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Abstract

Multimodal imaging is used by conservators and scientists to study the composition of paintings. To aid the combined analysis
of these digitisations, such images must first be aligned. Rather than proposing a new domain-specific descriptor, we explore and
evaluate how existing feature descriptors from related fields can improve the performance of feature-based painting digitisation
registration. We benchmark these descriptors on pixel-precise, manually aligned digitisations of “Girl with a Pearl Earring”
by Johannes Vermeer (c. 1665, Mauritshuis) and of “18th-Century Portrait of a Woman”. As a baseline we compare against the
well-established classical SIFT descriptor. We consider two recent descriptors: the handcrafted multimodal MFD descriptor,
and the learned unimodal SuperPoint descriptor. Experiments show that SuperPoint starkly increases description matching
accuracy by 40% for modalities with little modality-specific artefacts. Further, performing craquelure segmentation and using
the MFD descriptor results in significant description matching accuracy improvements for modalities with many modality-

specific artefacts.
CCS Concepts

e Computing methodologies — Image processing; * Applied computing — Fine arts;

1. Introduction

Painting conservators and scientists make extensive use of
non-invasive imaging technologies to analyse and visualise
the composition of historic paintings. Typical digitisations
include visual light photography, infrared reflectography,
ultraviolet fluorescence photography, and X-radiography.
Detailed comparisons of painting regions within- and across
modalities can reveal information that would otherwise remain
hidden, such as the composition of pigments, the presence of
underdrawings and evidence of changes to the painting over
time [VWvdBvL19, APVEH* 13, GDE*21, vLNdM*20].

To facilitate the direct comparison of specific painting regions
across modalities, the digitisations need to be aligned as close as
possible. While a simple alignment could be done with manual
tools, often hundreds of high-detail patch digitisations need to
be mosaicked together, which is inhibitively time-consuming for
conservators. Hence, an automatic image registration algorithm is
desired with high accuracy.

Current approaches for automatic image registration can be
broadly classified into two classes. First of all, in area-based
image registration, a sliding window is used whose alignment is
optimised using pixel similarity metrics such as cross-correlation.
While this enables sub-pixel accurate alignment, the low degree
of freedom of the sliding window fundamentally limits registration
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flexibility. Secondly, in feature-based image registration, multiple
keypoints are detected in both images, which are then matched
based on characteristic details around the keypoints. While this
approach requires no assumptions on the transformation type,
the resulting registrations are often less precise than area-based
methods [Bro92,ZF03].

Given the different strengths of area- and feature-based image
registration, a popular approach is to combine the two techniques.
In such a setup, feature-based image registration is used for
obtaining the flexible transformation for a rough alignment, after
which area-based optimization is used for further aligning the
images with sub-pixel accuracy. This is also done in the state-
of-the-art painting digitisation registration algorithm developed by
Conover et al. [CDL15]. Here, shearlet wavelets are used for
feature selection, which are subsequently matched using a cross-
correlation sliding window.

While such an approach works well in theory, the classical
feature-based SIFT image registration algorithm [Low04] has been
used previously for multimodal painting digitisation registration
with varying success. Zacharopoulos et al. [ZHK*17] found that
they could only get sufficient image registration performance
when aligning digitisations from adjacent spectral bands. Further,
Mirhashemi [Mirl9] had to include a manual pre-crop stage and
added a custom iterative feature match filtering algorithm.
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Previous work in the realm of image registration for paintings
has often ignored recent advancements in multi- and unimodal
image registration, often comparing to SIFT as the baseline
approach. In this work, we explore how more recent, existing
feature descriptors can be used to improve the performance
of feature-based painting digitisation registration. We selected
two recent descriptors based on their applicability to the
painting domain and overall image registration performance:
the handcrafted multimodal MFD descriptor [NP17], and the
learned unimodal SuperPoint descriptor [DMR18]. We evaluate the
descriptors on two paintings, across four modalities: Girl with a
Pearl Earring by Johannes Vermeer (c. 1665, Mauritshuis) and
an anonymous [8th-Century Portrait of a Woman, using visual
light (VIS), X-radiography (XR), ultra violet (UV) and infrared
reflectography (IRR). Furthermore, we describe a preprocessing
step using craquelure segmentation to improve performance and
provide insights that can be built on by practitioners in the
field as well as future research improving image registration for
multimodal digitisations of paintings.

