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Abstract
The icosahedral non-hydrostatic (ICON) model is a digital Earth model based on an icosahedral representation and used for numerical
weather prediction. In this paper, we introduce icosahedral maps that are designed to fit the geometry of different cell configurations
in the ICON model. These maps represent the connectivity information in ICON in a highly structured two-dimensional hexagonal
representation that can be adapted to fit different cell configurations. Our maps facilitate the execution of a multiresolution analysis
on the ICON model. We demonstrate this by applying a hexagonal version of the discrete wavelet transform in conjunction with our
icosahedral maps to decompose ICON data to different levels of detail and to compress it via a thresholding of the wavelet coefficients.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve
generation

1. Introduction

The output generated by climate simulations is increasing in size, as
well as complexity. Both aspects pose challenges for visualization
and an interactive data analysis. The increase in complexity is due
to maturing models that are able to better describe the intricacies of
the climate system, while the gain in data size is a direct result of an
increased spatial and temporal resolution used by such models.

To visualize, analyze, and integrate such large data sets, a Digital
Earth framework can be used. A Digital Earth framework is a 3D
representation of the Earth on which data sets from different sources
can be represented in a multiresolution manner [MAAS15]. In climate
science many different grids are used, all with different advantages and
drawbacks. Regular grids such as lat/lon can be used and are easy to
work with, but difficulties arise through mathematical instabilities at
poles and a globally unequal cell area. To overcome these limitations, a
Discrete Global Grid System (DGGS) can be used in which the Earth is
represented by a spherical polyhedron [SWK03,MAAS15]. To provide
a multiresolution representation on a DGGS, the faces of the polyhedron
are initially refined (i.e. tessellated) and then projected to the sphere
to form a set of cells. Different types of cells such as quads (squares
or diamonds), triangles, or hexagons; different types of projected
polyhedra such as the cube, icosahedron, or octahedron; and different
types of projections such as equal area or conformal can be used to
represent the Earth. Among these possibilities, equal area projections
defined for an icosahedron are very common [PYX,Sah08,TBW∗13].
This is due to the fact that equal area projections provide uniform (i.e.
equal area) cells on the Earth and an icosahedron usually produces less
distortion in comparison with other platonic solids [SM01,WKO92].

ICON, the ICOsahedral Non-hydrostaic model, jointly developed
by the Max Planck Institute for Meteorology (MPI-M) and the German

Weather Service (DWD), is a framework defined on an icosahedron
with an equal area projection on which data sets are sampled via
primal triangular cells, dual hexagonal cells and hybrid quadrilateral
cells [ZRRB15] (Sec. 2). Although ICON data is not as easily accessible
as data stored on a regular or curvilinear grid, it has several advantages.
ICON has no poles, allows for an easy refinement in local areas
if needed, and the coupling between the oceanic and atmospheric
components is now much easier, as both models now share the same grid
layout with different resolutions. Similar models to ICON – in terms
of grid layout and structure – are the American MPAS, the Model for
Prediction Across Scales, and the Japanese NICAM, the Nonhydrostatic
ICosahedral Atmospheric Model, which makes the methods developed
for ICON and discussed within this paper almost directly applicable
to MPAS and NICAM as well. [RPH∗13,PJR∗15,SMT∗07].

More recently, the ICON model was extended to permit large eddy
simulations at cloud resolving resolutions as part of the HD(CP)2

project [DSH∗15]. The project aims at ultra-high resolutions to closely
simulate clouds and precipitation processes. Although the simulation
domain only includes Germany, with a spatial resolution of 100m and
150 vertical levels, one 3D variable already stores 2.5 billion cells per
timestep. And this is just the beginning. In order to explore the data and
to gain knowledge and detect new features and correlations, one needs
to interact with these large data sets. This is only possible using in-situ
compression and a level-of-detail (LoD) rendering approach. In here
the data is decomposed into different LODs and compressed before
it is written out to disk in a way that facilitates an interactive access
later. In a second step, a visualization application that supports LoD
rendering is used for a classic user-driven post visualization approach.
Such an application accesses data in an out-of-core fashion; only the
data that is relevant to the visible viewport is fetched.

