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Figure 1: Visual interface for exploration of RNN model results for infection control (ICM) in hospitals. V1) ICM confusion matrix, V2) ICM
confusion matrix per ward, V3) ICM epidemic curve, V4) ICM infection transmission timeline, V5) ICM features, and V6) ICM patient list.

Abstract
Bacteria and viruses are transmitted among patients in the hospital. Infection control experts develop strategies for infection
control. Currently, this is done mostly manually, which is time-consuming and error-prone. Visual analysis approaches mainly
focus disease spread on population level. We learn a RNN model for detection of potential infections, transmissions and infection
factors. We present a novel interactive visual interface to explore the model results. Together with infection control experts, we
apply our approach to real hospital data. The experts could identify factors for infections and derive infection control measures.

1. Introduction

Bacterial and viral infections endanger patients in hospitals world-
wide. Among these, so-called multidrug-resitant pathognes such
as vancomycin-resistant enterococci (VRE) or methicillin-resistant
Staphylococcus aureus (MRSA) are difficult to treat and require the
use of last-resort antibiotics [TC08, HSR∗18].

Pathogens are transmitted among the hospital patients by direct
patient contacts or via contaminated places in the same room or at
the same ward. These infections obtained in hospitals are a threat
to patients’ health and increase treatment costs. As many infected
patients do not have illness symptoms, dozens of the patients might
get infected before the infection is detected [HSR∗18]. Screening
all patients is too costly. Thus, infection control experts (i.e., hy-
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gienists, clinicians, hygiene experts) aim to develop strategies for
early detection of pathogens in hospitals, identification of poten-
tial outbreaks, and prevention of pathogen transmission. The ex-
perts need to detect when and where higher than usual presence of
pathogens occurs – an outbreak (Task T1). The experts need to iden-
tify patients that may be potentially infected, even though they are
not ill (Task T2). They need to detect when (Task T3) and how (Task
T4) pathogens could be transmitted, i.e., to identify factors support-
ing pathogen transmission. This helps them to determine preventive
measures such as disinfection of rooms, or patient isolation.

Currently, the infection control experts perform these tasks
mostly manually using long lists of infected patients. This is time-
consuming and likely error-prone [HSR∗18]. Current visual an-
alytics approaches focus on disease spreading in large popula-
tions. They show the number of infected persons over time and
the spatial distribution of infections [MLR∗11, PL20]. Recent ap-
proaches [vLWB∗19, WBvL∗19] focus on the monitoring of the
current situation in the hospital or projecting future disease spread.
However, the development of infection control strategies requires
an exploration of potential infection occurrence and factors sup-
porting pathogen transmission.

We present a novel approach that we developed together with in-
fection control (IC) experts in a project over a two year period. Our
approach learns a recurrent neural network (RNN) for detecting
potential infections across hospital wards and for determining fac-
tors that support pathogen transmission. Our novel interactive vi-
sual interface enables IC experts to explore the model results with
respect to their tasks. IC experts employed our approach on data
from a large German hospital. Our use case is a hospital infection
by vancomycin-resistant enterococci (VRE) within the period of
three years. The experts could identify time periods and wards with
potentially higher than usual infection – i.e., outbreak. They could
detect when and how transmission could happen for selected pa-
tients. This helps to improve infection control in the future.

2. Related Work

Visual Analysis of health data has recently gained large interest.
Some works focus on visual analysis of health records [CCDW17,
MLL∗13, WGGP∗11, HHO∗16, RFG∗17, RWA∗13]. Recently also
RNN models have been used for predicting medical data in this
context [CBS∗16, KCK∗18]. Another research strain is disease
surveillance and epidemiology [PL20]. The approaches focus on
spatial and temporal character of the disease spreading on the popu-
lation level [PL20], e.g., the dynamics of infections per geographic
area [MHR∗10,BWMM15,LAS14,BH13,YDH∗17]. Tools such as
NEMO [AKMR16], GEFSim [SVS∗17], or COMSOL [LSSW10]
simulate disease spreading and visualize population statistics – the
number of infected patients. All these works focus on aggregate –
population level. On individual level, visual analysis for infection
spread in hospitals was proposed [WBvL∗19]. It concentrates on
prediction, rather than on infection control. In contrast to visual
analysis for modeling experts [HKPC18], we focus on the chal-
lenge of showing model results to clinicians in an understandable
and interpretable way [JCHG19, DVK17]. Thus, we build upon an
existing system for infection control for hospitals [vLWB∗19].

