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Abstract

In this paper, we investigate how convolutional neural networks (CNN) can learn to solve the verification task for faces of
young children. One of the main issues of automatic face verification approaches is how to deal with facial changes resulting
from aging. Since the facial shape and features change drastically during early childhood, the recognition of children can be
challenging even for human observers. Therefore, we design CNNs that take two infant photographs as input and verify whether
they belong to the same child. To specifically train our CNNs to recognize young children, we collect a new infant face dataset
including 4,528 face images of 42 subjects in the age range of 0 to 6 years. Our results show an accuracy of up to 85 percent
for face verification using our dataset with no overlapping subjects between the training and test data, and 72 percent in the

FG-NET dataset for the age range from 0 to 4 years.

Categories and Subject Descriptors (according to ACM CCS): 1.5.4 [Pattern Recognition]: Application—Computer Vision

1. Introduction

From automatic tagging of friends on pictures for social net-
works or the recognition of wanted criminals on surveillance cam-
eras to automated searching for missing children and their iden-
tification - in many situations it is necessary to verify whether
two images show the same person or not. Due to this strong de-
mand for face recognition and verification applications, many dif-
ferent solutions have been proposed during the last years. Es-
pecially the development of new deep learning tools and algo-
rithms has brought the accuracy of automatic face recognition sys-
tems to a new level [SCWT14], displaying nearly human-like per-
formance on face recognition benchmarks like LFW [HRBLm],
MegaFace [KSMB15], FGNET [fgn] and AgeDB [MPS*17].

However, if it is necessary to verify a person after time has
passed and the person has aged, robust age-invariant face recog-
nition and verification is still unreached. Major facial changes in-
clude growing of the face, and changes to the shape and appearance
which need to be counterbalanced prior or during the recognition
process. While aging might already pose problems when recogniz-
ing adult subjects, this task can be even more difficult for children
and infants. For very young children, facial aging is a complex pro-
cess that involves substantive facial growing and shape changes.
This makes the verification of children which have aged only a few
years challenging even for human subjects. Fig. 1 shows an exam-
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ple of major facial changes during early childhood by using a child
from the FGNET dataset at the age of 1, 3, and 5, respectively.

Moreover, there is relative few data available to build reason-
able models considering children in early childhood. Most publicly
available aging datasets are limited in age range and focus on adults
or have only a few samples per age, reducing their applicability for
deep learning approaches. To the best of our knowledge, the only
public domain aging dataset which includes images of children at
different ages is the FGNET dataset containing a small number
of images from subjects with 12 age-separated images per sub-
ject, including 269 images of 75 subjects in the age span of 0 to 6
years. Even considering data augmentation techniques, this amount
of data is not sufficient to train a deep neural network.

In this paper we specifically focus on this challenging case and
investigate whether a classification network can be used for age-
invariant infant facial verification, using facial features learned
from a dataset with face images of young children. The problem
of age-invariant face recognition was described in previous work
using either vision approaches [PTJ10] or deep learning [WLQ16].
As no sufficient dataset for training a deep neural network on
infant images was available, previous work mainly focused on
developing age-invariant features. For our CNN, we adopt the
DeepID2 [SCWT14] network to extract facial features which are
directly fed into a classification network to decide whether two pre-
sented images show the same child or not. For training, we create
a novel dataset which contains 4528 face images of 42 children
in the age range of 0 to 6 years and for each child include im-
ages at different ages. We split the dataset into a non-overlapping
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Figure 1: Cross-age face images for one of the subjects in the
FGNET dataset [fgn] in the ages of 1, 3, and 5 years respectively.

test and training set for our CNN. For classification, we investigate
two different classification architectures based on the very success-
ful ResNet [HZRS16] and GoogLeNet [SLI*15] architectures. We
train the combination of feature extraction and classification net-
work end-to-end.

The main contributions of this paper are:

e A novel network structure combining feature extraction based on
DeepID2 with a classification part which is trained end-to-end on
our new infant face dataset.

e Investigation on two different classification approaches based on
state-of-the-art classification architectures.

e Opverall our proposed network trained on infant faces is compet-
itive with state-of-the-art systems in the proposed age group of
0 to 6 years. Our network yields an accuracy of 85.3% on the
test set of our child face dataset, and an accuracy of 72.6% on
the child images of FGNET dataset for the age range from 0 to 4
years.