Summarising, our main contributions are:

e A survey of multi- and unimodal feature descriptors and
their applicability to registration of multimodal digitisations of
paintings.

e A thorough and objective evaluation of the most suitable and
recent feature description algorithm performances.

e The proposal of a novel craquelure segmentation preprocessing
step for increasing description matching accuracy for painting
digitisation modalities with many modality-specific artefacts.

2. Related Work

Multimodal Registration for Historic Painting Digitisations
Zacharopoulos et al. [ZHK*17] made use of classical SIFT
matching for the registration of an unaligned spectral cube. They
modified the descriptor to make use of all 16-bit colour information
and consecutively matched images from adjacent spectral bands.

SIFT was also used for registration of unrelated image modalities
in the work of Mirhashemi [Mir19]. Here, regular SIFT detection
and description was used, but a custom iterative filtering and
matching algorithm was proposed for better matching performance.

Conover et al. [CDRL11,CDL15] proposed a custom registration
technique, which is a hybrid approach between feature-based
and area-based image matching. They assume an initial rough
alignment of the reference and template images and use phase
correlation to optimise its translative component. Feature patches
in the template image are selected using the magnitudes from
a wavelet transform. Subsequently, an area-based matching
using normalised cross-correlation is done. Lastly, feature match
candidates are filtered by iteratively refitting a bilinear function.

Finally, Sindel et al. [SMC21] developed a machine-learned
image registration pipeline. They propose CraquelureNet, a fully-
convolutional neural network that jointly learns keypoint detection
and description. They focus on detecting and describing craquelure,
the fine pattern of dense cracking which can form on the surface
of ageing paintings. Features are matched using the brute forced
mutual nearest-neighbour algorithm.

Feature Description for Multimodal Registration Hasan et
al. [HPJ12] looked into optimising SIFT for multimodal feature
matching. Among other things, they preserve keypoints with low
contrast, change the criterion for calculating the principal keypoint
orientation, use a larger descriptor window with more subwindows,
and propose a three layer matching method as opposed to the
original nearest-neighbour algorithm.

A descriptor for matching images with nonlinear intensity
variations based on Log-Gabor (LG) filters is proposed by
Aguilera et al. [ACST15]. Features are selected using the FAST
detector [RPD10]. Subsequently, pixels in subwindows are binned
based on the magnitude response of LG filters at different
orientations and different scales. Lastly, features are matched using
the nearest-neighbour algorithm.

Li et al. [LHA20] propose a descriptor based on phase
congruency (PC) and maximum index maps (MIM). Corner
and edge feature points are detected using a generated PC
map. Subsequently, pixels in subwindows of the feature patches
are binned using the MIM response. Features are matched on
Euclidean distance, where outliers are removed using a normalised
barycentric coordinate system.

Finally, Xie et al. [XJC21] propose a descriptor that uses
shearlet-based orientation maps (SOM). Features are selected
using a PC-based detector. For each feature patch, a shearlet
decomposition at different scales is calculated. The resulting SOM
is then flattened and used as feature description. The nearest
neighbour algorithm with ratio check is used for feature matching.

While various custom multimodal descriptors have been proposed,
they all originate from the remote-sensing or medical domain,
and no earlier work has been done in applying them to the
domain of painting digitisation registration. Next to this, no off-the-
shelf learned feature descriptors were previously used for painting
digitisation registration in the literature. To this end, we will
investigate if multimodal or learned feature descriptors can improve
classical painting digitisation registration performance.

3. Background

For our experiments, we consider three different feature description
algorithms: SIFT, MFD, and SuperPoint. This section will give a
brief overview of their implementation details.

Scale Invariant Feature Transform (SIFT) The SIFT descriptor
was developed by Lowe in 2004 [Low04]. It uses a handcrafted
feature description algorithm, and is intended for unimodal image
registration. First, the algorithm subdivides a feature patch in 16
subwindows. Then, for each subwindow, the 8 principal pixel
gradient orientations are binned into a histogram. Finally, the
16 histograms are concatenated and normalized to form a 128-
dimensional feature description vector.

