DOI: 10.1111/cgf.13897

COMPUTER GRAPHICS forum
Volume 39 (2020), number 1 pp. 650-671

Simulating the Evolution of Ancient Fortified Cities

Albert Mas, Ignacio Martin and Gustavo Patow

ViRVIG, Universitat de Girona, Spain
albertmas @dah-rd.com, ignacio.martin @udg.edu, dagush@imae.udg.edu

Abstract

Ancient cities and castles are ubiquitous cultural heritage structures all over Europe, and countless digital creations (e.g. movies
and games) use them for storytelling. However, they got little or no attention in the computer graphics literature. This paper
aims to close the gap between historical and geometrical modelling, by presenting a framework that allows the forward and
inverse design of ancient city (e.g. castles and walled cities) evolution along history. The main component is an interactive loop
that cycles over a number of years simulating the evolution of a city. The user can define events, such as battles, city growth,
wall creations or expansions, or any other historical event. Firstly, cities (or castles) and their walls are created, and, later on,
expanded to encompass civil or strategic facilities to protect. In our framework, battle simulations are used to detect weaknesses
and strengthen them, evolving to accommodate to developments in offensive weaponry. We conducted both forward and inverse
design tests on three different scenarios: the city of Carcassone (France), the city of Gerunda (Spain) and the Ciutadella in
ancient Barcelona. All the results have been validated by historians who helped fine-tune the different parameters involved in

the simulations.

Keywords: geometric modelling, modelling, polygonal modelling, modelling, human simulation, animation

ACM CCS: e Computing methodologies — Computer graphics, Mesh models

1. Introduction

Since the Persian empire and up to the modern Napoleon wars, cities
have been protected by castles and fortresses, shaped by protective
walls (also known as curtain walls) against enemy attacks. These
constructions were not static defensive objects, but evolved to im-
prove the defence level and to face evolution of attack weapons and
strategies, while at the same time encompassing city growth. The
results of these changes can still be observed nowadays in historical
cities. For instance, modern European cities that had ancient defen-
sive systems still have traces of their walls, even if these walls do
not exist anymore: we can still clearly see their silhouettes drawn in
their street networks.

Also, any large-scale change at the urban level must include a
careful planning, and any excavation in the old neighbourhood of
any old European city will find archaeological remains. Having a
tool that helps to roughly estimate the past urban changes can help
optimize future interventions, which is the role of urban planners.

Previous research in historical urban evolution has been mainly
done in the context of archaeology, history or art history

(e.g. [Duf79, Lep02]). The results in these fields are intended for
improving our understanding of our past and religious, economical,
political and contextual factors that shaped our world as it is now.
However, in general, their results are obtained in a case-by-case
basis, resulting in localized explanations that are difficult to gener-
alize to other contexts. Only recently the emerging field of historical
dynamics and its mathematical formulation, Cliodynamics [Turl1],
attempt to obtain general solutions that are applicable to a wider
context. However, having a consistent and reliable simulation of the
evolution of ancient cities and castles is a complex problem that
has not been studied deep enough. This is even more surprising if
we consider their possible impact on video games, cinema, cultural
heritage and even urban planning. In computer graphics, in spite
of the spectacular advances in urban modelling techniques over the
last years [KM06, WMV*08, STBB14], simulating evolution of
cities as time-dependent objects [HMFN04, WMWGO09, EBP*12,
BWK14] has mainly concentrated on geometric aspects, and not on
underlying historic facts that lead to such changes. Some research
has been done to feed behavioural data into geometric modelling
systems [VABW09, VGDA*12], but its focus is on designing and
editing urban environments, not on trying to simulate their historical

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-1977-9101

A. Mas et al. / Evolution of Ancient Fortified Cities 651

Figure 1: Left: (top) real photo and (bottom) simulation of Carcassone. Right: a more realistic rendering.

evolution. On the other hand, although different city models can be
manually created by an artist, this would be focused only on visual
realism and not on historical plausibility. Users may not have intu-
ition about the mechanics that governed fortification construction,
or knowledge of traditional shapes, sizes or proportions used in city
design. Determining the precise shape that guarantees defensiveness
can be an error-prone task that our system pretends to reduce.

In this work, we propose to close the gap between historical sim-
ulation and geometrical modelling of urban spaces, by modelling
historic battles and the effect they produced on city layouts through
their defensive walls. We model ancient historical facts (i.e. battles,
and urban and castle evolution) as a succession of time-dependent
events, which represent historical changes. In an interactive environ-
ment, we allow the user to define, at each iteration, a set of discrete
events that describe the influence of the different evolution factors,
such as city growth, creation of new walls or simulation of defence
improvement against external attacks. Then the system runs by sim-
ulating the evolution of ancient cities as a dynamic process driven
by these factors between two given dates presents the results and
allows the user to continue interacting with the system. We can state
that, what this paper demonstrates, given a general knowledge of
castle evolution, it can be converted into a more concrete historically
based castle evolution process.

Our main contribution is an interactive user-controllable simula-
tion of the temporal evolution of ancient cities or castles based on
events, such as city growth, wall construction or battles. In particu-
lar, our concrete contributions are:

® an interactive, agent-based system that allows the accurate sim-
ulation of real historical events, such as battles or city changes
resulting from their natural population growth;

® adetailed geometrical model of Western ancient defensive struc-
tures, such as walls, towers, ravelins, bastions and many others;

® acomprehensive and accurate battle simulation environment that
takes into account common situations in ancient battles.

2. Previous Work

In the field of procedural modelling, the seminal work by Parish
and Muller [PMO01] and Muller et al. [MWH*06], based on the idea
of L-systems, is a key reference for procedural techniques in urban
modelling. Another work based on procedural rules was presented
by Sun et al. [SYBGO2], using a template-based approach for street
network generation. Chen et al. [CEW*08] proposed a method that
uses tensor fields for the generation of street graphs. Merrell and
co-workers [Mer07, MMO8] proposed a procedural modelling sys-
tem based on input examples that are processed, partitioned (either
discretely [Mer07] or continuously [MMO8]) and then used to gen-
erate new models based on the found geometric patterns. For more
information, we refer the reader the surveys from Kelly and Mc-
Cabe [KMO6], Watson et al. [WMV*08], Vanegas et al. [VAW*10]
or Smellik ef al. [STBB14].

Considering urban evolution, Weber et al. [WMWGO09] pre-
sented a method to grow streets based on an L-system ap-
proach, but using traffic simulations. This work was extended
by Benes er al. [BWK14] who considered trading as a moving
force, also taking the city neighbourhood into account. Vanegas
et al. [VGDA*12] presented a method to simulate and to predict
urban environment evolution using inverse modelling techniques.
Emilien et al. [EBP*12] presented a method for the modelling and
evolution of small, European villages taking into account the terrain
features to increase safety, sunlight illumination or other conve-
nience criteria. However, none of that work considered a historical
setting such as we do in this paper, and they were not concerned
about the evolution of cities during the turbulent ages when castles
were main defensive structures.

As opposed to geometric urban modelling, which is purely com-
puter graphics-oriented, behavioural urban modelling is intended
for decision-making regarding urban policies in current and fu-
ture urban areas. Some of the most important examples are the
work of Alkheder et al. [AWS08] and Waddell [Wad(02]. Vanegas
et al. [VABWO09] tried to close the gap between behavioural and
geometric modelling by subdividing the urban space into a regu-
lar grid of cells, each cell with a set of associated variables that

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

652 A. Mas et al. / Evolution of Ancient Fortified Cities

control the distributions of population, jobs, land values, road
networks, parcel shape and building geometry. Their behavioural
framework—which is based on a simplification of Urban
Sim [Wad02]—and their geometrical modelling engine produce a
single dynamical system that seeks behavioural and geometric equi-
librium after each user-specified change. As we can see, all that work
studies the evolution of socio-economical aspects of the city, allow-
ing accurate predictions for present and future cities, but does not
deal with historical battles or defence-driven urban evolutions.

Closely related to our objectives, the new field of historical dy-
namics and its mathematical formulation, Cliodynamics [Turll],
focuses on finding a scientific modelling of history, including its
computer modelling [GMK13]. Collins [Col10] modelled victory
or defeat in battle as a set of flow charts for dynamic simulation.
Later on, Fletcher ez al. [FAR*11] continued this work by presenting
a simulation of the Civil War that appears to coincide with historical
reality, demonstrating the validity of models proposed so far. Our
work shares some common concepts, but with its main focus on
the design of walled cities from scratch, and being able to produce
complete models within minutes.

Medieval castle architecture and its evolution are well docu-
mented in historical literature [Lep02, Duf79]. Although each cas-
tle and city underwent different changes depending on its location,
culture [Duf79], interior and surrounding terrains and available re-
sources, some common facts can be found. For example, sieges were
one of the main reasons to modify the city configuration [Gri06,
Hin09]. As weapons and siege techniques evolved, defensive ele-
ments such as walls and towers had also to evolve to keep guaran-
teeing a safe interior for city inhabitants. However, ranging from
the Roman empire [RAJ*03] to the Napoleonic wars [Hof11], the
different number of war strategies and weapon types to take into ac-
count is huge. The last periods in castle evolutions, just before they
were dropped as defensive structures, were popularized by Vauban’s
star-fortress designs [Duf85, Lep09]. Examples of star-shaped for-
tified cities are Geneva, Bayonne or Naarden. Other fortresses such
as the Ciutadella of Barcelona were typical examples of military
fortifications that did not evolve from a previous castle, but were
built directly following the latest defensive structures of the time.
The objective of this work is to focus on common battle settings and
weapon types that could affect castle or city configurations, closely
following historical developments of these structures.

