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Abstract
Augmented Reality (AR) is a technology that aims to embed virtual objects
in the real world, showing to the user the set of objects (virtual and real) as
a single world. For that purpose, it is necessary to offer a perfect alignment
between virtual and real objects, which increases the effectiveness of AR. The
solution to this problem is known as tracking. The object tracking consists in
determining at any time the position and orientation of the camera relative to
the scene. Optical sensors are most commonly used to overcome the tracking
problem due to their low cost implementation. However, it is often difficult to
provide robustness, accuracy and low computational cost at the same time.

This thesis tackles the improvement and development of the main optical
tracking techniques, primarily focused on detecting the deformations of the
bodies. First, it has been achieved the tracking of rigid and non-rigid planar
surfaces through a monocular camera, and then, the object deformation estimation
with a more complex device as a RGB-D camera has been developed.

Surface tracking systems such as those based on markers have the problem
of not being able to handle occlusions. Thus, this thesis raises a new marker
design that offers robustness against occlusions. Furthermore, in order to handle
the deformations of surfaces, a solution that recovers the camera pose and the
non-rigid surface simultaneously is proposed. Continuing with the deformation
handling, it has also developed a robust tracking system for reconstructing the
3D shape of deformable objects using two different physical formulations. One
offers a correct physical behaviour with a low computational cost, whereas the
other achieves higher levels of accuracy at the expense of higher processing
time.

In addition, all the presented solutions have the common factor that all are
executed in real time, which is a key property for a fluently visual feedback of
an AR application.
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Resumen
La Realidad Aumentada (RA) es una tecnología que busca añadir objetos
virtuales en el mundo real, mostrando al usuario el conjunto de objetos (virtuales
y reales) como un solo mundo. Para ello, es necesario alinear correctamente los
objetos reales y virtuales, lo que incrementa la eficiencia de la RA. La solución
a este problema es conocido como tracking. El tracking de un objeto consiste en
determinar en cualquier instante la posición y orientación de la cámara relativas
a la escena. Los sensores ópticos son los más usados para resolver el tracking
debido a su bajo coste de implementación. Sin embargo, no siempre es posible
ofrecer robustez, precisión y un bajo coste computacional al mismo tiempo.

Esta tesis aborda la mejora y desarrollo de las principales técnicas
de seguimiento óptico, principalmente las orientadas a la detección de
deformaciones de objetos. Primero, se ha gestionado el tracking de superficies
planas rígidas y deformables a través de cámaras monoculares, y después se
ha desarrollado la estimación de las deformaciones de objetos mediante un
dispositivo más complejo, una cámara RGB-D.

Los sistemas de tracking basados en marcadores tienen el problema de
no soportar oclusiones. Así, esta tesis plantea un nuevo diseño de marcador
personalizable que ofrece robustez frente a oclusiones. Asimismo, para controlar
las deformaciones de las superficies, esta tesis propone una solución que calcula
tanto la posición de la cámara como la deformación simultáneamente. Igualmente,
se ha desarrollado un tracking robusto para la reconstrucción de la estructura
3D de objetos deformables a través de dos formulaciones físicas distintas. Una
ofrece un correcto comportamiento físico y bajo coste computacional, mientras
que otra alcanza mayores niveles de precisión a cambio de mayor procesamiento.

Además, todas las soluciones descritas tienen el factor común de ejecutarse
en tiempo real, propiedad clave para que la respuesta visual de una aplicación
RA sea fluida.
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Laburpena
Errealitate Areagotua (EA) mundu errealean objektu birtualak gehitzea helburua
duen teknologia da, erabiltzaileari objektuak (birtualak eta errealak) erakutsiz
mundu bakar bat balitz bezala. Horretarako, ezinbestekoa da objektu errealak eta
birtualak zuzen lerrokatzea, EAren eraginkortasuna handiagotzen duena. Arazo
honen konponbidea tracking izenez ezagutzen da. Objektu baten tracking-a
kameraren posizioa eta orientazioa edozein unetan zehaztean datza. Sentsore
optikoak dira gehien erabiltzen direnak lerrokatze-arazoa konpontzeko; batez
ere, bere inplementazio-kostu baxuagatik. Hala ere, ez da beti posible aldi
berean irtenbide eraginkorra, zehatza eta konputazio-kostu baxukoa garatzea.

Tesi honek tracking optikoko teknika nagusien hobekuntza eta garapena
jorratzen ditu, objektuen deformazioen hautematera bideratutakoak, nagusiki.
Lehenengo eta behin, gainazal lau zurrunen eta deformagarrien tracking-a
kudeatu da kamera monokularren bidez, eta gero objektuen deformazioak
estimatu dira gailu konplexuago baten bitartez, RGB-D kamera batekin.

Arazo bat dute markagailuetan oinarritutako gainazal zurruneko
tracking-etako sistemek: ezin dute oklusiorik jasan. Horregatik, oklusioen
kontra duen markagailu pertsonalizatua eskaintzen du tesi honek; halaber,
deformazioak kontrolatzeko, hala kameraren posizioa nola gainazalaren
deformazioa aldi berean kalkulatzen duen irtenbidea proposatzen du
deformazioak kontrolatzeko. Deformazio-hautematearekin jarraituz, tracking
eraginkorra ere garatu da objektu deformagarri baten 3D egitura berreraikitzeko
bi formulazio fisiko desberdinen bidez. Batak portaera fisiko zuzena eta
konputazio-kostu baxua eskaintzen ditu; bestea, ordea, zehaztasun maila
handiagoetara heltzen da prozesatze handiagoren truke.

Gainera, faktore komuna dute deskribatutako irtenbide guztiek: denbora
errealean burutzen dira, ER aplikazio bateko ikus-erantzuna arina izateko
ezaugarri gakoa delako.
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Chapter 1
Introduction

Ez dago protokolorik,
baldintza bakarra dago,

disfrutatu eta sentitu.
Gorka Urbizu

1.1 Augmented Reality
Augmented Reality (AR) is a technology that aims to embed virtual objects in
the real world, showing the user the set of objects (virtual and real) as a single
world. In contrast to Virtual Reality (VR), where the user is completely immersed
in a synthetic world, AR consists in adding virtual objects to the real world (see
Figure 1.1). An AR system is composed of a camera that captures the images
from the scene, a data processing unit to analyse them and a display device in
order to combine real and virtual elements.

The first work of AR is attributed to Ivan Sutherland (Sutherland, 1968).
This work, which is also the first VR system, uses an Optical see-through
Head-Mounted Display (OHMD) where the position is measured by mechanical
and ultrasonic sensors (see Figure 1.2(a)). However, it was not until the
beginning of the 1990s when in (Caudell and Mizell, 1992) Tom Caudell
and David Mizell coin the term of Augmented Reality. The authors describe
the implementation of a heads-up (see-through) head-mounted display (called
HUDset) to guide workers to improve the efficiency and quality in their
performance of manufacturing or assembly operations (see Figure 1.2(b)).
Furthermore, they refer to this technology as Augmented Reality since it is

3
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Figure 1.1: Illustration of AR. Virtual skeleton superimposed on the
body of a human (by Ben Heine).

used to augment the visual field of the user with the necessary information for
the performance.

Later in 1994, Paul Milgran and Fumio define the concept of a Virtuality
Continuum (Milgram and Kishino, 1994) that serves to describe a continuum
scale that goes from real to virtual environments. This scale distinguishes
between VR and AR, depending on the synthetic information displayed in the
scene. VR would be at the right side of the scale; while on the left would be the
reality, as shown in Figure 1.3. Thus, a new term appears, called Mixed Reality
(MR), which is a particular subset of VR which involves the merging of real and
virtual worlds. The AR therefore, refers to all cases where the display of real
environments is augmented through virtual objects.

(Azuma et al., 1997) depicts the first survey on AR and underlines the main
three requirements for any AR system.

1. Combine real and virtual objects.
2. Interactive real-time executions.
3. Correct 3D registration, overlaying the virtual information with its

corresponding real counterpart.
Taking into account the above-mentioned points, the main challenge for an

AR application is to give the illusion of seeing both realities; virtual and real,
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(a) (b)

Figure 1.2: Head tracking sensors used by (Sutherland, 1968) (a) and
a head-mounted system for AR manufacturing activities in (Caudell
and Mizell, 1992) (b).

as one. Therefore, it is necessary to achieve a robust and accurate registration,
which consists in finding a perfect alignment between real and virtual objects. To
overcome the registration problem, the position and orientation of the observer
(known as camera pose) has to be determined (the calculation of the camera
pose is also known as tracking). Using this information, a virtual camera can be
configured, which indicates exactly where the virtual objects should be drawn
in the image. It requires the extraction of the 6 Degrees of Freedom (DoF) that
represent the user’s point of view: 3DoF for orientation and 3DoF for translation.

Mixed Reality (MR)

Augmented 
Reality (AR)

Augmented 
Virtuality (AV)

Real 
Environment

Virtual 
Environment

Figure 1.3: Reality-Virtuality Continuum (Milgram and Kishino, 1994).

There are many alternatives that differ from the type of sensor used to
address the registration problem. (Rolland et al., 2001) offers the following
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classification of tracking technologies that are necessary to record the position
and orientation of real objects in physical space:

• Inertial sensors. Combine accelerometers and gyroscopes to estimate the
translations and rotations respectively.

• Ultrasound sensors. Rely on the delay times of ultrasonic pulses to deduce
the position and orientation of the camera.

• GPS receivers. Use the signals emitted by a set of satellites to triangulate
its pose.

• Magnetic sensors. Measure the magnetic fields to deduce the viewpoint
parameters.

• Optical sensors. Process the image of the scene captured by a camera to
obtain its corresponding 6DoF.

This thesis has been focused on those solutions based on optical sensors.

1.1.1 Applications
AR technology can be used, beneficially, in several application areas. (Azuma
et al., 1997) classified the environments where this technology is applicable. It
showed AR applications in at least six areas: medical visualization, maintenance
and repair, annotation, robot path planning, entertainment, and military aircraft
navigation and targeting. However, due to advances in new technologies, today
AR has evolved and has spread to many fields that previously were limited
to certain industrial applications and managed by few research groups. The
following presents examples of how visual AR has been used in some of the
areas cited by Azuma and many others.

Maintenance

The prototype called KARMA (Knowledge-based Augmented Reality for
Maintenance Assistance) is considered one of the first important practical
applications of an AR system. KARMA (Feiner et al., 1993) consists of a
prototype system where the user uses a Head-Mounted Display (HMD) to
explain simple end-user maintenance of a laser printer. This application was
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widely quoted within the science community and it was also one of the first
approaches to include AR technology in maintenance and assembly tasks. These
types of assistance applications for industrial maintenance provide assistance
and traceability tools in assembly/disassembly tasks of complex machinery using
virtual annotations. They detect and recognize the desired object to perform
maintenance and from there, a set of instructions are given to the user (see
Figure 1.4). The system can sometimes even detect whether a step is incorrectly
being carried out, and a visual alert is given. Likewise, these techniques can offer
an automatic report generation or a pictographic documentation of a workflow
(Petersen and Stricker, 2012).

(a) AR assembly and disassembly. (b) AR assitance tool for a control panel.

(c) AR projector tool for industrial
maintenance assistance.

Figure 1.4: Assistance and traceability tools in execution of
procedures.

This way, following the strategy of KARMA, numerous applications have
been developed in the field of maintenance and assembly. Examples include



8 Chapter 1. Introduction
projects such as (Wohlgemuth and Triebfürst, 2000) or (Schwald et al., 2001),
mainly dedicated to assembly tasks. The ARMAR project (Henderson and Feiner,
2009; Henderson and Feiner, 2011a; Henderson and Feiner, 2011b) also explores
the use of AR in the execution of procedural tasks in the field of maintenance and
repair, as well as the recent project AR-Mentor (Zhu et al., 2014). Furthermore,
maintenance and assembly applications also differ in the tracking method used.
Marker-based tracking methods (Savioja et al., 2007; Salonen et al., 2007;
Sääski et al., 2008; Salonen et al., 2009) provide a high level accuracy and they
do not usually require very powerful hardware such as mobile devices (Siltanen
et al., 2007; Savioja et al., 2007; Hakkarainen et al., 2008). However, the main
disadvantage of this type of tracking is that they require the environment to
be prepared in advance with artificial landmarks, requisite which is not always
possible in an industrial field. Likewise, there are other approaches which are
focused on model-based tracking, which rely on the prior knowledge of the 3D
models of the environment (Caponio et al., 2011; Álvarez et al., 2011; Neubert
et al., 2012; Meden et al., 2014).

Medicine

Medicine is another field where AR plays an increasingly important role. This
is supported by the fact that an operation plan can be developed to reduce
the workload of surgeons during an intervention or perform a smaller number
of incisions (making the recovery phase faster and less painful). One of the
most premature contributions in this field (Ohbuchi et al., 1998) generates a
3D representation of the foetus inside the womb in order to allow the doctor
see it. Following a similar criteria, this practice could be extrapolated to other
kind of surgeries to see inside the patient. Nevertheless, there is one important
thing that has to be taken into account: accuracy is the main requirement
for these applications, something that does not happen in other fields like
entertainment. Approaches such as (Kim et al., 2012) propose a robust solution
to track deformable organs but do not achieve the necessary accuracy level. In
this regard, there are already methods like (Haouchine et al., 2013b; Haouchine
et al., 2013a) that achieve a high level of accuracy. In these cases, they believe in
a biomechanical model-based simulation for minimally invasive hepatic surgery.
The obtained data from the pre-operative, such as vascular network tumours and
cut planes, can be overlaid onto the laparoscopic view for image-guidance (see
Figure 1.5). Furthermore, biomechanical-based deformable models have been
demonstrated to be relevant since they allow defining elastic properties of the
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shape, including anatomical information and deformation constraint (Pratt et al.,
2010; Speidel et al., 2011). Similarly, AR technology has enabled research in
many medicine sectors, like performing an image-guided tumour identification
(Hamarneh et al., 2014), surgical oncology (Nicolau et al., 2011) or coronary
surgery (Figl et al., 2010).

Figure 1.5: Biomechanical model onto the human liver during
Minimally Invasive Surgery (by (Haouchine et al., 2014b)).

Guidance

If there is a field where the concept of AR has been exploited, this is
entertainment (entertainment being defined as everything related to marketing,
advertisement, film or game industry). The advance of new technologies, paying
particular attention to smartphones, opens new possibilities in this field. This is
the case of location-based AR services that are very popular on mobile platforms.
Applications like Layar, Wikitude© or Metaio© use the camera and different
sensors of the cellular (gyroscopes or GPS). This gives additional information of
the environment of the user and together with geolocated online database it is
possible to provide the user information related to the place the user is visiting.
Hence, (Rao et al., 2014) takes advantage of sensors available in cars, including
the GPS, the steering sensor, the wheel odometer and the inertial measurement
unit, in order to develop an AR In-Vehicle Infotainment (AR-IVI) system that is
installed in the Mercedes-Benz© R-Class car.

Game and Film Industry

The game industry has also included the AR technology, letting the user be
part of the game. AR enables interaction between the user and the environment.
Based on the ARToolKit tracking system (created by Hirokazu Kato and
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(a) AR Puzzle. (b) AR Games.

Figure 1.6: Examples of AR games.

Mark Billinghurst (Kato and Billinghurst, 1999) and available as open source)
numerous games have appeared in the market. To mention some examples,
Invizimals™, PS®Vita AR Cards, Eye Pet™ for Nintendo DS™, ARQuake or
AR Invaders (see Figure 1.6) can be highlighted. And eventually, the introduction
of AR into film industry has seduced some producer companies to try these tools,
since integrating real actors in several virtual backgrounds leads cost savings.
Some of the most relevant films are Terminator, Robocop, Minority Report or
Iron Man (see Figure 1.7).

Figure 1.7: The AR has also been incorporated into the film industry.
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Marketing

Following the same lines, the marketing and sales fields have also taken AR on
board. AR is a tool that is well-associated for these claims. The most notable
cases are in automotive, dressing or fashion accessories companies. Mini, for
example, presents a very detailed 3D model of its Cabrio© on a magazine’s
page (see Figure 1.8(a)). On the other hand, the watch brands like Tissot® or
Dezeen Watch Store© proposed campaigns letting users wear virtual watches
before buying them (see Figure 1.8(b)). There are other fashion accessories
companies that have used this kind of digital mirrors called AR Shops where
the user can try out different face cosmetic products, jewellery or dresses (see
Figure 1.8(c)).

(a) MINI Cabrio©. (b) Dezeen Watch
Store©.

(c) Dress AR.

Figure 1.8: Examples of AR applications for marketing and
advertisement.

Design

AR applications can also be used for the on-site visualization of both indoors
and outdoors, trying to imagine exactly how the furniture will look in a room of
a house (Siltanen et al., 2014) or a building in a certain location of the city. In
interior design for example, it is possible to find the new IKEA AR Catalogue©
to visualize how furniture could look inside the room (see Figure 1.9(a)).
Sayduck© also released a similar mobile app that helps users see certain
products in their homes (see Figure 1.9(b)). In the case of outdoor design,
existing solutions can visualize building projects using AR with a camera
(Kähkönen et al., 2007; Schattel et al., 2014).
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(a) IKEA AR Catalogue©. (b) Sayduck©.

Figure 1.9: AR helps the work of interior designing.

Some of these devices are not able to provide the immersion experience desired
by many users due to the inconvenient of their use. However, this scenario
could change with the arrival of new commercial solutions: AR glasses (see
Figure 1.10). Products like Google Glass or Vuzix Smart Glasses© allow
the user achieve a much more realistic experience by keeping information in
sight. Moreover, these eyeglasses display information and allow the user to
communicate with a smartphone efficiently, merely through voice, so there is no
need to check the screen of the phone. This is a great step forward in fields like
industry, since sometimes is difficult to handle a mobile device (smartphones,
tablets...) while the operator is working on a specific task where both hands are
required.

(a) Google Glass©. (b) Vuzix Smart Glasses©.

Figure 1.10: Google (a) and Vuzix (b) glasses.
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1.2 Motivation
Versatility of AR

Unlike VR, AR provides enhanced reality, since it interacts with real objects.
Furthermore, VR is mainly oriented to training, with the aim of improving the
skills of the user through multiple simulations, while AR can be used for both
training and guiding.

AR as a potential tool in medicine

If there is an area where this type of assistance tools can be applied, that
would undoubtedly be medicine. It can develop, for example, a system that
combines basic functionalities of medical imaging and real simulations in order
to guide/help in every moment. Moreover, it involves numerous advantages:

• Reduce fatigue, resulting in a greater precision by the surgeon. Assistance
tools lessen the mental workload of the users, creating greater accuracy
and allowing more fluent decisions.

• Reduce the error rate. The alerts provided by the system serve as a guide
in order to make corrections for possible mistakes and reduce the error
rate.

• Costs reduction. Replacing the work of assistants by robotic, electronic or
computer equipment.

• Automatic generation of documentation. Automatic data recording of
concerning details in an operation. These data can serve as material
for teaching and training as well as for complementing the traditional
manuals.

Low cost and non-invasive optical tracking solution

In this respect, tracking based on optical sensors (also called visual tracking)
is the most popular solution because it is inexpensive and does not require a
significant adaptation of the environment. It does not require bulky machines to
be added to the scene or force the user to carry heavy devices; it only uses a
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camera to capture images of the scene, a computer to process the image, and a
screen to overlay the virtual information.

Finding a robust marker tracking system

In order to obtain an accurate and robust tracking system based on Computer
Vision (CV), markerless solutions use natural features or a 3D model to compute
the camera pose. These alternatives do not require environment adaptation,
because they rely on natural features that are on the scene or lie on the surface
of the model to be tracked. Nevertheless, in some cases, a rich texture scene is
required, whereas in other cases, the 3D model must be known, something not
always easy to obtain. Marker tracking systems are a real alternative to those
problems, because they add special patterns to the scene. Furthermore, they
are faster, more accurate and more robust than markerless tracking solutions.
The main drawback is the environment adaptation, although in some cases, this
adaptation is feasible without incurring any extra work. Besides the environment
adaptation, marker occlusion is another shortcoming, as the system fails even
if the marker is only slightly occluded. This produces an undesirable effect on
users who lose the sense of realism. This is a clear limitation that must be dealt
with.

Shortage solution in the relatively unexplored deformable tracking field

On the other hand, most of the research on AR has focused on tracking systems
of rigid objects. Recognizing these objects in the image and register with virtual
models are classic problems in AR, numerically delicate but with numerous
approaches in the literature. However, in certain applications it is very likely
to recognize and track deformable objects, adding an extra complexity to the
problem. In the particular case of medical applications for example, it is very
likely to track deformable objects (skin, tissues, organs...). Thus, recovering the
shape of 3D non-rigid objects from monocular video sequences is an ill-posed
problem because many 3D surfaces or objects can have the same 2D projection.
Even having the intrinsic camera parameters and a well-texturized surface, it
is difficult to model all the possible configurations of a deformable object in
order to overcome the depth ambiguities. In (CV), approaches on AR oriented to
deformable objects are still very limited in the literature and have been explored
by a few research groups. Moreover, the number of approaches decreases when
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a real-time constraint is set. This is mainly caused by the complexity of the
recognition and non-rigid registrations steps.

Real time key to provide correct visual feedback

Finally, one of the keys of AR is how realistically augmentations can be
integrated in the real word. This realism is not only achieved by a proper
alignment between real objects and their virtual counterparts, but it is necessary
to take other features into account. Among these can be included the occlusion
computations or the estimation of real illumination to integrate virtual objects
with real ones. Furthermore, to increase the level of realism it is necessary
to return a fluent feedback essential for user interaction, which is achieved by
applications running in real time.
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1.3 Contributions
The use of AR enables the projection of virtual information that sometimes is
even impossible for the naked eye, for example in the medicine field (information
of a patient). Thus, this thesis falls within this context. The present work aims to
study and improve the main AR tracking techniques, especially those oriented
to handle deformable objects, very common in medical environments. It consists
in a tour through the different ways that exist to perform an object tracking
(rigid and non-rigid). Among the different types of tracking, this work deals
with the tracking of markers, the tracking of 3D deformable surfaces and finally
the tracking of 3D deformable objects. The aim of the first tracking solution,
markers, focused primarily on acquiring the knowledge required in optical
tracking methods through efficient and simple systems such as marker tracking
systems. This enables us to tackle the non-rigid issue in a more efficient way.
It has also made an improvement to these techniques, successfully achieving a
contribution.

All these tracking methods achieve real-time executions. By real time we
mean 25-30 frames per second, enough to get stability and continuity in the
image flow. A brief descriptor of each of these three research developments of
the thesis are detailed below.

1. Rigid surface tracking (Marker)
A robust real-time marker tracking system that supports partial
occlusions through a new marker design which lets users create their
own markers (marketing opportunities) and implement human-machine
interfaces.
This proposal relies on the widely used ARToolKitPlus (Wagner and
Schmalstieg, 2007) non-commercial marker tracking library. This library
does not take advantage of their frame to codify information. By placing
textured patches along the frame of the marker there are more visible
features (with known 3D coordinates). Then, during marker occlusion it
is possible to update the 6DoF of the camera in real time offering a
higher robustness. Moreover, the presented design does not change the
functionality of ARToolKitPlus since it is backward compatible with it.
Nevertheless, the method can be adapted to any marker that does not
codify information on its frame. This method has been developed to be
public access available and it can be downloaded.



Section 1.3. Contributions 17
2. Non-rigid surface tracking

A novel solution recovers the camera pose and the non-rigid 3D surface
simultaneously along a video sequence in real time.
The main idea of the proposed method is to use an efficient Particle Filter
(PF) which performs an intelligent search in a database where a range of
deformation templates and appearance descriptors are stored in order to
achieve a real-time performance. Furthermore, two methods are combined
to offer robust tracking. The first is based on appearance, which serves to
do both the initialization and the recovery from failure, while the second
is based on temporal coherence.
This solution is oriented to applications of cloth simulation or the tracking
of sheets of papers.

3. Deformable object tracking
A robust tracking method that is able to track in real time the camera
pose and to reconstruct the 3D structure of a deformable object by
applying a set of physical constraints to obtain a realistic behaviour
using a RGB-D camera.
The RGB-D camera information usually has too much noise with large
incomplete areas which causes incorrect visual feedback. Accordingly,
through a physics-based method, the mesh is adjusted to the raw
information obtained from the camera, providing a realistic behaviour in
order to calculate the deformations regardless of their geometric shape.
Additionally, detection is not based on features, and therefore it can
operate with textured or untextured objects. Moreover, this method offers
accurate visual feedback, versatility (the ability to work with different types
of objects) and real-time performance over accuracy.
This kind of techniques can result in guiding on surgery simulations,
tracking the organs of the patient.
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1.4 Dissertation Organization
The dissertation is divided into 6 chapters. Chapter 1 has presented the status
of the AR technology and the fields where it has been implemented. In addition,
the factors that have motivated this work and the main objectives to be achieved
have also been presented. As this thesis is focused on the study of the main
AR tracking techniques, Chapter 2 introduces some base information that will
be useful for understanding the subsequent chapters. Furthermore, it gives a
classification of different optical tracking approaches. Chapter 3 presents the
monocular optical tracking based on markers, including a proposed solution to
overcome occlusions. Chapter 4 describes the problem presented by non-rigid
3D surface tracking and provides all the steps to be carried out in order to
overcome the problem. Afterwards, a Design of Experiments (DoE) is presented
to determine the optimal parameters values of the solution. Chapter 5 deals
with the problem of recovering a non-rigid 3D object and deducing the camera
pose that best fits in the projection. Finally, conclusions and future works are
enumerated in Chapter 6.

Some appendices also appear at the end of this document in order to explain
some technical concepts in more detail.
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Some ideas introduced in this chapter can be found in:
Álvarez, H., Leizea, I., and Borro, D. “A survey on optical tracking for
augmented reality”. In Proceedings of the XXII Conferencia Española de
Computación Gráfica (CEIG), pp. 31–40. Jaén, Spain. September, 2012.

The main goal of Augmented Reality (AR) is to integrate virtual objects into
a real scene. This requires a perfect alignment between virtual and real objects
in order to create the sensation that virtual objects belong to the real world.
This problem known as camera tracking is solved by computing the position
of the virtual camera. Thus, the major challenge of AR is to obtain a good
tracking, which is solved by determining the position and orientation of the
camera (camera pose).

In this way, optical tracking has been extensively studied by several authors,
resulting in many different optical tracking methods. However, it is not a solved
problem and it still remains as an important research topic because it is often
difficult to provide robustness, accuracy and low computational cost at the same
time. This chapter reviews the mathematical tools for understanding the camera
model as well as the methods that have been designed to overcome the problem
of tracking by using images from the camera as the sole source of information.

19
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2.1 Camera Geometry
The light-sensitive sensors of the cameras are responsible for obtaining
the image. The amount of light captured through the camera lens is
processed by the so-called Charged Coupled Device (CCD) and Complementary
Metal-Oxide-Semiconductor (CMOS) sensors. This light is converted to an
electric charge at each pixel and depending on the amount of the charge; the
intensity of each pixel is obtained, thus producing the final image as a result.
The camera is in turn, a device that captures 3D information from the scene and
projects it onto an image plane of two dimensions.

The pinhole camera is the most commonly used representation of the
perspective projection model in Computer Vision (CV) to describe the whole
mathematical procedure of a real camera. It is a simple camera without a lens
and with a single point aperture (a pinhole). As shown in Figure 2.1, the rays
of light from the scene pass through this hole to form an inverted 2D image of
the 3D object. The image quality of a pinhole camera is directly related to the
size of the hole: a small size produces a sharp image but it will be dimmer due
to insufficient light, whereas a large hole generates brighter but more blurred
images.

image plane

Centre of Projection
(CoP)

Pinhole camera 
obscura

Pinhole
(CoP)

Figure 2.1: The light of the scene passes through a single point (the
CoP) projecting an inverted image.

As with real cameras, there are certain technical aspects to be considered.
Cameras are represented by two main groups of parameters: intrinsic and
extrinsic parameters. The intrinsic parameters, also called internal camera
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parameters, represent the internal characteristics of the camera, while the
extrinsic parameters express the position and orientation of the camera.

2.1.1 Intrinsic Parameters
Let’s describe the pinhole model as a central projection or Centre of Projection
(CoP) C in space called camera centre and a plane located at a distance f from
the CoP. This plane is called the image plane or focal plane. In order to avoid
the image appearing inverted, an equivalent geometric configuration is used,
where the optical centre is moved behind the image plane. For this reason, the
image plane is located at (0, 0, f ), where f is a non-zero distance.

The projection generated by this model is the intersection between the image
plane and the line joining the point to be projected to the CoP. Therefore, a 3D
point in the world space (X, Y , Z ) is mapped to a 2D point (x, y) on the image
plane. A demonstration of the model can be shown in Figure 2.2.

Figure 2.2: Pinhole camera model (Hartley and Zisserman, 2003).
Under the assumption that the camera and world coordinate systems are

aligned, the plane XY through the camera centre is parallel to the image plane
and is called the principal plane. Moreover, the Z axis coincides with the optical
axis or principal axis, which is the axis passing through the CoP. The intersection
between the principal axis and the image plane is called the principal point P .

Accordingly, due to the similar triangles rule, the projection of the 3D world
coordinate (X, Y , Z ) is mapped to the 2D image coordinate (x, y) on the image
plane:

x = f XZ , y = f YZ . (2.1)
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When the focal length f is equal to 1, the camera is said to be normalized or
centred on its canonical position. Therefore, this function can be defined in order
to transform points from the Euclidean 3-space R3 to Euclidean 2-space R2.
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Figure 2.3: Perspective projection model.

a. Homogeneous coordinates
By representing the former mathematical expression under homogeneous
coordinates, the process can be expressed as a linear system. Using this
notation, Equation 2.1 can be expressed in terms of matrix multiplication,
obtaining the following system:


xy

1


 ∼


fXfY
Z


 ∼


f 0 0 0

0 f 0 0
0 0 1 0





X
Y
Z
1


 . (2.2)



Section 2.1. Camera Geometry 23
Thus, the rays mapped onto the image plane can be uniformly described in
a compact way by the classic 3x4 homogeneous camera projection matrix
P :

x = PX = KPNX, (2.3)
where X denotes the world point represented by homogeneous 4-vector
(X, Y , Z , 1) and x the image point by homogeneous 3-vector (x, y, 1). PNis the projection matrix of the normalized camera and K is the calibration
matrix or intrinsic parameter matrix, which describes the characteristics of
the camera.

b. Principal-point offset
However, the Equation 2.2 models the behaviour of an ideal pinhole
camera. So far, it is assumed that the origin of coordinates in the image
plane is at the principal point. Nevertheless, in practice, the image
coordinate system is centred on the top left of the image (see Figure 2.3),
so the pixel coordinates of the principal point are not (0, 0), but (px, py):


xy

1


 ∼


fX + ZpxfY + ZpyZ


PN ∼


f 0 px0 f py0 0 1




1 0 0 0

0 1 0 0
0 0 1 0





X
Y
Z
1


 . (2.4)

c. Image-sensor
Another issue is the implicit assumption that the pixels of the image sensor
are square, i.e., the aspect ratio is 1:1 (see Figure 2.4). Nevertheless, there
is also the possibility of having incorrectly positioned the camera sensor
with respect to the lens, producing non-square pixels (see Figure 2.5).
This has the extra effect of introducing unequal scale factors in each
direction (sx , sy), providing two different focal lengths, one for each axis
(fx = f /sx , fy = f /sy) .
By introducing these parameters into the expression 2.4, the resultant
equation is:


xy

1


 ∼ KPN



X
Y
Z
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Y
Z
1


 , (2.5)
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Image sensor

(a) Image distortion.

α 

sx

sy

original pixel

distorded pixel

(b) Pixel distortion.

Figure 2.4: Image (a) and pixel (b) distortion. Image sensor with
non-square (skewed ) pixels. sx and sy are the dimension of the pixels
and α is the degree of tilt.

where s, called skew parameter, measures the error in the alignment
between the sensor and lens (s = tanα ∗ fsy ).

d. Distortions
Similarly, as depicted below, the world point, image point and optical
centre are not collinear for real (non-pinhole) lenses. Thus, together with
the effects cited, there are other important deviations called distortions
that cannot be modelled linear. These effects can be classified as
tangential and radial distortions. Tangential distortion is caused by
physical elements in the lens that are not perfectly aligned. They are
usually discarded. The radial distortion (see Figure 2.5), in turn, is a
failure of the lens to be rectilinear (causes straight lines to appear as
curves). The presence of the radial distortion is manifested in the form of
the barrel or fish-eye effect. To carry out in the right place, the image can
be warped using Brown’s distortion model (Brown, 1966):

x̂ = xc + L(r)(x − xc), ŷ = yc + L(r)(y− yc), (2.6)
where (x ,y) are the image points (x̂, ŷ) are the corrected coordinates,
(xc, yc) is the centre of radial distortion (r2 = (x − xc)2 + (y− yc)2) and
L(r) is a distortion factor that can be expressed by a Taylor expansion
L(r) = 1 + k1r + k2r2 + k3r3 + .... The coefficients for radial correction
{k1, k2, k3, ..., xc, yc} are considered part of the interior calibration of the
camera.
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Figure 2.5: Radial distortion caused by the lens effect.

2.1.1.1 Camera Calibration
The task of the camera calibration is to determine the parameters of the
transformation between an object in 3D space and the 2D image observed by
the camera. This calibration process therefore, consists in determining the K
values of Equation 2.5. They are called intrinsic, since they only depend on the
internal properties of the camera. Given that, these parameters are fixed provided
that the focus is not changed (for example in a video sequence), and the image
resolution (i.e. zoom) is not altered. Therefore, the calibration process is only
executed each time the camera configuration is modified.

The calibration process can be classified into two main techniques:
pattern-based calibration and self-calibration.

Pattern-based calibration is the traditional way to calibrate the camera. The
method consists in using 3D reference objects, such as those shown in Figure
2.6. This method compares the known geometric patterns against a set of images
captured by the camera. Images must capture the pattern from a considerable
number of different points of views in order to make an accurate estimation.
Examples of these techniques can be found in (Tsai, 1987; Zhang, 2000).

By extracting a set of detected points in the pattern through a generic
corner detector and establishing correspondences with the known 3D points, it
is possible to determine internal parameters of the camera very rapidly and with
a high level of accuracy. In the pinhole camera model, the camera is assumed to
perform a perfect perspective transformation where the image coordinates (x, y)
and their corresponding 3D world coordinates are related:
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(a) (Zhang, 2000) pattern.

x

y

z

(b) Chessboard. (c) Multi-planar pattern (a Tsai
grid ).

Figure 2.6: Examples of calibration patterns.
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where P is the perspective transformation 3x4 matrix that codifies both intrinsic
and extrinsic parameters of the camera. In such a way that the non-singular
matrix P can be factored as the product of an upper triangle matrix K accounting
for the intrinsic parameters and Rt for camera orientation and position (P ∼
K ∗ Rt).

However, it is not always possible to apply a pattern-based calibration
because markers cannot be added in scenes of pre-recorded videos, for example.
Thus there are other alternatives such as self-calibration methods, also called
auto-calibration techniques. These techniques do not require any particular
calibration object. By using image information alone, the camera internal
parameters can be deduced. They obtain the parameters by applying constraints
to the images taken by the same camera from different points of view (multi-view
geometry) (Faugeras et al., 1992; Hartley, 1997).

A set of constraints will be necessary for this procedure: parallelism and
orthogonality, zero skew (s = 0) or constant aspect ratio (sx = sy) among
others. For more details, please refer to the presented survey of self-calibration
techniques in (Hemayed, 2003).
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2.1.2 Extrinsic Parameters
As discussed above, the world coordinate system is aligned with the projection
of the centre of the camera. Nevertheless, 3D points in the scene will be
expressed in terms of the world coordinate system and not that of the
camera. Therefore, assuming that the system is calibrated, it is necessary
to make an additional transformation to convert world coordinates to camera
coordinates (see Figure 2.7). This Euclidean transformation is composed of a
rotation and translation, and represents the alignment between the camera and
world coordinate systems. Taking into account this transformation, the 3D-2D
projection pipeline of the Equation 2.5 results in:


xy

1


 ∼ KPNRt



X
Y
Z
1


 ∼ KPN

[ R ~t~0>3 1
]


X
Y
Z
1
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where R is a 3x3 rotation matrix and ~t is a 3x1 translation vector. Both compose
the Rt matrix called the camera extrinsic parameters that describes the position
and orientation of the camera. K is the matrix which contains the intrinsic
parameters and PN is often convenient for clarity in the notation. It is also
noticeable that in a video sequence the camera is not static, and hence it is
necessary to recalculate the extrinsic parameters in each frame.

Figure 2.7: The Euclidean transformation between the world and
camera coordinate frames (by (Hartley and Zisserman, 2003)).
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2.2 Visual Cues
Visual cues are defined as those measures taken from an image (an array
of colour pixels), which are used to perform multiple tasks, including optical
tracking. Different types of visual cues can be detected in an image (see
(Tuytelaars and Mikolajczyk, 2008) for a similar classification) (see Figure
2.8). These include image points that are very distinguishable from their
neighbourhood (features), areas with abrupt intensity changes (edges), or
regions with homogeneous intensity levels (blobs). In addition, there are more
complex structures derived from these visual cues, such as lines (straight edges),
circles (blobs with circular shape) or junctions (a point where two straight edges
meet). Additionally, each visual cue is represented by its image descriptor, which
is a vector that contains the image appearance (colour, intensity, etc.) of the visual
cue in a local vicinity. Thus, descriptors are used to distinguish each visual cue
from others.

In this thesis features have been used as reference visual cues. There follows
a summary of some basic information concerning this type of cue.

2.2.1 Features
Feature points, also called keypoints, corners or interest points, are defined
like a compact but rich representation of a salient point of the image. Features
are characterized primarily because they can be distinguished from their local
neighbourhood, providing unequivocal measurements used for image analysis.

The feature extraction or feature detection process determines the presence
of a feature in the image. It is a low-level image processing step that is usually
performed as the first operation of image processing. A description is then
given to each feature by the feature descriptor process in order to identify and
distinguish it from the rest. In general, descriptors contain information, usually
colour, shape, region, texture and motion.

There are many feature detectors as well as descriptor algorithms that can
be found in the literature. (Mikolajczyk and Schmid, 2004) describes several
feature detectors, while (Mikolajczyk and Schmid, 2005) presents a comparison of
different feature descriptors. Likewise, (Gauglitz et al., 2011) offers an evaluation
of some feature detectors and descriptors oriented to optical tracking.
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features blobs

junctionscircleslines

edges

Figure 2.8: Different types of visual cues.

This section provides a brief explanation of the Features from Accelerated
Segment Test (FAST) interest point detector (Rosten and Drummond, 2006) and
the Fast Retina Keypoint (FREAK) (Alahi et al., 2012) and Scale Invariant
Feature Transform (SIFT) (Lowe, 2004) feature descriptors, as they has been
used in this thesis.

2.2.1.1 Detection
A feature detector is an approach to extracting interest points and inferring the
contents of an image. It is a low-level image processing operation that examines
every pixel (sometimes with sub-pixel accuracy) to determine whether there is
a feature or not. The quality of a feature detector is entirely related to the
following characteristics:
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• Repeatability. Ability to detect the same corner in different images.
• Invariant

– Illumination changes. Stable under local and global perturbations
in the image such as illumination/brightness changes.

– Transformations. Stability for as many transformations as possible,
including camera rotations, translations, or scales.

• Accuracy. An important issue when selecting an appropriate feature
detector.
• Performance. Low computational cost detecting features under different

viewing conditions.

