Learning Multiple-Scattering Solutions for Sphere-Tracing of Volumetric Subsurface Effects
Loading...
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association and John Wiley & Sons Ltd.
Abstract
Accurate subsurface scattering solutions require the integration of optical material properties along many complicated light paths. We present a method that learns a simple geometric approximation of random paths in a homogeneous volume with translucent material. The generated representation allows determining the absorption along the path as well as a direct lighting contribution, which is representative of all scatter events along the path. A sequence of conditional variational auto-encoders (CVAEs) is trained to model the statistical distribution of the photon paths inside a spherical region in the presence of multiple scattering events. A first CVAE learns how to sample the number of scatter events, occurring on a ray path inside the sphere, which effectively determines the probability of this ray to be absorbed. Conditioned on this, a second model predicts the exit position and direction of the light particle. Finally, a third model generates a representative sample of photon position and direction along the path, which is used to approximate the contribution of direct illumination due to in-scattering. To accelerate the tracing of the light path through the volumetric medium toward the solid boundary, we employ a sphere-tracing strategy that considers the light absorption and can perform a statistically accurate next-event estimation. We demonstrate efficient learning using shallow networks of only three layers and no more than 16 nodes. In combination with a GPU shader that evaluates the CVAEs' predictions, performance gains can be demonstrated for a variety of different scenarios. We analyze the approximation error that is introduced by the data-driven scattering simulation and shed light on the major sources of error.
Description
@article{10.1111:cgf.142623,
journal = {Computer Graphics Forum},
title = {{Learning Multiple-Scattering Solutions for Sphere-Tracing of Volumetric Subsurface Effects}},
author = {Leonard, Ludwic and Höhlein, Kevin and Westermann, Rüdiger},
year = {2021},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.142623}
}