The SIFT description algorithm is well known in the literature,
and has previously been used for registering painting digitisations.
To that end, we consider this descriptor as our baseline for painting
digitisation registration performance.
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Multispectral Feature Descriptor (MFD) Developed by Nunes
etal. in 2017, MFD is a multimodal handcrafted feature description
algorithm [NP17]. Similar to SIFT, the algorithm subdivides a
feature patch in 16 subwindows. Then, for each subwindow, the
5 principal edge orientations at two different scales are calculated
using various Log-Gabor filters. The highest response orientations
are put in a maximum index map (MIM), which is then normalized
to form a 160-dimensional feature description vector.

Self-Supervised Interest Point Description (SuperPoint)
SuperPoint is a learned feature descriptor proposed by DeTone et
al. [DMR18] in 2018, and uses a convolutional neural network to
infer feature description vectors. It is based on the VGG network
architecture [SZ15], and applies self-supervision by transforming
training data using randomly sampled homographies. Different to
the handcrafted description algorithms, this architecture outputs a
dense grid of feature descriptions for each pixel in the input image.
Specifically, each pixel is described using a 256-dimensional
feature description vector.

4. Dataset

To evaluate the performance of feature descriptors across different
modalities, a ground truth registered multimodal dataset is
required. Specifically, for two images from different modalities, the
ground truth transformation matrix from the template image to the
reference image has to be known in advance. Given two matched
features, it can then be verified if the match is in line with the
ground truth transformation.

4.1. Digitisation Collection and Registration

As our ground truth dataset source, we assembled various high
resolution images (digitisations) from the famous historic painting
Girl with a Pearl Earring by Johannes Vermeer (c. 1665,
Mauritshuis, Figure 3, top) and from I8th-Century Portrait of
a Woman (Figure 3, bottom). Girl with a Pearl Earring was
examined systematically in various modalities by conservators and
scientists at the Mauritshuis, as part of the ‘Girl in the Spotlight’
project in 2018 [VWvdBvL19]. The modalities include ultraviolet-
induced fluorescence, infrared reflectography, X-radiographs, and
hyperspectral image cubes. As some digitisations were only made
for certain regions in the paintings, and others were visually very
similar to the visual spectrum, we chose 3 distinct full-painting
digitisations: X-radiography (XR), ultra violet (UV), and infrared
reflectography (IRR). More details on the acquisition of each of
the digitisations and what can be learned from them is given by
Vandivere et al. [VWvdBvL19, VVLD*19]. For a second set of
digitisations, we selected the same modalities from /8th-Century
Portrait of a Woman.

Given the three unaligned high resolution digitisations, the exact
transform to the high resolution visual image had to be determined.
It was assumed that the transformation was projective, having 8
degrees of freedom. To solve the transformation matrix equations,
the exact offset of 4 keypoints in the visual image had to be
matched in the multimodal digitisations. To that end, 4 distinct
craquelure patterns were manually selected in the visual image,
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Figure 1: Mosaic image of the ground truth aligned digitisations.
On the right a close-up is displayed, which shows the pixel-precise
continuity of the craquelure in the painting over the four different
digitisation modalities. XR and IRR by René Gerritsen Art &
Research Photography, VIS by Hirox Europe/Jyfel.

«— 20 cm —

Figure 2: Close-up of the craquelure segmented painting
digitisations of Girl with a Pearl Earring for the four different
digitisation modalities.

striving to select regions with enough distance in between for
registration robustness. Within the craquelure regions, all four
digitisations were laid next to each other, and an intersection in the
craquelure that was clearly visible in all digitisations was chosen as
the keypoint. Subsequently, using the 4 keypoints, a pixel-precise
homography was calculated for each multimodal digitisation.

Given the ground truth homographies, each multimodal
digitisation was registered onto the visual digitisation. The
resulting dataset for each painting is a collection of 4 high
resolution digitisations in different modalities where any 2
digitisations physically align at each pixel coordinate. In turn, the
correctness of a feature match can be verified by simply checking
if their keypoint coordinates are equal. A mosaic image of these
digitisations is shown in Figure 1.