2. Related Work

Many approaches related to face aging have been proposed in the
past, including age synthesis [RC06, GMP*06, FGH10, SMZ*07],
prediction [SSSBO7], as well as age-invariant [LXZ*16, WLQ16]
or age-restricted [TSS12,BBVS16] classification. In this section we
focus on approaches using convolutional neural networks that are
more closely related to our paper. We begin with a short overview
on traditional face classification and the approaches we used in our
architecture and continue with neural network methods that focus
on age invariant classification.

In recent years deep learning and especially convolutional neu-
ral networks have significantly improved the quality of face verifi-
cation applications and systems. Initially, most methods focused
on recognition tasks without considering cross-age applications.
Among these deep learning works, a discriminative deep metric
learning method [HLT14] was presented for face verification that
aimed to find a Mahalanobis distance metric to maximize the inter-
class variations and minimize the intra-class variations. Taigman et
al. [TYRW14] introduced a multi-stage method also called Deep-
Face that aligns faces to a general 3D shape model and trains a
multi-class Siamese Network [CHLO5] to optimizes the Euclidean
distance between two facial features. FaceNet [SKP15] minimizes

the deep triple facial metrics by learning the distance between the
positive pairs and negative pairs. In addition, using 128 bytes per
face the performance of the method is cost efficient. An innova-
tive loss function called center-loss was proposed in [WZLQ16],
that efficiently increases inter-class dispersion and intra-class com-
pactness. In [SWT14, SCWT14] facial feature extractors based on
CNNs, named DeepID and DeeplID2 respectively, were introduced.
Especially DeepID2 aimed to enlarge the inter-personal variances
extracted from different identities and reduced the intra-personal
variances extracted from the same identity. While all of these ap-
proaches greatly contributed to face recognition, we additionally
focus on age-invariant recognition for children.

Recently, deep learning models were also used for age-invariant
recognition tasks. Usually, approaches for this task either extract in-
formation from face images to build age-invariant face features or
build age-invariant face models for the matching decision. Focus-
ing on age-invariant features, Wen et al. [WLQ16] proposed a latent
factor guided CNN framework to directly learn age-invariant deep
face features. The authors analyzed the results for different age
groups. While they achieved good performance, the results reported
for young children from O to 4 years were worse than for older age
groups. Other work focused on deep learning age-invariant features
by using an age-estimation step to remove aging factors from the
extracted facial features [ZDH17] or utilized multi-task learning to
improve extracted features [WZK* 17]. In contrast to the develop-
ment of age-invariant features, we focus on investigating whether
a previously established face feature extractor based on DeepID2
can also be used for age-invariant recognition of infants. Specifi-
cally, we combine DeeplD2 features with a classification network
and train end-to-end on a dataset containing facial images of young
children.

Other age-invariant face recognition frameworks focused on face
modeling or synthesis for target ages. In [ABD17] the genera-
tion of faces at different ages was done via a generative adver-
sarial network. While the quality of the generated faces is over-
all convincing, the faces cannot easily be used for feature extrac-
tion as they still differ from real faces. As a different modeling
approach, Temporal Non-Volume Preserving transformations were
introduced [DQL*17], which performed well on cross-age verifica-
tion tasks. Liu et. al [LXZ*16] proposed to combine age-invariant
face modeling and feature matching to solve face verification for
large age gaps. Face images for 4 different age groups are modeled
for each input image resulting in 4 synthesized image pairs and one
original pair that are fed into parallel feature extraction CNNs. In
contrast to this work, we only focus on the age category of chil-
dren and aim to robustly identify children for small and large age
gaps. Therefore, our input images would already lie in the same
age category and would not benefit from the proposed face synthe-
sis. Our proposed feature extraction part is similar to the parallel
networks including the idea to substract the obtained features from
each other. However, instead of only using a Softmax to decide
whether the images match or not, we apply a classification network
after feature extraction in order to achieve robust results within the
same age category.

Overall, our paper focuses on the challenging infant face veri-

fication through a deep learning method. We directly use the im-
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Figure 2: An example of the face preprocessing pipeline performed
on a child from the FGNET dataset [fgn]. First, face detection is
performed, then 68 facial landmarks are detected, which are used
to align the face by similarity transformations. Ultimately, the face
is cropped based on the aligned face region. The final face image
as used in the dataset is shown on the right.

ages as input for our feature extraction CNN and therefore prevent
the need of face synthesis or a hand-crafted feature descriptor. In-
stead we investigate whether CNN features can be directly com-
bined with CNN classification networks to solve the age-invariant
face verification task for young children.