Also, parts of this work are related to inverse procedural design.
Talton et al. [TLL*11] developed a metropolis-based procedural
technique that was used to generate, from some very simple tar-
gets, complex models derived from the city grammar targeted to
skylines of different silhouettes, such as a whale, a shoe and even
the Stanford bunny. Bene§ er al. [BVMMI11] presented a guided
procedural system which allows to generate and edit a procedural
model of a tree or a complex urban layout. After the original model
is generated, its guides are interactively edited by means of a mass-
spring model to achieve a desired layout. Bokeloh ez al. [BWSK12]
presented a system where an input shape is automatically analysed
using shape understanding techniques to extract regular transla-
tional patterns. Their algebraic model of shape regularity identifies
so-called useful degrees of freedom, which are exposed for robust
real-time shape editing as controllers visible on the building sur-
face. Demir et al. [DAB14] presented city-scale building procedu-

ralization technique that uses an unorganized 3D model as input
to compute a hierarchical clustering of building components, from
which it extracts a context-free grammar of the urban area. With this
technique, it is possible to procedurally generate structurally sim-
ilar cities to the provided example. Stava et al. [SPK*14] studied
techniques for inverse procedural modelling applied in the context
of tree generation, but given the similarities between the techniques
used for trees and buildings, this work is worthwhile taking into
consideration. From an input model of a tree model, their system
performed some pre-processing and estimated the input parame-
ters of the developmental model, so the overall system was able
to produce stochastically similar trees, also being able to produce
environmentally sensitive trees models (e.g. under the influence of
obstacles). Demir and Aliaga [ADA18] presented a method called
Guided proceduralization, that, from an input building model, it con-
verts it to a procedural editable model. Moreover, as the user speci-
fication on the target grammar changes, the system reveals different
grammars of the model. Garcia-Dorado er al. [GDAB*17] posed an
inverse algorithm where local weather is changed to achieve a given
set of conditions in the city, by changing constructive parameters
of the city, as well as characteristics of the terrain and the initial
weather conditions. We follow their methodology for approaching
this complex problem, but in the context of historical battles.

Despite of being outside of the academic world, we cannot ignore
the many video games based on medieval simulations (including war
simulators) [Wik19d, Wik19c, Wik19a, Wik 19b]. In general, we can
say that our system could benefit from their simulations or output
data, but it must be noted that our system is not, and will never
be, as realistic as they are. The reason for this crucial difference
is that these systems are built for simulating a particular battle, or
a whole war, but not an evolving city as our system does. Thus,
although somewhat similar and valuable, these video games aim at
a completely different objective than our system.

3. Overview

Our framework is based on a simulation that runs for a user-defined
number of years, and, for each year, the city evolves controlled by a
set of user-defined parameters and events. See Figure 2. The method
presented in this work is based on several assumptions (see below),
and controls three main aspects of the simulation: city growth, wall
evolution and battles. In our system, this evolution has the only

1) Useror

Optimizer
2) Terrain 3) Castle 4) Battle
Designing Modelling Designing

5) Battle 6 3D

7
. i . — — Renderer
Simulation Generation

Figure 2: System pipeline: We show a diagram of the overall
pipeline of our approach.

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A. Mas et al. / Evolution of Ancient Fortified Cities 653

purpose of defining the new parameters of the city, providing the
basis for city evolution. Although more sophisticated methods can
be used for growth, we decided to simply generate new buildings
using parameters such as direction, density factor and a building-
per-year ratio.

The key element of our framework is an interactive, user-
controlled loop where the user is free to redefine the evolution
parameters (e.g. growth) and to introduce time-dependent events,
such as sieges, battles, wall creation or reinforcements, city growth
or even introduction of new historical elements such as bastions
or a star-fort. Then, with these definitions, the system runs the
urban/castle evolution simulation. To this end, the user uses an in-
teractive environment where they can configure any parameter of
the simulation, from city growth to battalion deployment (Figure 3).
Depending on the era being simulated, the system automatically se-
lects the correct elements in the simulation (e.g. archers or riflers,
different kinds of wall reinforcements or even population redistri-
butions, as introduced by Vanegas et al. [VABW09]). Each iteration
of this loop is called a turn.

A walled city (or castle) evolution is related to its defensive ca-
pabilities against attacks. We identify weaknesses in city defences
by simulating battles at user-selected dates. Simulations use two
kinds of agent groups: defenders, within the castle; and attackers,
on the castle surroundings. Each army defines its own agents, named
battalions. There are different kinds of battalions depending on its
battle skills, such as speed, defence factor and shooting accuracy,
among others. These skills are randomly combined for each battal-
ion to perform actions such as movements, shootings, climbings or
target acquisitions. Each battalion takes its own decisions, ruled by
its skills and the current battle status. From a technical point of view,
each battalion is implemented as an agent controlled by a behaviour
tree, and sharing a common blackboard memory for easy access and
shared resources.

- Battles Editor
Fle Comedata Draw_Defausettings 30

Xk > &

%

16,9520

Figure 3: User interface showing the setting for the evolution of the
Gerunda medieval city showing the definition of the city growth di-
rections.

The battle simulation ends when any attacker battalion enters
into the city by climbing a wall (or what remains after its destruc-
tion), or when all attacker battalions are defeated by the defenders.
In ancient times, battles continue inside the city, but the outcome
was somewhat independent of the wall geometry, and thus we do
not include it in this paper. In our implementation, a given battle
between attacking and defending armies is repeated several times
and results are averaged. Also, from simulations where the attackers
won, we obtain weak points that will guide the castle evolution, i.e.
creating new towers, wall segments or a whole new wall wrapping
the current city. As a last kind of castle evolution step, correspond-
ing to the latest periods of such defensive measures, a novel algo-
rithm creates star-shaped fortresses following Vauban’s main design
guidelines [Duf85, Lep09].

It is important to emphasize that this paper is about the simulation
of geometric evolutions of ancient cities, and uses battles as part of
that process. Most importantly, it does not aim at implementing a
full combat simulator, as done elsewhere [RCCC13]. So, the battles
in this paper represent an averaged scenario of the actions happening
in a battlefield (e.g. advancing, firing, artillery, etc.), always taking
into account the proper time setting. For instance, until the intro-
duction of gunpowder, artillery depended upon mechanical energy
to operate (e.g. catapults), and this severely limited the energy of
the projectiles. However, aiming at a simulation that is able to re-
produce up to the tiniest details is unfeasible, as, in the end, every
city, every castle and even every wall segment are unique construc-
tions that depended on a number of factors, such as economical and
human resources, to be built. For the same reasons, the simulation
of long-term sieges falls outside the scope of this paper, as the siege
itself only aims at surrounding the target and blocking the rein-
forcement, escape of troops, or provision of supplies, but did not
imply actual changes in the defensive city elements. Famine, fires
and other events also happened during these wars, but again, they
did not force a geometric redesign, and thus, fall outside the scope
of this paper, as well as the events that follow the fall of a city wall.
Another approach other than a pure geometric simulation would be
much more historically and analytically based, such as reviewing
the history of as many cities/castles as possible over a long period
and determining a set of rules and patterns that seem to govern their
growth. This would be a significant information/historical analysis
rather than a geometrical simulation as we do here, but this ap-
proach probably falls outside of computer graphics and the scope of
this paper.

4. Simulation Elements

The basic elements participating in our implementation are the
city itself and its parts, the walls forming a castle, the battlefield
and the armies. In Figure 4, we can see an example of static ele-
ments (armies are dynamic). Following the work of Garcia-Dorado
et al. [GDAB*17], we can classify the initial input parameters of
our system into three sets Q = {w;, ,, wp}:

® (o, represents the terrain characteristics for each grid cell. For
example, a hill has a certain slope, which is accounted for by the
movement penalty factor. These distributions can be defined by
an interactive drawing tool (see Figure 4), be loaded from GIS

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

654 A. Mas et al. / Evolution of Ancient Fortified Cities

®
® ®
® @ ®
®
@

Figure 4: Static simulation elements in the simulation landscape:
walls (A), towers (B), moat (C), houses (D), rivers (E) and trenches

(F).

data or other model databases, or be generated through procedural
modelling techniques. It is defined in Section 4.1.

® w, refers to constructive procedural parameters, described in
Section 4.2, which define the city and wall geometry (e.g. types
of towers, bastions, moat, etc.)

® v, are the initial conditions of the battle simulation. These con-
ditions define the initial values for each army deployed in the
battlefield. These conditions can be defined explicitly, procedu-
rally or via observations. Our system uses historical data for each
situation (provided by historians and art historians in our univer-
sity). To generate the initial conditions procedurally, we define
a safety distance equal to the maximum range a defender archer
(or cannon, if available) can shoot, and randomly position all our
attacking armies at that distance. See Section 4.3.

In our implementation, any of these parameters can be varied both
in space and time. As an example (already shown in our forward
design examples), the type of tower can vary for different years, as
well as the introduction of defensive bastions to repel artillery fire.
In our simulations, we set the values initially and then execute the
battle simulations.

4.1. Battlefield

The battlefield w; is a regular grid of cells ¢;; where attacker bat-
talions are deployed; it controls the troops’ movements. Each grid
cell has a height ;; and a movement penalty p;;, which depend
on current terrain conditions, e.g. dry, mud and flooded. When a
battalion enters a cell, depending on the movement penalty and its
height, it is slowed down proportionally to the penalty factor p;;. In
addition, there are other battlefield elements:

® Rivers: They are similar to moats, but a river does not have to
wrap the castle. As they are wider and deeper than moats, they
infer a stronger movement penalty to any unit that attempts to
traverse them. They can be overcome the same way as moats, see
below.

® Trenches: A trench is any kind of terrain element that gives an
extra defensive factor to attack battalions. When an attack archer
unit moves to its target, it first searches for the closest trench,
moving there to get some defensive factor against castle shots.

If there are reachable targets from the trench, the archer unit
remains on this cell. Otherwise, it will advance looking for other
closer trenches leading to reachable targets. Trenches are created
randomly along the battlefield for each battle simulation.

® Houses: Cities can grow outside its walls. If that happens, a
house external to the city wall offers to attackers an extra defen-
sive factor, like a trench. Later on, houses will also affect wall
expansion (see Section 6).

Finally, as we can see, the environment (terrain, water bodies) is
fully considered: Figure 11 shows an automatic placement of walls
taking into account the river, as it would happen in reality. Areas to
enclose are partitioned into disjoint sets, each walled independently.
Also, different kinds of terrain are considered by the movement
penalty factor p;;, accounting for slopes, different consistencies and
any other terrain aspect. All these elements are defined by the user
though the input file, but nothing prevents a future implementation
to allow the creation of some of them on the fly (e.g. trenches), as
is done by covering moats during a siege, see below.

It is important to notice that the whole battlefield is nothing
more than a terrain with some extra features that could be modelled
with standard procedural techniques [EMP*03, STN16], thus alle-
viating the burden of defining them manually. For instance, rivers
could be created either manually, or with growth or erosion tech-
niques [EVC*15], while trenches could be simply defined parallel
and at a distance to the closest castle wall. In any case, it should be
noted that, as usual with procedural models, the more automation is
put in the process, the less control the user has on the system evolu-
tion, which in this case could be a problem if historical accuracy is
an issue. In any case, the full exploration of the automatic battlefield
definition possibilities is left as future work.