FAST

The FAST algorithm was proposed by (Rosten and Drummond, 2006) and later
revised in (Rosten et al., 2010). It was developed to use in real-time applications.
The segment test criterion operates by considering a discretized circle of 16
pixels (a Bersenham circle of radius 3) around the corner candidate p (see
Figure 2.9). The feature detector identifies the pixel as an interest point if there
is a set of contiguous n pixels in the circle that are all brighter than the intensity
of p (Ip) plus a given threshold (t) Ip+t , or all darker than Ip−t (see Equation 2.9).

Sbright = {x | Ip→x ≥ (Ip + t)} ,
Sdark = {x | Ip→x ≤ (Ip − t)} ,

p ∈ Features⇔ (∣∣Sbright∣∣ ≥ n) (|Sdark | ≥ n) . (2.9)
n was chosen to be 12 (FAST-12) or 9 (FAST-9) in the first version of the

algorithm. For each location on the circle x∈[1..16], the pixel at that position
relative to p is denoted by p→x.

A high-speed test is also used to exclude a large number of non-corners.
This test examines only the four pixels at 1, 9, 5 and 13 (called the four compass
directions). At least three of these must be brighter or darker than Ip and the
threshold. The full segment test can then be applied to the remaining candidates
by examining all the pixels in the circle.
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Figure 2.9: FAST feature detection (left) and enlarged image patch of
a detected corner (right).

Detection of multiple interest points adjacent one to another was one of the
problems of the initial version of the algorithm. To address it, a score function
V is computed to apply a non-maximal suppression, which gets stable features
by discarding corners with lower response value than the adjacent one (see
Equation 2.10). The response (quality) of each feature p is given by the intensity
contrast between Ip and its surrounding pixels, i.e., the sum of the absolute
difference between the pixels in the contiguous arc and the centre pixel:

V = max

 ∑
x∈Sbright

(∣∣Ip→x − Ip∣∣− t), ∑
x∈Sdark

(∣∣Ip − Ip→x∣∣− t)

 (2.10)

In short, this feature detector offers a good balance between repeatability
and performance (it processes high resolution images in a few milliseconds),
which is the reason for its popularity in real-time applications. Additionally, the
set of final features can be categorized as bright or dark at no extra cost, which
is useful, since bright features do not require to be compared with dark features
in post-processing steps such as matching (see Section 2.2.1.4).
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2.2.1.2 Description
Once a keypoint is detected, a higher level of detail is given by its descriptor
(see Figure 2.10). The descriptor is the representation of its corresponding
keypoint, and it is extracted from the image region of its vicinity. Thus, the
similarity measure of feature descriptors is used to get the correspondences in
different images to facilitate the matching step (see Section 2.2.1.4). A good
feature descriptor should satisfy the following properties:

• Highly distinctive: Two different features should have two different
descriptors, i.e., the probability of a mismatch is low.

• Robustness: The descriptor of a feature should remain unchanged despite
the transformations applied to the image, i.e., the descriptor of a feature
is preserved after rotations, translations, scales or illumination changes.

• Good performance: The computational cost of building and comparing
feature descriptors should be low, being able to run in real-time systems.
The Euclidean distance between two descriptors is usually enough to
measure their similarity.

To compare two image patches, first the descriptors are computed and then
their similarities are measured by the descriptor similarity, which in turn is done
by computing their descriptor distance.

In this sense, two types of descriptors can be found: histogram-based
patch descriptors and binary descriptors. The former are based on histogram
of gradients, as is the case of the widely used SIFT feature descriptor. The
binary descriptors, in turn, encode the most information of a patch as a binary
string using only comparison of pixel intensity. This can be very fast, as only
intensity comparisons need to be made. Using the Hamming distance as a
distance measure between two binary strings, the matching between two patch
descriptions can be achieved using a single instruction (as the Hamming distance
equals the sum of the XOR operation between the two binary strings). FREAK
is one of the multiple binary descriptors that can be found in the literature.

Table 2.1 shows the differences between the SIFT (histogram) and FREAK
(binary) descriptors, which are described in the following paragraphs in detail.
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Figure 2.10: Extracting descriptors from detected keypoints.

SIFT

SIFT transforms image data into scale-invariant coordinates relative to local
features. This method proposed by (Lowe, 1999; Lowe, 2004) includes both a
feature detector and a feature descriptor. The first makes features invariant
to image scaling and rotation, while the second is as invariant as possible to
remaining variations such as change in illuminations and 3D camera viewpoints.

The corners detection is performed by using the Difference of Gaussian
(DoG) function. It is able to detect stable keypoint locations in a scale space
defined as a function L. The input image (I) is incrementally convolved with
different Gaussian kernels (G) to produce these multiple scales:

L(x, y, σ ) = G(x, y, σ ) ∗ I(x, y), (2.11)
where ∗ is the convolution operation.
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Table 2.1: Differences between SIFT and FREAK descriptors.

SIFT FREAK
Type Histograms of gradients Binary descriptor

Includes Corner detector and
descriptor extractor Descriptor extractor

Invariance Illumination and
rotation

Slightly negative performance
in rotation and illumination

Computation Histograms of gradients
orientation Comparison of intensity

images
Distance
measure Euclidean distance Hamming distance

Matching K -d Tree Brute Force
Computational

cost High Low

Intellectual
property Patented (’non-free’) Non-patented

To efficiently detect stable keypoint locations in scale space, the adjacent
Gaussian images separated by a constant factor k are subtracted to produce
DoG function D as can be shown in Figure 2.11 (left).

Pixels that are local maxima and minima are considered features points.
Each sample point is compared to its 8 neighbours in the current scale and 9
neighbours in the scale above and below (see Figure 2.11 right). The keypoint
will be selected only if it is larger or smaller than all of these neighbours.
Additionally, the scale where the corner is detected is stored, as it determines the
size of the local image region used to build feature descriptors (scale invariance).
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Figure 2.11: DoG process (left) and maxima and minima of the DoG
(right). Original source (Lowe, 2004).

Once the localizations of keypoints are defined (see Figure 2.12), each
located corner is represented by a descriptor (SIFT descriptor). It is computed
using the location (x, y), scale (σ ), gradient magnitude (m) and gradient
orientation (θ) information of each keypoint.

First, the orientation assignment is defined for each keypoint. An orientation
histogram is determined by computing the gradient orientations of sample points
within a window around the keypoint. This histogram is discretized in 36 bins
covering the 360 degree range of orientations (10 degrees per orientation). The
amount added to the bin is weighted by the gradient magnitude of each sample
point and a Gaussian-weight function. This function gives less importance to
gradients that are far from the centre of the descriptors. The dominant orientation
of a keypoint is defined by the highest peak of the histogram. If more than one
orientation is assigned to a keypoint, then the corner is duplicated with different
dominant orientations. In order to achieve rotation invariance, the coordinates
and gradient orientations of the pixels that belong to the local image window of
the features are rotated according to the corresponding dominant orientation.

The image window for each detected corner is defined by the subdivision
of nxn subregions around the keypoint, and each subregion is characterized by
an orientation histogram of b bins, where n and b are application dependent
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Figure 2.12: Feature detection using DoG. Each circle represents the
scale and orientation of a feature.

parameters defined by the user (see Figure 2.13). Finally, a single histogram
deduced from the concatenation of all these histograms represents the descriptor.
Furthermore, it is normalized to unit length to reduce the effects of illuminations.
Generally, n=4 and b=8 is a typical parametrization, giving a 128 (4 ∗ 4 ∗ 8)
dimensional feature vector.

SIFT provides an invariance to illumination changes, as gradients are
invariant to light intensity shift, and to rotations, as histograms do not contain
any geometric information. SIFT is also a very robust technique for object
recognition, by computing the matching correspondences using the distinctive
SIFT keypoints between a reference and an input image. However, while the
SIFT feature is robust, the computational cost involved is high.

There are other similar alternatives to the SIFT descriptor such as Gradient
Location and Orientation Histogram (GLOH) (Mikolajczyk and Schmid, 2005) or
Speed-Up Robust Features (SURF) (Bay et al., 2008). SURF, for example, uses
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(a) (b) (c)

(d)

Image gradients Keypoint descriptor

Figure 2.13: SIFT descriptors illustration. By warping the region
around the keypoint (a), it is divided into subregions and the
orientation is calculated for each one (c). Concatenating histograms
from different subregions the final descriptor is performed (d).

efficient tools (as integral images) to reduce the computational cost. However, it
is not fast enough for some real-time applications. In this sense, a simplified
version of SIFT has been used for this dissertation, called simplified-SIFT
(Álvarez-Ponga, 2012). The main contribution of this implementation is the
replacement of the expensive DoG by the FAST detector and the inclusion of
some parallel techniques to reduce the computational cost.

FREAK

The binary descriptors are generally composed of three main parts: a sampling
pattern, sampling pairs and orientation compensation. By considering a small
patch around a keypoint, the descriptor is defined as a binary string. The first
step involves taking a sampling pattern around the keypoint. The second consists
in selecting a list of pairs and comparing the intensities between the two points
of each pair in order to build the final descriptor (’1’ if the first value is larger
than the second or ’0’ otherwise). Finally, the orientation is the mechanism
for measuring the orientation of the keypoints. By rotating the patch by its
dominant orientation and extracting again the binary string it can ensure that
the description is invariant to rotation.
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FREAK (Alahi et al., 2012), like many other binary descriptors, is also

composed of these three steps. FREAK is a descriptor inspired in Human Visual
System, and more precisely in the retina. In this way, a retinal sampling pattern
is suggested, i.e., a circular pattern where points are spaced on circles having
higher density of points near the centre as a retinal model (see Figure 2.14 (a)).

(a) FREAK Human Retina. (b) FREAK Density Points.

Figure 2.14: The human retina with the distribution of receptive fields
over the retina (a) and the density of points (b).

Each sample point requires to be smoothed to be less sensitive to noise.
FREAK uses a different kernel size for every sample point, since it has been
observed that changing the size of the Gaussian kernels with respect to the
log-polar retinal pattern leads to better performance as well as overlaying
the receptive fields Figure 2.14 (a). Each circle in Figure 2.14 (b) represents
the standard deviation of the Gaussian Kernels applied to the corresponding
sampling points.

Once the sampling points have been defined, a set of sampling pairs
are considered. To increase performance, FREAK tries to learn the pairs by
maximizing the variance of the pairs and taking those that are not correlated. It
also takes advantage of a coarse-to-fine approach to approximating the resulting
pairs to the model of a human retina. First, the pairs that are selected mainly
compare sampling points in the outer rings of the pattern while the last set of
pairs mainly compare points in the inner rings of the pattern. This procedure
is similar to that of the human eye. First, the perifoveal receptive fields are
used to estimate the location of an object of interest and then, the validation is
performed with the more densely distributed receptive fields in the fovea area.

For computing the orientation of the keypoint, FREAK uses local gradients
between the sampling pairs. It sums up all the local gradients over selected
pairs and the arctangent of the component y divided by the component x of
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the gradient gives the angle of the keypoint. Consequently, the sampling pairs
are rotated by that angle (rotation invariance). FREAK also selects a predefined
set of symmetric sampling pairs with respect to the centre (see Figure 2.15) in
order to compute the global orientation.

Figure 2.15: FREAK’s sampling pairs.

FREAK is considered to be a fast, compact and robust keypoint descriptor. Its
technique of selecting pairs to reduce the dimensionality of the descriptor further
accelerates the matching. Compared to other binary descriptors such as Binary
Robust Invariant Scalable Keypoints (BRISK) (Leutenegger et al., 2011), Binary
Robust Independent Elementary Features (BRIEF) (Calonder et al., 2010) or
Oriented FAST and Rotated BRIEF (ORB) (Rublee et al., 2011), FREAK slightly
outperforms in viewpoint changes, rotation changes or illumination changes.
Nonetheless, is slightly worse when there are changes due to blurring.

2.2.1.3 Motion
Knowing the location and description of a corner in a given image, it is possible
to determine its position in any other input image. The use of descriptors
to perform the matching between two images is a valid alternative (next
Section 2.2.1.4). However, the computational cost involved in such solutions
is usually high. As an alternative, there are other methods like optical flow
that estimate the motion between two consecutive image frames. These methods
are associated with the idea of not having a reference pattern in order to
deduce the transformation between two consecutive frames. They only require
the information of the previous frame. Likewise, the optical flow technique is
usually associated with the Frame-to-Frame tracking (FtF) step in the image
processing field.
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Optical Flow

Optical flow determines the motion of several keypoints between two consecutive
images (taken at times t and t+∆t) using intensity differences (see Figure 2.16).
It is thus assumed that the motion between the two images is small. For a corner
at location (x, y) with intensity I at time t that is moved by ∆x , ∆y and ∆t
between two images can be given as:

I(x, y, t) = I(x + ∆x, y+ ∆y, t + ∆t) (2.12)
This method is called differential since it is based on local Taylor series

approximation of signal. Optical flow therefore satisfies the following constraints:

I(x+∆x, y+∆y, t+∆t) = I(x, y, t)+ δI
δx∆x+ δI

δy∆y+ δI
δt∆t+H.O.T ., (2.13)

where δIδx , δIδyand δIδt are partial derivatives of I , and H.O.T . are the higher order
terms of Taylor series. Assuming a small movement, H.O.T . can be disregarded,
resulting in δIδx∆x + δIδy∆y + δIδt∆t = 0, which is a single equation with two
unknowns (∆x and ∆y, corresponding to the feature motion).

Lucas-Kanade is a differential method that solves the aperture problem
by assuming that the flow remains constant in the local neighbourhood for a
sparse feature set. Adding this constraint, it provides the following least squares
solution:

ε(∆x,∆y) = ∑
u,v∈W

[I(u, v )− J(u+ ∆x, v + ∆y)]2, (2.14)

where I references the first image intensity on the image point u and J in the
second, W is a small integration window defining the local neighbourhood, and
e is the residual function. Thus, the goal is to find a location v = u+ A on the
second image where I(u) and J(v ) should be similar.

Accuracy and robustness are the main two properties of feature trackers.
The first implies small values of the window size since is related with selecting
the closest local sub-pixels, while bigger window patches are preferable for
robustness in order to be sensitive to illumination changes or large motions.
A trade-off between these two requirements is thus required. (Bouguet, 2001)
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proposes a solution for this problem through a pyramidal implementation of the
Lucas-Kanade algorithm. It consists in computing the optical flow at the deepest
resolution image. The result is then propagated to the next image results as
an initial guess. This procedure is repeated up to level 0 that is the highest
resolution (initial image). Observe that the window of integration is constant
size for all resolutions, so large motions computed at low resolutions are refined
by the accurate estimation of high ones.

(a) Detected features. (b) Flow of features.

Figure 2.16: Optical flow for two images of a sequence.
Among the drawbacks involved in optical flow techniques, is the liability to

drift. This is a very classical issue when dealing with long sequences. The errors
in the estimations are dragged over the time. Additionally, the assumption of
small motion between images makes losses in sudden movements or even cases
of lost features when a point falls outside of the image.

2.2.1.4 Matching
Unlike the motion technique explained in the previous section, the matching
process does not require a knowledge of the previous frame, since a comparison
against a reference image (its 3D information is known) is performed. This
process is usually called Tracking-by-Detection (TbD) step in CV area.

Matching based on descriptors relates a feature point in the current image
with its homonym in the reference image (see Figure 2.17). At runtime, interest
points alongside their descriptors are extracted from the input frame to search
out the most similar ones in the database. The extraction must use the same
type of descriptor in both offline and online phase.
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Reference image Input image

Figure 2.17: Correspondence matching of features between the
reference image of an object (left) and the input image (right).

This searching cost depends on the number of features stored in the
database, the number of queries to the database and the dimension and type
of the descriptor. The distance between descriptors determines whether they
are similar or not. In the case of descriptors based on histogram of gradients
(e.g. SIFT), the Euclidean distance is the measurement used to determine the
distance. If a descriptor vector is described with a binary string (e.g. FREAK),
the comparison is performed using the Hamming distance.

To make the search, the K-Nearest Neighbour (K-NN) rule (Cover and
Hart, 1967; Silverman and Jones, 1989) is the most appropriate. The K -NN is
a well-known problem in computer graphics, statistics and robotics. Let R =
{r1, r2, ..., rm} be a set of m reference descriptors, and Q = {q1, q2, ..., qn} a
set of n queries. The K -NN search problem consist in searching the k nearest
neighbours of each query qiεQ in the reference set R using one of the distance
listed below (see Figure 2.18).

The brute-force matchers as well as the k-d trees based search are the
most frequent methods for computing the K -NN. Thus, both are detailed in the
present study, as well as the Locality Sensitive Hashing (LSH) technique.
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Figure 2.18: Illustration of the K -NN search algorithm for k = 3.
The blue points correspond to the reference points and the red cross
corresponds to the query point. The circle gives the distance between
the query point and the third closest reference point.

Brute Force

One way to search the K -NN is the Brute Force (BF) algorithm or exhaustive
search. It is a simple matcher that takes a query descriptor q from the query
set and checks it against all other features in the reference set using a distance
calculation. The k closest ones are returned. Therefore, each query qi value
follows these steps:

1. Compute all the distances between qi and rj , jε[1, m].

2. Sort the computed distances.

3. Select the k smallest distances (reference corresponding points).

While the BF algorithm is simple to implement, the main issue of this search
is its high computational cost since is proportional to the number of values in
each set.
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K-d Trees

The second method for searching is based on k-d trees (Friedman et al.,
1977). The k-d tree is a binary tree used for sorting and searching data (see
Figure 2.19). It is a data structure in a partitioned space that organizes the data
in a Euclidean space of k dimensions. k refers to the dimension of the tree. Each
node of the tree is a subset of the entire dataset. The root represents all the data
and each non-leaf node has two sons or successor nodes. All the leaf nodes,
called buckets, represent exclusive small subsets of the entire dataset. The k-d
tree uses only perpendicular axis of the coordinate system. This is the main
difference from the Binary Space Partitioning (BSP) trees where the planes
could be arbitrary. The structure of the k-d tree provides an efficient mechanism
for examining only those records closest to the query record, thereby greatly
reducing the amount of computation required to find the best matches.
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Figure 2.19: Illustration of the k-d tree search algorithm. NN
searching with a k-d tree in two dimensions.

In this thesis the k-d trees are space-partitioning data structures that
organize descriptors (multi-dimensional space). They offer an efficient nearest
neighbour search.



Section 2.2. Visual Cues 45
LSH

LSH (Indyk and Motwani, 1998) is an indexing technique for an approximate
similarity search where a probabilistic dimension reduction of high dimensional
data is performed. The idea is to use hash tables called buckets and map
similar objects into the same hash buckets through a family of locality-sensitive
hash functions (similar objects in the same buckets with high probability) (see
Figure 2.20).
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(b) LSH Query.

Figure 2.20: LSH consist in a reduction of high dimensional data into
new family of hash functions.
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To perform the similarity search, the query object (q) represented by

d-dimensional feature vector, requires to find the closest K objects according to
a distance function. The distances are within a small factor (1+ε) by solving the
problem as the approximate nearest neighbours problem. However, in order to
cover the nearest neighbours a large number of tables is required and therefore,
more comparison are made. This is the main drawback of the basic LSH indexing.

Multi-probe LSH indexing (Lv et al., 2007) in turn, uses a more systematic
approach to explore hash buckets. It is built like the basic LSH but uses an
intelligent probing sequence to look up buckets that have a high probability of
containing the nearest neighbours of a query object.

2.2.1.5 Outlier Removal
(Hawkins, 1980) defines an outlier as an observation that deviates so much from
other observations as to arouse suspicions that it was generated by a different
mechanism. In CV many of the correspondences established in the matching
stage could be outliers due to the accuracy of the matching process. As a result,
outlier detection and removal steps are necessary in order to achieve a robust
set of correspondences. The RANdom Sample and Consensus (RANSAC) method
is a good mathematical model estimator to discard outliers, and consequently
estimate robust camera pose.

RANSAC

The RANSAC algorithm was introduced by (Fischler and Bolles, 1981) as an
iterative method to estimate parameters of a mathematical model from a set of
data which contains a large number of outliers. The idea behind this algorithm
is to select the lowest amount of data points to make an estimation of the model
and check how many points fit to the estimated model. Other approaches that
estimate the model parameters, such as the method of least squares, give the
same weight to each data point of the set. The presence of an outlier may
therefore distort the obtained model.

The original RANSAC algorithm is essentially composed of two main steps
that are repeated in an iterative way (hypothesis-and-test):

1. Hypothesize. First a Minimal Sample Set (MSS) S1 is randomly selected
from the input dataset P and the model M1 is computed using only the
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elements of S1. The cardinality of the MSS is as small as possible, enough
to determine the model parameters (in the case of estimating a line, for
example, the MSS is 2 since two distinct points are required to uniquely
define a line).

2. Test. In the second step, RANSAC determines a subset S∗1 from P that is
consistent with the parameters estimated in the first step. The set of such
elements is called a Consensus Set (CS).

RANSAC finishes when the number of votes of the CS exceed a certain
predefined value. If the number of inliers S∗1 is higher than a given threshold,
then the subset S∗1 is used to compute a new model M∗1 . Otherwise, if the number
of inliers is lower than the threshold, then a new subset is selected to make
the same process. After N iterations if there is not a subset that achieves this
threshold, then the best subset is returned.

As can be seen from the process of the algorithm, there are three parameters
that must be estimated: (i) the distance t to consider if a point is consistent or
not with the model, (ii) the number of iterations N and (iii) the threshold T
that is the number of points that must be overcome to consider the subset good
enough.

Additionally, the RANSAC approach is a good method for estimating the
global movement between two planes in space. The relation between these
two planes is called planar homography. Therefore, this approach is primarily
used in dealing with planar-surface tracking, since it is just a particular case
of the homography estimation. Assuming that Z = 0 and knowing the internal
parameters of a pinhole camera, RANSAC computes the relation between two
images of the same planar surface in space. For more details of the resolution
of this mathematical problem, please refer to Appendix A.

However, the estimation of the homography from a set of correspondences
between two images obtained from a feature detector can involve erroneous
matches. These outlier matches usually have undesired effects in the homography
calculation. RANSAC is a reasonable alternative for solving this problem (see
Figure 2.21). In the particular case of estimating the homography with RANSAC,
four random points from the total of the correspondences are enough to be
selected to compute an approximated H0. Based on this approximation, all the
correspondences are checked to see if they are compatible or not using a certain
threshold. If the number of inliers is good enough, the approximated H0 is refined
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(a) No RANSAC matching.

(b) RANSAC matching.

Figure 2.21: Matching without (a) and with (b) RANSAC estimation.

to achieve a robust result. Thus, computing the planar homography in a new
tracking step is determined as the Algorithm 2.1.

The random sampling is a good technique in order to remove inaccurate
or mismatched corner locations from the homography computation. Thus, the
homography is more robust to partially occluded features.

Another variant to RANSAC is called PROgressive SAmple Consensus
(PROSAC). The difference lies in the hypothesize-and-verify (sample-and-test)
method. The most probable matches have a higher probability of being selected.
Based on the assumption that correspondences with high similarity are more
likely to be inliers, the probability of finding better hypotheses increases using
a reduced set of matches with high similarity scores. (Chum and Matas, 2005)
exploits the idea of ordering the set of correspondences than random ordering.
The comparison of PROSAC and RANSAC on randomly ordered matches showed
that their performance was identical. Therefore, the samples in PROSAC are
drawn in a semi-random way. Nevertheless, the performance of PROSAC and
RANSAC for the worst-case situation (where the correspondences are ordered
randomly) has not been proved analytically. The main challenge of the PROSAC



Section 2.2. Visual Cues 49
Algorithm 2.1 RANSAC Homography estimation

1: function RANSAC (NumIterations, AllCorrespondences)
2: InitializeVariables()
3: for i = 0→ NumIterations do
4: LocCorr ← selectCorrespondences(AllCorrespondences)
5: H ′ ← computeHomography(LocCorr)
6: if bestHomography(H ′) then
7: H ← H ′
8: end if
9: end for

10: H ← ref ine(InlierCorrespondences)
return H

11: end function

method is to define the prior knowledge of the probabilities of each of the
correspondences to be selected.
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2.3 Camera Tracking
As mentioned previously, in order to overlay virtual objects into a real scene it is
necessary to set a point of view (camera tracking). The camera tracking is known
as the problem of finding the parameters that define the camera, which is the
process that extracts the position and orientation of the camera (jointly called
pose) relative to a global coordinate system (usually cited as world coordinate
system). More precisely, optical tracking finds the camera’s extrinsic parameters
(Rt) that best align the camera and real-world coordinate systems. To that end,
the image(s) of the scene captured by the camera(s) are processed using CV
techniques. CV is a field of study and research that focuses on interpreting the
world that is seen in one or more images. It is used in AR to calculate the camera
pose, recognizing some visual cues in the image(s) captured by the camera(s).

Given an input image, the image positions of some visual cues are detected
and matched with their corresponding 3D locations to extract the camera pose.
This problem can be expressed mathematically assuming the pinhole camera
model, solving ~mi = P ~Mi for a set of ~mi ↔ ~Mi correspondences, where ~miis the 2D image position of the visual cue i, ~Mi are their corresponding 3D
coordinates, P = KRt , and K represents the intrinsic parameters that describe
the characteristics of the camera (focal length, skew, etc.), which can be extracted
through a camera calibration process. The Direct Linear Transformation (DLT)
algorithm (Hartley and Zisserman, 2003) solves that linear equation in the case
where the camera is not calibrated (K unknown). Apart from this technique, the
Perspective-n-Point (PnP) methods (Lepetit et al., 2009) are also used when
K is known. Nevertheless, all these linear methods lack precision when the ~mimeasurements are inexact (generally termed noise), so it is preferable to use
a non-linear minimization of the reprojection error, i.e., the squared distance
between ~mi and the projection of ~Mi:

argmin
Rt

∑
i

∥∥∥~mi − KRt ~Mi
∥∥∥ (2.15)

The non-linear least-squares Levenberg-Marquadt (LM) algorithm (Madsen
et al., 1999) 1 is extensively used to solve Equation 2.15. It is an iterative process
that converges onto the local minima by combining the Gauss Newton method

1A widely used open source implementation of this method can be found in
http://www.ics.forth.gr/∼lourakis/levmar/.
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with the Gradient Descent approach. Moreover, it requires a starting point, so
the estimation computed by a linear method (DLT-PnP) is used to initialize the
final solution.
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Figure 2.22: Classification of the optical tracking methods.
There are many ways to get ~mi ↔ ~Mi correspondences, which result

in different optical tracking methods. A possible classification of the existing
optical tracking methods is shown in Figure 2.22, which is detailed in the next
sections. This thesis has been primarily focused on Monocular System, but most
of the monocular methods are also applicable to the Stereo System and RGB-D
System branches.

2.3.1 Stereo System
A stereo system processes several images of a scene at the same time. The
images are taken from different points of view by a set of strategically placed
cameras. In its simplest form, this is similar to the biological stereo vision of the
human visual system, where two images of the same scene are captured from two
different and known locations (left and right eyes). Similarly, the 3D information
about an object that appears in both images is extracted by triangulating its 2D
image positions. This is how humans perceive the depth of objects in a scene.
This also explains why it is hard to estimate the distance of an object when
the vision of one eye is lost. After triangulating all the point correspondences,
a depth image map can be obtained, like that presented in Figure 2.23.

In order to perform the triangulation, those points that are the projections
of the same point in the 3D space must be identified in two or more views
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Figure 2.23: Depth image (right) for a given scene (left).

(correspondence problem). Generally speaking, the image’s appearance in the
local vicinity of each point (point-descriptor ) is used to match points throughout
a sequence of images. These correspondences are constrained by epipolar
geometry (Hartley and Zisserman, 2003) (see Figure 2.24) in order to simplify
the problem of matching. Given a point in the left image (~x0), epipolar geometry
states that its correspondence in the right image (~x1) belongs to a straight line
(~l1). The line that belongs to the right image (~l1) is the projection of the ray
formed by the left optical centre (~C0) and the image point ~x0, so it is called an
epipolar line associated to ~x0. This is analogous for points in the right image
and their left correspondences.

epipolar
plane

epipolar 
lines

C1C0

x0

x1

l1l0

Figure 2.24: Two camera geometry.
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The extraction of the 3D information, together with the known camera

calibration parameters, facilitates the process of relating visual cues with their
3D values, i.e., it helps to solve Equation 2.15. The disadvantage of a stereo
system is that it requires bulky and expensive hardware. For further reading on
stereo systems, please refer to (Brown et al., 2003).

2.3.2 RGB-D System
Nowadays low-cost sensors are presented as an interesting alternative to the
traditional laser scanners or 3D-cameras such as time-of-flight-based cameras.
Accordingly, structured-light 3D scanners such as the Microsoft Kinect Sensor2
have emerged as an alternative to pure optical stereo systems. This is because
devices like the Kinect provide depth estimation by using a low-cost and a small
hybrid system.

The Kinect Sensor was primarily introduced as an input device for
computer game environments (PrimeSense3). However, the CV community
quickly discovered that the characteristics offered by this sensor (depth
estimation) could be used for other purposes.

Currently, there are three software frameworks for the Kinect Sensor:
Microsoft SDK4, OpenNI5 and OpenKinect6. The first is only available for
Windows platforms whereas the other two frameworks are multiplatform and
open source. Another major difference is that Microsoft SDK has a depth range
of ∼0.8m and ∼4m, while the other two are limited to the depth range of ∼0.5m
and ∼9m (Andersen et al., 2012).

Kinect Sensor
The Microsoft Kinect camera is composed by an Infrared (IR) projector,
a 320x240 16 bit IR camera and a 640x480 32bit RGB camera (see
Figure 2.25). Both cameras run at 30 fps and the Field of View (FoV) is
57◦ horizontally and 43◦ vertically. It also has a multi-array microphone
for detecting voice commands.

2Microsoft Kinect Xbox 360 http://www.xbox.com/en-us/kinect/.
3PrimeSense http://www.primesense.com/.
4Microsoft SDK http://www.microsoft.com/en-us/kinectforwindows/.
5OpenNI http://www.openni.org.
6OpenKinect http://www.openkinect.org.



54 Chapter 2. Background

IR Projector RGB Camera IR Camera Multi-Array Mic

Motorized Tilt

Figure 2.25: The Kinect sensor consists of an IR laser emitter, an IR
camera and an RGB camera.

The depth sensor in turn, consists of an IR structured light projector (IR
projector) combined with a CMOS sensor (IR camera). The IR projector
emits a fixed pattern of light and dark dots projected onto the scene and
the reflection is captured by the CMOS IR camera (see Figure 2.26).
One of the main characteristics of the Kinect sensor is that it allows
the third dimension of the environment (computing depth images) to be
determined, making the task much easier. It involves triangulation from
the IR image and the projector. By projecting a pattern of speckles onto
the scene, this pattern is captured by the IR camera resulting in the depth
image. For more detailed overview of the depth information, please refer
to Appendix B.
The calibration of the Kinect, involves the following parameters in order
to satisfy the previous triangulation process: focal length (f ), principal
point offsets (x0,y0), lens distortion coefficients (dx ,dy), base length (b)
and distance of the reference pattern (Zo). Moreover, it happens that the
IR and RGB cameras are not aligned. Therefore, it is necessary to calculate
three rotations between the camera coordinate system of the RGB camera
and that of the IR camera, as well as the 3D position of the RGB camera
with respect to the coordinate system of the IR camera. In addition, the
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Scene Surface

Figure 2.26: The depth image is constructed by triangulation from
the IR image and the projector. The laser source projects a pattern of
speckles onto the scene and this pattern is captured by the IR camera.

intrinsic parameters of the RGB camera must be taken into account, such
as the focal length, principal point offsets and the lens distortion.
It should be noted that even though the linearity of the sensor can
achieve a measuring range in approximately 0.5m to 9.7m using the
OpenNI framework, it has been established that the further the points
are located, the lower is the accuracy of the sensor. Even if the sensor
setup is stationary it has been observed that the value of a given depth
pixel fluctuates between a small number of bit levels over time. Thus,
the error depth measurements as well as the depth resolution increases
quadratically in maximum range of 5 meters. Therefore, better results
are acquired within 1-3m distance since in large distances the quality
of the data is degraded by the noise and low resolution of the depth
measurements. A more detailed analysis of accuracy in terms of error
estimation can be found in (Khoshelham, 2011; Khoshelham and Elberink,
2012; Andersen et al., 2012; Smisek et al., 2013).
Finally, it is worth mentioning that Microsoft has announced the new
generation of Kinect for Windows, Kinect 2.0. Among its main contributions
in respect to the old device should be underlined: an accuracy definition,
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further depth capture and improvement in voice recognition. Appendix B
offers a comparison between some depth sensors available in the market.

2.3.3 Monocular System
Unlike a stereo system, a monocular system is composed of a single camera
that captures one image of the scene each time. In addition, monocular systems
can be classified as rigid or deformable in response to the characteristics of the
object to be tracked.

2.3.3.1 Rigid Objects
Rigidity implies that the size and shape of the target object do not change over
time, even when external forces are applied. This simplifies calculations, since
the shape of the object is not treated as an unknown factor (see Section 2.3.3.2).
This also allows taking advantage of the prior knowledge of the object in order
to cope with the loss of information that is involved when working with a single
camera. There are many ways to represent this knowledge (Lepetit and Fua,
2005), which can be classified as a marker and markerless tracking.

Marker Tracking

A marker tracking system adds known and easily identifiable patterns (called
markers, fiducials or landmarks) to the scene. Although there are different
patterns, such as circular, planar, or colour-coded-based; black squares printed
on a white sheet (Kato and Billinghurst, 1999; Schmalstieg and Wagner, 2007;
Cawood and Fiala, 2008) are a widely used marker due to its good performance
and low cost of manufacture.

All markers share the same property of being easy to detect in the image.
The information they provide is extracted and used to calculate the camera
pose, making it a robust, precise and real-time tracking system. In the case
where multiple markers are detected, each one is distinguished by the unique
identifier it codifies. Assuming that a single square marker has been added to the
scene, its 2D image position (~mi) is determined by finding square shapes in the
camera image that have a similar inner pattern. Moreover, the world coordinate
system is centred on the marker (indeed, the world coordinate system is usually
centred on the target object), so its 3D coordinates ( ~Mi) are known. Considering



Section 2.3. Camera Tracking 57
that the marker lies on a plane and the camera is calibrated (K is known), the
camera pose is recovered from four ~mi ↔ ~Mi correspondences that do not form
triplets of collinear points (DLT (Hartley and Zisserman, 2003)). More precisely,
the correspondences of the four corners of the marker are used to compute the
camera’s extrinsic parameters (see Figure 2.27). This is a very fast and accurate
technique for building AR applications, which can even be executed on mobile
platforms (Schmalstieg and Wagner, 2007).

camera 
coordinate system

world
 coordinate system
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Figure 2.27: Marker tracking system overview. A square marker of the
ARToolKitPlus library (Schmalstieg and Wagner, 2007) is shown. A
virtual yellow shovel is superimposed in the image.

A drawback of marker tracking systems is that the environment requires
adaptation, which is not always possible. Marker occlusion is another
shortcoming, as the system fails even if the marker is only slightly occluded,
producing an undesirable effect on users, who lose the sense of realism. Because
of this, several solutions have been proposed to overcome the marker occlusion
problem such as placing multiple markers in the scene (Kato and Billinghurst,
1999), new marker designs that support a certain degree of occlusion (Wagner
et al., 2008), tracking the bounding box of the marker (Álvarez and Borro, 2009)
or an incremental tracking of the feature points that lie on the marker (Malik
et al., 2002).
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Markerless Tracking

A markerless tracking system does not add artificial markers to the scene, rather
it takes advantage of the visual cues that occur naturally in the scene. Depending
on whether or not the scene geometry is known, markerless tracking is divided
into two groups (Teichrieb et al., 2007): Model-Based and Structure from Motion.

1. Model-Based
Model based techniques store prior knowledge of the scene in a 3D model,
which is available before starting the camera tracking. The 3D model
could be represented by its simple 3D geometry (Drummond and Cipolla,
2002), or by a more detailed description that includes the geometry and
the texture of its surface (Vacchetti et al., 2004). In both cases some
visual cues belonging to the 3D model are tracked along a sequence
of images to estimate the camera’s extrinsic parameters. Based on the
knowledge of the position of these visual cues in the previous frames,
two different techniques are distinguished: Frame-to-Frame tracking and
Tracking-by-Detection.

Frame-to-Frame tracking (FtF), also known as recursive tracking or
incremental tracking, uses the previous pose and temporal coherence to
estimate the current one. More precisely, the current 2D image locations
of the target visual cues are estimated (~m′i), so that the 3D motion of
the model between two consecutive frames is recovered from the 2D
displacements of these points. It can be distinguished from FtF based
on predictor and FtF based on optical flow.
FtF based on predictor techniques (Drummond and Cipolla, 2002;
Barandiarán et al., 2007) combine the previous camera with one predictor
(LaViola, 2003; Salih and Malik, 2011) to get an estimation of the current
camera pose. Notice that, a predictor stores the camera pose estimated in
the previous frames to feed a transition model and provide an estimation
of the current camera pose according to the trajectory followed by the
camera. In this way, the predicted camera pose is used to project the 3D
visual cues and obtain ~m′i. An edge tracker is the most common example
of this alternative. It considers a set of 3D points that lie on the 3D
model edges, called control points, and performs a simple loop. Visible 3D
edges are detected and projected onto the current camera image using
an occlusion query and the previous camera pose (R ′t ), respectively. Then,
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for each projected 3D edge a set of 2D edge samples (~m′i) are selected
(control points, whose 3D coordinates ~M ′i are known, ~m′i = KR ′t ~M ′i ), and
a local search along the edge normal (~ni) is carried out to establish the
presence of these samples in the current camera image (~mi) (see Figure
2.28).

Current image 
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Multiple hypotheses
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projection using 
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Figure 2.28: 2D displacements of control points. They are used
to compute the motion of the model between the previous (black
wireframe) and current frames (white wireframe). Multiple hypotheses
for each control point are also shown.

There are many alternatives to guide the search for the control points, such
as correlating control points that lie on the same edge in order to treat
them as a single primitive (stronger movement constraints) (Armstrong
and Zisserman, 1995), or considering multiple displacement hypotheses
for each control point (see Figure 2.28) (Vacchetti et al., 2004), which is
a more robust method against cluttered scenes. If an image edge pixel is
detected in the vicinity of a control point, then a positive correspondence
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is found. This procedure can thus provide multiple match hypotheses for
each control point (see Figure 2.28).
Finally, the camera pose of the current frame (Rt) results from the
minimization of the distances between selected image edge pixels and
projected control points (minimization of the reprojection error):

Rt = argmin
Rt

∑
i
PTuk (minj ∆(~mij , ~m′i)), (2.16)

where ~mij = KRt ~M ′i represents the hypothesis j for the control point
i, ∆(~mij , ~m′i) = ∥∥(~mij − ~m′i) ∗ ~ni∥∥, and PTuk is the Tukey function that
reduces the influence of outliers using the M-estimator approach:

PTuk (x) =
{ c2

6
[1− (1− ( xc )2

)3] if |x| ≤ c
c2
6 otherwise , (2.17)

where c is a bandwidth parameter that is usually set proportionally to the
standard deviation of the estimation error. This way, when |x| is larger
than c, the Tukey estimator becomes flat and large residual errors have
no influence at all.
FtF based on optical flow approaches (Bleser et al., 2005; Platonov
et al., 2006), in contrast, use the 2D image positions of the visual cues in
the previous image and the intensity differences between two consecutive
frames to provide ~m′i.
Usually a local search is also performed in the vicinity of each ~m′i to
find the correct position of the visual cue in the current image (~mi).This search is based on the similarity (shape, texture, etc.) between the
reference visual cues and those candidates detected in the current image.
Once ~mi is estimated for a sufficient number of visual cues, the camera
pose is computed solving Equation 2.15.