Other approaches to visualize large data sets are in-situ visual-
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ization, as it can be implemented using Visit [CBW∗12] and Par-
aView [AGL05, Aya15], and distributed rendering on a large visual-
ization cluster. Classic in-situ visualization integrates the visualization
step within the simulation, in a way that the simulated data is visualized
while it is available in main memory. Only the visualization results, either
in the form of images or geometry, are written out to disk. While this ap-
proach saves a lot of disk space and IO bandwidth, a detailed exploration
of the entire data set is not possible anymore. The distributed rendering
approach requires a large and well balanced visualization cluster, that
while running in this mode only serves a single user. Therefore, we are
developing a visualization pipeline that allows in-situ compression of
ultra-high resolution ICON/MPAS simulations, which can later be inter-
actively explored and visualized on a single node visualization system.

This paper explores suitable wavelets and data structures that can
be used to efficiently and effectively decompose and compress high
resolution ICON data. The topic of out-of-core rendering of ICON data
at different LODs is left for future work. ICON stores cell data in an
unstructured manner; the underlying icosahedral discretization however
is highly structured. Exploiting this fact in light of the above goals, this
paper makes the following contributions:

• We introduce icosahedral maps, efficient data structures that map the
connectivity information for all cell-types in ICON to a structured
representation. These maps are an application of the atlas of con-
nectivity maps (ACM) data structure [MAS14] and represent each
face of the icosahedron using a 2D hexagonal grid. We provide the
necessary grid traversal schemes that suitably map the connectivity
of all cell types in ICON to a common hexagonal representation.

• We demonstrate how to decompose ICON data into different LoDs
using a dyadic hexagonal wavelet scheme. Given the icosahedral
maps, the wavelet filters associated with the hexagonal discrete
wavelet transform are efficiently applied via 2D convolution,
upsampling, and downsampling operations. Moreover, the same
wavelet can be used for all cell-types.

The remainder of the paper is organized as follows. We provide an
overview of the ICON grid in Section 2 followed by a review of related
work in Section 3. In Section 4, we provide the essential mathemati-
cal ideas behind the proposed hexagonal wavelet scheme. Section 5
provides a more detailed account of our proposed icosahedral maps. Sec-
tion 6 demonstrates the use of icosahedral maps with ICON datasets and
also compares the effectiveness of the wavelet scheme for different cell
types. Possible avenues of future exploration are discussed in Section 7.

2. ICON Grid Overview
The development of ICON falls into the design choice step of DGGS.
An icosahedron is chosen as the base polyhedron and its faces are repet-
itively refined using a 1-to-4 refinement scheme to increase resolution.
The cells thus created are the primal cells for ICON. In order to have
similar topology on the corresponding spherical surface of the Earth,
vertices are projected onto the sphere. However, the refinement leaves
twelve extraordinary vertices on the Earth’s surface that have a valence
of five and correspond to the vertices of the base icosahedron; the regular
ones have six. After discretizing, prognostic variables are assigned to the
cells to hold data (Fig. 1a). Typically, data are computed at the centroid
of the cell. However, solutions of numerical models often compute
different quantities at different cell locations for improved accuracy. For
example, ICON is C-Grid staggered [SNCB13], where data is computed

(a)

(b) (c)

Figure 1: (a) (Left to right) Icosahedron as base polyhedron, its refine-
ment, projection and data assignment. (b) Data at the centroid (red),
vertices (blue) and edge midpoints (yellow) of the triangles are associ-
ated with (c) triangular, hexagonal and quadrilateral cells respectively.

at the (1) centroids, (2) vertices and (3) edge midpoints of the triangles
(Fig. 1b). This results in additional types of cells each sampling data
at their respective centroids; the centroids of the triangles are associated
with the primal cells, the vertices of the triangles are the centroids of
the dual hexagonal cells, and the edge midpoints of the triangles are
the centroids of quad cells. Each quad cell is obtained by connecting
the edge vertices with the centroids of two adjacent triangles (Fig. 1c).

Vertex information for all cell types in ICON is stored as lists of
individual polygons without their adjacency information; this is often
referred to as a ‘polygon soup’ representation. Data sampled at the
cell centroids are stored according to the index of cell centroids. This
property makes ICON an unstructured grid where the neighborhood
of a specific vertex cannot be found explicitly (Figure 2). The soup
representation of ICON makes convolution — a vital operation
in multiresolution analysis — prohibitively expensive. The main
reason behind this is the absence of neighborhood information which
necessitates a search in the entire polygon soup for the neighbouring
vertices that contribute to the convolution result at a particular vertex. In
order to circumvent this problem, a structured grid-like representation
can be used whereby the neighbourhood of a vertex can be efficiently
determined via simple index calculations. This representation also
facilitates straightforward dyadic subsampling of the grid, which needs
to access alternate rows and columns of a grid. Therefore, a conversion
technique is needed to transform ICON grid into a structured form
whereby the connectivity information of a vertex can be easily obtained.