4.2. Castle

In our implementation, a castle or walled city is defined by its
external defensive elements: w,

® Walls: The castle wall is the main defensive system, and defines
the city shape. The castle wall is composed of wall segments
w; € w,, forming a closed poly line that defines it. Each wall
segment w; has a top gateway where archers are deployed to
shoot attackers, while they are protected by merlons. For the
attacking army, walls are the main target. Walls can be climbed
by the infantry or destroyed by artillery. Therefore, wall heights
and thicknesses are key features in battle simulations.

® Towers: A tower joins two walls (i.e. at some vertices of the poly
line). They can be square or rounded, depending on which century
they were created. Defence archers and artillery battalions can be
deployed on a tower. A tower is a strong point, and therefore, it is
never targeted to be climbed or destroyed in battle simulations.

® Bastions: A bastion is the latest in tower evolution, since most of
them were constructed over original towers. A bastion goal was
to cover all ‘blind’ zones around a castle that were generated by
square or rounded towers (see Figure 5).

® Moat: If it is used, a moat surrounds the entire castle with the
objective of making attackers’ movements more difficult, and
thus, perilous. In our implementation, moats are optional. They

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A. Mas et al. / Evolution of Ancient Fortified Cities 655

Figure 5: Left: in dark grey, the blind zone produced by rounded
towers. Right: a bastion removes all blind spots.

are defined by width and depth, and may or may not contain
water.

4.3. Armies

As mentioned in Section 3, there are two kinds of armies in wj:
defenders and attackers. Each army is structured in battalions, in
turn, containing a set of units of different types: infantry, archers,
artillery and siege towers for the attacking army, and archers and
artillery for the defending army. A unit may contain a variable
number of soldiers of a given type. For instance, artillery units may
contain a single catapult or cannon. Each type of battalion simulates
a specific type of action, and the units used in battle depend on the
historic context.

® Infantry: They advance on the battlefield to climb the closest
wall (see Section 5.4). They are fast, defenceless and cannot
shoot.

® Archers: Although throughout this paper, we consistently use the
word archers, we are actually referring to long range shooters,
using weapons such as arches, crossbows or muskets (introduced
during the 15th century). On the battlefield, archers advance
until a defender battalion is in range for shooting. In the castle,
archers stay at their positions searching for the closest enemy in
range. The target acquisition is performed randomly but weighted
inversely with distance. After every shot, archers need a given
recharging time (see Section 5.3). Archers on the battlefield are
defenceless, but strongly protected on the castle due to wall and
tower merlons.

® Artillery: According to each period, it is formed by devices such
as catapults (less energetic shots) or cannons (more destructive
shots). In general, artillery has a very restricted movement and
is very slow recharging between shots. Also, artillery has high
protection, either in the battlefield or in the castle. The goal
of attack artillery is to destroy castle walls to help the infantry
climbing into the castle (see Section 5.5). The goal of defensive
artillery is to shoot attacker battalions, selecting their targets in
the same way than defensive archers, with a higher preference
for attack artillery.

® Siege towers: Siege towers are built on the battlefield to adapt
their heights to the castle walls. Therefore, they waste battle
simulation time, depending on the required height, until they are
ready. Then they choose a path to the closest castle wall, and they
advance slowly on the battlefield towards that point. Siege towers
are populated by archers, so when castle battalions are reachable
from the siege tower, they shoot such as normal archers, but they
are protected by the tower structure. Obstacles, such as moats,

are removed by a special, heavily protected unit called turtle,
which cannot shoot. The turtle advances along the siege tower
path until it reaches a moat, and then it begins to remove it (e.g.
with a bridge or filling it with earth), requiring a number of turns
proportional to the moat characteristics.

5. Battle Simulations

The battle simulation goal is to find the castle weaknesses for im-
provement of its defensive capabilities. In this work, we do not con-
sider battles inside the castle itself, so our simulations stop when
a wall is climbed. This might appear to be a drastic decision, as it
basically ends the simulation. We realized that the battle could have
continued inside the city and the attacking army could still be de-
feated, but this would not have most likely changed the geometrical
aspects, which are the main objective of our simulation. Thus, we
stop when all necessary geometric information is gathered. Also,
this is surely not an unreasonable assumption, as this was exactly
what happened at several sieges in the past, such as the Siege of
Lisbon, in October 24th, 1147, when Moorish rulers surrended the
crusader’s siege. Our battle simulation also ends in case the whole
attacker army is defeated.

Whenever the castle is defeated, a weak point is generated where it
was climbed. As already explained, a given battle is repeated several
times and results are ‘averaged’. The outcome of such simulations
is a set of Gaussian-like probability distributions, from which the
breach points with the highest probability are selected. Each of
these repetitions uses randomly selected parameters, with different
outcomes. The selected vulnerabilities are the result of several runs
(from one run in the video, for demonstration purposes, up to 50
runs in our final experiments). Finally, after a user-defined number
of simulations, we obtain a set of weak points on the walls that
will be used to improve the castle, as presented in Section 6. The
simulation is ruled by a turn-based system, where each battalion
decides its following action, described in the next subsections.

5.1. Artificial intelligence

Each agent in our system uses a behaviour tree [CD19] (also known
as a decision tree) to describe changes between a finite set of tasks
in a modular fashion. A behaviour tree is a mathematical model
of plan execution, often used in video games and robotics. We
choose them because of their ability to create very complex tasks
composed of simple tasks, without worrying how the simple tasks
are implemented. For detailed definitions, as well as example code,
we recommend the interested reader to consult any of the excellent
books on the topic [Sch04, MF09, DaG17]. In particular, the work
by Champandard and Dunstan [CD19] is highly recommendable as
a general, but excellent introduction to the topic.

A behaviour tree is usually represented as a directed tree in
which the nodes can be either the root, the internal control flow
nodes or the execution nodes, which are the leaves of the tree.
The execution of a behaviour tree starts from the root which sends
ticks with a certain frequency to its children. A tick is an en-
abling signal that allows the execution of a child. When the exe-
cution of a node in the behaviour tree is allowed, it returns to the
parent a status which can be: running, if its execution has not

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

656 A. Mas et al. / Evolution of Ancient Fortified Cities

finished yet; success, if it has achieved its goal; or failure, oth-
erwise. Our implementation is based on the Python library behav-
ior3py (https://github.com/behavior3/behavior3py) by Marzinotto
et al. [MCSgl14], which uses a blackboard as a shared memory to
keep local and/or general information among agents. This black-
board is used at the behaviour tree node level, the agent level and
the whole army level, to provide global goals to all the agents si-
multaneously.

5.2. Movement

Movement actions are applied to the attacking infantry, archer and
siege tower units. As explained in Section 4.1, battalions move cell
by cell on the battlefield. The number of cells that a battalion can
advance depends on the battalion speed factor and the movement
penalty p;; for the given cell. Each battalion follows its own path
to its target (see Section 4.3), avoiding obstacles such as other
battalions or castle structural objects, and recalculates its path if the
target is no longer available (e.g. a unit that has been destroyed). In
our current implementation, the path is computed trying to minimize
deviations from the direction to the target position, controlled by the
IA module. However, any other criterion could be used, such as the
well-known A* algorithm [Sch04].

5.3. Shooting

The shooting action is applied to archers, artillery and siege towers.
This action consists of the following steps:

® Search for the set of available targets and choose one randomly,
weighted by distance. Available targets are those that are in at-
tack range. The attack range depends on the maximum shooting
distance and the angular shooting range. The defender archers
have an angular shooting range restriction related by the merlons
coverage. The attacker archers have no angular restriction. Ar-
tillery also has a reduced angular range because it cannot easily
move to aim the target, in the castle or in the battlefield.

® Execute the shooting. To calculate the shooting vector (see
Figure 6), the battalion precision skill factor is used with the
maximum shooting distance to get a cosine distribution over
the shooting ray. Then a direction is sampled from this distribu-
tion, resulting on a final hit or miss on the target. Wind could
also be included to affect the precision of shots, but we could
also assume part of precision for the shooter.

max shooting distance

target

shooter Tl R ; —

max shooting distance * precision factor

Figure 6: Shooting method using the precision factor over the max-
imum shooting distance: each shooter uses a cosine distribution
around the direction towards its selected target, and always within
its maximum shooting distance.

® [fthe target s hit, its defensive factor is compared by the shooting
power factor, deciding if the target was killed or not.
® Wait to reload the weapon, defined as a number of turns.

To simulate artillery shots, we have to take into account that real
artillery bullets do not explode when they impact, as they simply
were iron balls (for cannons), sometimes filled with shrapnel, or
boulders (for catapults), shot directly at soldiers. The actual effect
of these projectiles then was to ‘drill a hole’ in the approaching units,
killing everything in their path from the moment they reached the
soldier’s level until they stopped. Because the soldier positions in-
side the battalion are not considered individually, a sample algorithm
is used to know how many soldiers are killed when a bullet hits a
battalion. For this, we know the battalion cell location b, € w, inthe
battlefield, its size in soldiers b, and each soldier standard volume
V. Then, a ratio r; is calculated considering the battlefield cell cube
volume V, and the volume associated with the projectile path V,:

bV,
= ,
k V.
n Vs = rkvps
bV,
e = —/(—">
Ve

where n; is the number of killed soldiers. The path volume V), is
calculated using a cylindrical profile of radius equal to the bullet
diameter (or linearly increasing if the bullet is made of shrapnel).
This profile is approximated by a set of cylindrical (or conical)
cell-sized segments with length equal to the length that passes
through the cell volume, until it reaches the ground. In that latter
case, the cylinder length will be the distance between the cell
boundary and the intersection with the ground.

5.4. Climbing walls

When an infantry battalion reaches a wall, it starts climbing it.
Climbing is simulated by a virtual ladder where each soldier steps
upwards at each turn. Climbers can be killed by any defender archer
with enough angular range from its position. In addition, the closest
defender archers to the ladder are gathered into a new kind of unit
named thrower. The thrower is a temporary battalion that throws
things, such as rocks or boiling pitch (resin), over the climbers. This
throwing action is performed as a special shooting in the ground
direction. The throwing hits the first climbers on the ladder, from
top to bottom, killing them, up to a user-defined threshold. The
thrower reload time is long and it is related to the number of units
in the defending battalion. If any of these units is killed, reload
time increases. If a climbing battalion reaches the top of the wall
(representing the start of the fight over the walls), the simulation
ends, storing the position of the ladder as a wall’s weak point.

