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Abstract
We are concerned with the natural image matting problem, where the goal is to estimate the partial opacity of a foreground
object so that it can be softly segmented from a background. In sampling-based matting techniques, user interactions are
first acquired to provide prior information about foreground and background regions. Samples are then chosen from those
interactions to calculate the alpha (opacity) value of every pixel in an image. In this research, we propose a new sampling
approach that brings relevant samples to every pixel with an unknown alpha value; this yields accurate alpha maps. We also
present two new formulations for objective functions used to assess the suitability of the chosen samples. The evaluation of the
proposed method, on the alpha matting online benchmark, shows that its performance is close to the state-of-the-art techniques.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Segmentation—
Pixel classification

1. Introduction

Natural image matting is a cornerstone for image compositing,
which is one of the fundamental image editing operations. For visu-
ally plausible composites, we want to be able to estimate the partial
coverage of every pixel in an image so that the foreground objects,
even those with thin fuzzy structures and transparent surfaces, can
be overlaid seamlessly on a variety of backgrounds. To calculate
that opacity map (or alpha map), a linear convex model is used to
represent every pixel, so that the color of each pixel is expressed
as:

Ii = αi×Fi +(1−αi)×Bi , (1)

where i is the pixel index, Ii is the pixel value (or feature vector),
Fi and Bi are the feature vectors of the foreground (Fg) and the
background (Bg) pixels contributing to the color of Ii respectively,
and 0 ≤ αi ≤ 1 is the opacity value of Ii, with 1 for Fg pixels and
0 for Bg pixels. Equation 1 will be referred to as the compositing
equation throughout the rest of this document. Since we want to es-
timate αi, and we don’t know Fi and Bi, the compositing equation
represents an under-determined problem. Thus, the pool of solu-
tions is downsized by providing additional information in the form
of sparse scribbles or a dense three-level segmented image named
‘trimap’ specifying definite Fg (α = 1), definite Bg (α = 0) and
unknown regions. The pixels in the Fg and the Bg regions of the
trimap will be referred to as ‘the known pixels’ throughout the rest
of this document, while the term ‘unknown pixels’ will be used to
refer to the pixels with alpha values to be computed.

One approach for computing alpha maps is to propagate the al-
pha values of the known pixels to the unknown ones [LRAL08,

LLW08, CLT12, HWS∗13, SAP∗13]. This is achieved by defining
a similarity measure between the image pixels, based on which
an affinity matrix can be constructed. Different members of the
propagation-based matting family adopt various affinity measures
which determine the accuracy of propagation. The limitations of
the members of this family are attributed to the underlying smooth-
ness assumptions [LRAL08], which may not hold, and/or the high
correlation between the Fg and Bg samples, which leads to wrongly
propagated alpha values.

The second family of techniques [KEE15, JSRC16, JRC14,
SRPC13, CZZ∗13, VR13, HRR∗11, GO10, WC07b] adopt a hybrid
approach that is comprised of the three following stages. First, the
user interactions (trimap or scribbles) are sampled to bring a subset
of Fg/Bg pairs to every unknown pixel; this step is called ‘sam-
ple gathering’. Second, an objective function is optimized (often
by brute-force) to single out the pair that best describes the color of
the pixel under consideration; we will call that pair ‘a good pair’ or
‘a suitable pair’ throughout this document. A classical example of
such an objective function, which has been followed by more ro-
bust alternatives, is known as the chromatic distortion, and is given
by

ξcolor = ‖Ii− (α̂Fu +(1− α̂)Bv)‖ , (2a)

α̂ =
(Ii−Bv) · (Fu−Bv)

‖Fu−Bv‖2 , (2b)

where (Fu,Bv) is a particular Fg/Bg pair, α̂ is the estimated α, · is
the inner product and ‖·‖ is the Euclidean norm. The dot product
and the norm are calculated over the RGB color coordinate sys-
tem. The best pair is thus the pair that minimizes the color distance
between the original pixel value and the value we get from a par-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/vmv.20161349

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vmv.20161349


A. Al-Kabbany & E. Dubois / Matting with Sequential Pair Selection Using Graph Transduction

ticular pair with a particular estimated alpha. This can be visual-
ized as the perpendicular distance between the unknown pixel and
the line joining the Fg/Bg pair being assessed. The second stage,
that is the pair assessment stage, is often done on a per-pixel basis;
thus, the computed alpha maps undergo a post-processing smooth-
ing step in the final stage of the pipeline. The smoothing step in-
volves solving a system of linear equations to minimize a quadratic
cost with the two following terms. The first term is the data term
which represents the sampling-based computed alpha maps. The
second term is the smoothness term which is meant to propagate
alpha values among pixels based on their affinity. The definition of
that affinity is an aspect of variation among the proposed methods.
References [WC07a] and [ZSLW15] present more comprehensive,
detailed and up-to-date surveys for the natural image matting liter-
ature.