3. Infant Face Dataset

In order to investigate whether a CNN can be trained to identify
young children at different ages we create a new dataset. As face
features vary, especially during early childhood, we only include
infants of the age 0 to 6 in our dataset. Overall our infant dataset
consists of 4528 face images with a size of 128 x 128 pixels fea-
turing 42 children, including 24 (57%) girls and 18 (43%) boys as
well as 2 pairs of sisters and a pair of brother and sister. For all
children, images at different ages are included in the dataset.

We first select YouTube videos that show infants at different
stages of their development. Our face preprocessing pipeline is in-
spired by DeepFace [TYRW14], however we use different tech-
niques for each preprocessing step. To collect face information
from the chosen videos we use the Histogram of Oriented Gra-
dients algorithm [DTO5] and employ it to detect face contours
in every frame. While this already provides facial regions which
could be cropped from the image and used to train CNNs, further
data normalization can improve the training process. Therefore, we
align the face images to increase the training performance as pro-
posed by Sun et al. [TYRW14]. Since both eyes of the face should
be on the same horizontal line it is necessary to extract facial land-
marks within the previously detected facial region. This is done
using the Ensemble of Regression Trees [KS14] algorithm, which
detects 68 facial feature points. Afterwards the image is aligned us-
ing similarity transformations and cropped based on the area which
contains the facial landmarks. Images that cannot be aligned are re-
moved from the dataset. An overview of the preprocessing steps
is presented in Fig. 2. For both the HOG and Ensemble of Re-
gression Trees algorithm we use the implementation of the Dlib
library [Kin09].

Once the cropped face images are computed, we manually clean
the data to remove duplicates and images with insufficient reso-
lution. Finally, each image in the database is labeled with an ID
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for the represented child and an index. However, the data in our
new infant face database is still unbalanced. To balance the data,
we perform upsampling to augment the number of face images for
children with less than 100 face images to reach 100 face images.

We split our dataset into a training set containing around 3500
images and a test set containing around 1200 images. The training
and test split is non-overlapping, therefore each child is exclusively
either in the training or test set. We randomly chose 31 children for
the training set and use the images of the other 11 children in the
test set. For both sets, we randomly generate positive and negative
face pairs. The number of positive and negative face pairs is the
same in order to avoid training problems due to imbalanced data.
Overall, the training set contains 128,000 pairs, while test set con-
tains 32,000 pairs.

4. Network Architecture

We use CNNs for the infant face verification task by presenting
two face images to the network and deciding whether these be-
long to the same child. Our CNN architecture consists of two
parts as shown in Fig. 3: In the first part we perform feature ex-
traction by applying DeepID2 [SCWT14] in a Siamese network
style [CHLOS], in the second part we perform similarity learning
on the features as shown in Fig. 5. The input to the network is a
pair of RGB images of size 128 x 128 pixels and the output is a
probability score indicating whether the same child is presented
on the images. Overall, the feature extraction network learns high-
level discriminative infant face features, which are afterwards fed to
a classification network that predicts the similarity of both learned
features respectively.

4.1. Facial Features Extraction

Our network structure for infant facial feature learning is adapted
from DeepID2 [SCWT14], which performs deep face features ex-
traction and has shown outstanding performance for the face verifi-
cation task. Instead of treating the output as a one dimensional vec-
tor of facial features which would be obtained by applying a fully-
connected layer, we compute a three dimensional feature matrix by
summing up the last convolutional layer and max pooling layer. We
chose this option, since we want to keep the features’ local informa-
tion when we input them into the following classification part. An
overview of the feature extraction network’s architecture is given in
Figure 4. As we want to use two images, we use two branches each
containing the feature extraction network and apply weight sharing
similar to the Siamese network [CHLOS5]. In the end the obtained
features are subtracted from each other before passing them to the
classification part. An additional experiment has shown that using
the difference instead of a concatenation delivers slightly better re-
sults for our architecture. Subtracting the feature vectors instead of
concatenating them may avoid a possible a local minimum during
training.