Due to their recursive nature, FtF methods suffer from drift (error
accumulation) and they are sensitive to fast camera movements.
Nonetheless, Particle Filters (PF) are an extension of FtF methods that
support rapid camera movements, since they belong to the family of
Sequential Monte Carlo (SMC) methods and are robust against non-static
scenes in which multi-modality is likely (Arulampalam et al., 2002a). The
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key idea of PF is to represent the required posterior distribution of the
camera motion by a set of random samples with associated weights and
to compute estimates based on these samples and weights (see Figure
2.29). They are divided into two stages that are executed iteratively:
particle generation and particle evaluation. In the particle generation step,
the previous camera pose is perturbed to generate multiple camera pose
candidates of the current frame (particles). The particle evaluation step,
on the other hand, is responsible for assigning a weight to each particle
and selecting the correct one. Both robustness and computational cost
are proportional to the number of particles, so this parameter is critical
in order to get good results within reasonable computation times. An in
depth discussion of PF can be found in (Arulampalam et al., 2002a; Salih
and Malik, 2011).

Figure 2.29: Tracking using a PF. Samples are drawn in grey. White
indicates particles with higher weight.

Additionally, FtF methods require an initial pose to start the recursive
process, which is obtained manually or using a TbD method.

Tracking-by-Detection (TbD), sometimes called 3D object recognition,
faces the challenge of computing the camera pose without requiring a
tracking history, so it is used for automatic initialization and recovery from
failures. It tries to match some reference visual cues with those detected in
the entire image, without limiting the search to a local area imposed by the
previous state. Multiple 2D views of the 3D model (keyframes) are taken
from different positions and orientations during an offline training phase
to build a database of 3D visual cues (see Figure 2.30). Each 3D visual
cue is characterized by a set of 2D views (~m′i), which try to simulate the
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online conditions of the 3D visual cue and improve the matching quality
between reference (~m′i) and detected (~mi) visual cues. Considering that
each ~m′i is a 2D view of a 3D visual cue ~Mi, Equation 2.15 is solved as
long as sufficient ~m′i ↔ ~mi correspondences are computed. The following
paragraphs describe different ways of obtaining these correspondences,
which use feature points, contours or geometric properties.

Figure 2.30: 3D object recognition based on appearance (Rothganger
et al., 2006). Some keyframes are generate during an offline phase
(top) to match reference features (bottom-left) with those detected in
the current image (bottom-right).

(Lowe, 2004; Rothganger et al., 2006; Bay et al., 2008) use feature
descriptors to determine a set of 2D-3D matches that define the 3D pose
of the model. Some 2D views of the model are selected as representative
during the training step. These views are processed, and features that lie
on the surface of the model are extracted. For each feature its 3D position
and descriptor is calculated and used to train a classifier that will be
responsible for matching during the online phase. These descriptor-based
techniques combined with geometric constraints improve precision and
efficiency (Hinterstoisser et al., 2007). All of them achieve good results and
high frame rates, but robustness decreases for untextured objects. These
types of solutions are oriented to rich textured objects, since descriptors
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that can be extracted from their surface are more discriminative, thereby
improving the matching results.
Other approaches use the contours of the model to get a positive match
(Ulrich et al., 2003; Holzer et al., 2009; Hinterstoisser et al., 2010). They
are based on the shape of the model, and therefore, they are suitable
for untextured models. In the training step, 2D views of the model are
processed to extract the corresponding edges, transforming the online
problem to 2D-2D edge pattern matching. Although some of the works
cited only address the problem of 2D-2D edge matching (Ulrich et al.,
2003), they can be extrapolated to 3D recognition by using a training
step similar to that mentioned above. All of them require the acquisition
of real 2D views, so they are configured for specific light conditions and
edge responses extracted from the real training images. This is not the
case with (Ulrich et al., 2009; Stark et al., 2010), which use virtual training
to build 2D artificial views of the object, resulting in greater generality.
The third group of alternatives is based on geometric features (Lamdan
and Wolfson, 1988; Costa and Shapiro, 2000; Sehgal, 2003). Distinctive
3D geometric features of the model are extracted in the offline phase,
and their geometric relationships are indexed in a database. During the
online phase, image input features are detected and compared to the
database. Consistent matches receive a vote, and the solutions with the
highest number of votes are selected for further processing. Generally,
these features provide poor distinctiveness, so an input feature generates
multiple matches, increasing the computational effort. Due to their
computational requirements, they are more popular for non-time-critical
applications, such as 3D pose recovery in 3D scenes (Drost et al., 2010).
They have also been optimized using the correspondences specified by
the user (Franken et al., 2005), but this has the disadvantage of requiring
user intervention.

There are also more sophisticated alternatives (Álvarez et al., 2011) that
combine both FtF and TbD in order to exploit the best properties of
each method. Under this premise, the fast and accurate FtF is executed
whenever possible, while the robust TbD acts as a recovery mode.
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2. Structure from Motion

In Structure from Motion (SfM) approaches the camera movement is
estimated and the 3D reconstruction of the scene is also performed
(Longuet-Higgins, 1981), i.e., they estimate both Rt and ~Mi. Some visual
cues (usually features) are tracked during a video sequence so that the 2D
position of each feature is stored for each frame. Thus, different views of
the same visual cue are triangulated in order to obtain its 3D coordinates
(see Figure 2.31). In fact, the camera pose and the structure of the scene
is recovered given a minimum of two images related by their visual
correspondences. For that purpose, the multiple view geometry theory is
used (Hartley and Zisserman, 2003), similar to that presented for stereo
systems (see Section 2.3.1). It is noteworthy that these solutions extract
all the information from previous frames, without requiring markers or
knowledge about the target model. There are two refinements of the SfM
algorithm: batch optimizations and recursive estimations. The first option
offers more accuracy, while the second is less time consuming.

Figure 2.31: 3D scene reconstruction from multiple image views.

Batch optimizations minimize a cost function that refers to the difference
between the projections of points in an unknown 3D scene and their known
image measurements over the video sequence:
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argmin
R jt , ~Mi

∑
j

∑
i

∥∥∥~mji − KR jt ~Mi
∥∥∥, (2.18)

where R jt is the camera pose of the frame j , ~Mi represents the 3D
coordinates of the visual cue i and ~mji corresponds to the 2D image
coordinates of visual cue i in the image j . Note that ~Mi values remain
unchanged over the entire video sequence, since the reconstruction of a
rigid body is assumed.
The Bundle Adjustment (BA) technique (Triggs et al., 2000) is used to
jointly optimize the 3D structure and the motion parameters (see Equation
2.18). In their first implementations, the entire video sequence was used
for the optimization (Hartley, 1994), making them impractical for real
time. Recently, (Klein and Murray, 2007) uses a local BA over the last
five selected keyframes and parallel techniques (one thread computes the
mapping and the other thread only performs the tracking) to make them
suitable for real-time applications.

Recursive estimations are probabilistic methods that have been
extensively used in the robotics community in order to address the
Simultaneous Localization and Mapping (SLAM) problem. They compute
an online reconstruction of the scene using recursive Bayesian estimators,
formulating the problem as a state-space model. The state-space model
is described by a state model (see Equation 2.19), which is associated to
the transition over the time of the 3D structure and motion parameters,
and an observation model (see Equation 2.20), which is related to the
measurements that condition the transition.

~xj+1 = f (~xj , ~uj ), (2.19)
~yj = h(~xj , ~vj ), (2.20)

where ~xj+1 is the state vector containing the camera pose and the 3D
reconstruction, ~uj represents the uncertainty of the transition model f ,
~yj is the vector containing image measurements and ~vj represents the
measurement noise of the observation model h.
Provided that a set of observations Yj = {~y1, ..., ~yj} is available at any
instant j and that the Equation 2.19 describes a Markov chain, the problem
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can be formulated as the conditional probability of the current state given
the entire set of observations: P(~xj |Yj−1) = ∫ P(~xj |~xj−1)P(~xj−1|Yj−1)d~xj−1.
Using this formulation the parameters of the state space-model are
expressed by their probability distributions.
Assuming that f and h are linear functions, the optimal estimation (in
a least squares sense) is given by the Kalman Filter (KF) (Bishop and
Welch, 2001). Otherwise, in the case that they are non-linear, the Extended
Kalman Filter (EKF) provides a similar framework by linearizing the
system using the Taylor expansion of f and h (Davison, 2003). However, all
variants of the KF assume that the model follows a Gaussian distribution,
so more generic approaches such as PF (see Section 2.3.3.1 Model-Based)
have been adapted. Following this idea (Sánchez et al., 2010b) presents an
efficient implementation based on the GPU, where all the calculations, the
3D reconstruction (Sánchez et al., 2010a) as well as the camera tracking,
are performed by the GPU pipeline, making it feasible for real time.

2.3.3.2 Deformable Objects
In contrast to rigid objects, the size and shape of a deformable object change
when external forces are applied. This makes the general problem described
in Equation 2.15 more difficult, since ~Mi values change in each frame and
are considered as an additional unknown (note that unlike SfM approaches,
here ~Mi values are not the same for all frames). Moreover, in the optical
tracking context, external forces are given by the attraction force imposed by
the visual correspondences, which can be computed using similar methods to
those explained for rigid bodies (see Section 2.3.3.1). Deformable methods focus
on how the deformation of the object is represented and constrained. They can
be classified into physics-based, learning-based, template-based and non-rigid
structure from motion.

Physics-based

The physics-based deformation models are the earliest approaches to modelling
the behaviour of an object according to the physical laws that govern it. The
key idea is to capture, in a generic way, a priori knowledge about the physical
properties of the object to achieve an approximation of physical reality.
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(Kass et al., 1988) was an approach that promoted physics-based models

oriented to 2D shape recovery. Subsequently, the physics-based models have
been also used for 2D surface registration (Bartoli and Zisserman, 2004;
Pilet et al., 2005; Zhu and Lyu, 2007; Uchiyama and Marchand, 2011). In
addition to 2D surfaces, these models have also been used with 3D surfaces.
At first, 3D reconstructions were performed relatively simply (Terzopoulos et al.,
1987), using the generalized cylinder model as abstraction of elongated shapes
exhibiting axial symmetry. The complexity was then increased through the use
of deformable superquadrics (Metaxas and Terzopoulos, 1991; Terzopoulos and
Metaxas, 1991), triangulated meshes (Fua and Leclerc, 1995), Thin-Plate Splines
(TPS) (McInerney and Terzopoulos, 1993; Mcinerney and Terzopoulos, 1995)
and balloons forces (Cohen and Cohen, 1991; Cohen and Cohen, 1992; Sharf
et al., 2006) (see Figure 2.32).

(a) (b) (c)

(d)

Figure 2.32: (a) Deformable superquadrics (Terzopoulos and Metaxas,
1991), (b) triangulated mesh (Salzmann et al., 2005b), (c) simple
example of a fish shape transformation using TPS (Donato and
Belongie, 2002) and (d) balloon models (Sharf et al., 2006).

The 3D reconstruction of a surface is a difficult problem that requires too
many Degrees of Freedom (DoF). There are two main approaches to solving the
complexity of this problem: the inclusion of regularization terms and the Finite
Element Method (FEM) formulation.

The goal of the first approach is to minimize a global energy ε(S) that
is composed of an internal εD(S) and an external εC (S) energy. The former
represents the physical properties of the surface. Essentially, it focuses on
controlling the uniformity of the mesh, i.e., a term that regulates the smoothness
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of the mesh. The second, in turn, focuses on the image data. It is an energy
that exerts a force so that the mesh tends to deform in line with the detected
and matched visual cues of the image. In (Fua and Leclerc, 1995), for example,
the surface of the model is represented as a hexagonal mesh which is deformed
by minimizing the energy that is decomposed into a lineal combination of two
components:

ε(S) = λDεD(S) + εC (S), (2.21)
where λD is a scalar to balance the weight of each energy and S is the state
vector that contains the coordinates of the mesh and their associated visual
correspondences.

The FEM formulation offers an alternative approach to this problem. Here,
the model is represented by a discrete set of elements such as segments,
triangles or tetrahedrons (linked by their nodes) governed by mass, damping
and stiffness constraints. The following discrete equation represents the motion
of the deformation:

Mü+ Du̇+ Ku = f , (2.22)
where u is the unknown vertex displacement, u̇ and ü its corresponding first
and second derivatives respectively, f is the nodal data forces, K the stiffness
matrix, D the damping matrix and M the mass matrix. It can be noticed that all
of these matrices are sparse and symmetrical.

In this context, the non-linear FEM was used for accurate surgery
simulations (Picinbono et al., 2000) and for large deformations in the animation
area (Irving et al., 2004b). Similarly, in (Tsap et al., 1998a) the incomplete or
missing information about the geometry or material properties of the object is
solved by using non-linear FEM. Unfortunately, the drawback of this technique
is that it requires thorough knowledge. This is why most 3D reconstruction
research focuses primarily on simple deformations (Tsap et al., 1998b). Compared
with the previous approach, the FEM formulation achieves more accuracy, but
is more difficult to implement and requires more computational resources.

Subsequently, in conjunction with the previous, modal analysis (Delingette
et al., 1991) was introduced to reduce the high dimensionality appearing in the
FEM formulation and to simplify the problem. It consists in estimating the surface
deformation as linear combinations of deformation modes (Pentland and Sclaroff,
1991; Nastar and Ayache, 1996) (also referred as basis shapes). Computationally
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it is a good approach, but it is restricted to objects with very smooth deformations.
To overcome this limitation, more accurate but also more complex non-linear
models have been proposed (Tsap et al., 1998a; Bhat et al., 2003).

Finally, although the physics-based methods have achieved great success
and high levels of accuracy (Bickel et al., 2009), the drawbacks extracted from
the results should be highlighted. Firstly, in referring to the properties of the
surface material, they are usually unknown. Indeed, even with knowledge of
the physical parameters and surface materials, the physics-based methods only
achieve relatively accurate approximations for small deformations. Secondly, to
actually implement accurate large deformations, physics-based models require
a complex design subject to a difficult task such as the use of more sophisticated
finite-element methods that imply higher computational cost. At the same time,
this methodology is prone to instabilities of convergence, which are often difficult
to optimize.

Learning-based

As discussed above, physics-based models arise from the idea of applying
physical behaviour to objects. However, the parameters of the physical properties
of an object are not always known. Thus, learning-based models (also referenced
as statistical-based models, machine learning models or example-based models)
are a great alternative to the latter, since they infer the behaviour-model from a
set of available examples (hand labelled or generated through 3D laser scans)
(see Figure 2.33).

PCA

Database Deformation modes

Figure 2.33: Learning-based 3D shape recovery. Original source
(Salzmann et al., 2007c).

More precisely, this methodology applies a statistical dimension reduction
technique to the training data in order to create a database of representative
shapes, i.e., to learn a low-dimensional model. As in the modal analysis technique
of the physics-based methods, the surface deformations are expressed as linear
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combinations of deformation modes such as those shown in Figure 2.35(c).
Nonetheless, these modes are obtained through the training process instead
of using stiffness matrices. It is therefore possible to capture a larger number of
movements, provided that they are available in the training data set. Depending
on the reduction technique that is carried out, learning-based models can be
classified into linear and non-linear methods:

Linear methods have been the most frequently used. The concept
is to assume a linear mapping from a low-dimensional manifold to the
high-dimensional data space. First, a database from 3D meshes is generated,
and then the shape model is learned to dimensionality reduction by Principal
Component Analysis (PCA)7 (Jolliffe, 1986), retaining the most significant
components. For example, let’s say that the non-rigid surface is represented as
triangulated mesh with nv vertices expressed as x vector. The shape deformations
are modelled as a weighted sum of nm deformation modes, represented by a S
vector:

x = x0 +
nm∑
i=1

cisi + E = x0 + Sc + E, (2.23)

where x0 is the mean shape and c represents unknown weights that define the
current shape. The S matrix is obtained by the PCA and its columns are taken
to be the eigenvectors of the covariance matrix. Due to error of fit to the data,
the error is accumulated in the matrix E .

Figure 2.34: Morphable face models. Matching a morphable model
automatically to a single sample image, the model is rendered
changing its facial attributes, in this case, being forced to smile (by
(Blanz et al., 2003)).

7The data is projected onto its eigenvectors, and these projections, sorted with respect to the
eigenvalues, span a new orthogonal space. In the first dimensions, maximal variance of the initial
data is encoded, while dimensions with small eigenvalues are most likely to represent noise.
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Active Appearance models are the first works making use of these techniques,

to use both 2D (Cootes et al., 1998; Zhu et al., 2006) and 3D (Matthews and
Baker, 2004) models. Following these, Morphable Models (Blanz and Vetter,
1999; Blanz et al., 2003) shown in Figure 2.34 apply the same idea to reconstruct
deformable faces. Recently, new approaches that promote the same philosophy
of reducing the dimensionality have been proposed (Salzmann et al., 2005a;
Salzmann et al., 2005b). These solutions represent the deformation of a mesh
by varying angles between facets; leading to a lower dimensional model in
comparison to those alternatives based on vertex coordinates (see Figure 2.35).
The main drawback of this new formulation is that it imposes more restrictions
on mesh deformations, so that the representation may not be as close to the
reality as one would like.

(a) (b) (c)

Figure 2.35: Database of feasible shapes. A 3D deformation
representation of a mesh by varying angles between facets (a). The red
mesh in (b) is the average mesh, x0 and the other two are obtained
by taking a single ci to be non-zero. A positive value of ci yields
the green mesh and a negative one the blue mesh. Original source
(Salzmann et al., 2007c).

On the other hand, non-linear methods are used in those cases where
linear methods do not fit the training data well and generate poor quality
models. Kernel-PCA (KPCA) (Platt, 1998) belongs to this type of non-linear
dimensionality reduction technique, which uses a kernel function to map the
data-space to another dimensional space (latent-space) where the data can
be linearly modelled. However, for KPCA-like techniques is not obvious how
to project back from the latent-space to the data-space (pre-image problem).
Therefore, the Gaussian Process Latent Variable Model (GPLVM) (Titsias
and Lawrence, 2004) has emerged as a valid alternative. It is a non-linear
probabilistic PCA that directly defines a mapping from the low-dimensional
representation to the high-dimensional one:
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x =∑
i=1

wifi(c) + ε, (2.24)

where fi are the non-linear functions of the low-dimensional representation
of the latent variable c. A prior knowledge is used to generate a probability
distribution (more specifically a multivariate Gaussian distribution) from which
wi values are extracted.

This technique also achieves a good performance in human motion (Urtasun
et al., 2005), but involves a complex objective function that may be difficult to
optimize. Other approaches like (Salzmann et al., 2008b) use the non-linear
statistical technique as well, but based on a hierarchical strategy, combining
local deformation surfaces to generate a global version representing the shape.

Generally, linear methods impose smoothness constraints and are not always
accurate. Non-linear methods overcome this problem but require large training
data. In fact, this is the biggest issue of the learning methods, since the
generation of the training database is a difficult and time-consuming process.
Additionally, training data has to be created specifically for each model, which
implies that each object must be processed individually, even if the two objects
are composed of the same material. These difficulties have all contributed to the
unpopularity of this type of model.

Template-based

Template-based models are well known methods that use a reference image
(template) to overcome the 3D shape reconstruction of non-rigid surfaces (Zhu
and Lyu, 2007; Zhu et al., 2008; Salzmann et al., 2008a; Pilet et al., 2008;
Moreno-Noguer et al., 2009; Salzmann and Fua, 2009; Salzmann and Fua,
2011; Perriollat et al., 2011; Uchiyama and Marchand, 2011). More specifically,
the 3D shape of a surface in an input image is recovered from a set of visual
correspondences between the input image and the reference image in which the
3D shape of the surface is known (see Figure 2.36).

These methods require the execution of two steps: image registration
and shape inference. The first step is responsible for detecting 2D-3D
correspondences between the input and reference images, while the second
phase tries to adjust the deformation model to those correspondences according
to a set of constraints.
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project match

Reference Input Output

Figure 2.36: Shape recovery from 3D-to-2D correspondences. Detect
and match feature points, relate the features to 3D points given in
barycentric coordinates between reference configuration and input
image. Original source (Salzmann and Fua, 2009).

1. Image registration
The main goal of this step is to obtain the visual correspondences (usually
features) that relate the input and reference images. First, feature points
are detected in the reference image. Furthermore, since in this image the
3D shape of the surface is known, the 3D coordinates of the features
can be extracted by doing the corresponding back-projection (detecting
for each feature the facet of the surface it belongs to and defining its
location in terms of barycentric coordinates). Subsequently, feature points
are detected in the input image and matched against those extracted in
the reference image. Thus, several 2D-3D correspondences are obtained,
whose reprojection error is minimized in order to recover the 3D shape.
The idea is to find the new positions of the mesh vertex that minimize
the distances between the input 2D features and the projection of the
reference 3D features in the image. Based on how these correspondences
are obtained, the image registration can be solved by pixel-based methods
(Gay-Bellile et al., 2007), feature-based methods (Torr and Zisserman,
2000) or hybrid methods (Zhu et al., 2009):
• Pixel-based methods, also known as direct methods, use the

difference in intensities between two images to calculate the 2D-3D
correspondences (Cootes et al., 1998; Sclaroff and Isidoro, 2003;
Matthews and Baker, 2004; Baker, 2004). These methods are highly
correlated with FtF tracking techniques, which are based on temporal
consistency, in the sense that the previous frame bounds and
simplifies the processing of the next frame. Optical flow (Decarlo
and Metaxas, 2000; Bartoli and Zisserman, 2004) is one of the most
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popular techniques implementing these concepts. Due to mentioned
above, pixel-based methods are viewed as an extension of the
Lucas-Kanade algorithm (Baker and Matthews, 2004).
This technique has been used with different deformable surfaces
such as human faces (DeCarlo and Metaxas, 1998), sheets of paper
(Gay-Bellile et al., 2007) or clothing (Hilsmann and Eisert, 2009).
It depends largely on a good initialization to avoid getting stuck
in local optima. Additionally, these estimations cannot be used
indefinitely without any correction, as the errors in the estimations
are integrated over time, i.e., this method is prone to drift.
• Feature-based methods attempt to detect the presence of the same

feature in two images in order to get a potential set of 2D-3D
correspondences (Bookstein, 1989; Salzmann et al., 2007c). These
methods are highly correlated with TbD techniques, which are
based on appearance. Generally, they try to minimize the difference
between the feature descriptors of the input and reference images.
The SIFT method (Lowe, 2004; Mikolajczyk and Schmid, 2005;
Lepetit and Fua, 2006; Belongie et al., 2002) is one of the most
popular feature descriptors used for this purpose.
Contrary to pixel-based methods, feature-based methods do not
require initialization. Nonetheless, they have to overcome several
challenges such as working with few feature points (textureless
surfaces), dealing with outliers, or handling self-occlusions. Some
works like (Chui and Rangarajan, 2003) propose a solution for
outliers, but at the cost of working with slower algorithms.
• Hybrid methods combine both pixel and feature methods to

emphasize their advantages (Fleet et al., 2000; Johnson and
Christensen, 2002; Georgel et al., 2008). The work presented in
(Pizarro and Bartoli, 2012), for example, provides more robustness
to its feature-based implementation by using a point-based warp
estimation method that prevents the warp folding in the presence of
self-occlusions.

2. Shape inference
This step is responsible for reconstructing the deformation model using
the 2D-3D correspondences found in the previous step. Nonetheless these
correspondences show certain ambiguities and do not achieve an optimal
reconstruction. They only serve as a weak constraint to move the vertices
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of the mesh along the projection ray. Indeed, a change in the exact
location along the projection ray only results in minor reprojection errors.
Accordingly, it is no longer seen as a viable alternative if additional
knowledge constraints are not introduced. Therefore, this second step
solves the deformation model based on 2D-3D correspondences and some
additional constraints (Gumerov et al., 2004; Salzmann and Fua, 2011) (see
Figure 2.37). This idea can be expressed mathematically by the following
conceptual equation:

argmin
Rt,Mi

∑
i

∥∥∥~mi − KRt ~Mi
∥∥∥

subject to constraints,
(2.25)

where ~mi is the 2D image position of the visual cue i, ~Mi are their
corresponding 3D coordinates and K represents the intrinsic parameters
that describe the characteristics of the camera (focal length, skew, etc.),
and which can be extracted through a camera calibration process.
Regarding constraints, an inextensible surface reconstruction can be
carried out using deformation modes in conjunction with local rigidity
constrains (Salzmann et al., 2008a; Ecker et al., 2008; Salzmann and Fua,
2009; Perriollat et al., 2011), while in conjunction with shading constraints
stretchable surfaces can be reconstructed (Moreno-Noguer et al., 2009).
None of these approaches retrieve the camera pose, since they assume
that the deformation modes are aligned to the camera or directly recover
the shape in an unknown pose. However, more recent approaches such
as (Sánchez-Riera et al., 2010; Moreno-Noguer and Porta, 2011) deal
with this limitation by simultaneously obtaining the deformation and the
camera pose.

Figure 2.37: Reconstruction results of a well-textured sheet of paper
(by (Salzmann et al., 2007b)).
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A brief summary of the most frequently used constraints is presented
below:
• Time constraints. Through the time constraint, the movement between

two frames does not vary too much. For example, (Salzmann and Fua,
2009) restricts the distances of the edges to be the same at t and
t + 1 instants (see Figure 2.38).

Figure 2.38: Time constraint. The distance between de vertex vi and
vj is predicted to be the same at time t and t+1 (by (Salzmann et al.,
2007a)).

Despite the good results achieved by the use of time constraints, they
require high computational resources when several constraints are
imposed. Additionally, they suffer from error correspondences and
require a good initial estimation.
• Distance constraints The distance constraint consists in assuming

that Geodesic distances do not change (Brunet et al., 2011). However,
as illustrated by Figure 2.39 Geodesic distances are expensive to
use, so there are approaches that use Euclidean distances as an
approximation (Shen et al., 2010).

Figure 2.39: Distance differences. In the presence of sharp
folds, Geodesic distances (right) remain constant. There are other
approaches that use Euclidean distances (left) rather than Geodesic
ones (by (Salzmann and Fua, 2009)).
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There are alternative works that rely on inextensibility constraints,
where the distance between feature points is used instead of the
distance between the vertices of the mesh. Following this idea (Ecker
et al., 2008) proves a solution under orthographic projection, while
(Perriollat et al., 2011) does so under full perspective projection.
This type of constraint is oriented to objects whose material cannot
stretch practically, such as sheets of paper (Gumerov et al., 2004;
Liang et al., 2005). Moreover, the use of inextensibility assumptions
implies small deformations.

The integration of these constraints precludes the use of least-squares
techniques. Therefore, other mathematical tools must be used such as
the Second Order Cone Programming (SOCP) (Boyd and Vandenberghe,
2004), convex optimization (Kahl, 2005; Salzmann and Fua, 2009; Shaji
et al., 2010), quasi-convex optimization (Ke and Kanade, 2007), or closed
form solutions (Salzmann et al., 2008a; Moreno-Noguer et al., 2009).
The problem with template-based methods is that they suffer from bad
correspondences which normally cause erroneous reconstructions. Some
studies, such as (Salzmann et al., 2008a), do not return a unique solution
but a set of representative solutions and choose the best one by using,
for example, shading or movement (related with temporal constraints)
information (Moreno-Noguer et al., 2010; Moreno-Noguer and Fua, 2012).

Non-Rigid Structure from Motion

In contrast to the template-based models, which require a reference image with a
known 3D shape of the surface, which is not always easily available, Non-Rigid
Structure from Motion (NRSfM) methods (Torresani et al., 2001; Xiao et al., 2004;
Brand, 2005; Bartoli and Olsen, 2007; Agudo et al., 2012a) are recent techniques
that do not require prior knowledge to simultaneously track and recover the 3D
shape of non-rigid 3D surfaces. Hence, NRSfM enhances effectiveness at the
expense of increased complexity with respect to the template-based models.

These algorithms receive multiple images of the target object, which have
been taken over time, generally in the form of a video sequence. They extract
FtF 2D correspondences by tracking points over the sequence, and try to recover
the 3D locations of the individual feature points in each input image (this is the
main difference to rigid SfM methods, which recover the same 3D locations of
individual feature points for all images). They also obtain the motion of the



78 Chapter 2. Background
camera by modelling it as an additional unknown of the problem. This can be
expressed mathematically by the following conceptual equation:

argmin
Rtj ,Mi

nf∑
j=1

nv∑
i=1

∥∥∥~mi,j − KRtj ~Mi,j
∥∥∥

subject to constraints,
(2.26)

where ~mi,j is the 2D image position of the visual cue i and frame j , ~Mi,j are
their corresponding 3D coordinates at that instant. nf is the number of frames
and nv the number of vertices. Rtj represents the transformation in the frame j
and K is the calibration matrix.

Because of this complexity, there are various solutions that address similar
issues:
• Similar to learning-based methods, modelling a deformable surface as a

mesh of vertices typically yields many DoF. However, many of these DoF
are coupled, which can be enforced by representing the deformations as
a linear combination of basis shapes. Likewise, similar to template-based
methods, solving NRSfM requires additional constrains in order to obtain
a robust solution. These additional constraints can be summarized as:
orthonormality (ensuring that rotation matrices are orthonormal), temporal
consistency (Salzmann et al., 2007b; Olsen and Bartoli, 2008; Rabaud and
Belongie, 2009) (ensuring that the variation of the shape and the camera
motion are small between two consecutive frames), geometric constraints
(ensuring a uniform level of smoothness across the whole surface -global
smoothness- or forcing the surface to be locally or piecewise smooth -local
smoothness-) or other restrictions such as light (White and Forsyth, 2006).
• Along with these techniques, the idea of subdividing the problem through

the motion of several rigid deformations (Xiao and Kanade, 2005) has
recently arisen in parallel. It is based on dividing the global reconstruction
into local ones as shown in Figure 2.40 and then combining them with
a consistent interpretation. In this case, the rigid deformations move
independently and the movement of the whole scene is considered a
deformation. These local deformations can be modelled following isometric
(Taylor et al., 2010), planar (Varol et al., 2009; Collins and Bartoli, 2010)
or quadratic (Fayad et al., 2010) representations, which implies that
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Figure 2.40: Results obtained on real images of a sheet of paper
undergoing large deformations (by (Fayad et al., 2010)).

deformations cannot be applied with materials such as clothing due to
the large variability of complex deformations.

Finally, it should be noted that although the NRSfM methods are effective
and attractive at the same time, they have certain weaknesses that are worth
citing. First, these algorithms rely on the tracking of feature points throughout
a video sequence, which makes a well textured surface necessary. On the other
hand, these methods have only demonstrated applicability when tracking smooth
deformations of 3D surfaces (Salzmann et al., 2007c). More complex deformations
require a greater number of modes hence making the system ambiguous.
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2.4 Discussion
Multiple methods have been presented to recover the position and orientation
of the camera from an image. Some of them use multiple cameras to simplify
the problem, but they require bulky and more expensive hardware. Other
methods rely on a single camera (monocular systems) and more sophisticated
CV techniques. Thus, certain solutions add markers to the scene, obtaining a
fast and accurate camera pose at the expense of environment adaptation. Other
alternatives store (before the tracking occurs) knowledge about the scene in a
3D model, which is matched to the visual cues detected in the image to estimate
the camera extrinsic parameters. Although they have to generate the 3D model,
they can handle textureless scenes and offer a robust response in a reasonable
amount of time. Other approaches solve both the camera motion and the structure
of the scene by tracking certain visual cues throughout a video sequence. They
only require some previous frames as input, but this increases the computational
cost.

There are also some works that deal with deformable objects. Besides solving
the problem of visual correspondences, they have to calculate the new shape of
the object in each frame. This chapter has presented a study of the different
methods (see Table 2.2) found in the literature that solve the problem of the
ambiguities that arise when reconstructing this type of surfaces.

The physics-based models achieved really accurate results; however, as
pointed out throughout this section, many other parameters and considerations
require to be taken into account, such as model representations and the range
of physical parameters. As an alternative, the learning-based models have the
advantage of the automatic creation of the model without any prior knowledge
of the physical parameters. Nevertheless, the model creation requires a specific
database that is not always available. It also implies that each model should have
its own database. The template-based models, in turn, recover the surface from
monocular video sequences or from a single image. Their drawback, therefore,
comes from the need to have well-textured surfaces in order to obtain the
maximum number of correspondences and reduce the influence of outliers. Other
approaches such as the NRSfM, solve both the camera motion and the structure
of the scene by tracking some visual cues along a video sequence. They only
require some previous frames as an input, but increase the computational cost.
They also require well-textured surfaces in order to detect a correct set of
correspondences.
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In sum, the aims pursued (robustness, real time, accuracy, etc.) and the

restrictions set by the specific problem (rigid, deformable, with or without prior
knowledge, etc.) determine the selection of the appropriate tracking method.

Table 2.2: Advantages and disadvantages of different types of models.
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Chapter 3
Rigid Surface Marker Tracking

Askok irudipena du...
Askok itxura hutsetik,

ez barruz ezagutzetik...
...ai, bistaratuko banu!

Maialen Lujanbio

A synthesis of this chapter has been published in:
Álvarez, H., Leizea, I., and Borro, D. “A new marker design for a robust
marker tracking system against occlusions”. Computer Animation and
Virtual Worlds, Vol. 23, N. 5, pp. 503–518. 2012.

3.1 Introduction
There are various techniques for implementing the tracking step in Computer
Vision (CV). Some solutions use the characteristics of different environments
(such as keypoints or edges) as reference points in order to deduce the camera
pose. Systems like PTAM (Klein and Murray, 2007), DTAM (Newcombe et al.,
2011), VSLAM (Karlsson et al., 2005), or other markerless tracking systems
(Barandiarán et al., 2007; Álvarez et al., 2011) compute the pose without adding
fiducial markers in the environment. However, this is not always straightforward
in unknown environments. It may be that the required information is not adequate
to calculate the pose, or even that the calculated pose estimation easily drifts
over time. Furthermore, most of these approaches return a relative pose to the
starting point (first keyframe) instead of an absolute pose, which involves a
difficulty aligning virtual objects (owing primarily to the scale factor).

85
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In order to overcome these challenges, some approaches called marker-based

tracking systems are often used. They include easily detectable predefined
artificial signs in the environment (also called marker or fiducial). Compared
to natural feature-based approaches, marker-based tracking systems offer a fast
and robust detection since the provided information from markers is used to
calculate the pose. They often contain an identification pattern that serves as
a reference point in order to deduce the 2D-3D correspondences, since the
containing points of the pattern are already known. Hence, the extrinsic camera
parameters can be estimated between the image plane and the real world.

As Figure 3.1 shows, markers can have different shapes. Template markers
are black and white markers that have a simple image inside a black border
(ARToolKit (Kato and Billinghurst, 1999)). This inside pattern serves in turn as
identification for each marker. They are usually square markers with a thin black
border. Their four corners are easily detectable to compute the pose. Circular
markers such as (Naimark and Foxlin, 2002) estimate the pose using the shape
of a projected circle. They have the advantage that the centroid (the centre of
the circle) is invariant to the view direction and the angle. Another fiducial
possibility is the use of dots as markers (Bergamasco et al., 2013). They are
made up of several dots which store the identification based on their relation
position. They use projective invariants (which do not change under a projective
transformation) to perform both detection and recognition in the image plane.
Moreover, the area taken is relatively small in comparison to square and circular
markers. Similarly, Uniform Marker Fields (Szentandrasi et al., 2012) are defined
as planar structures which mutually overlap partial markers. The large size of the
marker allows easy detection within the scene from various points of view and
rapid localization can be achieved by recognizing the sub-areas within the field.
They combine the features for detection, localization and individual identification
since the field is uniformly distributed across the whole area of the marker field.
Likewise, other examples such as (Bergamasco et al., 2011) use hybrid systems
which combine dot-based markers and circular markers. Other markers that can
be found are barcode markers which consist of black and white cells like the
popular QR codes. And finally, image markers that use colour images or even
infrared markers that recognize the infrared rays to extract the location.

The popularity of marker-based systems is also due to the ease of
implementation and the wide range of toolkits that assist the process (ARToolKit
(Kato and Billinghurst, 1999), ARToolKitPlus (Schmalstieg and Wagner, 2007),
ALVAR (ALVAR, 2011), ARTag (Fiala, 2005a)). In addition to computing
the correct camera pose, these toolkits provide an encode information (or
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(a) ARTag (b) ALVAR (c) ARToolKit (d) ARToolKitPlus

(e) Intersense (f ) Pi-Tag (g) Datamatrix (h) QR Code

Figure 3.1: Different types of markers.

an identification) that enables attaching certain objects or interactions to
the markers. These types of toolkits, and in general the large majority of
marker-based tracking systems, are executed according to the following three
main stages: detect the marker, identify the marker and calculate the pose.

However, despite marker-based tracking systems being robust and accurate,
with a real-time performance, there is a major drawback which is that the
environment adaptation is not always possible and other shortcomings such
as marker occlusions. Typically, these systems fail when the marker is not
completely visible, thereby generating undesirable effects.

The following chapter describes a method that is based on one of the cited
toolkits, more concretely ARToolKitPlus, improving its performance when an
occlusion is applied to the marker.

3.1.1 ARToolKitPlus
ARToolKitPlus is a widely used non-commercial marker tracking system that
uses black squared markers to compute the camera pose. It is an extended
version of the popular open source library ARToolKit (Kato and Billinghurst,
1999), but this new version is primarily oriented towards to mobile media devices
which technically have a lower hardware. It was developed by (Wagner and
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Schmalstieg, 2007) and due to high demand, the code was released (freely
available under the GPL open source license).

Apart from the ability to run on mobile devices, the most remarkable
characteristics compared to its previous version (ARToolKit) can be summarized
as follows: the inclusion of the codification of BCH (Bose, Chaudhuri,
Hocquenhem) markers increasing the number of markers to 4096, the
identification of the markers based on a digital codification or an automatic
thresholding through which it is able to analyse the pattern within the markers.
Nevertheless, even though ARToolKitPlus is optimized for mobile devices, it
shares the same main features as the primary one, such as obtaining the
transformation matrix.

The resolution of the camera registration problem through a marker tracking
system like ARToolKitPlus involves several steps (see Figure 3.2). The process
begins with an input image taken by the camera being introduced into the
ARToolKitPlus pipeline. From here, it starts looking for a pattern in the image.
If a pattern is found, it tries to identify by matching it to a list of patterns in a
precompiled database. If the matching is satisfactory, the associated information
about the specific pattern allows determining the relative position of 6 Degrees
of Freedom (DoF) in real time. The following is a more detailed explanation of
the stages that compose the whole process:

Figure 3.2: ARToolKitPlus pipeline.

1. Image acquisition. An input image (the current frame) can be captured
through different types of video devices. This image serves as the starting
point for the algorithm to find the markers (see Figure 3.2(a)).

2. Preprocessing. The image is converted to a greyscale in order to facilitate
the detection of squared marks (see Figure 3.2(b)). Then, ARToolKit
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performs a low level-image processing (such as edge detection) by
thresholding the complete image (see Figure 3.2(c,d)). It includes an
automatic thresholding that is dynamically adapted. It uses the mean of
all extracted marker pixels if previously detected, or otherwise randomizes
the threshold.

3. Acceptance/rejection candidates. A fast rejection of obvious non-markers
and an acceptance test for potential markers is performed in this step (see
Figure 3.2(e)). The resulting areas of the previous step are immediately
discarded if they are too large or too small. Small areas means that the
marker is very far away from the camera and consequently the pose would
be very uncertain.
Another criterion that this algorithm uses is the colour of the marker.
The simple template markers have a small number of holes (white pixels)
inside the (black) marker area. At this point, it is also important to take
into account the fact that completely black areas are not markers.
Finally, the areas that are big enough to include a marker and are based
on a square shape are selected. Using the obtained vertices in the previous
step (Preprocessing), the areas that have 4 corners are considered squares
(see Figure 3.2(f )).