The most recent members of the second family (hybrid ap-
proaches) include the methods proposed in [JRC14, SRPC13,
VR13, CZZ∗13, KEE15]. Instead of adopting the linear convex
composition model in eqn. 1, the authors of [JSRC16, JRC14]
used sparse codes to jointly describe an unknown pixel with multi-
ple samples, rather than a single Fg/Bg pair. Rather than consid-
ering only the spatially-close samples to an unknown pixel, the
method in [SRPC13] determined the number of samples gathered
for every unknown pixel based on its spatial distance from the un-
known region’s boundaries in the trimap. Its objective function in-
cluded a term for favouring spatially-close samples and a Cohen’s
d-based term to favour Fg/Bg samples that are well-separated in
the color space. Building on the comprehensive sampling method
of [SRPC13], the authors of [VR13] introduced a texture descrip-
tor to better discriminate between Fg and Bg samples with over-
lapping color distributions. The method in [CZZ∗13] gathered
spatially-local samples to compute initial alpha maps, and then
post-smoothed them by minimizing a quadratic cost function in α.
To construct the Laplacian matrix of the smoothness term, affinities
between neighbouring pixels in the spatial domain (local neigh-
bours) and the feature space (non-local neighbours) were consid-
ered. The method in [KEE15] formulated the sample gathering step
as a sparse subset selection problem. During pair assessment, the
compatibility of a certain Fg/Bg pair with an unknown pixel was
determined based on the classical chromatic distortion, the spatial
closeness and the statistical feature similarities of the correspond-
ing super-pixels.

We propose a hybrid, sampling-based approach for matting. Our
contributions are a new sample gathering method and two new for-
mulations for the objective function used for pair assessment. The
sample gathering method aims at bringing good Fg/Bg samples to
every unknown pixel, leading to more accurate alpha maps, while
the presented objective functions are meant to augment the discrim-
inative power of the classical objective function given by eqn. 2a.
Subjective and objective results on standard matting datasets [mat]
show that the performance of our method is close to the state-of-
the-art (SoA) techniques.

2. Motivation Behind Sequential Pair Selection

The matting equation models the color of an unknown pixel as a
mixture of a Fg/Bg pair of samples. However, alpha maps are as-

sumed to be sparse [LRAL08, WC07b]; hence, the pair that best
describes an unknown pixel is comprised of one similar half-pair
(in feature) to the unknown pixel, while the other is dissimilar.
This is emphasized by methods which encourage the nomination
of Fg/Bg samples that come from well-separated color distribu-
tions [SRPC13,WC07b,RRG08]. Good samples that well-describe
the color of an unknown pixel do not necessarily exist spatially-
nearby to that unknown pixel [HRR∗11, SRPC13, AKD14], but at
least the dissimilar half-pair should. Figure 1 illustrates the two
cases encountered during trimap sampling. In the first case, both
half-pairs lie nearby in space to the unknown pixel, while in the
second case, the similar half-pair lies far away from the unknown
pixel. The figure features a diagram in addition to two examples for
each case. In the first example of the second case, a pixel from the
nearby leaf would constitute a good half-pair for a pixel in the blue
unknown region because it is quite distinctive from it. The same
example shows that favouring nearby samples would bring a bad
Bg half-pair, because the blue unknown region is spatially close
to a yellow (known) background region as depicted in the trimap.
With textured backgrounds, relying on the spatial distance, even
to decide the size of the gathered pool of pairs [SRPC13], could
disqualify good samples from reaching the pair assessment stage.

Whenever the gathered pool of pairs gets large in size, the color
ambiguity problem arises [HRR∗11]. It refers to the case where a
wrong pair minimizes the objective function (chromatic distortion)
during the pair assessment stage, leading to a wrong alpha value.
Figure 2 illustrates that problem. The case depicted in the figure
shows that the wrong pair of pixels Fg2/Bg2 would be nominated,
for the unknown pixel U , instead of the pair Fg1/Bg1 because
E2 (representing the chromatic distortion) is less than E1. Meth-
ods with objective functions that encourage sparsity in alpha maps
[WC07b, RRG08] could efficiently deal with this problem, but the
sample gathering in these methods is limited to spatially-nearby
regions in the trimap. If U would have been initially paired with
Fg1(or Bg1) and a complement half-pair would then be sought, the
ambiguity problem would be avoided.

