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Figure 1: The 33 models of our BRICKS benchmark at the intermediate of the three resolutions provided.

Abstract
In this paper, we discuss the problem of converting a 3D mesh into an assembly of LEGO blocks. The major challenge of
this task is how to aggregate the voxels derived by the shape discretization into a set of standard bricks guaranteeing global
connectivity.
We propose an outside-in priority-based heuristic method based on the analysis of the critical regions that are more likely to
cause the creation of a legal assembly to fail. We show that our graph-building heuristic provides relevant advantages, making
it easier to obtain a connected graph with good properties with respect to the layer-based or random aggregation strategies
applied in most of the optimization approaches.
We also propose BRICKS, a novel dataset for the evaluation of aggregation strategies. It includes voxelizations at 3 different
resolutions of 33 shapes and allows the easy comparison of different voxel aggregation strategies independently of the shape
discretization step and also considering their scalability. We use it to evaluate our approach with respect to graph-based
connectivity measures, showing the advantages of the proposed strategy.

CCS Concepts
• Computing methodologies → Shape modeling; Mesh models; Mesh geometry models; Volumetric models;

1. Introduction

The idea of automatically decomposing a 3D shape into a buildable
assembly of standard LEGO bricks has been proposed in several
research papers [TSP13; LYH*15; LKKM15; LKM18; FDSG21;
KS21]. The problem is typically stated as follows: given the vox-
elization of a 3D model, initialize (1x1) bricks in the voxels’ posi-
tions, then replace these bricks with larger ones from a standard dic-
tionary to obtain a unique and robust connected component. Many
published works show impressive results, providing the automatic

generation of tightly connected and stable assemblies and some-
times color fidelity to the original model for various input meshes.

However, all the methods are based on heuristic optimization
and are hard to evaluate comparatively. They are typically tested
on small proprietary data, including the voxelization step in the
pipeline and optimizing the layout with respect to different sets of
desiderata (connectivity, stability, color, etc.).

In our work, we propose two specific contributions to this field,
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focusing on the voxel aggregation step only with the simple goal of
providing connected assemblies with a limited number of bricks.

First, we propose a new outside-in priority-based heuristic ap-
proach that focuses on merging the bricks that are harder to connect
first. Most approaches are based on random or per-layer initializa-
tion of the LEGO bricks’ layout, not considering existing priors on
the location of critical regions where disconnected components are
likely to be created. We observe that the problems are mostly re-
lated to the difficult connection of the external bricks not attached
to the upper of the lower layer, and we show that, by using our
priority-based approach, it is possible to improve the quality of the
connectivity-based optimization. Second, we propose BRICKS, a
dataset of voxelized shapes that allows the comparison of the ag-
gregation approaches independently on the voxelization step. The
dataset is derived by meshes with different topology and geomet-
rical complexity, and includes voxelizations at three different res-
olutions to test the scalability of the aggregation methods. We use
BRICKS to evaluate the improvements obtained on different con-
nectivity metrics using the proposed approach and also to compare
our results with those provided by the publicly available implemen-
tation of the approach proposed in [TSP13].

Both the BRICKS benchmark and our implementations of the
brick layout generation algorithms discussed in the paper are
available at the link https://univr-vips.github.io/
bricks/.

2. Related Work

Many research works have been dedicated to the development of
methods to build 3D models with assemblies of rigid parts. A recent
survey [WSP21] discusses these works in general. Here we discuss
the scientific papers focused on the approximation of shapes with
standard LEGO bricks.

The first work on this specific topic is probably the one by Gower
et al. [GHP98], where a local cost function maximizing bricks at-
tachment and stability was proposed. The work suggests the evalu-
ation of the bricks overlaps in adjacent layers but does not propose
a practical algorithm.

A complete method was proposed by Testuz et al. [TSP13]. The
algorithm creates the first layout by iteratively selecting random
bricks and aggregating them with the neighbors favoring the merg-
ing that create the most connections. A subsequent graph-based op-
timization selects borders connecting connected components and
weak connections and tries to reconfigure locally the layout.

The method proposed in [LYH*15] also starts from an iterative
aggregation of bricks where the next 1x1 brick to be merged into a
larger one is chosen randomly. Also in these methods, a set of weak
elements is found with graph analysis and an iterative procedure se-
lects randomly a k-ring neighborhood of a random element and per-
forms multiple reconfigurations of this region trying to maximize
the cost function. In this work color and stability-based optimiza-
tion were also considered.

Lee et al. [LKKM15] propose a genetic algorithm creating muta-
tions of initial configurations, based on layer processing. The initial

population is created also in this case with random aggregation, it-
eratively selecting original voxels and extending them locally. The
genetic algorithm is then used to generate mutations and merge and
select the solution minimizing the cost.

In a later work [LKM18], the same authors adopt a similar ran-
dom initialization method with a per-layer approach, optimizing
layers based on a cost depending on the number of bricks in the
current layer, the number of bricks in the lower layer that is con-
nected to each brick and the number of bricks that cover the lower
layer perpendicularly.

A more deterministic initialization of the solution has been re-
cently proposed in [Ste16; KS21]. Stephenson [Ste16] used sev-
eral heuristics to build layers in sequence from bottom to top. The
method searches to minimize, in order of importance, the number
of connected components in the model, the number of undesirable
edges in the model, and the number of bricks in the model.

The method of Kollsker et al. [KS21] also works in subsequent
layers generating 1D strips with alternate directions and merging
them with specified heuristics. Finally, strips are filled with bricks,
here locally optimizing a cost function. A subsequent destroy and
repair procedure is further applied to improve the assembly’s prop-
erties.

Many of these works present nice results on a limited number of
models. However, all the proposed approaches are based on heuris-
tics, and greedy procedures and often depend on layer order. It is
clear that the problem is not solvable in general and global opti-
mization is not feasible, but simple deterministic strategies could
in principle improve the efficiency of the algorithms and the qual-
ity of the results.

The results, on the other hand, cannot be easily compared as a
benchmark to evaluate them is missing.

The largest dataset used to test the brick aggregation approaches
has been used in [Ste16] where 30 models have been used, and in-
teresting outcomes on model features and non-buildable parts have
been discussed. However, the voxelizations are not publicly avail-
able for comparison, and single resolutions have been employed.

For these reasons, we propose two contributions to the research
on this topic, namely:

• a novel outside-in priority-based aggregation procedure that pro-
vides improved layout optimization with reduced complexity

• a dataset of voxelized models that can be used to compare differ-
ent brick layout generation approaches

3. Outside-in priority-based legolization

In our work we consider the legolization problem starting from
an already voxelized shape and considering the possible aggrega-
tion of the smallest 1x1 bricks into a set of legal bricks of sizes
1x2,1x3,1x4,1x6,1x8,2x2,2x3,2x4,2x6,2x8.

A simple observation about the connection of LEGO blocks in an
assembly trying to fill the original model volume is that the major
issues are related to the external parts. It is near the border where
we can have 1x1 blocks/voxels that are not attached to the upper
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and lower layers and we need to ensure that they are merged with
connected, inner blocks.

A reasonable strategy to avoid these issues is to start the aggre-
gation of small bricks into larger ones from the borders, trying to
ensure that external parts are connected to the internal ones. We
decided to implement a strategy of this kind, starting with the ag-
gregation from the outer and the more problematic elements, e.g.
those not connected with the upper and lower layers. Different from
the other approaches trying to optimize the layout while creating
the initial aggregation (e.g. [Ste16; KS21]) we don’t want to use a
layer-by-layer procedure, but rather adopt a global approach.

In our formulation the LEGO assembly is characterized by two
graphs: one is the attachment graph, describing the connections be-
tween bricks created by studs, and the other is the layer adjacency
graph, where the arcs join the bricks that have a contact surface on
a layer. The first graph determines the connectivity of the assembly,
and the second the potential couples of bricks that could be merged.

When a voxelization is created and filled with 1x1 blocks, the
attachment graph links bricks with the corresponding ones in the
upper and lower layers (if they exist), the layer adjacency graph
links with the existing elements in the 4-voxels neighborhood of
the same layer. The idea of our method is to use the graphs not
only to define a cost function to make the attachment graph more
connected but also to define a priority queue selecting the bricks to
be merged in a deterministic way.

Figure 2: Let’s consider, for example, an initial two-layer voxeliza-
tion with a top layer with 4 1x1 bricks (1-4) and a bottom layer with
4 1x1 bricks (5-8) supporting only part of the upper one. The blue
node-arc plot (middle column) represents the corresponding adja-
cency graph, while the orange plot represents the corresponding
attachment graph

Figure 2 shows an example of simple voxelization. The initial
layers/bricks are shown in the left column, the adjacency graph in
the middle column and attachment graph in the right one. The ag-
gregation of the bricks in larger ones should start from a couple of
neighboring bricks, e.g. from an arc of the adjacency graph. Let us
consider the upper layer: three pairs of bricks could be merged (1-
2,2-3,2-4). However, if we start merging a random pair, we would
probably result in a final disconnected result, as it happens in two
of the three cases (2-3,2-4). The critical point is the connection of
brick 1 which is not linked in the attachment graph and has just a
single connection in the adjacency graph.

Our solution is to adopt a priority-based aggregation, based on
the local connectivity of the two graphs. We manage the priority

queue globally, avoiding biases related to the layer-based aggrega-
tion methods (proposed, for example in [LKM18; KS21]).

The two graphs are initialized from the 1x1x1 bricks, as in the
example of Figure 2. Each brick is assigned a priority value of:

ρ(n) = ω1 ∗ I(n)+ω2 ∗deg(n,Gat)+ω3 ∗deg(n,Gad j) (1)

where I(n) is a function that determines whether the node n is on
the border of the layout, deg(n,Gat) and deg(n,Gad j) are, respec-
tively, the degrees of the node n in the attachment and adjacency
graph. Furthermore, the weights ω1,ω2,ω3 are chosen so that the
latter terms are considered only in the case of equality among the
previous ones. The same weights were used in all the results re-
ported in this paper.

This priority is exploited in the iterative algorithm that merges
the smaller blocks into larger ones (Algorithm 1). The algorithm
tries to merge the existing bricks with neighbors, trying first to
merge them with 1xN bricks of increasing length and then with
2xN bricks of increasing length.

For each of these increasing sizes, the aggregation is based on a
priority queue determined by the values ρ(n) assigned with Equa-
tion 1. As there can be many bricks with the same value, every
time we generate the queue we add small random perturbations to
remove biases in the aggregation behavior.

After the node to process is selected, the algorithm looks for the
best neighbor to merge it with in the adjacency graph. If there is
more than one neighbor that can be merged creating a valid brick,
the preference is given to the one with the highest value of ρ(n).
If multiple nodes have the same priority, the preference is based
on the preferred direction associated with each layer. In fact, given
the initial voxelization, we associate a preferential direction to each
layer, alternating between adjacent layers (e.g. odd layers: vertical,
even layers: horizontal). This is done by starting from the layer
with the maximal footprint and associating to it the direction of
maximal elongation, and then iteratively associating perpendicu-
lar directions to the neighboring layers to facilitate the orthogonal
crossing of bricks. Lastly, if multiple bricks respect the directional-
ity constraint, or if none does, a random selection is performed.

To compare our priority-based solution with the classical ran-
dom aggregation of bricks, we implemented a different version of
the code where the priorities are randomly generated. This should
make the initial aggregation results similar to those obtained by the
methods of [LYH*15; LKM18].

The fact that the priority-based solution provides better results is
clear just by looking at the toy examples in Figures 3 and 4.

However, the methods based on random aggregations usually
perform multiple initializations and then refine the initial results by
iteratively reassembling the weaker parts trying to optimize a local
cost function maximizing the connectivity. We, therefore, imple-
mented an iterative optimization procedure of this kind to evaluate
the effects of our approach in the complete framework.
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Figure 3: After the first iteration of the priority-based selection
on the initial configuration in Figure 1, brick 1 is selected for its
highest priority and merged with brick 2. The adjacency graph has
now two links in the top row, and only one (green) can result in a
legal merging, while the red link represents a merging that would
result in a non-existing LEGO brick.