4. Identification. With the defined region, a normalized phase is performed in
order to extract the content of the marker (the central area that differs from
other markers) (see Figure 3.3). ARToolKitPlus uses a digital codification
(decoding the data markers) in such way, that each pixel in the interior of
the marker is represented as a bit. Thus each marker contains a bit value
chain (being also the identifier of the marker), and the process consists in
searching for this identifier in the database.

5. Pose calculation. By knowing the 2D positions of the edges and vertices
that define the 2D marker, it is possible to estimate the 3D relative position
and rotation of the camera in respect to the marker (see Figure 3.2(g)).
This pose is computed through an homography estimation using the
Direct Linear Transformation (DLT) algorithm (see Appendix A). Since
a coordinate system centred on the marker is being used, and taking
into account that the 3D coordinates of the markers are known and fixed,
the required four 2D-3D matches are then extracted in order to estimate
the homography. Note that these matches must be non-collinear and the
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(a) Interior area. (b) Unprojected area.
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Figure 3.3: Perspective correction of a BCH marker

marker must be in a plane, i.e., all the vertices belong to the same plane
(Z = 0).

3.1.2 Marker Occlusion
As shown in the previous section, it is necessary to have correct visibility of
the marker in order to compute the camera pose. Otherwise, when a marker
is occluded (see Figure 3.4), the detected candidates in the image will not be
considered as a marker. ARToolKitPlus for example, fails even when the marker
is only occluded by approximately 2%.

Thus, some of the conditions for the camera registration using ARToolKitPlus
noted in the previous section (see Section 3.1.1) are not met. When a partial
occlusion occurs, is impossible to calculate the new pose of the camera due to
the following problems:

• The contour ceases to be rectangular. When a marker occlusion occurs,
the square shape of the marker will generally be lost. The areas that do
not satisfy the condition that the four vertices compose a rectangle, will
therefore be discarded (see Figure 3.4 left).
• Inability to retrieve the interior bits of the marker, and therefore to know

its unique identifier. An occlusion in the interior pixels of the marker (see
Figure 3.4 middle and right), makes the marker identification changes and
consequently, the template cannot be matched with any of those from the
database.
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Figure 3.4: Segmentation (bottom) for different occlusions (top).

• Some of the corners of the marker are not visible (see Figure 3.4 left)
and therefore there are not 4 required matches to implement the DLT
algorithm. The four corners of the marker (with known 3D coordinates)
are not identifiable to compute the homography that transforms the marker
from its origin to the corresponding location in the current frame.
It is worth stressing that the homography computation does not specially
require the four corners, but it requires four non-linear matches.

3.1.2.1 Previous Works
To date, there have been many research works dealing with the problem of
handling occlusions in marker tracking systems.

Some authors place multiple markers in the scene to overcome the marker
occlusion problem (Kato and Billinghurst, 1999; Garrido-Jurado et al., 2014).
In this way, they increase the probability of finding one visible marker at the
cost of more environment adaptation. Continuing with this idea, (Tateno, 2007)
uses multiple-layer markers. The main disadvantage of this approach is the
accuracy waste after switching between marker layers because of scale change.
In addition, their markers require larger sizes to get similar recognition rates to
that of a common single marker.

ARTag is a marker tracking system (Fiala, 2005a) that uses edge
segmentation for the identification of target patterns. It is more robust than
ARToolKitPlus under bad illumination conditions, and it is capable of closing
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broken contours (Fiala, 2005b). Nonetheless, it only supports small occlusions,
such as putting the finger on the marker.

In (Álvarez and Borro, 2009) a method that tracks the bounding box of
the marker is detailed. This method supports strong occlusions and does not
add extra information to the marker or the environment. It is ideal for mobile
devices because of its low computationally cost. However, it only updates 4DoF
(translation in X, Y , Z axes and rotations in Z axis), so it is not a valid solution
for all Augmented Reality (AR) applications.

The approach in (Wagner et al., 2008) presents two new marker designs.
Although they are not designed for occlusions, they support some restrictive
partial occlusions, as they use the frame of the marker to codify their digital
identification. An incremental feature tracking to handle marker occlusions is
also described. It assumes that the marker lies on a textured plane, from where
features are detected. This is not always possible, and therefore this requirement
becomes scene dependent. Furthermore, according to the authors, this technique
is limited only to a few seconds due to drift.

In (Malik et al., 2002; Maidi et al., 2010) an incremental feature tracking is
also applied. In these cases, features inside the marker are detected and tracked.
A correct spatial configuration of features is required to guarantee a minimum
number of features and to obtain a precise homography between two consecutive
frames. Therefore, they are not a valid method for all markers, since they depend
on the patterns that are inside the marker. They also suffer from the problem of
drift.

The method described in (Marimon et al., 2007) uses a Particle Filter (PF)
to obtain the 6DoF of the camera when the ARToolKit library fails. It minimizes
the reprojection error between the marker corners and the features detected in
the current image. The number of particles should be large enough to adapt to
sudden movements. The drawback here is that the computational cost of this
operation is too high. Therefore, the robustness is jeopardized by the number of
particles, that is, by the real-time requirement.

Recently, (Suzuki et al., 2013) have presented a new marker design oriented
to cylindrical surfaces. It is a robust approach that estimates the transformation
matrix even if the marker is partially occluded. The marker is composed by few
white dots in a black frame that serve to detect the marker and estimate normals
of the surface in order to deduce the curvature of the cylinder. Even so, the design
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is an ad hoc proposal with low adaptability which needs to improve the dots
detection.

The method in (Uchiyama and Marchand, 2011) describes a new marker
design that is based on randomly scattered dots (random dot markers). Each dot
is described by the spatial location of its neighbouring points (Locally Likely
Arrangement Hashing (LLAH) geometric descriptor (Nakai et al., 2006)), and a
minimum set of dots must be identified to recognize the marker. Occlusions that
are supported depend on the spatial distribution of dots. A uniform distribution
would be ideal but penalizes distinctiveness of the geometric descriptors. The
computational cost of this approach, 50-60 milliseconds when using the publicly
available implementation of the author1 and the same hardware configuration
as that presented in the experiments, exceeds real-time requirement (∼ 33
milliseconds). In addition, this solution cannot be adapted to popular and existing
marker tracking systems such as ARToolKitPlus.

Using a similar system, (Chen et al., 2013) proposes a scalable map of
random dot markers for large areas. The scalability is achieved by a smart
arrangement of repeated random dot markers that are placed only on the
ground surface. Although the system is more robust to occlusion than classic
squared-shaped fiducial markers, it has the same problem as the previously
cited approach (Uchiyama and Marchand, 2011), since the computational cost
increases when the detector finds a lot of points.

1http://hvrl.ics.keio.ac.jp/uchiyama/me/code/UCHIYAMARKERS/index.html
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3.2 Proposed Method
Considering the limitation of marker tracking systems that do not support
occlusions in recognizing and registering, a new marker design has been
developed to overcome the problem of marker occlusions. Instead of using
multiple markers so that there is always one marker visible (Kato and
Billinghurst, 1999), this proposal offers more robustness and does not require
more environment modifications.

The new marker design takes advantage of an untapped frame to place
some textures that will be tracked during marker occlusions. These textures are
customizable and generate, by default, a uniform distribution of features (with
known 3D coordinates). It is thus not scene dependent. It is a highly adaptable
solution because it can be used by any marker tracking system that does not take
advantage of their frame. This idea has been introduced in the popular marker
tracking system ARToolKitPlus because it uses markers that only use its central
area to codify the digital identification. In addition, it should be pointed out that
this customization allows users to make their own designs.

Unlike systems such as (Marimon et al., 2007; Uchiyama and Marchand,
2011), this new design deals with occlusions updating the 6DoF of the camera
in real time (see Figure 3.5), without losing robustness. Moreover, in contrast to
the methods described in (Malik et al., 2002; Wagner et al., 2008; Maidi et al.,
2010), this proposal offers an incremental tracking combining two methods to
offer a robust tracking. The first is a fast technique based on temporal coherence,
whereas the second is a robust technique based on appearance, which is used
as a recovery mode.

3.2.1 Justification of the New Design
Partial occlusions of the marker cause tracking failure, because none of the
detected candidates in the image are considered as a marker due to the change
of the shape, i.e., the four corners of the marker are not identifiable to compute
the homography (see Section 3.1.2). To overcome this constraint, it is necessary
to have as many features as possible (with known 3D coordinates) in order to
increase the probability of finding enough 2D-3D matches to update the camera
pose.
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Figure 3.5: Left: An example of failure when the marker is occluded
(no virtual teapot is rendered). Right: the output that is obtained using
the proposed Occlusion module.

For this reason, customized textured borders have been added to the marker
(see Figure 3.6, middle), which constitute an area not used by the ARToolKitPlus
library. Furthermore, the pipeline of ARToolKitPlus remains unchanged, since
the presented customized borders do not distort the marker identification step
and offer more information in case of occlusions.

Each customizable border is painted with a different colour (see Figure 3.6,
right) to accelerate the matching step. The colour codification helps to distinguish
the border that each point belongs to, while different texture patterns guarantee
that not all the points look the same (see Section 3.2.4.2). It is also noteworthy
that the borders of the marker have been slightly expanded (the new marker size
is 12% larger) to obtain reasonable texture sizes and to maintain a thin black
outer border. This border benefits the marker detection of the ARToolKitPlus
pipeline (see Section 3.1.1), because the square shape is more easily detected
after the thresholding step despite the presence of the textures. Moreover, this
black outer border has not increased the global size of the marker too much
to be a valid solution for most applications, especially those that have space
limitations.

In addition, this design can also be used with non-square markers, such as
those that have a circular shape. This change only affects the training phase
(see Section 3.2.3), taking into account the area where the texture patches are
placed. Hence, only the placement of the textures should be adapted to make
the design feasible to other marker shapes.
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Figure 3.6: Initial version of the ARToolKitPlus BCH marker (left),
an evolution that uses its frame to add some textures (middle), and
the final version using colour codification to accelerate the feature
matching step (right). Notice that these textures are only an example
of all possible configurations, as they are customizable by the user.

3.2.2 Algorithm Overview
The proposed marker tracking system is composed of two main modules: the
ARToolKitPlus pipeline and the Occlusion pipeline. The first is the common
ARToolKitPlus pipeline detailed in (Wagner and Schmalstieg, 2007), whereas
the second is the solution presented here to update the camera pose against
the partial occlusions of the marker. The novelty lies in how these two different
tracking methods are combined to exploit the advantages of each approach,
obtaining a robust real-time tracking. The interaction between these two
modules is shown in Figure 3.7. When the ARToolKitPlus pipeline is executed
successfully, the datum associated with the current state is stored (Update
Occlusion Data). This datum is used to initialize the Occlusion pipeline when
the ARToolKitPlus pipeline fails, thus guaranteeing that the occlusion state is
updated every time the marker is visible.

The Occlusion Pipeline in turn, combines two different tracking methods:
Frame-to-Frame tracking (FtF) and Tracking-By-Detection (TbD). The first
is based on temporal coherence, which provides a robust tracking against
non-strong camera movements and has a low computational cost. Furthermore,
FtF incorporates a refinement, which minimizes the problem of drift (see
Section 3.2.6). The second tracking method, meanwhile, computes the pose
despite the movement applied to the camera, i.e., when the FtF fails. It has a
higher computational cost because it recognizes the presence of the textures in
the image by using their appearance, without temporal coherence assumptions.
Additionally, TbD exploits the properties of the new marker design to perform



Section 3.2. Proposed Method 97
ARToolKitPlus 

Pipeline

Success

Update
Occlusion Data

YesNo

Frame-To-Frame 
Tracking

Success
Yes

Tracking by 
Detection

Success

No

Yes

No

FAILURE

Occlusion-patches

Figure 3.7: Overview of the Occlusion pipeline showing how the
ARToolKitPlus and Occlusion pipelines interact, as well as, how the
two different tracking methods (FtF and TbD) are mixed.

an intelligent search of the homography that best represents the camera pose.
In other words, each point that is used to generate a homography hypothesis is
selected from a different texture to avoid the selection of collinear points that
produces a singularity.

Therefore, although these tracking methods are based on existing solutions,
the main idea of combining both methods consists in using the FtF for as
long as possible because of its robustness against smooth camera movements
and low computational cost, and using the TbD only when the FtF fails, as
a recovery mode, because it involves more computational cost. Also, the TbD
allows a less degree of occlusion, because the matching quality between the
image appearance and the reference appearance should be reasonably high not
to generate false positives.
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The TbD method is based on appearance so it requires a database of

feature descriptors that belong to the marker. This is computed during an offline
phase that is described in the following section. In addition, the online phase
of Occlusion pipeline will also be detailed for the two tracking methods cited
above.

3.2.3 Offline Phase
The offline phase is a training process (see Figure 3.8) that is executed only once
for each marker design. This is essential in order to carry out the TbD step in the
online phase. For this purpose, the marker is trained along a set of keyframes.
These keyframes are processed, and the 2D features that belong to the surface of
the texture borders are back-projected, obtaining their corresponding 3D values.
In addition, these 3D points and their corresponding descriptors are indexed in
a database, which is used to find a set of matches during the online phase. The
steps involved in this phase are detailed bellow.

3D Point Cloud 
Generation

Databases of descriptors

Keyframe 
Selection

3D ...... ... ... ... ... ... 3D

3D ...... ... ... ... ... ... 3D

3D ...... ... ... ... ... ... 3D

3D ...... ... ... ... ... ... 3D

...

...

...

...

Figure 3.8: Offline phase of the Occlusion pipeline. It is shown step
by step.
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3.2.3.1 Keyframe Selection

During the execution process, the marker must be detected regardless
of the point of view. For this reason, it is necessary to perform preprocess
information where a set of keyframes captures the marker and extract the largest
number of distinguishable points from different points of view. This preprocessing
is performed with a synthetic marker with the aim of minimizing the user
intervention in the training phase.

The number of keyframes depends on the set of movements that the camera
covers at runtime, without exceeding the storage of the database. Thus, only the
keyframes that put the marker in front of the camera are considered, without
applying rotations. This is a valid assumption for an object that lies on a
plane, and it has been successfully applied by other authors (Xu et al., 2008).
According to this method and due to real-time requirements, Feature from
Accelerated Segment Test (FAST) operator (Rosten and Drummond, 2006) has
been applied to extract features during the online stage, which does not provide
scale information. Nonetheless, as it is carried out in (Wagner et al., 2010),
the marker is trained along multiple scales to overcome the scale ambiguity and
discarding any very small scales because of the poor quality of feature detection.

3.2.3.2 3D Point Cloud Generation
Once the keyframes are selected, 2D features are detected using FAST with
regard to each one of them. Among the set of detected features, those that do
not belong to one of the four markers are discarded. Additionally, the remaining
2D features are divided into four different clusters, according to the border they
belong to. Since the positions of the textures are fixed and known, this filter is
performed by using a mask for each texture area.

In the next step, since a set of 2D-3D matches are required at runtime to
calculate the camera pose, it is necessary to back-project each of the stored 2D
features extracted in the previous step in order to obtain their 3D values. The
marker is modelled as a triangle mesh, and each triangle is rendered with a
unique colour, using the camera pose of the corresponding keyframe, which is
known because it is virtually generated. The location of each 2D feature points
to a unique colour, which is used to index the corresponding facet. Once each
2D feature is associated with its corresponding 3D triangle, its 3D values are
calculated using barycentric coordinates (Gall et al., 2006).
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3.2.3.3 Descriptors Generation and Database Creation
This step receives a 3D point cloud for each one of the four textured borders
of the marker to which they belong and computes the 3D descriptor of each
one. To that end, the Scale Invariant Feature Transform (SIFT) descriptor (Lowe,
2004) has been chosen, because it has demonstrated high performance compared
with other local descriptors (Mikolajczyk and Schmid, 2005). However, the
original SIFT has been replaced by a simplified version called simplified-SIFT
(Álvarez-Ponga, 2012). It consists in replacing the original Difference of
Gaussians (DoG) feature detector by the FAST detector and also, the use of
parallel techniques (OpenMP) to reduce the computational cost.

Simplified-SIFT implies that no scale information is obtained during the
feature extraction step. Therefore, a scale-space like (Wagner et al., 2010)
is implemented to avoid scale ambiguity and obtain better matching results
at runtime. Each 3D point is associated to multiple descriptors, one for each
image that results from applying different Gaussian filters to the corresponding
keyframes. More precisely, by using eight Gaussian filters, with a standard
deviation factor of 1/√2 the previous one (recursively), it has obtained a good
compromise between storage cost and computational cost. This procedure tries
to cover the expected scale ranges at runtime.

On the other hand, the reduction of computational cost involves a fixed patch
size for the original SIFT descriptors and the retaining of only the most dominant
orientation for each feature. Furthermore, some calculations are precomputed,
such as all possible kernel orientations. As reported in (Sánchez et al., 2010b),
these simplifications allow hundreds of SIFT descriptors to be obtained in a few
milliseconds.

Once all the descriptors of all 3D points have been computed, they are
indexed in a database using k-d trees. In addition, a different database is created
for each marker border, resulting in four different databases, which offer faster
and more robust matches during the online phase, because an input feature is
only matched against its corresponding border database.

3.2.4 Online Phase
This phase is executed every time the ARToolKitPlus pipeline is not able to
detect the marker. It uses the data provided by the last successful execution
of the ARToolKitPlus pipeline to initialize the FtF (see Figure 3.7). This is a
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fast method that works fine while no fast camera movements are applied. If a
rapid camera movement is performed and the tracking is lost, the TbD method
is applied, which uses the databases of descriptors created in the offline phase
(see previous Section 3.2.3). This second method, in turn, is based on appearance
and can support fast camera movements, so it is used as a recovery mode. This
way, if the TbD is unable to compute the camera pose, then the tracking method
returns to the initialization step of the FtF, starting the whole process all over
again. Likewise, if after a few attempts the marker is not detected (Failure status
of Figure 3.7), the Occlusion pipeline does not update the camera pose, and the
system waits until the ARToolKitPlus pipeline is successfully executed. It is
noteworthy that the ARToolKitPlus pipeline is executed every time to check the
marker visibility and thus, the Occlusion pipeline is disabled as soon as the
ARToolKitPlus detects the marker.

3.2.4.1 Frame-to-Frame Tracking
The first step of the FtF is the initialization of the data that will be used for
the tracking. To that end, the last successful camera pose and frame that were
registered are used to back-project the features that lie on the surface of the
marker and compute their representative descriptors (see Figure 3.9). The FAST
detector is used to extract these features, while the camera pose is provided by
the ARToolKitPlus pipeline or by the TbD method after recovering from a failure.
The back-projection process is similar to that explained in previous sections,
using barycentric coordinates to compute the 3D values. Nevertheless, these
back-projected features and descriptors are not the same as those generated in
the offline phase. These features belong to the entire surface of the marker, that
is, they are not limited to the frame of the marker. Furthermore, they do not use
the robust SIFT descriptor, but a simple descriptor based on the grey values
of their surrounding patches (referred as GREY descriptor ). It is similar to the
Normalized Cross-Correlation (NCC), but using a Gaussian weight.

GREY (p) = 1
N ∗

∑
s∈S

I(p+ s) ∗ G(s), (3.1)

where N = ∥∥∑s∈S I(p+ s) ∗ G(s)∥∥2, S is the set of samples that are considered
around the point p, I represents the intensity of the image and G is a Gaussian
weight. More precisely, a sparse 11x11 sample grid centred on each feature
is used to build a 121 bin descriptor (see Figure 3.10). This descriptor is not
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as robust as SIFT, but it has demonstrated considerable robustness and low
computational cost (see Section 3.2.6).

Figure 3.9: FtF tracking initialization. The image of the last successful
execution of ARToolKitPlus (left). Feature detection (blue points)
and back-projection of the strongest features (green points) that are
uniformly distributed (right).

Because of the reduction of the computational cost, the maximum number of
back-projected features has also been limited to 49. The marker has been divided
into 49 equal squares (7x7 grid), and only the strongest feature is retained for
each square. This is a fast method to limit the maximum number of features
and maintain them in a uniform spatial distribution, which favours the response
against occlusions, since it does not matter which side of the marker is occluded.
This initialization step is executed every time the marker changes from visible
to occluded, as it guarantees that all features and descriptors are updated with
the last visible frame. It is thus adapted to possible environmental changes, such
as different illumination conditions.

Figure 3.10: Sparse 11x11 sampling grid (left) and Gaussian weight
(right) used by GREY. Red indicates more weight.
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Once the initialization step has been executed, all back-projected features

that are visible in the image are tracked in the successive frames using an
incremental tracking similar to those presented in (Malik et al., 2002; Wagner
et al., 2008). First, the new feature locations are predicted using a pyramidal
optical flow (Lucas and Kanade, 1981). This technique provides a good starting
point for the second step, which searches in the vicinity of predicted locations
the presence of points with a similar GREY descriptors (see Figure 3.11). This
way, a feature is considered successfully tracked if a point is found in a 20x20
window that is centred on the predicted location, and whose descriptor is highly
correlated to the original descriptor (correlation value higher than 0.9). This
step removes outlier matches and minimizes the drift problem that this type of
techniques typically suffers.

Figure 3.11: Snapshot of the FtF. Green lines indicate optical flow
prediction, while the red dots are the final location after the refinement
step. The red squares represent the area of each feature that is used
for the refinement step. Features without the red square are considered
as outliers.

Regarding all those features that follow this rule, their location prediction
is replaced by the location of the point they are matched to. Nonetheless,
some of these remaining matches can be outliers, so the RANdom Sample and
Consensus (RANSAC) (Fischler and Bolles, 1981) technique is used to compute
the affine transformation that represents the movement of the inlier features
between two consecutive frames. Note that a minimum set of inlier matches
(6 in the experiments) are required to validate the correctness of the current
tracking.

Using this affine transformation, the new 2D locations of the 3D features
computed in the initialization step are known, so this new set of 2D-3D matches
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is used to update the camera pose. Moreover, these 3D features are projected
with the new camera pose, and their 2D location is updated for the next frame.

Additionally, a refinement step, similar to that mentioned above, is performed.
If there is a point with similar GREY descriptor in the 10x10 vicinity of the feature
projection location, then its position is changed and its descriptor is updated.
Otherwise, both the position and the descriptor are not changed, although they
will be considered for the next frame as well. This last refinement step ensures
that the descriptors evolve, and the quality of the optical flow for the next frame
improves. It should be also noted that the simple projection of a 3D point using a
non-accurate camera pose may fall in the middle of a homogeneous image area,
which is not an optimal scenario for optical flow techniques. It is also required
that at least 15% of visible features are updated using this refinement procedure
to validate the correctness of the current tracking. This requirement, together
with the affine restriction, identifies bad tracking frames due to fast movements
or drift, and helps decide when to execute the TbD method.

3.2.4.2 Tracking-by-Detection

This phase serves for recovering the camera pose without any user intervention
in the case of spatial coherence failure. For that purpose, the features extracted
in the current frame are matched against those processed in the offline phase
and are indexed in the database (see Figure 3.12).

Each of the four borders of the marker has been codified with a unique
colour, building a different database for each one (see Section 3.2.3.3). Thus, for
each feature detected in the current image, the border to which it belongs is
calculated. To do this, the number of pixels of its vicinity (10x10 window) that
belong to each colour is counted for each detected features. To determine the
colour of each pixel, its corresponding Hue-Saturation-Value (HSV) levels are
considered. If the saturation or value components of a pixel are in the extremes of
their range, then this pixel is not considered as coloured, but rather as a white or
black pixel. Otherwise, the hue channel specifies the colour of a pixel. Moreover,
to consider a feature as coloured, 50% of their surrounding pixels must belong to
the same colour, that is, there must be a dominant colour. This colour codification
step is very useful, because it reduces the number of matching combinations by
75% for each feature and rules out too many points that do not belong to the
frame of the marker.
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Figure 3.12: Overview of the TbD.

Once the current detected features that do not belong to the frame of the
marker have been discarded, the simplified-SIFT descriptor is calculated for
the remaining detected features. In addition, each of these features has been
assigned to one of the four borders of the marker, and thus only the corresponding
database is used to find a correspondence. The query to the database returns
the two closest descriptors (d1 and d2, respectively) according to the input
descriptor (di) and the Euclidean distance is used to determine the proximity
between two descriptors. This way, d1 and di are considered to be positively
matched if dist(d1, di) < k ∗dist(d2, di), where k ∈ [0..1] is a control parameter
(set to 0.6 in this case) that discards matches with poor distinctiveness.

As a result of matching current detected features with those stored in
the database, a set of 2D-3D matches are obtained. However, some of
these matches may be outliers, so the camera pose can be computed using
the robust hypothesize-and-verify PROgressive SAmple Consensus (PROSAC)
method (Chum and Matas, 2005). This method is based on a new sample
selection criterion that favours the quality of the homography representing
the transformation between the two sets of points. First, the two borders of
the marker that have at least two correspondences are randomly chosen and
then two matches for each of those two borders are selected according to
their matching quality, which is inversely proportional to the distance between
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its corresponding descriptors. This criterion overcomes the restriction of the
homography generation, which states that all the points cannot be collinear.
In addition, this criterion returns more stable homography transformations due
to the better distribution of selected points.

Finally, the maximum number of matches has also been limited to 75 with
the aim of running the application in real time. This way, the matches with the
highest quality will be selected first.

3.2.5 New Interface Possibilities
The new marker design that is proposed provides more information when the
marker is occluded, which can be used to develop human-machine interfaces.
These new interface possibilities are complementary to those interfaces created
by other authors, who have also used occlusions to implement them. For example,
the interface in (Lee et al., 2004) places multiple markers at specified locations,
and depending on which markers are occluded and visible, it interprets different
user actions. In a similar way, the interface in (Mcdonald and Roth, 2003)
presents a simple hand gesture recognition using the interface in (Malik et al.,
2002) to treat small finger occlusions. The interface in (Uchiyama and Marchand,
2011), meanwhile, detects which region of the marker is occluded rectifying the
viewpoint of the marker in the image and subtracting the rectified marker and
the reference. It is noteworthy that all these interfaces can be adapted to this
proposed design, although the interaction possibilities that are shown here are
more difficult to obtain or computationally more expensive if other designs are
used.

All the interaction possibilities presented here have to determine which
features of the surface of the marker are visible. This is a simple task when the
marker is not completely inside the Field of View (FoV) of the camera, because
the projection of the occluded points falls outside the image. However, this is
not the case for occlusions caused by other objects, such as the user’s hands.
For these cases, only those features of the surface that have a point with similar
GREY descriptors in its vicinity are considered as visible.

This visibility test has a negligible computational overhead for the proposed
solution because this information is already generated by the FtF (see
Section 3.2.4.1), that is, this design offers the ability to efficiently develop
human-machine interfaces.
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Two interaction possibilities are presented as follows as a demonstration,

but they can be extrapolated to numerous applications.

Occlusion Signal
The textures that have been placed along the frame of the marker imply
the detection of multiple features in each border. Using this assumption,
the degree of occlusion can deduce depending on the number of occluded
points. Thus, an occlusion signal (see Figure 3.13) can display the degree
of occlusion to the user. This is similar to the idea of a coverage signal
used by mobile devices.

Figure 3.13: An example of Occlusion Signal output

Photo Viewer
Due to the presence of textures, there are multiple features in each border
of the marker. Thus, the border with fewer visible features can be identified
as the occluded side of the marker. Moreover, the occlusion of each border
can be interpreted as a different action. To prove this usability, a photo
viewer (see Figure 3.14) has been implemented, for which a different action
is executed depending on which border is occluded:
• Left-border: go to the previous photo.
• Right-border: go to the next photo.
• Up-border: positive zoom to the current photo.
• Down-border: negative zoom to the current photo.
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(a) Initial state. (b) Previous photo. (c) Positive zoom.

Figure 3.14: Photo viewer sequence

3.2.6 Experiments
In this section several characteristics of the new marker design that is proposed
were investigated. The hardware setup consists of an Intel Core 2-Duo (Intel:
Santa Clara, California, USA) at 2.40 GHz and 2 GB of RAM equipped with
a Logitech QuickCam Connect (Logitech: Morges, Switzerland) webcam. All
the experiments have been executed with a Windows 7 (Microsoft: Redmond,
Washington, USA) operating system.

3.2.6.1 Tracking-by-Detection
First, the response of the TbD method was studied. Multiple marker designs (see
Figure 3.15) were used in order to investigate the importance of choosing good
texture content. More precisely, four different marker designs were developed to
simulate multiple conditions:
• Words (see Figure 3.15(a)) represents a typical design that can be used

for marketing purposes, encoding some words from a message along the
frame of the marker.
• Random-characters (see Figure 3.15(b)) is similar to Words but uses

randomly selected characters to demonstrate that no specific letters are
required.
• Random-shapes (see Figure 3.15(c)) symbolizes the textures that are

made using logos.
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(a) Words. (b) Random-characters.

(c) Random-shapes. (d) Repetitive-symbols.

Figure 3.15: Marker designs for experiments.

• Repetitive-symbols (see Figure 3.15(d)) is referred to those shapes that
have a repetitive pattern and do not provide distinctiveness.

To obtain these results, as well as those presented next, a set of images
with a known camera pose are required to decide the success of the detection.
According to this, a set of snapshots in which the marker is completely visible
was acquired. These images were processed with the normal ARToolKitPlus
pipeline, obtaining the corresponding camera pose for each one. Moreover, these
poses were used to draw black patches on the surface of the marker, simulating
marker occlusions (see Figure 3.16).

The scale was the first parameter that was examined. Nevertheless, this
parameter is not dependent on the marker design, but on the size of the textures.
It is noteworthy that the size of the textures is very small compared to the
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Figure 3.16: Simulation of the partial occlusion of the marker

size of the whole marker, as the total increase in the size of the marker has
been minimized (see Section 3.2.1). This, however, increases the difficulty of
their detection, since textures appear too small in the image, without sharpness.
Figure 3.17 shows the mean ratio of the TbD success for the four marker designs,
according to the width of the marker and the resolution of the image.

Figure 3.17: Scale study for TbD.

This ratio is increased for larger marker sizes, because textures will appear
clearly and simplified-SIFT descriptors are calculated more accurately. At a
320x240 resolution, a good detection ratio was obtained when the marker
width was larger than 75 pixels (22,44% of the image width), while at 640x480
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resolution, a similar ratio was obtained for a width of 125 pixels (19,53% of the
image width). This difference is due to the greater blur that 320x240 images
have.

Notice that the detection is considered successful for an input image when
the reprojection error of the marker bounding box using the real pose and that
returned by TbD is below a threshold. This way, after executing TbD with
different marker designs at multiple distances, it can be concluded that the
marker width must be 20% of the image width to obtain a good detection. In
addition, it should be pointed out that the TbD method did not have any false
positives for these experiments; i.e. the presence of the marker was not been
detected unless it was actually there. This is a desirable property, as this is the
starting point of the FtF method that is based on temporal coherence.

Using the procedure described above, together with the scale ranges in
which the TbD method is successfully executed, the simplified-SIFT was also
analysed. A set of snapshots was taken for each marker design of Figure 3.15.
These snapshots were used to perform several executions of the same image set,
but with a different simplified-SIFT parametrization. The i−j−k parametrization
of SIFT (x − axis) corresponds to the number of regions (i), the number of
histogram bins (j), and the patch size (k ) that is used to build the simplified-SIFT
descriptor. Figure 3.18 shows the success ratio of the TbD method for each
marker design, according to the SIFT parametrization and for different image
resolutions.

The obtained ratio of success increases when the simplified-SIFT
patches are larger, since more stable descriptors are built. Nonetheless, the
computational cost increases proportionally with the size of the patch, so
a compromise between robustness and computational cost must be achieved.
Furthermore, the image resolution also influences this decision, since at lower
resolutions a smaller patch size is required in order to get similar results to
those achieved at higher resolutions.

The other two parameters of the simplified-SIFT descriptors control the
number of regions that divide each patch and the size of the histograms that
characterize the gradients of each region (Lowe, 2004). These values are related
to the size of the descriptor and they offer the possibility of establishing
the degree of descriptor-distinctiveness that best suits the properties of the
corresponding textures. According to Figure 3.18, the best results are obtained
when the patch is divided into 4x4 regions, while the number of histogram bins
that codify each region should be between 4 and 8.
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(a) 320x240 resolution.

(b) 640x480 resolution.

Figure 3.18: The TbD success (left) and computational cost
(right) according to the simplified-SIFT parametrization and image
resolution.

Additionally, although a different set of images was used for each marker
design, which could explain the small differences in the success ratio, after
analysing the results of Figure 3.18 for 640x480 resolution, it can be established
that the textures with a repetitive pattern (Repetitive-symbols) harm the
descriptor-distinctiveness. This in turn implies that multiple false matches appear
during the detection, which increases the computational cost that PROSAC
requires discarding these outliers (see Section 3.2.4.2).

The good response of Random-characters and Random-shapes designs
demonstrates that textures with words and shapes are valid solutions, since they
build good quality descriptors as a result of generating a lot of unique patches
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around each 3D point. The response of Words proves that positive detection
results are also obtained using textures with customized words, as long as a
repetitive-pattern does not appear.

Taking all of this into consideration, the 4-4-25 and 4-4-31 simplified-SIFT
parametrizations for 320x240 and 640x480 resolutions, respectively, are the
options that generally provide the best compromise between the success ratio
and the computational cost.

3.2.6.2 Frame-to-Frame Tracking
The quality of the FtF was also studied. However, the experiments were only
executed for the Words marker design, as the results for other designs are similar.
The same video sequence were executed twice, one without the refinement step
presented in Section 3.2.4.1, and the other using the refinement process. It should
be noted that the incremental tracking of points that is described in (Malik et al.,
2002; Wagner et al., 2008) is very similar to the proposed limited version of FtF,
which disables the refinement step. Thus, the main objective of this experiment
was to compare the FtF with a simulated version of (Malik et al., 2002; Wagner
et al., 2008). Although the video is at 640x480 resolution, the FtF was executed
at 320x240 resolution to reduce the computational cost. In the video, the marker
is occluded by the user’s hand movement, and the marker lies on a textured
surface to increase the difficulty of tracking.

As shown in Figure 3.19, this experiment demonstrates the robustness of the
refinement step, which returns a good pose despite the hand occlusion; because
the poorly tracked features are corrected using the correlation of the GREY
descriptors (see Section 3.2.4.1). The absence of the refinement step causes an
increase in tracking error due to the poor prediction of the optical flow, which
is confused by the hand movement. This last option is the technique used by
other authors (Malik et al., 2002; Wagner et al., 2008), so the FtF proposed here
offers greater robustness compared to similar solutions.
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(a) Without refinement step.

(b) With refinement step.

Figure 3.19: Camera pose (red) using the FtF.

The computation time for the two executions using an non-optimized code
was 8.1 milliseconds and 13.05 milliseconds, respectively. The time difference
is due to the cost of computing and matching the GREY descriptors that are
necessary for the refinement step. Nevertheless, it should be pointed out that this
would be the worst scenario for the FtF, since there are a lot of visible features
that must be tracked (none of the marker points fall outside the image), and there
are a lot of points around the marker (blue points of Figure 3.19(b)), whose GREY
descriptors must be computed, and which can produce false matches. Despite
all this, the FtF runs in real time and is able to compute a correct camera pose.
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3.2.6.3 Occlussion Pipeline
Figure 3.20 shows the response of the Occlusion pipeline for a video sequence
where both tracking methods are mixed. To have the correct pose for each
frame of the video and compute the reprojection error (right of Figure 3.20), the
marker was visible during the entire sequence in order to successfully execute
ARToolKitPlus. Moreover, the procedure described above was used in order to
simulate marker occlusions in each frame of the video.

The image position of the centre of the marker along the entire sequence is
shown to the left of Figure 3.20(a) to indicate that the marker is continuously
moving and even making fast movements that can impede tracking. The red dots
in Figure 3.20(b,c) represent the execution of the TbD.

The FtF is executed for as long as possible due to its low computation
time (middle of Figure 3.20). When this method fails as a consequence of a fast
movement or error accumulation, the TbD is called in to compute the correct
camera pose and restart the FtF. In this way, the reprojection error between
the correct camera pose and that returned by the Occlusion pipeline (right
of Figure 3.20) is maintained at reasonable levels most of the time. The few
frames that have a higher reprojection error are those frames that the FtF
takes to indicate failure. Nevertheless, the time it takes to react is very small
(with non-optimized code), and the results are still visually acceptable. After
executing this experiment with two different image resolutions (320x240 and
640x480), it was concluded that the results are similar. At 320x240 resolution,
the computational cost is lower at the expense of higher reprojection error,
whereas at 640x480 resolution, a lesser reprojection error is obtained at the
expense of more computational cost.

Finally, Figure 3.21 presents the output of the Occlusion pipeline for
different types of marker occlusions. Figure 3.21(a) demonstrates that the
Occlusion module supports hand occlusions, including recovery from a fast
camera movement (see Figure 3.21(b)). Figure 3.21(c) shows the ability to
compute the camera pose when the marker is partially outside the image. Figure
3.21(d) represents the tracking success when the marker is occluded by multiple
objects. Lastly, Figure 3.21(e) and Figure 3.21(f ) display the robustness against
occlusions made by objects with colours similar to the borders of the occluding
object.
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(a) Marker motion for 320x240 (left) and 640x480 (right).

(b) Computation time for 320x240 (left) and 640x480 (right).

(c) Reprojection error for 320x240 (left) and 640x480 (right).

Figure 3.20: Occlusion-patches response for a video sequence.
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(a) Hand. (b) Hand (TbD).

(c) Image border. (d) Multiple objects.

(e) Coloured object. (f ) Coloured object.

Figure 3.21: Occlusion-patches output for different occlusions.
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3.3 Discussion
The use of fiducial markers has become a good alternative for solving the main
problem that optical tracking systems have to deal with, that is, the registration.
Such approaches are known as marker tracking systems.

With a marker and a camera it is possible to build a system based on
markers in a fast, cheap and simple manner. Furthermore, the wide variety
of toolkits covering on the market, facilities the tracking process even further.
Additionally, these systems offer very low execution times to the point that they
are usually integrated in mobile devices. Despite these observations, the biggest
handicap of these systems lies in the fact that the toolkits force up the marker
to be completely visible in the image in case of an occlusion occurs. With small
occlusions, the system usually fails and causes undesirable effects.

Accordingly, this chapter has presented a method to overcome the problem of
marker occlusions. Using a widely used non-commercial marker tracking system
ARToolKitPlus, which has the same problems with occlusions, an algorithm is
presented to resolve the issue. Occlusion pipeline is based on a new marker
design, which places some textures in the untapped frame that will be tracked
during the marker occlusion. This solution can also be adapted to any marker
tracking system that uses its central area to codify the digital identification.

To exploit the extra information provided by the presence of textures, two
different tracking methods have been proposed to compute the camera pose.
The first is a fast method based on temporal coherence, which works correctly
as long as no fast camera movements take place (FtF). If this method fails,
another tracking method is called on (TbD), which is computationally more
expensive but supports rapid camera movements. Experimental results illustrate
the robustness of the combination of these techniques, offering a real-time
solution (with non-optimized code). Indeed, the proposed tracking outperforms
other solutions, because it does not suffer from drift. An in-depth study of the
parametrization of these tracking methods has also been developed to show their
response against different configurations and to obtain the best balance between
robustness and performance. Additionally, two novel human-machine interfaces
have been presented to show the new possibilities that have arisen as a result
of obtaining more information during marker occlusions.
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tracking using particle filter”. Computer Vision and Image Understanding,
Vol. 133, N. 0, pp. 51–65. April, 2105.

4.1 Introduction
Recovering the 3D deformable shape of a non-rigid surface from a monocular
video sequence is an ill-posed problem because of the depth ambiguities that
exist in a single image. That is, many 3D surfaces could have the same projection
(see Figure 4.1).