4.2. Similarity Learning

After we obtain infant face features from the feature extraction net-
work, we need to perform similarity learning to decide whether or
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Figure 3: Overview of the architecture for the whole network
which receives two RGB images as input and predicts the proba-
bility that the same child is depicted in both images. The first part
of the CNN is used to extract facial features from an input image
by adapting DeepID2 and using it in two branches of the network.
Afterwards, the obtained features from each branch are subtracted
from each other before passing them to the classification part of the
network. The final output of the network are two probability scores
for match and non-match.

Facial features
layer

Input layer

Figure 4: The architecture for the first part of our network. This
part of the CNN is used to extract facial features from an input
image. We adapt DeepID2 [SCWT14] to output 3-dimensional fea-
tures instead of 1-dimensional features. In the last layer, the outputs
of Convolutional layer 4 (Conv4) and Max-pooling layer 3 (Pool3)
are summed up to form a representative feature cuboid.

not the same child is present in the input images. While other works
suggested techniques like the Mahalanobis distance [HLT14], the
Cosine Similarity [XLW™*17] or a Joint Bayesian model [SCWT14,
CCW™*12] to solve the binary classification of matching or non-
matching image pairs, we choose a CNN. CNNss for classification
tasks have been applied very successfully in other areas, moreover,
using a second CNN directly after the feature extraction network
enables us to learn end-to-end. Before handing the three dimen-
sional features to the classification network, we first subtract both
vectors from each other to obtain the difference between the fea-
tures of both face images.

For our investigation, we compare two networks using different
classification architectures. First, we will discuss a classification

based on ResNet [HZRS16], which enables efficient training for
deep network structures. Afterwards, we employ Inception Mod-
ules as proposed in the GoogLeNet architecture [SLI*15], which
efficiently extracts pixel information using multi-scale convolu-
tional kernels with large receptive fields. Both CNNs take the fea-
ture difference as input which has the spatial size of 14 x 14 x 64.
An overview of the network structure is given in Fig. 5.

Adapted DeeplD2 feature descriptor
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Input layer Conv1 Conva
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Figure 5: The combination of the added feature extractor network
with a classification network. We test two kinds of classification net-
works either containing several Residual Units or Inception Mod-
ules. The latter classifies three dimensional features and learns the
similarity between both extracted face feature vectors.

4.2.1. Network Architecture with Residual Units

We use Residual Units [HZRS16] which allows very deep network
structures without performance degradation. The Residual Units
enable the network to learn abstract and representative features and
therefore produce a good classification performance. The proposed
architecture of the residual classification network includes 18 con-
volutional layers and 7 Residual Units. We applied Parametric Rec-
tified Linear Units (PReLU) [HZRS15] instead of Rectified Linear
Units (ReLU) [NH10] as the activation functions. In contrast to Re-
LUs, PReLUs are able to retain negative values which might exist
in the feature difference. The final classification is done using a
Softmax layer. The full architecture details of the Residual Units
network is described in Table 1.

4.2.2. Network Architecture with Inception Modules

In contrast to the idea of using several Residual Units to increase
the depth of the network, Inception Modules [SLI* 15] enable larger
receptive fields by using several multi-scale kernels in one mod-
ule. This way information are based on a larger data region and
more precise, however, the computation time and complexity is in-
creased. Table 2 details the classification network architecture us-
ing Inception Modules. First, we want to feed the feature differ-
ence into an Inception Module with output sizes 14 x 14 x 512. For
a smoother transition of the initial feature size of 14 X 14 x 64 to
the target depth of 512, we employ two convolutional layers with
a depth of 128 and 256 respectively, while keeping the height and
width fixed. The convolutions in each Inception Module use filter
sizes of 1 X 1,3 x 3 and 5 x 5. Within the Inception Modules, con-
volutions with a kernel size of 1 x 1 extract information across all
pixels and reduce the dimensionality of the output. Locating them
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before the 3 X 3 and 5 X 5 convolutional layers significantly de-
creases computational cost. Afterwards, the convolutional layers
with filter size of 3 X 3 and 5 x 5 cover larger pixel regions and
extract their features. At the end of the classification architecture,
we implement two fully-connected layers after the average pooling
layer to get more abstract features. Finally, a Softmax is used to
compute the probability of a match between the input images.

