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Figure 1: Classical quadrics assume ground truth input data. Many algorithms, like the incremental decimation shown here, fail to account
for noisy input and perform suboptimally in the presence of uncertain data. We introduce a new class of quadrics, probabilistic quadrics, that
are inherently modeled around noisy data and can take arbitrary, spatially-varying distributions into account. The center and right mesh are
each decimated by 85%. The mesh is more noisy in the back than in the front. Classical quadrics waste many vertices in noise, misclassifying
it as sharp features, and produce irregular triangulations in planar regions. In contrast, probabilistic quadrics can adapt to the noise, favor
regular triangulations, and still preserve sharp features. Model taken from [ZJ16].

Abstract
Error quadrics are a fundamental and powerful building block in many geometry processing algorithms. However, finding
the minimizer of a given quadric is in many cases not robust and requires a singular value decomposition or some ad-hoc
regularization. While classical error quadrics measure the squared deviation from a set of ground truth planes or polygons,
we treat the input data as genuinely uncertain information and embed error quadrics in a probabilistic setting (“probabilistic
quadrics”) where the optimal point minimizes the expected squared error. We derive closed form solutions for the popular
plane and triangle quadrics subject to (spatially varying, anisotropic) Gaussian noise. Probabilistic quadrics can be minimized
robustly by solving a simple linear system — 50× faster than SVD. We show that probabilistic quadrics have superior properties
in tasks like decimation and isosurface extraction since they favor more uniform triangulations and are more tolerant to noise
while still maintaining feature sensitivity. A broad spectrum of applications can directly benefit from our new quadrics as a
drop-in replacement which we demonstrate with mesh smoothing via filtered quadrics and non-linear subdivision surfaces.
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1. Introduction

Quadratic error functions (QEFs) are a popular choice for defining
distance, loss, energy, or fitness functions in various optimization
settings. In the three-dimensional case, a quadric can be represented
by a symmetric matrix Q ∈ R4×4 and the corresponding QEF is
defined as f (x) = xT Qx for x in homogeneous coordinates. Q has
the following structure:

Q =

[
A −b

−bT c

]
(1)

Thus, f can also be written as xT Ax− 2xT b+ c, with a symmet-
ric positive semidefinite matrix A ∈ S3

+, b,x ∈ R3, and c ∈ R. The
point minimizing the quadratic error (the minimizer of Q) can be
computed via

xmin = A−1b (2)

Often, individual quadrics are formulated for certain objects or
sub-problems. The final function to be optimized consists of the
sum of various quadratic functions. Due to the linearity of the ma-
trix product, instead of optimizing a sum of quadratic functions,
one can sum the individual quadric matrices (e.g. Qa and Qb) into
a new quadric Q′ and optimize xT Q′x:

f (x) = xT Qax+ xT Qbx = xT (Qa +Qb)x = xT Q′x (3)

This insight lies at the heart of many quadric-based optimiza-
tions such as incremental decimation [LT98,GH97], vertex cluster-
ing [Lin00], isosurface extraction [KBSS01, JLSW02, SW04], and
mesh-filtered quadrics [VNMC10,LTB19]. While often interpreted
geometrically, quadrics are a versatile tool and can be used for ba-
sically any continuous attribute [Hop99].

While many geometric problems are intuitively formulated and
optimized by QEFs, this process is not always robust. Many
quadrics correspond to singular matrices, most notably the quadric
describing the quadratic distance to a plane. To uniquely determine
the minimizer of f (x), it requires at least the sum of three linearly
independent plane quadrics. Even then, the result is not robust if
any planes are close to being coplanar, a problem often noted in
decimation and isosurface extraction. This problem is magnified if
the quadrics are affected by aliasing or noise, e.g. if they originate
from sampled measurements or other forms of discretization.

The conceptual idea behind classical error quadrics is to con-
sider the input geometry (e.g. input planes and triangles) as ground
truth and measure the deviation of a point from it by the sum of the
squared distances. The optimal point is then the least squares mini-
mizer of the quadratic error function. For noisy (or uncertain) input
data, the least squares solution is expected to implicitly “average
out” the noise.

The biggest issue with classical error quadrics is that (near) de-
generate (i.e. rank deficient) configurations are quite common such
that pseudo-inverses have to be computed via SVD in order to guar-
antee a robust solution of the least squares problem.

In our approach we follow a different rationale. We assume
that the input quadrics are samples drawn from a certain, poten-
tially complex distribution. In particular, we will examine the case
of planes built from point and normal, both subject to Gaussian

noise, and triangles built from three points, each subject to Gaus-
sian noise. The optimal point is then the minimizer of the expected
quadratic error or, equivalently, the minimizer of the expected error
quadric. We call this expected error quadric the “probabilistic error
quadric”.

1.1. Contribution

In summary, our method is a principled and robust way to incorpo-
rate arbitrarily distributed noise directly into the creation of error
quadrics and thus let any quadric-based technique benefit from this
probabilistic approach.

We contribute:

• the insight that the expected value over a distribution of quadrics
can be recast into an ordinary quadratic form using a special
“probabilistic” quadric.

• closed-form solutions for the popular plane and triangle quadrics
under (potentially anisotropic) Gaussian noise.