4.2. Digitisation Craquelure Segmentation

When we created the ground truth dataset, we found that the
most reliable way to select corresponding keypoints was by
looking at the craquelure patterns in the painting digitisations.
Because craquelure impacts paintings on a structural level, it
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is clearly visible in all digitisation modalities. This insight was
also mentioned in earlier literature. Conover et al. state that
“In the case of a painting, the regions likely to match are the
painting’s texture features, such as cracks, brushstrokes, bubbles,
and blisters” [CDL15, p. 3]. Furthermore, Sindel et al. [SMC21]
exploit this idea with the CraquelureNet descriptor they developed,
which extracts feature descriptions from craquelure patterns in
historic paintings.

To investigate the possible benefit of exploiting craquelure, we
also experiment with feature description on craquelure segmented
masks of the ground truth digitisations. For this, we made use
of the VGGI16 segmentation network [SZ15] trained on a
crack segmentation dataset [ZYZZ16,YZY*20,ESS*17,SCQ* 16,
ACIB16, ZCL*12], of which an implementation was made by
Github user Khanhha'. A preview of the generated masks is shown
in Figure 2.

5. Method

We created a controllable image registration pipeline to evaluate
feature description performance in isolation. This section will go
over the decisions that were made for this, and some of its important
implementation details.

5.1. Libraries and Tools

The image registration pipeline was implemented in a Python 3
Jupyter notebook to allow for quick iteration and experimenting.
The main dependencies of the pipeline are OpenCV for image
processing, and NumPy for matrix operations. For the feature
description algorithms, open-source implementations were used?.

5.2. Feature Detection

In a regular image registration pipeline, distinctive regions in the
input image, referred to as features, are selected by a dedicated
feature detector. Examples of distinctive features are edges and
corners, present at different sizes and orientations. For our
experiments we require the ability to precisely specify the desired
number of selected features, their orientations and their sizes.
To that end, we implemented a simple disjunct random feature
detector. Given an input image, random locations are sampled in the
painting, referred to as keypoints. Each descriptor is evaluated on
a patch around a keypoint. Keypoints that cause patches to overlap
are filtered out, until a fixed number of keypoints are obtained.

A downside of this approach is that the selected features are
not guaranteed to represent distinct regions, which makes the
features more difficult to describe uniquely. However, by running
experiments between descriptors on the same set of random
features, and repeating these with multiple new sets of random
features, a fair comparison between descriptors can still be made.

T Available at github.com/khanhha/crack_segmentation

I Used implementations: github.com/ducha-aiki/numpy-sift,
github.com/cfgnunes/mfd, and github.com/rpautrat/
superpoint

It should be noted, however, that the presented overall accuracy
scores could be further improved by using a dedicated feature
detector algorithm, but this is not the focus of the current study.

5.3. Feature Description

The descriptors are then evaluated on patches around each keypoint
for each modality, yielding a feature vector for each keypoint and
for each modality. To get a fair comparison between the three
feature description algorithms considered, some modifications to
the original implementations had to be made.

SIFT was developed as a rotation invariant descriptor. This is
realized by calculating a global orientation for a given feature
patch, which the feature description vector then is normalized
to. However, in our research we purely want to focus on feature
description performance, and not take rotation into account. To that
end, we modified the SIFT description algorithm to always assume
a global orientation of zero degrees.

For MFD, no alterations were necessary. This descriptor does not
claim rotation invariance, and can generate a description vector for
any input feature patch size.

Lastly, the SuperPoint descriptor had to be adapted to support
describing feature patches of any size. This learned descriptor
originally generates a dense grid of descriptors for each pixel in the
input image. As we want to experiment with different feature patch
sizes, we added an additional rescaling stage to the descriptor. This
stage downscales the input image such that each pixel has the same
physical size as the evaluated feature patch size.

