In this supplemental material, we describe PPTBF implementation details and practical choices.

1. Window Function

Figure 1 shows an example of the influence of the cellular window w_1 parameters λ (anisotropy) and l_c (smoothness) for two different values n_v (number of Bezier curve control points).

![Figure 1: Examples of the cellular window basis w_1 obtained for an increasing λ (from left to right) and by using tiling type (d). The second row uses the same parameters but a higher n_v.](image)

2. Feature Function

The feature function is defined by a mixture of stringed Gabor kernels \tilde{G}_j. Since we only want to produce rough stochastic structures, we implemented a limited number of mixtures. We experimentally and empirically found these mixtures to be able to surprisingly well cover most of the natural stochastic structures present in our database. Label ν_{G} for f selects the mixture among a finite set (we implemented 5 mixture models, as described next).

In parallel, we implemented simple PDFs for randomly drawing all other parameters of the feature function: $J, \mu_{G_j}, \sigma_{G_j}, \theta_j$ and A_j, the remaining parameters κ, ϕ and τ being constant for all \tilde{G}_j. As mentioned in the paper μ_{G_j} and σ_{G_j} are correlated to the tessellation cells R_i. J is uniformly drawn in interval $[J_{\text{min}}, J_{\text{max}}]$. θ_j is uniformly drawn in $[0, \theta]$. We implemented only two different ways for selecting the weights A_j: 1) $A_j = 1$ for all j and 2) a random binary selection in $-1, 1$ (actually we take uniform random values "close" to -1 and 1).

The mixture model is managed by function ω_j. It is a function of position $x \in \mathbb{R}^2$ that determines how kernel j will be contributing to the sum. If its value is 0 for a given kernel at a given location x, then kernel \tilde{G}_j does not contribute at all to the sum on this location. This allows us to define for example stacks of kernels instead of blends, feature stacks and piles being frequent in some natural patterns such as pebbles or foliage.

In practice, we implemented following five mixture models:

- $\omega_j = 1$ for all x. A_j is selected in $-1, 1$. This results in a classical sum;
- $\omega_j = 1/J$ for all x. $A_j = 1$. This is also a classical sum, but with no negative values. Therefore it is normalized;
- $\omega_j = 1/J_{G_j} - 1$. $A_j = 1$. Same sum as previous, but the result is eventually inverted. It is equivalent to computing $f(x) = 1 - \sum_{j=1}^J \tilde{G}_j(x)$. As a result, features are "carved" into the window function when applying the multiplication with the latter;
- ω_j is a Kronecker delta function based on a max operator, consisting in keeping only the highest value of all stringed Gabor kernels. This should not be confused with Worley’s min operator on distances, though in some case we obtain visually very similar results (depending on the other parameters of \tilde{G}_j);
- ω_j is a Kronecker delta function based on a max operator. This time, the maximum is computed for random values drawn on μ_{G_j} (the positions of the kernels). It results in stacking stringed Ga-
borders kernels in overlapping regions according to a certain random priority. This is a kind of bombing of stringed Gabor kernels.

Figure 2 illustrates these five mixture models (columns). The rows show variations of correlation parameter correl. In all cases we used tesselation (a) and $J_{\text{min}} = 5, J_{\text{max}} = 5$, a medium jittering value and a slight anisotropy with orientation interval $\theta_j \in [0, \pi/2]$. Frequency was set to 0, so there are no Gabor stripes.

3. PPTBF parameters and normalization

Table 1 summarizes all PPTBF parameters.