• a theoretical foundation for the validity of common regulariza-
tion techniques that can be applied to minimize quadrics ro-
bustly.

After describing our method in Section 3, Section 4 examines
the properties of our quadrics in various experiments. Probabilistic
quadrics are useful in a broad spectrum of applications which we
demonstrate with isosurface extraction, mesh smoothing via filtered
quadrics, and subdivision surfaces in Section 5.

A reference implementation of our probabilistic quadrics is
provided as a C++ header under the permissive MIT license at
https://graphics.rwth-aachen.de/probabilistic-quadrics.

2. Related Work

Quadratic error functions are a popular tool with a long history in
geometry processing.

One of the first use of error quadrics was for mesh decimation.
Garland and Heckbert [GH97] present an incremental decimation
scheme using arbitrary vertex-pair collapses. They store per-vertex
quadrics that are summed up on each contraction, choosing the new
vertex position as the minimizer of the quadric sum. The quadrics
are constructed as the sum of the quadratic distance from the planes
defined by the adjacent triangles. Salinas et al. [SLA15] take addi-
tional plane proxies into account to better preserve planar struc-
tures. Li and Zhu [LZ08] further incorporate local curvature.

Vertex clustering also benefits greatly from quadrics. Lindstrom
[Lin00] presents an out-of-core simplification system based on ver-
tex clustering where the space complexity only depends on the out-
put complexity. The representative points per cell are computed by
minimizing an error quadric. They also propose the singular value
decomposition as a robust way to minimize quadrics.

Error quadrics are not restricted to 3D geometry: Hoppe [Hop99]
presents quadrics for appearance attributes and Garland and Zhou
[GZ05] generalize quadric-based simplification to higher dimen-
sion.
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A common problem in isosurface extraction is the preservation
of sharp features. This can be done by incorporating plane-based
error quadrics. Based on this idea, Kobbelt et al. [KBSS01] ex-
tend the Marching Cubes algorithm. Ju et al. [JLSW02] introduce
Dual Contouring which stores Hermite data on each edge of a voxel
grid and the vertices of the extracted geometry are found by min-
imizing an error quadric associated with each voxel. Schaefer and
Warren [SW04] present Dual Marching Cubes where they apply a
feature preserving Marching Cubes to the dual graph of an octree,
informing the subdivision level by the quadratic error.

Recently, averaging and filtering quadrics across the surface of a
mesh to perform tasks like smoothing and clustering gained in pop-
ularity. Vieira et al. [VNMC10] compute averaged quadrics over
some surface area and move each vertex to its quadric minimizer to
perform denoising. Legrand et al. [LTB19] use a bilateral filtering
of quadrics for smoothing and clustering.

Quadrics are also popular in shape approximation. Yan et al.
[YWLY12] directly fit quadrics to the surface to perform varia-
tional mesh segmentation. Thiery et al. [TGB13] introduce Sphere-
Meshes for mesh approximation based on spherical error quadrics.
They later use these meshes for animation [TGBE16]. Calderon
and Boubekeur use quadrics as part of their bounding proxy gener-
ation [CB17].

3. Method

We will start by deriving probabilistic quadrics for planes and tri-
angles under Gaussian noise. These quadric are formed by taking a
classical quadric, choosing a distribution of input parameters, and
then computing the expected value of Q (in the form of E[A], E[b],
and E[c]). Afterwards we discuss the stability of these quadrics and
present the general case.

3.1. Planes under Gaussian Noise

Given a plane defined by position q and normal n, we compute the
quadratic distance to this plane via

d(x) = ⟨x−q,n⟩2

= xT nnT x−2qT nnT x+qT nnT q.
(4)

This is a quadric with A = nnT , b = nnT q, and c = qT nnT q.

If normal and position are estimates from measurements, they
could be modeled by independent multivariate Gaussian distribu-
tions with means n̄, q̄ ∈ R3 and variances Σn,Σq ∈ R3×3:

n ∼N (n̄,Σn), q ∼N (q̄,Σq) (5)

Recalling that the second moment of a Gaussian is given by
Ex[xxT ] = x̄x̄T +Σx we can derive the probabilistic quadric Qp(n,q):

E[A] = En,q[nnT ] = n̄n̄T +Σn (6)

Because n and q are independent, E[b] can be computed as

E[b] = En,q[nnT q] = En[nnT ]Eq[q] = (n̄n̄T +Σn)q̄

= n̄n̄T q̄+Σnq̄.
(7)

For quadratic forms it can be shown that Ex[xT Mx] = x̄T Mx̄ +
Tr[MΣx] [MP92] where Tr[·] is the trace of a matrix. Finally, us-
ing Tr[xxT M] = xT Mx we can compute E[c] as:

E[c] = En,q[qT nnT q] = Eq[qTEn[nnT ]q]

= Eq[qT (n̄n̄T +Σn)q]

= q̄T (n̄n̄T +Σn)q̄+Tr[(n̄n̄T +Σn)Σq]

= q̄T (n̄n̄T +Σn)q̄+Tr[n̄n̄T
Σq]+Tr[ΣnΣq]

= q̄T n̄n̄T q̄+ q̄T
Σnq̄+ n̄T

Σqn̄+Tr[ΣnΣq].

