Defocus and Motion Blur Detection with Deep Contextual Features

Supplementary Material

Beomseok Kim¹, Hyeongseok Son¹, Seong-Jin Park¹, Sunghyun Cho², and Seungyong Lee¹

¹POSTECH ²DGIST
Contents

• More comparisons with a state-of-the-art method in blur detection on CUHK test set
 • Huang et al., “Multiscale blur detection by learning discriminative deep features”, Neurocomputing, 2018.

• Challenging examples with mixed blur
 • Objects outside the depth-of-field are motion-blurred

• Examples of moving object segmentation

• More results with real blurred photographs
More comparisons of blur detection results on CUHK test set
input

Huang et al.

ground-truth

ours
input

Huang et al.

ground-truth

ours
input

Huang et al.

ground-truth

ours
input

Huang et al.

ours

ground-truth
input

Huang et al.

ours

ground-truth
input

Huang et al.

ours

ground-truth
Huang et al. ours

input

ground-truth

ours
Challenging examples with mixed blur
(Objects outside the depth-of-field are motion-blurred)
(blue: motion blur, red: defocus blur, black: no-blur)

Our method returns the dominant blur type at each pixel in this case.
Examples of moving object segmentation with real photographs

(blue: motion blur, red: defocus blur, black: no-blur)
More examples with real blurred photographs
(blue: motion blur, red: defocus blur, black: no-blur)
Thank you.

http://cg.postech.ac.kr
http://vclab.dgist.ac.kr