3. Learning by Transduction

Assuming that some training data (with known class/label) is avail-
able, the classical inductive model for inference uses the labelled
data points to construct a predictive model or a mapping function
with which new (testing) points can be labelled. For data lying on
complex manifolds, even powerful discriminative model construc-
tion approaches, Adaboost and SVM for example, may fail to crys-
tallize a generic model that works equally well with the labelled
and the out-of-sample data points. In specific cases or problems,
the necessity of learning a general rule can be avoided [GVV13],
and both the labelled and the unlabelled data can be used to classify
the unlabelled points; this is transduction.

Figure 3 depicts an instance of the two half-moons configuration.
As shown, all the observed data points, labelled and unlabelled, are
available beforehand. In Fig. 3(a), the green and orange points are
the labelled data, and the goal is to label the rest of the grey points
with a binary label (green or orange). Inferring a model using the
labelled points only may result in fitting a hyperplane for exam-
ple, as shown in Fig. 3(a), which results in wrong labels. However,
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Figure 1: Cases encountered during trimap sampling. (a) Case 1:
The unknown pixel U has a similar half-pair and a dissimilar half-
pair, both nearby in space. (c) Case 2: The unknown pixel U has a
dissimilar half-pair nearby in space, but the similar half-pair exists
far away in space. (b) and (d) Two examples (patches) that depict
each case are shown. The three columns show an image, an en-
larged patch from it, and one possible trimap for it.

if there is a high confidence that the points are well-separated in
the feature space, a function might be learnt from all the observed
data points such that it passes through the low-density regions in
the feature space; this is shown as the black curve in Fig. 3(b). Al-
though it looks appealing, transduction cannot be used in the case
of streaming data, and the high-margin feature space should exist
to guarantee the availability of low-density regions.

We are particularly concerned with the graph Laplacian-based
transductive inference that was discussed in [BN04] and developed
in [DAK∗08]. Figure 3 shows that the goal of transduction is to find
a smooth mapping f that varies only in regions of low density in the
input space, and simultaneously maps every training point to its as-
sociated (or a very close) label, i.e., f (Xi) =Yi, where Yi is the label
of the training point Xi. The previous requirements can be formu-
lated as an optimization problem, for which a discrete alternative
was presented in [HAvL05]. That discretization approach adopts

BG2BG1

FG1U

FG2

E1

E2

Figure 2: An illustration of the color ambiguity problem.Background Subtraction in Video Sequences Using 
Image Skimming and Transduction

Transduction

(a)
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Image Skimming and Transduction

Transduction

(b)

Figure 3: The iconic illustration of transduction on two half-moons
configuration. Please see text for more details.

graph Laplacian methods that are based on a discrete approxima-
tion of the s-weighted Laplacian operator [DAK∗08]. These meth-
ods construct a graph with nodes representing the data points (the
Xis), and the weights of that graph are induced using a kernel (often
an exponential kernel) that quantifies the affinities between the Xis
in their feature space. The proposed discrete approximation for the
original optimization problem is given by

min
F∈Rn

(F−Y )TC(F−Y )+FT L F, (3)

where n is the total number of labelled and unlabelled data points,
C is the diagonal n× n matrix in which the ith diagonal element is
ci for a labelled point, and 0 for a test point, Y is the n-dimensional
vector in which the ith element is Yi for a labelled point, and 0 for
a test point and L is the graph Laplacian. The n-dimensional vector
F can then be obtained by solving the linear system given by

(L+C) F =C Y. (4)

For the binary labelling problem depicted in Fig. 3, F should be
thresholded. The labels of the testing points are the elements in F
whose indices are the corresponding indices of the nodes of the test-
ing points in the constructed graph. Transductive inference has been
introduced to many problems in computer vision including segmen-
tation [DAK∗08] and matting [Wan11]. Transduction is adopted in
this research as a part of the proposed trimap sampling strategy.

4. Proposed Method

The proposed method is comprised of the following stages: Seg-
menting the image into SPs and nominating delegate pixels for each
of them, computing a suitable half-pair SP for every unknown SP,
allowing neighbouring SPs to share their half-pairs, finding a good
complement half-pair for every unknown SP, given its computed
half-pair, and finally assessing the Fg/Bg pairs gathered for ev-
ery unknown SP. The following sub-sections explain each of these
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stages. Setting the values of the various parameters and algorithmic
decisions is discussed in section 5.