(8)

Compared to the original quadric, we add Σn to A and Σnq to b.
Two insightful interpretations of this probabilistic quadric are:

1. The probabilistic plane quadric is the sum of the classical plane
quadric and the quadric for ||x−q||2, weighted by Σn.

2. The probabilistic plane quadric is the classical plane quadric,
solved with generalized Tikhonov regularization in the form of
||Ax−b||2 + ||x−q||2Σn

.

Note that Σq does not affect A and b and thus does not contribute to
the quadric minimizer xmin.

Usually, the noise level Σn is small. Using the first interpretation
we could argue that adding ||x − q||2 has little effect due to the
weight Σn. This is correct, as long as A is not close to being singular.
However, for singular or almost singular A, adding ||x− q||2Σn

has
the desired property of choosing xmin close to q.

Another significant advantage is that, when summing the prob-
abilistic quadrics over multiple planes, each Σn can be chosen dif-
ferently. For example, if the planes result from laser scans, samples
farther away from the scanner have higher noise levels and thus
should have larger Σn. Furthermore, the noise is not isotropic: the
depth error is usually larger than horizontal or vertical error. Dur-
ing normal estimation, the distribution of neighboring points can be
taken into account to construct an anisotropic Σn.

When drawn from the Gaussian distribution, normals become
non-normalized resulting in expected values weighted by normal
length. While it is possible to use distributions that produce only
unit-length vectors, the formulas become disproportionate more
complex. In our experiments, the differences are negligible when
Σn is small or large and isotropic. Only highly anisotropic large Σn
produce noticeable deviations.

3.2. Triangles under Gaussian Noise

Lindstrom et al. [LT98,Lin00] proposed the following error quadric
for triangles t = (p,q,r) with p,q,r ∈ R3:

Q =

[
A −b

−bT c

]
= nnT

n =

(
p×q+q× r+ r× p

−|p,q,r|

) (9)

In this formulation, n is a 4-vector and |p,q,r| the scalar triple
product. These quadrics are automatically area-weighted. Small or
highly anisotropic triangles are often problematic. Even with area
weights they lead to problems, especially when the normals deviate
strongly or in the presence of fold-overs (cf. Figure 2).
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For the probabilistic quadric we will again model the uncertainty
as a multivariate Gaussian, this time as three independently dis-
tributed positions:

p ∼N (p̄,Σp), q ∼N (q̄,Σq), r ∼N (r̄,Σr) (10)

The full derivation is in Appendix A (Theorem A.8, A.9, and A.10).
There we show that:

E[A] = E[(p×q+q× r+ r× p)(p×q+q× r+ r× p)T ]

= (p̄× q̄+ q̄× r̄+ r̄× p̄)(p̄× q̄+ q̄× r̄+ r̄× p̄)T

+[p̄− q̄]×Σr[p̄− q̄]T×

+[q̄− r̄]×Σp[q̄− r̄]T×

+[r̄− p̄]×Σq[r̄− p̄]T×
+Ci[Σp,Σq]+Ci[Σq,Σr]+Ci[Σr,Σp]

(11)

where [·]× is the cross product matrix. We call Ci[·, ·] the cross-
interference matrix. It is a symmetric 3 × 3 matrix and captures
second-order uncertainty effects, defined as follows:

Ci[A,B]xx = AyyBzz −2AyzByz +AzzByy

Ci[A,B]xy = −AxyBzz +AxzByz +AyzBxz −AzzBxy

Ci[A,B]xz = AxyByz −AxzByy −AyyBxz +AyzBxy

Ci[A,B]yy = AxxBzz −2AxzBxz +AzzBxx

Ci[A,B]yz = −AxxByz +AxyBxz +AxzBxy −AyzBxx

Ci[A,B]zz = AxxByy −2AxyBxy +AyyBxx

(12)

given symmetric matrices A,B ∈ R3×3. It has a simpler form if all
Gaussians are isotropic with variance σ

2 (i.e. A = B = σ
2 · I):

Ci[A,B] = 2σ
4 · I (13)

For b, we can derive the following:

E[b] = E[(p×q+q× r+ r× p) · |p,q,r|]
= (p̄× q̄+ q̄× r̄+ r̄× p̄) · |p̄, q̄, r̄|

+(q̄− p̄)×Σr(p̄× q̄)

+(r̄− q̄)×Σp(q̄× r̄)

+(p̄− r̄)×Σq(r̄× p̄)

+Ci[Σp,Σq]r̄+Ci[Σq,Σr]p̄+Ci[Σr,Σp]q̄

(14)

The value of c is again more complex and not needed for computing
xmin but important for computing the value of the quadric, e.g. for
greedy selection in incremental decimation:

E[c] = E[|p,q,r|2]

= |p̄, q̄, r̄|2

+(p̄× q̄)T
Σr(p̄× q̄)

+(q̄× r̄)T
Σp(q̄× r̄)

+(r̄× p̄)T
Σq(r̄× p̄)

+ pT Ci[Σq,Σr]p

+qT Ci[Σr,Σp]q

+ rT Ci[Σp,Σq]r

+Tr[Σr Ci[Σp,Σq]]

(15)

This quadric is more sophisticated than the plane quadric and
harder to interpret. However, there is at least one interesting pattern.
E[A] and E[b] both consist of O(1), O(Σ), and O(Σ2) terms, and
E[c] additionally of an O(Σ3) term:

• The O(1) term corresponds to the classical quadric formed by
the means of the positions.