Even given the intrinsic camera parameters and a well-textured surface, it
is still difficult to select the best mesh between all possible configurations of a
deformable surface in order to solve the depth ambiguities. The resolution to this
ambiguity normally requires prior knowledge of the most probable deformations
that the surface can support.

119
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Various methods to address this problem have been proposed in the

literature. Along with the standard approaches that try to solve the shape
recovery problem, it can be found approaches that establish prior knowledge
(Zhu and Lyu, 2007), have a reference image (Salzmann and Fua, 2009), or are
even based on a set of images of the target object (Brand, 2005).

Figure 4.1: There are ambiguities when recovering a non-rigid 3D
surface. The same original image can recover different meshes.

As an alternative to existing solutions, this chapter provides a novel solution
that simultaneously recovers the non-rigid 3D shape and the camera pose in real
time from a single image. The proposal relies on an efficient Particle Filter (PF)
that performs an intelligent search of a database of deformations. Furthermore,
an exhaustive Design of Experiments (DoE) to obtain the optimal parametrization
of the PF is presented.

In the following sections an overview of some previous works related to
recovering a deformable 3D surface will be enumerated. All the steps that have
been carried out to address the problem of recovering a non-rigid 3D surface
will then be detailed. Afterwards, a DoE is presented to determine the optimal
values of the PF, as well as a test suite that demonstrates the visual quality
and the good performance of the tracking method.
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4.2 Previous Works
Some methods rely on modelling the physical properties of a surface to achieve
an approximation of the physical behaviour (Fua and Leclerc, 1995), allowing
physics-based methods to recover the 2D (Kass et al., 1988) or 3D (Terzopoulos
et al., 1987) surface. Although one of the strengths of this type of method lies in
obtaining accurate results, the challenge is to find the physical parameters that
govern the surface behaviour. In addition, they have been limited to production
and video games environments because they require complex designs such as
finite element methods that imply high computational costs.

As an alternative to physical models, learning-based models adjust the
behaviour of a surface to the movements registered in a database (Salzmann
et al., 2005a), which contains the most representative deformations of the surface.
This approach does not create a model based on the physical properties. Rather,
the new model is generated according to the behaviour of one or more deformable
objects. This approach has proved to be very effective when a valid database is
available, which is not always the case. In fact, this is the major difficulty with
these techniques.

Other approaches like the template-based model (Moreno-Noguer et al.,
2009), reconstruct the deformation of a non-rigid surface by using 2D-3D
correspondences between an input image and a reference image in which
the shape and the intrinsic parameters of the camera are known, i.e., they
fit the model to a set of visual cues extracted from the image. However, it is
still necessary to use additional constraints that ensure the consistency of the
reconstructed surface.

More recently, Non-Rigid Structure from Motion (NRSfM) methods (Bartoli
and Olsen, 2007) have been proposed, which unlike the template-based models
do not require prior knowledge. NRSfM receive multiple images of the target
object, taken over time, generally in the form of a video sequence. Thus, they
extract frame-to-frame 2D-3D correspondences by tracking points over the
sequence, and seek to recover the 3D locations of the individual feature points
in each input image. The main drawback with this procedure arises from the
need to have a good textured surface.
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4.3 Overview
As explained above, deformable techniques have their own disadvantages,
making them specific to a particular field rather than being more generally
applicable. In the template-based methods, for example, there are only a few
approaches that are able to reconstruct the pose and the non-rigid shape
simultaneously (Sánchez-Riera et al., 2010; Moreno-Noguer and Porta, 2011).
Furthermore, even though in many approaches accurate 3D reconstructions are
obtained, the computational cost prevents them from tracking deformable objects
in real time. What is more, amongst the approaches that are able to work in
real time, only 2D surface registrations are performed, which causes certain
ambiguities when determining the 3D structure. The drawback of learning-based
methods is that an appropriate database that includes the most significant
deformation modes of the surface is required, which generally involves a
laborious manual process. In addition, despite the fact that many deformable
techniques solve the problem with accurate results, in most cases they are costly
to implement and have a high computational cost.

For all these reasons, this section presents an approximation which is able to
simultaneously reconstruct a non-rigid 3D shape and calculate the pose in real
time. It is fully automatic and does not require manual intervention. Additionally,
it is highly parallelizable, supporting efficient implementation. And although the
surface variation is valid only for a limited Degrees of Freedom (DoF), it works
in an easier regime because it does not require to achieve the same level of
complexity as other approaches (Salzmann et al., 2007a).
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4.4 Simultaneous Pose and Non-Rigid Surface Recovery
In order to accomplish the recovery in each frame of both the pose and
the non-rigid 3D shape of the target surface, a 3D PF has been designed
to continuously update the camera pose and recover the 3D surface. The
experimental studies in Section 4.5 demonstrate that the proposed method
can reliably recover 3D structures of surfaces and the camera pose with low
computational cost.

The framework of the system is divided into two phases: offline (see
Section 4.4.1) and online (see Section 4.4.2).

4.4.1 Offline Phase
The main goal of the offline phase is to build the two principal databases
required for the online phase. It is worth noting that this training phase is
executed only once for each texture.

The first database, referred to as the appearance database (see
Section 4.4.1.1), is used to perform the initialization step, i.e., to solve the first
camera pose. This method is based on appearance, so it requires a database of
feature descriptors that belongs to the training texture. It consists in detecting
a set of 2D features from the reference image along a set of keyframes. Once
this has been carried out, the corresponding 3D values are obtained through a
back-projection. Together with the appearance descriptors these are then stored
in the database.

The second database, the deformation database (see Section 4.4.1.2), is
related to the Frame-to-Frame tracking (FtF) method that is based on temporal
coherence and provides a fast and robust tracking against non-strong camera
movements. At this stage, a set of deformations that represents the behaviour of
the surface is stored. This can be done by applying different types of deformations
to the original state of the surface.

4.4.1.1 Appearance Database
The aim of this database is to store a set of reference features (with known
3D coordinates) together with their corresponding image descriptors (see
Figure 4.2), which is a well-known procedure (Xu et al., 2008). Therefore,
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Appearance database

Keyframe selection

Detection - 3D Point Cloud 
Generation

Descriptors – Database storage
3D ...... ... ... ... ... ... 3D

...

Figure 4.2: Overview of the appearance database pipeline. The texture
is trained along a set of keyframes. These keyframes are processed,
and the 2D features that belong to the surface are back-projected,
obtaining their corresponding 3D values. These 3D points and their
corresponding descriptors are indexed in a database, which is used to
find a set of matches during the online phase.

following the procedure of previous chapters (see Section 3.2.3), the texture is
trained along a set of keyframes and the simplified version of the original SIFT
(Sánchez et al., 2010b) has been used in order to reduce the computational cost.
Finally, all the reference 3D features with their corresponding descriptors are
indexed in a database using a k-d tree, which allows 2D-3D matches between
the input images and the reference features to be made efficiently and quickly
during the tracking step.

4.4.1.2 Deformation Database
In contrast to the previous database, the deformation database relies on a basic
knowledge of the representative deformations that the 3D model can support.
Accordingly, a range of deformations is applied to the reference points that lie
on the target surface (see the previous section). More specifically, this database
relies on the proposal of (Hong and Chen, 2004), which presents a surface that
produces a realistic page-turning effect by curling it. It is based on the behaviour
of a sheet of paper, so the surface model preserves the look and the feel of the
physical properties. In addition to applying deformations to the feature points,
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the surface M represented as a rectangular 3D regular mesh (see Figure 4.3)
divided into several planar patches (4x4) is also used in order to subdivide the
problem into smaller ones (following the divide and conquer methodology). It
then relies on a parallelization method that reduces the computational cost in
the online phase.

Figure 4.3: The surface of the mesh is represented as a rectangular
3D regular mesh.

In short, in order to recognize the simulated deformation that is closest to the
current mesh in the online phase, a set of templates is stored in this database
where each deformed mesh is expressed as the 3D position of the vertices. Below
is a detailed summary of the steps that have to be followed to define it (see
Figure 4.4).
Curling training. In this step some representative deformations of the original

mesh are applied, i.e., deformation ranges are stored. To perform this step,
a complete set of deformations that best represents the behaviour of a
sheet of paper are selected. Each deformation is then classified as one of
the following three types:
• 1-corner. One corner of the sheet is folded. The surface is deformed

by wrapping it around an imaginary cone model. This group includes
those movements where a curl influences the whole side of the
surface (see Figure 4.4 top left), like turning a page of a book.
In particular, it is a process used in (Liesaputra, 2007) to make
a deformation and a rotation around an imaginary cone model. It
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Deformation database
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Figure 4.4: Overview of the deformation database. There are three
types of deformations (1-corner, 2-corners and 4-corners). 16 clusters
correspond to the 1-corner type, 8 clusters to the 2-corners type
and 4 clusters to the 4-corners type. Additionally each cluster has
a deformation profile that represents the behaviour of the deformation.

also includes movements where the curl is a vertical movement that
affects a small local area (see Figure 4.4 top left), i.e., a displacement
is made from the corresponding corner to the centre of the surface.
This method is called peeling and involves a process that is similar
to the cone model although in this case the surface-turning point
cannot be moved freely, i.e., the creased polygon is defined by a
triangle.
• 2-corners. Two adjacent corners are folded at the same time (see

Figure 4.4 top middle). The surface is deformed by wrapping it around
an imaginary cylindrical model.
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• 4-corners. The four corners of the sheet are folded at the same time

(see Figure 4.4 top right). It also includes a cylindrical model to
make the curling step and the wrapping generated on one side of
the surface is applied equally to the opposite side.

Considering that a deformation degree is estimated by the maximum
distance between the current position of the mesh (after applying a
deformation) and its canonical location (at-rest position), the minimum
and the maximum deformation degree for all types of deformation are
set to 0 and 60 degrees of deformation, respectively. These values rely
on the fact that higher deformations are not viable for image processing
because if folds were performed on themselves, there would not be any
visible internal feature, and consequently the image processing could not
be done. Thus, the step between two neighbouring deformations depends
on the number of folded templates, which is a user defined parameter that
influences the computational cost (see Section 4.5).
The output of this module is a list of deformation templates divided
into several clusters according to the type of curling movement. 28
different clusters have been identified (see Figure 4.4 down): 16
clusters that correspond to each corner of the first type of deformation
(1-corner ) with up and down deformations, 8 clusters with up and
down deformations for each one of the second type (2-corners) and the
last 4 clusters with up and down deformations for the last type (4-corners).

Deformation profiles. Since the behaviour of the implementation of the
curling deformation that has been used is non-linear, an efficient
mechanism has been created to simulate a linear response. It consists in
generating deformation profiles for each cluster (see Figure 4.4 down), so
that the deformation degree (the maximum distance between current and
canonical position of the mesh - max1≤i≤n

∥∥vi − wi∥∥ where v corresponds
to the deformed mesh and w the canonical mesh-) is expressed as a
percentage (see Figure 4.5). This way, by knowing the deformation
degree of the current mesh, in the online phase (see Section 4.4.2), the
deformations that are in a range of proximity (expressed as a percentage)
can be inferred, allowing a search for the same range of deformation to
be performed, avoiding the non-linear behaviours.
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Figure 4.5: Deformation profile of one cluster. Each template of
the entire database stores an identifier called Template ID and its
corresponding deformation degree. Thus, all the clusters are ordered
based on the deformation degree. Given the corresponding position
(ID) of the current mesh (1), those templates that are in a close range
(specified as percentage) of deformation (2) are obtained (3).

Furthermore, in an offline process all the similarities between all the
templates of one cluster are precalculated against all the templates of the rest of
clusters in order to obtain fast indexation in the online phase. Given a template
from one cluster, it helps to determine which template in another cluster is more
similar (see Equation 4.1). The main advantage of this technique is the cost
reduction, which is obtained by means of queries made to the database, since
the position of the current mesh is known. In this sense, the similarity factor
between templates A and B is calculated by the distance of the vertices of each
template.

T c1i = {dc1c2titj , dc1c3titj , ..., dc1cmtitj ..., dc1c27titj
}

dcl,cmti,tj =
nv∑
k=1

∥∥∥v tik − v tjk
∥∥∥2 (4.1)

where T c1i is the collection of distances from the template i of cluster c1 to the
remaining clusters; and dcl,cmti,tj accumulates the Euclidean distances between the
nv vertices (v ) of the templates (t) i and j that belong to the clusters l and m,
respectively.
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4.4.2 Online Phase
As mentioned in the introduction of this chapter, the main challenge facing
non-rigid tracking methods is the combination of two requirements: that of
calculating the pose while minimizing the reprojection error of the 2D-3D
matches, and also the need to determine the best 3D point configuration, solving
the ambiguity problem that arises from the fact that many shapes can give the
same projection result. Therefore, this second phase detects the new shape of
the mesh (the new 3D positions of the vertices) and calculates the correct pose
that projects the corresponding 3D coordinates to the 2D cues detected in the
input image.

As depicted in Figure 4.6, this phase combines two different tracking
methods: Initialization and Frame-to-Frame tracking (FtF). Both methods are
combined to obtain a robust tracking. The FtF is used for as long as possible,
and the Initialization step is used in the first frame or to reset from the FtF. It
requires the surface to be at rest position, thus solving the detection problem
such as a rigid alignment and approaching the visual tracking problem in the
same way as other authors such as (Pilet and Saito, 2010).

4.4.2.1 Initialization
The main goal of this solution is the initialization of the data that will be used by
the FtF. Let’s say that the purpose is to find a planar texture in the image, i.e., a
rigid problem (Lowe, 2004). The camera pose is computed at the beginning and
when an error occurs. Therefore, the surface is treated as if it were a rigid planar
surface. For that purpose, an incremental tracking similar to the one presented
in (Wagner et al., 2008) is used. This process is divided into three parts: obtain
the pose, refine the pose and select the set of inlier correspondences.
Obtain the pose. The input image goes through a similar detection process

as explained in previous chapter (see Section 3.2.4.2). It consists in
detecting a set of feature points with Features from Accelerated Segment
Test (FAST) detector and computing their corresponding descriptors
taking advantage of the simplified-SIFT method as is done in the offline
phase (see Section 4.4.1). Once the current image features and the
SIFT descriptors are computed, the matching process is based on the
K-Nearest Neighbour (K-NN) approach as described in Section 3.2.4.2.
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Figure 4.6: Online phase overview.

Following this, outlier filtering is executed to improve the matching
step. Accordingly, the camera pose is computed (see Figure 4.7(b)) by
using a robust hypothesize-and-verify PROgressive SAmple Consensus
(PROSAC) method (Chum and Matas, 2005), which returns the best
homography. This procedure selects the inlier matches depending on the
reprojection error for the calculated homography. Among the underlying
properties involved, it is worth noting the restrictions of the homography
generation which establish that the points cannot be collinear and the
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maximum number of matches to speed up the development.

Refine the pose. This second step is designed to further improve the accuracy
of the camera pose. For this, the input image is warped (see Figure
4.7(c)) using the latter estimated homography, thereby helping to find
more accurate homography transformation on the basis of similarity to
the training texture. Hence, a new homography transformation Href inedis obtained and combined with Hprosac through the matrix product (see
Figure 4.7(d)). The resultant matrix Hresult is considered to be correct if
at least 25 percent of the matches are inliers.

Matching refinement. Finally, in order to initialize FtF with the highest number
of features, a list of the correct matches is created at this last stage. All
the 3D points of the training database are projected with the new camera
pose and associated to the closest detected feature point if the distance
is below a predefined threshold. An additional condition that restricts the
new phase begins if the points in each patch do not exceed at least 50
percent of the features detected in the corresponding patch from the stored
ones in the database.

Obtain pose warp refine pose

(a) Input image (b) Hprosac (c) Hrefined (d) Hresult

Figure 4.7: Initialization overview. The camera pose Hprosac is
computed using the PROSAC method. The input image is then warped
to find a more accurate homography transformation Href ined . And
finally Hresult is calculated by the combination of the homographies.

4.4.2.2 Frame-to-Frame Tracking
The pose and the 3D mesh calculated in the previous step, serve as input for this
second stage of tracking. The FtF technique is used to recover the camera pose
and 3D surface through the motion property. The FtF is divided into different
steps: feature motion, deformation inference and feature recovery.
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Feature motion. Lucas-Kanade optical-flow method (Lucas and Kanade,

1981) is used to estimate the movement of the points that lie on the
texture between two successive frames. More specifically, to reduce
the computational cost, the optical flow of the most significant points
(those that have the strongest FAST response) is extracted only for each
patch of the texture. The movements of the remaining points are inferred
by applying the movement of the corresponding representative point.
Furthermore, the new predicted locations are also associated with those
points detected in the current input image (FAST detector) to avoid drift.
In order to avoid outlier points, affine constraints movements are
set to the points of the surface. The study is made using the patches fixed
in the offline phase. Thus, the pose of each planar patch is formulated as
a rigid problem. This method obtains an affine transformation that maps
points on one plane (the planar patch of the previous frames points) to
points on another plane (the plane formed by the new image features).
If the number of points is below a predefined threshold (15 points in
the experiments), the patch is discarded. Then, RANdom Sample and
Consensus (RANSAC) (Fischler and Bolles, 1981) is used to find the
transformation that solves each local rigid problem, accepting only those
patches that have 60 percent of inliers. Furthermore, the vertices shared
between neighbouring patches should not exceed a threshold (in this
case 10 pixels). As a consequence, the points that do not fit well with
each of the neighbouring points, are deleted. Consequently, the filtering
step is considered good as long as at least 25 percent of the patches
have a good pose.

Surface deformation inference. Once robust points have been calculated, a
PF is used to recover the new pose and the new 3D mesh. Given the
current 2D-3D correspondences and the previous pose, the PF updates
the camera pose and the shape of the surface. It is noticeable that the
PF selects fewer correspondences from the centre of the mesh (inner
patches), as it is a correct way to approximate the real behaviour of
the model with a low computational cost. This idea is supported by the
results that are shown in the experiments in Section 4.5.
The PF is therefore provided by the pose, the 2D image points
and the 3D positions of the vertices of the current mesh. The key idea of
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the PF is to detect a mesh stored in the database together with a pose
that best resembles the input image. The functionality offered by the PF
system as well as the way in which it is applied is detailed below.

Particle Filter
PFs belong to the family of Sequential Monte Carlo (SMC) methods, and
are robust against non-static scenes in which multi-modality is likely
(Pupilli and Calway, 2005). The main characteristic is that it represents
the movements through a set of weighted samples known as particles.
More detailed information about PFs can be found in (Arulampalam
et al., 2002b; Salih and Malik, 2011). The use of PF is applied in many
areas in the field of Computer Vision (CV). One of the most noteworthy,
is the head pose estimation and tracking. A more extended survey of the
use of this type of techniques can be found in (Murphy-Chutorian and
Trivedi, 2009).
PF is divided into two stages: particle generation and particle evaluation.
In the particle generation step, the previous camera pose is perturbed
in order to generate multiple camera pose candidates for the current
frame (particles). The posterior density of the motion parameters is thus
approximated by a set of particles. The particle evaluation step is then
responsible for assigning a weight to each particle and selecting the
correct one.
In this particular case, just perturbing the pose is not enough. This
practice is well suited for rigid bodies, but a deformable object requires
the vertices of the mesh as well as the pose to be perturbed at the same
time. The particle generation step thus consists in perturbing the mesh
(perturb shape) and the pose (perturb pose):

1. Perturb shape. In this perturbation step (see Figure 4.8) a filter is
set for the deformation database in order to predict the suitable
deformations. Instead of searching through the entire database
(which would involve a very high computational cost), an intelligent
search is made. Given the degree of deformation of the current
template and pointing it in the correct position of the cluster it
belongs to (see Figure 4.5(1)), the search is performed in the closer
templates (in terms of degree of deformation). This search is divided
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into two parts, a first search through the templates for the same
type of deformation (same cluster - DefSame), followed by a second
search that involves selecting the templates with different types of
deformation (remaining clusters). In this case, the template selection
starts at the corresponding position in each cluster (using the
similarity factor (see Equation 4.1) to know which the most similar
template for each remaining clusters is). A different deformation step
(DefAll) is used here.
Given the total number of particles to process (NumParticles)
as input, the number of particles that are assigned to the same
cluster is proportional to the degree of deformation. Thus, the
greater the degree of deformation, the higher the number of particles
for the same cluster, since in cases where the deformation is strong,
it is difficult to change to another type of deformation (another
cluster).

2. Perturb pose. The pose perturbation is generated using the 3D
meshes obtained in the shape perturbation step. However, all the
particles are not processed from the former step, as the computational
cost involved would be very high. The particles are grouped with
a similar degree of deformation (groupDef ) in each cluster (see
Figure 4.9). Thus, only the new pose for those particles that is
representative for each group is calculated through an efficient PnP1
algorithm (Lepetit et al., 2009). The poses of the remaining particles
are then copied from the closest representative particle.

After finishing the particle generation process, the particle evaluation
phase weights each particle in order to subsequently select the best
one. It is assumed that each particle is formed by the set of vertices
that compose the 3D mesh, the camera pose and its associated weight.
The likelihood (w) of each particle (Pi) is proportional to the percentage
of inliers (those correspondences with a reprojection error lower than a
predefined threshold; ∼ 9 pixels for the experiments) (see Equation 4.2).

1The aim of the Perspective-n-Point (PnP) problem is to determine the position and orientation
of a camera given its intrinsic parameters and a set of n correspondences between 3D points and
their 2D projections
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Figure 4.9: Templates are grouped (identified by red circle) based on
the similarity of the deformation degree (groupDef ) and each group is
represented by a particle (located in the middle, blue cell). The pose
of this particle (middle diagram) is applied to the other particles of
the group (identified by green circle).

w = ∑
p∈patches

fp
Np

and

fp =∑
j

(∥∥∥∥
(uj
vj
)
− KRt~vj

∥∥∥∥ < thr
) (4.2)

where fp is the number of inliers related to patch p and Np is the
number of points in patch p. An inlier is defined by f where (uj , vj ) are
the 2D image position of the visual cue j , ~vj are their corresponding 3D
coordinates, Rt the current camera pose and K represents the intrinsic
parameters that describe the characteristics of the camera (focal length,
skew, etc.), which can be extracted through a camera calibration process.
The results achieved are satisfactory enough (see Section 4.5). The
idea of introducing a new term to preserve the length of the edges has
thus been rejected because it would increase the computational cost.
Moreover, the templates generated in the offline phase offers a close
approximation to the real physical properties of the model, so they impose
restrictions inherently.
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Finally, to set the inliers and refuse the outliers after the PF evaluation,
the new 3D points are projected with the new pose and checked against
the FAST points from the detection phase. If the distance to the closest
FAST point is higher than ∼ 7 pixels, the current point is set as outlier
and the list of points for the next frame is updated.

Feature recovery. This last phase is called in when the number of current
tracked points is below a threshold. Two major restore stages can be
distinguished. The first stage recovers points along the whole mesh (a
high number of points are recovered), while the other stage is more specific
to each patch that composes the mesh (in this case only the points of a
specific patch are recovered). The procedure is the same for both stages.
It goes over the list of points detected in the initial state (Initialization
step), and if a point has not been tracked yet, it is projected with the new
pose and a FAST point close to it is verified. If these conditions are met,
then this point is added to the list of tracked points for the next frame.
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4.5 Experiments and Results
This section presents the results achieved by the proposal. The DoE process
that was used to deduce the optimal parametrization of the PF is also shown.

To perform the set of experiments a sheet of paper was used with different
types of textures as depicted in Table 4.1.

4.5.0.3 Parametrization
Several points of the methodology presented in (Tanco et al., 2009) were applied
to deduce the optimal parametrization for the PF. The main goal is to find a
robust, efficient and real-time PF through a DoE. Nowadays there is a variety
of commercial software packages to help with the experimentation, especially for
making calculations and creating graphs for the interpretation. In this instance,
the statistical analysis software package Minitab was selected. The key steps
of the DoE followed in order to obtain an optimal parametrization of the PF are
outlined below. For more specific details, Appendix C analyses the steps that
were carried out during the entire case study process as well as the theoretical
method.

So, it is derived from the data in Appendix C that the variables shown in
Table 4.2 are the most relevant ones in the PF. These variables are also known
as primary factors. A factor is defined as a variable that can affect the response.
In this case the response corresponds to two different output variables such as
the execution time and error of the PF. Moreover, Table 4.2 shows the p-values
associated to each one of the identified factors. This indicates the effect of all
factors with regard to each of the two responses. Thus, an effect is considered as
significant as long as its p-value is less than 0.05. In view of the results found in
Appendix C it is deduced that the best parametrization is 3500 for NumParticles,
5 for DefSame, 5 for DefAll, 1 for DefGroup and 14000 for Granularity.

Furthermore, the following graphs (see Figures 4.10 and 4.11) show for each
of the textures and setting the behaviour of the NumParticles and Granularity
factors. GroupDef, in spite of being a significant factor, was not considered to
perform a study of it, as well as those values that are not currently considered
to be significant.

In the error case, looking at both texture graphs (see Figure 4.10 and 4.11
left), as the value of the Number of Particles and the Granularity increases the
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Table 4.1: Different textures used in the experiments. The first column
shows the texture, and the second column shows the number of
detected points; the number of points in each patch and the percentage
in relation to the total number of feature points. The colour red
corresponds to a small number of features and blue and green
correspond to a medium and high number of features, respectively.

Texture Feature Points
Stones (1657)

Guernica (870)

Salzmann (1630)

error values decrease. An error can sometimes be seen to fluctuate. This is due
to the fact that the parametric configuration allows some particles in the PF to
be introduced while others are not. It may therefore happen that the particle that
best fits the feature points is not being used. This is also why the interactions
between different factors are given strategic importance, allowing for the possible
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Table 4.2: Analysis of Variance (ANOVA) for error and time.
Texture FACTOR p-value error p-value time

NumParticles (A) 0.060 0.000
DefSame (B) 0.037 0.431

Stones DefAll (C) 0.678 0.000
GroupDef (D) 0.000 0.000
Granularity (E) 0.000 0.000

NumParticles (A) 0.000 0.000
DefSame (B) 0.598 0.941

Guernica DefAll (C) 0.621 0.000
GroupDef (D) 0.000 0.000
Granularity (E) 0.000 0.000

appearance of some noisy factors that cannot be controlled. Nevertheless, the
overall performance is always descendent. It should also be mentioned that
the behaviour from 6000 number of particles and 8000 of granularity, the error
values are no longer decreasing because it achieves a saturation state where
the number of particles and the granularity do not affect the response. Similarly
but in the converse sense occurs in the time response (see Figure 4.10 and 4.11
right). The reaction in the number of particles increases at all times while in the
granularity case, starting from the 6000, time remains constant

4.5.1 Experiments
This section presents the results obtained with the proposed method and its
optimal parametrization. A hardware set-up that consisted of an Intel Core
2-Quad Q9550 at 2.83 GHz and 3 GB of RAM with a Logitech QuickCam
Connect webcam was used to obtain the results.

4.5.1.1 Robustness
The first type of experiments involved applying a Gaussian noise with a normal
distribution to the acquired matches. These matches are those that are provided
to the PF. This experiment thus allows us to evaluate the robustness of the PF
results. Three main tests were developed as follows.
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Figure 4.10: Guernica factors behaviour. The behaviour of the
Granularity factor and NumParticles are studied, fixing the factors
which are not considered as significant (with the exception of the
GroupDef ).

The first test consisted in introducing noise in the input data. More
specifically, a Gaussian noise from 5 to 20 pixels was set to a percentage
number of random matches that varied from 1 to 20. By analysing the results
plotted in Figure 4.12, it can be stated that the PF kept the reprojection error
(in pixels) at reasonable levels despite the presence of some outliers. Thus, it
could clearly be seen that once the noise exceeded 10 pixels the results started
deteriorating. For example, with 15 and 20 of noise for the 15 percent of matches,
the reprojection errors are 5.11 and 7.72, respectively. Moreover, there are no
more results presented when the noise is higher than 20 pixels because from
there on, the deformations are degraded as can be seen in the last example of
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Figure 4.11: Stones factors behaviour. The behaviour of the
Granularity factor and NumParticles are studied, fixing the factors
which are not considered as significant (with the exception of the
GroupDef ).

Figure 4.12. Nevertheless, although the results deteriorated when the number of
noisy pixels exceeded 10, the projection was not bad at all and the PF deduced
correctly the type of deformation that was being applied.

The second test introduced noise to all correspondences but within
reasonable limits. Thus, the Gaussian noise varies from 1 to 5 pixels of standard
deviation. The Graph 4.13 (left) shows that the reprojection error (measured in
pixels) increases provided that the noise increases too. Even so, it should be
noted that the results are sufficiently valid to obtain a correct visualization.
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Figure 4.12: Reprojection error when input data is perturbed by
adding Gaussian noise. The white mesh of the photography represents
accurate results while the red represents the noisy results. The
resultant examples are detailed with their corresponding configuration
(i, j), where i is the number of noisy points and j represents the noise.

And finally, the last type of evaluation of performance consisted in
introducing a small noise to the inliers while for the considered outlier
correspondences (randomly selected as in the first test) a very large noise was
added, in this case 20 pixels of standard deviation. Figure 4.13 (right) indicates
the results for each of the percentages of matches. Unlike the first test where
the noise was only added to various matches, in this case the error is larger but
did not differ a great deal from the first. For instance, for the case where the
number of selected matches was 15 and the noise 20, the error was about 10.08
while in the first test achieved 7.72 pixels.

It is equally important to highlight the fact that the points most affected by
the noise are those that suffer a deformation. In other words, the majority of the
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Figure 4.13: Reprojection error when input data (all correspondences)
is perturbed by adding Gaussian noise (a) and reprojection error when
introducing small amount of noise to the inliers and very large noise
to the outliers from the input data (b).

points that are located in the centre of the texture, practically are not altered
since it can be considered as a rigid problem due to little or no deformation.

4.5.1.2 Visual Quality
Figure 4.14 shows the correct visual output obtained by this method on each
of the three texture examples (Stones, Guernica and Salzmann). The Stones
example represents the reconstruction of a deforming sheet of paper after a video
sequence of 89 frames, while the Guernica and Salzmann examples performed
the reconstruction after a video sequence of 51 and 71 frames, respectively.
These texture examples were selected based on the uniformity of the features
detected in each. Stones is composed by a large number of features distributed
in a uniform way, while Guernica has both fewer points and, a more irregular
distribution. Salzmann, in turn, looks like Stones. The video sequence2 was taken
from (Salzmann et al., 2007a). It was used to compare the quality of this proposal
against existing solutions and to check the visual behaviour of this method in
an environment that is equal to that used in other works. It should be noted that
the results of this proposal are as good as those provided by other approaches.

Finally, a set of experiments with materials such as clothes has accordingly
been performed. Even though false positives may appear (middle Figure 4.16),
sometimes the results are visually acceptable (on the right of Figure 4.16,
although a forward movement is being applied, the model fits backward). In

2Paper_bend.zip example from http://cvlab.epfl.ch/data/dsr/
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Figure 4.14: Results of 3D recovering surfaces. These are the three
experiments performed: Stones (top), Guernica (middle) and Salzmann
(bottom). The following information is presented for each of the three
examples: the original image (first row), the projection of the recovered
3D mesh in that image (second row) and the recovered 3D mesh (third
row).

other cases, though there are many deformation possibilities, the system returns
satisfactory results (see Figure 4.15).

Figure 4.15: Response of the proposed recovering non-rigid 3D surface
for clothes model.
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4.5.1.3 Performance
The PF was also tested with different hardware configurations. Three different
PCs were used: an Intel Core 2-Quad Q9550 at 2.83 GHz and with 4 GB of
RAM, an Intel Core 2-Duo E8500 at 3.16 GHz and with 3 GB of RAM and an
Intel Core i7-930 2.8 GHz and with 3 GB of RAM. Table 4.3 presents the times
for the PF method and the FtF step. The execution time of the FtF includes
both the visual detection and the PF method.

Table 4.3: Execution times (in ms) for FtF and PF using different PCs.
Frame-to-Frame tracking Particle Filter

Core 2-Duo 48.81 33.62
Core 2-Quad 34.61 19.72
Core i7-930 30.94 17.23

The analysis of these values allows inferring that this method executes in
real time and is highly parallelizable, as demonstrated by the better results
obtained with better configurations. Indeed, a future GPU implementation of
this proposal will allow obtaining lower computation times, and consequently
improve other aspects such as more detailed databases or better image
processing.

Finally, regarding the Initialization step, it is also worth mentioning that
the computational cost of the described stage runs in average time from ∼75
ms to ∼150 ms depending on the selected hardware configuration. Since it is a
single computation of the camera pose at any given time, it does not affect the
performance of the whole process, so it guarantees the execution in real time.
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4.6 Discussion
The problem of recovering the 3D shape of a deformable surface has become
an important issue in different areas such as Computer Graphics (CG) and CV.
This chapter has presented a study of the different methods that can be found
in the literature in order to solve the problem of the ambiguities that arise when
reconstructing these types of surfaces.

Figure 4.16: False positives for two types of textured planar models:
sheet of paper and a shirt.

Since the range of deformations is limited, complex deformations may cause
false positives (see Figure 4.16). If this happens, a simple shake will be enough
to restart the recognition. As with the majority of the non-rigid tracking solutions
that are based on storing a set of deformations in a database, the main problem
is to include a feasible set of deformations that best fits the physical behaviour
of the model. At the same time, it should be pointed out that extrapolating this
methodology to other types of planar objects could be complex (see Figure 4.16
clothes examples). So, the creation of a more complex database, containing as
the composition of various deformations, could solve this issue.

On the other hand, the composition of deformations is not addressed. Notice
that the left example in Figure 4.16 fits to one of the two deformations that are
being applied. By the term composition is meant the combination of various types
of parametrization of deformations at the same time in the same 3D structure.
The main goal of this solution is oriented to handle simple deformations that
do not achieve a high degree of accuracy but instead correct visual feedback,
i.e., achieve a real-time performance over accuracy sufficiently acceptable for the
human eye. Incorporating composition of deformations will involve increasing the
size of the database and, consequently, the computational cost would be higher
as well as the reserved memory. In this respect, it shall seek an appropriate
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balance between the performance of the system and the size of the database.
Moreover, the presented category of clusters is considered complete enough to
cover a set of simple deformations to meet the requirements mentioned above.

Additionally, the design selected to create the database based on clusters is
applied in a supervised manner. In other words, in cases where the deformation
is very low, the search is almost always performed along all the clusters
giving similar probabilities. However, as the deformation achieves higher levels,
the same cluster is given higher priority over the rest. This is based on the
assumption that the greater the degree of deformation, the higher the probability
of being close to the same cluster. By this assumption, when the deformation
pattern (1-corner, 2-corners and 4-corners) begins to appear, the particles of
the same cluster are more likely to be closer than the rest of the remaining
clusters. This ensures that no abrupt changes appear with regard to the different
parametrizations of deformations. Furthermore, the selected cluster structure
together with the current function of similarity gives as a result the correct
visual feedback and the real-time performance that is wanted to achieve.

Consequently, this framework is a complete solution that detects and tracks a
texture in real time with a set of deformations that best fits the logical behaviour
of a sheet of paper.

In addition, a refined DoE has allowed to deduce the optimal parametrization
of a PF that achieves correct visual results in line with a low computational cost.
The robustness of the system has also been tested by adding noisy matches and
comparing it with other approaches.

Finally, Figure 4.17 shows the visual results from different viewpoints. It is
not only check the output 3D reconstruction of the mesh from a frontoparallel
view of the camera, but also from more side-views. In this sense, as can be
appreciated in Figure 4.17, the side-view varies from medium (left) to extreme
(right). Moreover, the error in pixels varies from 4.68 to 12 for the Stones
example and from 4.7 to 11.8 for the Guernica one in the case of medium and
extreme side-views, respectively. In conclusion, it is possible to check that when
a deformation is applied from an extreme side-view of the camera a degree of
occlusion of the texture is caused and consequently the visual feedback is not
as good as being in the frontoparallel case. Even so, it can be seen that the
visual feedback is correct enough for the human eye.
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Figure 4.17: 3D reconstruction from different points of view. Different
side-views of the camera for two different types of textures (Stones at
the top and Guernica at the bottom). Medium (left) and extreme (right)
side-views are shown.
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Chapter 5
Deformable Object Tracking

Para algunos, la vida es galopar un camino
empedrado de horas, minutos y segundos.

Yo más humilde soy, y sólo quiero que la ola que
surge del último suspiro de un segundo me

transporte mecido hasta el siguiente.
La mala gana, Santos Isidro Seseña

The content of this chapter has been published in:
Leizea, I., Álvarez, H., Aguinaga, I., and Borro, D. “Real-time deformation,
registration and tracking of solids based on physical simulation”. In
Proceedings of the 13th IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 165–170. Munich, Bavaria, Germany.
September, 2014.
Leizea, I., Mendizabal, A., Álvarez, H., Aguinaga, I., Sánchez, E., and Borro,
D. “Tracking of deformable objects based on a visual approach and physics
simulation for robot-assisted surgery”. Submitted to Computer Graphics
and Applications, IEEE, 2015.

151



152 Chapter 5. Deformable Object Tracking
5.1 Introduction

Recovering the 3D shape of a non-rigid object presents the same challenge
as occurs with the deformable surfaces (see previous Chapter 4). This challenge
entails a highly ambiguous problem because many deformable objects (with
completely different shapes) can have the same projection. In Computer Vision
(CV) there are few solutions that solve the registration of a non-rigid 3D object
and the number of approaches decreases when a real-time constraint is set. This
is mainly caused by the complexity of the recognition and non-rigid registration
steps.

Based on this assumption, there has been significant research in recent years
in the field of tracking and recovering deformable objects. Many of these works
(Haouchine et al., 2013a) are focused on very specific fields such as medicine,
where the models addressed have a particular geometric appearance. Because
of this narrow focus, all these approaches have difficulties dealing with objects
that have different shapes.

With respect to image registration, two kinds of approaches can be found:
those based on detecting features of the objects (Salzmann and Fua, 2011), and
those that use optical-flow (Munoz et al., 2009) (e.g. determining the intensity
differences between two consecutive images). Both techniques require that the
objects be textured which is not always possible. In addition, these works are
mainly focused on the robustness of determining the shape of the deformable
object.

For all the reasons cited, this chapter presents two methods for registering
deformations of 3D non-rigid objects. These solutions differ mainly in the physics
formulation used to obtain a realistic behaviour of the deformations applied to
the bodies. The first solution is based on a Mass-Spring Model (MSM) system in
order to achieve a real-time non-rigid object registration method with a correct
visual feedback. The second, is focused on a Finite Element Method (FEM) to
achieve more accurate results than the former. Nevertheless, these two solutions
share the same concept of tracking and registering 3D models regardless of their
geometric shape. They can be used, for example, to provide visual feedback for
applications such as an assembly of flexible components in the industry or even
medical surgery. Additionally, the detection and tracking system is not based on
features, but is based on templates instead (LINEMOD method (Hinterstoisser
et al., 2011)). They can therefore operate with textured or untextured objects. This
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makes these methods robust against sudden illumination changes. Furthermore,
they not only obtain the deformed structure, but also the camera pose for each
frame. In fact, these methods can handle large camera movements since, unlike
other solutions, they do not require a static camera.

The following lines provide an overview of some works related to recovering
a deformable 3D shape. The various steps that have been carried out to solve the
problem of recovering a non-rigid 3D object and deducing the camera pose that
best fits the projection for both types of physical formulation will be then detailed.
The third section describes some experiments that validate the performance of
the physical methods in terms of time consumption and stability, as well as
giving a comparative account of the two methodologies. And finally, the last
section presents the basis for the development of a surgical Augmented Reality
(AR) system.
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5.2 Previous Works

Obtaining the deformation of a non-rigid object is a complex task in the field
of CV. Amongst the majority of approaches that recover the 3D structure of a
non-rigid object; the problem is divided into two steps: image registration and
shape inference. The first step deals with the resolution of the visual part of
the problem (e.g. detecting the object in the image), while the second step deals
with handling the deformation of the shape of the object.

