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Figure 1: Our method transfers the appearance of one or a few exemplar SVBRDFs to a target picture. This approach allows the capture of
large planar surfaces taken with ambient lighting (far left), by extracting the SVBRDF exemplars from close-up flash pictures (lower left), as
well as the creation of plausible SVBRDFs from internet pictures by using existing artist-designed materials as exemplars (right). Please see
supplemental materials for high-resolution SVBRDF parameter maps and animated renderings of all our results, which give a much better
impression of the material properties.

Abstract
We present a method to transfer the appearance of one or a few exemplar SVBRDFs to a target image representing similar
materials. Our solution is extremely simple: we fine-tune a deep appearance-capture network on the provided exemplars, such
that it learns to extract similar SVBRDF values from the target image. We introduce two novel material capture and design
workflows that demonstrate the strength of this simple approach. Our first workflow allows to produce plausible SVBRDFs
of large-scale objects from only a few pictures. Specifically, users only need take a single picture of a large surface and a few
close-up flash pictures of some of its details. We use existing methods to extract SVBRDF parameters from the close-ups, and our
method to transfer these parameters to the entire surface, enabling the lightweight capture of surfaces several meters wide such
as murals, floors and furniture. In our second workflow, we provide a powerful way for users to create large SVBRDFs from
internet pictures by transferring the appearance of existing, pre-designed SVBRDFs. By selecting different exemplars, users
can control the materials assigned to the target image, greatly enhancing the creative possibilities offered by deep appearance
capture.
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1. Introduction

Recent progress on lightweight appearance capture allows the re-
covery of plausible real-world spatially-varying reflectance dis-
tribution functions (SVBRDF) from just a few photographs of a
surface. In particular, multiple methods take as input one or sev-
eral photographs captured with a hand-held camera, where the
co-located flash provides informative spatially-varying illumina-
tion over the measured surface sample [AWL15, AAL16, RPG16,
HSL∗17, DAD∗18, LSC18, DAD∗19, GLD∗19]. However, near-
field flash lighting greatly restricts the scale at which materials can
be captured – typically a dozen centimeters wide using a cell phone
held at a similar distance. Relying on a flash also prevents these
methods from processing existing images captured under unknown
lighting, such as textures downloaded from the Internet. Finally, an-
other common limitation of the above methods is that they rely on
black-box optimization or deep learning to infer SVBRDF param-
eters from few measurements, offering little user control on their
output. We address all three limitations by proposing a by-example
appearance capture method, which recovers SVBRDF parameter
maps over large surfaces captured under environment lighting by
transferring information from one or a few exemplar SVBRDF
patches (Fig. 1), that can either be extracted from additional close-
up flash photos, or come from a database of SVBRDFs.

Our technical solution to transfer material appearance from ex-
emplars is surprisingly simple yet extremely effective. We build
on a state-of-the-art SVBRDF capture deep network [DAD∗18],
which we re-train to take as input a single image captured under
environment lighting, and output SVBRDF maps (normals, diffuse
albedo, specular albedo, and roughness). Our key idea is to fine-
tune this network on the provided exemplars, which strongly biases
the network towards their specific SVBRDF values using the avail-
able color and texture cues. We then run this custom network on
the target image, which effectively produces SVBRDF maps that
contain similar values to the ones of the exemplars.

However, naively fine-tuning a large deep network on a small
number of exemplars results in dramatic over-fitting, as the network
quickly memorizes the spatial layout of the exemplars rather than
learn material-specific filters that would generalize to the target im-
age. We address this challenge by carefully augmenting the exem-
plar set. In particular, we generate a unique training image for each
iteration of the fine-tuning by applying random geometric transfor-
mations on the exemplars, and by combining multiple transformed
exemplars into a single collage via random masks. Our experiments
demonstrate that this augmentation is critical to the success of the
method.

We introduce two new applications that demonstrate the strength
of our approach. Our on-site acquisition scenario is the first ap-
plication to allow capture of plausible material properties of large
surfaces with just a few photos. In this case, we capture a single
photograph of a large surface as well as one or a few close-up flash
photographs of its details. We then use an off-the-shelf network
to extract SVBRDF maps from the flash photographs, and use our
fine-tuned network to transfer this information to the large image,
effectively acquiring SVBRDFs several meters wide. In our sec-
ond scenario – creative design – we provide a powerful method
for users to create realistic SVBRDFs from stock photos, simply

using artist-created SVBRDFs downloaded from the Internet as ex-
emplars. This demonstrates how our method allows fine control on
the design process for SVBRDFs.