• The O(Σ) terms are linear in Σp, Σq, Σr and capture the interac-
tion between the covariance of one vertex with the means of the
other two vertices, i.e. the opposing edge.

• The O(Σ2) terms contain the interaction between two covariance
matrices (in the shape of the Ci[·, ·] matrices).

• Finally, E[c] contains the O(Σ3) term quantifying the combined
uncertainty of all covariances.

As expected, all terms have an obvious symmetric structure. The
only non-obvious part is Tr[Σr Ci[Σp,Σq]] which can be shown to
be commutative in all Σs.

3.3. Stability

A common problem with classical quadrics is that they are not in-
vertible in planar regions. A = nnT has always rank one and thus
a two-dimensional kernel. Trying to compute xmin = A−1b leads
to undefined results which is why using an SVD is recommended.
This problem is not unique to planar regions but occurs in any rank-
deficient quadric.

Our probabilistic quadrics do not suffer from this problem. For
any positive definite covariance, the probabilistic plane quadric
A = nnT +Σ is full rank and invertible (see Theorem A.11). Sim-
ilarly, the probabilistic triangle quadrics are also positive definite
and thus invertible given non-degenerate covariance matrices (see
Theorems A.12 and A.13).

3.4. General Probabilistic Quadric

The derivations in Section 3.1 and 3.2 can easily be generalized to
arbitrary configurations. Let Q(s)∈R4×4 be the individual quadric
corresponding to object s ∈ S (for example, s could be a plane and
S the set of all planes). Given a probability distribution p(s) over
objects, we define the expected value formulation of QEF mini-
mization:

f (x) = Ep(s)[x
T Q(s)x]

=
∫

s∈S
xT Q(s) x · p(s)ds

= xT
[∫

s∈S
Q(s)p(s)ds

]
x

= xTEp(s)[Q(s)] x

= xT Qp(s) x

(16)

This provides the foundation of our method: The expected
quadratic error is equal to the quadratic error of the expected
quadric. We call Qp(s) the probabilistic quadric corresponding to
the distribution p(s). Since Qp(s) is just another 4× 4 matrix (in-
dependent of x), we can apply our technique to any geometry pro-
cessing task involving quadrics, handling data uncertainty in a more
principled and robust manner.
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For many distributions, Qp(s) can be computed analytically. The
plane and triangle quadric only contain multi-variate second order
polynomials when fully expanded. Thus, in theory, it is simple to
plug in any distributions as long as second moments and covari-
ances are known. The practical challenge arises from re-assembling
the terms into an efficient form.

Even for involved probability distributions without closed-form
solutions for their expected values, the fact that Qp(s) can be pre-
computed means that numerical integration methods can be ap-
plied. In a sense, methods that average or sum classical quadrics
over large regions are already computing a numerical approxima-
tion of the expected quadric.

One might wonder which distribution to use for a given problem.
A good rule of thumb is that the distribution should roughly model
how the data was obtained or what form of uncertainty can be ex-
pected. For example, points from a laser scan have a somewhat
quantifiable positional uncertainty making the triangle quadric a
good choice while it is not clear how this uncertainty translates to a
Σn for a plane quadric. However, it is not critical to exactly match
the input distribution as can be seen in Figure 2 where the Gaussian
quadrics perform well, even for spiky non-Gaussian noise.

4. Experiments

4.1. Performance

The benchmarks were performed on a 3.60 GHz Intel Core i9-
9900K (4.8 GHz single core turbo) using a single CPU thread. All
algorithms were implemented in C++, compiled with Clang 7 using
the flags -O3, -march=native, and -ffast-math.

Table 1 summarizes the central performance metrics. Construct-
ing classical quadrics is pretty close to being limited by memory
bandwidth on a modern CPU (processing more than 10 GB/s). The
same can be observed for the probabilistic plane quadrics. Our
probabilistic triangle quadric requires considerably more compu-
tation due to the various occurrences of the covariances. It is about
10× slower than the classical version, 5× when assuming isotropic
noise. However, with about 20 million matrix operations per second
on a single core, it is rarely the bottleneck.

Computing a singular value decomposition, even on 3×3 matri-
ces, is not a cheap operation. Minimizing the probabilistic quadrics
using xmin = A−1b can be evaluated close to memory bandwidth
at over 250 million operations per second. In contrast, we tested
some highly optimized SVD algorithms [GJ∗10, Jan14, MST∗11]
for classical quadrics with the best one reaching about 4.5 million
operations per second, over 50× slower than the matrix inversion.
Especially for clean inputs with almost no noise, using the SVD is
basically mandatory for classical quadrics as A−1 will run into nu-
merical problems in rank-deficient (e.g. planar or edge) regions. For
any positive covariance, our probabilistic quadrics have full rank
and can always be minimized using A−1b.