3. Infection Model

We model the infection likelihood and infection transmission for a
pathogen using a recurrent neural network (RNN). RNN is an ar-
tificial neural network for classification along a temporal sequence
[Sch15]. It enables us to classify each patient p in each time mo-
ment t as infected y(p, t) = 1 or non-infected y(p, t) = 0. The tem-
poral facet of the modeling is important for determining who is
likely infected (T1 and T2) and when patients get likely infected
(T3). The RNN model also enables us to identify features that con-
tribute to infection transmission (T4). We focus on the visual ex-
ploration of model results, not on creating best fitting model.

Model input We use time-dependent features that are available for
each patient on hourly basis. Based on the tasks, clinical expertise,
and data availability, we use the following features:
– Type of patient’s stay, .e.g., “Change ward”, “Hospitalization”, or
“Surgery”. It may influence the pathogen transmission, e.g., trans-
mission in a surgery may be more likely than in an entrance to
hospital. We use 20 types in one-hot-encoding.
– Ward Patient location. We apply MDS on the organizational hier-
archy to reduce one-hot-encoding from 668 to 10 features.
– Room The location of a patient. Encoding is similar to wards.
– Current number of infected patients in the same ward Direct and
indirect contact on the same ward may lead to transmission. Higher
number of infections means a higher likeness of an infection.
– Recent number of infected patients in the same ward Accumu-
lated number of infected patients in the last 3, 6, and 12 days. This
is interesting for pathogens with longer incubation times.
– Current nr. of infected patients in the same room – as for ward.
– Recent nr. of infected patients in the same room – as for ward.
All 63 features are normalized to 0−1 interval so that larger wards
do not get overproportionally high values.

Model training Figure 2 shows the used model structure, which
resulted from several experiments. We used a standard loss function
for a two class problems – the mean squared error [SC08] and the
Softmax activation function [GBC16]. As training data, we used
the real detected patient infections yR(p, t). We used the above-
mentioned features and weighting for balancing between yR = 1
and yR = 0 classes. The training was performed offline before the
visualization due to the long training duration of several hours.

Model result Model result is an infection likelihood per patient
and time step 0 ≤ y(p, t) ≤ 1. An increase in the infection likeli-
hood in two consecutive time steps ∆y(p,τ)> 0 means a likelihood
of infection at time τ. This detects likely time of infection τ and
its likelihood ∆y(p,τ). Infection likelihood above a user-defined
threshold is classified as an infection. The default value is 80%.

4. Interactive Visual Interface

We present a novel interactive visual interface for exploring model
results for infection control (ICM) to be used by infection control
experts in the hospital (see Figure 1). We extend an existing sys-
tem [vLWB∗19], which increases the acceptance and understand-
ability of the approach. Our interface has five linked views V1–V5:

V1: ICM confusion matrix view (see Fig. 3) provides model re-
sults on the number of (in)correctly classified infections. We used
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Figure 2: Used RNN model structure.

it as the IC experts were familiar with a classic confusion matrix.
A classic confusion matrix shows the number of classified cases
(i.e., patients): true positive (TP), true negative (TN), false-positive
(FP), and false negative (FN). However, as not all patients are
screened, we needed to extend this matrix with an additional dis-
crimination of false positive for screened (FP-error) and for non-
screened patients (FP-PUI). We color-code all five cases consis-
tently also in other views. The FP-PUI class is interesting for IC
experts as it contains all patients identified as potentially infected,
but not screened (task T2). These patients should be screened, or
the screening strategy needs to be adjusted.

The sliders allow to interactively adjust model parameters: pre-
diction threshold and FP threshold. The slider color indicates the
effect of the slider changes, e.g., whether the model focuses on FN
(red) or FP (yellow-green). This supports understandability of the
model to the IC experts. This view can be used for filtering patients
of an user-selected category, such as TP (dashed cell border).

V2: ICM confusion matrix per ward in Figure 4 allows the IC ex-
pert to assess the classification results per ward. It shows whether
there are wards with exceptional results (Task T4), such as wards
with a high number of misclassifications (FN) or with a high num-
ber of potentially infected persons (FP-PUI). The number of pa-
tients in each cell is shown as text and as color. Hue shows the
type of information and saturation shows the relative number of
patients. This normalization was needed for a consistent compar-
ison of large and small wards in one view. This normalization is
shown with saturation. Dark colored wards show a potential local
outbreak – a high number of infections. The IC experts can select
rows (i.e., wards) or cells (i.e., patient categories) to filter patients
of interest. They can be shown in other views. e.g., patient list.