5.5. Breaking walls
5.5.1. Stone walls

When a battle simulation starts, a grid is generated for each wall.
When artillery is aiming at a wall, it randomly chooses between
one of the top wall tiles, weighted by the shoot impact factor. This
factor is calculated by e * cos(«), where e is the shot energy and

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://github.com/behavior3/behavior3py

A. Mas et al. / Evolution of Ancient Fortified Cities 657

Figure 7: Wall breaking by artillery shots on wall grid (left). When
a grid cell is broken, its material falls down creating a slope (centre
and right), where w is the wall thickness and h is the tile height in
the cross sections.

«a is the angle between the shot vector C and wall normal N (see
Figure 7, right). The impact value reduces the wall resistance at the
corresponding grid cells proportionally to the cosines of the incident
angle and the wall normal at that point. When a cell resistance is
0, it falls and is converted into rubbles, being accumulated at the
bottom of the wall, as shown on left of Figure 7, where we can
see that rubbles are simulated as a slope, which is represented as
a wedge with a volume equal to the volume of the fallen rubbles.
Afterwards, a small percentage of the fallen rubbles are redistributed
to the columns on the sides (20% in our examples).

When the height d, of the accumulated rubbles is equal to the
current wall height, artillery discards the lower part of the wall
as target, and a gateway through the wall is created. The attacker
movement over rubbles receives a penalty depending on the slope
angle and height. When an infantry battalion reaches a wall with
a gateway, they advance through rubbles to reach it, finishing the
simulation if they are not killed by the castle archers.

5.5.2. Wodden walls

From the 2nd to the 12th century, in the majority of historical set-
tlements, just a wooden wall was used, except in the particular case
where walls were built by the Romans in previous centuries. Wooden
walls can be more easily destroyed by fire but also rebuilt faster,
so we implemented them as a simple grid where each cell has a
strength parameter, which is gradually (linearly) reduced by enemy
attacks, e.g. by fire. When the strength reaches 0, we consider this
element ceases to exist, no longer stopping any attack.

6. Geometric Evolution

When the city grows or when a weak point is detected after a sim-
ulation battle, the castle evolves by creating new walls and towers.
These kinds of evolutions are explained in the next sections. Fi-
nally, the latest kind of evolution in walled defensive structures, the
star-fortress, is explained.

6.1. Castle growth evolution
6.1.1. Castle wall elements

One of the main features that define the weakness of a wall is its
length. Short walls can be easily defended due to the closer tow-
ers, as towers improve the angular attack range of archer defenders.

Figure 8: Types of curtain wall evolutions from the weakpoints
(marked in red). The weakpoints are clustered to get the closer
tower or the wall splitting point. Then a new tower is constructed
(dotted lines).

Therefore, long walls should be split with new towers. The weak
points resulting from the battle simulations give information that
is used to split the walls (see below), and then to create a new
tower, or bastion. The construction of new towers was relatively
inexpensive, but bastions required the addition of larger structures,
see Figure 5. A tower can be created as squared or rounded, de-
pending on the current simulation era, and the same for bastions.
For each type of tower and bastion, there is an associated historical
range of years (and locations) when they were used. However, there
were overlaps in time between the different usage periods, so we
use a weighted random selection within these overlapping periods.
In this case, the weights are proportional to the temporal distance
between the sampling date and the overlapping period boundaries.
For non-overlapping periods, a direct selection is performed.

There are three conditions to take into account when a wall needs
to be improved with a tower or bastion:

® [f the wall segment has any of its endpoints without tower, the
closest segment end (without tower) is selected to create a new
tower or bastion (see Figure 8, top left). Bastions represent the
last kind of evolution, before the use of star forts.

® [f the weakest point is close to a tower, the tower must evolve to
its next stage, that is, from squared to rounded, and from rounded
to bastion (see Figure 8, middle and bottom left).

® Finally, if the weakest point is far from any tower, and if the wall
is long enough to be split, a new tower or bastion is created (see
Figure 8, right).

If no wall can be evolved with one of these conditions, a city
growth evolution is performed (see next section), requiring further
expansions of the wall in the future to protect these new structures.

6.1.2. Whole castle wall

As mentioned above, our objective is to simulate the evolution of
ancient cities, and the way that affected their shapes. Given that any

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

658 A. Mas et al. / Evolution of Ancient Fortified Cities

© © ©
© ® © © ©
© © © ® ©

®

Figure 9: Three examples of city growth. For each one, we see the
initial castle (areas with A labels), the city expansion (B labelled
areas) and the walls and towers rendered useless after the evolution
(structures labelled with C).

city growth simulation algorithm can be used [WMWGO09, EBP*12,
BWK14], and that this evolution is performed in peaceful times (i.e.
does not depend on any strategic planning), we decided to use a
simple city growth algorithm directed by house sampling from a
set of user-defined evolution patterns, such as a regular growth
around a prescribed direction (e.g. with a cosine distribution), or the
restriction imposed in ancient times from houses to be built in areas
that would weaken the defence, such as very close to the walls. In
general, an urban evolution pattern is defined as an origin zone, a
growth direction, a building creation rate per year and a time range.
When the method requires a full city evolution (see Section 6.1.1),
new wall segments are created. The new walls wrap the houses
created from the last city evolution, completely enclosing them and
following the new constructed area convex hull, plus a small offset
outwards. There are three cases to take into account for the new
wall:

® The new wall surrounds completely the old one: In this case, the
old wall becomes useless for battle, so the new one replaces it
and is the only target for the attackers (see top left of Figure 9).

® The new wall intersects the old one: A 2D Boolean union is
used to join both walls (old and new), creating the final one (see
top right of Figure 9). The towers of the new wall segments are
created taking into account the current year of the simulation.
The towers related with the old wall segments are reused, and
are not evolved. A particular case appears when a new tower is
going to be created too close to an old one. In this case, the new
tower is not considered, the old one is upgraded (if required), and
the new castle shape is updated to connect to the old tower. In
addition, the method avoids too short or too large walls, removing
wall vertices or splitting walls, respectively.

® The new walls do not intersect with the old ones. This happens
when there are new buildings far from the main structure, or
when the city growth is discontinued by a river (see Figure 9,

bottom). In this case, a new independent walled structure is cre-
ated surrounding the isolated houses.

In the first two cases, the obsolete defensive structures are ignored
during battle, while in the third case, all new structures are now
potential targets, as well as the old ones.

6.2. Star fort

The latest type of castle evolution was the star fort, bastion fort
or trace italienne, which is a fortification that evolved firstly in the
mid-15th century in Italy, after the apparition of gunpowder, when
cannons were perfected enough to start dominating the battlefield. In
general, it was mostly used for castles, but also for cities like Tvrda
(Croatia), in 1861; Geneva (Switzerland), in 1841; and Palmanova
(Italy) and Naarden (Netherlands), still existing nowadays. This
kind of fortification defines a star-shaped construction around the
castle or city to improve its defences against the combined attack
of cannonballs and climbing soldiers, see Figure 10 (bottom). It
is important to mention that star forts represent the last evolution
step, which did not evolve any further before the decline of walls as
defensive elements. Please, refer to the Appendix for details of its
geometric construction.

6.3. 3D geometry generation

The last step in our pipeline is the generation of 3D geometry. In
our current implementation, this is done by a process of simple
extrusion and model replacement. The first stage, once the simula-
tion is complete and the floorplan is ready, is to extrude its main
components (i.e. walls, towers, houses) to have a volumetric model.
Then, in a second stage, we replace the volumetric models by de-
tailed 3D counterparts, most of them taken from an artist-created
library (The Castle Creator library, from Daz3D). This replacement
was implemented with standard procedural techniques, such as the
CGA language developed by Miiller et al. [MWH*06] and imple-
mented in the commercial product CityEngine, which amount to
a simple repetitive subdivision along the walls, inserting for each
subdivided segment a wall piece from the library, or replacing the
tower geometry by its artistic counterpart.

7. Battlefield Design

Up to now we have described our forward modelling tool, where
users want to design an ancient city model and simulate realis-
tic battles during different time periods. However, our system also
supports inverse design, and it is able to change the initial battle
conditions or the characteristics of the battlefield to cause the battle
to evolve as desired. Uses of these design options are shown in the
results section (Section 8).

7.1. Inverse design

As mentioned, our system also builds upon the concept of inverse
procedural modelling [TLL*11, BWSK12, SPK*14, GDAB*17],
providing a novel inverse modelling tool for designing historical
battles (e.g. for movies or video games). Given a procedurally

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A. Mas et al. / Evolution of Ancient Fortified Cities 659

generated model, our system finds out how to alter the model or the
initial conditions so as to produce a user-specified battle outcome.
As battles are very complex to simulate, it is quite difficult to predict
and/or control their outcome. Therefore, we used an optimization-
based system to explore the search space and find a suitable solution
that exhibits the desired battle outcome. We have tested Metropolis-
Hastings and simulated annealing optimizers, but we obtained the
best results with a variant of the global optimization algorithm by
Mas et al. [MMP18]. See below.

As in the work of Garcia-Dorado et al. [GDAB*17], the opti-
mization mode for the inverse calculations can be any of:

® FError optimization, where the system tries to minimize an error
function E(x) that describes the desired outcome. We used a
simple function given by:

E(p,A,D) = ||p — p“|

+Q<Zwa|[u _E1|+de|ld _Fd|>s

acA deD

where p is the position where the castle was breached, ||x|| is
the length of vector x, A is the set of units in the attacker army,
D is the same for the defender army, w4y are user provided
weights for the loss of an attacker unit a or defender unit d and
Q2 is a global weighting factor to control the overall influence of
the losses term.

® (Cost minimization, where the user defines an objective value n
for a function E (x) and defines a cost function C(x) to minimize.
This might be of interest, e.g. when a game designer wants to per-
form the minimum changes possible to a good enough simulation,
while controlling a constructive variable. In our implementation,
we used a simple conditional to decide whether the optimization
should optimize only E(x), if its value is above the user-provided
threshold th; or AC (%), if E(x) <= th, where X is a weighting
constant chosen to guarantee that AC (%) <= th. For instance, as
a simple test, we verified it with the same inputs as the above
error optimization function, setting E(p) = ||p — p*¢'|| and
CA, D)=, s walls — Fol + 3 4cp walls — Fyl, with A =
th/(Y,ca @ala + Y 4cp @ala). The results of this particular test
are similar to the ones we got with the weighted combination,
above and are omitted in this presentation.

® (Constrained optimization, where constraints are used to define
a problem, something frequently needed for the other modes. In
our implementation, constraints are simply introduced as penalty
terms in the error function E(x), each multiplied by a user-
provided weighting factor.