4.3. Training

We train our network consisting of feature extraction and classifi-
cation end-to-end. For the loss calculation of the feature extraction
network, we first convert the three dimensional feature represen-
tation into a one dimensional representation by concatenating the
features into a column vector. This way, we are able to utilize the
Contrastive Loss [HCLO06]:

1 ¥ ) 2
LC:ﬁZyd + (1 —y)max(t —d,0) (1

n=1

where N is the batch size which was set to 64 in our experiments,
d indicates the euclidean distance of two samples’ features and
y € {0, 1} denotes whether the pair matches. The # is a given thresh-
old value, which is set to 1 in our experiments as proposed by
Hadsell et al. [HCLOG6]. This loss efficiently reduces intra-personal
variations while enlarging inter-personal variations. In combination
with the larger feature vector this enables a more discriminative
identity component.

Both variations of the classification network use the Softmax
loss. The Softmax loss function is often used in CNNs for classifi-
cation tasks to maximize the inter-class variations. For the Residual
Units network the Softmax loss is computed at the end of the net-
work and uses the same weight as the Contrastive Loss. The Incep-
tion Modules network uses an additional Softmax loss, since the
Inception Modules network produces especially discriminate fea-
tures in the middle layers. The additional Softmax loss is applied
after the Inception (7d) layer for intermediate supervision. Overall
the loss of our network can be denoted as

L=o0Lc+BLst +YLs2 2

where L. is the Contrastive Loss from Eq. 1. Both Lg; and Lg»
are Softmax losses, however, Lg; is used only in the Interception
network after the Inception (7d) layer. For all our experiments we
use o = 1, B = 1 and Y= 0.3 as weights for the losses.

We use the Caffe [JSD*14] framework to implement our CNNs
and use the same parameters for both versions. Before training, we
perform data normalization by subtracting the mean color values
as present in the training set. During training we create batches of
images of size 64 and optimize using Stochastic Gradient Decent
with an initial learning rate of 0.001, which was decreased using
an inverse strategy. All network weights were initialized using the
Xavier method [GB10]. To avoid the problem of vanishing gradi-
ents Batch Normalization [[S15] was applied. Furthermore, we pre-
vent overfitting using Dropout [SHK* 14]. Overall, the training pro-
cess takes about 15 epochs for the Residual Units network and 10
epochs for the Inception Modules network. Training on a GeForce
Titan X took about 15 minutes per epoch leading to a total training
time of about 5 hours.

(© 2018 The Author(s)
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5. Experiments

In this section we present different experiments to investigate the
effectiveness of our proposed network architectures on our infant
face dataset and the infant subset of the FGNET dataset.

5.1. Experiments on our Infant Face Dataset

We first conduct experiments on the test set of our infant face
dataset, to investigate the trainings result for both of the classifi-
cation models. The achieved performance for both CNN models
on our new infant face database is reported in Table 3. The pro-
posed network combination of the adapted DeepID2 feature de-
scriptor with Inception Modules achieves a verification accuracy
of 85.3% and slightly outperforms the combination with Resid-
ual Units which achieves an accuracy of 84.01%. We addition-
ally include experiments using the Siamese network of the Caffe
framework with an Euclidean and Mahalanobis distance metric for
feature matching, and a simplified architecture composed by the
DeeplID2-based feature extraction and a fully-connected layer with
softmax, as baseline. The Mahalanobis metric achieves an accu-
racy of 77.9%, outperforming the Euclidean metric with an ac-
curacy of 69.4%. The DeeplD2-based architecture with a fully-
connected layer achieves an accuracy of 78.8%. While the Siamese
and fully-connected layer networks perform reasonable, our pro-
posed networks outperforms them by a significant amount. Our re-
sults show that the classification of features which are not specifi-
cally designed to be age-invariant, can still offer promising results
for age-invariant face verification of young children and infants.

5.2. Experiments on the Infant Subset of FGNET

We perform additional experiments on the FGNET [fgn] dataset to
compare our method to a state-of-the-art CNN-based age-invariant
face recognition proposed by Wen et al. [WLQ16]. They also
present their results for very young children for the FGNET dataset,
more specifically, for the age range from O to 4 years. As one of the
public domain face aging datasets, the FGNET consists of 1002
face images from 82 different persons in age range of 0 to 69 years,
but it only contains 193 face images for the age group of 0 to 4
years. Before we conduct the experiment, we perform the same pre-
processing as for our own dataset as detailed in Section 3. Specif-
ically, we use the HOG algorithm [DTO5] to detect face regions
and the algorithm Ensemble of Regression Trees [KS14] to detect
68-points facial landmarks used to align the faces. We balance the
data by upsampling face images to achieve the same of amount of
images on each subject in order to randomly select face pairs with
equal possibility.