4.2. Properties

Figure 2 shows the results of various experiments performed on the
different quadrics. In each scenario, fixed percentage of the vertices

operation throughput cycles
constructing plane quadrics
classical (A, b) 399000000 / s 12 / op
classical (A, b, c) 368000000 / s 13 / op
probabilistic (A, b) 273000000 / s 17 / op
probabilistic (A, b, c) 137000000 / s 35 / op
probabilistic (A, b, isotropic) 399000000 / s 12 / op
probabilistic (A, b, c, isotropic) 310000000 / s 15 / op
constructing triangle quadrics
classical (A, b) 236000000 / s 20 / op
classical (A, b, c) 221000000 / s 21 / op
probabilistic (A, b) 22000000 / s 216 / op
probabilistic (A, b, c) 18700000 / s 257 / op
probabilistic (A, b, isotropic) 55400000 / s 86 / op
probabilistic (A, b, c, isotropic) 49500000 / s 96 / op
computing xmin
solving A−1b 261000000 / s 17 / op
Eigen::JacobiSVD [GJ∗10] 4445000 / s 1168 / op
Eigen::BDCSVD [GJ∗10] 3070000 / s 1560 / op
svd3 [Jan14, MST∗11] 3280000 / s 1460 / op

Table 1: Performance of different quadric-related operations on
a single 4.8 GHz core. Measured metrics are throughput in opera-
tions per second (higher is better) and time taken in CPU cycles
per operation (lower is better). The probabilistic plane and tri-
angle quadrics are from Section 3.1 and Section 3.2 respectively.
Isotropic means simplified formulas using Σ[·] = σ

2I. Computation
was done in single precision. Note that classical quadrics often
require SVDs while probabilistic ones can be solved via A−1b.

were removed via incremental decimation using edge collapses. We
exemplarily depict 70% as a compromise to show a high level of
decimation but not too high, which would limit the degrees of free-
dom too much. Given an edge with vertices v1 and v2, the new
vertex position is chosen as xmin of the quadric Q′ = Qv1 +Qv2 .
Collapses are performed in ascending order of xT

minQ′xmin, skip-
ping those that would lead to flips. The classical quadrics were
minimized with an SVD using the edge center as reference for the
least-norm solution.

Point quadrics refer to ∥x− v∥2 for vertex position v. Their min-
imizer is the center of gravity of all summed up vertices. These
quadrics are always stable and favor regular triangulations but ob-
viously do not preserve sharp features.

The regularly triangulated cube with no noise demonstrates
the feature preservation of plane-based quadrics. However, it also
shows the instability of classical quadrics: every collapse has zero
error leading to a highly irregular triangulation. In contrast, our
probabilistic quadrics lead to quite regular triangulations while pre-
serving features.

In the second experiment the cube has a small amount of vertex
noise and a non-uniform triangulation. The vertex noise amplifies
the uncertainty in the normal in regions of smaller triangles. Plane
quadrics are not area-weighted and sensitive to the noise in the nor-
mal. Thus, they are more easily affected by irregular triangulation
and tend to preserve regions of smaller triangles even if there is
no geometric reason to do so. The area-weighted triangle quadrics
lead to more regular triangulations.
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Figure 2: Various experiments demonstrating the properties of our probabilistic quadrics in comparison to classical quadrics under different
conditions. The top row shows the input mesh. The other rows show the results of removing 70% of the vertices via incremental decimation
using different quadrics. Our probabilistic quadrics naturally preserve features, favor regular triangulations, and can adapt to noise. Σ were
chosen to correspond to 5% of normal/edge length, except in the middle case where it went up to 50% on the noisy end. See Section 4.2
for a detailed discussion. The rendering uses an outline shader based on normal to improve readability. Best viewed in the digital version.
Centrifuge model from [ZJ16].

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

330



P. Trettner & L. Kobbelt / Probabilistic Quadrics

The third experiment has spatially varying noise levels. We vary
Σn and Σp with the same intensity to show that our probabilistic
quadrics can exploit prior information about the data uncertainty if
available. Given the magnitude of the noise they are unable to fully
smooth the mesh while preserving the features but still perform bet-
ter than the classical quadrics. Furthermore, the probabilistic trian-
gle quadrics outperform the plane quadrics as they model the noise
source more accurately (noise in the vertices vs. noise in the nor-
mal).

In the fourth experiment a spiky noise was applied, similar to
salt-and-pepper noise in images. It has a small magnitude but be-
cause the perturbed vertices were also moved towards a neighbor,
the normal can change drastically. The classical quadrics are unable
to remove these spikes as they consider them features, regardless
of how small they are. Our probabilistic quadrics have no difficul-
ties smoothing over this noise even though they were designed for
Gaussian noise. In particular, the triangle quadric is very resilient
against unreliable normals of small triangles.

The final experiment shows a CAD object with irregular trian-
gulation, curved and flat regions, and some features. While both
preserve features, the resulting triangulation caused by the classi-
cal quadrics is more irregular compared to the ones produced by
our probabilistic quadrics.

5. Applications

Our probabilistic quadrics, although specially constructed, are still
simple 4× 4 matrices and thus can be used in any quadric-based
application as a drop-in replacement for classical quadrics. In the
previous section we already show their effect on incremental dec-
imation. Vertex clustering benefits similarly except that the output
topology is fixed by the method. In the following we showcase a
few other applications.