Figure 2: Example of a triangle soup with three arbitrary triangles in a
mesh. Triangle with centroid cm has vertex information vm,0,vm,1 and
vm,2 but the connectivity between triangles is not provided in the soup.
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3. Related Work
In order to compress and visualize ICON data, the two main ingredients
are an efficient data structure, and a wavelet that operates on that data
structure. Each component is reviewed separately below.

3.1. Mappings and Data Structures
The problem of sampling functions defined on a sphere are frequently
encountered in computer graphics. Environment mapping [Gre86] is
a typical example. In its most basic form, an environment map is a 2D
texture obtained from a latitude/longitude parametrization of the sphere.
This representation however suffers from severe texture compression
near the poles. Cube maps that use a cube as the underlying spherical
polyhedron, are a popular alternative [Gre86]. This mapping stores
the cube faces in six 2D textures and therefore provides a memory
friendly Cartesian structure that expedites routine operations such as
interpolation and filtering. Octahedron maps provide a more uniform
discretization of the sphere, and use a single 2D texture to unfold and
store the eight faces of the octahedron. They have been explored both
in computer graphics [ED08] and Earth sciences [Dut].

The idea of cube maps and octahedron maps can be generalized to an
atlas of connectivity maps (ACM) [MAS14]. ACM stores the vertex/face
information of semiregular meshes in an atlas of 2D maps that can be
indexed using a 2D coordinate system. Applying ACM to a spherical
icosahedron results in diamond shape connectivity maps [MAS14]. In
this paper, we apply the concept behind ACM to ICON data and show
how to map the connectivity information of all cell types (triangles,
quads and hexagons) to icosahedral maps that consist of 2D diamonds
( Figure 5) where each diamond has a hexagonal grid associated with it.

3.2. Multiresolution
A visualization application used in the geosciences that supports both,
LoD rendering as well as reading wavelet compressed data sets is
VAPOR [CR05, CMNR07]. VAPOR operates on rectangular grids,
but not irregular grids such as ICON. Separable 3D wavelets that are
tensor product extensions of 1D wavelets are also commonly used to
compress and render volumetric data that are sampled on 3D Cartesian
grids [RGG∗12].

Since ICON data has a semi-regular hexagonal structure, a non-
separable multiresolution scheme is needed. We can take inspiration
from the field of geometry processing where non-separable subdivision
and reverse subdivision processes are typically used to represent models
at different scales. The filters for these processes are usually obtained
via a geometry-based approach to multiresolution [SDS]. In this context,
loop subdivision and biorthognal loop subdivision wavelets [Ber04]
are relevant as they are designed to work with triangular meshes with
hexagonal connectivity. Another option is a wavelet based on the

√
3 (1-

to-3 refinement) subdivision scheme [WQS07] which treats the primal
and dual cells together. Both these approaches however do not take into
consideration, the continuous nature of the data being approximated.

Consequently, we take a function-based approach to multiresolu-
tion [SDS]. This approach is commonly used in signal and image
processing and centers on the idea of a sequence of nested function
spaces that approximate a given function at different scales. The spaces
are generated by a scaling function and one more more wavelets,
and their orthogonality relationships are used to obtain discrete filters
for the analysis (decomposition) and synthesis (reconstruction) tasks.

Figure 3: The linear box spline with its compact support over a hexago-
nal lattice. It takes a value of 1 at its center and linearly falls off to 0 at
the six neighboring lattice sites.

Interpolation is a key step in many rendering and visualization tasks;
when data resides at the vertices of triangles, the rendering pipeline in
modern GPUs commonly performs barycentric interpolation. On the
hexagonal lattice, barycentric interpolation is tantamount to applying
a linear hexagonal box-spline kernel to the data values [CVDV06].
We are therefore interested in a wavelet that is associated with the
hexagonal lattice and makes use of the linear hexagonal box-spline
kernel as the scaling function. At the same time, we would like the
decomposition and reconstruction filters to be compact so that the data
can be processed efficiently. Towards this end, the hexagonal wavelet
bases proposed by Cohen and Schlenker [CS93] offer a simple and
viable solution. These biorthogonal wavelet bases are based on the
linear box spline and are compactly supported, thus allowing perfect
reconstruction using compact analysis and synthesis filters.