5.4. Matching and Evaluation

Finally, we match keypoints across modalities by comparing their
feature vectors. For feature matching, we implemented a simple
nearest neighbor matching strategy in the feature space. Each
keypoint in the reference image is linked to the keypoint in the
template image whose feature description vector has the shortest
Euclidean distance to the feature description vector of the reference
keypoint. We can then compute the accuracy of a descriptor as the
ratio of keypoints that is matched correctly.

Classical feature matching often applies an additional match
filtering stage. A common strategy is to discard a feature match
if the ratio of distances of the nearest and second-nearest feature
descriptions is above a certain threshold. We decided not to apply
any match filtering for the following reasons: First and foremost,
initial experiments showed that match filtering gave a similar trade-
off between precision and recall regardless of the used descriptor.
Second, adding match filtering complicates objective evaluation, as
there is no unique optimal trade-off between precision and recall.
The trade-off depends on the choice of algorithm for homography
estimation. Given a feature matching in this setup, each keypoint in
the reference image is matched, either correctly or incorrectly.

6. Experiments

In our experiments, we investigate the descriptor performance
of different registration pipelines. For this, two overarching
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Figure 3: Examples of feature patches in the four different
modalities at three different physical sizes. The red bounding boxes
represent physical patch sizes of 1 mm, 20 mm, and 40 mm.

experiments were conducted. Our initial experiment investigates
the descriptor performance on original painting digitisation images,
and a follow-up experiment investigates the descriptor performance
on painting digitisation images after going through craquelure
segmentation.

To give an overview of the performance profile of a feature
descriptor, we look at its description matching accuracy as function
of feature patch size. This gives two main insights. First of all, the
optimal matching accuracy shows how descriptive the descriptor
can be at ideal conditions, and is used to compare its overall
performance against other descriptors. Secondly, the specific
performance curve motivates how the descriptor can best be applied
in an image registration pipeline. If performance plateaus, and is
consistent over a large range of patch sizes, the descriptor is stable
and could be applied for both scale and transform registration in a
single pass. However, if performance has a clear peak, it makes
sense to decouple an overall registration into separate scale and
transform stages. After a rough scale has been determined, the
descriptor can then be run on its optimal feature size.

Additionally, the robustness of a feature descriptor to keypoint
translational and rotational noise could have been investigated.
If a descriptor stays descriptive under such noise, keypoint
selection can be more lenient, and rough registrations can still be
found. However, the aim of registering high resolution painting
digitisations is for conservators to analyze details at sub-millimeter
precision. Because of this, accurate registration is desired over
transform flexibility, which motivated us to solely focus on
description matching performance on precisely selected keypoints.

In each experiment, different permutations of feature patch sizes,
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descriptor algorithms, and digitisation modalities are considered.
For feature patch sizes we consider a range of 0.5 to 40 millimeters,
with a step size of 0.5 millimeters. Subsequently, the three
descriptor algorithms that were introduced earlier are evaluated
for each feature patch size on the three non-visual digitisation
modalities. Figure 3 illustrates the level of detail in feature patches
at different sizes in the different modalities.

The number of selected keypoints was held constant at 100
keypoints. This quantity has the same order of magnitude as the
536 keypoints selected in the literature example of SIFT [Low04],
while still allowing experimentation with non-overlapping feature
patches of large sizes.

Because a random keypoint selector is used in the simulated
registration pipeline, descriptor performance is correlated to the
distinctiveness of the randomly drawn keypoints. To that end, each
experiment is repeated 10 times, where each run uses a new seed for
random keypoint selection. The presented performance measures
are an average of all repeated runs.

6.1. Descriptor Performance on Original Digitisations

In this experiment, the descriptor performance on the original
digitisation images is investigated. The resulting description
matching accuracy for different feature sizes and digitisation
modalities are shown in Figure 4.

An overall insight is that matching accuracy for the IRR and UV
modalities reach between 40% and 90%, but that XR significantly
lacks behind with an optimal matching accuracy of 20%. Because
the performance of XR registration is so low, its matching accuracy
as a function of feature size does not show significant patterns, and
seems to be mainly based on contextual noise. To that end, only the
results of the IRR and UV registrations are taken into account for
conclusions on optimal feature sizes in this experiment.