4.1. Choosing Delegates for Super-pixels

The algorithm starts by computing the SLIC super-pixels [ASS∗12,
vlf] (region size=20 and regularizer=1) of the input image. A sub-
set of each super-pixel’s members are then chosen, according to
the following procedure, to represent it. For every super-pixel (SP),
we calculate the mean RGB color vector; members are then sorted
according to their deviation from the mean. The whole range of
deviation-from-mean is then divided into N subgroups (N = 10 in
our experiments) of equal length and SSG samples are picked evenly
from every subgroup as a function of a budget that is given by

SSG =

⌈
B× NSG

NT
× (MAD)SG

(MAD)T

⌉
, (5)

where B is the budget (B = 40 in our experiments), NSG and NT are
the number of members in the subgroup and the whole SP respec-
tively, (MAD)SG is the mean absolute deviation from the mean in
the subgroup and (MAD)T is the mean absolute deviation from the
mean in the whole SP. Once the delegates are determined for every
SP, we calculate a weighting matrix which indicates how the rest of
a SP’s members can be obtained from its delegates. This matrix is
calculated using the same procedure of [RS00]. It can be expressed
as:

W := argmin
wi j

NT

∑
i=1

∣∣∣∣~Xi−
K

∑
j=1

wi j~Xj

∣∣∣∣2 s.t.
K

∑
j=1

wi j = 1, (6)

where NT is the total number of pixels in a super-pixel, K is the
number of delegates and ~Xi (and ~Xj) is a pixel’s feature vector.
This procedure simply applies the local linearity principle within
every SP. During pair assessment, the alpha values of an unknown
SP’s members can be reconstructed using the weighting matrix and
the alpha values of the delegates only. Hence, the purpose of us-
ing the local linearity principle is different from that of the method
in [CZZ∗13].

4.2. Good Half-pair Computation and Sharing

We compute the cartoon-texture decomposition [BLMV11] of the
input image. With delegates represented by their cartoon-texture
feature vector, we solve a binary graph transduction problem, akin
to [DAK∗08], to find the best half-pair (a Fg or a Bg super-pixel)
for every unknown SP. Cartoon-texture decomposition is an addi-
tive decomposition model which aims at analyzing the signal into
a piece-wise smooth (cartoon) component and an oscillatory (tex-
tural) component. The feature of every delegate is a 6× 1 vector,
comprised of the cartoon component and the range-filtered texture
component. The cartoon-texture decomposition is used in lieu of
the color to avoid the ambiguity that may arise if the Fg and Bg
color distributions overlap.

We start by, and loop over, the unknown SPs that are not farther
than 50 pixels from known regions in the trimap; unknown SPs are
those that contain unknown pixels. The known SPs that are 50 pix-
els (or less) away from an unknown SP represent its proposals. Ev-
ery unknown SP is offered one of its proposals at a time. To decide

whether the unknown SP under consideration accepts a proposal or
not, we build a graph using the delegates of the two SPs. The en-
tries of the Laplacian matrix of this graph are calculated using the
kernel function given by

k(Xi,Xj) =
k̃(Xi,Xj)

[d̃(Xi) d̃(Xj)]λ
where (7a)

k̃(Xi,Xj) = e−
‖Xi−Xj‖

2

2σ2 and (7b)

d̃(Xi) =
n

∑
j=1

k̃(Xi,Xj). (7c)

In the above equations, n is the dimension of the Laplacian (square)
matrix and Xi (and similarly Xj) is defined as the cartoon-texture
feature vector. The graph is then transduced by minimizing an ob-
jective function and solving a corresponding linear system given
by eqn. 3 and eqn. 4. After obtaining and thresholding F , if at
least 30% of the delegates in the unknown SP accept the proposal,
the latter will be assigned as its best half pair, i.e. the number of
ones among the entries in F that correspond to unknown delegates
should be at least 30% of its length. The loop over the proposals
is interrupted once the unknown SP under consideration accepts
a proposal. We continue the best half-pair computation in propa-
gation fashion. The unknown SPs that have been already paired
(assigned a half-pair) will represent the proposals for the unpaired
unknown SPs that are 50 pixels (or less) away from them. This
propagation stops once all the unknown SPs are paired. Due to the
small sizes of the matrices, building graphs with the delegates of a
super-pixel, rather than all of its constituent pixels, has contributed
to the computational efficiency of this stage in the pipeline.