(a) Whole dataset (b) Summer 2011

Figure 3: ICM confusion matrix

Figure 4: ICM confusion matrix per ward

V3: ICM epidemic curve view is an extension of a standard epi-
demic curve, which shows the number of really detected infected
patients over time ∑yR(t). It helps to detect outbreaks by a higher
than usual number of infected patients (Task T1). Our extended
curve shows the model results as a stacked bar chart. It differenti-
ates between true positive and false negative of the real infections.
It thus shows the model quality over time, i.e., whether there are
time periods of higher/lower model performance. The curve also
shows the two categories of false positives: FP-PUI and FP-Error.
This is novel and important. The IC experts can see the dynamics in
the number of infected persons together with the dynamics of po-
tentially infected persons (FP-PUI). Thus, they can see how many
persons should have been screened in different time periods.

The interactive view allows the IC expert to focus on selected
time periods. The curve on the top shows the whole analyzed time
period. The curve on the bottom shows details for a user-selected
time period. The details also show the seven-day-moving average
of the number of patients per category as a line. This is needed, as
the data may fluctuate strongly, e.g., due to working-day effect. The
time selection is used to filter patients in other views.

V4: ICM infection transmission timeline view shows the model
results for pathogen transmission events τ and their likelihood
∆y(p,τ) for a user-selected patient p (see Fig. 6) (Task T3). This
information is integrated to the already existing view on the patient
history from the input data.
The existing view shows the time spent in hospital with the back-
ground color indicating the infection status. Patient’s location at
wards is shown via horizontal colored lines. Long vertical lines
show the time moment of screening. The color of these lines shows
the screening result, i.e., the really detected infection status. White
color means non-infected and red is infected. The length of the ver-
tical line shows the resistance class of the pathogen.
We overlay this view with model results. We keep the visual
metaphor of colored vertical lines for infection results. Therefore,
we show an additional vertical bar at time of likely transmission
event τ (Task T3). Transmission likelihood is shown as as color
from light (low) to dark (high). In this way, the IC experts can see
when the model detects possible transmissions and how much they
can trust in this result. The IC expert can assess the possible trans-
mission causes of this transmission event in the ICM feature view.
Additionally, for each transmission event, we show also the pos-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

75



M. Müller et al. / Exploration of RNN-Model Results for Infection Control in Hospitals

Figure 5: ICM epidemic curve

sible causes of this transmission – contact patients (Task T4). The
number of contact patients is shown directly as an icon with a num-
ber. The full list of contact patients is shown on demand in a tooltip.
A selection of a patient in this tooltip enables the IC expert to fur-
ther investigate the infections of the selected contact patient.

V5: ICM feature view shows the attention features for the whole
model and for the user-selected transmission event in a bar chart
(see Fig. 6 bottom right). Features with high weights (i.e., long
bars) indicate possible causes of pathogen transmission (Task T4).
Inspired by [MCZ∗17], we show the difference between feature
weights of the whole model (black bars) and the feature weights
of the selected transmission event. Blue bar means a higher feature
weight of the transmission event, and red means a lower weight.

5. Use Case

In cooperation with infection control experts, we apply our ap-
proach to real world data on infections by vancomycin-resistant
enterococci (VRE) in a large German hospital. This pathogen is
relevant for hospital infections worldwide.

We used 88,612 patient cases over three years. RNN training
was done on 80% and testing on the 20% of the data. We evalu-
ated standard performance measures: area under ROC curve score
(92%) [HL05], DP as y1 = 0.3, and y0 = 0.003. Together with the
confusion matrix, the results show a good model quality. We note,
that our goal was not to create the best fitting model, but rather to
investigate the usefulness of using and showing RNN results for
infection control.

In this use case, the IC expert wants to detect the potentially
infected patients and the causes of VRE transmission in order to
derive strategies for better disease control in the future. The expert
wants to analyze the increase of high VRE infection in summer

Figure 6: ICM infection transmission hypothesis and features

2011. Therefore, the time filters were set to that period in the ICM
epidemic curve view (Fig. 5). He looks at the confusion matrix to
detect possible infections. In order to have a low number of false
negative results, and high detection rate, he sets the threshold in
the red area at 75% (Fig. 3). The matrix for Summer 2011 shows
53 already known cases and also 91 additional potentially infected
patients. So the outbreak was possibly larger than already known
(T1). A look at the wards discovers the ward 70 in the area 1026
with an elevated number of potential patients (Fig. 4). This ward
is a potential location of the outbreak (T4). The patients list gives
an overview of all patients at that ward. The transmission timeline
view (Fig. 6) reveals that the model detected a high likelihood of
the first transmission event (dark vertical bar) already 2 weeks be-
fore the first positive screening was monitored (orange background)
(T3). This indicates that the patient was earlier infected than known
and thus he could have infected other patients. This motivates an
earlier screening of patients for VRE on this ward. The expert is in-
terested in factors supporting the VRE transmission. Thus, he looks
at the the feature list. It shows a long blue bar next to the feature
“accumulative number of infected patients in room”. This means
that this room is a potential cause of the infection transmission and
thus needs to be disinfected (T4). The effect of this intervention
needs to be analyzed in a follow-up study.