The matching accuracy of the SIFT descriptor quickly grows as
the feature patch size increases to 5 millimeters, but then plateaus.
Given that larger feature patches are relatively easier to describe
distinctively, and because smaller feature patches are favorable for
accurate registration, we conclude that a feature patch size of 5
millimeters is optimal for this descriptor.

For the MFD descriptor, we see significantly distinct
performance behavior for the two paintings. While description
matching accuracy peaks at around 6 millimeters in Figure 4a,
it stays stable after patch sizes larger than 10 millimeters in
Figure 4b. The performance peak of the former could be explained
by the small-scale craquelure that is more clearly visible in this
painting. Visually inspecting the maximum index maps generated
by this descriptor also show that the patches of different modalities
look similar at different sizes, while still having high detail.

Lastly, the SuperPoint descriptor has optimal performance at a
feature patch size of 4 millimeters. This could be explained by
the fact that this scales the image down to a resolution of around
100x100 pixels, which is close to the resolution that the descriptor
network was trained on (280x320 pixels) [DMR18].

To compare the relative performance of the descriptors, we
look at the registration accuracy at corresponding optimal feature



50 J. van der Toorn / A New Baseline for Feature Description on Multimodal Imaging of Paintings

@ SIFT — IRR
@ MFD -= UV
B SuperPoint ===

0.8 1

feature size (mm)

(a) Description matching accuracies on Girl with a Pearl Earring.
10

@ SIFT — IRR
@ MFD -= UV
@ SuperPoint ===+

0.8 1

0217

0.0

10 15 2 2% 30 3 10
feature size (mm)

o
ot

(b) Description matching accuracies on 18th-Century Portrait of a Woman.

Figure 4: Feature description matching accuracy (y-axis) as
function of feature patch size (x-axis, in millimeters) on the original
painting digitisations.

sizes. In this setting, SIFT obtains an accuracy between 30% and
50%, MFD an accuracy between 30% and 60%, and SuperPoint
an accuracy between 70% and 90%. From this, we can conclude
that each descriptor has a similar performance variance and is not
severely sensitive to the specific structure of a different modality.
Registration for IRR consistently performs around 20% better than
for UV, which can be explained by the dark blobs that are visible in
UV, but not in IRR and VIS.

The overall conclusion from this experiment is that the
multimodal MFD descriptor performs only slightly better than the
classical SIFT descriptor, while the learned unimodal SuperPoint
descriptor achieves almost double the performance of SIFT. A
reason for the limited performance of MFD could be explained
by the fact that the descriptor was mainly developed and evaluated
for the domain of aerial images, which might accentuate different
characteristics for different modalities. On the other hand, the
SuperPoint descriptor performs very well, even though it was
originally developed as a unimodal descriptor. Its high overall
performance can be attributed to the fact that it uses a convolutional
neural network, which was trained and automatically optimized for

VIS IRR uv XR

B Closest patch with SuperPoint (incorrect)
. Ground truth

Figure 5: Feature patches that were incorrectly matched by
SuperPoint in all modalities from Girl with a Pearl Earring. Rows
represent different keypoint samples, columns represent different
digitisation modalities.

thousands of images. During training, synthetic data augmentation
techniques such as Gaussian noise and motion blur were used as
well, which can explain the retention of high performance under
multimodal registration.

While SuperPoint achieves impressive performance, it still
incorrectly matches a fraction of the keypoints. Given a random
sample of 100 keypoints at a patch size of 4 millimeters, we
found that 10 keypoints were incorrectly matched in all modalities.
Upon closer inspection, those all originate from the homogeneous
background of the painting. The feature patches of 5 of the
incorrectly matched keypoints are shown in Figure 5.

6.2. Descriptor Performance on Craquelure Segmented
Digitisations

As became clear in the previous experiment, no descriptor was
able to achieve sufficient performance at registering the XR
digitisations. This is not unexpected, as the XR digitisation has
significantly more modality-specific artifacts than IRR and UV.
In the XR digitisation, the canvas structure behind the painting is
visible, which makes it difficult to manually recognize higher level
features when inspecting patches at centimeter granularity.