The unknown SPs are allowed to share their half-pairs as fol-
lows: We compute the mean color-cartoon-texture feature for all
the unknown and the Bg super-pixels in the image. Every unknown
SP is then allowed to share its half-pair with the five spatially-
nearest SPs, the five most similar SPs according to the mean color-
cartoon-texture feature and the five most similar Bg super-pixels
to account for isolated backgrounds. We also determine which of
the unknown SPs has 25% or more of its constituent pixels already
known in the trimap; we give them the symbol USN – the unknown
SPs with significant number of known pixels. Every unknown SP
is then assigned the most similar member to it among USN ; for this
stage only, the similarity is measured using the joint color-cartoon-
texture-xy feature. During pair assessment, an unknown SP gets
access to the known pixels in the USN member paired with it.

Figure 4 demonstrates the merit of the proposed technique with
regards to gathering good half-pairs, as compared to methods that
consider spatially nearby samples [JRC14] and the methods that
determine the number of gathered samples based on the spatial dis-
tance between the unknown pixel and the known regions in the
trimap [SRPC13]. In Fig. 4(a), the unknown SP is pointed to by
a yellow arrow, and it is very close in space to a wrong Bg. The un-
known SP’s mean color value is shown on the right, surrounded by
a red square. Its half-pairs computed using the proposed method are
pointed to by cyan arrows and their mean color values are shown
on the right. In (b), only the spatially-closest Bg super-pixels are
considered, and their mean color values are shown on the right. We
computed the same number of half-pairs for (a) and (b); however,
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(a) Half-pairs With Graph Transduction

(b) Spatially-nearby Half-pairs

Figure 4: A demonstration of the benefit of using the proposed al-
gorithm to determine a suitable half-pair for every unknown super-
pixel. In (a) and (b), the unknown SP under consideration is pointed
to by a yellow arrow, while its gathered half-pairs from Bg are
pointed to by cyan arrows. Please see text for more details.

in (a) some of the shared SPs are duplicated. Gathered samples in
(a) are clearly more similar (and thus suitable) to the unknown SP
than those in (b).

The proposed method for half-pair computation also demon-
strates more flexibility with regards to matching (or establishing
correspondence between) known and unknown SPs, as compared
to methods that match super-pixels by calculating the Euclidean
distance in the color coordinate system between their mean color
values [JRC14]. Matching two super-pixels with their mean color
values would fail in highly-textured regions. For example, it would
be difficult to match a mostly-green super-pixel with another SP
containing green + red pixels. One way to overcome this problem
is to use very small super-pixel sizes. However, this contradicts the
main purpose of segmentation in the first place, that is the allevi-
ation of the computational burden in the sample gathering and the
pair assessment stages. In the proposed technique, if one delegate
in a super-pixel SPx has similar cartoon-texture feature to enough
delegates in SPy, the latter accepts the former as a proposal.

4.3. Punching the Pair Space

Figure 5(a) depicts the result of the best-half-pair computation step
for a particular unknown SP (Usp); this is shown on a 2D space that
represents all the Fg and Bg super-pixels in an image. The same
logic holds for the rest of the unknown super-pixels. As an example,
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Figure 5: An illustration of the best half-pair computation and the
punching steps for a single unknown super-pixel.

in this figure, Usp is assigned to three (out of the N available) Bg
super-pixels: RBx which is its best half-pair, in addition to RBy and
RBz that it shares with its neighbours. It is worth mentioning that
if the unknown SP under consideration would have preferred Fg
super-pixels as its best half-pairs, we would have vertical streaks in
Fig. 5(a).

Instead of the streaks in Fig. 5(a), we need to further narrow-
down the search space to a few patches (or parts of streaks) in
this space. Otherwise, the pair assessment step would be compu-
tationally inefficient as in [AKD14]. If we can determine the Fg
super-pixels that best suit Usp, given its best half-pairs, then those
sought patches are the intersections between the previously-found
Bg super-pixels (best half-pairs) and the most-suitable Fg super-
pixels. Examples for those patches are shown as red squares in
Fig. 5(b). Our final pair-space (shortlisted pair space) for that par-
ticular unknown SP will thus be the set of pairs comprised of the
delegates of the SPs in these red squares. We name this step: punch-
ing the pair-space.

