Juntao Ye^{†1}, Guanghui Ma¹², Liguo Jiang¹², Lan Chen¹², Jituo Li³, Gang Xiong⁴, Xiaopeng Zhang¹, Min Tang⁵

¹NLPR, Institute of Automation, CAS, ²Univ. of Chinese Academy of Sciences, ³Mechanical Eng. Dept. Zhejiang University, ⁴SKLMCCS, Institute of Automation, CAS, ⁵Zhejiang University

1. Gradient of the V-F Signed Distance

Here we give the derivation of the gradient of vertex-face signed distance function here. If we write $\mathbf{d} = \mathbf{x}_0 - \sum_{i=1}^3 \beta_i \mathbf{x}_i$, then vertex-face signed distance is

$$D(\mathbf{x}) = \hat{\mathbf{n}} \cdot \mathbf{d},\tag{1}$$

where \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 are face vertices, and the face normal is defined as $\hat{\mathbf{n}} = \mathbf{n}/|\mathbf{n}|$, and $\mathbf{n} = (\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1)$. We first give the expression for $\frac{\partial \mathbf{n}}{\partial \mathbf{x}_1}$

$$\begin{split} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_1} &= \begin{pmatrix} \frac{\partial n_x}{\partial \mathbf{x}_{1x}} & \frac{\partial n_x}{\partial \mathbf{x}_{1y}} & \frac{\partial n_x}{\partial \mathbf{x}_{1z}} \\ \frac{\partial n_y}{\partial \mathbf{x}_{1x}} & \frac{\partial n_y}{\partial \mathbf{x}_{1y}} & \frac{\partial n_y}{\partial \mathbf{x}_{1z}} \\ \frac{\partial n_z}{\partial \mathbf{x}_{1x}} & \frac{\partial n_z}{\partial \mathbf{x}_{1y}} & \frac{\partial n_z}{\partial \mathbf{x}_{1z}} \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{0} & (\mathbf{x}_2 - \mathbf{x}_3)_z & (\mathbf{x}_3 - \mathbf{x}_2)_y \\ (\mathbf{x}_3 - \mathbf{x}_2)_z & \mathbf{0} & (\mathbf{x}_2 - \mathbf{x}_3)_x \\ (\mathbf{x}_2 - \mathbf{x}_3)_y & (\mathbf{x}_3 - \mathbf{x}_2)_x & \mathbf{0} \end{pmatrix} . \end{split}$$

This skew-symmetric matrix is associated with vector \mathbf{x}_{23} in doing the cross product with any vector $\mathbf{w} \in \mathbb{R}^3$,

$$\frac{\partial \mathbf{n}}{\partial \mathbf{x}_1} \mathbf{w} = \mathbf{x}_{23} \times \mathbf{w} \quad . \tag{2}$$

Moreover,

$$\frac{\partial \hat{\mathbf{n}}}{\partial \mathbf{x}_{1}} = \frac{\partial}{\partial \mathbf{x}_{1}} \left(\frac{\mathbf{n}}{|\mathbf{n}|}\right) \\
= \frac{1}{|\mathbf{n}|} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}} - \frac{\mathbf{n}}{|\mathbf{n}|^{2}} \frac{\partial |\mathbf{n}|}{\partial \mathbf{x}_{1}} \\
= \frac{1}{|\mathbf{n}|} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}} - \frac{\mathbf{n}}{|\mathbf{n}|^{2}} \frac{\mathbf{n}^{T}}{|\mathbf{n}|} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}} \\
= \frac{1}{|\mathbf{n}|} \left(\mathbf{I} - \frac{\mathbf{nn}^{T}}{|\mathbf{n}|^{2}}\right) \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{1}}$$
(3)

submitted to Pacific Graphics (2017)

Writing the 3×3 matrix $\frac{1}{|\mathbf{n}|} (\mathbf{I} - \frac{\mathbf{nn}^T}{|\mathbf{n}|^2})$ as **N**, together with Equ. 2 and 3 we have

$$D_{\mathbf{x}_{1}} = \frac{\partial}{\partial \mathbf{x}_{1}} (\hat{\mathbf{n}}^{T} \mathbf{d})$$

$$= \frac{\partial \hat{\mathbf{n}}}{\partial \mathbf{x}_{1}} \mathbf{d} - \beta_{1} \hat{\mathbf{n}}$$

$$= \mathbf{N} (\mathbf{x}_{23} \times \mathbf{d}) - \beta_{1} \hat{\mathbf{n}}$$
(4)

Similarly there are

$$D_{\mathbf{x}_2} = \mathbf{N}(\mathbf{x}_{31} \times \mathbf{d}) - \beta_2 \hat{\mathbf{n}}, \tag{5}$$

$$D_{\mathbf{x}_3} = \mathbf{N}(\mathbf{x}_{12} \times \mathbf{d}) - \beta_3 \hat{\mathbf{n}}, \tag{6}$$

$$D_{\mathbf{x}_0} = \hat{\mathbf{n}} \tag{7}$$

Obviously, there is

$$\sum_{i=0}^{3} D_{\mathbf{x}_i} = \mathbf{0}.$$
 (8)