As far as image registration is concerned, the issue can be tackled using
two main approaches: feature-based methods or direct methods. Feature-based
methods (Ahmed et al., 2008; Hayashi et al., 2012) focus on detecting points
(also called features) that are distinguishable from their neighbourhood. Some
correspondences are generated between a reference model and an input image
to solve the registration problem. Direct methods (also known as pixel methods)
(Jordt and Koch, 2011), in turn, use the intensity differences between two images
to calculate the correspondences.

The shape inference process adjusts the acquired visual information to
the shape. Physics-based systems adjust the shape according to its physical
properties. Others (Brunet et al., 2011), however, integrate geometrical or
temporal constraints to the system and solve it through optimization techniques
such as Second Order Cone Programming (SOCP). Similarly, there are
approaches that learn the principal deformations of the objects to tackle the
problem.

On the other hand, there are many ways to capture images. There are
solutions where the image is captured by monocular cameras (Shen et al.,
2010), stereo cameras (Haouchine et al., 2012) or more recently RGB-D cameras,
such as the Microsoft Kinect. This last type of approach combines the colour
information from the camera with the depth information obtained from an infrared
sensor. The main advantage of the RGB-D approach relative to methods based
on conventional cameras is that the former captures a depth map (a matrix that
contains distance estimations for each pixel) in addition to conventional colour
images. However, the depth images captured by these kind of devices contain
noisy data and produce areas with no information.

Image registration as well as shape inference solutions are combined in
several ways with different types of devices to capture images in many of the
approaches presented below.



Section 5.2. Previous Works 155
In terms of feature-based vision methods, various examples can be found in

(Salzmann and Fua, 2011) and (Salzmann et al., 2007c). These works perform
the reconstruction of non-rigid surfaces by learning the deformation-modes of
the shape. They use Principal Component Analysis (PCA) to compute modes of
deformation and generate a database of feasible shapes (Allen et al., 2003).
In (Salzmann et al., 2007c), the 3D deformation modes are performed by
varying angles between facets, while in (Salzmann and Fua, 2011), the mesh is
subdivided into a set of patches that are combined linearly. In contrast, there
are other solutions that do not obtain the deformation-modes of the shape but
still solve the visual part by using a feature strategy (Schulman et al., 2013). In
this sense, local rigidity constraints (Shen et al., 2010; Perriollat et al., 2011)
or unconstrained quadratic optimization (Zhu et al., 2008) surface reconstruction
can be carried out. However, the primary focus of many of these approaches
(Salzmann et al., 2007c) is on planar surfaces. The main drawback being that
most of them have a high computational cost.

Following the idea of using visual cues, there are real-time approaches like
(Pilet et al., 2005), even some using RGB-D cameras (Hayashi et al., 2012;
Shimizu et al., 2013), which solve the registration problem. Nonetheless, they
are focused on textured surfaces such as T-shirts. Similarly, approaches like
(Haouchine et al., 2013a; Haouchine et al., 2013b) work with stereo cameras
and use a FEM formulation in order to capture the behaviour of the object
and calculate the deformation. These approaches, however, are very oriented to
applications in medical surgery, which usually involves specific formulation, for
instance, the position of the camera should be static, and in some cases, they are
not executed in real time (Haouchine et al., 2012). Furthermore, (Haouchine et al.,
2014a) proposes a real-time method to register the non-linear elastic model
deformations using the image points acquired from a monocular camera. However,
this solution is based on an orthographic projection since the minimization is
easier than with the perspective projection. Like the former approaches, (Shen
et al., 2008; Shen et al., 2010) also use a stereo camera to simplify the recovery
process, but instead of a physics-based model, they use iterative processing
(Haehnel et al., 2003) or mathematical tools like SOCP which involve a complex
optimization task to be carried out.

Another well-known technique that makes use of features is Non-Rigid
Structure from Motion (NRSfM) (Bregler et al., 2000; Torresani et al., 2001;
Torresani et al., 2003; Del Bue and Agapito, 2006; Del Bue et al., 2007; Fayad
et al., 2010; Taylor et al., 2010; Russell et al., 2011), which is based on the
factorization method (Tomasi and Kanade, 1992). In contrast to the conventional
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feature-based methods cited above, in this case, it is not necessary to have
a reference model because it simultaneously tracks and recovers the shape of
non-rigid 3D surfaces. An example of a mechanical-based tracking method as
(Agudo et al., 2012b), presents a FEM elastics thin-plate solid within a Bayesian
Extended Kalman Filter (EKF) to estimate the deformation. The main drawbacks
of NRSfM are that it requires good textured surfaces and that the amount of
modes limits the deformations to linear modes, excluding non-linear deformation
modes such as bending.

However, the main drawback in most of the above cases lies in the fact that
they have to overcome several challenges such as working with a limited set of
feature points.

In contrast to feature-based methods, direct-based or Analysis-by-Synthesis
(AbS) methods (Jordt and Koch, 2011; Fugl et al., 2012; Jordt and Koch, 2013b)
use the image data in combination with depth and colour information. In (Jordt
and Koch, 2013a) the reconstruction of the model is based on a Non-Uniform
Rational B-Spline (NURBS) based deformation. In contrast to physics-based
methods, other approaches (Delingette et al., 1991; McInerney and Terzopoulos,
1993; Salzmann et al., 2007b; Salzmann et al., 2008b) use temporal constraints
to minimize the error. There are also studies that focus on estimating the
deformations for the human body (Koch, 1993; Shotton et al., 2013) or specialize
in faces (Cai et al., 2010; Munoz et al., 2009). These methods are highly
correlated with finding differences between two consecutive frames. As with
most of the existing solutions in the literature, they are oriented toward cloth
deformations (Rosenhahn et al., 2007; Hilsmann et al., 2010). Nevertheless,
the main drawback of these methods is that they usually depend on a good
initialization and require to make corrections over time in order to not be prone
to drift.
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5.3 Overview
Having presented the advantages and disadvantages of the existing techniques,
the next sections present two methods with different physical formulations that
are able to recover deformations of non-rigid 3D models regardless of their
geometric shape.

The proposed methods not only obtain the deformed structure, but also
take advantage of a template-based tracking method (LINEMOD method
(Hinterstoisser et al., 2011)) to continuously update the camera pose. Unlike
other solutions, these methods do not require a static camera. In fact, the methods
handle large camera movements.

Additionally, the 3D registration and tracking of texture-less 3D objects is
not based on features but templates, and can therefore operate with textured or
untextured objects. For this purpose, an RGB-D camera that obtains both the
colour and depth data is exploited, avoiding using other formulations that are
not usually robust for texture-less surfaces or objects. This makes the solutions
robust against sudden illumination changes.
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5.4 Proposed Method using a Mass-Spring Model
Compared to existing solutions, this solution does not achieve the same level of
accuracy. On the other hand, it returns correct visual results for the deformations
of any kind of object (in terms of its geometrical shape) in real time.

For this purpose, the geometry of the model, represented as a triangulated
mesh, is adjusted to the raw information acquired from an RGB-D camera. This
triangle mesh in turn, is captured through a scanning process (see Figure 5.1)
performed by the 3D Sense™ Scanner.

(a) (b) (c)

Figure 5.1: Triangle mesh acquisition. The object is scanned by the
3D Sense™ Scanner (a). Once the entire cloud is captured (b), the
final mesh is computed as a triangle mesh (c).

The RGB-D camera obtains both the colour and depth data that is
incomplete since it has a lot of noise with large holes (as Figure 5.2 shows)
providing an incorrect visual feedback. In addition, the cited registration and
tracking of texture-less 3D object system based on templates exploits the use of
the RGB-D camera.

This camera information, in turn, is used to feed the input of a physics-based
method, as is the case of MSM, which gives a realistic behaviour to the solid in
order to obtain the deformations. Since the aim of the presented method is not to
achieve an accurate deformation of the mesh, an MSM system has been chosen
in order to obtain a visually correct solution that can be easily integrated with
other AR technologies. Compared to other formulations such as FEM, MSM uses
a simple structure and offers real-time performance (see Section 5.4.2). Thus, the
experiments presented in Section 5.4.3 demonstrate that the method recovers the
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Figure 5.2: The raw data acquired from the depth camera. The first
column contains the original model while the adjacent columns present
front and lateral views of the camera’s raw data.

3D structure of a deformable solid with a low computational cost. Furthermore,
this physical model supports multiple deformation modes at one time.

In conclusion, this chapter presents a complete framework for tracking and
registering deformations of objects using a physics-based formulation. Figure 5.3
illustrates the framework which is divided into two main phases: preprocessing
and online execution. These two phases, in turn, are subdivided into two main
stages. The first focuses on the process of detecting and tracking rigid objects
(presented in Section 5.4.1). To this end, it takes advantage of an RGB-D camera
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Preprocessing

Tracking

Object Deformation

Online Execution

Model Preprocessing

Keypoint Generation

Voxelization

Mass-Spring Model 
Initialization

Template Generation

Mesh Registration

Keypoint Selection

Correspondence Matching

Voxel Displacement

Mesh Physical Simulation

Model Fitting

Figure 5.3: Overview of the proposed method (preprocess and online
phases).

to obtain both the colour and depth information. The second stage retrieves the
deformations of the objects (explained in Section 5.4.2), i.e., integrates the colour
and depth information into a physical model. Therefore, each of these two steps
generates preprocess information that is subsequently used in the online phase.
Following is a description of each step.

5.4.1 Tracking
The objective of this phase is to recognize and track 3D objects from a point
cloud captured by a camera. The camera pose is obtained for each frame, as
it would be with a rigid solid problem. A template-based LINEMOD approach
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(Hinterstoisser et al., 2011; Hinterstoisser et al., 2013) is used, as it guarantees
the detection of texture-less objects in cluttered scenes.

This method requires an RGB-D device and is divided into two major phases:
learning and detecting the objects. The following overview is a brief description
of this approach for the sake of completeness. More detailed information can be
found in (Hinterstoisser et al., 2013).

+ =

Figure 5.4: Template Learning. Two types of features are detected to
generate a template: the colour gradients from the silhouette of the
shape and the surface normals from the interior of the shape.

5.4.1.1 Template Generation
This first phase trains and stores in a database a range of templates of the
object in order to detect similarities with the input image given in the detection
phase (see Section 5.4.1.2). Each template corresponds to a different camera
point of view. The exact number of templates varies depending on the geometry
of the training model (no rotations for sphere objects), but no more than 10
templates are stored at a time. The types of features that are extracted to
generate a template are colour gradients and surface normals (see Figure 5.4)
which are robust against changes of illumination and noisy inputs. The colour
gradient of largest magnitude for each colour channel is extracted from the RBG
image. These gradients are obtained only for the silhouette of the model to deal
with texture-less objects. On the other hand, the depth map retains the surface
normals, in particular, the orientation of the normals from the interior of the
model.

Finally, the 2D bounding box for each template and its corresponding pose is
stored in addition to the purely visual information (colour and depth). This pose
is obtained through a marker tracking system and represents the transformation
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between the camera and the model coordinate systems (see Figure 5.5). This
means that in following operations (see Section 5.4.2.2) of the online phase, this
reference pose must be refined applying a delta transformation in order to adjust
the reference 2D bounding box to the bounding box detected in the input image.

Rtref
Rtref

Figure 5.5: Each template in the database is composed of a
2D bounding box, the current processed point cloud, and the
corresponding pose. This pose is obtained using a marker tracking
system.

5.4.1.2 Online Execution
The online or detection step generates a number of hypotheses and selects the
template that best fits the input data from the database (see Figure 5.6). In
order to estimate the correct position of the object in the scene two tests are
completed.

First, a search for correspondences between the input image and the
reference image is performed. This search only takes the colour information
into account, i.e., it computes the number of pixels (as far as colour is concerned)
that the input cloud and the reference template have in common.
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Figure 5.6: Tracking online execution. It generates hypotheses and
selects the template that fits best.

The second test consists in computing the orientation and position of the
object according to the previous correspondences. Since the reference and input
clouds may not be completely aligned (the templates stored in the training step
have been generated from a discretized point of view), the Iterative Closest Point
(ICP) algorithm is used to obtain an accurate alignment between the two point
clouds (see Figure 5.7). For all the hypotheses that have passed the colour check,
the last pose is retrieved using the input depth map information (working with
normals). It is worth noting that to carry out this process, the implementation
that is available in the Point Cloud Library (PCL) (Aldoma et al., 2012) was
used.

Templatei

Templatej

ICP

Current point of view

Figure 5.7: The Iterative Closest Points (ICP) algorithm is required
to obtain accurate alignment since the templates are extracted from a
discretized point of view.

The two tests mentioned are carried out in each frame. It should, however,
be noted that once the object is detected after a search over the entire image
(called Tracking-by-Detection (TbD) step), the following searches are bounded
searches. This means that the search is performed in a neighbourhood close
to that found in the previous frame (called Frame-to-Frame tracking (FtF)). The
reason for this strategy lies in the fact that the computational cost of the tracking
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process is reduced. Moreover, in the case that a satisfactory search is not found
in that bounded search, the process resumes, starting from the initial state of
the tracking.

5.4.2 Object Deformation
The main challenge of the non-rigid problem is to know what the transformation
of the mesh will be after suffering a deformation. Therefore, this second phase
is responsible for performing the deformable registration of the non-rigid model.
As in the previous tracking step (see Section 5.4.1), here the stage is also
divided into a preprocess task and online execution. The preprocess consists
in defining a properly parametrization (see Section 5.4.2.1) of the physical
model. The online execution in turn, calculates the correspondences between the
model and the point cloud (see Section 5.4.2.2) acquired from the camera. These
correspondences are then adjusted to a physical behaviour (see Section 5.4.2.3),
and finally, the displacements are extrapolated to the triangle mesh (see
Section 5.4.2.4).

5.4.2.1 Model Preprocessing
The model is preprocessed to generate the data structures required for its
physical simulation. This procedure is divided into several steps: Keypoint
Generation, Voxelization and Mass-Spring Model Initialization.
Keypoint Generation. Since features are not used to calculate deformations,

a list of keypoints uniformly distributed on the surface of the model (see
Figure 5.8(b)) is defined in order to relate the visual part with the 3D
model. These keypoints operate as control points in order to calculate the
deformation in the steps that follow. These keypoints are used to calculate
the correspondences between the vertices of the triangle mesh and the raw
point cloud (see Section 5.4.2.2). Thus, these keypoints act as a reference
in order to extrapolate the movements and apply it to each of the vertices
of the mesh.
To carry out this task, a ray casting technique is developed. It traces rays
from the bounding box to the centroid of the model and calculates the
intersection points of the rays with the triangles that make up the mesh.
Moreover, this phase performs a filter in order to remove the keypoints
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(a) (b) (c) (d)

Figure 5.8: Preprocessing. From the input triangle mesh (a), a list of
keypoints is extracted (b) and the shape is subdivided into voxels (c)
to approximate the structure to the physical model (d).

that could affect the correct functioning of the deformation process. This
means that the keypoints that are relatively close (based on a threshold)
to the bounding box of the object are discarded to avoid noisy movements
along the corners.

Voxelization. This step subdivides the volume into cells (also called voxels).
A space partition is generated from the original geometry of the model.
This data structure gives all the information required in order to adjust
the object shape to the underlying MSM.
First, the global bounding box of the model is computed based on the
triangle mesh. This bounding box is then divided uniformly into equally
sized cubes (voxels) and the required memory is reserved. Each voxel is
assigned to the triangles contained therein, and viceversa.
In order to identify which voxels are intersected by a given primitive
object, it may be possible to compare each triangle of the scene with
each cell of the voxelized mesh. However, this solution has a high
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computational cost. Consequently, to speed up the calculation and identify
which voxels are partially or totally included in a triangle, a test based
on a triangle-AABB (Axis Aligned Bounding Box) is performed. This
intersection test (Akenine-Möller, 2005) analyses only the voxels that
are in collision with the AABB of the triangle to reduce the number of
intersection tests.
Once an intersection between a triangle and a voxel is detected, a pointer
to the triangle is stored within the data of the voxel. This way, each voxel
stores a pointer list to all the triangles that intersect its volume. The
different stages of the process are graphically represented in Figure 5.9.
Finally, the classification process is performed. In this phase, apart from
the allocation of the voxels to triangles which intersect, a classification
process is performed of each of the cells. Three different types of voxels
are distinguished: interior, exterior and boundary (see Figure 5.8(c)). The
interior voxels are classified as the voxels that are in the inside of the
model and do not intersect with the triangles of the mesh. The exterior
voxels are outside the model and they too do not intersect with the triangle
mesh. The boundary voxels are those that intersect with the triangles of
the mesh representation of the object.
The classification process starts classifying all the cells as internal and
once the intersection between the voxels and triangles is computed, those
cells are set as boundary cells. Finally, it is necessary to make a final
run to identify the external cells.
Figure 5.10 shows an example of the steps that are performed to obtain
the voxel classification.

Mass-Spring Model (MSM) Initialization. As previously mentioned, MSM
offers advantages over other deformation simulation methods such as
the FEM. MSM is a physical simulation model with a straightforward
implementation and with a relatively small computational cost.
Furthermore, it works easily with a voxel structure, which is a simple
structure that can be easily obtained for an object of any shape (see
Figure 5.8(d)).
Following the idea of classical mechanics, MSM is a particle system that
is composed of a set of particles (each one characterized by its mass,
position and speed) and a set of springs that link them together in pairs.
These springs exert an elastic force on each particle when the mesh is
deformed (see Equation 5.1).
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Voxels

Primitives

AABB

Figure 5.9: 2D representation of the voxelization process. Memory
allocation (a), voxels that intersect with the bounding box of every
primitive are selected (b), a triangle-AABB test is performed between
the primitive and every selected voxels (c) and the coloured voxels
contain at least one primitive (d).
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Figure 5.10: Voxel classification: interior voxels in blue, external in
yellow and boundary ones in pink. Initially, all voxels are classified
as internal (a); the voxels that contain a triangle are classified as
boundary (b). The process starts finding the exterior voxels (c) and
finally, the obtained classification (d).
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fi = −fj = ks xj − xi∣∣xj − xi∣∣
(∣∣xj − xi∣∣− l0) , (5.1)

where fi and fj are elastic forces on particle i and j , respectively. ks, is
the stiffness of the spring and determines the behaviour of the model, l0is the initial distance between the pairs of nodes, and xi and xj are the
positions of the particles.
The forces are proportional to the elongation of the spring and the k
values (the stiffness of the spring) determine the behaviour of the model,
i.e., the higher the k values, the higher the stiffness of the simulated
body, and vice-versa. In this context, the k values are computed based
on (San-Vicente Otamendi et al., 2011). This work uses an eigenproblem
approach to find the parameters of a cubical MSM. Taking the FEM
model as a reference, it is able to define the parameters k1, k2 and k3for the stiffness of the springs for each edge, face diagonal and internal
diagonal of a cube, which reduces the difference between the modes to a
minimum. The parameters of MSM can be rewritten as Equation 5.2 (in
the experiments Poisson’s ratio is 0.0 and Young Modulus is 29 KPa to
simulate a soft sponge-like material).

ki = L0
2 k

′
iE, (5.2)

where ki is the stiff value and k ′i is the pseudo-stiffness values for edge
springs, face diagonals and internal diagonals. L0 is the initial length of
the spring and E is Young’s modulus.

5.4.2.2 Mesh Registration
Once the camera pose is obtained in the tracking step (see Section 5.4.1), mesh
registration is used to provide an estimation of the correspondences between
the offline keypoints (see Section 5.4.2.1) and the current point cloud captured
by the RGB-D camera for each input frame. These matches serve as input to
the MSM, which are responsible for calculating the new shape of the object.
This stage belongs to the online execution and involves three steps: Keypoint
Selection, Correspondence Matching and Voxel Displacement.
Keypoint Selection. Not every keypoint selected in the preprocessing model

is visible all the time. In addition to the keypoints discarded in the
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 5.11: Object deformation. The process of registering the
deformation of a triangle mesh (a). An input point cloud (c) is given to
match the points with the corresponding keypoints. The matching step
(d) is divided into two octree searches (blue OBB test-1 and orange
OBB test-2). Once the matches are known and extrapolated to the
voxel structure (b), a physics-based model is introduced to estimate
the deformation of the voxels (e) and an isoparametric formulation is
used to deduce the interpolation between the voxels and the mesh
triangles (f ) to know the final structure of the model (g).

preprocessing step, the system must take into account that all keypoints
are not visible during the online execution due to the point of view of
the camera. Therefore, all the keypoints that are not visible must be
discarded, whether deformation is being applied at that point or not.
Although the visible keypoints can be extracted from the selected tracking
template (precalculated in the preprocessing step), it may be the case
that other tracking methods do not return this information. Therefore,
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this framework is composed of two totally independent and self-sufficient
stages: detection/tracking and deformation. For this reason, in this step,
a series of tests are run in order to filter and select suitable keypoints.
More specifically, there are two main types of tests: occlusion query and
points per triangle.
• Occlusion query. The points that are not in front of the camera

are set as not visible and consequently discarded. The procedure
computes the normal vector of the keypoint (the normal of the triangle
it belongs to) and calculating the difference (in degrees) with respect
to the vector that represents the point of view of the camera (see
Figure 5.12). If the difference is below a threshold value, the point
belongs to a back triangle and it is discarded. Otherwise, it lies on
a front triangle and it is retained for further processing.

Figure 5.12: Occlusion query. The difference (in degrees) respect to
the vector that represents the point of view of the camera.

• Points per triangle. This test discards the keypoints whose triangles
are not completely visible. A triangle is defined as not completely
visible, if at least one of the points that lie on it is not visible. This
rule is applied because the keypoints that lie on the triangles that
are not completely visible are likely to be a source of errors.

Correspondence Matching. Once the 2D position of the model’s bounding
box is defined by the tracking method, its corresponding pose is obtained
from the trained template. However, it is necessary to apply a delta
transformation to calculate the final pose (see Figure 5.13). First, a
homography transformation (H) is calculated between the reference
bounding box and the detected bounding box in the image. In this way
the resulting 3D delta transformation (∆Rt) is deduced from the stored
reference 3D pose in order to match the projection of the reference
bounding box to the currently detected bounding box.



172 Chapter 5. Deformable Object Tracking

H

∆Rt

Figure 5.13: The reference pose is obtained by calculating a delta
transformation between the reference bounding box and the detected
one.

Nonetheless, although an initial 3D pose is estimated, it is necessary to
make a registration alignment between the input cloud and the reference
model because it may be possible that they are in different scales (in
terms of CAD modelling), and thereby compute a more refined pose.
Thus, by projecting the 3D model keypoints with the former calculated
pose, the corresponding 3D coordinates of the input frame are obtained,
establishing 3D-3D correspondences between the two point sets. Instead
of using algorithms such as ICP that are computationally expensive for
this registration refinement, the algorithm of (Umeyama, 1991) is used to
estimate the transformation between the two point clouds. This algorithm
returns the transformation between two point sets according to:

e2 (R, t, c) = 1
n

n∑
i=1

∥∥yi − (cRxi + t)∥∥2 , (5.3)

where given two sets of points xi and yi, the mean squared error is
minimized to obtain the transformation parameters R , t and c, which
correspond to rotation, translation and scale values, respectively.
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(a) (b) (c)

Figure 5.14: Correspondence matching. Once the search areas are
defined (a), two test are applied in order to relate the keypoints to
the point cloud: OBB test-1 (b) and OBB test-2 (c).

After the transformation is obtained, the matching (finding correspondences
between the point cloud and the keypoints) process begins. The main
goal here is to find the associations between the visible keypoints with
the points in the point cloud. Therefore, an intelligent search structured
as a scale search is performed to achieve a low computational cost (see
Figure 5.14 (a)). This search is divided into two main levels. The first level
is used to discard the keypoints that do not have any deformation, and
the second serves to make the association between the keypoint and a
sample of the input point cloud.
In order to carry out this search, two search areas are defined for all
keypoints. These areas are represented by two different OBBs (Oriented
Bounding Box), each of which is related to two different tests (see
Figure 5.11 (d)). These OBB areas differ from the size of the height value.
The values for these boxes are fixed according to the measures of the
global bounding box and calculated offline. The orientation, in turn, is
defined as negative to the normal of each keypoint in order to find the
deepest point.
The first test (defined as OBB test-1) corresponds to a search at the
smallest OBB (see Figure 5.14 (b)). The main goal of this test is to verify
if there is any point inside a small box around its position. If there is
one, the keypoint will be discarded since it is understood that there is
no deformation for it or that the deformation is so small that it can be
disregarded for the global deformation. This also offers robustness against
possible noise in the data of the cloud as captured from the camera.
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Figure 5.15: The displacements of the vertices of the voxel are applied
in a weighted manner.

Once the non-deformed keypoints are discarded with the first test, the
following search (defined as OBB test-2) finds a correspondence over
the second box see Figure 5.14 (c)), more concretely it provides the most
distant point.
Both searches are carried out through an efficient octree search based
on a recursive search of the boxes (implementation provided by the PCL
library). This search allows an octree representation to be obtained for a
given input cloud point and, consequently, performs fast intersection tests.

Voxel Vertex Displacement. Finally, the displacement of the vertices of the
voxels must be calculated in order to extrapolate the nodes of the physical
structure (see Figure 5.11 (e)). This process detects the voxel to which the
keypoint belongs and applies, in a weighted manner, the displacement to
the vertices of the nearest face of the voxel (see Figure 5.15). This weight
is represented by an interpolation between the keypoint and the vertices
of the voxel that contains it. Following this, all the displacements are
obtained, i.e., the total movements of each node of the mesh.

5.4.2.3 Mesh Physical Simulation
After computing the displacements of the nodes of the voxel structure from the
previous step (see Section 5.4.2.2), a MSM model is fed with the distances to
simulate the deformation. The MSM model is dynamically simulated and the
motion equations of the model are integrated in time using an explicit Verlet
integrator. The system computes the elastic forces exerted by each spring on the
nodes, i.e., the physical deformation of the voxels. This process runs in parallel for



Section 5.4. Proposed Method using a Mass-Spring Model 175
each spring, accumulating the resulting forces for each node. Once the forces of
the springs are computed, the displacements of the nodes are directly computed
from the forces acting on each node:

xi (t + ∆t) = 2xi (t)− xi (t − ∆t) + ∆t2 fsprings
Mi

, (5.4)
where xi is the position of node i, Mi is the mass of the associated particle and
fsprings is the total force exerted by the springs connected to the particle. ∆t is
the integration time step.

The Verlet integrator is only conditionally stable, and the value ∆t is limited
by the stiffness of the system. Stiffer materials require a lower time step for the
simulation to be stable. In this case the deformation is usually applied to objects
of low rigidity such as foams, which can be easily deformed by hand. The low
stiffness allows a time step value that is high enough to guarantee the real-time
execution of the simulation. In any case, since the objective of the framework is
to provide a visually accurate representation of the body, the simulated stiffness
can always be chosen with a value low enough to achieve real-time performance.
In this case, if the material of the tracked object is stiffer than the material of
the simulated object, which is unlikely in the context of the proposal, the system
tracks deformations that are smaller than those that would be expected as a
result of the simulation for the same force. However, since the simulation is
guided by the points captured by cameras, the difference in behaviour is only
extended to internal points and points far from the deformed surface.

Moreover, this simulation is performed with a number of iterations per each
frame until the deformation converges to a stable configuration.

5.4.2.4 Model Fitting

The position of the nodes of the voxels obtained in the previous step
(see Section 5.4.2.3) allows determining the new position of all the vertices
of the triangle mesh (see Figure 5.11 (f )). The vertices of the triangle mesh
are interpolated with regards to the 8 nodes of the containing voxel. For that
purpose, in the preprocessing step the isoparametric coordinates of each vertex
are computed. These coordinates relate the mesh represented by the voxels
and the triangle mesh. The isoparametric coordinates represent a mapping from
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Figure 5.16: Isoparametric coordinates. 8-knot linear element that is
defined like a 2-sided cube.

local coordinates to a general coordinate system. Therefore, given a point in the
isoparametric coordinates, the corresponding global coordinates of the point are
obtained using the mapping equation. Knowing this, the interpolation function
is defined by three coordinates ξ , η and ζ with a range between -1 to +1, i.e.,
setting this local system like a 2-side cube (see Figure 5.16), using trilinear
interpolation. More concretely, an 8-knot linear element is used where each of
its faces is a rectangular element of 4 knots (see Equation 5.5). See (Wilson,
1998) for more details about the formulation.

Ni = 1
8 (1 + ξξi) (1 + ηηi) (1 + ζζi) , (5.5)

where Ni is the interpolation function for each of the knots in the cube and ξi,ηi and ζi are the coordinates in knot i.

5.4.3 Experiments
The following section presents the results of the proposal. A set of experiments
that evaluate performance (primarily the error estimation and execution times),
robustness against noisy data and the adaptability of the method are shown
for some geometrically shaped objects. The hardware setup consists of an Intel
Core 2-Quad Q9550 at 2.83 GHz and 3 GB of RAM equipped with a Kinect
XBOX 360. Also, 4 different models were used to evaluate the performance of
the framework: Teddy Bear, Sponge Bob, Ball and Cushion. The representation
of Teddy Bear can be defined as a highly complex deforming shape with a
homogeneous texture (texture-less). Sponge Bob has a simple geometrical shape
since the limbs of the object are discarded. It is a squared model with a rich
texture (that is not used). Cushion is along with the Sponge Bob model the
simplest geometric shape. It is a parallelepiped object with texture. Both the
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Table 5.1: Execution times (in ms) for the tracking module.

STEP TIME (ms)
Teddy Bear Sponge Teddy Ball Cushion

Detection 270.01 271.47 262.99 275.82
Frame-to-frame 90.47 61.77 51.73 114.91

Sponge Bob and the Cushion models, consist of box-like shapes (though Cushion
is simpler than Sponge Bob) with different kind of textures (irregular texture for
Sponge Bob case and regular texture for Cushion). And finally, the Ball example
provides another geometric shape that is like a sphere to make the registration.
It is a curvilinear and texture-less object.

5.4.3.1 Performance
The first set of experiments presented in this section shows the performance of
the system in terms of computational cost and accuracy level.

Computation Time
Table 5.1 presents the execution times of tracking module, while Figure 5.17
shows the performance of the physics registration modules for the four models
detailing the computational cost of each step. As can be seen in the results,
the deformation framework is able to obtain the non-rigid transformation of the
shape between 8.3 and 12.65 ms depending on the model.

The most important bottleneck is the process of matching keypoints with the
point cloud acquired from the RGB-D camera. However, it remains quite low due
to the optimal octree search that is a scalable way to reduce the computational
cost. Thus, the second OBB search is notably faster than the first.

In terms of the physics simulation module, Figure 5.18 displays the times
of the mesh fitness step, according to the number of iterations of integration
that the system requires in order to achieve good physical behaviour. In
that sense, it is observed that as the number of iterations increases, the
computational cost also increases. Nevertheless, the experiment depicts that
the visual adjustment of the deformable mesh is not influenced in an excessive
way by the number of iterations (see Table 5.2). These errors were estimated
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Figure 5.17: Execution times (in ms) for the different steps making up
the physical registration stage.
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Figure 5.18: Execution times (in ms) of the mesh physical simulation
step according to the number of iterations in the physical integration
step.

using synthetic data (deformed meshes). For more detailed explanation please
refer to next paragraph (see Section 5.4.3.1-Accuracy level). Consequently, it
was not considered necessary to use a large number of iterations to perform the
task in order to achieve acceptable visual results as observed in Figure 5.22.
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Table 5.2: The mean error and the standard deviation (in mm) for
one point of view of the camera of the mesh physical simulation step
according to the number of iterations in the physical integration step
of.

Number of iterations
5 15 25 50

µ - error (mm) 9.31 6.75 6.6 6.15 Teddy Bearσ - error (mm) 2.35 2.1 1.95 1.5
µ - error (mm) 6.3 5.85 5.55 5.3 Bob Spongeσ - error (mm) 1.35 1.5 1.8 1.75
µ - error (mm) 6.61 6.45 6.05 5.9 Ballσ - error (mm) 2.35 2.45 2.02 2.25
µ - error (mm) 6.19 6.03 5.55 5.4 Cushionσ - error (mm) 2.78 2.25 2.2 2.1

Finally, regarding computational cost, it is also worth mentioning that the
described tracking algorithm runs in an average time of ∼270 ms for the
detection step and the FtF step varies from 60 to 114 ms depending on the
density of the point cloud for each of the four models. However, in order to achieve
a complete solution, this proposal is well suited to the framework because it
uses a template-based methodology instead of using features (not required in
the physical simulation step).

Accuracy Level
An error estimation was also performed in order to check the response of
the method. For this purpose, taking into account the results described above,
a configuration of 300 keypoints was chosen (see Section 5.4.2.2), while the
physical simulation step ran in 5 iterations. In addition, a set of synthetic data
was used to evaluate the accuracy of the registration for the different models.
A set of 25 random deformations of the mesh for each of the 4 different models
was built, and the accuracy of each deformation was calculated from 9 different
points of view (see Figure 5.19). Each point of view sets the visible keypoints,
and consequently, the result of the deformation can be different. Thus, Table 5.3
depicts (in mm) the mean errors, the standard deviation and maximum error from



180 Chapter 5. Deformable Object Tracking

Figure 5.19: Different points of view of the model in order to estimate
the visible (red) and not visible keypoints (grey).

the ground truth vertices mesh and the resulting mesh. These results demonstrate
the accuracy of the system for different types of objects and camera points of
view. The reason there are error differences between the models lies in the fact
that the geometric shapes are different. Even so, the errors remain low enough
for every case where the visual quality of the reconstructions is good.

Table 5.3: The mean error, standard deviation and the maximum error
(in mm) for four types of models.

Mean error Stdv error Max Error
Teddy Bear 9.31 2.35 15.1
Sponge Bob 6.3 1.35 7.8
Ball 6.61 2.35 8.9
Cushion 6.19 2.78 8.9
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(a) Translations. (b) Rotations.

Figure 5.20: Transformations applied to the Teddy Bear model.

5.4.3.2 Robustness

This second experiment shows the limits of the method in terms of robustness
when applying some noise, i.e., while distorting the movement of the points.
The methodology consisted in applying a set of transformations to the input
cloud in order to disorder it and then testing the behaviour of the method. The
transformations applied to the Teddy Bear model were divided into two main
types: translations (see Figure 5.20 (a)) and rotations (see Figure 5.20 (b)),
doing each of the three axes x, y and z. Figure 5.21 indicates the results for
each of the transformations.

For translations, movements from 0 to 30 mm were executed with a step of
2.5 mm along the three axes. Resulting errors varied from 0.2 to 0.5 mm in case
of a 20 mm displacement. In the rotation transformation, in turn, the strategy
used consisted in rotating the point cloud from 0 to 15 degrees. In this case,
resulting errors varied from 0.2 to 0.8 mm in the case of 15 degrees. Analysing
the results, it can be concluded that the method maintains the error at reasonable
levels despite the presence of noise in the data and that it correctly deduces
the deformation being applied.
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Figure 5.21: Error (in mm) when the input data cloud is perturbed
(for the Teddy Bear model) by adding two different types of noises:
translations and rotations in each of the three axes.
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5.4.3.3 Adaptability
Figure 5.22 shows the correct visual output obtained by this solution and stresses
the adaptability to many different types of geometrical shapes. In this case, the
four different models were used to test the adaptability of the framework: (Teddy
Bear, Sponge Bob, Ball and Cushion). The Teddy Bear example represents
the reconstruction after a video sequence of 490 frames. Sponge Bob is a 325
frame video sequence. In the same way, Cushion, is a 565 frame video sequence
reconstruction. Finally, the Ball example, is a 410 frame sequence. It should be
noted that in all of these examples the results are sufficiently valid to obtain a
correct visualization and develop some AR applications.
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Figure 5.22: Visual results of 3D recovery shapes. Four experiments
were performed: Teddy Bear (a), Sponge Bob (b), Ball (c) and
Cushion (d). For each of the four examples, the following information
is presented: the model, the original image with the projection of the
recovered 3D mesh (first row), the recovered 3D mesh in terms of the
physics model (second row) and the same recovered mesh with the
raw data acquired from the depth camera (third row).
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5.5 Proposed Method using a Finite Element Method
The method described in this section follows a similar technique to the
former (see Section 5.4). The main difference between the solutions lies in the
mathematical model that simulates the physical behaviour of the bodies. In this
case, the solution takes advantage of a formulation based on FEM. The objective
is to demonstrate that the level of accuracy achieved with this formulation is
higher than with MSM, although the computational cost increases.

The modularity of the pipeline proposed in the previous section (see
Section 5.4) allows the incorporation or replacement of certain functionalities.
Therefore, the following section only describes the new modules or the altered
ones. More precisely, the main stages associated to the object deformation are
explained. Furthermore, since this section is only focused on analysing the
physical simulation process, the detection and tracking steps are carried out
through a marker tracking system.

On the other hand, it is worth mentioning that the phases involved in the
physical model simulation, require specific type of models (different geometry
mesh and material properties of the bodies). Unlike the MSM proposal, this
solution requires a tetrahedral mesh. To that end, the model represented as a
triangle mesh is converted to a tetrahedral mesh. Moreover, in order to deduce an
optimal parametrization of the material, this process requires models composed
by homogeneous material. The objects such as Teddy Bear, Sponge Bob and
Cushion are therefore discarded, since they are composed of different materials
(they have outer sheath material which differs from the interior one) and the
test samples that can be extracted from the model are not uniform (cotton
material). The Ball is also discarded since it does not contain any type of
interior material (it is filled with air). The models that have been used to perform
the experimentation process are those shown in Figure 5.23, whose physical
parametrization is detailed in Section 5.5.2.1.

5.5.1 Tracking
The tracking and detection steps are based on a marker tracking system instead
of using the system presented in Section 5.4.1. More concretely, a multiple
marker configuration is used, with the aim of minimising the tracking failure
when an occlusion occurs in any of the markers.
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3146 tetrahedrons

2074 tetrahedrons

2074 tetrahedrons

2975 tetrahedrons

Figure 5.23: Transformation from triangle mesh to tetrahedral mesh.
The model (left) represented as a triangle mesh (middle) is converted
to a tetrahedral mesh (right) for the FEM formulation.

In a preprocessing stage, a calibration process is performed in order to
obtain the relation transformation between the markers and the corresponding
3D object. ARToolKitPlus marker tracking system has been used to perform the
detection of the markers.

5.5.2 Object Deformation
As in the previous solution, here the object deformation is divided into
two main steps: Model Preprocessing and Mesh Physical Registration. The
Model Preprocessing (see Section 5.5.2.1) is focused on defining the proper
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Figure 5.24: Overview of the proposed object deformation method.
Offline and online phases are subdivided into a visual and physical
simulation processes.

parametrization of the physical model. Moreover, simple shear tests in a
rotational rheometer were performed in order to define the mechanical properties
of the material. The online execution or Mesh Physical Registration (see
Section 5.5.2.2) feeds the input of the physical simulation module with the
information acquired from the RGB-D camera. However, unlike the previous
solution, at this stage there is not Model Fitting phase (see Section 5.4.2.4) since
the deformation of the mesh is directly computed by the FEM Simulation (see
Section 5.5.2.2). Furthermore, both preprocessing and the online execution are
divided into two main phases that are related to the visual part and the physical
simulation model, respectively. Figure 5.24 illustrates the entire process.
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5.5.2.1 Model Preprocessing
The offline phase, which is essential in order to carry out the Mesh Registration
(see Section 5.5.2.2) in the online execution, is executed only once for each
model. In order to complete this preprocessing task, it is necessary to generate
information from the visual part of the system as well as the physical
parametrization of the model. The first is responsible for generating a set of
control points to determine the correspondences between the raw information
acquired from the camera and the 3D mesh of the model (Keypoint Generation).
In the case of the visual part, the keypoints correspond directly to the vertices
of the tetrahedral mesh and hence it is not necessary to perform a Keypoint
Generation step (see Section 5.4.2.1). The physical model procedure in turn, is
divided into two main parts which correspond to the description of the physical
formulation based on FEM as well as the range tests performed to define the
material properties (Material Characterization).