In summary, this paper makes the following contributions:

• We present a simple yet very effective algorithm to transfer ma-
terial appearance from a few exemplars to a target image.
• We introduce a lightweight method to capture SVBRDFs of large

planar surfaces, based on this algorithm.
• We introduce a novel workflow that allows material designers

to create new SVBRDFs from existing photos and SVBRDF
patches (e.g., taken from online texture and SVBRDF reposito-
ries), using the same algorithm.
Our code, data and supplemental material are available here:
https://team.inria.fr/graphdeco/projects/
large-scale-materials/

2. Related Work

Appearance capture and design is a vast and active research field;
We refer to the survey by Guarnera et al [GGG∗16] for a general
introduction, and to the one by Dong [Don19] for a focus on meth-
ods based on deep learning. Here we discuss lightweight SVBRDF
capture methods most similar to our approach, as well as related
work on by-example image synthesis and deep learning.

Reconstructing multiple SVBRDF maps from one or a few pic-
tures is an ill-posed problem, as the radiance observed in the pic-
tures can be explained by a number of different combinations of
SVBRDF parameters. Existing work tackled this challenge by in-
corporating domain-specific priors on the solution, either designed
by hand or learned from large quantities of SVBRDF data. Exam-
ple hand-designed priors include the assumption that the material
sample is stochastic or self-repetitive [WSM11, AWL15, AAL16],
or that the lighting exhibits natural statistics [DCP∗14] and phys-
ical properties [RRFG17]. Data-driven methods seek to explain
the observed data as a combination of known BRDFs [HSL∗17,
RWS∗11], or more recently by training deep neural networks to
predict SVBRDF parameter maps using synthetic data for supervi-
sion [DAD∗18,LSC18,DAD∗19,GLD∗19]. While the above meth-
ods target planar surfaces like ours, some have also been extended
to the problem of jointly capturing shape and material appearance,
either using inverse-rendering optimization [BJTK18,NLGK18] or
deep learning [LXR∗18].

Most of these methods succeed in the task by targeting flash pic-
tures captured at a small distance from planar material samples or
small curved objects. In such a configuration, the flash produces a
highlight at the center of the image as well as diffuse shading on its
boundary, which provides information about the specular and dif-
fuse behavior of the surface respectively, as well as complementary
cues about normal variations. However, the use of a flash imposes
three limitations for such methods. First, capturing large-scale sur-
faces would require the use of a large, powerful flash, defeating
the purpose of these lightweight methods. Second, because flash
lighting yields different visual cues in different places of the im-
age, existing methods need to process the image in its entirety to
aggregate all information, which is problematic for deep learning
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Figure 2: Main steps of our method. We first pre-train an SVBRDF prediction network [DAD∗18] on a large set of synthetic SVBRDF
maps rendered under varying lighting (a). While this generic network produces plausible results, it often mis-interprets the material features
in the absence of flash cues. Our key idea is to fine-tune the pre-trained network on renderings of user-provided SVBRDF exemplars (b).
After fine-tuning, the resulting network combines generic pre-training knowledge with information from the exemplars. Here, this allows our
method to interpret the cyan tiles as more shiny than the grey concrete. We demonstrate this approach on two application scenarios, either to
acquire large-scale real-world surfaces by propagating small-scale exemplars (c, top), or to design new SVBRDFs by propagating existing
SVBRDF maps over internet textures (c, bottom). While we train our network on images of 512×512 pixels, we process HD images of more
than 2048×2048 pixels by processing small tiles individually, and by stitching their predicted SVBRDFs to generate the final output. This is
made possible by the absence of strong local flash highlights in the input image.

methods as the network resolution is limited by the GPU mem-
ory – related methods were typically demonstrated on images of
256×256 pixel resolution. In supplemental material we provide an
example showing how the method by Deschaintre et al. [DAD∗18],
trained at low resolution, degrades when applied at higher resolu-
tion since the relative network footprint is reduced compared to the
size and location of the flash highlights. Third, the reliance on co-
located flash lighting prevents these methods from handling images
taken in the wild with unknown lighting and arbitrary scale. Our ap-
proach lifts all these limitations thanks to SVBRDF exemplars that
bias the interpretation of the image towards specific material val-
ues, effectively alleviating the need for the visual cues offered by
flash lighting.