Mas et al. [MMP18] presented a global optimization algorithm
specifically tailored for inverse design problems in the domain of
reflector design, but it can be used for more general problems, as
we did here with a high degree of success. To perform the opti-
mization, the method they propose is based on constructing a binary
tree in which each tree node represents a battle where the objective
function must be evaluated. At each construction step of the tree, a
previously created node is chosen stochastically by using heuristics
based on the evaluation of the node and the up-to-date statistical in-
formation on the surrounding tree nodes. Once chosen, the selected
node is replaced by two new child nodes. These nodes contain the

same parameter range as their parent but one, which is split into
two subranges. For each new node, we use a heuristic, based on
its ancestors, to choose which parameter range to split. Since the
algorithm evaluates the nodes after they are created, and because it
uses a greedy breadth-first search algorithm, the full tree structure
is not needed. The process stops when a node evaluation result is
below a user-determined termination threshold. However, when the
chosen node is close enough to a minimum, or when the parameter
space size is smaller than a user-defined threshold, a local optimiza-
tion method (i.e. Hooke & Jeeves) is used to converge in a rapid
manner. In this case, the chosen node becomes a tree leaf. If the
minimum found by the local optimization process is below the user-
determined termination threshold, the process stops. Otherwise, it
continues by choosing new tree nodes. This optimization method
shows a convergence to a solution in fewer steps than most other
classic optimization methods, and also avoids many local minima.
It must be noted, though, that this method is not able to guarantee
finding a global minimum, and it finds the first minimum that is
below a user-defined threshold. For more details, refer to the paper
by Mas et al. [MMP18].

8. Results

The goal of this section is to evaluate plausibility by comparing to
real environments, and modelling expressiveness by demonstrating
the simulation of time-dependent phenomena. For the plausibility,
we conducted tests to evaluate the similarity of our simulations
to real data from three different scenarios: the city of Carcassone
(France), which still exists nowadays as a walled city that can be
effectively compared to our results; the city of Gerunda (Spain),
which is one of the most well-documented cities in respect to its
historical evolution; and the Ciutadella in Barcelona, a star-shaped
fortress that only remains as descriptions and drawings in old doc-
uments. For the modelling expressiveness, we tested how a castle
adapts to its city growth, changing its shape along time without
considering any battle simulation. Then, we run many battle simu-
lations on different examples to see how a castle adapts its defences
to different kinds of attacks. All the results, both synthetic and real,
have been validated by historians who helped fine-tune the different
parameters involved in the simulations.

8.1. City growth only

To check city growth, we have used the fictitious example shown
in Figure 10. Each figure shows the result of surrounding the city
with a new wall. From the simple castle (A) the city evolves (to the
North-West), wrapping it with a new wall (B) that joins to the old
one, creating new rounded towers at the new wall segment endpoints
and at the join points. After this, the city grows again in the same
direction, forcing the expansion into a new set of walls (C). This
time, the new towers are squared and rounded, because the evolution
time falls in the range shared between both types of towers. Then,
the city grows again in the opposite direction, creating the new wall
shown in (D), with rounded towers and bastions. In the last step,
the city has been wrapped by a star fort (E), whose generation also
transforms the external rounded towers into bastions. Note also that
there are bastion pairs without a ravelin or bastions without lunettes,
mainly because there is not enough available space, or because the

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

660 A. Mas et al. / Evolution of Ancient Fortified Cities

angles between bastions would create self-intersecting or twisted
ravelins or lunettes.

8.2. Gerunda (1050-1400 CE)

Another example of evolution without battles is shown in Fig-
ure 11. This simulation represents the evolution of the ancient city
of Gerunda, based on the real historical facts in the range from
1050 to 1400 CE. In this case, input data are the ancient roman
castle shape and actual wall measures (e.g. wall widths and tower
dimensions), and three vector patterns for the city growth. From the
first step with the roman castle (A), the city started growing at the
sides, following the river bounds (B). This happened in a period of
10-20 years around 1376 CE. Note that the original Roman castle
did not have towers for each wall vertex, mainly because they were
not common at this era. Then the city grew to the West (bottom
in the figure), to the other side of the river, generating a second
structure separated from the original one (C), at year 1386 CE. The
bottom image is the real map of Gerunda medieval city in 1386 CE,
included for comparison.

8.3. Battle simulation

In Figure 12, there is a simple example of battle simulation results.
From an initial city that grows in all directions and a surrounding
castle, the battle algorithm simulates the average result of many
battles from all directions simultaneously. Table 1 presents a sum-
mary for this example. The simulation has been structured in waves,
where each wave is a set of battle simulations. Each wave is executed
at a specific year that is used to choose the corresponding tower up-
grade. Also, in the table, there is a relation of the different units used
for each simulated battle in each wave. The army size increases for
each wave, simulating the requirement of more battalions to defend
and attack a larger castle. In addition, we have used siege towers
for the first two waves, and artillery for the last one, simulating
battles in those eras where they were common. When attackers are
close to the middle of long walls, they can be attacked by many
defenders along the wall and from the adjacent towers. Even if the
towers are far from each other, there are enough defenders to kill
many of them. Observe that attackers very close to any tower have
the advantage of being protected by the blind spots of the towers
themselves. Therefore, the tower upgrades give better results than
wall splitting.

8.4. Gerunda (5th—12th centuries)

Figure 13 shows the simulations based on many real battles against
the city of Gerunda between the 5th and 12th centuries. The sim-
ulation starts at the evolution point shown in Figure 11. The ini-
tial city shape at the top was attacked from random directions
many times. In this case, the city did not grow anymore, so only
rounded towers and bastions are created from the battle results. In
Table 1, there is a summary of this example, structured in waves.
In our simulation, the armies do not change their configurations
between waves, only the attack directions. The defending army
is composed by 1400 archer units and 200 cannons. The attack-
ing army is composed by 3000 infantry units, 1000 archers and

(b)

Q D=0

o Q

I O S d
e (@

Figure 10: Example of city evolution with a final star fort. Starting
from an initial population, a first wall is built (usually a wooden or
stone wall) (A). After some time, the population growth forces the
construction of houses outside the wall, which is a security problem
from the defensive point of view, as houses can be used a trenches.
Thus, a wall expansion is made (B) and the process repeats itself
over the years (C-D). Observe that, depending on the years of wall
reinforcement, new elements are introduced such as round towers
(C), bastions (D) or a star fort (E).

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

(a)

A. Mas et al. / Evolution of Ancient Fortified Cities

P i

136676
ARENY I VILANOVA

661

Figure 11: Simulation of Gerunda medieval city evolution between years 1050 and 1400 (A—C), and the real Gerunda medieval city at year
785 (D), detail of the wall finished at year 1366 (E) and the finished wall at year 1386 (F).

30 cannons. The results show that the zones closer to the river are
more protected than the others, so no tower is evolved to bastion
in these zones, which is to be expected since the river is a natural

protection. The results also show that the parts of the wall with towers.

sharper angles tend to have more bastions, as attackers usually at-
tack earlier the more convex vertices of the original wall. Also,
the concave parts are more easily defended by adjacent walls and

Table 1: Results and units used in evolution simulations. When battles occurred, we use the following acronyms: I (Infantry), A (Archers), C (Artillery), S

(Siege towers). Empty cells correspond to Pacific urban expansions and new walls being created.

Attackers Defenders
Figure Iter #/Year battles results I A C A C timing (minutes)
12 Ist 40 Three squared towers upgraded to rounded 800 200 — 350 — 18
12 2nd 20 One new rounded tower 1200 300 — 700 — 17
New wall
12 3rd 30 One squared tower upgraded to rounded 1200 300 20 1000 50 29
One rounded tower evolved to bastion
New wall
11(A) 1050 Initial State
11(B) 1376 Pacific expansion, new wall
11(C) 13(top) 3/1400 10 Expansion, new wall, rounded towers 1900 1200 — 550 — 1
13 1638 10 Four rounded towers evolved to bastion. 6 new bastions. 3700 1000 36 1400 200 2
13(middle) 1818 Final State
16(A) 100 Initial State 111
16(B) 460 80 Expansion, 12 new rounded towers 2800 700 — 2600 —
16 508 10 None 2600 800 — 2600 — 7
16 725 10 None 2950 700 — 2600 — 7
16 1209 10 None 2700 600 — 2600 — 7
16 1226 10 None 3000 750 — 2600 — 7
16(C) 1239 30 Seven new rounded towers 2800 700 — 2600 — 24
16(D) 1250 Pacific expansion, final state

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

662 A. Mas et al. / Evolution of Ancient Fortified Cities

v o
file |
— 0-0-Q
Q
» q s <« d] O 5
o.
Oy o J o}
o d
(S

Figure 12: Battle simulation example. The initial walled city at
top is attacked many times from four different directions. After the
simulation, the castle is upgraded to include star fort elements
(right).

8.5. Ciutadella fortress (Barcelona)

A more regular example of star-shaped castle, following the Ciu-
tadella fortress in Barcelona, is shown in Figure 14. This castle
starts with an inner house distribution and creates a surrounding
wall with bastions. Then, the star fort is created automatically, this
time without lunettes.

8.6. Carcassonne (100-1250 CE)

The last example is based on the city of Carcassonne (France) (see
Figures 16 and 1). The battle simulations are based on real historical
data [VID53]. However, there is a large discrepancy among histo-
rians about the actual figures of soldiers [Ram14] in the different
armies, and in some cases, the information of the army composi-
tions is, simply put, non-existent. As a consequence, we decided to
use, for the attacker army, data from a well-documented later bat-
tle (the 1355 battle when Edward the Black Prince sacked Carcas-
sonne) [Ram14], and used these figures plus a 10% variance. For the
defensive forces, we used Viollet-le-Duc estimation of the minimum
number of soldiers needed to defend Carcassone (1323 [VID53]),
and doubled it. The time range starts at year 100 CE (see Figure 16A)
until year 1250 CE (see Figure 16D), and the system is initialized
with the bounding wall around the city. For each wave, as there are
not important geographical features that would impede movement,
the attacking armies came from all directions, many times, creating
new towers at each wave.