5.1. Isosurface Extraction

Isosurface extraction is an important tool, especially in medical
imaging. A sizeable amount of research has been devoted to us-
ing quadrics to preserve sharp features in the extraction of surfaces
from volumetric input data [KBSS01, JLSW02, SW04]. Figure 3
shows the effect of probabilistic plane quadrics when used in dual
contouring. Varying σn, the noise level assumed in the normals, al-
lows fine control over the extracted surface: σn = 0 is equivalent
to the classical quadric. While feature preserving it also amplifies
noise in the data. At σn →∞, probabilistic quadrics degenerate to
point quadrics. Normals are disregarded and the minimizer is the
center of gravity of the points used to construct the plane quadrics.
This produces overly smooth surfaces. In the intermediate cases,
probabilistic quadrics achieve the best of the two worlds: Clear fea-
tures are preserved but the uncertainty in the normals does not lead
to overly amplified (spiky) noise.

5.2. Adaptive Mesh Smoothing

In Figure 4 we demonstrate mesh smoothing and denoising in the
spirit of [VNMC10] and [LTB19]. We initialize each face with its
probabilistic triangle quadric. These quadrics are then smoothed

Figure 3: Using probabilistic plane quadrics with dual contouring
for isosurface extraction. The volume data was generated from an
implicit function consisting of fractal simplex noise with a sphere
cut out. The images show different values for σn (probabilistic
plane quadric, isotropic noise in the normals). From top left to
bottom right: 0%, 10%, 25%, ∞. With the right σn, probabilis-
tic quadrics preserve features while not amplifying noise.

over multiple iterations by averaging them with their neighboring
faces. Finally, for each vertex we compute the sum of adjacent face
quadrics and move the vertex into the minimizer of the quadric.

In the example we chose a mesh with spatially strongly varying
noise. Classical quadrics are unable to remove noise above a certain
level and start to treat the peaks as features to be preserved. Using a
global Σ is not granular enough to account for the spatially varying
nature of the noise: the value must be high enough to smooth over
the noise but that negatively affects features at the same time.

If the amount of noise is known a priori (even if only approxi-
mately), then this can be taken into account to construct probabilis-
tic quadrics with a spatially varying Σ. Even without this informa-
tion we can make an “educated guess”. In this example we chose a
simple heuristic: the per-vertex absolute angle defect. Lower angle
defect indicates less noise. While not perfect, this already lets us
smooth over the noisy parts while still reasonably preserving fea-
tures.

5.3. Subdivision and Interpolation

Inspired by Gaussian-product Subdivision Surfaces [PBW19], we
use quadrics to define an experimental non-linear surface interpo-
lation scheme, shown in Figure 5. Instead of interpolating surface
positions or applying a subdivision stencil on vertex positions, we
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Figure 4: Quadric-based mesh smoothing. The input mesh shows
strongly spatially varying noise. Classical quadrics (top right)
preserve features and smooth over some noise but are unable
to suppress stronger noise completely. With probabilistic triangle
quadrics and a high value for Σ (bottom right), the noise can be
almost eliminated but smaller features are smoothed over. Using
heuristics (such as the angle defect) to estimate the local noise
level, adaptively changing Σ smooths over the noise while preserv-
ing features (bottom left). Model from [ZJ16].

interpolate error quadrics. More concretely, we annotate each ver-
tex with a probabilistic plane quadric with normal n and covariance
Σn. We then interpolate the quadrics and compute new vertex po-
sitions as the minimizer of the interpolated quadrics. This scheme
permits a spectrum of surface properties, from smooth with low
curvature (high Σ) to sharp features (low Σ). Anisotropic covari-
ances can be used to apply these properties direction-dependently.
This approach leads to an equivalent formulation as [PBW19] and
can be seen as an alternative interpretation of their method.

6. Future Work
We presented the derivation of the probabilistic plane and trian-
gle quadric assuming independent, potentially anisotropic Gaus-
sian noise for each input parameter. An obvious future avenue of
research is to investigate various other probabilistic quadrics and
their feasibility. This includes different types of noise such as uni-
form, chi-square, gamma, or pareto distributed inputs but also cases
where the linear independence assumption does not hold.

Even when analytical solutions are intractable, we mentioned

Figure 5: Non-linear surface interpolation scheme using quadrics.
Vertices are annotated with probabilistic plane quadrics (normals
shown in red, covariance matrices as blue ellipsoids). Instead of
surface positions, the quadrics are bilinearly interpolated. The
interpolated position is then the minimizer of the interpolated
quadric.

that probabilistic quadrics can still be computed via numerical inte-
gration. In a sense, averaging a large number of classical quadrics is
already a numerical integration, although a spatial one. If the input
distribution can be simulated it is also possible to construct local
quadrics via Monte Carlo integration.

In Section 5.2 we used the angle defect as a simple measure for
local noise. This method can be refined by investigating more so-
phisticated measures that could for example quantify the anisotropy
of the noise. Our subdivision and interpolation scheme of Sec-
tion 5.3 is a simple proof-of-concept and deserves a proper investi-
gation. One particular issue that arose was that weighting interpo-
lated quadrics behaves non-linearly. Finding a mapping that makes
it more linear would help for intuitive control.

