Show simple item record

dc.contributor.authorNewson, A.en_US
dc.contributor.authorDelon, J.en_US
dc.contributor.authorGalerne, B.en_US
dc.contributor.editorChen, Min and Zhang, Hao (Richard)en_US
dc.date.accessioned2018-01-10T07:43:28Z
dc.date.available2018-01-10T07:43:28Z
dc.date.issued2017
dc.identifier.issn1467-8659
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.13159
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13159
dc.description.abstractThe realistic synthesis and rendering of film grain is a crucial goal for many amateur and professional photographers and film‐makers whose artistic works require the authentic feel of analogue photography. The objective of this work is to propose an algorithm that reproduces the visual aspect of film grain texture on any digital image. Previous approaches to this problem either propose unrealistic models or simply blend scanned images of film grain with the digital image, in which case the result is inevitably limited by the quality and resolution of the initial scan. In this work, we introduce a stochastic model to approximate the physical reality of film grain, and propose a resolution‐free rendering algorithm to simulate realistic film grain for any digital input image. By varying the parameters of this model, we can achieve a wide range of grain types. We demonstrate this by comparing our results with film grain examples from dedicated software, and show that our rendering results closely resemble these real film emulsions. In addition to realistic grain rendering, our resolution‐free algorithm allows for any desired zoom factor, even down to the scale of the microscopic grains themselves.The realistic synthesis and rendering of film grain is a crucial goal for many amateur and professional photographers and film‐makers whose artistic works require the authentic feel of analogue photography. The objective of this work is to propose an algorithm that reproduces the visual aspect of film grain texture on any digital image. Previous approaches to this problem either propose unrealistic models or simply blend scanned images of film grain with the digital image, in which case the result is inevitably limited by the quality and resolution of the initial scan. In this work, we introduce a stochastic model to approximate the physical reality of film grain, and propose a resolution‐free rendering algorithm to simulate realistic film grain for any digital input image. By varying the parameters of this model, we can achieve a wide range of grain types.en_US
dc.publisher© 2017 The Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectfilm grain
dc.subjecttexture synthesis
dc.subjectcomputational photography
dc.subjectI.3.3 [Computer Graphics]: Picture/Image Generation
dc.titleA Stochastic Film Grain Model for Resolution‐Independent Renderingen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersArticles
dc.description.volume36
dc.description.number8
dc.identifier.doi10.1111/cgf.13159
dc.identifier.pages684-699


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record