A Unified Cloth Untangling Framework Through Discrete Collision Detection

Juntao $\mathrm{Ye}^{\dagger 1}$, Guanghui Ma^{12}, Liguo Jiang ${ }^{12}$, Lan Chen ${ }^{12}$, Jituo Li^{3}, Gang Xiong ${ }^{4}$, Xiaopeng Zhang ${ }^{1}$, Min Tang ${ }^{5}$
${ }^{1}$ NLPR, Institute of Automation, CAS, ${ }^{2}$ Univ. of Chinese Academy of Sciences,
${ }^{3}$ Mechanical Eng. Dept. Zhejiang University, ${ }^{4}$ SKLMCCS, Institute of Automation, CAS, ${ }^{5}$ Zhejiang University

1. Gradient of the V-F Signed Distance

Here we give the derivation of the gradient of vertex-face signed distance function here. If we write $\mathbf{d}=\mathbf{x}_{0}-\sum_{i=1}^{3} \beta_{i} \mathbf{x}_{i}$, then vertexface signed distance is

$$
\begin{equation*}
D(\mathbf{x})=\hat{\mathbf{n}} \cdot \mathbf{d} \tag{1}
\end{equation*}
$$

where $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3} are face vertices, and the face normal is defined as $\hat{\mathbf{n}}=\mathbf{n} /|\mathbf{n}|$, and $\mathbf{n}=\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \times\left(\mathbf{x}_{3}-\mathbf{x}_{1}\right)$. We first give the expression for $\frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}}$

$$
\begin{aligned}
\frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}} & =\left(\begin{array}{lll}
\frac{\partial n_{x}}{\partial x_{1 x}} & \frac{\partial n_{x}}{\partial x_{1 y}} & \frac{\partial n_{x}}{\partial x_{1 z}} \\
\frac{\partial y_{y}}{\partial x_{1 x}} & \frac{\partial n_{y}}{\partial x_{1 y}} & \frac{\partial n_{y}}{\partial x_{1 z}} \\
\frac{\partial n_{z}}{\partial x_{1 x}} & \frac{\partial n_{z}}{\partial x_{1 y}} & \frac{\partial n_{z}}{\partial x_{1 z}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & \left(\mathbf{x}_{2}-\mathbf{x}_{3}\right)_{z} & \left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)_{y} \\
\left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)_{z} & 0 & \left(\mathbf{x}_{2}-\mathbf{x}_{3}\right)_{x} \\
\left(\mathbf{x}_{2}-\mathbf{x}_{3}\right)_{y} & \left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)_{x} & 0
\end{array}\right) .
\end{aligned}
$$

This skew-symmetric matrix is associated with vector \mathbf{x}_{23} in doing the cross product with any vector $\mathbf{w} \in \mathbb{R}^{3}$,

$$
\begin{equation*}
\frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}} \mathbf{w}=\mathbf{x}_{23} \times \mathbf{w} \tag{2}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
\frac{\partial \hat{\mathbf{n}}}{\partial \mathbf{x}_{1}} & =\frac{\partial}{\partial \mathbf{x}_{1}}\left(\frac{\mathbf{n}}{|\mathbf{n}|}\right) \\
& =\frac{1}{|\mathbf{n}|} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}}-\frac{\mathbf{n}}{|\mathbf{n}|^{2}} \frac{\partial|\mathbf{n}|}{\partial \mathbf{x}_{1}} \\
& =\frac{1}{|\mathbf{n}|} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}}-\frac{\mathbf{n}}{|\mathbf{n}|^{2}} \frac{\mathbf{n}^{T}}{|\mathbf{n}|} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}} \\
& =\frac{1}{|\mathbf{n}|}\left(\mathbf{I}-\frac{\mathbf{n n}}{|\mathbf{n}|^{2}}\right) \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}} \tag{3}
\end{align*}
$$

Writing the 3×3 matrix $\frac{1}{|\mathbf{n}|}\left(\mathbf{I}-\frac{\mathbf{m n}^{T}}{|\mathbf{n}|^{2}}\right)$ as \mathbf{N}, together with Equ. 2 and 3 we have

$$
\begin{align*}
D_{\mathbf{x}_{1}} & =\frac{\partial}{\partial \mathbf{x}_{1}}\left(\hat{\mathbf{n}}^{T} \mathbf{d}\right) \\
& =\frac{\partial \hat{\mathbf{n}}}{\partial \mathbf{x}_{1}} \mathbf{d}-\beta_{1} \hat{\mathbf{n}} \\
& =\mathbf{N}\left(\mathbf{x}_{23} \times \mathbf{d}\right)-\beta_{1} \hat{\mathbf{n}} \tag{4}
\end{align*}
$$

Similarly there are

$$
\begin{align*}
& D_{\mathbf{x}_{2}}=\mathbf{N}\left(\mathbf{x}_{31} \times \mathbf{d}\right)-\beta_{2} \hat{\mathbf{n}} \tag{5}\\
& D_{\mathbf{x}_{3}}=\mathbf{N}\left(\mathbf{x}_{12} \times \mathbf{d}\right)-\beta_{3} \hat{\mathbf{n}} \tag{6}\\
& D_{\mathbf{x}_{0}}=\hat{\mathbf{n}} \tag{7}
\end{align*}
$$