7. Conclusion
Classical quadrics treat the input geometry as ground truth. Any
noise and uncertainty present in the data can only be incorporated
in an ad hoc fashion by averaging the quadrics over large regions.
In contrast, our probabilistic quadrics embrace the uncertain nature
of most inputs and model the expected quadratic error over the in-
put distribution. We show how to efficiently construct probabilistic
versions for two popular quadrics: the plane quadric built by posi-
tion and normal under Gaussian noise and the triangle quadric built
from three positions, each under Gaussian noise. This probabilistic
framework lets us deal with uncertainty in a granular and principled
manner.

A welcome side effect is that all our quadrics are full rank by
construction (for non-zero covariance). This means that finding the
minimizer of a quadric can be done robustly by solving a simple
3×3 linear system instead of a singular value decomposition which
which is faster by a factor of 50 in our benchmarks.

Our experiments also show that the probabilistic quadrics natu-
rally favor regular triangulations while still being feature preserv-
ing. Their ability to incorporate local information about the shape
of the noise enables us to deal with spatially varying noise.

Because our probabilistic quadrics are still quadratic functions
in form of a symmetric positive definite 4× 4 matrix, they can be
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used as a drop-in replacement in any application using classical
quadrics. We demonstrate their versatility by showing how they im-
prove decimation, isosurface extraction, and smoothing. More ex-
ploratory, we construct a non-linear subdivision and interpolation
scheme based on quadric minimization.
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Appendix A: Derivation of Probabilistic Quadric for Triangles
under Gaussian Noise

All derivations were checked with a custom program that per-
forms vector arithmetic symbolically using polynomials in canoni-
cal form (in which equality is decidable and reasonably efficient).

Definition A.1 (Cross product matrix) [·]× denotes the skew-
symmetric matrix corresponding to the cross product, i.e.

a×b = [a]×b =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 b1
b2
b3

 (17)

Due to its skew-symmetry, [a]× =−[a]T×.

Definition A.2 (Cross-interference matrix) Ci[, ] : S3
+×S3

+ → S3
+

is a symmetric matrix capturing second-order terms in the proba-
bilistic quadrics:

Ci[A,B]xx = AyyBzz −2AyzByz +AzzByy

Ci[A,B]xy = −AxyBzz +AxzByz +AyzBxz −AzzBxy

Ci[A,B]xz = AxyByz −AxzByy −AyyBxz +AyzBxy

Ci[A,B]yy = AxxBzz −2AxzBxz +AzzBxx

Ci[A,B]yz = −AxxByz +AxyBxz +AxzBxy −AyzBxx

Ci[A,B]zz = AxxByy −2AxyBxy +AyyBxx

(18)

Lemma A.1 Given x ∼ N(x̄,Σx), it holds that

E[xxT ] = x̄x̄T +Σx, (19)

because E[xix j] = x̄ix̄ j +Σx,i j (second moment of Gaussian).

Lemma A.2 Given M ∈ R3×3 and v ∈ R3, it holds that

Tr[MvvT ] = vT Mv (20)

because Tr[baT ] = aT b for all a,b ∈ R3.

Lemma A.3 Given x ∼ N(x̄,Σx) and a symmetric matrix A, [MP92]
show that

E[xT Ax] = x̄T Ax̄+Tr[AΣx] (21)
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Lemma A.4 Given a ∼ N(ā,Σa) and b ∼ N(b̄,Σb), it holds that

Ea[[a]×Σb[a]
T
×] = [ā]×Σb[ā]

T
×+Ci[Σa,Σb]. (22)

This follows from using Ea[aia j] = aia j +Σa,i j and expanding all
terms. Everything without Σa can be reassembled into [ā]×Σb[ā]

T
×

and the rest forms Ci[Σa,Σb].

Lemma A.5 Given x ∈ R3 and A,B ∈ S3
+, it holds that

Tr[A · [x]× ·B · [x]T×] = xT Ci[A,B] x. (23)

We simply used our symbolic computation tool to verify equality
of both sides.

Lemma A.6 Given a ∼ N(ā,Σa) and b ∼ N(b̄,Σb), it holds that

Ea,b[(a×b)(a×b)T ] = (ā× b̄)(ā× b̄)T +[b̄]×Σa[b̄]T×

+[ā]×Σb[ā]
T
×+Ci[Σa,Σb]

(24)

Proof Using Lemma A.1 and Lemma A.4:

Ea,b[(a×b)(a×b)T ] = Ea,b[[a]×bbT [a]T×]

= Ea[[a]×Eb[bbT ][a]T×]

= Ea[[a]×(b̄b̄T +Σb)[a]
T
×]

= Ea[[a]×b̄b̄T [a]T×]+Ea[[a]×Σb[a]
T
×]

= Ea[[b]×āāT [b]T×]+ [ā]×Σb[ā]
T
×+Ci[Σa,Σb]

= (ā× b̄)(ā× b̄)T +[b̄]×Σa[b̄]T×

+[ā]×Σb[ā]
T
×+Ci[Σa,Σb]

(25)

