada

