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Abstract
Structured-light methods remain one of the leading technologies in high quality 3D scanning, specifically for the acquisition of
single objects and simple scenes. For more complex scene geometries, however, non-local light transport (e.g. interreflections,
sub-surface scattering) comes into play, which leads to errors in the depth estimation. Probing the light transport tensor,
which describes the global mapping between illumination and observed intensity under the influence of the scene can help
to understand and correct these errors, but requires extensive scanning. We aim to recover a 3D subset of the full 4D light
transport tensor, which represents the scene as illuminated by line patterns, rendering the approach especially useful for
triangulation methods. To this end we propose a frequency-domain approach based on spectral estimation to reduce the
number of required input images. Our method can be applied independently on each pixel of the observing camera, making
it perfectly parallelizable with respect to the camera pixels. The result is a closed-form representation of the scene reflection
recorded under line illumination, which, if necessary, masks pixels with complex global light transport contributions and, if
possible, enables the correction of such measurements via data-driven semi-automatic editing.

CCS Concepts
• Computing methodologies → Shape inference; Reconstruction;

1. Introduction
Structured light methods are one of the go-to solutions in current
3D scanning setups, ranging from use cases in standard shape ac-
quisition for digitization to embedded systems for industrial au-
tomation and virtual reality. The underlying working principle re-
lies on establishing the correspondence between camera pixels and
the sub-pixel locations of the illuminating projector pixels. We ac-
quire a 3D representation of an unknown scene by projecting illu-
mination patterns onto the scene and acquire the reflectance with a
camera. The scene geometry thereby distorts the illumination pat-
tern and hence encodes the underlying structure. As active illumi-
nation is used in structured light setups, a controlled generation of
correspondences is possible, allowing to extract the encoded 3D in-
formation via triangulation of pixel-pixel or pixel-line pairs. To this
end, a large variety of patterns have been developed, ranging from
simple linesweep illumination, where one captures the projection of
a single line of projector pixels, to binary codes to reduce the num-
ber of required acquisitions, to phase shifting methods [SFPL10]
that rely on the use of fringe patterns with continuous intensity
variation for subpixel accuracy. These methods all share the de-
sire to reduce the acquisition time and number of recorded images
as well as to increase the depth resolution [Zha18]. These avali-
able systems often rely on the assumption that an observed scene
point reflection uniquely maps to direct illumination from the light
source, implicitly requiring diffuse materials to dominate the scene.
Real-world scenes often times violate this assumption: The incom-

ing illumination of a 3D scene point originates not only directly
from a certain projector pixel but is perturbed by complex light
transport effects such as subsurface scattering, interreflections or
volumetric scattering, adding a so-called global component to each
camera pixel intensity. Considering the required camera-projector
correspondences for triangulation this leads to severe problems as
the mapping no longer is unique, which can lead to large errors
in the recovered shape. To mitigate this undesired effect, a num-
ber of approaches has been developed which aim at reducing or
completely removing the global component, either by introducing
additional hardware [XZJ∗19], by carefully choosing suitable illu-
mination patterns [CSL08,GAVN11], or both [CLFS07]. Instead of
trying to remove the global component, we aim to explicitly capture
all available information in a way that is most suited for 3D recon-
struction via triangulation. In theory, this is given by pixel-pixel
correspondences via measuring the camera-pixel reflectance per
projector pixel, yielding the full 4D light transport tensor. Alterna-
tively a standard linescan procedure can be performed, for which a
lower number of acquisitions is needed. Still, both methods require
extensive measurement and/or computational effort. Our method on
the other hand relies on a phase-shifting approach based on a small
number of sinusoidal illumination patterns with specifically chosen
frequencies. This allows us to employ a closed-form reconstruction
scheme to estimate a 3D subset of the light transport tensor, which
resembles a dense linesweep illumination yielding a pixel response
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per camera pixel. With this we obtain a functional dependence of
the camera pixel intensity based on the linesweep position. By ex-
plicitly reconstructing the linesweep light transport tensor from the
sparse measurements, we are able to perform an in-detail analysis
of global illumination effects and to choose the most likely corre-
spondence as well as perform a data-driven semi-automatic refine-
ment procedure.