Lemma A.7 Given a ∼ N(ā,Σa), b ∼ N(b̄,Σb), and c ∼ N(c̄,Σc),
it holds that

Ea,b,c[(a×b)(b× c)T ] = (ā× b̄)(b̄× c̄)T +[ā]×Σb[c̄]
T
× (26)

Proof Using Lemma A.1:

Ea,b,c[(a×b)(b× c)T ] = Ea,b,c[[a]×bbT [c]T×]

= Ea,c[[a]×(b̄b̄T +Σb)[c]
T
×]

= (ā× b̄)(b̄× c̄)T +[ā]×Σb[c̄]
T
×

(27)

Theorem A.8 Given p ∼ N(p̄,Σp), q ∼ N(q̄,Σq), and r ∼ N(r̄,Σr),
it holds that

E[A] = E[(p×q+q× r+ r× p)(p×q+q× r+ r× p)T ]

= (p̄× q̄+ q̄× r̄+ r̄× p̄)(p̄× q̄+ q̄× r̄+ r̄× p̄)T

+[p̄− q̄]×Σr[p̄− q̄]T×

+[q̄− r̄]×Σp[q̄− r̄]T×

+[r̄− p̄]×Σq[r̄− p̄]T×
+Ci[Σp,Σq]+Ci[Σq,Σr]+Ci[Σr,Σp]

(28)

Proof Expanding the outer product yields three uniform terms of
form (a×b)(a×b)T and six mixed terms of form (a×b)(b×c)T .
The claim results from applying Lemma A.6 and Lemma A.7
together with the simplification [a]×Σc[a]T× − [a]×Σc[b]T× −
[b]×Σc[a]T×+[b]×Σc[b]T× = [a−b]×Σc[a−b]T×.

Theorem A.9 Given p ∼ N(p̄,Σp), q ∼ N(q̄,Σq), and r ∼ N(r̄,Σr),
it holds that

E[b] = E[(p×q+q× r+ r× p) · |p,q,r|]
= (p̄× q̄+ q̄× r̄+ r̄× p̄) · |p̄, q̄, r̄|

+(q̄− p̄)×Σr(p̄× q̄)

+(r̄− q̄)×Σp(q̄× r̄)

+(p̄− r̄)×Σq(r̄× p̄)

+Ci[Σp,Σq]r̄+Ci[Σq,Σr]p̄+Ci[Σr,Σp]q̄

(29)

Proof The determinant can be written as a triple product |p,q,r|=
(p × q)T r = (q × r)T p = (r × p)T q. Expanding the product and
choosing a suitable triple product yields three terms of form (a×
b)(a× b)T c. The claim results from applying Lemma A.6 and re-
assembling some cross products.

Theorem A.10 Given p ∼ N(p̄,Σp), q ∼ N(q̄,Σq), and r ∼
N(r̄,Σr), it holds that

E[c] = E[|p,q,r|2]

= | p̄, q̄, r̄|2

+ (p̄× q̄)T
Σr(p̄× q̄)+(q̄× r̄)T

Σp(q̄× r̄)+(r̄× p̄)T
Σq(r̄× p̄)

+ pT Ci[Σq,Σr]p+qT Ci[Σr,Σp]q+ rT Ci[Σp,Σq]r

+ Tr[Σr Ci[Σp,Σq]]

(30)

Proof

Ep,q,r[|p,q,r|2] = Ep,q,r[rT (p×q)(p×q)T r]

= Er[rTEp,q[(p×q)(p×q)T ]r]
(31)

Set M = Ep,q[(p×q)(p×q)T ] and apply Lemma A.3:

Er[rTEp,q[(p×q)(p×q)T ]r] = Er[rT Mr]

= r̄T Mr̄+Tr[MΣr]
(32)

The claim now results from expanding M (Lemma A.6), using the
linearity of the trace, and applying Lemma A.2 and A.5.

Theorem A.11 For any positive definite matrix Σ ∈ S3
+ and any

vector n ∈ R3 the matrix A = nnT +Σ is invertible.

Proof nnT is a positive semidefinite matrix because vT nnT v =
(vT n)2 ≥ 0 for all v ∈ R. The sum of a positive semidefinite and
a positive definite matrix is positive definite. Any positive definite
matrix is invertible. Thus nnT +Σ is invertible.

Theorem A.12 For any positive definite matrix Σ ∈ S3
+ and any

vector n ∈ R3 the matrix A = [n]×Σ[n]T× is positive definite and
thus invertible.

Proof Let v be a vector in R3 \ 0. Then vT Av = vT [n]×Σ[n]T×v =

(v×n)T
Σ(v×n)> 0 due to Σ being positive definite.

Theorem A.13 For any two positive definite matrix A,B ∈ S3
+ the

matrix Ci[A,B] is also positive definite.

Proof Let v be a vector in R3 \ 0. Then vT Ci[A,B]v = Tr[A · [v]× ·
B · [v]T×] via Lemma A.5. From Theorem A.12 we know that M :=
[v]× ·B · [v]T× is positive definite. The square root of a positive defi-
nite matrix is also positive definite. Thus Tr[AM] =Tr[A

√
M
√

M] =
Tr[

√
M A

√
M] > 0, because

√
M A

√
M is positive definite and the

trace of a positive definite matrix is positive.
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