<table>
<thead>
<tr>
<th>Symb.</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_T</td>
<td>tiling type (e.g., regular, irregular...)</td>
<td>[0,..., 16]</td>
</tr>
<tr>
<td>jit</td>
<td>jittering (randomness)</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>ω</td>
<td>linear combination of the two basis windows</td>
<td>[0,..., 1]</td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>\cdot</td>
</tr>
<tr>
<td>λ</td>
<td>anisotropy of cellular basis window</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>n_v</td>
<td>number of control points for smoothing</td>
<td>[3,..., 64]</td>
</tr>
<tr>
<td>l_c</td>
<td>degree of smoothing</td>
<td>[0,..., 2]</td>
</tr>
<tr>
<td>σ_f</td>
<td>sigma of window</td>
<td>float</td>
</tr>
<tr>
<td>f_t</td>
<td>mixture model</td>
<td>[0,..., 3]</td>
</tr>
<tr>
<td>J_{min}</td>
<td>min/max number of kernels</td>
<td>[0,..., 8]</td>
</tr>
<tr>
<td>J_{max}</td>
<td>correlation with centroids</td>
<td>[0,..., 1]</td>
</tr>
<tr>
<td>ϕ</td>
<td>frequency of stringed Gabor stripes</td>
<td>[0,..., 16]</td>
</tr>
<tr>
<td>τ</td>
<td>thickness of stringed Gabor stripes</td>
<td>[0,..., 1]</td>
</tr>
<tr>
<td>κ</td>
<td>curvature of stringed Gabor stripes</td>
<td>[0,..., 1]</td>
</tr>
<tr>
<td>θ</td>
<td>orientation of stringed Gabor stripes</td>
<td>[0,..., $\pi/2$]</td>
</tr>
<tr>
<td>η</td>
<td>anisotropy</td>
<td>[0,..., 5]</td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>\cdot</td>
</tr>
<tr>
<td>σ_f</td>
<td>sigma of Gabor kernel</td>
<td>float</td>
</tr>
<tr>
<td>$\sigma_{f\text{var}}$</td>
<td>σ_f random variation</td>
<td>float</td>
</tr>
</tbody>
</table>

Visual structures are defined by thresholding the PPTBF (Fig. 3). Normalization must be applied to generate the database used to accelerate the estimation of best matching PPTBF parameters. Figure 4 illustrates the four types of deformation we apply to all images for normalization. Of course we apply multiple scales, rotations, stretches and Brownian motion-based distortions.

4. Source code and algorithm

In the following, we provide a pseudo-code for the PPTBF (see Appendix A). A full GPU implementation is available on our website.† Functions highlighted in red are also implemented in the GPU. These are:

- brownnoise: computes a fractal noise with given amplitude falloff factor;

† https://github.com/ASTex-ICube/semiproctex
• genPointSet: generates a point process according to a given tesselation, it provides a list (arrays) of closest rectangular cells and points inside these cells. The number of generated neighboring cells is returned.
• nthclosest: orders the points according to closest distance. Result is an indirection table, where element 0 is the index of the closest point, element 1 the index of second-closest point, etc.
• seeding, seeding2 and rand: implement the pseudo random number generator. seeding2 is used to allow the generation of a novel series of numbers, uncorrelated from the series initialized with seeding at the same spatial location.
• beziercell and cellborder: compute intersections with Voronoi cells that a given location \(x \) belongs to, the former applying the Bezier-based cell smoothing described in the paper. Both return a distance value.
• p-norm: computes a Minkowski distance.

Appendix A: PPTBF pseudo-code
See next page.
float compute_pptbf (vec2 x, // where to compute PPTBF
 float zoom, float rotation_angle, float rescalex,
 float ampli[3], // Brownian distortion parameters
 int tile_type,
 float jitter,
 // deformation and normalization parameters
 float larp, // \(\omega \) window anisotropy
 float normblend, // \(\lambda \) window smoothing
 float norm, float sigw1, float sigw2, // \(||\cdot||\) and \(\sigma_j\)
 // point set parameters
 int Jmin, int Jmax,
 float freq, // \(\phi\)
 float thickness, float curvature, float deltaorient // \(\tau, \kappa, \theta\)
)
{

 vec2 c[MAX_NEIGH_CELLS]; // cells lower left corner coords
 vec2 d[MAX_NEIGH_CELLS]; // cells size
 vec2 p[MAX_NEIGH_CELLS]; // random points
 int npp = genPointSet(x, tile_type, jitter, p, c, d);
 // order according to nth closest: result is in table mink[]

 // storing tessellation cells and point distributions

 float pptbfvv = 0.0f; // final value, to be computed and returned

 // POINT PROCESS TEXTURE BASIS FUNCTION PSEUDO-CODE
 // This pseudo code slightly differs from the actual GPU implementation:
 // some parameters being tuned on GPU to improve performance
 // PPTBF Parameters provided in the supplements match the GPU implementation
 // that will be made publicly available