As before, the wall did not evolve like in other examples because
the city did not grow, which allowed focusing on the city defence
improvement, creating new towers along the years and battles and
delaying the creation of a new surrounding wall until much later.
Note that Carcassonne had very high walls, which improved the
defence factor in comparison with the other examples. See Table 1
that contains the results of battle simulations for different years.
After the first battle, new towers were added, obtaining a castle with
a very good defensive factor. On the following battles, the attacking
army was defeated in all simulations until the city grew and a new
wall was required (see Figure 16C). Then, the city fell in the next
simulation, and our algorithm decided to add new towers and a new
surrounding wall. The simulations have been performed with attacks
from many directions and an army size of 2800 infantry units and
700 archer units. The defending army is composed by 2600 archers.
We have not used any artillery for the armies. In Figure 15, we can
see the resulting 3D model. For illustrative purposes, we have used

Figure 13: Gerunda’s battle simulation between 5th and 12th cen-
turies, when it was attacked from all directions (top), resulting in an
improved, star fort defensive wall (middle). This can be compared
with the documented state at year 1638 (bottom).

a 3D model library to represent the castle objects: walls, towers
and houses.

8.7. Consistency

At Figure 17 (left), we can see the result of running multiple times
(200 in this figure) the same battle simulation with the same initial
parameters. In Figure 17 (right), we can observe the corresponding
histogram of distances to an arbitrary reference point (called targer).
The position that shows the higher number of breaches is chosen as
the final breaching point for this simulation.

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A. Mas et al. / Evolution of Ancient Fortified Cities 663

Figure 14: Simulated star-shaped fortress as a floor plan (top) and
3D view (middle), based on the Ciutadella in Barcelona (bottom) at
year 1806.

8.8. Parameter influence

In Figure 18 (top), we can see how changing the urban expansion
settings affects the future evolution of the defensive walls. We should
not forget that walls were built to protect the people in the city;
thus, household distribution clearly is a key governing parameter of

Figure 15: 3D model of the medieval city of Carcassonne obtained
from our simulation. Top: walls only. Middle: Including city houses.
Bottom: a full rendering of the resulting model. Assets from Daz3D’s
Castle Creator library.

city growth. In Figure 18 (middle), we can see the influence of the
temporal events, which can be either a change in the dates of battles,
or a change in the range of years when each type of architectonic
structure was used. In Figure 18 (bottom), we can see the effect of
changing the initial location of the attacking forces (left: uniform,
right: from north).

8.9. Inverse design

An example of inverse design can be seen at Figure 19, where the
events of the siege of Gerunda in 1809 have been recreated [PD50].
At that battle, the city walls were breached at the northeast side, as
shown by a red arrow in the figure. The results clearly show a high
agreement with the actual starting positions and directions. Each of
these starting positions lead to a breach in the defences no farther
than 10 m from the actual position. Inverse simulations took a few
minutes to solve the whole inverse problem (see below).

8.10. Timings

To analyse the time needed for a successful simulation with our
system, we must differentiate three different stages: simulation,

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

664 A. Mas et al. / Evolution of Ancient Fortified Cities

3
i : 9 oo
o © oo
g LA T
P o
, T LR
08 570 g o™ B0 a
6o ©°0 OGP0 BBB o o
0%0 ° g o 0m8 o8
0y m 68 °Pod
og 8 °g° %8 o
%0 0 B2%, 8% o
%% a o3
o b ag @os g
%0 oo 009,%"°%%" o
3 LI o
°° 2 5 s'e9%a
o o o %
o o
e 3 .97 a0
00%00 ° g
8%a® o’ ooo 8o
LT 000
a o
a

(c))

(e) ®

® (h)

Figure 16: Top row: Simulation results based on Carcassonne, at years 100 CE (A), 460 CE (B), 1238 CE (C) and 1250 CE (D). Bottom row:
drawings of the castle at roughly the same years (E-G) and a map of the current shape of the city (H).

parameter setting and historical information gathering. The first
one, simulation, is by far the fastest one: as a reference, each battle
simulation takes, in our implementation, between § and 50 s, but
this value depends on the size of the armies, and the total time also
depends on the times each battle is repeated. The accompanying
video is an accurate recording of a working session, and all timings
are faithful to the application. Also, we can consider that:

® the system can work without rendering, which is considerably
faster, about one-third of the time;

® the same battle is repeated (with randomized parameters) several
times, which can be distributed over the available CPU cores;

® our current implementation runs on unoptimized Python code.

The second stage, parameter setting, is where the user sets the
parameters of the simulation. As mentioned, the presented applica-
tion allows the user to interact with the system after each simulation
is ended. In general, the whole simulation set-up takes a few hours,
even for the most inexpert users. Of course, here is where our inverse
simulation may take the role of inferring some missing parameters.
For the inverse design part, the example in Figure 19 took 1708 s
to complete, performing a total of 144 battle simulations (11 s on
average each), of which 100 resulted in an attacker win (i.e. with a
valid distance to compute). Summing it all up, our current imple-
mentation is not interactive, but it is easy to see that it can become
so by introducing some further optimizations.

The final stage, historical information gathering, really depends
on the available historical information. Both for Carcassone and
Gerunda, there is a considerable amount of information about their
historical battles, and, especially in the case of the latter, there is
abundant information about the army compositions, locations and
movements. However, this information is often scarce, and in some
cases, even non-existent. Thus, this stage cannot be allotted a fixed
time unless all the information was already gathered. Otherwise,
finding accurate information may take an unpredictable amount
of time.

9. Discussion
9.1. Usefulness for urban planners

As mentioned in Section 1, having a tool that helps to roughly esti-
mate the past urban changes can be of high interest to urban planners,
who have to plan urban interventions, sometimes at large scales.

9.2. Usefulness in movies and games

Artists usually focus, when creating any model, on visual realism
only and not on historical plausibility. However, adding some histor-
ical rigour would be beneficial not only to designers, but also users
themselves may benefit from the added knowledge. The system we

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A. Mas et al. / Evolution of Ancient Fortified Cities 665

1000

800

600

200 L4

0 200 400 600 800 1000 1200 1400

Distance Distribution Histogram

35

30

Frequency
N N
o w

-
w

=
5]

40 60
Value (distance to target)

Figure 17: Consistency of battle simulations. The same battle was repeated 200 times, and the red dots (left) show the positions where the
wall was breached. Right: Histogram of the (absolute) distance values between a reference position (called target) and the battle results.

present in this paper could be used to determine the precise shape
that guarantees defensiveness, avoiding obvious historical inaccu-
racies in a transparent way.

9.3. Comparison to military simulations

In the current state, we do not believe that a formal comparison to
existing military simulation software [dMV10, TCTG13, RCBV 14,
Hog14] is adequate, because the output and goals are too different.
On the one hand, to the best of our knowledge, we propose the
first geometry-oriented historic simulation system and our main
output are two-dimensional floor plans and three-dimensional cities
that change over time. Other simulation systems cannot produce
this output. On the other hand, we designed a simulation system
that focuses on recreating visually plausible urban layout for an
ancient city. We did not attempt to tune the simulation to exactly
match existing cities nor do we simulate variables that have little
visual importance (e.g. long-term sieges). We plan to address this
in future work.

9.4. Comparison to video games

As mentioned, there are many video games that share some char-
acteristics with our system, such as the Age of Empires series, the
Total War series and the Totally Accurate Battle Simulator. How-
ever, there is a crucial difference that cannot be ignored: its purpose.
While many video games have an urban or historical setting (or
both), their sole objective is to be fun for the player. Instead, our
framework is intended to be used as a tool with different application
domains: for historians, it may act as a speculative aid to propose
historical models of the evolution of any given city. For computer
graphics practitioners, it provides a reliable framework to generate
plausible 3D models of ancient cities.

9.5. Predictability and controllability

An important aspect to consider is the predictability of our system.
In general, the main castle weak points can be identified intuitively,

usually being associated with long walls, which are harder to pro-
tect. However, the battle outcome is a combination of several factors,
including the castle geometry, the battalion units and the battlefield
configuration, besides the randomness included in the simulation
process. For instance, depending on how the attacker units are de-
ployed and configured, they could intensively attack a non-weak
castle point, making it fall in the long term. In fact, in some situa-
tions, this is exactly what happened, like in the year 1240 CE when
Carcassonne fell because the invading forces concentrated their ef-
forts on the southern tip of the wall (see Figure 16). Our simulations
are able to correctly predict this outcome, given an accurate army
distribution, from an historic point of view. A tightly related issue is
the controllability of the outcomes of the simulation, which strongly
depend on the user for the positioning of the attacking forces. An
accurate positioning will result in a likely historical outcome, but a
wrong input from the historical point of view can result in undesired
results. In this sense, our system can be used by historians to pose
plausible historical scenarios and observe their outcomes, allowing
them to validate their assumptions, thus closing the loop between
the simulation and geometric evolution with the needs of scholars
doing research in historic events. In any case, at each iteration, the
user is completely free to add, remove or modify any event and its
controlling parameters in our simulation, like in the example of the
battles described above.

9.6. Architectural styles

Another important point is how different architecture styles are
taken into account by the system. Although we have implemented
Vauban’s structures, there exist many other different patterns that
appeared in different regions and at different eras in history. For
instance, Philippe Auguste and his successors (who also inspired
Edward 1st of England) developed a specific castle style in the
XlIth century, rediscovering and following the knowledge and ex-
pertise of romans. Passive defence (in depth defensive system) that
relied on the accumulation of obstacles to protect defenders was
progressively transformed into active defences with rounded towers
and other structures. As our system simply instantiates a different

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

666 A. Mas et al. / Evolution of Ancient Fortified Cities

0
=
- o
g
frit
-0]
/ &
d y
\)
I}
o
£\
o = 0
|
Q—a0
Q O——gmiG0q
O o)
o_ \
o o
=01

o
X
{
B, N
| =0
Q=0
Od = 7,,,,11,,—4:0 qu
o, S
3 3
o O
0-0—90
:r; o ‘~~OO
O¢ ‘D‘oo\q‘
/e
o a 1
oy \
R, 3t
\no ‘ o o0 ’ %
020
200-

Figure 18: Effect of parameter variation on the evolution outcomes. Top: By changing the urban expansion settings (Carcassone), we can
substantially change the shape of the final city. Middle: Changing the years (or, conversely, the historical setting parameters), the user can
control the type of defensive elements used to protect the walls (Gerunda), from square to round towers, to bastions. Bottom: By changing
the directions where attackers come from, the user can control the overall distribution of defensive elements (left: uniform attacks, right: all

attacks from the north).

type of structure according to the corresponding historical time, it
can easily accommodate such styles. Passive defences, for instance,
would be instantiated the same way a moat is built, by selecting the
corresponding cells and labelling them accordingly, and the system
would incorporate it seamlessly into the simulation process. On the
other hand, our current implementation is heavily oriented towards
European cities. The generalization to non-European cities, differ-
ent architectural styles (e.g. Japanese or Chinese castles), different
armies and different defences is possible with the current system,
but its study is left as future work.

