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Figure 1: (Left Column) Our VOF method with a naive pro-
jection implementation which does not conserve volume.
(Middle Column) Our VOF method with smear and pushout
while replacing our velocity correction step with a standard
Poisson solver. (Right Column) Our VOF method with pro-
posed smear, pushout, and velocity correction steps. The
middle and right columns conserve volume.
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In order to evaluate our method compared to other approaches
and to explore possible extensions, we implemented a standard
Poisson solver by assigning pressures on nodes similar to [Ando
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Figure 2: (Left) FLIP method on our ball example. (Right)
Our method.

et al. 2013]. This implementation solves the inviscid, incompress-
ible Navier-Stokes equations:

Ou/dt = —(u-V)u-Vp/p+f

while satisfying V - u = 0 to enforce the divergence free condi-
tion for the velocity field without any advanced modifications (p
is pressure, f is external forces). We ran two different flavors of this
alternative; one is to completely replace our volume conservation
scheme with the standard Poisson solver ignoring the volume con-
servation entirely within the projection, and the other is to replace
only the velocity correction while keeping smear and pushout to
conserve volume. Note that the smear and pushout steps transport
fluid with its momentum, so oversaturated fluid velocity propa-
gates to its neighbors. Thus, the second version spreads water out-
ward more than the first version. We ran all implementations on
the KDSM with the same setup, and the results are shown in the
above Figure. In the Figure, we found that the right column is more
desirable than the left because it conserves volume, and is faster
and more robust than the middle column since we do not have to
solve a linear system.
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Figure 3: Volume error for example where a thin stream of
water hits a ball.
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Occasionally water stacking along boundaries can occur when
VOF tetrahedra are in contact with solids.

This is due to our VOF volume conservation step distributing
excess fluid and its momentum to neighboring tetrahedra, and this
issue can be resolved either by increasing the resolution of the
Eulerian grid to allow Eulerian fluid to contact the solid and us-
ing its full-fledged pressure solver as in the partitioned coupling
section or by using a standard Poisson solver as discussed in the
volume preservation section.

Algorithm 1 Pseudocode for Advection

1: // t: tetrahedron, v: fluid velocity for 7, At
2. // Transports carry volume and associated momentum to-

gether
3: function ADVECTION
4 BackwardAdvection() from the new mesh to the old mesh
5 ForwardAdvection() from the old mesh to the new mesh
6: function BACKWARDADVECTION
7: for each 7 in the KDSM do
8: backtraced r = Backtrace(r, —v, At)
9: point samples = GeneratePointSamples(backtraced 7)
10: for each point sample p in point samples do
1 if p lies within a tetrahedron z,;4 with water then
12: Preprocess for conservative advection
13: else if p falls under the Eulerian water then
14: Transport water from the Eulerian grid
15: for each 7 in the KDSM do
16: for each point sample p in point samples do
17: Transport water with preprocessed conservation

terms
18: function FORWARDADVECTION
19: for each 7 in the KDSM do

20: traced 7 = Backtrace(r, v, At)

21: point samples = GeneratePointSamples(traced 7)

22: for each point sample p in point samples do

23: if p lies within the KDSM then

24: Transport water to an appropriate tetrahedron
25: else

26: Transport water to an appropriate Eulerian grid
27: function BACKTRACE(T, v, At)

28: Trace nodes of ¢t backward in time with v and At

29: for each Traced node with position x do

30: if Collide(x, any solid surface) then

31 Clamp x with collided location

32: function COLLIDE(x, y)

33: return True if x collides with y, False otherwise

34: function GENERATEPOINTSAMPLES(7)

35: point samples = QuadratureFormula(backtraced 7)

36: volume = volume of 7 / number of point samples

37: attach volume to each point samples

38: return samples with volumes attached
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Algorithm 2 Pseudocode for Volume Preservation

1: // t: tetrahedron

2. // Transports carry volume and associated momentum to-
gether

: function VOLUME PRESERVATION

Smear()

Pushout()

VelocityCorrection()

AN U

7. function SMEAR
8: for each 7 in the KDSM do

9: if 7 is not on the boundary and is oversaturated then

10: Distribute excess fluid equally to 7’s neighbors

11: function PusHouT

12: for each 7 in the KDSM in the order of lowest rank to
highest do

13: if 7 is oversaturated then

14: if 7 is on the boundary then

15: Push water out of the KDSM as particles

16: else

17: Distribute excess water as much as possible to
its face neighbors equally as long as they are not oversaturated

18: Distribute the remaining excess water as much
as possible similarly to face neighbors with strictly higher rank

19: Distribute the remaining excess water to tetra-

hedra which are precomputed

20: function VELOCITYCORRECTION

21: Allocate a Boolean per tetrahedron and initialize to false

22: for each 7 in the KDSM do

23: if 7 is a cut cell and has water then

24: set 7’s Boolean to true

25: for each 7 in the same order as in the pushout do

26: if 7 has a face neighbor with lower rank and which is
fully saturated and has Boolean set to be True then

27: Clamp the normal velocity and set Boolean to be
True

Z

Figure 4: Yellow bear mesh is enclosed by the red KDSM,
which embeds hairs via blue particles.




A Robust Volume Conserving Method for Character-Water Interaction Supplementary Material SCA ’19, July 26-28, 2019, LA, CA, USA

A

Figure 5: (Left) A KDSM mesh around the ball. (Right) A sample animation showing the KDSM skinned to follow an animation
of a bear walking on a shore.
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