2. Related work
In this related work section we focus on structured light meth-
ods for complex scenes, such as those containing large amounts
of global illuminations or translucent materials. For a more con-
cise review about the state-of-the art in structured light tech-
niques we refer the reader to the reports of Salvi et al. [SFPL10]
and Zhang [Zha18]. We also consider time-of-flight (TOF) tech-
niques related to our approach. In particular, there exists a sub-
class of TOF approaches that aim to correct for non-direct illumi-
nation [WOV∗12,HHGH13,KWB∗13,FSK∗14,PKHK15] by esti-
mating the time-resolved reflectance profile per pixel. These tech-
niques then allow to separate the direct and global component in the
time domain, whereas our approach focusses on the spatial domain
to do so.

2.1. Phase shifting
Continuous coding by phase-shifting based on sinusoidal illumina-
tion patterns is a well known technique used in structured light ge-
ometry acquisition [SFPL10]. A common setup consists of a digital
projector, which projects a series of phase-shifted sinusoidal pat-
terns onto the scene, and a camera that captures the reflected light.
Ideally, phase information is extracted for each camera pixel, en-
coding the camera-projector pixel correspondence. For higher ac-
curacy usually multi-frequency measurements are performed, for
which phase unwrapping is required. Our method inherently re-
lies on a multi-frequency phase-shifting approach with sinusoidal
illumination patterns to acquire the trigonometric moments of the
scene per camera pixel.

2.2. Shape estimation under global illumination
3D shape acquisition based on structured light setups relies on the
detection of direct reflections of the illumination. The global com-
ponent is caused by subsurface scattering, interreflections, and am-
bient light and can strongly affect and perturb the acquired corre-
spondences, which can lead to severe errors in the shape estima-
tion [GBR∗01]. Key to many applications is to remove or mitigate
the global component, either by careful choice of illumination pat-
terns or by hardware modifications.

One of the first to acquire shape in the presence of global il-
lumination were Nayar et al. [NIK91], who presented an iterative
approach for Lambertian objects. Chandraker et al. [CKK05] esti-
mate 3D data using a shape-from-shading technique. Shape-from-
shading is also used by Chen et al. [CGS06], who employ an in-
teractive photometric method to obtain specular reflections. Modi-
fications of the measurement procedure were proposed by Park et
al. [PK08], who move the camera for global illumination mitiga-
tion. More recently, Fanello et al. [RFRT∗16, FVR∗17] used learn-
ing techniques to estimate disparity maps from infrared structured

light data and augmented stereo vision systems respectively. Both
approaches effectively learn disparity maps and yield very efficient
high accuracy depth reconstruction for standard (not translucent)
materials.

A milestone with respect to phase-shifting-based structured light
is the work of Nayar et al. [NKGR06], who showed that high-
frequency illumination patterns can be used to effectively separate
the direct and global component. Talvala et al. [TAHL07] remove
glare from high dynamic range images using Nayar’s separation ap-
proach by selectively masking light that generates the glare. On the
other hand, Nayar’s direct-global separation technique was intro-
duced to structured light systems by Chen et al. [CLFS07], who
combine it with a polarization difference imaging (PDI) acqui-
sition step. As multiple scattering events depolarize the reflected
light [HvdH81, SNN03, SK05], this provides an additional filter to
reduce the global component. Afterwards, Chen et al. [CSL08] pro-
posed a modulated illumination signal for improved reduction of
the global component. Similarly, Holroyd et al. [HL11] proposed
an active multi-view stereo technique with high-frequency illumi-
nation that is invariant to global illumination. Ma et al. [MHP∗07]
extended the idea of PDI in conjunction with a shape-from-shading
approach to use circularly polarized spherical gradient illumination
for the recovery of translucent objects.

2.3. Pattern optimization and light transport acquisition
The aforementioned techniques rely on the elimination of the
global component, combined with mostly off-the-shelve shape ac-
quisition techniques acting on the remaining, direct component. In
contrast, Gupta et al. [GAVN11] combine the complementing prop-
erties of Gray codes and logical codes for depth measurement. We
consider this approach closely related to the idea of moment-based
structured light, although our method reconstructs a continuous
pixel response that contains more information than a binary coded
pattern. Also connected to our approach are methods that try to ac-
quire the full reflectance field of a scene, such as [SCG∗05, SD09]
who use this concept for dual photography. In the context of shape
acquisition, light transport analysis has been successfully used to
estimate shape and surface normals under the assumption of Lam-
bertian surfaces [LNM10]. Reddy et al. [RRC12] perform a direct-
global separation based on frequency domain considerations. More
recently, O’Toole et al. [OMK14] showed that 3D shape acquisition
greatly benefits from light transport analysis. Despite being very ef-
ficient, their approach relies on special hardware that is capable of
high-speed acquisition and modulation.

Our approach extends the capabilities of existing phase-shifting
methods without the overhead of additional hardware components.
Instead, we rely on a frequency-domain approach to reduce the
number of required input images and perform spectral estimation
to recover a scene response that encodes the pixels’ reflected in-
tensity in the presence of a linesweep illumination. This approach
has three major advantages: First, a linesweep illumination renders
our approach specifically suited for triangulation as we directly en-
force camera-projector pixel correspondences. Second, we require
only a small fraction of the number of acquisitions compared to a
conventional linesweep. Furthermore, we show that by explicitly
recovering the 3D (linesweep) light transport tensor we are able
to reliably separate direct from global components and refine our
results by applying a data-driven editing technique, which substan-
tially improves the resulting depth map quality.
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Figure 1: Example images acquired with our illumination proce-
dure. We use sinusoidal illumination patterns with different fre-
quencies ranging from ν = 1(left) to ν = 4 (right) and acquire
images for four equi-spaced phases in the range [0,2π] (a, b, c,
d).

3. Phase shifting for structured light

Projecting a sinusoidal pattern onto a scene allows a unique map-
ping between camera pixel and projector pixel: Each point along
a line across the sinusoid can be assigned a specific phase value.
Non-flat geometry within the scene will deform this pattern, yield-
ing a phase deviation in a recorded image which encodes the un-
derlying 3D shape. A decoding step that matches the deformed and
originally projected patterns then allows a phase retrieval. To this
end, the N-step phase shifting is used where subsequent captures
of shifted versions of the projected pattern are performed, usually
with K equally spaced phase shifts δϕ = 2π/K. The illumination
signal of a projector pixel (m,n) can then be described as

Ik(m,n) =
1
2
[cos( j ·ν+δϕk)+1] ; δϕk = k ·2π/K, (1)

where j denotes an integer multiple of the frequency ν and k the
k-th phase shift. To express the light transport within a scene, it
is common to consider the 4D light transport tensor which can be
understood as a density ρ(x,y,m,n), where (x,y) are coordinates
in the camera system denoting the respective camera pixels and
(m,n) with m ∈ [0, . . . ,M], n ∈ [0, . . . ,N] the corresponding projec-
tor pixels. In other words, this tensor maps the illumination inten-
sity present at pixel (m,n) (or any superposition of multiple pixels)
of the projector to the received intensity value at the camera pixel
(x,y), thus encoding the full light transport within the scene. For a
single phase shift δϕk and fixed j the measurement procedure then
acquires the camera pixel intensity

Ik(x,y) =
∫ M

0

∫ N

0
Ik(m,n)ρ(x,y,m,n)dmdn

=
1
2

∫ M

0

∫ N

0

[
cos( j ·2π

n
N

+δϕk)+1
]

ρ(x,y,m,n)dmdn

(2)

which is the convolution of the light transport tensor and the active
illumination, containing all the global light transport effects and
we assumed the base frequency ν = 1 along the (horizontal) n-axis
of the projector. In the structured light literature, the density ρ is
usually split into a global and direct part ρG and ρD where the direct
part maps exactly one camera- to one projector-pixel and the result
of Eq. 2 for a single frequency j is often written as [CLFS07]

Ik(x,y) =
1
2
[Ld(x,y) · cos(Φ(x,y)+δϕk)]

+
1
2
[Ld(x,y)+Lg(x,y)] (3)

where Ld denotes the direct reflection obtained from ρD, depending
on the phase Φ(x,y) of the surface point observed in camera pixel
(x,y), encoding the surface point’s local geometry. Lg on the other
hand is the global component, which is independent on the phase
and originates from ρG. With at least three different, equally spaced
phase shifts δϕk the global and direct components can then be sep-
arated and the phase Φ(x,y) can be estimated, yielding point cor-
respondences for triangulation, see [SFPL10, CLFS07] for a more
detailed explanation.

It is clear that the full knowledge of the 4D light transport ten-
sor would yield insight into the global illumination effects present
within the scene, regardless of their physical origin, as Lg could be
computed and corrected for. The measurement of this tensor, how-
ever, is either costly in terms of acquisition time [SCG∗05] and data
storage or requires extensive numerical reconstruction [SD09], ren-
dering it unfeasible for shape acquisition techniques based on struc-
tured light.

In contrast, we do not aim to reconstruct the full 4D light trans-
port tensor but a 3D subset of it, which is inherently related to the
scene as if being illuminated by a linesweep, rendering it highly
suited for projector-camera pixel correspondence finding. We rely
on the standard phase shifting approach and re-interpret the mea-
surements to obtain a vector of trigonometric moments per camera
pixel.

4. Using trigonometric moments for structured light

Peters et al. [PKHK15] utilized a spectral estimation technique
based on the maximal Burg entropy [Bur79] to reconstruct time-
resolved scene responses from data captured with a specialized
camera. Their technique relies on a sinusoidal illumination modula-
tion (in the time domain) and presents a closed-form reconstruction
scheme for the scene response per camera pixel. Key to this tech-
nique is the acquisition of multiple images with modulation fre-
quencies that are the integer multiple of a chosen base frequency,
which results in measurements of the so-called trigonometric mo-
ments. We transfer this technique to the concept of structured light
shape acquisition based on phase-shifting, where a scene is illu-
minated with sinusoidal patterns of choosable frequency in spatial
domain.

In general, the trigonometric moments b j of a 1D density h(ϕ)
are described as

b j =
∫ 2π

0
h(ϕ)ei jϕ dϕ (4)

where as before j denotes the j-th multiple of the base frequency
(assumed to be 1) and h(ϕ) is a 2π-periodic density distribution
function. The reconstruction of the underlying periodic function
h(ϕ) is then performed using a maximum entropy formalism that
maximizes the Burg entropy H (see Peters et al. [PKHK15]) given
as

H[h(ϕ)] =
∫ 2π

0
− log(h(ϕ))dϕ. (5)

The closed form solution then reads

h(ϕ) =
1

2π

eT
0 ·B−1 · e0

|eT
0 ·B−1 · s(ϕ)|2

; sss j = ei jϕ (6)
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where eT
0 = (1,0, . . . ,0)T and the measurement matrix B is given

as

B =


b0 b−1 · · · b−m

b1 b0
. . .

...
...

. . .
. . . · · ·

bm · · · b1 b0


where b− j = b j denotes the complex conjugate of the measured
trigonometric moment for frequency j. In the case of sinusoidal
patterns projected onto a scene and observed with a camera, the
phase ϕ corresponds to a position in the direction of the linesweep
along the n-axis. Peters et al. showed, that a rough estimate for
the trigonometric moment measurements b j can be obtained by
performing four measurements with equidistant phase shifts, to
equally sample the real and imaginary part of the complex expo-
nential in Eq. 4. In particular, we can thus describe a trigonometric
moment measurement of a camera pixel (x,y) as

b j(x,y) = ∑
k

Ik(x,y)e
i jϕk ; ϕk ∈

{
0,

1
2

π,π,
3
2

π

}
(7)

which is a superposition of the acquired pixel intensities Ik(x,y) for
each phase shift k for a specific frequency ν · j, forming the vector
of trigonometric moments bbb per camera pixel.

Our main result is the estimation of a 3D tensor (a subset of ρ)
using the aforementioned maximum entropy estimation technique:
Per camera pixel we reconstruct a pixel response in dependence on
the phase ϕ, the 3D tensor hence resembles a linesweep illumina-
tion and is decribed via

h(x,y,ϕ) =
1

2π

eT
0 ·B−1(x,y) · e0

|eT
0 ·B−1(x,y) · s(ϕ)|2

; ϕ = 2π ·n/N (8)

The reconstruction is computed independently per camera pixel and
relies on the closed form Eq. 8, allowing for fast and parallelizable
computation. In addition, our method does not require any posterior
phase unwrapping step: Taking a closer look onto the denominator
in Eq. 8 reveals that the phase dependence of the expression can be
understood as a Fourier series with frequencies j. As long as the
lowest frequency spans the full scene, which we take care of, this
expression reconstructs the full 2π-periodic density with respect to
j = 1. We have to be aware that the ability to decompose the light
transport components with respect to the phase does not resolve the
full global light transport: The projector pixels forming the line of
illumination along the m-axis at each position n still all contribute,
which cannot be separated with this technique, a problem common
to most phase shifting techniques.

5. Measurement setup and procedure
Our setup consists of a 14-bit 1920 x 1200-pixel FLIR Grasshopper
3 camera and a Casio XJ-A142 projector with a native resolution of
1024 x 768. Prior to our measurements, we performed a radiometric
and geometric calibration of the stereo setup. In particular we have
to take care of the linearity of the projector output. To this end,
we first calibrate the camera and then project a medium frequency
sinusoidal pattern ( j = 4) onto a flat diffuse target. We acquire im-
ages for 64 equally spaced phase shifts of this pattern and compute
the Fourier transform of the center camera pixel along the phase

axis. With proper calibration, we acquire a contrast of 2000:1 for
the first to second frequency component of the signal. We chose an
exposure time of 16 ms to match the refresh rate of the projector of
about 60 Hz and average 20 frames for noise reduction, establishing
measurements at about 3 FPS.

Our measurement procedure closely follows the standard phase
shifting technique with sinusoidal illumination patterns: Per fre-
quency j · ν we project four shifted patterns with phase shifts
δϕk = 2π

k
K with k = [0 . . .K−1], K = 4 onto the scene. We choose

the base frequency ν = 1, so that the period of the lowest frequency
exactly spans the projector image.

Establishing point correspondences With our closed-form re-
construction technique at hand we are now able to estimate the
pixel response of each camera pixel with respect to a linesweep
illumination. In Fig. 2 we show four reconstructed example images
for different positions of the (virtual) linesweep, videos of the re-
constructed sweep are available in the supplemental material. As
we inherently know the projector pixel corresponding to each line
position, we in principle could start with a standard triangulation
procedure at this point. Fig. 3 (right) shows an exemplary phase
map where we assumed that the line position corresponds to the
global maximum of the pixel responses. Here, two problems com-
mon to structured light phase shifting become apparent: First, shad-
ows cannot be directly lit and therefore introduce errors and second,
objects that exhibit either complex geometric or material proper-
ties do not necessarily have a dominant direct reflection. Taking a
closer look at the reconstructed responses in Fig. 3 (left) reveals
that diffuse materials, such as the fore- and background objects in
this case indeed have a dominant direct reflection. The translucent
object however shows a more complex response where the global
maximum matches with the background reflection, introducing a
wrong depth estimation at all such pixels.

To avoid such problems we utilize the benefit of having the full
pixel response information at hand: We assume that direct reflec-
tions are not necessarily the global maximum of the pixel response
but instead a direct reflection is only present when the global maxi-
mum is much stronger than the next strongest local maximum. The
reasoning behind this is that a direct reflection can only deliver
the highest intensity if the light is not distributed within the scene
by additional scattering effects, which would result in strong sec-
ondary local maxima. It is then easy to provide a confidence map,
which we compute as the ratio between the two highest maxima
found per pixel. Critical points of the density h(ϕ) have to fulfill
the polynomial equation [PKHK15]

J

∑
j=0

J

∑
l=0

(B−1 · e0) j · (B−1 · e0)l · ( j− l) · zJ+ j−l = 0 (9)

where z = exp(iϕ) and the polynomial is of degree 2 ·J. It therefore
can have up to 2 · J roots than can be computed directly from the
measured trigonometric moments, without the need to actually cal-
culate the pixel response. For our measurement setup we thus ob-
tain eight maxima, their respective position and strength, and sort
these in descending order. We then compute our confidence as

C(x,y) =
Î0(x,y)
Î1(x,y)

(10)
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Figure 2: Reconstructed linesweep illumination based on the density estimation described in Sec. 3, computed from a total of 20 images,
measuring 5 frequencies with 4 phases each. Note that for visibility we chose a logscale representation.

Figure 3: Left: Pixel responses of pixels observing scene points
with different objects/materials, corresponding to the color-coded
pixels in the right panel. Right: Phase map of the scene depicted
in Fig. 1. The estimated phase per pixel corresponds to the global
maximum of each camera pixel response.

where Î0 denotes the strongest and Î1 the next strongest maximum.
The confidence then tells us how likely it is that a pixel contains
only a direct reflection. Note that this scale is not linear and is
only bounded towards lower values; a perfect direct-reflection-only
pixel would show a confidence of infinity whereas the lowest confi-
dence is reached when the two peaks have equal strength, yielding
C = 1. We found that a confidence of C > 5 is a safe albeit conser-
vative threshold to identify camera pixels that contain a dominant
direct reflection. Fig. 5 (top left) shows a mask created from such
direct pixels.

The zeroth moment The zeroth moment is defined by

b0 =
∫ 2π

0
h(ϕ)dϕ (11)

and hence captures the absolute brightness the scene achieves due
to the active illumination without any modulation of the pattern
present ( j = 0). Related work in the structured light community
only utilizes measurements with frequencies larger than zero to not
capture more images than necessary. In fact however, the zeroth
moment contains important information in general, but especially
for our reconstruction technique: The zeroth moment controls the
sparsity of the reconstruction [PKHK15]. In addition, we use the
zeroth moment to mask unreliable data that is produced by shad-
ows during the capture. Assuming that a pixel that is shadowed
does not receive direct light for any frequency, we average the ab-
solute values of all moment measurements per pixel and apply a
standard thresholding scheme to find shadows. Considering that in-
direct illumination can still reach a shadowed scene point we found
that a reliable threshold to identify shadows is 2% of the maxi-
mum signal available in the so-formed image. The result is a mask
that neglects all such shadow pixels, as for example in Fig. 5 (bot-

tom left). Note that especially translucent materials are not detected
in the shadow mask but are found to contain complex global light
transport and hence are denoted as non-direct pixels. Vice versa, di-
rect pixels may be found in shadow regions due to interreflections,
but are removed by the shadow mask.

Correcting errors Camera pixels that are neither direct nor
shadow pixels exhibit multiple (mostly two in our scenes) strong
maxima in the pixel response (see Fig. 3, left). Instead of directly
neglecting this data, our method allows for a data-driven semi-
automatic editing. In particular, a standard processing procedure
of the acquired data works like the following:

1. We reconstruct the per-pixel scene response according to Eq. 8.
2. We compute the 3D position of each scene point as seen by a

camera pixel using a standard triangulation technique [HZ03].
3. The pixels with high enough confidence are marked as direct

pixels.
4. The pixels with low enough intensity are marked as shadow pix-

els.
5. For direct pixels, the global maximum encodes the pixel corre-

spondence and we choose the triangulated 3D position accord-
ingly.

6. A semi-automatic editing step can be used to refine the recon-
struction based on three available procedures and the available
scene response. We manually select a region of interest contain-
ing the pixels we want to refine. We then perform one of the
following actions:

Background selection Choose the local maximum that corre-
sponds to the further away 3D position.

Foreground selection Choose the local maximum correspond-
ing to the closer 3D position.

Smooth flood fill Within a chosen region, iteratively find pixels
that are adjacent to direct pixels. We then choose the maxi-
mum that is closest to the (global) maximum of the direct
pixel and set the now edited pixel to be recognized as direct
as well for the next iteration. This performs similar to a flood
fill procedure [Tor16].

The fore- and background selection share the benefit that they are
independent on the absolute height of the maxima: The driving
parameter is the distance obtained via triangulation with respect
to each single maximum, the selection only uses the location of
the maxima for correspondences camera-projector pixel correspon-
dences.

Note that this refinement procedure is only possible because we
estimated the pixel response in the first place and only works in
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Figure 4: Depth maps and renderings of the 3D point clouds obtained from our data-driven semi-automatic editing step. Starting from our
direct pixels with reliable depth information (left), we can apply our correction scheme and adjust uncertain data with respect to adjacent
direct pixels. The red boxes denote a background (middle) and foreground ((right)) selection for the correction process. The pixels within
the blue boxes result from our smoothing approach. Note that the foreground correction works better due to the geometry of the problem, the
background correction suffers from the dependency on interreflections.

Figure 5: Left: The direct mask only containing pixels with C > 5
(top) and the shadow mask which removes pixels with too little in-
formation present (bottom). In both cases, white denotes a retained
pixel. Right: The confidence map (top) denotes the ratio between
the two highest maxima found in the pixel responses. Based on this
information we remove non-reliable pixels from the phase map and
only obtain direct pixels (bottom).

the semi-automatic fashion presented. A fully automated procedure
would require a more elaborate classification of pixel responses.
Additionally, a well calibrated camera-projector setup is required
to obtain reliable distance information for each maximum. A show-
case video of the edit process can be found in the supplemental
material.

6. Results

In this section we present results based on measurements using 5
frequencies ( j ∈ [0 . . .4]) with 4 phases per frequency, yielding a to-
tal of 20 images. The reconstruction itself takes under one minute
for images with a resolution of 600x960 pixels on an Intel Core
i7 processor. Due to the semi-automatic interactive refinement pro-
cedure, our method is not only able to acquire range information
with a low number of acquisitions, but can also be used to acquire
the shape of translucent materials, see Figure 4. Since the com-
plete line sweep response is reconstructed at each camera pixel,
we can selectively choose to estimate the shape of translucent ob-
jects by choosing the local intensity maximum corresponding to
the depth value closest to the camera instead of the global inten-
sity maximum. Light that passes through the translucent object and
hits another scene point generates a second response (cf. Fig. 3).

By choosing this response we are able to remove the translucent
object from the depth estimation., although the reconstructed depth
value is biased due to unaccounted refraction events at the translu-
cent surfaces and its accuracy is limited because of interreflections.
To fix this it would be necessary to ray trace through the translu-
cent object by sampling its full light transport tensor, which is un-
known. Also, because they originate from specular reflection, some
points on the translucent object’s surface have a very high confi-
dence value and are not touched by our depth map editing operator
(see the direct pixel mask in Fig. 5). The foreground correction tool
on the other hand (cf. Fig. 4, bottom row) is able to reconstruct
the translucent object, as the geometry of the scattering process is
much simpler. In addition, we perform a smoothing correction on
parts of the scene, denoted by the areas encoded in blue. In ar-
eas with a low confidence value, the refinement step estimates the
most plausible candidate peaks by comparison with neighboring
pixels of high confidence, see Fig. 5 (lower right). By applying this
smoothness prior, we are able to fill in previously unreliable depth
measurements.

Comparison We compare our method to the polarization dif-
ference imaging approach by Chen et al. [CLFS07]. Similar to
[CSL08], their method is designed to reconstruct translucent ma-
terials, however without limiting its capabilities with respect to
diffuse materials and scenes without global light transport, which
is a limitation of the modulation-based method. Their method re-
quires a total of 120 images and delivers accurate reconstructions
of translucent materials as shown in Fig. 6. For scenes with little
global light transport (bottom), both methods perform equally well,
yielding reliable depth estimates for the crystal lamp. Minor differ-
ences occur due to the different masking of direct pixels. Strong
differences arise for more complex scenes. To understand this ef-
fect, we have to consider the confidence map and corresponding
direct mask of the complex scene in Fig. 7. Chen et al compute the
confidence as the ratio between high-frequency and low-frequency
pixel intensity, which is a common approach since low-frequency
illumination patterns contribute more to the global component. This
makes it difficult to fine tune the threshold needed to separate di-
rect and global components. Here, we used a threshold of 0.5 to
achieve a good balance between retaining the translucent object and
masking out incorrect measurements. Still, we obtain false posi-
tive results due to interreflections and problematic scene geome-
try. We have found our confidence map generation more reliable
with less false positives in these cases, since the ratio of largest lo-
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PDI [CLFS07] Ours

Figure 6: Comparison with the PDI approach by Chen et
al. [CLFS07] for our most complex scene (top) and a crystal lamp
(bottom). Both, the PDI method and ours truthfully reconstruct
the foreground translucent object but show severe differences for
scenes with strong global light transport. Additional comparisons
can be found in the supplemental material.

Figure 7: Confidence map (left) and direct pixel mask (right) for
the PDI measurement. The mask is obtained by thresholding the
confidence at 0.5. A lower threshold would yield more reliable re-
sults but would exclude the translucent object.

cal maximum intensity values yields a direct measurement for the
complexity of the light transport at a given camera pixel. The data-
driven correction approach then can be used to refine unreliable
range estimates without having to hallucinate new data, filling in
data where possible and otherwise removing pixels strongly influ-
enced by global light transport.

Quantitative results To obtain a measure of accuracy for our
method in comparison to PDI, we chose to estimate distances for
both, large- and small-scale situations. The former is realized by
placing a planar target in front of the system and measuring the
corresponding distance, whereas the latter relies on the acquisition
of a sphere in front of this plane, as shown in Fig. 8 (left panel).
For the planar target, we perform a pose estimation to obtain refer-
ence data (tangent normal and position). For the sphere, we mea-
sure the physical object’s diameter and fit its position using a least
squares optimization routine. We then compute the difference be-
tween the reference data and the distance estimation obtained with
both methods. Note that we base our computations only on the di-
rect pixels (cf. Sec. 5) as we consider the others to only hold invalid
information. Figure 8 reveals that for large scales such as the pla-
nar target, our method suffers from the low frequencies used: Over
the depicted range of roughly 30 cm we obtain a RMSE of about

18 mm. The error obtained for PDI is only slightly less, however
our method also shows a low-frequency ripple-like structure that is
not found in the results of the method by Chen et al., which will be
discussed in the next paragraph. In contrast, our method provides
comparable measurements and masks out invalid (non-direct) pix-
els very reliably, leading to much less artifacts. These artifacts are
also the reason that the obtained RMSE for PDI is much worse than
for our method; Removing these artifacts yields very similar errors.