9.7. Extensibility

Our system is easily extensible with new events and elements. In
our implementation, we have designed patterns to create new events
to add into the event list to be checked at each temporal iteration,
as described in Section 3. For new geometric elements (e.g. a new
tower or a new defensive element), their integration comes in a
similar way, by adding them to the construction pipeline and defining
their properties (e.g. the movement penalty factor, as described in
Section 4.1). Finally, for dynamic elements such as armies, new

entities can be easily added and instantiated by the user simply by
adding them to the available possibilities and letting the user select
them from the corresponding menus, as shown in Figure 3.

9.8. Economic/social/other aspects

‘We are mainly interested in the geometrical aspects, and thus, delays
due to lack of resources (economical or of any kind) are simply
shifts in time and do not imply any geometric alteration. Also,
in this system, the user specifies what happens and when. Thus,
these aspects only imply not improving the defences at a given
time, but at a different one. This hardly represents a big change for
our algorithm, which is focused on the geometry. However, for a
more complete socio-economical simulation, these aspects could be
incorporated as explained in Section 3.

9.9. Number of parameters

This is, perhaps, the biggest drawback of our system, but fine-
grained control is crucial for an accurate simulation (e.g. number

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A. Mas et al. / Evolution of Ancient Fortified Cities

667

| w b s
et Search space____!
\v
Target ‘6"" o~)
Y e
/oy / Y
P v P
® 90 ®
150 100
320 @
400 @
(a) (b)
. Error evolution
600 ﬂ
500
8 w0
oy
©
-
i
[a)

200

100

<

0

mOnradNUEARRKIAFARREARTIES

E

PR S I P T
PR ALAC L C S RARRRAZREXZACERS

Iteration

—Distance at each iteration

©

——Current minimum

Figure 19: The result of an inverse design. (A) the global objective is that the city falls where the target red dot is, following the historical
events of the siege of Gerunda in 1809. The upper rectangle is the optimization area, and the three green arrows correspond to the three
starting points with the best scores. At each starting location, the armies were laid out as shown in the inset (lower right corner). Blue marks
show where the defensive cannons were positioned. (B) Reference historical information [PD50] (blue attackers, red defenders). (C) The
evolution of the error with the number of iterations. Observe that the absolute minimum is reached at iteration 83.

of units and attack direction for each battalion). Providing a sim-
plified interface would result in unrealistic settings which could
be used without problems in a video game, but completely un-
acceptable in a historic study. Thus, we decided to provide the
users with the maximum control possible, writing a comprehensive
user manual to help them. Actually, this is exactly why the inverse
system we describe above should be used. In our tests, we have
barely scratched the surface of the possibilities of inverse design
for this problem, and we believe that, if formulated correctly, even
the socio-economical unknowns can be estimated from an inverse
mode.

9.10. Wall evolution as a pure geometrical model

Battles were complex processes that strongly depended on many
factors, like the sieges on Barcelona before 1714, when the northern
part of the city was attacked for the first time. The reason was,
according to military treatises, that at the XVIIth century, rifles
started to be preferred over artillery. Barcelona’s walls were very
strong against artillery on its northern side, but was more vulnerable
to fusiliers. This type of changes is difficult, if not impossible, to be
included with a pure-geometrical model. Instead, these changes are
trivial because they only imply a different input from the user.

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

668 A. Mas et al. / Evolution of Ancient Fortified Cities

9.11. Limitations

As we already mentioned, our implementation leaves out a number
of important evolution factors. A new set of rules, constructions
and agents could be defined to get more accurate city evolutions.
First of all, cultural, economic, politic, resource-related or social
aspects could be incorporated to affect the outcome of an event.
Also, behavioural simulation aspects can be easily accommodated
in our system following the description of Vanegas et al. [VABWO09],
but its implementation is left as future work, too. With respect to
our fortifications, we would like to include the possibility of having
rivers through the city, introducing new castle restrictions. With
respect to the battle simulations, we would like to take into account
the city surrounding bridges, with new attack strategies. Another
aspect to consider would be cities close to the sea, where they
were attacked by naval forces. Also, new parametric algorithms to
construct other star fort elements, such as horn works or tenailles,
could be considered. Finally, new battalion agents, such as cavalry
and miners, could be included in the simulation.

10. Conclusions

In this work, we have presented a novel method to simulate ancient
city evolution considering time-dependent, user-defined events that
change its natural evolution (i.e. city growth), such as battles, sieges
and fortification changes. In our implementation, the city grows
around the castle from a set of user-defined parameters, and becomes
surrounded by new castle walls when it is required by defensive
purposes. At each iteration, the user is free to redefine parameters,
or add events that will affect any further evolution. Behavioural
simulations are easy to accommodate in our framework, following
the interactive scheme introduced by Vanegas et al. [VABW09]. An
agent-based battle simulation is used to find the castle weak points
against attacks. These weak points are used to improve the walls,
towers or bastions. The latest evolution in our system transforms a
castle into a star-shaped fortress following Vauban designs.

We would like to emphasize that the system we have presented is
a particular case of a more general study, where constraints evolve to
redefine new procedural parameters for the models, and our castle
simulation is one specific application to a larger way of solving
similar problems, which abound in procedural generations of man-
made environments.

Finally, we would like to emphasize that this is the first paper that
attempts to connect geometric modelling with history, which is an
extremely complex target. Every city is unique and has its own his-
tory, and even experts find it difficult to draw patterns general enough
for more than a single city. Thus, with this paper, we are attempting
a daunting task, clearly entering into uncharted territory, but which
could foster new research in directions never attempted before.

Acknowledgements

We would like to thank Pierre Poulin for his help proofreading this
manuscript. This work was partially funded by the TIN2011-14860-
E and TIN2017-88515-C2-2-R projects from Ministerio de Ciencia,
Innovacién y Universidades, Spain. Some images in this manuscript
used the Castle Creator library, from Daz3D (daz3d.com/).

Appendix A: Control Parameters

Given the overall complexity of the system and the high number
of controllable parameters, we recommend the interested reader to
read the provided Supporting Information.

Figure Al: Star-shaped fortress. Top: Ravelins. Middle: Lunettes.
Bottom: Covert way, composed by the curtain wall (A), the glacis
(B) and the places of arms (C).

Appendix B: Star Fort

As mentioned, this kind of fortification defines a star-shaped con-
struction around the castle or city to improve its defences against
the combined attack of cannonballs and climbing soldiers. Vauban
considered three main kinds of new constructions: ravelins, lunettes
and covert way. Ravelins are diamond-shape constructions placed
between two bastions, and constructed after their geometry. See

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A. Mas et al. / Evolution of Ancient Fortified Cities 669

Figure Al (top), where points F and G are calculated intersecting
the segment A B with segments C D and E D. The latter ones are the
respective bastion sides AC and BE at a user-defined angle, close
to the perpendicular. Finally, from points F and G, two segments,
parallel to the bastion sides, are intersected to get the point H.

Lunettes are placed in front of bastions. They require a bastion
and its related ravelins, as shown in Figure Al (middle). From the
rear ravelin flanks, two vectors are traced in parallel to the bastion
flanks to get point C. Then, the bastion flanks are extended and
intersected with the segments AC and BC to get points E and G,
used to construct the rear lunette flank. Finally, the bastion axis is
intersected with segment EG and a half circle with a user-defined
radius is constructed on the back.

The covert way is the wall that wraps lunettes and ravelins, as
shown in Figure A1 (bottom). Itis placed at a user-defined distance d
from both elements, creating the star-shaped structure that gives it
its name. In addition, another wrapping structure named glacis is
calculated following the same method. The glacis is a slope around
the fortress that improves defence against artillery. Finally, places
of arms, a small defensive position, are placed on the non-convex
vertices as small squares adapted to the covert way angles.

Except for ravelins, the other star fort components are optional.

References

[AWSO08] ALKHEDER S., WANG J., SHAN J.: Fuzzy inference guided
cellular automata urban-growth modleing using multi-temporal
satellite images. International Journal of Geo-Information Sci-
ence 22, 11-12 (2008), 1271-1293.

[BvMM11] BENESB., Stava 0., MEcH R., MILLER G.: Guided proce-
dural modeling. Computer Graphics Forum 30, (2011), 325-334.
https://doi.org/10.1111/j.1467-8659.2011.01886.x

[BWK14] BeneS J., WiLKIE A., KRIVANEK J.: Procedural modelling
of urban road networks. Computer Graphics Forum 33,6 (2014),
132-142.

[BWSK12] BokeLon M., Wanp M., SEmEL H.-P., KoLtun V.: An
algebraic model for parameterized shape editing. ACM Transac-
tions on Graphics 31, 4 (July 2012), 78:1-78:10.

[CD19] CHAMPANDARD A., DUNSTAN P.: The Behavior Tree Starter
Kit. 2019, pp. 27-46. http://doi.org/10.1201/9780429055058-3.
[Online; accessed 19-January-2020].

[CEW*08] CueN G., EscH G., WoNkA P, MULLER P., ZHanG E.:
Interactive procedural street modeling. ACM Transactions on
Graphics 27, 3 (2008), 1.

[Col10] CovLins R.: A dynamic theory of battle victory and defeat.
Cliodynamics 1, 1 (2010), 1-24.

[DAB14] Demr I., ALiaca D. G., Benes B.: Proceduraliza-
tion of buildings at city scale. In 2014 2nd International
Conference on 3D Vision (December 2014), IEEE. URL:
https://doi.org/10.1109/3dv.2014.31.

[DaG17] DaGraca M.: Practical Game Al Progrmming. Packt
Publishing, Birmingham, UK, 2017.

[dMV10] p’Ega Morags Vaz P. A.: Ancient and Medieval Bat-
tle Simulator. Master’s thesis, Universidade Técnica de Lisboa,
Portugal, 2010.

[Duf79] Durry C.: Siege Warfare: The Fortress in the Early Mod-
ern World, 1494-1660 (1st edition). Routledge and Kegan Paul
Books, London, 1979.

[Duf85] Durry C.: The Fortress in the Age of Vauban and Fred-
erick the Great, 1680-1789 (Siege Warfare, Vol 2) (1st edition).
Routledge and Kegan Paul Books, London, 1985.

[EBP*12] EMILIEN A., BERNHARDT A., PEYTAVIE A., CANI M.-P.,
GALIN E.: Procedural Generation of Villages on Arbitrary Ter-
rains. Visual Computer 28, 6-8 (June 2012), 809-818. Special
Issue - CGI 2012.