In order to determine the most-suitable complement half-pair
among the Fg super-pixels for Usp, we calculate the mean color
feature for all the Fg super-pixels in the image; these will represent
the Fs in eqn. 2a. We also have the delegates of the best half-pairs
for Usp (all of them are Bg super-pixels in our example); these will
represent the Bs in eqn. 2a. For every delegate in Usp, we retain
the K foreground super-pixels that result in the least K values for
the chromatic distortion (eqn. 2a); if Usp has 3 delegates, we will
have a bag of 3×K potential Fg super-pixels. Finally, we com-
pute the L mode foreground super-pixels in the bag of potential Fg
super-pixels; these will represent the complement half-pairs of Usp.
K = 10 and L = 5 in our experiments.

Before proceeding to the pair assessment stage, we wanted to
check the goodness of the Fg/Bg pairs we gathered for every un-
known pixel. Towards this goal, we used the training dataset of the
online matting benchmark [mat] for which the ground-truth alpha
maps are provided. For every delegate in every unknown SP, we
checked all the possible alpha values that can be generated from the
pairs it has access to. Then we calculated MADGα – the minimum
absolute deviation between the ground-truth alpha value of the del-
egate and the possible alpha values. The mean minimum absolute
deviation over the delegates of each super-pixel is then computed,
followed by the mean over all the unknown super-pixels in the im-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

115



A. Al-Kabbany & E. Dubois / Matting with Sequential Pair Selection Using Graph Transduction

1 2 3 4 5 6 7 8 9 10 1112 1314 151617 1819 2021 2223 24 2526 27
0

0.2

0.4

0.6

0.8

Image Index

1 
− 

M
A

D
G
α

Figure 6: Assessing the gathered pairs for the unknown super-pixels
over the whole training dataset of the benchmark (27 images). The
blue bar represents the results for trimap 1, while the red bar repre-
sents the results for trimap 2. The closer the bars to 1 the better.

age. Ultimately, this computed value should be close to zero, and
we calculated this value for the 27 images in the training dataset
using the two provided trimaps. Figure 6 depicts a bar chart for the
mean minimum absolute deviation of the 27 images; the blue bars
represent trimap 1, and the red bars represent trimap 2. For the sake
of clarity of presentation of the bar chart, we subtracted the com-
puted values from 1 before plotting them, so the closer the bars to
1 in the figure the better.

4.4. Pair Assessment

In this stage, we assess the Fg/Bg pairs gathered for every unknown
SP. Pair assessment is carried out for the delegates of the unknown
SPs only, and the alpha values of the non-delegates were recon-
structed by the weighting matrix computed using eqn. 6. For ev-
ery unknown SP, the set of pairs is comprised of the delegates of
the super-pixels depicted as red patches in Fig. 5(b). It is required
to find the pair that best describes every delegate in the unknown
SP under consideration. We propose two new formulations for the
objective functions used to assess the pairs. The first formulation
consists of two terms and is given by

ξrs =
ξcolor
‖Fu−Bv‖

×min
{

W1
W1 +W2

,
W2

W1 +W2

}
where (8a)

W1 = exp(−‖I−Fu‖),W2 = exp(−‖I−Bv‖). (8b)

The numerator of the first term is the chromatic distortion of
eqn. 2a. The denominator is inspired by the methods in [WC07b]
and [RRG08], and is meant to favour Fg and Bg samples that are
widely separated in the color coordinate system. The second term is
inspired by the proposed sequential pair selection, and encourages
the sparsity of alpha maps [LRAL08] using a different approach
from that of the methods in [WC07b] and [RRG08]. Basically, we
encourage samples (Fg or Bg) that are distant, in the color space,
from the unknown pixel. Given that:

1. The unknown pixel, the Fg sample and the Bg sample form a
triangle in the color coordinate system.

2. The Fg/Bg pair is required to be robust, i.e., ‖Fu−Bv‖ should
be large, to minimize ξrs.

3. One of the half-pairs (either the Fg sample or the Bg sample) is
required to be distant from the unknown pixel to minimize ξrs.

Therefore, the other half-pair has to be close (in the color space) to
the unknown pixel, satisfying the sparsity property of alpha maps.

It is worth mentioning that if both half-pairs are distant from the
unknown pixel, the pair would be ruled out by the chromatic dis-
tortion term. According to the premise of sequential pair selection,
if the suitable half-pair, that is nearby in space, could be identified,
the complement half-pair is not necessarily close in space; this is
the reason our cost function did not include the spatial-closeness
term as in the methods of [SRPC13, KEE15].