Aiming to improve modality invariance, we investigate the
description performance of registering craquelure segmented
masks of the multimodal painting digitisations. Besides this
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Figure 6: Feature description matching accuracy (y-axis) as
function of feature patch size (x-axis, in millimeters) on the
craquelure segmented painting digitisations.

additional preprocessing step, all other variables were held constant
with regards to the previously conducted experiment. The resulting
description matching accuracy for different feature sizes and
digitisation modalities are shown in Figure 6.

Comparing the overall registration accuracy of the segmented
images with respect to the original digitisations, both SIFT and
SuperPoint perform worse under all modalities, however, MFD
shows improved performance under certain conditions. Because of
this, only the performance results of MFD are discussed in this
experiment.

While the matching accuracy of MFD started plateauing after 10
millimeters in the previous experiment, its matching accuracy of
craquelure masks strictly increases with patch size, and only starts
to stabilize at around 25 millimeters. This can be explained by the
lower spatial resolution of the segmented masks, which still show
high detail at higher patch sizes.

The highest description matching accuracy obtained by MFD
is 70% for the UV digitisation of Girl with a Pearl Earring,
a stark increase from the 40% obtained on the non-segmented
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Figure 7: The relative area of craquelure (y-axis, percentage) that
was segmented in painting digitisations of the four modalities (x-
axis).

digitisation. While this is an impressive result, it is still lower
than the UV matching accuracy of 75% obtained by SuperPoint
on the original digitisation image. Another promising result from
this experiment is the performance of MFD on the XR digitisation
of Girl with a Pearl Earring. It manages to achieve a matching
accuracy of 45%, which is more than two times as high as the
highest accuracy achieved on registering the original digitisation
image of this painting. This shows that it could be beneficial to
perform craquelure segmentation on painting digitisations with a
lot of modality-specific artifacts before running image registration.

The performance of MFD on the craquelure segmented
digitisations varies quite severely across modalities and the
different paintings. The reason for this difference becomes apparent
when it is compared to the relative area of craquelure in each
segmented digitisation, which is shown in Figure 7. First of
all, twice as much craquelure could be detected in the visual
digitisation of Girl with a Pearl Earring compared to /8th-Century
Portrait of a Woman, which explains the overall better performance
of MFD on the former painting. Secondly, the big relative area
of craquelure in the UV digitisation of Girl with a Pearl Earring
explains why MFD has the best overall performance on this
modality.

In general, it seems that the description matching accuracy of
MFD scales linearly with the relative area of detected craquelure.
Visually inspecting the different digitisation images, much of the
craquelure that is visible was not properly segmented by the
segmentation network. To that end, it would be valuable to develop
a more robust crack segmentation algorithm, which could result in
significantly higher registration accuracy for all modalities.
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7. Conclusion

We present a thorough evaluation of different feature descriptors
for multimodal historic painting digitisations, striving to improve
the robustness of image registration algorithms used by art
conservators. The classical SIFT feature descriptor, which is used
in most literature on feature-based painting digitisation registration,
is compared to more recent feature description algorithms. We
consider MFD, a handcrafted descriptor developed for multimodal
aerial image registration, and SuperPoint, a popular deep-learned
descriptor for unimodal image registration.

From our experiments we conclude the following points.
First of all, SuperPoint achieves an impressive performance
improvement over SIFT for registering multimodal digitisations
with little modality-specific artifacts, increasing description
matching accuracy by more than 40% for the IRR and UV
modalities. Second, when many modality-specific artifacts are
present in digitisations, description matching performance can
be improved by preprocessing digitisations with craquelure
segmentation. Description matching accuracy of MFD for the XR
digitisation of Girl with a Pearl Earring increased by 20% after
craquelure segmentation, doubling the accuracy obtained by SIFT.

Given these insights, it is proposed to combine both descriptors
for a robust image registration pipeline. In an initial iteration,
running the SuperPoint descriptor on original painting digitisations
provides high description-matching accuracy for most modalities.
However, when it is detected that features are matched with low
certainty, a second iteration could perform craquelure segmentation
and fall back on registering the painting digitisations with MFD,
which often increases matching accuracy for noisy modalities.
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