Material Characterization. In order to obtain the mechanical properties
of the deformable objects, a sample of each material was tested in a
parallel-plate rheometer (Anton Paar Physica, MRC 301). The rotational
rheometer characterizes the material under shear loads, that are common
loads in soft tissues at surgical procedures (Cheng et al., 2008; Misra
et al., 2010; Horgan and Murphy, 2010).

Figure 5.25 shows the schematic representation of the experimental set-up.
The top plate of the rheometer was lowered until it contacted the upper
surface of the sample.

R

H

Sample

Rotating 

Measuring Plate

Fixed 

Measuring Plate

Figure 5.25: Parallel plate rheometer.
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Measured strain (γ) is not constant along the sample, since it is a function
of the radius of the plate (R ), the gap (H) and the deflection angle (φ), as
follows:

γ [1] = φ[rad]R [mm]
H [mm] (5.6)

Therefore, maximum deformation and maximum shear rate occur at the
edge of the plate, and reported data is related to this position.
Amplitude sweeps have been performed in a cylindrical samples (diameter
= 25 mm and thickness = 2 - 4 mm). Amplitude sweep is an oscillatory
test performed at variable strain amplitudes, keeping frequency at a
constant value. As long as strain amplitudes are still below the limit
of linear viscoelastic range, the values of the dynamic properties remain
steady and the material shows reversible-viscoelastic behaviour. It deforms
elastically and returns to its original shape when the applied stress is
removed. However, at amplitudes higher than this limit, some fraction of
the deformation will be permanent and non-reversible, or the structure of
the sample can even be completely destroyed.
Mechanical properties of the tissues are defined within linear viscoelastic
range. A strain ramp was imposed from 0,001% to 100%, at 1 Hz . The
value of shear modulus, G , within linear viscoelastic range is obtained.
Poisson’s ratio, ν , has been selected for each material. Linear elasticity,
isotropy and homogeneity of the material has been assumed. Therefore,
Young modulus, E , is defined by

E = 2G(1 + ν) (5.7)
Density, ρ, has been considered constant within the tissue sample and it
has been determined by measuring its mass and volume. Table 5.4 shows
the values of the mechanical properties established for each material.

Table 5.4: Mechanical properties of the tested materials
Yellow Ball Orange Ball Square Sponge Pillow

ρ [kg/m3] 57.4 75.2 14.3 100
E [Pa] 50000 37800 76261 25000
ν 0.3 0.3 0.3 0.3
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Finite Element Method (FEM) Initialization. The system uses a non-linear

Total Lagrangian explicit FEM using a tetrahedral mesh. This kind of
formulation is well suited to surgery simulators since it provides a very
compact and efficient implementation. The formulation can handle easily
non-linear material and large deformations. Additionally the method does
not require the computation of a stiffness matrix, which allows an easy
adaptation to topological changes.
In this case, for simplicity and computational efficiency, a
Saint-Venant-Kirchhoff is implemented using the properties for a
linear material model described above.
This formulation allows a direct computation of the elastic forces acting
on each node when the model is deformed. The force is divided into two
terms, one that only depends on the initial geometry of the mesh (as is
constant during the simulation) and a second that depends on the current
configuration through the first-Piola-Kirchhoff stress tensor. See (Irving
et al., 2004a) for additional details of the method. During the initialization
the first term is computed and stored.

5.5.2.2 Mesh Registration
As with the solution explained above (see Section 5.4.2.2), this phase estimates
the correspondences between the offline keypoints and the current point cloud
captured by the RGB-D camera. In addition, these matches serve as the input
displacements to the physical module, which is responsible for calculating the
new shape deformation. This stage is divided into a visualization step (Keypoint
Selection and Correspondence Matching), and the mesh physical simulation
module (Finite Element Method (FEM) Simulation).

Notice that the Keypoint Selection and Correspondence Matching phases
(see Figure 5.26) follow the same steps as those presented in Section 5.4.2.2.
For more information, please refer to the corresponding technical details in each
part of that section.
Finite Element Method (FEM) Simulation. Once the nodes of the simulation

mesh have been matched to the deformed surface, they are used to
control a dynamic simulation of the deformation of the solid. During this
simulation, the nodes are displaced from their original position to the
distance detected using the vision system. The simulation runs through a
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(a) (b) (c)

Figure 5.26: Correspondence matching. The keypoints in the FEM
formulation correspond to the vertices of the tetrahedral mesh. The
process for the correspondence matching consists of a two different
type of tests: OBB test-1 (b) and OBB test-2 (c).

virtual time until it achieves its final configuration that it is considered,
that is, until it represents the deformed state of the solid. The simulation
is performed with a time step that has been computed previously and
guarantees the stability of the semi-implicit Euler integrator that is
employed.

5.5.3 Experiments
This section presents the results of the proposed method using the FEM
formulation. These experiments consist in evaluating the performance (error
estimation and computation time) and the adaptability of the system for different
kind of models. To develop this set of experiments, a mechanical robot was used,
the commercial Mitsubishi PA-10-7C robotic arm.

The hardware setup was the same as the previous solution: Intel Core
2-Quad Q9550 at 2.83 GHz and 4 GB of RAM equipped with a Kinect XBOX
360. Moreover, as explained above, the models used to test the performance
are different from the previous: Yellow Sponge Ball, Orange Sponge Ball,
Rectangular Sponge and Pillow. The first two models can be defined as sphere
shapes with different sizes and texture types. The Yellow Sponge Ball is textured,
while the Orange Sponge Ball contains a homogeneous texture (textureless).
Likewise, Rectangular Sponge and Pillow are textureless simple geometric
shapes. All the materials of the objects differ from each other as Section 5.5.2
depicts. In other words, all the sponge materials are different while the Pillow
is composed of a viscoelastic material.



192 Chapter 5. Deformable Object Tracking
5.5.3.1 Performance
The next section provides the evaluation of the performance in terms of the
accuracy level and the computational cost for the object deformation step using
the FEM formulation.

Accuracy Level
The error estimation was performed in order to validate the proposed system
and it has different stages.

Primarily, a force was applied with the robotic arm and through the
FEM formulation the deformation was computed. Simultaneously, the body was
scanned by the 3D Sense™ Scanner during the deformation. The reconstruction
of this scanner served as reference for the error estimation, that is, it was
the ground truth. According to the technical specifications of the 3D Scanner
reported by Cubify®, the accuracy at 0.5m depth resolution is 1mm, and the
spatial x/y resolution at 0.5m is 0.9mm.

Subsequently, a filter of subdivision of the surface was applied to each model
(FEM and Scanner models) in order to obtain two dense point clouds. Then, the
interest region of each point cloud was defined (the area where the deformation
was being applied was selected manually).

Table 5.5: The mean error, standard deviation and the maximum error
(in mm) for four types of models.

Mean error Stdv error Max Error
Yellow Sponge ball 5.01 2.38 12.63
Orange Sponge ball 1.75 1.11 6.09
Rectangular Sponge 1.49 0.99 7.19
Pillow 0.24 0.17 0.87

Once the two regions of the two point clouds were selected, the open
source CloudCompare software1 was used to compute the error estimation.
This is an application for managing and comparing 3D point clouds. More
concretely, two main functions were used to complete the process: Register
and Distance procedures. The first, Register, aligns two points clouds, and the

1Open source implementation of this method can be found in http://www.danielgm.net/cc/.
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second, Distance, calculates the distances between two point clouds. The error
was computed by the Euclidean distance from one point of the first cloud to the
nearest point of the second cloud. The mean errors (in mm) are displayed in
Table 5.5. As can be seen, the error varies from 0.24 to 5.01mm, with standard
deviation from 0.17 to 2.38mm.

These error values are low enough to achieve a correct visual feedback.
Figure 5.27 illustrates the visual results for each of the deformations applied to
the four models alongside the ground truth.

Figure 5.27: Visual accuracy level when a force is exerted on the
model (first column). Scanner reconstruction (second column), FEM
deformed mesh (third column) and visual feedback of the strains of the
mesh (fourth column).
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Computation Time
This section shows the execution times of the object deformation module for
the four models. More concretely, Figure 5.28 presents the times of the mesh
physical simulation step, that is, the FEM physical simulation process. As can be
seen, the execution times vary from 37.82 to 62.16 ms depending on the model.

Though it has been proven that an acceptable level of accuracy is achieved,
the performance is still not as high as required.

0 10 20 30 40 50 60 70

Time (ms) 

Yellow Ball 

Orange Ball 

Sponge 

Pillow 

Figure 5.28: Execution times (in ms) of the FEM physical formulation
for the four models.

5.5.3.2 Adaptability
Figure 5.29 shows the visual results obtained for different kind of objects
with different material characterization. The Yellow Sponge Ball example is a
video sequence of 498 frames, which represents the reconstruction of curvilinear
deforming shape with a texture that is not used. The Orange Sponge Ball
example is also a curvilinear model without texture after a video sequence of
461 frames. The Rectangular Sponge is a 236 frames video sequence which
reconstructs a parallelepiped textureless object. Finally, the Pillow example is
a 383 frames video of a viscoelastic material object without texture. These results
conclude that the visualizations of the deformations are sufficiently correct in
order to develop AR applications.
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Figure 5.29: 3D recovery shapes for different objects: Rectangle
Sponge, Yellow Sponge Ball, Orange Sponge Ball and Pillow. For
each of the four examples, the following information is presented: the
model (left), the original image with the projection of the recovered 3D
mesh (first row), the recovered 3D mesh in terms of the FEM physical
model (second row).
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5.6 MSM versus FEM
The following section demonstrates the differences between the two physical
methods. In practice, an experimental set was designed to show the results
with regard to the computational cost and error estimation. In line with the
experimental strategy applied for the FEM formulation, the same hardware
system and configuration of models (valid for both methods) was used.

5.6.1 Accuracy Level
Table 5.6: The mean error, standard deviation and the maximum error
(in mm) for four types of models between FEM and MSM simulations.

FEM MSM
µ σ max µ σ max

5.01 2.38 12.63 5.97 3.62 15.11

1.75 1.11 6.09 4.34 2.14 9.33

1.49 0.99 7.19 2.01 1.4 11.12

0.24 0.17 0.87 0.45 0.34 1.91

The physical formulation based on FEM achieves more accurate level results
than MSM. Table 5.6 carries out a comparison between the two methods for the
four different models. In this case, the process to compute the error is the same
as that described in Section 5.5.3.1. Note that FEM values have been copied
again for completeness of the table and facilitate the comparison.

On the other hand, Figure 5.30 shows a colour map (extracted from the
CloudCompare software) that represents the differences between the scanner
and both physical formulation clouds (FEM and MSM).
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On the basis of the above, it can be concluded that the postulated premise

is realized. The FEM formulation returns more accurate results than MSM.
Even so, it must be emphasized that both solutions results are good enough for
deceiving the human eye, i.e., they offer a correct visual feedback. This means
that, when a force is exerted on the object, the physical behaviour is realistic
enough.

5.6.2 Computation Time
The computational cost is another factor that was also tested to compare
the performance of both types of configurations. Table 5.7 validates that the
computation time of the physical deformation is higher for the FEM formulation.
In order to perform this evaluation, the same set of models was used: Yellow
Sponge Ball, Orange Sponge Ball, Pillow and Rectangular Sponge. There are
significant differences between both solutions. FEM formulation execution varies
from 37.82 to 62.95 ms, while MSM varies from 3.04 to 3.85 ms.

Table 5.7: Comparison between FEM and MSM formulations in terms
of computation time (in ms).

FEM MSM
Yellow Sponge ball 37.82 3.27
Orange Sponge ball 49.1 3.04
Pillow 49.9 3.85
Rectangular Sponge 62.95 3.81
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Figure 5.30: Error comparison between FEM and MSM formulations
for the four different models. For each of the four models, the scanner
mesh, FEM (up) and MSM (down) meshes and a colour map that
represents the error between each of the solutions with respect to the
scanner result (extracted from CloudCompare) are presented.
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5.7 Surgical Simulation System
Robotic systems integration in medicine and more specifically in the surgical
field entails a remarkable improvement in the delivery of healthcare services.
Nowadays, robotic devices and computer-assisted technologies are included as
a means of guidance, diagnosis, verification and general assistance during the
performance of a surgical intervention (Landeira, 2014).

However, the use of robotic devices in surgery creates new challenges that
must be overcome for their successful deployment. A robot acting on a tissue
exerts a force and produces deformations over which the surgeon has no direct
feedback. The tracking of the deformation of the organs is required for assistive
technologies such as AR, for example to support the surgeon by a visual feedback
of the deformations that are taking place on the tissues, or to support the surgeon
by locating the position of a malignancy to be removed from an organ. In most
cases, the inclusion of sensors to track the position of the organs of the patient
is not usually feasible. Thus, the use of alternative approaches such as CV
techniques has become a real need to solve this kind of problem.

Nevertheless, the very presence of the robot produces occlusions that limit
how much information can be obtained using only CV. The combination of
CV with a suitable physical simulation can be used to reduce the missing
information. In this case, the accuracy required for the surgical simulations
remains important. In contrast to deformable models used in video games and
animations, the purpose of soft tissue models in medical simulation is to model
realistically the behaviour of biological tissues. Consequently, the simulation of
the deformation of the tissue should be controlled using real material parameters.
Thus, these parameters should be obtained from biomechanics experiments
instead of intuitively adjusted parameters. However, in robotic guidance and
surgery assistance systems not only accuracy is essential, but also computational
performance must be taken into account, in order to provide a fast enough visual
feedback to the surgeon. Therefore, in this application is critical to obtain a
compromise between accuracy and computational cost. Being able to provide
surgical realism at interactive rates of simulation is one of the most challenging
problems in robot surgical assistance systems (Cotin et al., 2000).

The results obtained in the proposed FEM solution (see Section 5.5) make it
possible to develop a novel visual tracking method based on physical simulation.
This procedure is capable of obtaining the deformation produced by a robotic
system on patient tissues, and therefore, it obtains the basic information to
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provide assistance and guidance to surgeons using visual or haptic feedback.
More concretely, this method has been integrated within the framework of robotic
surgery system through a surgical module developed in (Landeira et al., 2014).

The process is divided into two main phases. The first deals with handling
robotic surgical arm movements, while the second computes the deformations
applied from the first step through a vision system.

5.7.1 Previous Works
Regarding the modelling of the tissues material behaviour to be simulated,
there is no agreement in the literature on how to define the most suitable
material models required for surgical simulation. Model selection is often a
very subjective process; different modellers choose different models to describe
the same phenomenon (Miller et al., 2010). A key question in modelling tissue
behaviour for simulation is the complexity level of the model required for a
certain application. More complex models can simulate better the behaviour of
the tissue at the cost of computation cost. For surgical simulation of biological
tissues, models must be simple enough to solve a broad range of problems, but
complete enough to realistically describe the behaviour under a variety of load
conditions (Kerdok, 2006).

Linear FEM models are commonly used for the modelling of deformable
materials, mainly because the equations remain simple and the computation can
be optimized. Several authors use linear elasticity to model brain deformations
(Ferrant et al., 2001; Warfield et al., 2001; Skrinjar et al., 2002; Clatz et al., 2007)
or to simulate muscle and soft tissue (Gladilin et al., 2001). However, simulations
built upon linear elastic models can only be applied to small deformations, while
the most surgical procedures involve organs being subjected to large ones.

Some recent works in the literature present robotic systems complemented
by vision techniques in surgery. Authors like (Haouchine et al., 2013a; Haouchine
et al., 2013b) show an image-guided biomechanical model that captures the
complex deformations undergone by the liver during surgery. They work with
stereo cameras and use a FEM in order to capture the behaviour of the object
and calculate the deformation. The FEM is based on a co-rotational formulation
which allows for large displacements while relying on a linear expression
of the stress-strain relationship, which is taken from the literature. However,
these kind of approaches are very oriented to medical surgery application,
which usually involve specific formulation, the position of the camera should
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be static, and in some cases, they are not executed in real time (Haouchine
et al., 2012). Furthermore, (Haouchine et al., 2014a) proposes a real-time method
to register the non-linear elastic model deformations using the image points
acquired from a monocular camera. Nevertheless, this solution is based on an
orthographic projection, whose computation is easier compared to the perspective
projection. (Hamarneh et al., 2014) presented pre-operative surgical planning,
intra-operative image registration and AR visualization for image-guided tumour
identification. They focused on kidney cancer cases with robot-assisted partial
nephrectomy performed with a da Vinci surgical robot (Intuitive Surgical, Inc.).
They built the biomechanical model of kidney tissue and tumour with FEM using
a co-rotational tetrahedral formulation. They also determined the mechanical
properties of the tissue from the literature.

5.7.2 Justification

This section presents the basis for the development of a robot-assisted surgical
system (Landeira et al., 2014) combined with a vision module through which it is
possible to obtain the deformations of a non-rigid object when a force is applied
to it. A visual feedback system for the surgeons could be developed based on
the information obtained from this system.

In environments such as medicine or industry, it is sometimes difficult to
perform a tracking of visual cues (often essential for a vision system), either
by the lack of textured areas and models or the environmental conditions (as
blood in medicine). In this sense, compared to existing solutions (Haouchine
et al., 2014b; Haouchine et al., 2014a), the presented vision module avoids
the use of formulations that are not usually robust for texture-less surfaces or
objects. This makes the solution robust against sudden illumination changes
and adaptable for tracking any type of object (in terms of its geometrical shape).
The visual feedback of the deformation state of the object relies on a non-linear
total Lagrangian Finite Element formulation, that provides a fast and accurate
enough biomechanical model of the object, while being able to handle complex
material models. Furthermore, compared to other works (Haouchine et al., 2013a;
Hamarneh et al., 2014), the mechanical properties of the models are obtained
experimentally, in order to simulate a more realistic behaviour of the materials.
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5.7.3 Proposed System
This section presents a complete framework for registering deformations of
non-rigid objects when a surgical robot is applying a force and therefore, offering
the possibility of providing an extra visual feedback to the surgeon.

The selected robot-assistant module has been developed as a prototype
for a cooperative robotic platform aimed at assisting in surgery for lumbar
transpedicular fixation in (Landeira et al., 2014).

The vision module is composed by a RGB-D camera whose raw information
is used to feed the input of the physical model. Two different models have been
used to perform the experimentation process: a Porcine Kidney and a Calf Brain.
These models are shown in Figure 5.31 and their physical parametrization is
shown in Table 5.8.

2183 tetrahedrons

2071 tetrahedronsKidney I

Kidney II

Brain I

Brain II

1977 tetrahedrons

1989 tetrahedrons

Figure 5.31: Two different types of models are used for the surgical
robot system process: Porcine Kidney and Calf Brain. The model (left)
represented as a triangle mesh (middle) is converted to a tetrahedral
mesh (right) for the FEM formulation.

In order to obtain a compromise between computation time and accuracy
of the reconstruction, and based on the conclusions of (Wittek et al., 2009),
deformable objects are modelled as Saint-Venant-Kirchhoff material within a
non-linear FEM formulation. Materials are defined by the Young modulus E ,
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Poisson’s ratio ν and density ρ. In order to define the mechanical properties of
the materials with a realistic physical behaviour, simple shear tests have been
performed in a rotational rheometer (see Section 5.5.2.1).

Figure 5.32 illustrates the configuration of the system, whose description
is divided into two main sections: Robotic Platform and Object Deformation.
Furthermore, since the analysis is focused only on the deduction of the
deformations of the organ, the process of computation of the camera pose (camera
tracking problem) is carried out through a marker-based system. This provides
a level of accuracy high enough to ignore the error. Following is a description
of the Robotic Platform.

Surgical Robot-Assistant

Model

RGB-D Camera

User Control

Visualization software

Figure 5.32: Configuration of the system. Robot-assisted surgical
system combined with a vision module.

5.7.3.1 Robotic Platform
The surgical assistant used is composed by a commercial PA10-7C robotic arm
(Mitsubishi Heavy Industries Ltd., Kobe, Japan) with open control architecture.
This implies that, using a generic programming language, it is possible to
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develop, in an independent way, the control algorithms to be implemented in the
robot control PC. It is a 7DoF open chain serial manipulator, with all revolute
joints that have a well-defined rotation axis. Its maximum load capacity is 98 N
and it can achieve a distance of 1.03 m when fully extended. The robot has a
force/torque sensor, Mini40 (ATI Industrial Automation, NC, USA). In that way,
the force performed by the robot in the soft tissue is recorded. Figure 5.33 shows
the robotic arm used as indenter (left) and its exploded view (right). The end
of the robotic arm consists of a force/torque sensor, a grip, a big indenter and
other small one.

Model

Figure 5.33: Representation of the robotic arm (left) and exploded view
of its end (right).

5.7.4 Experiments
This section presents the results of the proposed method. These experiments
evaluate the performance (error estimation and computation time) and the
adaptability of the system for different kind of models. To develop this set of
experiments, the robotic arm described above was used. Moreover, two cylindrical
indenters were used to deform the tissue (see Figure 5.33). These indenters differ
from the size: one has a diameter of 15 mm and 45 mm length, while the smaller
one has a diameter of 8 mm and a 36 mm length.

The hardware setup consists of an Intel Core 2-Quad Q9550 at 2.83GHz
and 4GB of RAM equipped with a Kinect XBOX 360. Porcine Kidney and
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Table 5.8: Mechanical properties of the tested materials for the
surgical system.

Kidney Brain
ρ [kg/m3] 1000 1000
E [Pa] 1500 1085
ν 0.45 0.48

calf Brain models were used to evaluate the performance of the framework.
Brain and Kidney provide alternative geometric shapes with different kind of
textures. The texture of the surface was not used for recognition in any case.
Furthermore, for each of these two categories of organs two different type of
simulation models were used (overall two different models for each organ). The
aim was to check that the behaviour of the system was the same using the
same material parametrization and making incisions in different areas. For each
simulation model a force was applied in different areas: Brain I, Brain II, Kidney
I and Kidney II. For the Kidney II example in turn, the smaller indenter was
used in order to test the deformation with different tools. Figure 5.31 depicts
the previous categorization as well as the number of tetrahedrons of each model
since it is a determining factor in the experimental results.

5.7.4.1 Accuracy Level
Two different techniques were used to validate the level of accuracy of the online
FEM formulation. These techniques consist in comparing the results obtained
with the online FEM simulation with a simulation of the same experiment using
Abaqus and with the 3D reconstruction obtained through a 3D scanner. Both
Abaqus simulation and 3D scanner outputs have been considered to be suitable
ground truths because the physical deformations achieved are really accurate.

5.7.4.2 Abaqus
The experiments were simulated in Abaqus 6.13. The mechanical properties of
both tools were considered rigid enough compared with the indented tissues (ρ =
7850 kg/m3, E =3000000 Pa, ν = 0.2). Deformable objects were modelled with
the same mesh as the one used in the online FEM simulation. Materials were
defined by the properties presented in Table 5.8. The curve of the displacement
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Table 5.9: The mean error, standard deviation and the maximum error
(in mm) between FEM simulation and Abaqus simulation.

Mean error Std dev Max error
Kidney I 1.28 2.23 14.97
Kidney II 0.40 0.68 6.42
Brain I 1.09 1.10 7.24
Brain II 1.08 1.37 10.36

versus time recorded by the robot in each experiment was imposed to the tool
in the Abaqus simulation. Simulations were defined in a Dynamic, Implicit step
with Quasi-Newton solution technique.

Deformed meshes from Abaqus and from the online FEM simulation
were compared. The error between both meshes was obtained calculating the
point-to-point Euclidean distance. Table 5.9 shows the values of this error for
each material. The visual results of this comparison are displayed in Figure 5.34.

5.7.4.3 Scanner
Table 5.10 displays the mean errors (in mm) using the methodology of
Section 5.5.3.1 to estimate the error. The mean errors (in mm) are displayed
in Table 5.10 and Figure 5.35 shows the visual results of this experiment.
In conclusion, the error values are low enough to achieve a correct visual
feedback. In this experiments the visual feedback consists in showing a gradient
colour to emphasize the degree of deformation. Figure 5.36 illustrates the visual
results for each of the deformations applied to the four simulation models
alongside the ground truth.
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Table 5.10: The mean error, standard deviation and the maximum error
(in mm) between FEM simulation and scanner mesh.

Mean error Std dev Max error
Kidney I 1.46 0.78 4.87
Kidney II 1.33 0.86 4.00
Brain I 2.26 2.00 11.68
Brain II 2.30 1.21 4.44

Kidney I

Kidney II

Brain I

Brain II

Figure 5.34: Comparison between FEM formulation and Abaqus
simulation for different models. For each model: reconstructed mesh
with Abaqus (second column), FEM returned mesh (third column) and
a colour map (fourth column) that represents the error between the
solutions (extracted from CloudCompare).
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Kidney I

Kidney II

Brain I

Brain II

Figure 5.35: Comparison between FEM formulation and scanner
reconstruction for different models. For each model: the mesh of the
scanner (second column), the mesh of FEM (third column) and a colour
map (fourth column) that represents the error between both meshes
(extracted from CloudCompare).
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Kidney I Kidney II Brain I Brain II

Figure 5.36: Visual feedback to surgeon when the soft tissue is
deformed in a robot-assisted procedure. Two type of examples: Kidneys
and Brains.
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5.7.4.4 Computation Time
This section shows the execution times of the object deformation module for all
models. In this case an exhaustive study of the computation times was not been
taken into account for the marker tracking system as well as the matching step
between the keypoints and the input point cloud. These results vary between 4
and 10 ms depending on the model. Therefore, this computation time is not a
bottleneck for the performance of the method. The attention was focused on the
physical module. More concretely, Figure 5.37 presents the execution times of
the mesh physical simulation step, that is, the FEM physical simulation step.
The process consisted in calculating 10 different times of the physical module
and compute the mean time deleting the extreme values in order to discard the
outliers. As can be seen in the results, the execution time varies from 14.13 ms
to 39.98 ms depending on the model.

0 5 10 15 20 25 30 35 40 45

Time (ms) 

Kidney I 

Kidney II 

Brain I 

Brain II 

Figure 5.37: Execution times (in ms) for the physical simulation step
for four models: Brain I, Brain II, Kidney I and Kidney II.

This range on the execution time is due to two reasons. Firstly, the execution
time depends on the number of tetrahedrons of the model. As might be expected,
the larger number of elements, the larger the execution time required. Secondly,
the execution time depends on the time step set for each model. The smaller the
time step, the larger the total execution time. Besides, the time step depends on
the total simulation time of the experiment and on the mechanical properties of
the material. The time step has been selected in each case in order to ensure
the stability of each simulation.
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5.8 Discussion

Recovering the 3D shape of 3D non-rigid objects is an ill-posed problem
due to depth ambiguities. In contrast to the existing solutions, the solutions
described in this chapter carry out deformable registration for non-rigid 3D
objects. These systems rely on two different physics-based model simulations
that allow preserving the physical behaviour of the solid, that is, they provide
realistic behaviour to the vertex movements of the models. Specifically, the two
main physical solutions that have been used to register the deformations are
MSM and FEM.

The mass-spring mechanical model captures the natural behaviour in order
to recover the non-rigid transformations in real time. Furthermore, the proposed
system uses an RGB-D camera that, together with the physical simulation,
enables the deduction of the new transformation of the 3D triangles of the mesh
without the need of well-textured objects. In addition, it includes a tracking
module based on templates to deal with scenes that lack texture and to retrieve
the camera pose. Thus, the object can be moved while its deformations are
calculated.

Additionally, a set of experiments has verified the quality of the results,
demonstrating a correct visual representation of the solid in line with a low
computational cost. The robustness has also been tested by adding noise to
the data. Regarding occlusions, it is possible that with large occlusions the
camera pose may be lost (as with non-textured tracking systems). Nonetheless,
the method handles deformations with small occlusions (for example tools
manipulating an object (Haouchine et al., 2013b)).

The FEM solution, in turn, consists in a more complex system that achieves
higher levels of accuracy at the expense of increasing the computational cost.
Unlike MSM, in this case the mesh is composed of tetrahedrons. Moreover,
a characterization stage has been performed for optimal parametrization of the
materials, which ensures that the level of realism is higher when a deformation is
applied. Similarly, a set of experiments has presented to evaluate the robustness
(error estimation) and computational cost of this second proposal.

Apart from evaluating the two physical formulations independently, a
comparison between MSM and FEM solutions has been performed in terms
of computational cost and error estimation. It has been concluded the theory
that FEM is more accurate than MSM, but MSM offers a real-time performance
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with an easier system. In addition, both solutions return a correct visual feedback
in order to develop interactive applications related to AR.

Finally, a robot-assisted surgical system combined with a deformable object
tracking has been presented, giving a visual feedback of the deformation state
of non-rigid object when a force is applied to it. This is made by relying on an
accurate and fast enough biomechanical model of the object combined with a
visual tracking approach designed to properly simulate the model.

Experiments have been performed using two deformable objects (porcine
Kidney and calf Brain). The obtained results have been compared with the
theoretical outcome obtained from Abaqus, in order to assess the method, in
terms of accuracy and computational cost. The deformation values obtained using
the online FEM are smaller than those obtained by Abaqus software. This is
due to the fact that while the input of the Abaqus simulation is the displacement
recorded by the robot, the input of the FEM is the displacement acquired by the
cameras. However, these cameras do not get the exact displacements because of
the occlusion of the tool or the material itself. These occlusions can also affect
camera tracking (as with non-textured tracking systems). In the same way, it
has been developed a comparison between the results of FEM with the scanner
ground truth. It has been observed that deformations simulated with Abaqus
are larger than those obtained by the scanner. This is because the scanner is
not able to acquire the real deformation due to the occlusion of the tool. That
is, the scanner acquires more accurate deformation than the cameras, but the
deformation is less accurate than the one obtained with the simulation performed
with Abaqus. To improve the accuracy of the results higher density meshes could
be employed. However, this will increase the computation time. Depending on the
concrete application where the method is applied the correct balance between
precision and computational cost needs to be found, as it is the case in most
real-time applications. However, as it can be seen in Table 5.9, the average errors
obtained in the experiments with the current implementation are low enough to
be considered valid to serve as a basis for visual feedback in surgery. The
method returns a deformation of the tested objects that matches the theoretical
and experimental results obtained, with a precision that enables the development
of assistance surgery applications.
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Chapter 6
Conclusions and future work

Benvolgut, ho deixo aquí,
que sé que ets un home ocupat.

Suposo que és moment d’acomiadar-me esperant
no haver-te emprenyat massa,

no haver semblat un boig,
que la força ens acompanyi, adéu, fins sempre, sort!

Manel

This chapter presents the main conclusions reached during the course of
this thesis, as well as the future research lines in which the present work can
be complemented.

6.1 Conclusions
This thesis provides an overview of the different optical tracking techniques that
exist to date. More precisely, this work is focused on improving and developing
tracking systems towards to 3D deformable shapes. It follows a progressive
analysis from the tracking of rigid planar surfaces such as markers until handling
deformations of non-rigid non-planar 3D objects. Furthermore, it ensures a
real-time performance, since it is considered a determining factor for developing
Augmented Reality (AR) applications in order to give a correct visual feedback
in a smooth manner.

Marker-based tracking systems have proved to be efficient and low-cost
techniques. However, they continue having problems when dealing with
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occlusions. Therefore, a solution has been developed in order to keep the tracking
in case occlusion occurs.

With regard to the management of deformations in real time, two main
methods have been presented. The first solves the detection and tracking of
non-rigid planar surfaces as well as the deformations that are applied to the
surface. The second, in turn, infers the deformations that a body suffers when
a force is being applied. Furthermore, it uses a physical method to obtain a
correct physical behaviour. Moreover, since Computer Vision (CV) and AR are
recent technologies and are constantly progressing, the last contribution of this
thesis uses a more specific technology such as RGB-D camera instead of using
conventional web cameras as with first approaches.

The main contributions of each of the three phases that compose the thesis
are described below.

1. Rigid surface marker tracking
Marker-based tracking systems, such as ARToolKitPlus library, are very
reliable, robust and fast methods. However, the main drawback is the
tracking failure when a minimal occlusion occurs. In this sense, a new
marker design for the treatment of occlusions has been described.
It is based on customizable textures that are placed along the frame of the
marker (unused area), which provide extra information during the occlusion.
Furthermore, these textures are customizable, that is, they could have their
own commercial design for marketing purposes. In this particular case, the
design is focused on ARToolkiPlus markers, but it can be also adapted to
any marker that does not codify information on its frame, making it highly
adaptable.
In addition, the system is backward compatible since the proposed
tracking method complements the ARToolKitPlus pipeline. Therefore, the
main functionality of ARToolKitPlus is not altered but the new tracking
system helps when it fails. This proposal offers an incremental tracking
that runs in real time and combines two methods: one is based on
appearance while the other is based on temporal coherence. The first
method, Tracking-by-Detection (TbD), creates a database of the marker
(based on the Scale Invariant Feature Transform (SIFT) descriptor) in a
preprocess stage in order to detect it on the online execution. This method
serves as both initialization and also as recovery in case of failure. The
second method, Frame-to-Frame tracking (FtF), consists in measuring the
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2D displacements of the visual cues using Lucas-Kanade optical flow
procedure. Accordingly, the ARToolKitPlus pipeline will operate until an
occlusion occurs and consequently the system fails. At this time, the FtF
from the proposed system will start. If a failure occurs with the latter, the
TbD automatically attempts to detect the marker in the image.
Finally, two user interaction interfaces for marketing opportunities have
been introduced to show the new possibilities that can manage during the
marker occlusion.

2. Non-rigid 3D surface tracking
An alternative method has been introduced in order to simultaneously
calculate the 3D structure and the camera pose of a surface in an input
image. The provided solution consists in creating two main different
databases. One database, called appearance database, is created with
the descriptors of the texture of the surface. For this purpose, the SIFT
descriptor is used. It serves to detect the texture of the surface in runtime
execution as if it were a rigid problem (Initialization step). The second
database, deformation database, contains a set of deformation templates
without any prior knowledge of the physical properties of the object. It is
based on the curling of a sheet of paper and the most common deformations
are stored in this database. The idea is to find the most similar template
in the database in the online execution (FtF step).
The novelty of this system relies on a Particle Filter (PF) that obtains
real-time performance through an efficient search along the deformation
database to solve both problems simultaneously. Additionally, a Design
of Experiments (DoE) has been presented in order to achieve the optimal
parametrization of the PF.
Finally, the achieved accuracy level is good enough to give a correct visual
feedback with a real-time performance.

3. Deformable 3D object tracking
A solution to compute simultaneously both the camera pose and the new
3D deformable structure of an object in real time has been proposed.
The registration and recovery of 3D deformable objects combine two main
phases. The first is focused on solving the visual part of the problem while
the second simulates the deformation of the object.
For the image processing, a more sophisticated image capturing device
such as Kinect has been used. This camera information which is incomplete
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and contains much noise is adjusted to the 3D model through a fast and
intelligent search that establishes a set of correspondences between the
3D model and the input point cloud.
The deformation step in turn, feeds the input of a physical simulation
system with the computed displacements. More specifically, two different
types of physical formulations have been studied; one based on a
Mass-Spring Model (MSM) system, and the other based on Finite
Element Methods (FEM). The two formulations have also been compared
in terms of computation time and error accuracy. It has been verified
that the performance of the MSM is better than the FEM. However, the
accuracy level is higher in the latter. Even though, the visual feedback
obtained by MSM is correct enough to give a realistic physical behaviour
and, it runs in real time.
Finally, the accuracy level achieved with the FEM formulation has enabled
us to develop the basis of a new AR prototype for surgical interventions.
This has allowed us to introduce the exposed theoretical solution in the
field of medicine, thus giving a surgical application context. It combines
a surgical robotic arm with the proposed vision system to obtain a visual
feedback of the stress state of the body tissue under surgical loads. Thus,
it is possible to know in a visual way if the bodies are being damaged.
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6.2 Future Research Lines
The contributions obtained in this thesis suggest several future lines of research.

1. Rigid surface marker tracking
The fact that AR is an emerging technology and with considerable growth
potential in mobile platforms, it would be recommendable to adjust this
work for these gadgets. Therefore, it is necessary to study the optimizations
that are required to achieve robustness and real time in these devices,
which have limited capabilities.
Finally, for reducing the computational cost of this solution, the TbD step
should be improved.

2. Non-rigid 3D surface tracking
In terms of the database generation, it would be convenient to use this
type of formulation in conjunction with a dimensional reduction technique
such as Principal Component Analysis (PCA) to retain the most significant
modes of deformation and thus improve the performance.
It would also be interesting to experiment not only with smooth movements
but with strong ones where problems like the loss of information (that
involve outliers) are dealt with. For that purpose, a new robust tracking
combined with a sophisticated search in the database could be an
interesting solution.
To improve accuracy, a possible improvement could be to combine this
method with existing ones that offer more robustness but the computational
cost is higher. Hence, considering the results of the system as an initial
approximation of the deformed structure and its corresponding pose, a
more robust system can be fed with this information in order to achieve
high levels of accuracy in real time.
On the other hand, it would be appropriate to extend the proposed
Initialization step in order to estimate both the pose and the deformed
3D structure without the need of treating the surface as a rigid object
when calculating the first camera pose. Consequently, it can be provided
a TbD method.
Finally, since the method is highly adaptable, the 3D reconstruction can
be resolved not only with the reprojection error but also by adding other
features such as colour recognition.
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3. Deformable 3D object tracking

Establishing correspondences between the keypoints and the input point
cloud is the bottleneck of the physics registration step. Therefore, a
methodology that ensures correct matching and reduces the computational
cost is an issue that will be addressed by the authors in the future.
Through the proposed surgical system it would be possible to automatize
the movements of the robotic arm. The aim for the surgeon would be to
select a point of the 3D model through the visualization software and
the robot would automatically move to that point and apply an incision.
All this leads to moving the arm robot and to obtaining visual feedback
in the same application. Furthermore, this information should be shown
instantly. Thus, since the FEM physical formulation uses a parallelizable
technique, facilitates future improvements such as a GPU implementation
in order to guarantee real-time performance.
Finally, it has to be emphasized that the flexibility of the presented
framework allows incorporating new tracking methods that fit the
properties of the algorithm. This helps to reduce the effects of noise in
the data and the computational cost.
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Appendix A
Homography

The following sections describe the concept of planar homography, as well as the
algorithm which will be useful to estimate such matrix of transformations given
various correspondence points. A more detailed explanation of this procedure
can be found in (Hartley and Zisserman, 2003).

A.1 Definition
A homography defines a global movement or mapping that arises between two
planes (see Figure A.1). In the particular case of vision systems, it consists in
relating two images in perspective where the points or lines of a plane of one
image in the scene are matched against points or lines in another image. This
matching is valid only when the scene is plane or the displacement between the
two images is small. This concept is also known as 2D projective transformation
since it is a linear transformation on homogeneous 3-vectors represented by
non-singular 3x3 matrix.

Thus, the association between a world and an image plane is performed by
a 2D-to-2D projective warp. In other words, for all points X in the world plane
represented as X = (X, Y , 1) in a homogeneous coordinate system can be related
to all the points x = (x, y, 1) in the image space, defining the correspondences
X ↔ x by:


xy

1


 = H


XY

1


 ∼


xy

1


 =


h11 h12 h13h21 h22 h23h31 h32 h33


 ∗


XY

1


 , (A.1)
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H

π1

π2

xi

Xi

Figure A.1: The mapping of points from π1 plane to π2 plane.

where the 3x3 matrix H is the planar homography.
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A.2 The Direct Linear Transformation (DLT)
The basic Direct Linear Transformation (DLT) algorithm is a simple linear
algorithm that given a set of n correspondences (n > 4) X ↔ x , determines H
(homography) where xi = HXi. This way, H transformation between two planes
can be computed from four point correspondences, as each point correspondence
provides two constraints. Additionally, these correspondences should not form
triplets of collinear points in order to avoid a degenerate transformation and
obtain a unique solution of H .