6. Conclusion and Future Work

We presented a new visual analytics approach to support infection
control in hospitals. It learns a RNN model and shows its results in
a new interactive visualization. The evaluation with infection con-
trol experts showed advantages of this approach. In the future, we
wish to extend the model and visual interface with additional infor-
mation, e.g., input data uncertainty.

Acknowledgments This work was supported by the German Fed-
eral Ministry of Education and Research (BMBF) within the frame-
work of the research and funding concepts of the Medical Informat-
ics Initiative (01ZZ1802B/HiGHmed).

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

76



M. Müller et al. / Exploration of RNN-Model Results for Infection Control in Hospitals

References
[AKMR16] ABDELHAMID S. E., KUHLMAN C. J., MARATHE M. V.,

RAVI S. S.: Interactive exploration and understanding of contagion dy-
namics in networked populations. In Int. Conf. Behavioral, Economic
and Socio-cultural Computing (Nov 2016), pp. 1–6. doi:10.1109/
BESC.2016.7804480. 2

[BH13] BROCKMANN D., HELBING D.: The hidden geometry of com-
plex, network-driven contagion phenomena. Science 342, 6164 (2013),
1337–1342. doi:10.1126/science.1245200. 2

[BWMM15] BRYAN C., WU X., MNISZEWSKI S., MA K.-L.: Integrat-
ing predictive analytics into a spatiotemporal epidemic simulation. In
IEEE Conference on Visual Analytics Science and Technology (2015),
IEEE, pp. 17–24. 2

[CBS∗16] CHOI E., BAHADORI M. T., SUN J., KULAS J., SCHUETZ
A., STEWART W.: Retain: An interpretable predictive model for health-
care using reverse time attention mechanism. In Advances in Neural
Information Processing Systems (2016), pp. 3504–3512. 2

[CCDW17] CABALLERO H. S. G., CORVO A., DIXIT P. M., WESTEN-
BERG M. A.: Visual analytics for evaluating clinical pathways. In IEEE
VAHC (2017), IEEE, pp. 39–46. 2

[DVK17] DOSHI-VELEZ F., KIM B.: Towards a rigorous science of in-
terpretable machine learning. arXiv preprint arXiv:1702.08608 (2017).
2

[GBC16] GOODFELLOW I., BENGIO Y., COURVILLE A.: Deep learn-
ing. MIT Press, 2016. 2

[HHO∗16] HAKONE A., HARRISON L., OTTLEY A., WINTERS N.,
GUTHEIL C., HAN P. K., CHANG R.: Proact: Iterative design of a
patient-centered visualization for effective prostate cancer health risk
communication. IEEE TVCG 23, 1 (2016), 601–610. 2

[HKPC18] HOHMAN F., KAHNG M., PIENTA R., CHAU D. H.: Visual
analytics in deep learning: An interrogative survey for the next frontiers.
IEEE transactions on visualization and computer graphics 25, 8 (2018),
2674–2693. 2

[HL05] HUANG J., LING C. X.: Using auc and accuracy in evaluating
learning algorithms. IEEE Transactions on knowledge and Data Engi-
neering 17, 3 (2005), 299–310. 4

[HSR∗18] HAARBRANDT B., SCHREIWEIS B., REY S., SAX U.,
SCHEITHAUER S., RIENHOFF O., KNAUP-GREGORI P., BAVENDIEK
U., DIETERICH C., BRORS B., ET AL.: Highmed–an open platform
approach to enhance care and research across institutional boundaries.
Methods of information in medicine 57, S 01 (2018), e66–e81. 1, 2

[JCHG19] JIN W., CARPENDALE S., HAMARNEH G., GROMALA D.:
Bridging ai developers and end users: an end-user-centred explainable ai
taxonomy and visual vocabularies. In IEEE Vis 2019 Poster (2019). 2

[KCK∗18] KWON B. C., CHOI M.-J., KIM J. T., CHOI E., KIM Y. B.,
KWON S., SUN J., CHOO J.: Retainvis: Visual analytics with inter-
pretable and interactive recurrent neural networks on electronic medical
records. IEEE transactions on visualization and computer graphics 25,
1 (2018), 299–309. 2