Inspired by the literature of the image completion problem
[HS12, AKD15], we propose another formulation for the objec-
tive function. Image completion and matting have several aspects
in common, one of which is the notion of information propagation
from the known regions to unknown regions. Unknown regions are
the hole regions in image completion, and the trimap’s grey regions
in matting. In [HS12], key patch offsets were obtained by comput-
ing statistics on patch correspondences. In this research, during the
pair assessment stage, instead of picking the Fg/Bg pair that min-
imizes eqn. 8a, we considered the best H pairs instead (H = 15 in
our experiments). Afterwards, we calculate the alpha values that
correspond to these pairs, threshold them around 0.5 and take a
vote. If the mode is αm = 1, the alpha of the unknown pixel under
consideration will be the maximum alpha value among the H alpha
values. Otherwise, the alpha of the unknown pixel under consider-
ation will be the minimum alpha value among the H alpha values.
This aligns with the sparsity property of alpha maps.

4.5. Trimap Expansion and Post-smoothing of Alpha Maps

Following other [KEE15, JRC14, SRPC13] recently proposed mat-
ting techniques, our pipeline started with a trimap expansion step
and ended by smoothing the alpha maps. The condition for expan-
sion is given by

(D(p,Fi)< Ethreshold)∧ (‖Ip− IFi‖≤ (Cthreshold−D(p,Fi))), (9)

which means that an unknown pixel p in the initial trimap will be
considered as a definite Fg if the Euclidean distance in the spatial
domain D(p,Fi) between it and a foreground pixel Fi is less than
Ethreshold and if the Euclidean distance between them in color space
is less than Cthreshold −D(p,Fi). Ethreshold and Cthreshold are both
constants in the spatial domain and color space respectively, and
they were empirically set to 9. The same condition is applied for
comparing the unknown pixels with the background pixels.

For smoothening the maps, the smoothing module of the pub-
licly available code of [SRPC13] is used, in which a quadratic cost
function in α is minimized. This function is the right-hand side of
the equation given by

E = α
T Lα+ γ(α− α̂)T

Γ(α− α̂)+λ(α− α̂)T
Σ(α− α̂), (10)

where α is a vector containing the values in the alpha map, α
T Lα

is a smoothness term that encodes the smoothness constraints of
[LLW08] in the Laplacian matrix L. The other two terms in the
function serve as data terms. The vector α̂ is the values of the al-
pha map to be smoothed, γ = 10−1 encodes the relative importance
of the data and smoothness terms, Γ is a diagonal matrix whose
zero entries for the known foreground and background pixels, and
a confidence f for the unknown pixels. The presented results were
obtained with f = β× exp(−Emin), where β = 10 and Emin is the
minimum value attained by the right-hand side of eqn. 8a. Since
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the pair assessment is carried out for the delegates of the unknown
SPs only, Emin for the non-delegates was reconstructed from the
weighting matrix computed using eqn. 6. The last term involves Σ

which is a diagonal matrix with zero entries for unknown pixels and
a value of 1 for the known pixels, while λ is a weighting parameter
(λ = 100 in our experiments).

5. Results and Discussion

All the experiments were implemented using Matlabr, and were
run on a PC with Intel Core2Quad 2.66GHz processor and 4GB of
RAM. The proposed method was evaluated on the online matting
benchmark [mat], and the results were uploaded on the 18th of June
2016. In this section, results obtained with eqn. 8a and with the vot-
ing formulation will be referred to as TSPS-R and TSPS-RV respec-
tively. The complete ranking tables for each of them are included
in the supplementary material. Nevertheless, in the publicly visible
ranking on the benchmark website, the proposed technique should
be represented by only one method (either TSPS-R or TSPS-RV);
we chose the results obtained by the voting procedure because they
attained a better average rank. Our method appears on the website
under the name ‘TSPS-RV Matting’.

For the algorithmic decisions and thresholds in section 4, in-
spired by the approach of [BRK∗11], we aimed at setting our pa-
rameters so that we minimize the average MSE on the training
dataset. We experimented with just a few parameters in the algo-
rithm, over a discrete set of values, namely, the model parameter
(σ) in the transduction step {20,30,40}, the SP size {10,20,30},
and the maximum distance for half-pair propagation {30,50,70}.
The impact on the average MSE was found to be small – the per-
centage change is < 5% between the least and the maximum av-
erage MSE. The average computation time on the training dataset,
using trimap 2, of our method is 330 seconds, while for [SRPC13],
it is 313 seconds. The maximum computation time for our method
is 514 seconds on image 21, for which [SRPC13] took 376 seconds,
while the maximum computation time for [SRPC13] was 1036 sec-
onds on image 25, for which our method took 231 seconds.