Wen et al. [WLQI16] proposes a deep learning architecture to
learn age-invariant features and achieves outstanding performance
on the face recognition task. The authors trained their network(LF-
CNN) on large scale web-collected face datasets. In contrast to
our infant child dataset, these datasets do not focus on images of
the same person at different and young ages. We present the re-
sults of the investigated network architectures as well as the Rank-1
identification accuracy as stated by LF-CNN in Table 4. Between
our proposed architectures, the network architecture of our adapted
DeeplID2 features combined with an classification part containing
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| Type

| Output Size | Kernel Size | Stride | Padding |

Convolution (5) 14 x 14 x 128 3 1 1
Convolution (6) 12 x 12 x 256 3 1
3 Residual Units (7) | 12 x 12 x 256 3 1 1
Convolution (7) 10 x 10 x 512 3 1
Max Pooling (7) S5x5x%x512 2 2
4 Residual Units (8) S5x5x512 3 1 1
Convolution (8) 4x4x1024 2 1
Max Pooling (8) 2x2x 1024 2 2
Fully-Connected (9) I x1x1024
Fully-Connected (10) 1 x1x4096
Fully-Connected (11) I1x1x2

Table 1: The architecture details of the classification network using Residual Units. Further parameters considering the detailed layout of
the Residual Units are chosen as suggested by the ResNet [HZRS16] architecture.

| Type | Output Size | Kernel Size | Stride |
Convolution (5) | 14 x 14 x 128 3x3 1
Convolution (6) 14 x 14 x 256 3x3 1
Inception (7a) 14 x 14 x 512
Inception (7b) 14 x 14 x 512
Inception (7¢) 14 x 14 x 512
Inception (7d) 14 x 14 x 528
Inception (7e) 14 x 14 x 832
Max Pool 7 x 7 x 832 3x3 2
Inception (8a) 7 x7x 832
Inception (8b) 7x7x%x1024
Average Pooling | 1x1x1024 Tx7x1
Dropout 40% 1x1x1024
Fully-Connected | 1 x 1 x2048
Fully-Connected I1x1x2
Softmax 1x1x2

Table 2: The architecture details of the classification network us-
ing Inception Modules. The number of kernels for each Inception
Module are chosen as suggested by the GoogLeNet [SLT*15] ar-
chitecture.

| Network Architecture | Acc. |
Siamese network+Euclidean metric 0.694
Siamese network+Mahalanobis metric 0.779
DeeplID2 + Fully-Connected + Softmax | 0.788

Ours (Residual Units) 0.841
Ours (Inception Modules) 0.853

Table 3: Overview of the accuracy of the proposed CNNs. We also
include results for a Siamese network using Caffe’s standard im-
plementation, and a simplified architecture based on DeeplD2 with
a fully-connected layer and softmax, as baseline.

Inception Modules again achieves the best verification accuracy
with 72.6% while the combination with Residual Units achieves
69.4% accuracy. In LF-CNN no accuracy was stated for the inves-
tigated age group. We used the true-positive rate to compare our

| Network Architecture | True-positive Rate | Acc. |

Siamese+Euclidean metric 0.532 0.583
LF-CNNs [WLQ16] (Identification) 0.601 -

Ours (Residual Units) 0.665 0.694

Ours (Inception Modules) 0.709 0.726

Table 4: The results of the infant face verification using our net-
work architectures on the infant subset of the FGNET dataset. Here,
we include the true-positive rate and compare it with the Rank-
1 identification rate for LF-CNNs [WLQ16]. The accuracy values
(Acc.) indicate the verification accuracy.

networks with the Rank-1 identification result stated in LF-CNN.
While the true-positive rate indicates the percentage of matches that
were correctly identified as images of the same child, the Rank-1
identification rate denotes that the highest rated retrieved match is
also the correct match. Using our networks, the best true-positive
rate is also achieved by the Inception Modules network at 70.9%
followed by the Residual Units network with 66.5%. Both net-
works outperform the Rank-1 identification rate of LF-CNN which
is 60.1% on the infant age group of 0 to 4 years in the FGNET
dataset, further supporting the idea of training standard facial fea-
ture extractors on infant child datasets. As the code of the LF-CNN
network was not publicly available, we were not able to train their
network on our infant child dataset and better distinguish the in-
fluence of using our dataset and our network architecture. Fig. 6
shows examples of image pairs that were not classified correctly by
our network, illustrating false positives as well as false negatives.
Most failure examples might be difficult to classify even for human
observers due to the drastic changes of the infants facial shape.