2. Gradient of the E-E Signed Distance

Here we give the derivation of the gradient of edge-edge signed distance function here. The collision normal is defined as $\mathbf{n} = (\mathbf{x}_1 - \mathbf{x}_0) \times (\mathbf{x}_3 - \mathbf{x}_2)$, and we write $\mathbf{d} = \beta_0 \mathbf{x}_0 + \beta_1 \mathbf{x}_1 - \beta_2 \mathbf{x}_2 - \beta_3 \mathbf{x}_3$, then

$$D(\mathbf{x}) = \hat{\mathbf{n}} \cdot \mathbf{d} \tag{9}$$

The expression for $\frac{\partial \mathbf{n}}{\partial \mathbf{x}_0}$ is

$$\begin{split} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_0} \; &=\; \left(\begin{array}{ccc} \frac{\partial n_x}{\partial x_{0x}} & \frac{\partial n_x}{\partial x_{0y}} & \frac{\partial n_x}{\partial x_{0z}} \\ \frac{\partial n_y}{\partial x_{0x}} & \frac{\partial n_y}{\partial x_{0y}} & \frac{\partial n_y}{\partial x_{0z}} \\ \frac{\partial n_z}{\partial x_{0x}} & \frac{\partial n_z}{\partial x_{0y}} & \frac{\partial n_z}{\partial x_{0z}} \end{array} \right) \\ &=\; \left(\begin{array}{ccc} \mathbf{0} & (\mathbf{x}_2 - \mathbf{x}_3)_z & (\mathbf{x}_3 - \mathbf{x}_2)_y \\ (\mathbf{x}_3 - \mathbf{x}_2)_z & \mathbf{0} & (\mathbf{x}_2 - \mathbf{x}_3)_x \\ (\mathbf{x}_2 - \mathbf{x}_3)_y & (\mathbf{x}_3 - \mathbf{x}_2)_x & \mathbf{0} \end{array} \right) \; . \end{split}$$

Similarly, there are

$$\begin{split} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_1} &= -\frac{\partial \mathbf{n}}{\partial \mathbf{x}_0} \\ \frac{\partial \mathbf{n}}{\partial \mathbf{x}_2} &= \begin{pmatrix} 0 & (\mathbf{x}_1 - \mathbf{x}_0)_z & (\mathbf{x}_0 - \mathbf{x}_1)_y \\ (\mathbf{x}_0 - \mathbf{x}_1)_z & 0 & (\mathbf{x}_1 - \mathbf{x}_0)_x \\ (\mathbf{x}_1 - \mathbf{x}_0)_y & (\mathbf{x}_0 - \mathbf{x}_1)_x & 0 \end{pmatrix} \\ \frac{\partial \mathbf{n}}{\partial \mathbf{x}_3} &= -\frac{\partial \mathbf{n}}{\partial \mathbf{x}_2} \end{split} .$$

(10)

Due to Equ. 3 there is

$$D_{\mathbf{x}_{0}} = \frac{\partial}{\partial \mathbf{x}_{0}} (\mathbf{\hat{n}}^{T} \mathbf{d}),$$

$$= \frac{\partial \mathbf{\hat{n}}}{\partial \mathbf{x}_{0}} \mathbf{d} + \beta_{0} \mathbf{\hat{n}},$$

$$= \mathbf{N} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_{0}} \mathbf{d} + \beta_{0} \mathbf{\hat{n}},$$

$$= \mathbf{N} (\mathbf{x}_{23} \times \mathbf{d}) + \beta_{0} \mathbf{\hat{n}}$$
(11)

Similarly, there are

$$D_{\mathbf{x}_1} = -\mathbf{N}(\mathbf{x}_{23} \times \mathbf{d}) + \beta_1 \hat{\mathbf{n}}$$
(12)
$$D_{\mathbf{x}_2} = -\mathbf{N}(\mathbf{x}_{23} \times \mathbf{d}) - \beta_2 \hat{\mathbf{n}}$$
(13)

$$D_{\mathbf{x}_2} = -\mathbf{N}(\mathbf{x}_{01} \times \mathbf{d}) - \beta_2 \hat{\mathbf{n}}$$
(13)

$$D_{\mathbf{x}_3} = \mathbf{N}(\mathbf{x}_{01} \times \mathbf{d}) - \beta_3 \hat{\mathbf{n}}$$
(14)

Also, there is

$$\sum_{i=0}^{3} D_{\mathbf{x}_i} = \mathbf{0}.$$
 (15)

3. Conservation of the Momentum

In Equ.(4) of the paper, the diagonal mass matrix **M** is meant to maintain the center of mass, so that the angular momentum is least affected when used in a physical simulation. The linear momentum is naturally conserved within each stencil: letting $\Delta \mathbf{x}_i$ denote the position change, there is $\sum (m_i * \Delta \mathbf{x}_i) = \lambda \sum D_{\mathbf{x}_i} = \mathbf{0}$ due to Equ. 8 and Equ. 15 in this supplementary material. Further, scale the above equation by $\frac{1}{\Delta t}$ yields $\sum (m_i * \Delta \mathbf{v}_i) = 0$, which means the momentum of the stencil does not change.