In contrast to the above methods, Li et al. [LDPT17] proposed
a deep network capable of predicting SVBRDFs fom images cap-
tured under environment lighting, including images taken in the
wild. However, environment lighting alone provides little in terms
of visual cues of the complex behavior of SVBRDFs, which makes
their results inferior to the ones obtained by more recent flash-based
methods. In particular, their method assumes that the specular term
of the BRDF does not vary spatially, while spatially-varying rough-
ness greatly contributes to the richness of real-world materials. Li
et al. [LDPT17] also introduced the concept of self-augmentation,
which was further studied by Ye et al. [YLD∗18]. The idea is to use
the network output to build new training samples, effectively aug-
menting the diversity of SVBRDFs seen by the network. This strat-
egy differs from ours, since our goal is rather to specialize the net-
work to extract user-provided SVBRDF values, which we achieve
by fine-tuning the network on specific exemplars.

Our use of exemplar images makes our problem akin to im-
age analogies [HJO∗01], where the goal is to copy the appear-
ance of an exemplar onto a target. The image analogies framework
has been applied to a variety of problems, such as image coloriza-
tion [WAM02], style transfer [FJL∗16], texture transfer [DBP∗15].
All these methods share the strength of providing high-level control
on their output thanks to the exemplars, a feature that we now pro-
vide in the context of SVBRDF capture and design. Closer to our
application domain is the work by Melendez et al. [MGSJW12],
who used patch-based texture synthesis to transfer diffuse albedo
and depth variations from small material exemplars to large façade
images. However, their approach assumes that every pixel of the
target can be put in correspondence to similar pixels of the ex-
emplar, which yields visual artifacts when the exemplars do not
contain all the material variations of the target image (see Fig. 10).
Several recent methods use deep learning for image-to-image trans-
lation problems in supervised [IZZE17, WLZ∗18] or unsupervised
settings [ZPIE17]. In particular, multiple methods combine dense
correspondences with deep learning to achieve more robust col-
orization [HCL∗18,HLC∗19] and style transfer [LYY∗17]. Our so-
lution is simpler as it does not require explicit correspondences be-
tween the exemplars and the target. Instead, we train a deep mate-
rial capture network to learn the mapping between the colors and
textures of the exemplars and their SVBRDFs values, allowing us
to apply this mapping on the target. In concurrent work, Texler et
al. [TFK∗20] used a similar strategy to specialize a style transfer
network using a small number of style exemplars.

By complementing an input image with a few user-provided ex-
emplars, our approach also relates to the interactive material design
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system AppGen [DTPG11]. The main difference between the two
approaches resides in the level of expertise required and control of-
fered. While AppGen offers fine control on the local interpretation
of an image thanks to user scribbles, it requires users to manually
segment the different materials in the image, and to specify each
specular BRDF. In contrast, users of our approach need only se-
lect exemplar SVBRDFs from an existing library, or acquire them
using an existing lightweight method, and let our method automati-
cally transfer BRDF values from the exemplars to the target image.
Our on-site acquisition scenario also follows the same two-scale
capture strategy as Manifold Bootstrapping [DWT∗10], although
we only need a few pictures of the surface at small and large scale
where Dong et al. rely on specialized hardware to capture local
BRDF samples, and on multiple photographs under varying light-
ing to capture global appearance.

Our technical solution for material transfer is inspired by the
recent concept of internal learning, i.e., training a deep neural
network on a specific image rather than on a large dataset. This
intriguing idea first appeared in the seminal work of Ulyanov et
al. [UVL18] on deep image priors, where a network trained to re-
construct a specific image was shown to denoise or inpaint that
image. Subsequent work used image-specific training for various
tasks, including unsupervised super-resolution [SCI18] and GAN-
based image editing [BSP∗19,SDM19]. Our approach differs, since
while we fine-tune a deep network on a small set of images, we use
the resulting network to transfer the knowledge it acquired on a dif-
ferent target image. Our work also relates to the TileGAN method
of Frühstück et al. [FAW19], who train a conditional GAN to per-
form small-scale texture synthesis, and apply this GAN in a sliding-
window fashion to produce large-scale images. However, training
a GAN to synthesize a specific texture takes several days, while we
show that it takes only a few minutes to fine-tune a generic mate-
rial acquisition network to achieve successful material transfer. Our
strategy can also be seen as a form of few-shot learning, that aims at
adapting a pre-trained model to a new category of data given only
a few examples of such data [LHM∗19]. As mentioned above, in
our context, a few minutes of fine-tuning on augmented exemplars
is sufficient to achieve this adaptation.