4. Multiresolution Scheme
We only review the essential mathematical ideas behind the proposed
multiresolution scheme. The interested reader is referred to the original
paper [CS93] for construction details. Another useful resource on
hexagonal image processing is the book by Middleton [MS].

A 2D hexagonal lattice is generated by the matrix L=[e1 e2] where
e1=[1 0]T and e2=[−1/2

√
3/2]T are the basis vectors that span

the lattice, i.e. any point on the lattice is given by the matrix-vector
product Lk where k is a 2D integer vector that defines an integer
coordinate system on the lattice. The lattice yields a regular triangule
mesh whose vertices correspond to the lattice points (Figure 3).

Let F[k] denote the sample value of a function at the lattice site
indexed by k. A linear approximation of the function is then given by

f (x)=∑
k

F[k]x−Lk), (1)

where ϕ(x) is the linear box spline (Fig. Figure 3). This is equivalent to
a barycentric interpolation of the triangular mesh from the vertex values
F[k]. In the context of a dyadic multiresolution analysis, f (x) lies in the
fine-scale space V0 that is spanned by the lattice shifts of the generating
function ϕ. In order to approximate f (x) at a coarser scale, one seeks
the mutually orthogonal spaces V1, W1

1 , W2
1 and W3

1 where V1⊂V0 and
contains the coarse scale approximation, and the spaces W1

1 , W2
1 and

W3
1 contain the residual details so that V0 =V1⊕W1

1 ⊕W2
1 ⊕W3

1 . The
coarse-to-fine reconstruction process can be written as

f (x)=∑
k

C[k]ϕ(x/2−Lk)︸ ︷︷ ︸
∈V0

+
3

∑
i=1

∑
k

Di[k]ψi(x/2−Lk)︸ ︷︷ ︸
∈Wi

1

. (2)

Here, ψi (i∈{1,2,3}) is a wavelet function that is related to ϕ according
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(a)

(b)

Figure 4: (a) Four channel subband coding scheme, ↓ represents a
dyadic downsampling operation along the two lattice directions, and ↑
represents an analogous upsampling operation. (b) The low-pass analysis
and synthesis filters ω̊0 and ω0, and the high-pass analysis and synthesis
filters ω̊1 and ω1. The analysis high-pass filters ω̊2 and ω̊3 are obtained
by successive 2π/3 rotations of the analysis filter ω̊1. Similarly, the
synthesis filters ω2 and ω3 are successive 2π/3 rotations of ω1.

to

ψi(x/2)=∑
k

ωi[k]ϕ(x−Lk), (3)

where ωi is a synthesis wavelet filter. Similarly, ϕ also satisfies a
two-scale relationship given by

ϕ(x/2)=∑
k

ω0[k]ϕ(x−Lk), (4)

where ω0 is known as the synthesis scaling filter. The approximation
and detail coefficients C and Di in (2) are obtained through a
decomposition process that takes the form of a discrete convolution, i.e.

C[k]=(F∗ω̊0)[2k],
Di[k]=(F∗ω̊i)[2k],(i∈{1,2,3})

(5)

where ω̊i (i ∈ {0,1,2,3}) are the analysis filters. The decomposition
and reconstruction processes can be succinctly expressed as a subband
coding scheme as shown in Fig. 4a. Compactly supported analysis
and synthesis filters that achieve perfect reconstruction are shown in
Fig. 4b. The scheme can be reapplied to the coarse-scale coefficients to
obtain additional levels of detail. This gives rise to a discrete hexagonal
wavelet transform (DHWT). Observe that the high pass analysis filters
ω̊1, ω̊2 and ω̊3 compute directional derivatives in the three directions
principle directions of the mesh (pictured in Fig. 4b).

The application of this multiresolution scheme to data sampled at
the triangle vertices in ICON is straightforward. Other cells can also be
handled provided that they can be converted into a hexagonal triangle
mesh. This conversion is outlined in more detail in the following section.

5. Icosahedral Maps
Icosahedral maps convert unstructured vertex information into a
structured grid so that the DHWT outlined in the previous section can
be applied in an efficient manner. In order to perform this conversion

Figure 5: (Left) The Earth’s surface unfolded into a net consisting of ten
diamonds; each diamaond refers to a paired face of the base icosahedron.
(Right) The vertex information of each diamond is stored in a rectangular
2D grid that corresponds to a hexagonal lattice associated with the
diamond.