We start by comparing the ranking of the proposed method with
the recently proposed hybrid approaches in the literature, namely,
Comprehensive Sampling matting (CS) [SRPC13], Comprehen-
sive Weighted Color and Texture matting (CWCT) [VR13], KL-
Divergence Sparse Sampling matting (KL-Div), [KEE15], Sparse
coded matting (SpCM) [JRC14] and Graph-based Sparse matting
(GbSM) [JSRC16]. Table 1 indicates the position of each of the
aforementioned methods in the benchmark tables, according to the
four adopted metrics, namely, SAD, MSE, Gradient metric and
connectivity metric [RRW∗09]. The right-most column indicates
the average position (or rank) of each method. Some SoA methods,
such as the technique in [SRPC13] perform well according to the
SAD, MSE and Gradient metrics, then their performance deterio-
rates remarkably according to the connectivity metric; this is the
reason for calculating the average rank of every method across the
four metrics to demonstrate the efficiency of the proposed method.
The results summarized in the table shows that the performance
of our method is comparable to the SoA, with an average rank
equal to that of [KEE15] and a better average rank than the methods
in [SRPC13], [VR13] and [JRC14].

Figure 7: Three cases of subjective comparison between TSPS-R
and TSPS-RV from the testing and training datasets. The 2nd col-
umn depicts enlarged patches from the 1st column. The 3rd and 4th

columns show the result of TSPS-R and TSPS-RV respectively.

Results also show that the voting scheme (TSPS-RV) yields bet-
ter performance than that of TSPS-R according to the first three
metrics; the average rank of the former is also better. In Fig. 7,
we show three cases of subjective comparison between the perfor-
mance of TSPS-R and TSPS-RV. The chosen cases feature crisp
boundaries and hairy boundaries, and the merits of the voting pro-
cedure is apparent in both of them.

To demonstrate the significance of the delegate-nomination-and-
alpha-reconstruction step, we computed the alpha value of every
unknown pixel in the training dataset, without nominating delegates
for the unknown SPs. Under trimap 2, delegate nomination resulted
in 71% average time reduction in the pair assessment stage at a cost
of < 1% average increase in the MSE.

Table 1: Comparing the rankings of the proposed method with some
of the SoA hybrid techniques, on the testing dataset, according to
the four metrics of the matting online benchmark. The less the av-
erage rank the better. Please see text for more details.

Method SAD MSE Grad. Conn. Average Rank
TSPS-R 13 10 17 6 11.5
TSPS-RV 7 7 16 13 10.75
CS 9 8 6 32 13.75
CWCT 10 11 15 25 15.25
KL-Div 6 4 3 30 10.75
SpCM 12 15 9 27 15.75
GbSM 4 6 2 29 10.25

We also used the publicly available code of [SRPC13] and
[VR13] on [mat] and compared their performance with the pro-
posed method objectively. We computed the alpha maps of the
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training dataset, which is comprised of 27 images, using the two
trimaps provided for that dataset. Since the ground-truth alpha
maps are available, we computed the SAD attained by TSPS-R,
TSPS-RV, [SRPC13] and [VR13]. Table 2 summarizes the results;
for each trimap, we record the number of images for which each
method attained the least SAD.

Table 2: Objective comparison of the proposed method with the
methods in [SRPC13] (CS) and [VR13] (CWCT) over the whole
training dataset of the benchmark (27 images). Each column shows
the results obtained using one of the two provided trimaps. The
table shows the number of images in which each corresponding
method attained the least SAD.

Method Trimap 1 Trimap 2
TSPS-R 4 0
TSPS-RV 8 14
CS 7 8
CWCT 8 5

6. Conclusion

We proposed a sampling-based method for image matting with
performance close to the SoA techniques. Given that at least one
good half-pair lies nearby in space to every unknown pixel, we
used graph transduction to find that half-pair. A complement half-
pair can then be computed by punching the Fg/Bg pair space. We
showed the efficiency of our sample gathering method as compared
to relying solely on spatial distance for sample gathering. We also
proposed two new formulations for the objective functions that en-
courage sparse maps, favour robust pairs, and uses statistics over
the best pairs to assign an alpha value for every pixel. Future di-
rections include further exploration of optimal setting of the pa-
rameters values, incorporating other statistical measures in the cost
function, and extending the research to video datasets.
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