3. Method

Fig. 2 provides a visual overview of our method to extract SVBRDF
parameter maps for large-scale surfaces. The main steps include
pre-training a deep SVBRDF prediction network on a varied set
of SVBRDFs (Fig. 2a), fine-tuning this network on our exemplars
(Fig. 2b), and finally using this exemplar-specific network to extract
SVBRDFs similar to the exemplars over images of large surfaces,
either captured on site or downloaded from the Internet (Fig. 2c).
We first describe typical inputs to our method, before explaining
how we pre-train and fine-tune the deep network to achieve material
transfer.

3.1. Inputs

Our goal is to generate SVBRDF parameter maps for large-scale
planar surfaces, such as walls, doors or furniture. To do so, our
method takes two forms of input. First, a single picture of the sur-

face of interest, captured under ambient indoor or outdoor light-
ing. Second, a series of SVBRDF patches that represent small
parts of the surface, or of a similar material. To obtain these
patches, we either capture close-up flash pictures of the surface
and run an existing single-image SVBRDF method [DAD∗18],
or we select SVBRDFs from libraries of artist-designed materi-
als [Ado19, Str19] (Fig. 2c).

As a pre-process, we split the large-scale image into tiles of
512× 512 pixels. Our method processes each tile independently,
and generates the final output by stitching these individual predic-
tions (Fig. 2d, Sec. 3.5). Neighboring tiles have an overlap of 256
pixels to facilitate subsequent stitching of their SVBRDF maps.
Applying the network in this sliding-window fashion ensures that
our method has a constant memory footprint, and as such scales
to images of arbitrary resolution. In contrast, while running the
network in a fully-convolutional manner would also allow the pro-
cessing of images of varied resolution [GLD∗19], the memory con-
sumption of the method would increase with resolution, and even-
tually saturate GPU memory.

Note also that we assume that all tiles receive approximately the
same lighting, which is not the case for pictures taken with a flash
as used in prior work [DAD∗18, LSC18, DAD∗19, GLD∗19].

3.2. Neural network pre-training

Our method processes each tile of the input image independently to
output four Cook-Torrance SVBRDF maps [CT82], corresponding
to the normal, diffuse albedo, specular albedo, and specular rough-
ness of each input pixel. We perform this task with the convolu-
tional neural network proposed by Deschaintre et al. [DAD∗18].
While the original network was trained with synthetic images ren-
dered under flash lighting, we re-train it with images rendered un-
der a random directional light to be robust to arbitrary lighting con-
ditions in our inputs. We also mimic a simple white sky dome by
adding a small multiple of the diffuse and specular albedos to the
renderings, which we found to be necessary to prevent metallic ma-
terials to appear completely dark away from the specular highlight.
Despite its simplicity, we found this lighting model to work well
on real-world pictures, including textures downloaded from the in-
ternet (Sec. 4). We generated our training data with the same set of
parametric SVBRDFs as Deschaintre et al., except that we render
them at a higher resolution to train the network to process images
of 512×512 pixels. In total, the network is pre-trained for 800.000
iterations, which took around 8 days on a 1080TI graphics card.

Pre-training the network on a large set of SVBRDFs not only ac-
celerates the subsequent fine-tuning step, it also equips the network
with general priors on material appearance, which complements the
exemplar-specific priors learned during fine-tuning (see Fig. 6).