(a) (b)

Figure 6: (a) An extraordinary vertex P with its five neighboring vertices
n0,...,n4. (b) A diamond has four extraordinary vertices at its corners.

(a) (b)

Figure 7: (a) A hexagonal fan around a vertex. (b) The order in which
vertices are placed into the grid.

(a) (b) (c) (d)

Figure 8: (a) Storing o, r and d from a pentgon to initialize array M. (b)
Hexagonal fan placed at the starting vertex, and (c) the corresponding
mesh vertices. (d) The fan is swept in a row-major order until the
extraordinary vertices at the corners are found.

in the context of ICON, we need a technique with the following two
key features: (1) it takes a polygon soup of cells as input and finds
the explicit vertex connectivity information, and (2) converts the three
types of cells into regular triangle meshes, where data is located at
triangle vertices. Our proposed technique is an extention of ACM which
unfolds the Earth’s surface into ten diamonds each consisting of a pair
of adjacent triangular faces of the base icosahedron (Figure 5). Vertex
information on a diamond is stored in a corresponding 2D grid which
is indexed using the coordinate system associated with the hexagonal
lattice. This allows us to easily perform vertex neighbour lookups. The
application of ACM to the triangle vertices in ICON is straightforward.
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(a) (b) (c) (d) (e)

Figure 9: (a) Edge midpoints along three lattice directions (b) Modified form of hexagonal fan to map edge midpoints along the diagonal direction d,
and (c) the corresponding mesh vertices. (d) Resultant shifted grids for two adjacent diamonds along the antipodal axis. (e) The edge midpoints viewed
as a rotation of the primal grid, the polar vertices are obtained from the primal cells.

(a) (b)

Figure 10: (a) Earth’s surface with edge midpoints along two different
directions. (b) Triangulation obtained from the edge midpoints in one
direction.

In our case, we need to handle all three cell types in a unified way.
We therefore propose to convert the cells into a hexagonal lattice
representation and store the vertex information and associated data in
an unfolded net consisting of the ten diamonds of the base icosahedron.
We call these representations icosahedral maps. Our conversion process
consists of the following key steps: (1) finding extraordinary vertices,
(2) retrieving vertex connectivity from the polygon soup using a
hexagonal fan traversal scheme, and (3) storing the vertex information in
icosahedral maps. Each of these steps is explained in more detail below.

Finding Extraordinary Vertices: Detecting twelve extraordinary
vertices on the discretized Earth’s surface is the initial step in unfolding
the Earth surface into diamonds. After unfolding, each diamond
has four extraordinary vertices at its four corners (Fig. 6b). Finding
extraordinary vertices depends on the way the data is stored. In the
context of ICON, the extraordinary vertices have five cell vertices (a
pentagon) in the soup while the ordinary ones have six. Therefore, a
vertex which is shared by five triangles in the triangle soup is taken
to be an extraordinary vertex (Fig. 6a). Using this criteria, we can find
twelve vertices on the Earth’s surface along with their neighbors.

Hexagonal Fan: Given a triangle from the triangle soup, we use a
hexagonal traversal scheme to find its neighbors and store the vertex
information in a 2D grid. This traversal scheme allows us to map the
connectivity of all cell types in ICON in a consistent manner. Figure 7
explains the details of our traversal method. Let C, V0 and V1 be the
vertices of the provided triangle T0 which belongs to the soup. Also,
let M be a 2D array indexed by the coordinates (i, j) where i is the
row index and j is the column index starting from (0,0) at the upper
left corner. Initially, C, V0 and V1 are stored in M at the locations
(i+1, j+1), (i+1, j) and (i, j) respectively. Next, we search through
the soup to find an adjacent triangle T1 which shares the vertices C and

V1 with T0. The remaining vertex V2 of T1 is stored at M(i, j+1). In
the next step, triangle T2 is found from the soup that shares two vertices
C and V2 of T2. As a result, the remaining vertex V3 of T2 is stored at
M(i, j+2). In a similar way V4 and V5 can be found from the triangles
T3 and T4. Note that, M(i+2, j) and M(i, j+2) remain empty (indicated
by φ in the figure). In this fashion, the connectivity information of the
hexagonal neighbors around C is found by placing a hexagonal fan at
C; each face of the fan is a triangle as shown in Figure 7.