Figure 4: A random selection of the first brick to merge (here 2 with
4 may lead to a non-connected and not mergeable configuration
of the top layer (any merge would create an L-shaped brick not
included in the dictionary)

3.1. Iterative reassembly of weak parts

The method we use to perform an iterative reassembly of selected
weak parts is similar to the one used in [LYH*15] and is shown in
Algorithm 2. We focus on the reassembly of the layout wherever
multiple components form in the attachment graph, i.e. a subset
of LEGO bricks are not attached to the rest of the construction.
From our experiments, this always happens on the outer shell of
the constructions, and these components are typically composed of
a small number of bricks.

An important aspect to consider is that there is no guarantee that
a connected layout exists, and thus no guarantee of convergence can
be given in this step. To prevent infinite loops, we limit the number
of iterations done at this step up to the number of the connected
components plus an additional constant (20 was used for all the
results presented in the paper).

The algorithm repeatedly selects one of the connected compo-
nents, except the biggest one that is assumed to be the main body
of the construction, places a window of size X×Y ×Z, replaces all
the bricks that intersect this window with 1x1 bricks, and repeats
the Algorithm 1.

To reduce the probability of the algorithm looping over the same
connected components, generating the same layout and thus never
converging, we introduce a few random factors. The dimensions X,

Algorithm 1 Brick merging

procedure BUILD_LAYOUT(Gat ,Gad j)
for t_shape ∈ [1x1, · · ·, 1x4, 1x6, 1x8, 2x2, 2x3, 2x4] do

pq← INIT_PRIORITY_QUEUE(Gat ,Gad j)
while pq ̸=∅ do

ν← SELECT_NODE(pq)
N← NEIGHBORS(ν)
for f ∈ [feasibility, priority, direction, random] do

N← FILTER(N, f )
if N =∅ then

break
else if N = {n} then

ν
′← MERGE_NODES(ν,n)

REMOVE_NODE(n, pq)
INSERT_NODE(ν′, pq)
break

end if
end for

end while
end for

end procedure

Algorithm 2 Connected component merging

procedure MERGE_COMPONENTS(Gat ,Gad j)
τ← 0
while τ < τM and |COMPONENTS(Gat )| > 1 do

τ++
C← RANDOM_COMPONENT(Gat ) ▷ This never yields

the biggest component
b← RANDOM_PICK(
{β|β ∈C∧∃α : (β,α) ∈ Gad j ∧α /∈C})

B← NEARBY_BRICKS(b, RANDOM_SIZED_WINDOW)
DISASSEMBLE_GRAPHS(B,Gat ,Gad j)
BUILD_LAYOUT(Gat ,Gad j)

end while
end procedure

Y, and Z of the window are chosen randomly among the set {5,7}
for X and Y, and between {3,5} for Z. Additionally, the center is
placed randomly over one of the bricks comprising the component
that is also adjacent to one brick of another connected component.
Lastly, the selection of the connected component to be processed is
also random.

4. Evaluation dataset: BRICKS

As we discussed before, previous works are tested on a limited
number of models, and every work proposes its own models and
evaluation functions. While this can be beneficial to evaluate very
specific use cases, we argue that a more standard approach to both
the dataset and the objectives would be highly beneficial and im-
prove the ability to compare different approaches when the imple-
mentation is not publicly released.

Our goal is to evaluate how the methods implemented for the
block aggregation behave on the same voxelization, measuring the
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connectedness of the resulting block graph, and the complexity of
the method scales with the growing number of voxels.

We therefore created BRICKS ( https://univr-vips.
github.io/bricks/ ), a public dataset composed of voxelized
models at three different resolutions that roughly correspond to rea-
sonable scales of model reproduction.

The dataset is built from 33 shapes, of which we provide the
three dense matrix representations for the voxelizations, the three
dense matrices of only the voxels intersecting some mesh’s trian-
gle, and an appropriately scaled mesh for each resolution so that
the mesh scale matches the lego structure when the voxels are con-
verted to bricks with standard dimensions (8x8x9.6 millimeters).
A .csv file containing some statistics of the voxelizations is also
provided.

The models are a hand-selected subset of the dataset from
[PNA*21]. After the selection, we remeshed all the models that
were not manifold, and then manually rotated them to have the ex-
pected z axis direction for practical building.