3.3. Neural network fine-tuning

A single image often does not provide enough information to re-
cover SVBRDF parameters unambiguously, especially in the ab-
sence of flash highlights. The key idea of our work is to favor the
SVBRDF parameter values present in the exemplars by fine-tuning
the network on these images. In other words, we perform a number
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Figure 3: Average RMSE of predicted maps for 4 synthetic
SVBRDFs, using crops of these SVBRDFs as exemplars. The error
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Figure 4: We augment the input set of SVBRDF exemplars by com-
posing them using a low-frequency random mask.

of training iterations where we ask the network to predict exem-
plar SVBRDF maps given a rendering of that SVBRDF as input.
The network thus becomes increasingly specialized in mapping the
color and texture of the exemplar renderings to their normal and re-
flectance values. We used 1000 training iterations for all our results,
which takes around 2 minutes on a 1080 Ti GPU and is largely suf-
ficient to achieve successful transfer. Our numerical experiments
suggest that most of the improvement occurs within a few hundred
iterations (Fig. 3). Once fine-tuned, we run the network on each
input tile to obtain its SVBRDF maps.

3.4. Exemplar augmentation

While extremely simple, the above procedure quickly overfits the
network so much on the few exemplars that it does not generalize
to input images having a different distribution of materials regions.
Our solution to this challenge is to apply massive data augmenta-
tion on the exemplars to obtain a training set that retains their local
appearance, but varies their overall layout. We achieve this goal by
generating, for every training iteration, a unique SVBRDF that is
composed of pieces of two randomly-selected different exemplars.
We first apply random scaling and cropping on these exemplars,
and then combine them according to a binary mask that we generate
by thresholding a low-frequency Perlin noise (Fig. 4). We perform
all these processing steps at training time in TensorFlow [AAB∗15]
to reduce storage and data transfer. When only one exemplar is pro-
vided, we only augment it with scaling and cropping. We use the
same lighting model as for pre-training to render this training set.

3.5. Post-processing

The last step of our method consists in merging the predictions of
all tiles into a large-scale SVBRDF. Since all tiles are processed
using the same exemplars, neighboring tiles mostly agree in their
predictions up to low frequency variations. We achieve a seamless
composite by blending the tiles over their overlap using a Gaussian
weighting kernel that gives a weight of 1 at the center of the tile and
reaches almost 0 at its border. This mechanism allows our method
to be applied on high-resolution inputs of arbitrary aspect ratio, as
shown in our results of up to 2048×2048 pixels.

4. Evaluation

We first present results obtained by applying our method on our
own photographs as well as on internet images. We then evaluate
the impact of our fine-tuning and data augmentation strategies. Fi-
nally, we compare our method with alternative approaches on syn-
thetic data for which we have ground truth SVBRDF maps. Please
see supplemental materials for high-resolution SVBRDF parame-
ter maps and animated renderings of all our results. We will release
our code and data upon acceptance to ease reproduction.

4.1. Results

Our research was originally motivated by the need to quickly ac-
quire the appearance of large-scale surfaces with minimal hard-
ware. Following this first usage scenario, we used a smartphone
to photograph a variety of planar objects. For each object, we first
captured a single photograph of the entire surface under ambient
lighting. We then captured 1-3 close-up flash photos of parts that
exhibit characteristic material features. Finally, we ran the single-
image network [DAD∗18] to obtain SVBRDF exemplars for each
close-up. Fig. 1 and 5 show a mosaic, tiled floors, and a sculpted
wall captured on-site with this approach. Thanks to the exemplars
provided, our method faithfully reproduces the varying shininess of
the different tiles, and distinguishes rough stone from metal.

A second usage scenario of our method is to estimate the
SVBRDF maps of existing pictures, using pre-designed SVBRDFs
as exemplars of similar materials. Fig. 6 shows this on three internet
images, processed with exemplars from libraries of artist-created
procedural SVBRDFs [Ado19, Str19]. Our method transfers dif-
fuse and specular reflectances of the exemplars across the surface
while conforming to the input image. In this workflow, the user se-
lects exemplars that correspond to the materials they would like to
see over the large surface. For instance, by choosing appropriate
exemplars, the golden part of the mural is successfully interpreted
as having low roughness and yellow specular components, and rust
is interpreted as a rough orange material. The last row of Fig. 6
illustrates the behavior of our method when part of the image is
not covered by the provided exemplars. In this result, the exemplar
guides the interpretation of the bricks, but not of the window. Nev-
ertheless, our method also benefits from generic priors on material
appearance learned during pre-training, here to interpret the dark
window as more shiny than the brick.