Ringing artifacts and higher frequencies For the results pre-
sented in this section, we are working at the lower limit of phase
shifts needed to correctly sample the modulated illumination. This
comes at the cost of ringing artifacts. Taking a closer look at the
point clouds in Figures 10 and 4 such artifacts are visible especially
on the far wall, and are also indicated in the corresponding confi-
dence maps and the log-scale linesweep images and videos, where
they manifest as local maxima and minima alongside the scan-
line. To correct this, measurements with higher frequencies and/or
more phases per frequency can be acquired. Both cases linearly in-
crease the amount of acquisitions, as our reconstruction relies on
subsequent integer multiples of the base frequency and for each
frequency an equal amount of phase shifts is performed. Figure 9
shows the confidence maps and reconstructed 3D point clouds for
8 and 16 phases. For a measurement with 8 phase shifts, the con-
fidence map quality increases significantly, making a direct-global
separation more clear. Ringing artifacts are reduced compared to
the 4-phase measurement but still present, which is well visible
within the confidence map and reconstruction. With 16 phase shifts,
the reconstruction does not differ noticeably from the previous
measurement, ringing artifacts are only slightly reduced, hinting
at the need for higher frequencies to mitigate this effect.

7. Conclusions
We presented a frequency-domain approach that utilizes a closed-
form spectral estimation to reconstruct the reflectance field per
camera pixel as if illuminated by a linesweep. Linesweep illu-
mination has the advantage of separating contributions along the
sweep direction, rendering it useful for the reduction of global-
illumination contributions. Naïvely, such a measurement scheme
would require an amount of acquisitions equal to the number of
projector pixels along the sweep direction. In contrast, we can re-
duce the number of acquisitions to only 20 for a reliable reconstruc-
tion and confidence estimation and, due to the maximum entropy
constraint of the reconstruction, reduce noise drastically.

The method performs well for scenes with and without global
light transport contributions by translucent objects or interreflec-
tions. The latter can efficiently be masked out using our confidence
measure whereas the former can be analyzed and edited. Based on
the pixel response, we can then choose to either render a translucent
object virtually invisible or to reconstruct its shape.

Currently, our method relies on acquisitions with integer mul-
tiples of a base frequency and an equal number of phase shifts
per frequency, which introduces ringing artifacts due to undersam-
pling. To mitigate this effect, measurements with higher frequen-
cies are required, which for our method would drastically increase
the amount of acquisitions. Hence, one major point for future work
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Figure 8: Quantitative comparison between PDI [CLFS07] and our approach. We reconstruct distance on two scales, a planar target covering
the full field-of-view and a sphere. The reconstructions are performed based on the direct pixels only. Left: Depth map obtained with our
approach. The red rectangle contains the sphere used for the local analysis (middle panel), the blue lines correspond to the slices shown in
the right panel. Middle: Absolute error obtained for the sphere target. Our method performs better on small scales, which can be attributed
to the more robust choice of direct pixels (19 mm vs 8 mm). Right: Reconstructed distances corresponding to the blue lines. In contrast to
the PDI, our method suffers from the low frequencies used, resulting in a higher RMSE for large scales ( 18 mm vs 17 mm). On the other
hand, our method more reliably masks out invalid pixels, resulting in less artifacts. The planar target here appears curved due to the distance
measurement with respect to the camera.

Figure 9: Increasing the number of phases while fixing the number
of frequencies results in higher confidence (top) and less artifacts
in the reconstructions (bottom). Left: Measurement with 8 equally
distributed phase shifts (40 images). Right: Measurement with 16
phaseshifts (80 images).

would be the incorporation of a non-equal number of phase shifts
per frequency as well as multiple base frequencies. Still, even with
as little as 5 frequencies and 4 phase shifts, corresponding to a
total of 20 images captured, our method reliably separates direct
from global components, which is especially useful for scenes with
global light transport.
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Figure 10: After data acquisition, we reconstruct the scene response of each camera pixel and extract the local extrema. The ratio of the
two highest local maxima gives the confidence map (first column), which is a lower bounded measure of how likely the pixel only contains
a direct reflection. We then compute the 3D positions of the direct pixels via triangulation (second column) which yields a reliable depth
estimate containing holes. Using our correction steps, we can “fill in” missing values at uncertain non-direct pixels (as long as they are not
identified as shadow pixels) and provide a more complete depth estimation without hallucinating new data or interpolation (third column).
We thereby only rely on the actually measured scene responses. With these datasets we are then able to provide a 3D point cloud for e.g.
meshing purposes (fourth column). Additional results can be found in the supplemental material.
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