The orientation along the brick x and y directions (e.g. voxeliza-
tion x and y directions) are chosen with an optimization criterion,
so as to possibly align the flat parts of the objects to the directions
of the bricks. For this goal, we employ a voting approach. Each tri-
angle of the mesh casts a weighted vote for a specific angle formed
by the projection of its normal on the xy plane and the x-axis. The
projected normal also defines a plane, perpendicular to the xy plane
by construction, and the projection of the triangle’s area onto this
plane is taken as the weight of the vote. In this way, we weigh more
the votes of large vertical triangles and decrease the importance of
almost horizontal ones. We use a kernel density estimation to ex-
tract a continuous distribution from the votes, taking care of the
cyclic behavior at the boundaries. Finally, we extract the maximum
of the function and use it to align the mesh along the x-axis of the
discretization grid with a simple rotation.

To define LEGO models of different sizes, we finally scale the
meshes to three different target volumes, so that, using the standard
voxel grid with elements of 8x8x9.6 millimeters, we generate three
different voxelizations with a different number of elements. The
target volumes are .7, 7, and 70 liters, that roughly correspond to
an average of 2k, 15k, and 130k voxels for the low, medium, and
high resolution respectively.

Examples of selected meshes and related voxelizations are
shown in Figure 5. All the voxelizations at the intermediate res-
olution are represented in Figure 1.

5. Results

Using BRICKS, we try to assess the effectiveness of the Outside-in
Priority-based (OP) aggregation in providing a better initialization
of the elements’ layout. We hypothesize that it could lead not only
to a better initial layout but also to faster convergence to a con-
nected and buildable assembly.

The metrics used to assess the quality of the assembly are, for
the tests presented in this paper, only based on the number of the
connected components created, the number of bricks, and the node

(a) Mesh (b) 1846 voxels (c) 14418 voxels (d) 127319 voxels

(e) Mesh (f) 3217 voxels (g) 20919 voxels (h) 157075 voxels

(i) Mesh (j) 1968 voxels (k) 14871 voxels (l) 129580 voxels

(m) Mesh (n) 1899 voxels (o) 14697 voxels (p) 128809 voxels

Figure 5: Examples of original mesh and the related voxelizations
at three different resolutions with the 1x1 brick x/z ratio.

connectivity of the attachment graphs. As the computational com-
plexity of the node connectivity estimation is high, we considered
a sampled node connectivity selecting, for each voxelization, 10
pairs of voxels and estimating the average node connectivity on
these pairs only. A proper measure would require testing all the
pairs of nodes in the graph and then averaging the results, but this
is computationally unfeasible for our graphs

In this work, we don’t use optimization methods based on forces
or stability and therefore we don’t evaluate related values. We plan
to add such methods and the related evaluation metrics in future
work, as they can be added without changing the models included
in BRICKS.

Here we first compare the quality and the computational cost
of the initial layouts obtained with a repeated random aggregation
and the OP-based layouts and then we show how the results are
improved with the iterative reassembly.

5.1. Layout initialization, random vs OP

For all the 99 voxelizations of BRICKS, we performed multiple
runs of the random and OP-based aggregation initialization. The
results are shown in Table 1. In detail, the table reports the av-
erages on the 33 models at the different resolutions of the aver-
age computation times of the repeated runs, the average number
of connected components obtained and the average number of the
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connected component in the best of the repeated runs (where the
best result is defined as the one with the lowest number of con-
nected components and blocks), the average number of bricks in
the different runs and the average number of bricks in the best run
of each model, the Sampled Node Connectivity (SNC) averaged
for all the runs and for the best runs, and the percentages of shapes
where the initialization step obtains a single connected component
( % success).

It is possible to see that on average, the results of a run of the OP
aggregation results in a lower number of connected components
and bricks.

Regarding the bricks’ number, the averages are, respectively
12972 and 9484, with an average improvement of 24% with OP.

The average number of connected components obtained with
random and OP aggregations are 7.6 and 1.7 respectively, with an
average improvement of 64% with OP.