Mapping Centroids of Hexagons: As explained earlier, the
centroids of the hexagons reside at the vertices of the triangles. Mapping
the hexagon centroids is straightforward using a hexagonal fan traversal.
Figure 8 explains the main steps of the mapping procedure. An
extraordinary vertex o is chosen and placed at the origin of an array
M. The associated neighbors r and d that form a triangle are stored at
M(1,0) and M(1,1) respectively (Fig. 8a). We then place a hexagonal
fan at vertex d (M(1,1)) to determine the neighbors of d. The hexagonal
fan then sweeps the grid horizontally filling up vertex information from
the corresponding diamond until the extraordinary vertex at the top right
corner is reached. At this point, sweeping proceeds in a row major order
until two other extraordinary vertices are found. In a similar manner,
the entire Earth can be unfolded into ten diamond shaped triangular
grids as shown in Figure 5.

Mapping Centroids of Quads: The centroids of the quads are lo-
cated at the edge midpoints of the primal cells in ICON. The edge
midpoints can be found in three directions along the three edges of the tri-
angles in the primal grid. Figure 9 shows three edge midpoints (indicated
by red, green and yellow squares in Fig. 9a) in the directions r, c and d re-
spectively. The edge midpoints can be mapped by extending our hexago-
nal fan traversal method used to map the hexagon centroids (triangle ver-
tices). The four vertices of each quad are stored as a quad soup in ICON,
where two of the vertices correspond to triangle edge vertices, and the
other come from the centroids of two adjacent triangles. As we are
sweeping the hexagonal fan to determine the connectivity of the triangle
vertices, an edge can easily be found and used to find the edge’s midpoint
by searching in the quad soup for the corresponding quad. Fig. 9b illus-
trates this concept. The pictured case shows the edge midpoints along the
diagonal direction d; N is the corresponding array that holds vertex infor-
mation associated with the edge midpoints along d. At each iteration of
the hexagonal fan, N(i, j) and N(i+1, j+1), the midpoints of the diago-
nal edges {M(i, j),M(i+1, j+1)} and {M(i+1, j+1),M(i+2, j+2)}
respectively, are filled up. Here, M is the 2D array that stores the primal
cells. This process generates a shifted version of the primal triangular
grid with missing vertices at the two poles. The shifted grid can also
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11: (a) Splitting hexagons into triangles. (b) The resulting refined hexagonal grid; the red and blue circles are the centroids and vertices of the
primal cells. (c) Initializing array M with neighbors of the extraordinary vertices in the refined grid. (d and e) The first few steps of the modified
sweeping scheme along the two directions. (f) The two sweeping directions shown together. (g) Empty (φ) entries in M and conditions to test for
extraordinary vertices at the four corners of a diamond. (h) The corresponding mesh vertices exhibit a zigzag pattern on the diamond boundaries.

be seen as a rotation of the base icosahedron about an antipodal axis
(Fig. 9e). The polar vertices are filled by placing the actual vertices of
the triangle from the primal grid. Data at the two poles are determined by
averaging neighboring data. The midpoints corresponding to the other
edge directions can be mapped in a similar manner. As a result, we get
three unfolded icosahedral maps corresponding to the three directional
edge midpoints, each direction corresponds to a rotation about a distinct
antipodal axis as shown in Fig. 10a. Fig. 10b shows the triangulation
obtained from the edge midpoints in one direction. The triangles along
the diamaond boundaries experience a slight distortion but the overall
topology is preserved.

Mapping Centroids of Triangles: Centroids of the triangles are
situated at the vertices of the voronoi cells (hexagons) of the primal
grid. The voronoi cell information is stored as a hexagonal cell soup in
ICON. Our mapping technique for the triangle centroids is illustrated in
Figure 11. First, we split the hexagons into triangles by connecting each
vertex of a hexagon to its centroid. This creates refined triangles which
can also be seen as the result of applying a 1-to-3 refinement to the trian-
gular cells. Consequently, we obtain a finer hexagonal lattice as show in
Fig. 11b. This lattice is a rotated and scaled version of the primal lattice.
As data is only stored at the vertices of the voronoi cells (red circles
in Fig. 11b), data at the centroids of the voronoi cells (blue circles)
are obtained by averaging neighboring data. Capturing the connectivity
information of these vertices is similar to the procedure of mapping
centroids of the hexagons, except this time the sweeping direction of the
hexagonal fan needs to be adapted to the geometry of the finer hexag-
onal lattice. Instead of sweeping the fan horizontally and vertically, we
modify the direction at each step while scanning (Fig. 11d and Fig. 11e).
The horizontal direction is changed by adding (0,1) for every odd step
and by adding (−1,0) for every even step. On the other hand, vertically
the direction is changed by adding (1,1) for every odd step and by
adding (1,0) for every even step. The resultant array M in this case has
empty (φ) entries at the four corners (Fig. 11g) and the diamond has a
zigzag pattern at its border (Fig. 11g). We also need a stopping criterion
to terminate the sweep. This is provided by the extraordinary vertices as
shown in Fig. 11h. It should be noted that due to the hexagonal fan traver-
sal, the topology of the resulting 2D grid is consistent with the previous
two cases. Hence, the DHWT can be applied without any modifications.