While pre-designed SVBRDFs provide convincing material pa-
rameters, many come with normal maps that are either flat or
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Figure 5: Real-world surface captured on-site with our method. We used a single flash picture to capture the shininess of the tiles, which
is propagated to all tiles of the large floor. We used two flash pictures for the second example, one for the diffuse stone and the other one
for the more shiny metal disk. Please zoom on the .pdf to appreciate the high-resolution details of the individual SVBRDF maps. Images of
resolution 2048×1024.

weakly correlated to the target pictures. When this is the case, we
ignore the normal map produced by the fine-tuned network and use
the one produced by our pre-trained network instead. All results for
which the exemplar normal map is not shown were obtained with
this approach.

Fig. 7 further demonstrates the control that the input exemplars
provide on the output SVBRDF. The input picture contains dark
and yellow pixels with little in terms of visual cues of their respec-
tive shininess. We first selected a dark diffuse and a yellow metal-
lic exemplar to achieve a golden appearance. We next show how
changing the exemplar allows us to increase the roughness of the
gold, or even to interpret the yellow pixels as diffuse paint. Finally,
we also show how our method behaves in the presence of an outlier
exemplar, which in this case gives a slight orange tint to the yellow
pixels.

We show in Fig. 8 a visual comparison between real photographs
of a surface and renderings of the SVBRDF created with our
method. We used artist-designed SVBRDFs as exemplars for this
comparison because the single-image method of Deschaintre et
al. [DAD∗18] fails to recover convincing maps from flash pictures
of this complex surface (see supplemental materials for their re-
sult). This experiment shows that users can reproduce the desired
overall appearance by guiding our method with adequate exem-
plars.

Finally, Fig. 14 showcases a variety of SVBRDFs created with
our method, either via on-site acquisition or from stock pho-
tographs. Note that most of these results represent large, non-square
surfaces encoded as high-resolution parameter maps, which con-
trasts with the small material samples often shown in related work.

4.2. Ablation study

We use the single-image network of Deschaintre et al. [DAD∗18]
as a backbone for SVBRDF prediction. Fig. 9 (first row) shows re-
sults of their method trained on our dataset of images rendered un-
der random directional lighting. Without additional guidance, this
method interprets the weathered golden door as made of rough
plastic. Fig. 9 (second row) shows how fine-tuning this single-
image network on two exemplars without data augmentation brings
a golden appearance but distributes it uniformly over the surface. In
our experiments, this tendency to produce uniform maps happens
especially when the input exemplars are themselves uniform. By
combining the exemplars to form random patterns, our data aug-
mentation helps the transfer of the golden appearance to the least
weathered parts of the door (Fig. 9, third row).

4.3. Comparisons

To our knowledge, our method is the first to offer by-example guid-
ance for deep SVBRDF inference. We compare to related work on
style transfer, as well as to single-image alternatives. We use syn-
thetic SVBRDFs for these comparisons, which allows visual com-
parison to the ground truth maps, as well as numerical evaluation.

Qualitative comparisons. Our approach is related to the method
by Melendez et al. [MGSJW12], which transfers diffuse albedo
and displacement maps using patch-based texture synthesis akin
to image analogies [HJO∗01]. We reproduced this approach with
the state-of-the-art patch-based synthesis algorithm of Fišer et al.
[FJL∗16], using the rendered SVBRDF as guidance. Note that since
this algorithm was originally developed for style transfer, it as-
sumes that the image to be synthesized only contains three color
channels; to cope with this we ran their code on each SVBRDF pa-
rameter map separately. Fig. 10 shows results of this experiment;

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

96



V. Deschaintre, G. Drettakis & A. Bousseau / Guided Fine-Tuning for Large-Scale Material Transfer

HD input picture Examplars Results Rendering

D
iff

R
ou

gh
Sp

ec
u

N
or

m
al

s

D
iff

us
e

R
ou

gh
ne

ss

Sp
ec

ul
ar

N
or

m
D

iff
R

ou
gh

Sp
ec

u

N
or

m
al

s

D
iff

us
e

R
ou

gh
ne

ss

Sp
ec

ul
ar

N
or

m
D

iff
R

ou
gh

Sp
ec

u

N
or

m
al

s

D
iff

us
e

R
ou

gh
ne

ss

Sp
ec

ul
ar

Figure 6: Various SVBRDFs estimated from internet images. We selected artist-designed SVBRDF patches as exemplars for gold, paint, rust
and bricks. Note how the shiny gold is well transferred to the yellow parts of the top panel, and how the diffuse rust is transferred to the
brown parts of the middle plate. Note also that our method produces a plausible interpretation of the window (third row), even though the
provided exemplar only contains bricks. Please zoom on the document to appreciate the high-resolution details of the individual SVBRDF
maps. Images of resolution 1536×1024.