The box plots in Figure 6 show the distributions of numbers
of connected components obtained with the random and OP ap-
proaches. The difference is large and becomes larger with the num-
ber of blocks. Furthermore, as shown in Figure 7 even comparing
the number of connected components of the best layout generated
by the two methods, reveals a pronounced superiority of the OP
method

Figure 6: A box plot representing the number of connected compo-
nents generated by the two methods.

A further justification for the use of the OP approach can be
obtained by analyzing the characteristics of the connected compo-
nents obtained by the simple runs of the aggregation approaches.
Table 2 shows the statistics of these secondary components for all
the runs performed with the two methods. It turns out that the re-
sults are always composed of a large principal component and a
set of very small detached ones all lying at the shape borders. In
Figure 8 we show an example of construction generated with the
random approaches with the detached components highlighted in
different colors.

Interestingly, while the OP method produces on average fewer

Figure 7: A box plot representing the least number of connected
components generated by the two methods for each model over the
course of 10 runs.

Figure 8: Rendering of a brick assembly created from the medium-
resolution Pegaso voxelization. There are many small connected
components (on average 16 in our tests with this model) not at-
tached to the main one, here highlighted in red.

components, the size of these components is slightly larger. This is
because the OP method starts from the outside, thus creating larger
external bricks that, when disconnected, create larger components
than the ones generated from the random approach. However, given
how small the components are in both cases, their dimensions be-
come an irrelevant factor against their number, which instead de-
termines how many merging iterations will be necessary, and how
much time will be spent on fixing them.

The box plots in Figure 9 show the distributions of the sum of
the number of voxels in the secondary components generated by
the random and OP approaches. Similar to the number of connected
components, their differences become more pronounced as the res-
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Method Time Avg.bricks Best bricks Avg.CC Best CC Avg. SNC Best SNC % success
random 0.45 s 542.6 531.8 4.1 3.5 2.96 3.53 25.7%

Lo-res
OP 0.39 s 446.6 441.1 1.7 1.3 2.69 3.09 62.8%
random 4.76 s 4039.2 3983.1 6.6 4.2 3.61 3.63 13.3%

Mid-res
OP 4.08 s 2982.0 2957.9 1.9 1.4 3.69 3.47 61.9%
random 141.6 s 34335.5 33853.0 12.3 9.3 4.11 3.88 3.0%

Hi-res
OP 114.8 s 25023.8 24925.8 1.6 1.3 4.74 4.74 66.0%

Table 1: Averages grouped by resolution and method, of the aggregation metrics estimated on 10 repeated runs performed on all the
voxelizations included in the BRICKS dataset.

Execution type Bricks per component Voxels per component Outside percentage
Random 1.7 4.1 100%

Lo-res
OP 1.2 3.4 100%
Random 1.5 3.1 100%

Medium
OP 3.0 10.6 100%
Random 1.4 2.3 100%

High
OP 2.5 9.7 100%

Table 2: For each resolution and algorithm we report the average of the number of bricks and voxels in the non-maximal connected compo-
nents, and the percentage of components with at least one voxel on the surface of the model.

olution increases. Figure 10 shows instead the average number of
voxels in the secondary components. The OP approach tends to
produce few enough that the boxes are flattened at 0.

Interestingly, both Figure 9 and 10 show an evident outlier in
the OP method, that reaches 266 voxels total among 7 secondary
connected components. We show a result obtained on this model
in Figure 11. We can see how the OP method fails at connecting
the thin bridges present in the model to the main body, resulting
in several connected components. However, the iterative reassem-
bly discussed in Section 5.2 can generate a connected layout even
starting from these configurations.

Figure 9: A box plot representing the total number of voxels in
the secondary connected components of the best layouts generated
over the course of 10 runs.

Another interesting fact is that even the OP approach not only

Figure 10: A box plot representing the average number of voxels in
the secondary connected components of the best layouts generated
over the course of 10 runs.

creates better initial layouts thus reducing the further optimization
times, but it is intrinsically faster than the random one. Looking
at Table 1, we see that the average execution time for the random
method is 48.9 seconds, while for the OP is 39.8 seconds, with a
15% average time saving, statistically significant (p = 2.2×10−10

in a paired t-test).