[EMP*03] EBERT D., MUSGRAVE E., PEACHEY D., PERLIN K., WORLEY
S., MArRK W., Hart J.: Texturing and Modeling: A Procedural
Approach (3rd edition). Elsevier Inc., Saint Louis, CA, 2003.

[EVC*15] EmiLIEN A., VIMONT U., CaNt M.-P., PouLIN P., BENES B.:
Worldbrush: Interactive example-based synthesis of procedural
virtual worlds. ACM Transactions on Graphics 34,4 (July 2015),
106:1-106:11.

[FAR*11] FLETCHER J. B., APKARIAN J., ROBERTS A., LAWRENCE
K., CHase-Dunn C., HANNEMAN R. A.: War games: Simulating
collins’ theory of battle victory. Cliodynamics: The Journal of
Theoretical and Mathematical History 2,3 (2011), 1-24.

[GDAB*17] GaRrcia-Dorapo 1., ALiaGa D. G., BHALACHANDRAN
S., Scamip P., Nivoar D.: Fast weather simulation for inverse
procedural design of 3d urban models. ACM Transactions on
Graphics 36, 4 (April 2017), 1-19.

[GMK13] GriNiN L., MaArRkov A., KoroTAYEV A.: On similarities
between biological and social evolutionary mechanisms: Mathe-
matical modeling. Cliodynamics: The Journal of Theoretical and
Mathematical History 4,2 (2013), 1-45.

[Gri06] GrieritH P.: The Vauban Fortifications of France (Fortress)
(1st edition). Osprey Publishing, London, 2006.

[Hin09] HiNDLEY G.: Medieval Sieges and Siegecraft (1st edition).
Skyhorse Publishing, London, 2009.

[HMFNO04] Honpa M., Mizuno K., Fukur Y., NisHIHARA S.: Gener-
ating autonomous time-varying virtual cities. In Proceedings of
the 2004 International Conference on Cyberworlds (Washington,
DC, USA, 2004), CW ’04, IEEE Computer Society, pp. 45-52.

[Hof11] HorscHrOER P.: Prussian Napoleonic Tactics 1792-1815
(Elite). Osprey Publishing, London, 2011.

[Hog14] Hocanson K.: Computational history: Applying comput-
ing, simulation, and game design to explore historic events. In
Proceedings of the 2014 ACM Southeast Regional Conference
(New York, NY, USA, 2014), ACM SE ’14, ACM, pp. 18:1-
18:6.

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://doi.org/10.1111/j.1467-8659.2011.01886.x
http://doi.org/10.1201/9780429055058-3
https://doi.org/10.1109/3dv.2014.31

670 A. Mas et al. / Evolution of Ancient Fortified Cities

[KMO6] KEeLLYy G., McCaBE H.: A survey of procedural techniques
for city generation. ITB Journal 14 (2006), 87-130.

[Lep02] Lerack J.-D. G. G.: Castles and Fortified Cities of Me-
dieval Europe: An Illustrated History. McFarland and Company,
Jefferson, NC, 2002.

[Lep09] LepacGt J.-D. G. G.: Vauban and the French Military under
Louis X1V: An Illustrated History of Fortifications and Strategies.
McFarland, Jefferson, NC, 2009.

[MCSg14] MarziNotTO A., COLLEDANCHISE M., SmiTH C., OGREN
P.: Towards a unified behavior trees framework for robot con-
trol. In 2014 IEEE International Conference on Robotics and
Automation (ICRA) (May 2014), pp. 5420-5427.

[Mer07] MEerreLL P.: Example-based model synthesis. In Proceed-
ings of the 2007 Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2007), 13D *07, ACM, pp. 105—
112.

[MF09] MiLLINGTON L., FUNGE J.: Artificial Intelligence for Games,
Second Edition (2nd edition). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 2009.

[MMOS] MERRELL P., MaNocHA D.: Continuous model synthesis.
ACM Transactions on Graphics 27, 5 (December 2008), 158:1—
158:7.

[MMP18] Mas A., MarTiN 1., Patow G.: Heuristic driven inverse
reflector design. Computers & Graphics 77 (2018), 1-15.

[MWH*06] MULLER P., WonkA P., HAEGLER S., ULMER A., VAN
GooL L.: Procedural modeling of buildings. ACM Transactions
on Graphics 25, 3 (2006), 614-623.

[PD50] Pra Darmau J.: Coleccion de cartas y estados grdficos
para el estudio de las operaciones militares que tuvieron lugar
durante los Sitios de Gerona de 1808-09. Girona : [el autor],
1950.

[PMO1] ParisH Y. I. H., MULLER P.: Procedural modeling of cities.
In SIGGRAPH ’01: Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques (2001),
pp- 301-308.

[RAJ*03] Rice R. S., AxcLim S., JESTICE P., RuscH S., SERRATI
J.: Fighting Techniques of the Ancient World (3000 B.C. to
500 A.D.): Equipment, Combat Skills, and Tactics (1st edition).
Thomas Dunne Books, London: Greenhill, 2003.

[Ram14] Rawmsay J. H.: The strength of english armies in the middle
ages. The English Historical Review 29, 114 (1914), 614-623.

[RCBV14] Rusio-CampiLLo X., BLE E., VaLDEs P.: The role of
centurion in the roman legion: A computer simulation of battle
tactics. In Proceedings of Ancient Warfare International Confer-
ence 2014 (2014).

[RCCC13] RuBio-CampiLLo X., CeLa J. M., Carpona E. X. H.:
Development of new infantry tactics during the early eighteenth
century. Journal of Simulation 7, 3 (August 2013), 170-182.

[Sch04] ScuwaB B.: Ai Game Engine Programming (Game De-
velopment Series). Charles River Media, Inc., Rockland, MA,
2004.

[SPK*14] Stava O., PIrx S., KrarT J., CHEN B., MECH R., DEUSSEN
O., Benes B.: Inverse procedural modelling of trees. Computer
Graphics Forum 33, 6 (September 2014), 118-131.

[STBB14] SwmeLik R. M., TuteneL T., BipArRrA R., BENES B.: A
survey on procedural modelling for virtual worlds. Computer
Graphics Forum 33, 6 (2014), 31-50.

[STN16] SHAKER N., ToGeLIUS J., NELSON M. J.: Procedural Content
Generation in Games (1st edition). Springer Publishing Com-
pany, Incorporated, Cham, 2016.

[SYBGO02] Sun J., Yu X., Baciu G., GREEN M.: Template-based
generation of road networks for virtual city modeling. In VRST
’02: Proceedings of the ACM Symposium on Virtual Reality
Software and Technology (New York, NY, USA, 2002), ACM,
pp. 33-40.

[TCTG13] TurcHIN P., Currig T. E., TurNeR E. A. L., GAVRILETS
S.: War, space, and the evolution of old world complex societies.
Proceedings of the National Academy of Sciences 110,41 (2013),
16384—16389.

[TLL*11] Tarron J. O., Lou Y., LEssEr S., DUkKE J., MEcH R.,
Kortun V.: Metropolis procedural modeling. ACM Transactions
on Graphics 30, 2 (April 2011), 11:1-11:14.

[Tur11] TurcHIN P.: Toward cliodynamics — An analytical, predic-
tive science of history. Cliodynamics 2, 1 (2011), 1-24.

[VABWO09] Vanecas C. A., ALiaGa D. G., BENES B., WADDELL P. A..:
Interactive design of urban spaces using geometrical and behav-
ioral modeling. ACM Transactions on Graphics 28, 5 (December
2009), 111:1-111:10.

[VAW*10] Vanecas C. A., Ariaca D. G., Wonka P., MULLER
P., WappeLL P, Watson B.: Modelling the appearance and be-
haviour of urban spaces. Computer Graphics Forum 29, 1 (2010),
25-42.

[VGDA*12] Vanecas C. A., Garcia-Dorapo 1., ALiaga D. G.,
BenEs B., WaADDELL P.: Inverse design of urban procedural models.
ACM Transactions on Graphics 31, 6 (November 2012), 168:1—
168:11.

[VID53] VioLLeT-LE Duc E.-E.: La cite de Carcassonne.
Gutenberg: Editions Albert Morange, 1853. http://www.
gutenberg.org/ebooks/18940

[Wad02] WabpELL P.: Urbansim: Modeling urban development for
land use, transportation and environmental planning. Journal of
the American Planning Association 68, 3 (2002), 297-314.

[Wik19a] Wikipepia: Age of Empires—Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=Age%
200f%20Empires&oldid=920272696, 2019. [Online; accessed
10-October-2019].

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

http://www.gutenberg.org/ebooks/18940
http://www.gutenberg.org/ebooks/18940
http://en.wikipedia.org/w/index.php?title=Age%20of%20Empires&oldid=920272696
http://en.wikipedia.org/w/index.php?title=Age%20of%20Empires&oldid=920272696

A. Mas et al. / Evolution of Ancient Fortified Cities 671

[Wik19b] Wikipedia: Command—Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Command
&oldid=899630949, 2019. [Online; accessed 10-October-2019].

[Wik19c] Wikipedia: Medieval: Total War — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=Med
ieval%3A%20Total %20War&oldid=917923496, 2019. [Online;
accessed 10-October-2019].

[Wik19d] Wikipedia: Rome: Total War—Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=Rome
%3A%20Total %20War&oldid=917467468, 2019. [Online; ac-
cessed 10-October-2019].

[WMV*08] Warson B., MULLER P., VErRYovka O., FULLER A.,
Wonka P., SExton C.: Procedural urban modeling in practice.
IEEE Computer Graphics and Applications 28 (2008), 18-26.

[WMWGO09] WEBER B., MULLER P., WoNkA P., Gross M..: Interactive
geometric simulation of 4D cities. Computer Graphics Forum 28
(2009), 481-492.

[ADA18] Like Demir, Aiaga D. G.: Guided proceduraliza-
tion: Optimizing geometry processing and grammar extraction
for architectural models. Computers & Graphics 74 (2018),
257-267.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Data S1

Video S2
Video S3
Video S4

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

http://en.wikipedia.org/w/index.php?title=Command&oldid=899630949
http://en.wikipedia.org/w/index.php?title=Command&oldid=899630949
http://en.wikipedia.org/w/index.php?title=Medieval%3A%20Total%20War&oldid=917923496
http://en.wikipedia.org/w/index.php?title=Medieval%3A%20Total%20War&oldid=917923496
http://en.wikipedia.org/w/index.php?title=Rome%3A%20Total%20War&oldid=917467468
http://en.wikipedia.org/w/index.php?title=Rome%3A%20Total%20War&oldid=917467468