[DAD∗18] [LDPT17] Few shot Ours Ours
No Flash style transfer [DAD∗18] exemplar GT exemplar

Normals 0.045 0.043 0.04 0.039
Diffuse 0.092 0.095 0.059 0.028

Roughness 0.215 0.195 0.142 0.056
Specular 0.016 0.015 0.021 0.005

Renderings 0.122 0.256 0.124 0.086 0.071

Table 1: Numerical comparison to alternative methods using the RMSE metric (smaller is better), performed on synthetic SVBRDFs. Our
method outperforms existing single-image algorithms thanks to the guidance of the exemplar (only one exemplar used). We only report the
rendering error for [LDPT17] because this method outputs a different BRDF model than ours.
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Patch-based synthesis lacks variety in the maps due to the lim-
ited information contained in a single exemplar. While more ad-
vanced synthesis algorithms exist to interpolate between limited ex-
emplars [DBP∗15], our deep learning solution natively generalizes
the exemplar to the entire large-scale image.

Fig. 10 also includes a comparison to AdaIN [HB17], a styliza-
tion algorithm based on deep learning that transfers statistics of
deep features between an exemplar image and a target. Similarly
to the above experiment, we applied the original implementation
of the method on each SVBRDF parameter map separately. While
this generic style transfer algorithm reproduces the overall color
distribution of the maps, it misses many of the fine details.

Finally, we provide in Fig. 11 a visual comparison to the recent
deep learning methods for single-image SVBRDF capture by Li et
al. [LDPT17] and Deschaintre et al. [DAD∗18]. While the method
of Li et al. takes as input images captured under environment light-
ing, the original method of Deschaintre et al. assumes flash lighting,
which is not compatible with the large-scale application scenarios
we target. We thus re-trained their network on our training data
to illustrate their performance on large-scale images taken without
flash. Finally, for our method, we used the original method of De-
schaintre et al. to recover SVBRDF exemplars from crops of the
surface rendered under flash lighting, which emulates our on-site
capture scenario. Both prior methods struggle to recover the shini-
ness of the little metallic plates. Our method better recovers these
small shiny parts thanks to the provided exemplar. In addition, our
method can process large-scale images at high resolution, resulting
in finer details in the SVBRDF maps.

Quantitative comparisons. Table 1 shows numerical compar-
isons to the single-image method of Deschaintre et al. [DAD∗18]
trained and tested on our data, and to the method by Li et al.
[LDPT17] applied on images rendered under environment lighting.
As in Fig. 11, we obtained exemplars for our method by providing
crops of the ground truth SVBRDF rendered under flash lighting to
the original method of Deschaintre et al. In this setup, a single ex-
emplar is enough to outperform competitors. In addition, we also
provide the performance of our method when guided by ground
truth exemplars, which can be seen as an upper-bound on the qual-
ity it can achieve.

Finally, Table 1 (4th column) provides a numerical comparison
to a version of our method inspired by the recent few-shot learning
strategy proposed by Liu et al. [LHM∗19], who build on AdaIN
to transfer style from multiple exemplars provided at test time. We
adapted their approach to our context by processing each SVBRDF
exemplar with the encoder of Gao et al. [GLD∗19] and by aggregat-
ing the resulting low-dimensional latent codes into a single code via
max pooling. We next process this code with three fully-connected
layers to produce parameters for several AdaIN layers that we use
to transform the feature maps of the SVBRDF prediction network.
The numerical evaluation reveals that the addition of AdaIN layers
controled by the exemplars slightly improves performance over the
baseline network of Deschaintre et al. [DAD∗18] for some of the
maps, but is largely inferior to our results obtained after fine-tuning
this baseline on augmented exemplars.