We perform an additional Experiment on the FGNET dataset to
further investigate the effects of our network using Inception Mod-
ules on age-invariant child verification. For this experiment we ex-
tract all images from out test set for a target age and compute the
true-positive rates when testing with other age groups. For example,
we chose each child at the age of 1 and pair it with all children at
age 2 which yields a true-positive rate of 93%. In contrast, choosing
a child at the age of 1 and forming pairs with all children at age 6
showed a true-positive rate of 84%. Table 5 shows the true-positive

(© 2018 The Author(s)
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False positive

Figure 6: A demonstration for failure cases on the infant subset
of the FGNET dataset. The subjects in this sub-dataset are in age
range of 0 to 4 years and show drastic changes in their facial fea-
tures.

Figure 7: An example for matched pairs that were correctly identi-
fied by our network. It is clearly visible how the facial features have
changed and that verifying the child’s identity is more difficult for
the larger age gap. Left: a child at 1 year and 6 years. Right: a
child at 1 year and 2 years.

| Chosen Age | Tested Age | True-positive Rate

1 year old 2 years old 0.93
1 year old 3 years old 0.86
1 year old 4 years old 0.84
1 year old 5 years old 0.93
1 year old 6 years old 0.84

Table 5: The table shows the true-positive rates when forming
pairs of children at specific ages to investigate the robustness of
age-invariant verification. While the true-positive rate is generally
higher for smaller age gaps, our approach still performs well when
we use children at the age of 1 and children at the age of 6 yielding
a true-positive rate of 84%.

rate between images of 1 year old children and 2 to 6 years old ones
in our test set. An example of two correctly verified pairs is given
Fig. 7. As expected, with increasing age difference the true-positive
rate becomes worse. However, the performance degradation is still
very reasonable considering the amount of changes to facial fea-
tures in the first years.

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.

6. Conclusions

In this paper, we investigated how the task of age-invariant in-
fant face verification can be solved using adapted DeeplD2 fea-
tures [SCWT14] combined with popular classification network ar-
chitectures. In contrast to previous work focusing on the creation of
age-invariant feature extraction or generation, we showed that clas-
sic deep feature descriptors can be adapted for age-invariant infant
verification when trained on an appropriate dataset. We focused on
children faces whose features change drastically in the early years
as these are especially challenging for the face verification task.
Since no existing dataset provided enough infant face images to
train a CNN, we first prepared a dataset consisting of 4,528 face
images of 42 children in age range of 0 to 6 years. Therefore, our
dataset entails a vast number of examples for facial features chang-
ing due to aging effects in the early childhood.

We tested classification networks based on Residual
Units [HZRS16] and Inception Modules [SLI*15] as both ar-
chitectures have shown outstanding performance at classification
tasks. For both tests, we first use adapted DeepID2 features in
two branches as proposed by Siamese networks to extract two
feature matrices from two presented input images. Afterwards
the difference of the features is computed and passed to the
classification part of the network. The classification network
produces a probability as output which indicates whether the two
input images show the same child or not. We train both of our
combined networks end-to-end on the train subset of our dataset,
achieving an accuracy of 85. Both network combinations showed
promising results on our test dataset and on the infant subset of
the FGNET [fgn] dataset. For our test dataset, we achieve the best
accuracy (85,3%) with the Inception Modules network, slightly
outperforming the Residual Units network (84,1% accuracy).
Overall, the proposed network outperforms previous work when
applied to the children subset of the FGNET database containing
children from O to 4 years. The combinations of our adapted
DeeplID2 features with a classifier based on Inception Modules
achieves an accuracy of 72.6%on this subset. In the future, we
intend to investigate face verification of older children and will
evaluate the possibilities of making our infant dataset available for
future research.
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