[LAS14] LAN R., ADELFIO M. D., SAMET H.: Spatio-temporal disease
tracking using news articles. In Third ACM SIGSPATIAL Int. Workshop
on Use of GIS in Public Health (2014), ACM, pp. 31–38. 2

[LSSW10] LIANG Y., SHI Z., SRITHARAN S. I., WAN H.: Simulation
of the spread of epidemic disease using persistent surveillance data. Sim-
ulation (2010), 1. 2

[MCZ∗17] MING Y., CAO S., ZHANG R., LI Z., CHEN Y., SONG Y.,
QU H.: Understanding hidden memories of recurrent neural networks.
In 2017 IEEE Conference on Visual Analytics Science and Technology
(VAST) (2017), IEEE, pp. 13–24. 4

[MHR∗10] MACIEJEWSKI R., HAFEN R., RUDOLPH S., LAREW S. G.,
MITCHELL M. A., CLEVELAND W. S., EBERT D. S.: Forecasting
hotspots—a predictive analytics approach. IEEE TVCG 17, 4 (2010),
440–453. 2

[MLL∗13] MONROE M., LAN R., LEE H., PLAISANT C., SHNEIDER-
MAN B.: Temporal event sequence simplification. IEEE TVCG 19, 12
(2013), 2227–2236. 2

[MLR∗11] MACIEJEWSKI R., LIVENGOOD P., RUDOLPH S., COLLINS
T. F., EBERT D. S., BRIGANTIC R. T., CORLEY C. D., MULLER
G. A., SANDERS S. W.: A pandemic influenza modeling and visual-
ization tool. J. Vis. Lang. & Computing 22, 4 (2011), 268–278. 2

[PL20] PREIM B., LAWONN K.: A survey of visual analytics for pub-
lic health. In Computer Graphics Forum (2020), vol. 39, Wiley Online
Library, pp. 543–580. 2

[RFG∗17] RIND A., FEDERICO P., GSCHWANDTNER T., AIGNER W.,
DOPPLER J., WAGNER M.: Visual analytics of electronic health records
with a focus on time. In New Perspectives in Medical Records. Springer,
2017, pp. 65–77. 2

[RWA∗13] RIND A., WANG T. D., AIGNER W., MIKSCH S., WONG-
SUPHASAWAT K., PLAISANT C., SHNEIDERMAN B.: Interactive in-
formation visualization to explore and query electronic health records.
Foundations and Trends in HCI 5, 3 (2013), 207–298. 2

[SC08] STEINWART I., CHRISTMANN A.: Support vector machines.
Springer Science & Business Media, 2008. 2

[Sch15] SCHMIDHUBER J.: Deep learning in neural networks: An
overview. Neural networks 61 (2015), 85–117. 2

[SVS∗17] SAHNEH F. D., VAJDI A., SHAKERI H., FAN F., SCOGLIO
C.: Gemfsim: a stochastic simulator for the generalized epidemic mod-
eling framework. J. computational science 22 (2017), 36–44. 2

[TC08] TACCONELLI E., CATALDO M. A.: Vancomycin-resistant ente-
rococci (vre): transmission and control. International journal of antimi-
crobial agents 31, 2 (2008), 99–106. 1

[vLWB∗19] VON LANDESBERGER T., WUNDERLICH M., BAUM-
GARTL T., HÖHN M., MARSCHOLLEK M., SCHEITHAUER S.: Visual-
Interactive Exploration of Pathogen Outbreaks in Hospitals. In EuroVis
2019 - Posters (2019), Madeiras Pereira J., Raidou R. G., (Eds.), The
Eurographics Association. doi:10.2312/eurp.20191133. 2

[WBvL∗19] WUNDERLICH M., BLOCK I., VON LANDESBERGER T.,
PETZOLD M., MARSCHOLLEK M., SCHEITHAUER S.: Visual analysis
of probabilistic infection contagion in hospitals. 2

[WGGP∗11] WONGSUPHASAWAT K., GUERRA GÓMEZ J. A.,
PLAISANT C., WANG T. D., TAIEB-MAIMON M., SHNEIDERMAN
B.: Lifeflow: visualizing an overview of event sequences. In SIGCHI
conference on human factors in computing systems (2011), ACM,
pp. 1747–1756. 2

[YDH∗17] YANEZ A., DUGGAN J., HAYES C., JILANI M., CONNOLLY
M.: Pandemcap: Decision support tool for epidemic management. In
IEEE VAHC (2017), IEEE, pp. 24–30. 2

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

77

http://dx.doi.org/10.1109/BESC.2016.7804480
http://dx.doi.org/10.1109/BESC.2016.7804480
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.2312/eurp.20191133