4.4. Limitations

As with previous deep-learning based methods for material cap-
ture [DAD∗18, LSC18], we cannot handle cast shadows, or any
other phenomenon that requires more than a normal/bump map.
Extending our approach to handle such cases, e.g., using a displace-
ment map, would require a much more complex differentiable ren-
derer to handle 3D during training. Similarly, our SVBRDF model
and renderer are not designed to handle non-local effects like sub-
surface scattering.

Despite the strong ability of deep learning to extract discrimi-
native features, our method sometimes has difficulty distinguishing
different materials that share similar colors and textures. This is the
case in Fig. 12, where the shininess of the small metal disk is trans-
ferred to some of the stones that have a similar appearance in the
input picture. Our method also assumes that the large-scale input is
captured under largely uniform lighting. When this is not the case,
large illumination gradients pollute the SVBRDF maps, as shown
in Fig. 13. Nevertheless, our method is robust to localized high-
lights, as some occur in the training set (see synthetic materials in
supplemental materials for typical examples).

Finally, while there is a theoretical limitation to the scale differ-
ence that our method can handle between the exemplar and large-
scale input to correctly transfer the materials, we never encountered
this problem in our tests.

5. Conclusion

Our method alleviates inherent limitations of flash-based material
acquisition methods, namely limited scale, low resolution, and lack
of user control. By complementing the input image with one or a
few exemplars, our approach can recover SVBRDFs of much larger
surfaces, at high resolution and arbitrary aspect ratio. Furthermore,
our method greatly increases the creative freedom of material de-
signers by letting them create plausible SVBRDFs from existing
photographs with high-level control on their constituent materials.
We achieved all these benefits thanks to a surprisingly simple fine-
tuning strategy, which we believe to be directly applicable to other
capture and design tasks based on deep learning.
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Figure 9: Ablation study. The baseline single-image network of Deschaintre et al. [DAD∗18] interprets this weathered golden door as made
of rough plastic (first row). Fine-tuning this network on two exemplars without data augmentation yields a uniform golden appearance
(second row). Thanks to data augmentation, our method successfully distinguishes the shiny golden parts from the more diffuse dark parts
(third row). See supplemental materials for additional ablation results. Image of resolution 1024×1536.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

101



V. Deschaintre, G. Drettakis & A. Bousseau / Guided Fine-Tuning for Large-Scale Material Transfer

Method HD input picture Examplar Results Rendering

A
da

IN

N
or

m
al

s
D

iff
us

e
R

ou
gh

Sp
ec

u

N
or

m
al

s

D
iff

us
e

R
ou

gh
ne

ss

Sp
ec

ul
ar

Te
xt

ur
e

sy
nt

he
si

s N
or

m
al

s
D

iff
us

e
R

ou
gh

Sp
ec

u

N
or

m
al

s

D
iff

us
e

R
ou

gh
ne

ss

Sp
ec

ul
ar

G
T

N
or

m
al

s

D
iff

us
e

R
ou

gh
ne

ss

Sp
ec

ul
ar

O
ur

s

N
or

m
al

s
D

iff
us

e
R

ou
gh

Sp
ec

u

N
or

m
al

s

D
iff

us
e

R
ou

gh
ne

ss

Sp
ec

ul
ar

Figure 10: Comparison to neural style transfer [HB17] and patch-based texture synthesis [FJL∗16]. Our method better transfers details of
the surface compared to prior work, which either only captures global statistics (1st row) or struggles to generalize from a limited exemplar
(2nd row).
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Figure 11: Comparison to the single-image methods of [LDPT17] and [DAD∗18]. Thanks to a small exemplar, our method recovers more
pronounced normal maps than the one by [LDPT17], and also better captures the roughness of the small shiny metal plates, even though
their specular strength remains underestimated. Also, since our method can process high-resolution images, it recovers finer details in the
maps. Note that Li et al. use a different BRDF model than ours, so the values of their predicted maps shouldn’t be directly compared to the
ground truth maps.
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Figure 12: Limitation. Our method can have difficulty distinguishing materials with similar colors and texture, such as this shiny metal disk
that has a similar appearance to some of the dark rough stones.
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Figure 13: Limitations. Our method is not designed to handle large illumination gradients over the surface.

Figure 14: A variety of surfaces captured or designed with our method. See supplemental materials for animated renderings.
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