The elapsed time is heavily dependent on the number of vox-
els, as shown in Figure 12. Computing the averages for the three
different resolutions still shows that the OP method is consistently
faster than the random one. In this case, the time averages of the OP
and random approaches for the low, medium, and high resolution
respectively are 0.45, 4.8, and 141.6 (0.39, 4.1, and 114.9) seconds.
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Figure 11: Rendering of the worst result for the OP method in
terms of voxels belonging to secondary connected components. The
method fails to connect the thin bridges to the main body, although
the optimization process is able to merge them into a single com-
ponent.

Figure 12: A box plot representing the elapsed times to create a
layout for the different resolutions.

Furthermore, in Figure 13 we show the average number of bricks
used in the layouts created by both methods. We can see how the
OP approach is consistently able to use fewer bricks, especially
at the higher resolutions. Analyzing only the best layouts gener-
ated improves slightly the random results, but it is still far from the
numbers of the OP method, as shown in Figure 14.

Lastly, we discuss the sampled node connectivity results. After
the building procedure, the node connectivity is 3.56 and 3.71, for
the random and OP approaches. The difference is statistically sig-
nificant with p= .007. However, when we analyze the different res-
olutions independently, we find that for low resolution the results
are better for the random approach (2.96 and 2.69, p = 8×10−8).
Considering the medium resolution we lose significance(3.61 and
3.69, p= .34), but at the highest resolution available the OP method

Figure 13: A box plot representing the average number of bricks
used for the layouts.

Figure 14: A box plot representing the number of bricks used for
the best layouts.

produce the best results (4.10 and 4.74, p = 2× 10−9). Not sur-
prisingly, performing a 2 way ANOVA reveals that the approach,
resolution, and their interaction all have p < .05.

5.2. Iterative reassembly of the layouts

The OP method is thus able to create better layouts in terms of the
number of bricks and connected components, and do this while also
being faster than the random method. To prove that this advantage
still carries over when an iterative improvement scheme is applied,
we measured the same metrics after the execution of the iterative
reassembly described in Section 3 on the results of the layout ini-
tialization tests described in Section 5.1. We report the result in
Table 3.

We limited our test to the iterative reassembly of the regions
around boundaries joining disconnected regions until the connected
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Starting layout Time Avg bricks Avg. CC Average SNC
random 0.89 s 523.3 1.0 3.03

Lo-res
OP 0.28 s 444.3 1.0 2.71
random 12.5 s 3890.3 1.0 3.65

Mid-res
OP 3.1 s 2972.3 1.05 3.70
random 274.2 s 33075.4 1.04 4.18

Hi-res
OP 27.3 s 24997.9 1.04 4.75

Table 3: Efficiency and quality of the results (averaged for the different resolutions and methods) obtained starting from the initialization
tests described in Section 5.1 after a subsequent iterative reassembly.

result is achieved or the algorithm reaches a maximum number of
iterations (in all the results reported in this paper, we set it to 20
more the number of connected components).

Our goal is to show that the OP approach is faster and provides
a better solution. Clearly, in both cases, the result can be refined
further by performing an iterative optimization using any kind of
cost function.

Given the different initial numbers of connected components for
the two approaches, it is not surprising that the average number of
iterations executed is significantly different (6.8 for random initial-
ization versus 1.6 for OP, with the last method providing 80% fewer
iterations), resulting in a faster convergence to a single connected
component (95.9 versus 10.2 seconds, 84% faster). A more com-
plete graph with the distributions of the average time necessary to
run the optimization is shown in Figure 15.

Figure 15: A box plot representing the average time spent by the
optimization procedure.

It is interesting to note that the single connected component is
obtained in almost all the cases, with a negligible amount of excep-
tions.

Analyzing the results, it is possible to see that all the voxeliza-
tions but one can be filled with single connected components of
attached LEGO bricks. In very few cases the optimization fails to
obtain the connected results, while for a single model this result is
impossible.

The single model that is not buildable with standard LEGO
bricks and inevitably causes the optimization to fail, regardless of
the initialization, is the dragonstand model on the high resolution.

The impossible configuration of bricks causing this problem is
highlighted in Figure 16, in which two voxels are only adjacent to
a third one, but do not form a valid LEGO brick if all are merged.