By cross-multiplying the third components of each side from Equation A.1,
a linear system of two equations can be obtained from the elements of H:

x(h31X + h32Y + h33) = h11X + h12Y + h13

y(h31X + h32Y + h33) = h21X + h22Y + h23 (A.2)
Thus, given at least four such correspondences, a system of eight linear

equations can be obtained in order to solve the elements of H:



X1 Y1 1 0 0 0 −x1X1 −x1Y1 −x10 0 0 X1 Y1 1 −y1X1 −y1Y1 −y1X2 Y2 1 0 0 0 −x2X2 −x2Y2 −x20 0 0 X2 Y2 1 −y2X2 −y2Y2 −y2X3 Y3 1 0 0 0 −x3X3 −x3Y3 −x30 0 0 X3 Y3 1 −y3X3 −y3Y3 −y3X4 Y4 1 0 0 0 −x4X4 −x4Y4 −x40 0 0 X4 Y4 1 −y4X4 −y4Y4 −y4



h = 0, (A.3)

where h is a 9-element vector containing the hij elements in the form h =
[h11h12h13h21h22h23h31h32h33]ᵀ

Since this matrix equation is in the form of Ah = 0, the solution is the
null space of A and can thus be computed using known methods, such as
Singular Value Decomposition (SVD) (Flaquer et al., 2004). More precisely,
A8x9 = U8x9D9x9V T9x9, where D = diag(σ1, σ2, ..., σ9) is the diagonal matrix
of singular values arranged in descending order down the diagonal and the
matrices U and V are orthonormal. The columns of V are the eigenvectors of
ATA and the required solution (~h) is the column of V corresponding the smallest
singular value (σ9, last column).
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DLT minimizes the algebraic error (minimizes the norm ∥∥Ah∥∥), which is not

geometrically or statistically meaningful. However, it has a low computational
cost and offers a linear (and consequently unique) solution, so it is used as a
starting point for a non-linear minimization of a geometric or statistical cost
function.

A.3 Pose Estimation from a 3D Plane
In the particular case of obtaining the transformation matrix Rt of a plane,
Z = 0 is considered in order to solve the planar homography in a simple
way. Thus, given the known camera intrinsic parameters (K ) and the image
projection of a 3D planar structure, the camera extrinsic parameters (Rt) can
be determined. The relation between the coordinates of points that lie on a 3D
plane (Xi = (X, Y , 0)T ) and its image projection (xi = KRtXi) can be represented
using homogeneous coordinates as:

xi = K [~r 1 ~r 2 ~r 3 ~t]


X
Y
0
1


 = K [~r 1 ~r 2 ~t]


XY

1


 = H


XY

1


 , (A.4)

where ~r 1, ~r 2 and ~r 3 are the first, second and third column of the rotation matrix
(R ) respectively, t is the translation vector and H is a 3x3 homogeneous matrix,
called as homography matrix.

The matrix H can be estimated from four correspondences ~mi ↔ ~Mi using
the DLT algorithm (see Section A.2). Furthermore, since K is known, the camera
pose can be recovered from the product K−1H , where the last column ~r 3 is
computed as the cross product of ~r 1 and ~r 2 (~r 3 = ~r 1 × ~r 2) to satisfy the
orthonormality constraint of the rotation matrix R . Indeed, the orthonormality
conditions are never perfectly met, so a renormalization step is applied (Simon
and Berger, 2002): ~r 2 = ~r 2/ ∥∥~r 2∥∥, ~r 3 = ~r 1 × ~r 2/ ∥∥~r 1 × ~r 2∥∥, ~r 1 = ~r 2 × ~r 3.



Appendix B
Resolution of Kinect depth data

The following sections provide the resolution of the depth data from a Kinect
device as well as a comparison between different depth sensors that can be
found in the market.

B.1 Depth Resolution
Knowing the relative geometry between the IR projector and the IR camera
(defined as baseline), the measurement of depth is determined by a triangulation
process. Depths of objects in the scene are calculated by comparing the received
pattern against the emitted reference pattern. This reference pattern is previously
defined (memorized at a known distance from the sensor) and stored in the
memory of the sensor. For each projected dot, if the position is different from
that on the reference plane, the position of this dot in the infrared image will be
shifted in the direction of the baseline. All these shifts form a disparity image
using a simple image correlation procedure.

As Figure B.1 depicts, the distance of the dot projected on the point k of the
object is smaller than that of the reference plane point o. By similar triangles this
displacement D yields in a disparity d. Therefore, for each pixel, the distance
to the sensor can then be retrieved from the corresponding disparity.

D
b = Zo − Zk

Zo ,
d
f = D

Zk , (B.1)
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D

o

k

Zo Zk

Reference plane

Object plane

d

f

b

z

x

C (IR camera) L (IR projector)

Figure B.1: IR geometric model. Relation between relative depth and
measured disparity. Original source (Khoshelham and Elberink, 2012).

where Zo is the distance from the reference plane to the sensor, Zk denotes the
depth of the point k in object space and f is the focal length of the IR camera.

Substituting D in Equation B.1:

Zk = Zo
1 + Zofbd

(B.2)

Figure B.2 shows the depth map produced by the Kinect sensor. The depth
values are encoded with grey values. The closer are the distances from the
sensor the darker are the pixel values, and viceversa. On the other hand, black
pixels indicates that there are not depth values available because they are out of
the depth range, sensitive to external infrared sources (sun light) or crystalline
or highly reflective objects. It may be also possible to obtain the raw data
represented as a point cloud. This point cloud has a lot of noise with large
holes, as Figure B.2 down depicts.
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Figure B.2: Depth image (right-top) for a given scene (left-top) and
its corresponding point cloud (down).
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B.2 Depth Sensor Comparison
Several depth sensor devices that can be found in the market are presented.

Table B.1: Comparison between different depth sensors.
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Appendix C
Design of Experiments

This appendix describes the methodology and each of the phases of the
implementation of a Design of Experiments (DoE), as well as the Case Study
concerning Chapter 4.

C.1 Description of the Methodology
By experiment is understood the performance of a test under a controlled process
with a predetermined objective. The Design of Experiments (DoE) is defined
by the methodology of applying statistics to the experimentation process (LM.,
2005). It consists in planning and developing a set of experiments inducing
deliberating changes to the input variables of the process in order to identify
possible changes in the output variable, also called response.

The model of Figure C.1 shows a general framework for the process of
experimentation. The main idea is to reduce the impact of the identified problem
by finding an optimal parametrization through the DoE. A description of each
step of the methodology is presented below.

Define
This phase consists in defining the response and establishing the goals and
objectives to be achieved.

231
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DEFINE MEASURE PRE-ANALYSE

ANALYSE EXPERIMENT

IMPROVECONTROL

Figure C.1: Model of DoE methodology. (Courtesy of (Tanco et al.,
2009)).

Measure
It identifies and classifies the variables that may influence the response. These
variables are known as factors. Moreover, the primary factors are also known
as those factors whose influence in the response is unknown and are wished
to study. Furthermore, those factors that are always controllable are called
control-factors, i.e., the ranges and levels (different values of the factor which
are experimented) can be set for each one.

As described in (Castillo, 2007), depending on some carried out pilot tests
and in the experience, three different ranges for factors can be distinguished

1. Region of Operation. This is the range where theoretically the experiments
can be conducted.

2. Region of Interest. It is the range that is wished to be explored. Included
in the Region of Operation.

3. Region of Experimentation. Included in the Region of Interest. This is
the range of each primary factor, once the experiment has been designed
(Pre-Analyse stage).
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Pre-Analyse
This is the phase where the type of design is selected to be set up. More
concretely, the total number, the conditions and the order in which the experiment
will be conducted is determined. The most frequently used experimental designs
are the following ones:
• Full Factorial. It includes all possible combinations of the levels of

every factor. The design is defined as Nk , where N is all the possible
combinations of the defined levels of the k factors involved in the
experiments. Therefore, the number of experiments is the product of the
number of levels of each factor. Experiments with factors at two levels (2k ,
where k=factors) are very efficient and allow estimation of all effects.
• Fractional Factorial. It reduces the number of runs.
• Placket-Burman. They are used for screening experiments, i.e., there is no

idea of the process and there are many factors.
• Central Composite design. It lets the estimation of quadratic models. It is

used for optimization processes, or when the response is not lineal.
• Box-Behnken. They are used for three level factors as well as to fit a

quadratic model.

Experiment
This stage executes all the experiments to determine which factors are
statistically significant and recollects all the information which is concluded
with Analyse step.

Analyse
This phase uses statistical methods to analyse the data collected. The use of
statistical software for the construction and the analysis of the designs, presents
major advantages and allows to save time and not to deepen the theoretical
aspects required to construct a design. The Minitab is the priority due to its
graphics supports that allows taking wise decisions in a simple and effective
way.
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1. Determine active primary factors.

In a first step, the effect of each factor as well as the interactions
between them is calculated. The former expresses the variation of the
response caused by changes of levels of the input factors, while the latter
corresponds to the impact whereby the apparent influence of a factor in the
response depends on one or more factors. This information suggests which
factors are statistically significant. Significant are those factors with a low
probability of error that influence the response. An Analysis of Variance
(ANOVA) is used to determine, at a given level of confidence, which effects
influence the response, that is, to determine active primary factors. ANOVA
is a formal and an accuracy statistical method which consists in assigning
the total variance to the factors in order to perform statistical tests (t-test
and F-test) and to know with a certain level of confidence, the effects
that significantly influence the response. In this regard, the p-value of
each factor is the index which shows the level of confidence. Thus, it is
reported that an effect is considered as significant if its p-value is lower
than 0.05.

2. Interpret results.
The former two steps (Experiments and Analysis) are executed
sequentially and in an iterative manner. Based on the range of interest
that has been previously assigned to each factor, local ranges of
experimentations are selected. Then, in view of the effects achieved of
the factors through the p-values and related interactions between them, a
new range is selected (either higher or lower depending on the response)
for the significant factor. In addition, all the non-significant factors are
excluded from the following analysis, setting for them the last assigned
value.
Besides the ANOVA, the presentation of the factors in a Pareto Chart (see
Figures C.2, C.3) as well as the Normal Probability Plot (see Figures C.4,
C.5) also allows to confirm the information in a graphic manner. The Pareto
chart represents the magnitude of all the effects through the indicative
line that specifies which are the significant ones. On the other hand, the
second plot visualizes the significant effects, which are those that are not
distributed along the straight line. Moreover, apart from the factors shown
in the previous tables (see Figures C.2, C.3 and Figures C.4, C.5), it should
be also mentioned that these plots show the interactions between factors
that are significant.



Section C.1. Description of the Methodology 235
3. Optimization.

Finally, it is possible and often necessary to select more than one
response. In this regard, an optimization is introduced to get the
parametrization for multiple responses and finish with the Analysis stage.
It searches for a combination of the factors that jointly optimize the two
responses by satisfying the requirements of each one. This can be done by
acquiring some knowledge of the process and the ranges of the responses.
In this sense, Minitab offers a simple method called Response Optimizer
tool that calculates an optimal setting for the responses. It searches for a
combination of the factors that jointly optimize the responses by satisfying
the requirements of each one.
Moreover, multiple responses are combined into a single response using
desirability functions. After calculating the desirability (d) (individual
response), Minitab combines them to get a measure of the composite (D),
which depends on the weight that has been set to each response.
The plot for the optimization in the Case Study (see Figure C.6) shows the
effect of each factor on the two responses. The red vertical line determines
the current desirable optimization settings according to the top displayed
numbers. The horizontal blue lines and the corresponding numbers in the
first column represent the value of the response for the current factor level.
Finally, in each response the individual desirability (d) is shown, while
the optimal desirability (D) is shown in the top. If these values (d-error,
d-execution, D-composite) are close to 1, then the results that are wanted
to achieve would be better.

The last two phases of the model, Improve and Control, are used to maximize
or minimize the goal and thus, monitor and verify stability. These last two stages
have not been taken into account in this thesis.
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C.2 Case Study
Define

The error (inversely proportional to the weight of each particle) and the
execution time of the Particle Filter (PF) were selected as responses, i.e.,
variables that are wished to measure as the result of the evaluated process. The
target was global parametrization that minimizes both responses. Furthermore,
two textures (Stones and Guernica) were used (see Table 4.1 top and
middle) with a different number of feature points in order to attain general
parametrization.
Measure

The primary factors observed in Table C.1 were identified. Number of
particles (A) corresponds to the total number of particles to process in the PF
(see Section 4.4.2.2), DefSame (B) is the degree of deformation to search for in
the same cluster (see Section 4.4.2.2), DefAll (C) is the degree of deformation
to search for in the remaining clusters (see Section 4.4.2.2), GroupDef (D)
is the threshold for grouping particles in order to calculate the pose (see
Section 4.4.2.2) and finally, Granularity (E) corresponds to the number of
templates stored in each type of deformation or cluster deformation (see
Section 4.4.2.2).

Table C.1: Classification of the primary factors.
FACTOR IDENTIFIER

Number of particles NumParticles (A)
Deformation same cluster DefSame (B)
Deformation all clusters DefAll (C)

Group deformation GroupDef (D)
Granularity-storage database Granularity (E)

1. Region of operation (see Table C.2).
2. Region of interest (see Table C.3).
3. Region of experimentation (see Table C.4). Unlike the previous regions,

here it was decided to delete, basis on the pilot testing, those values that
were so high and whose results were not significant at first glance.
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Table C.2: Region of operation of each factor.
IDENTIFIER REGION OF OPERATION

NumParticles (A) > 0
DefSame (B) > 0

DefAll (C) > 0
GroupDef (D) > 0
Granularity (E) > 28

Table C.3: Region of interest of each factor.
IDENTIFIER REGION OF INTEREST

NumParticles (A) [500 - 1000 - 1500 - 2000 - 2500 - 3000 - 3500 - 4000 -
4500 - 5000 - 6000 - 7500 - 10000]

DefSame (B) [5 - 10 - 15 - 30 - 50]
DefAll (C) [5 - 10 - 15 - 30 - 50]

GroupDef (D) [1 - 5 - 10 - 15 - 20]
Granularity (E) [1400 (50) - 2800 (100) - 5600(200) - 8400(300) -11200(400)

- 14000 (500)]

Pre-Analysis

It was decided to use a full factorial design. Thus, Nk = 25 = 32 experiments.
Analysis

Table C.5 depicts the p-values extracted from the execution of the experiment
for both error and time cases for each texture. The ANOVA emphasizes that the
most dominant factors were GroupDef and Granularity. NumParticles was also
important, although the p-value associated with the error of the first texture
was not fully reliable.
Optimization

In this case, both responses had the same weight.
In the time case, there was evidence that 20 ms is the largest value that can

achieve in order to have real-time performances. Conversely, the error, the closer
the value of this index was to zero, the higher level of robustness encountered.
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Table C.4: Region of experimentation of each factor.

IDENTIFIER REGION OF EXPERIMENTATION
NumParticles (A) [500 - 1000 - 1500 - 2000 - 2500 - 3000 - 3500 - 4000 -

4500 - 5000]
DefSame (B) [5 - 10 - 15 - 30]

DefAll (C) [5 - 10 - 15 - 30]
GroupDef (D) [1 - 5 - 10]
Granularity (E) [1400 (50) - 2800 (100) - 5600(200) - 8400(300) -11200(400)

- 14000 (500)]
Table C.5: ANOVA for error and time.

Texture FACTOR p-value error p-value time
NumParticles (A) 0.060 0.000

DefSame (B) 0.037 0.431
Stones DefAll (C) 0.678 0.000

GroupDef (D) 0.000 0.000
Granularity (E) 0.000 0.000

NumParticles (A) 0.000 0.000
DefSame (B) 0.598 0.941

Guernica DefAll (C) 0.621 0.000
GroupDef (D) 0.000 0.000
Granularity (E) 0.000 0.000

In this case, the goal was to minimize, so the target value was determined
for execution time in 20 (close to real time if it is considered additional cost
associated with image processing) and 0 for error. With regard to the upper
bound, a high value for both responses was fixed. The reason of selecting 20 in
the time case instead of 0, was because of the prioritization of the error until
this value and moreover, the smaller values were not taken into account. So any
response value below the target the response desirability will be one and above
the upper bound zero.

Analysing the results, was deduced that the best parametrization is 3500
for NumParticles, 5 for DefSame, 5 for DefAll, 1 for DefGroup and 14000 for
Granularity.
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(a)

(b)

Figure C.2: Pareto charts of the Stones texture. All the effects through
the indicative line that provides to know which are the significant
ones. The chart (a) corresponds to the error response and the (b) for
the time response.
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(a)

(b)

Figure C.3: Pareto charts of the Guernica texture. All the effects
through the indicative line that provides to know which are the
significant ones. The chart (a) correspond to the error response and
the (b) for the time response.
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(a)

(b)

Figure C.4: Normal plots of the Stones texture. The significant effects
are not distributed along the straight line. The chart (a) corresponds
to the error response and the (b) for the time response.
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(a)

(b)

Figure C.5: Normal plots of the Guernica texture. The significant
effects are not distributed along the straight line. The chart (a)
corresponds to the error response and the (b) for the time response.



Section C.2. Case Study 243

(a)

(b)

Figure C.6: Desirability plots depicting the optimal values for factors
in an optimal combination with the desired targeted responses for
Stones (a) and Guernica textures (b).
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Appendix D
AR Framework links

The following provides a list of Augmented Reality (AR) SDKs.
Table D.1: AR SDKs.

SDK Website
ALVAR http://virtual.vtt.fi/virtual/

proj2/multimedia/alvar/index.html

ARTag http://www.artag.net/

ARLab http://www.arlab.com/

ARmedia http://www.inglobetechnologies.
com/

ARPA http://arpa-solutions.net/en

ARToolKit http://www.hitl.washington.edu/
artoolkit/

ARToolKitPlus http://studierstube.icg.tugraz.at/
handheld_ar/artoolkitplus.php/

ArUco http://www.uco.es/investiga/
grupos/ava/node/26

BazAR http://cvlab.epfl.ch/software/
bazar/index.php

BeyondAR http://beyondar.com/platform

Catchoom http://catchoom.com/

D’Fusion http://www.t-immersion.com/

FLARToolkit http://www.libspark.org/wiki/
saqoosha/FLARToolKit/en
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Layar https://www.layar.com/

Metaio http://www.metaio.com/sdk/

NyARToolkit http://nyatla.jp/nyartoolkit/wp/

OpenCV http://opencv.org/

osgART http://osgart.org/index.php/Main_
Page

PCL http://pointclouds.org/

PTAM http://www.robots.ox.ac.uk/~gk/
PTAM/

Qualcomm Vuforia https://developer.vuforia.com/

Qualcomm FastCV https://developer.qualcomm.
com/mobile-development/
add-advanced-features/
computer-vision-fastcv/

Studierstube http://www.icg.tugraz.at/project/
studierstube

Total Inmersion http://www.t-immersion.com/
ar-key-words/augmented-reality-sdk

Wikitude http://www.wikitude.com/products/
wikitude-sdk/

https://www.layar.com/
 http://www.metaio.com/sdk/
http://nyatla.jp/nyartoolkit/wp/
http://opencv.org/
http://osgart.org/index.php/Main_Page
http://osgart.org/index.php/Main_Page
http://pointclouds.org/
http://www.robots.ox.ac.uk/~gk/PTAM/
http://www.robots.ox.ac.uk/~gk/PTAM/
https://developer.vuforia.com/
 https://developer.qualcomm.com/mobile-development/add-advanced-features/computer-vision-fastcv/
 https://developer.qualcomm.com/mobile-development/add-advanced-features/computer-vision-fastcv/
 https://developer.qualcomm.com/mobile-development/add-advanced-features/computer-vision-fastcv/
 https://developer.qualcomm.com/mobile-development/add-advanced-features/computer-vision-fastcv/
http://www.icg.tugraz.at/project/studierstube
http://www.icg.tugraz.at/project/studierstube
http://www.t-immersion.com/ar-key-words/augmented-reality-sdk
http://www.t-immersion.com/ar-key-words/augmented-reality-sdk
http://www.wikitude.com/products/wikitude-sdk/
http://www.wikitude.com/products/wikitude-sdk/


Appendix E
Generated Publications

This appendix includes the front page of the articles that have already been
published by the author of this thesis in scientific journals and international
conferences. Submitted articles that are currently under review are also included.

Journals
Álvarez, H., Leizea, I., and Borro, D. “A new marker design for a robust
marker tracking system against occlusions”. Computer Animation and
Virtual Worlds, Vol. 23, N. 5, pp. 503–518. 2012.
Leizea, I., Álvarez, H., and Borro, D. “Real time non-rigid 3d surface
tracking using particle filter”. Computer Vision and Image Understanding,
Vol. 133, N. 0, pp. 51–65. April, 2105.
Leizea, I., Mendizabal, A., Álvarez, H., Aguinaga, I., Sánchez, E., and Borro,
D. “Tracking of deformable objects based on a visual approach and physics
simulation for robot-assisted surgery”. Submitted to Computer Graphics
and Applications, IEEE, 2015.

247



248 Appendix E. Generated Publications
Conferences

Álvarez, H., Leizea, I., and Borro, D. “A survey on optical tracking for
augmented reality”. In Proceedings of the XXII Conferencia Española de
Computación Gráfica (CEIG), pp. 31–40. Jaén, Spain. September, 2012.
Leizea, I., Álvarez, H., Aguinaga, I., and Borro, D. “Real-time deformation,
registration and tracking of solids based on physical simulation”. In
Proceedings of the 13th IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 165–170. Munich, Bavaria, Germany.
September, 2014.



249
COMPUTER ANIMATION AND VIRTUAL WORLDS

Comp. Anim. Virtual Worlds 2012; 23:503–518

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1487
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A new marker design for a robust marker tracking

system against occlusions

Hugo Álvarez*, Ibai Leizea and Diego Borro

Ceit and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián, Spain

ABSTRACT

Marker systems are a widely used optical tracking method that does not support occlusions. Thus, this paper proposes a new

marker design to overcome the problem of marker occlusions. It is highly adaptable, because it can be used by any marker

tracking system that uses its central area to codify the digital identification. Our proposal takes advantage of an untapped

frame to place some textures that will be tracked during marker occlusion. In addition, these textures are customizable,

which lets users make their own designs. Two tracking methods are combined to offer a robust tracking, updating the six

degrees of freedom of the camera in real time. The first one is a fast technique based on temporal coherence, whereas the

second one is a robust technique based on appearance, which is used as a recovery mode. Copyright © 2012 John Wiley

& Sons, Ltd.
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1. INTRODUCTION

The aim of augmented reality is to add virtual objects to the

real world, giving the impression that both worlds coexist.

To achieve this goal, much effort has been made to obtain

an accurate and robust tracking system based on com-

puter vision. Markerless solutions use natural features [1,2]

or a 3D model [3,4] to calculate the camera pose. These

alternatives do not need environment adaptation, because

they rely on natural features that are in the scene or lie

on the surface of the model to be tracked. Thus, in some

cases, a scene rich in texture is required, whereas in other

cases, the 3D model must be known, which is not always

easy to obtain. Marker tracking systems are an alternative

to those problems, because they add special patterns to

the scene [5–7]. Furthermore, they are faster, more accu-

rate, and more robust than markerless tracking solutions.

The main inconvenience is the environment adaptation,

although in some cases, this adaptation is feasible and does

not involve any obstacle at all. Besides the environment

adaptation, marker occlusion is another shortcoming, as the

system fails even if the marker is only slightly occluded

(Figure 1, left). This produces an undesirable effect on

users who lose the sense of realism. Because of this lim-

itation, instead of using multiple markers so that there is

always one marker visible [8], we have developed a new

marker design that deals with occlusions and updates the

six degrees of freedom of the camera (Figure 1, right). Our

proposal offers more robustness and does not need more

environment modification.

We have chosen ARToolkitPlus [9] to introduce our

ideas because it is a widely used noncommercial marker

tracking system that uses markers that do not take advan-

tage of their frame to codify information (Figure 2, left).

Notice, however, that our method can be adapted to any

marker that does not codify information on its frame. We

have placed textured patches along the frame of the marker

to have more visible features (with known 3D coordinates)

during marker occlusion. Moreover, the content of these

textures is customizable, which lets users design their

own markers or expand marketing opportunities. In addi-

tion, the different occlusion states provide us with addi-

tional information that can be used to implement some

human–machine interfaces.

The rest of the paper is organized as follows.

First, some works related to marker occlusion will be

enumerated. Afterwards, the choice of the new marker

design will be justified. Then, all steps involved in the

tracking will be described. Additionally, some exper-

iments will demonstrate the performance of the pro-

posed method. Finally, conclusions and future works will

be cited.

Copyright © 2012 John Wiley & Sons, Ltd. 503
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a b s t r a c t

Recovering a deformable 3D surface from a single image is an ill-posed problem because of the depth
ambiguities. The resolution to this ambiguity normally requires prior knowledge about the most probable
deformations that the surface can support. Many methods that address this problem have been proposed
in the literature. Some of them rely on physical properties, while others learn the principal deformations
of the object or are based on a reference textured image. However, they present some limitations such as
high computational cost or the lack of the possibility of recovering the 3D shape. As an alternative to
existing solutions, this paper provides a novel approach that simultaneously recovers the non-rigid 3D
shape and the camera pose in real time from a single image. This proposal relies on an efficient particle
filter that performs an intelligent search of a database of deformations. We present an exhaustive Design
of Experiments to obtain the optimal parametrization of the particle filter, as well as a set of results to
demonstrate the visual quality and the performance of our approach.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recovering the 3D shape of a non-rigid surface from a monocu-
lar video sequence is a highly ambiguous problem because many
3D surfaces could have the same projection (see Fig. 1). Even when
we have the intrinsic camera parameters and a well-textured sur-
face, it is difficult to select the best mesh between all possible con-
figurations of a deformable surface in order to solve the depth
ambiguities. Along with the standard approaches that try to solve
the shape recovery problem, we find approaches that establish
prior knowledge [60], have a reference image [40], or are even
based on a set of images of the target object [6].

Some methods rely on modelling the physical properties of a
surface to achieve an approximation of the physical behaviour
[14]. Although they obtain accurate results, the challenge is to
determine the physical properties that govern the surface behav-
iour. Others adjust the behaviour of a surface to the movements
registered in a database [43], which contains the most representa-
tive deformations of the surface. There are other approaches [29]
that reconstruct the deformation of a non-rigid surface by using
2D–3D correspondences between an input image and a reference
image in which the 3D shape of the surface and the intrinsic

parameters of the camera are known. Likewise, some methods
[4] that do not require prior knowledge have been proposed. They
extract 2D–3D correspondences for each frame by tracking points
over the video sequence.

The central idea of our method is to recover simultaneously and
in real time the camera pose and the non-rigid 3D surface through
the use of an efficient particle filter [19,37]. The particle filter per-
forms an intelligent search in a database where a range of deforma-
tion templates and appearance descriptors are stored. Furthe
rmore, two tracking methods are combined to offer robust track-
ing. The first one is based on appearance, which serves to do both
the initialization and reset from a failure, while the second one is
based on temporal coherence.

The rest of the paper is organized in 5 sections as follows. First,
we provide an overview of some works related to recovering a
deformable 3D surface and the justification for choosing our
method is presented. In Section 3, we address all the steps that
have been carried out to solve the problem of recovering a non-
rigid 3D surface. Afterwards, in Section 4 a Design of Experiments
is presented to determine the optimal values of the parameters of
the Particle Filter, as well as, a test suite that demonstrates the
good performance of our tracking method. Finally, conclusions
and future works are enumerated in Section 5.

2. Related work

The non-rigid surface recovery problem has been addressed in
several ways. Here we present a categorization of four main

http://dx.doi.org/10.1016/j.cviu.2014.12.002
1077-3142/� 2014 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by Vincent Lepetit.
⇑ Corresponding author. Fax: +34 943 213 076.

E-mail addresses: ileizea@ceit.es (I. Leizea), halvarez@ceit.es (H. Álvarez),
dborro@ceit.es (D. Borro).

1 Fax: +34 943 213 076.

Computer Vision and Image Understanding 133 (2015) 51–65

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu



251

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Tracking of deformable objects based on a visual
approach and physics simulation for

robot-assisted surgery
Ibai Leizea, Ainhitze Mendizabal, Hugo Álvarez, Iker Aguinaga, Emilio Sánchez and Diego Borro

Abstract—This paper presents a visual tracking system for deformable objects used with a robot-assisted surgical system. The system
is capable of capturing in real time the deformation exerted by the robot using Computer Vision, and despite the occlusions produced
by the robotic system itself. The information captured by this system enables new assistance approaches to assist surgeons during
procedures, such as Augmented Reality. The tracking algorithm is helped by a fast and accurate physically-based biomechanical
model of the object, together with a visual tracking approach designed to properly simulate the model.
This method has been tested in a realistic experimental setup, to evaluate the level of accuracy and computation requirements of the
proposed system. The deformations obtained from the experiments have been compared with the theoretical results obtained by finite
element analysis obtained using the Abaqus software package. The results obtained provide an accurate visual representation of the
deformed solid.

Index Terms—Visual tracking, robotics, finite element method, material characterization.

F

1 INTRODUCTION

The use of robotic devices in medicine and more specifically
in the surgical field entails a remarkable improvement in the
delivery of healthcare services. Nowadays, robotic devices
and computer-assisted technologies are included as a means
of guidance, diagnosis, verification and general assistance
during the performance of a surgical intervention [1].

However, the use of robotic devices in surgery creates
new challenges that must be overcome for their successful
deployment. A robot acting on a tissue exerts a force and
produces deformations over which the surgeon has no direct
feedback. The tracking of the deformation of the organs
is required for assistive technologies such as Augmented
Reality, for example to support the surgeon by a visual
feedback of the deformations that are taking place on the
tissues, or to support the surgeon by locating the position
of a malignancy to be removed from an organ. In most
cases, the inclusion of sensors to track the position of the
organs of the patient is not usually feasible. Thus, the use of
alternative approaches such as Computer Vision techniques
has become a real need to solve this kind of problem.

Nevertheless, the very presence of the robot produces
occlusions that limit how much information can be ob-
tained using only Computer Vision. The combination of
Computer Vision with a suitable physical simulation can
be used to reduce the missing information. In this case,
the accuracy required for the surgical simulations remains
important. In contrast to deformable models used in video
games and animations, the purpose of soft tissue models in
medical simulation is to model realistically the behaviour
of biological tissues. Consequently, the simulation of the
deformation of the tissue should be controlled using real

Manuscript received April 19, 2005; revised September 17, 2014.

material parameters. Thus, these parameters should be ob-
tained from biomechanics experiments instead of intuitively
adjusted parameters. However, in robotic guidance and
surgery assistance systems not only accuracy is essential,
but also computational performance must be taken into
account, in order to provide a fast enough visual feedback
to the surgeon. Therefore, in this application it is critical to
obtain a compromise between accuracy and computational
cost. Being able to provide surgical realism at interactive
rates of simulation is one of the most challenging problem
in robot surgical assistance systems [2].

This paper proposes a novel visual tracking method
based on physical simulation. This procedure is capable of
obtaining the deformation produced by a robotic system on
patient tissues, and therefore, it obtains the basic informa-
tion to provide assistance and guidance to surgeons using
visual or haptic feedback. More concretely, this method has
been integrated within the framework of robotic surgery
system through a surgical module developed in [3].

The approach followed in this paper is divided into
two main phases. The first deals with handling robotic
surgical arm movements, while the second computes the
deformations applied from the first step through a vision
system. This vision system is composed of a RGB-D camera
which returns both the colour and depth information. How-
ever, this data is incomplete (due to occlusions and areas
where the sensor has not been able to capture data) and
contains too much noise. Accordingly, we rely on a physical
simulation module to reconstruct the object deformation.
More concretely, we feed the input into a non-linear Finite
Element Method (FEM) formulation in order to simulate
the physical behaviour of the tissue under deformation. The
mechanical properties of the deformable objects and tissues
used in the experiments have been experimentally obtained
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A Survey on Optical Tracking for Augmented Reality
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Abstract
Good tracking creates the sensation that virtual objects belong to the real world, offering a perfect alignment
between virtual and real objects., i.e., it increases the effectiveness of augmented reality. Moreover, optical tracking
is the most popular solution for addressing the tracking problem as it does not require that bulky machines be
added to the scene or force the user to carry heavy devices, and instead a simple camera captures images of the
scene. Additionally, it is also a low cost alternative. Due to this reasoning, optical tracking has been extensively
studied by several authors, resulting in many different optical tracking methods. However, it is not a solved problem
and it still remains as an important research topic because it is often difficult to provide robustness, accuracy and
low computational cost at the same time. This article reviews the methods that have been designed to overcome
the problem of tracking through using images from the camera as the sole source of information.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking

1. Introduction

Augmented Reality (AR) is a technology that enriches the
way in which users experience the real world with additional
virtual information (Figure 1). In contrast to Virtual Reality
(VR), where the user is completely immersed in a synthetic
world, AR consist on adding virtual objects to the real world.

Figure 1: Virtual instruction that illustrates how to disas-
semble a real object.

The main challenge of an augmented reality system is
to obtain robust and accurate registration. The registration
problem is based on finding a perfect alignment between
real and virtual objects, since it is essential to create the

illusion that virtual and real worlds coexist. To solve this
problem, the position and orientation of the observer has to
be determined. Using this information a virtual camera can
be configured, which indicates exactly where the virtual ob-
jects should be drawn in the image. Likewise, the problem
of finding the parameters that define the camera is known as
tracking, which is the process that extracts the position and
orientation (jointly called pose) of the camera relative to a
global coordinate system (usually cited as world coordinate
system). It requires the extraction of the 6 degree of freedom
(DOF) that represent the user’s viewpoint: 3-DOF for ori-
entation and 3-DOF for translation. There are many alterna-
tives to addressing this problem, and they differ in the type
of sensors they use [RBG01]: inertial sensors combine ac-
celerometers and gyroscopes to estimate the translation and
rotations respectively, ultrasound sensors rely on the delay
times of ultrasonic pulses to infer position and orientation,
GPS receivers use the signals emitted by a set of satellites to
triangulate its pose, magnetic sensors measure the magnetic
fields to deduce the viewpoint parameters, and optical sen-
sors process the image of the scene captured by a camera to
obtain its corresponding 6-DOF.

Tracking based on optical sensors (also called visual
tracking) is the most popular solution because it is inexpen-
sive and does not require a significant adaptation of the en-

c© The Eurographics Association 2012.
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Real-time Deformation, Registration and Tracking of Solids Based on
Physical Simulation
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ABSTRACT

This paper proposes a novel approach to registering deformations
of 3D non-rigid objects for Augmented Reality applications. Our
prototype is able to handle different types of objects in real-time
regardless of their geometry and appearance (with and without tex-
ture) with the support of an RGB-D camera. During an automatic
offline stage, the model is processed in order to extract the data
that serves as input for a physics-based simulation. Using its out-
put, the deformations of the model are estimated by considering
the simulated behaviour as a constraint. Furthermore, our frame-
work incorporates a tracking method based on templates in order
to detect the object in the scene and continuously update the cam-
era pose without any user intervention. Therefore, it is a complete
solution that extends from tracking to deformation formulation for
either textured or untextured objects regardless of their geometrical
shape. Our proposal focuses on providing a correct visual with a
low computational cost. Experiments with real and synthetic data
demonstrate the visual accuracy and the performance of our ap-
proach.

Index Terms:
I.4.8 [IMAGE PROCESSING AND COMPUTER VISION]:

Scene Analysis—; I.6.8 [SIMULATION AND MODELING]:
Types of Simulation— [I.2.10]: ARTIFICIAL INTELLIGENCE—
Vision and Scene Understanding

1 INTRODUCTION

Recovering the 3D shape of a non-rigid object is a highly ambigu-
ous problem because many deformable objects (with completely
different shapes) could have the same projection. In Computer Vi-
sion, there are few solutions that solve the registration of a non-rigid
3D object. Moreover, the number of approaches decreases when a
real-time constraint is set. This is mainly caused by the complexity
of the recognition and non-rigid registration steps.

This paper proposes a real-time non-rigid 3D object registration
method that is able to track and register 3D models regardless of
their geometric shape. Thus, our system can be used, for exam-
ple, to provide visual feedback for applications such as assembly of
flexible components in industry or medical surgery. Additionally,
detection is not based on features, and therefore, we can operate
with textured or untextured objects. This makes the approach ro-
bust against sudden illumination changes. The proposed method
not only obtains the deformation, but also the camera pose for each
frame. The detection and tracking system is based on templates
(LINEMOD method [9]). Unlike other solutions, our approach
does not require a static camera. In fact, the method handles large
camera movements.

∗e-mail: ileizea@ceit.es
†e-mail: halvarez@ceit.es
‡e-mail: iaguinaga@ceit.es
§e-mail: dborro@ceit.es

The process is divided into two steps. The first one takes ad-
vantage of an RGB-D camera to obtain both the colour and depth
information. The second step, meanwhile, fits this information into
a physical model. We rely on being able to model the mechanical
properties of the solid to attain an approximation of the physical
behaviour. More concretely, a Mass-Spring Model (MSM) is used
to adjust the mesh and recover the new 3D shape due to the de-
formation. Finally, compared to existing solutions [7], our method
offers accurate visual feedback, versatility (the ability to work with
different types of objects) and real-time performance over accuracy.

The rest of the paper is organized in 5 sections as follows. In Sec-
tion 2 we provide an overview of some works related to recovering
a deformable 3D shape and the justification for our contribution.
Then, in Section 3 we address all the steps that have been carried
out to solve the problem of recovering a non-rigid 3D object and
deducing the camera pose that best fits the projection. Section 4
shows a test suite that demonstrates the good performance of our
method. Finally, Section 5 presents the main conclusions drawn
from this work.

2 RELATED WORK

Amongst the majority of approaches that recover the 3D structure
of a non-rigid object, the problem is divided into two steps: im-
age registration and shape inference. As far as image registration is
concerned, the issue can be tackled by using two main approaches:
feature-based methods or direct methods. Feature-based methods
[1] focus on detecting points (also called features) that are dis-
tinguishable from their neighbourhood, and direct methods [4], in
turn, use the intensity differences between two images to calculate
the correspondences.

The shape inference process adjusts the acquired visual informa-
tion to the shape. Physics-based systems adjust the shape accord-
ing to its physical properties. Others [3], however, integrate geo-
metrical or temporal constraints to the system and solve it through
optimization techniques such as Second Order Cone Programming
(SOCP). Similarly, there are approaches that learn the principal de-
formations of the objects to tackle the problem.

Image registration as well as shape inference solutions are com-
bined in several ways in many of the approaches presented below.

In terms of feature-based vision methods, we can find exam-
ples in [13] and [14]. These works perform the reconstruction of
non-rigid surfaces by learning the deformation-modes of the shape.
They use Principal Component Analysis (PCA) to compute modes
of deformation and generate a database of feasible shapes [2]. In
[14], the 3D deformation modes are performed by varying angles
between facets, while in [13], the mesh is subdivided into a set
of patches that are combined linearly. In contrast, there are solu-
tions that do not obtain the deformation-modes of the shape but
still solve the visual part by using a feature strategy [17]. In this
sense, local rigidity constraints [18] or unconstrained quadratic op-
timization [22] surface reconstruction can be carried out. However,
the primary focus of many of these approaches [14] is on planar
surfaces. Moreover, most of them have a high computational cost.

Following the idea of using visual cues, there are real-time ap-
proaches like [12], even using RGB-D cameras [8] and [19], which
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