 // [1] Brownian Deformation
 // -------------------------------
 x = x + ampl[0] * brownnoise(amp[1]*x*zoom, amp[2]);
 //-------------------------------
 //-----------------------------
 x = x * mat2(cos(rotation_angle),-sin(rotation_angle),
 sin(rotation_angle),cos(rotation_angle))*zoom;
 //----------------------------
 // [3] Point Process
 //---------------------

 // [4] PPTBF = PP x (WF)

 float pptbfv = 0.0f; // final value, to be computed and returned
float priomax = -1.0f; // initial lowest priority for mixture
float minval = -1000.0f; // initial value for max mixture

for (int k = 0; k < npp; k++) // for each tessellation cell
{
 // init PRNG at cell center
 seeding(p[mink[k]]);
 float bezierangularstep = 2.0 * M_PI / arity;
 float bezierstartangle = bezierangularstep * rand();
 int J = Jmin + (int)((float)(Jmax - Jmin) * rand());
 //-----------------------
 //-----------------------
 // window_1: cellular basis window
 float cval = 0.0;
 if (k == 0) // only inside Voronoi cell
 {
 float smoothdist = beziercell(mink[0], c, d, p,
 bezierangularstep, bezierstartangle);
 float cdist = cellborder(mink[0], c, d, p);
 cval = mix(smoothdist, cdist, wsmooth);
 }
 float w1 = normblend * (exp((cval - 1.0)*sigw1) - exp(-1.0*sigw1));
 if (w1<0) w1 = 0;
 // window_2: overlapping basis window
 float sddno = p-norm(x - p[mink[k]]);
 // empirical constant for clamping gaussian, depending on tile type
 float footprint = 1.5
 if (tile_type >= 10) footprint *= 0.4;
 // compute w2
 float w2 = (1.0 - normblend) * exp(-sigw2 * sddno) - exp(-sigw2* footprint);
 if (w2<0) w2 = 0;
 //---------------------
 // [7] Feature Function
 //---------------------
 float feat = 0.0; // feature function value to be computed
 // stringed Gaussian parameters
 float mu[MAX_G], dif[MAX_G];
 float theta[MAX_G], prior[MAX_G], sigb[MAX_G];
 float valb[MAX_G]; // for amplitude
 // init PRNG, decorrelated from window seed
 seeding2(p[mink[k]]);
 for (int i = 0; i < J; i++)
 {
 prior[i] = rand();
 valb[i] = rand();
 mu[i] = c[mink[k]] + (0.5 + 0.5*rand()) * d[mink[k]];
 // shift mu according to correlation
 mu[i] = mix(p[mink[k]], mu[i], winfeatcorrel);
 // orient Gabor stripes
 dif[i] = (x - mu[i]) / d[mink[k]];
 theta[i] = deltaorient * rand();
 sigb[i] = sigcos * (1.0 + sigcosvar*rand());
 // apply rotation, anisotropy and curliness
 vec2 dd = mat2(cos(theta[i]), -sin(theta[i]),
 sin(theta[i]), cos(theta[i])) * dif[i];
 dd.y /= feataniso;
 float xfeat = sqrt(dd.x * dd.x * curvature + dd.y * dd.y);
 // compute stringed gaussian value
 float ff = 0.5 + 0.5 * cos(π * freq * xfeat);
 ff = pow(ff, 1.0 / (0.0001 + thickness)); // avoids division by zero
float fdist = p-norm(dd,normfeat) / (footprint / sigb[i]);
// apply mixture
switch (mixture) {
 case 1:
 float amp = valb[i] < 0.0 ? -0.25 + 0.75 * valb[i] : 0.25 + 0.75 * valb[i];
 feat += ff * amp * exp(-fdist);
 break;
 case 2:
 case 3:
 feat += ff * exp(-fdist);
 break;
 case 4:
 if (priomax < prior[i] && fdist < 1.0 && ff > 0.5) {
 priomax = prior[i];
 pptbfvv = 2.0 * (ff - 0.5) * exp(-fdist);
 }
 break;
 case 5:
 float ww = ff * exp(-fdist);
 if (minval < ww) { pptbfvv = ww; minval = ww; }
 break;
 default: feat = 1.0;
}
// normalization according to mixture model
if (mixture == 1) feat = 0.5 * feat + 0.5;
if (mixture == 2) feat /= float(J);
if (mixture == 3) feat = 1.0 - feat;
// add contribution except for max operators
if (mixture < 4) pptbfvv += (w1 + w2) * feat;
return pptbfvv;