Figure 16: Close-up of the impossible configuration in the drag-
onstand model. The two highlighted voxels compete for the same
support.

The iterative fix of the connectivity clearly does not change rele-
vantly the brick number, so that the difference between the OP and
the random initialization remains the same. This means that, in or-
der to obtain a similar number of bricks with the random method,
a further optimization step with the related time complexity should
be applied. The distribution of the number of bricks is shown in
Figure 17, where it is clear that even after the optimization the lay-
outs derived by the random layouts can not match the number of
bricks used by the OP method, and the difference is quite large and
statistically significant.

Finally, we discuss briefly the effects on the sampled node con-
nectivity of the graphs.

After the improvement algorithm is applied, the average of the
node connectivity seems to slightly favor the heuristic starting lay-
out, but p = .07. Furthermore, when applying a 2 way ANOVA to
the data, we find that starting from the random or heuristic layout
has a statistically significant effect only when combined with the
resolution.

These results show that the OP approach gives large advantages
with respect to the random initialization. Even starting with several
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Figure 17: A box plot representing the average number of bricks
used for the layouts after the optimization is performed.

random configurations and considering the best results, the number
of blocks will result larger than the one obtained with the OP strat-
egy, and the time complexity higher. And the cost of the creation of
several random layouts for large models is quite high, as shown in
Table 1.

5.3. Comparison with alternative methods

In order to further evaluate our approach, we tested the Brickr
method by [TSP13] on the Bricks dataset. For both methods, we
performed ten runs on each model and then averaged the results,
which are shown in Table 4. The first thing to notice is that both
approaches achieve almost always a single connected component,
with a minimal number of exceptions. The differences in the two
methods are however noticeable in the times and number of total
bricks.

However, it’s important to note that our approach is implemented
in Python, while Brickr is implemented in C++. As a consequence,
any time comparison is inherently flawed, and when considering
the two languages’ performances [LCSY22], we could even expect
our algorithm to perform better than Brickr. On the other hand, the
numbers of total bricks are easily comparable, and we see that in
the medium and high-resolution models we use on average 10%
fewer bricks, as shown in Figure 18.

Method Time Bricks Conn. comp.
Brickr 0.13s 449.2 1.00

Lo-res
OP 0.67s 444.3 1.00
Brickr 0.81s 3269.5 1.00

Medium
OP 7.18s 2972.3 1.05
Brickr 26.02s 27963.9 1.03

High
OP 142.12s 24997.9 1.04

Table 4: For each resolution we compare the performances of our
OP method versus Brickr [TSP13].

Figure 18: A box plot representing the average number of bricks
used for the layouts by our OP method and by Brickr [TSP13].

6. Discussion

The creation of well-connected assemblies of LEGO bricks (or
other similar elements) is certainly an extremely challenging prob-
lem, with potential applications, not only for artistic purposes, as
shown, for example, in [MMG*14]. The problem is not solvable
in general and global optimization techniques are not feasible due
to the excessive complexity. Many completely different heuristics
to build configuration and iteratively increase the connectivity or
the physical properties of the results. We suggest that an assem-
bly strategy based on a graph-based brick merging using a globally
defined priority privileging the fusion of external and non-attached
bricks may provide faster and better results.

To evaluate quantitatively the performances of the heuristics pro-
posed, we also introduced a specifically designed dataset, BRICKS,
that allows an objective comparison according to different quality
metrics as well as their performances and scalability.

We plan in future work to exploit the dataset to evaluate different
kinds of optimization tasks, also related to different connectivity
measurements, stability, and forces.

Additionally, an interesting task partially explored by
[MMG*14] is the generation of mixed constructions of stan-
dard LEGO bricks and 3D printed pieces that conform to the
model surface and have holes and studs to attach to the LEGO
pieces. This could allow for a more faithful representation of the
object at the lower resolutions and is ideally easily obtainable
with boolean operators. However, many intersections between
the bricks and the surface might be ill-formed and thus require
additional merging, and the resulting pieces might be unnecessarily
large (thus being slower and more wasteful to 3D print). Taking
these constraints into consideration since the layout building could
lead to a more efficient and better result.
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