Obviously, there is

$$
\begin{equation*}
\sum_{i=0}^{3} D_{\mathbf{x}_{i}}=\mathbf{0} \tag{8}
\end{equation*}
$$

2. Gradient of the E-E Signed Distance

Here we give the derivation of the gradient of edge-edge signed distance function here. The collision normal is defined as $\mathbf{n}=\left(\mathbf{x}_{1}-\right.$ $\left.\mathbf{x}_{0}\right) \times\left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)$, and we write $\mathbf{d}=\beta_{0} \mathbf{x}_{0}+\beta_{1} \mathbf{x}_{1}-\beta_{2} \mathbf{x}_{2}-\beta_{3} \mathbf{x}_{3}$, then

$$
\begin{equation*}
D(\mathbf{x})=\hat{\mathbf{n}} \cdot \mathbf{d} \tag{9}
\end{equation*}
$$

The expression for $\frac{\partial \mathbf{n}}{\partial \mathbf{x}_{0}}$ is

$$
\begin{aligned}
\frac{\partial \mathbf{n}}{\partial \mathbf{x}_{0}} & =\left(\begin{array}{lll}
\frac{\partial n_{x}}{\partial x_{0 x}} & \frac{\partial n_{x}}{\partial x_{0 y}} & \frac{\partial n_{x}}{\partial x_{0}} \\
\frac{\partial n_{y}}{\partial x_{0 x}} & \frac{\partial n_{y}}{\partial x_{0 y}} & \frac{\partial n_{y}}{\partial x_{0 z}} \\
\frac{\partial n_{z}}{\partial x_{0 x}} & \frac{\partial n_{z}}{\partial x_{0 y}} & \frac{\partial n_{z}}{\partial x_{0 z}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & \left(\mathbf{x}_{2}-\mathbf{x}_{3}\right)_{z} & \left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)_{y} \\
\left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)_{z} & 0 & \left(\mathbf{x}_{2}-\mathbf{x}_{3}\right)_{x} \\
\left(\mathbf{x}_{2}-\mathbf{x}_{3}\right)_{y} & \left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)_{x} & 0
\end{array}\right)
\end{aligned}
$$

Similarly, there are

$$
\begin{align*}
& \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}}=-\frac{\partial \mathbf{n}}{\partial \mathbf{x}_{0}} \\
& \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{2}}=\left(\begin{array}{ccc}
0 & \left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)_{z} & \left(\mathbf{x}_{0}-\mathbf{x}_{1}\right)_{y} \\
\left(\mathbf{x}_{0}-\mathbf{x}_{1}\right)_{z} & 0 & \left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)_{x} \\
\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)_{y} & \left(\mathbf{x}_{0}-\mathbf{x}_{1}\right)_{x} & 0
\end{array}\right) . \\
& \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{3}}=-\frac{\partial \mathbf{n}}{\partial \mathbf{x}_{2}} \tag{10}
\end{align*}
$$

Due to Equ. 3 there is

$$
\begin{align*}
D_{\mathbf{x}_{0}} & =\frac{\partial}{\partial \mathbf{x}_{0}}\left(\hat{\mathbf{n}}^{T} \mathbf{d}\right), \\
& =\frac{\partial \mathbf{n}}{\partial \mathbf{x}_{0}} \mathbf{d}+\beta_{0} \hat{\mathbf{n}}, \\
& =\mathbf{N} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{0}} \mathbf{d}+\beta_{0} \hat{\mathbf{n}}, \\
& =\mathbf{N}\left(\mathbf{x}_{23} \times \mathbf{d}\right)+\beta_{0} \hat{\mathbf{n}} \tag{11}
\end{align*}
$$

Similarly, there are

$$
\begin{align*}
& D_{\mathbf{x}_{1}}=-\mathbf{N}\left(\mathbf{x}_{23} \times \mathbf{d}\right)+\beta_{1} \hat{\mathbf{n}} \tag{12}\\
& D_{\mathbf{x}_{2}}=-\mathbf{N}\left(\mathbf{x}_{01} \times \mathbf{d}\right)-\beta_{2} \hat{\mathbf{n}} \tag{13}\\
& D_{\mathbf{x}_{3}}=\mathbf{N}\left(\mathbf{x}_{01} \times \mathbf{d}\right)-\beta_{3} \hat{\mathbf{n}} \tag{14}
\end{align*}
$$

Also, there is

$$
\begin{equation*}
\sum_{i=0}^{3} D_{\mathbf{x}_{i}}=\mathbf{0} \tag{15}
\end{equation*}
$$

3. Conservation of the Momentum

In Equ.(4) of the paper, the diagonal mass matrix \mathbf{M} is meant to maintain the center of mass, so that the angular momentum is least affected when used in a physical simulation. The linear momentum is naturally conserved within each stencil: letting $\Delta \mathbf{x}_{i}$ denote the position change, there is $\sum\left(m_{i} * \Delta \mathbf{x}_{i}\right)=\lambda \sum D_{\mathbf{x}_{i}}=\mathbf{0}$ due to Equ. 8 and Equ. 15 in this supplementary material. Further, scale the above equation by $\frac{1}{\Delta t}$ yields $\sum\left(m_{i} * \Delta \mathbf{v}_{i}\right)=0$, which means the momentum of the stencil does not change.