6. Results and Discussion
We mapped the connectivity information of different cell types in
several ICON datasets to icosahedral maps. Owing to the simple
rectangular indexing scheme associated with the 2D grids in an

icosahedral map, the convolution, upsampling and downsampling
operations associated with the DHWT (Figure 4) are equivalent to
the corresponding operations associated with the 2D discrete wavelet
transform conventionally used in image processing.

Since an icosahedral map consists of ten 2D grids, we need a way
to handle boundary conditions in a consistent manner when applying
the filters. In our implementation, we take advantage of our hexagonal
fan to extract data at the border of each diamond from its neighboring
diamonds. This data is used to pad the 2D arrays corresponding to the
diamonds. The padding size is determined by the support size of the
filter with the widest extent (3 in our case corresponding to ω1). For
the triangle centroids, the hexagonal fan is run along the zig-zag border
of a diamond to extract data from neighbouring diamonds. This process
ensures that we use actual data at the boundaries and avoids artefacts
due to a sudden truncation.

To visualize scalar data on the Earth’s surface, we performed a
simple color mapping of normalized vertex data and used barycentric
interpolation when rendering triangular faces. We experimented with
ICON data as well as synthetic texture data to observe the behaviour
of the proposed wavelet for different cell types.

Mapping and compression results: Figure 12 shows the results
of applying icosahedral maps and the DHWT on different cell types.
In order to observe how the data sets respond to compression, we
applied quantile thresholding to the details from the first decomposition
level. Only those details whose magnitudes fall within a user specified
percentile are retained, and the remaining are set to 0. In the reported
results, a threshold of n means that the bottom n percent are discarded
and the top (100−n) percent are retained. Peak signal-to-noise ratio
(PSNR) is used to quantify the effect of thresholding. From Figure 12,
we can observe that the wavelet responds very well to compression.
This can be attributed to the smooth nature of the datasets which is
evident in Figure 13; the PSNR values fall gradually with increasing
threshold and we achieve visually acceptable results even with an
aggressive threshold level.

Comparison between different cell-types: The quality of compres-
sion depends on the nature of the data being compressed. In order to
observe how the wavelet behaves in the presence of non-smooth data, we
performed a texture mapping experiment where the latitude/longitude
coordinates of ICON vertices were used as texture coordinates to
map a checkerboard texture to the sphere. This texture has sharp
lines which experience some smoothing when mapped to ICON cells.
Figure 14 shows the results for one diamond and for different cell types.
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Figure 12: Results of applying icosahedral maps and the DHWT on ICON data at the centroids of hexagons (top), edge midpoints in one direction
(middle), and the centroids of triangles (bottom). The grid resolutions per diamond from top to bottom are 65×65, 65×65 and 99×67 respectively.
Each row (left to right) illustrates the original cell-type in ICON (data at centroids), result of converting to a triangular grid (data at vertices) via the
icosahedral map, applying DHWT on the converted grid to obtain coarse data, and reconstructed data using two different thresholds: 10 and 95. The
figure also focuses on the borders of the diamonds around an extraordinary vertex to show the smoothness along boundaries due to padding.

(a) (b) (c)

Figure 13: PSNR vs. threshold graphs for three different scalar ICON
variables sampled at: (a) centroids of hexagons, (b) edge midpoints in
one direction, and (c) centroids of triangles.

Observe that the texture is better preserved on the triangle centroids
as compared to the hexagon centroids or the edge mid-points in one
direction. This is to be expected since the triangle centroids are twice as
dense compared to the hexagon centroids. Using our icosahedral maps,
the hexagon centroids and the edge midpoints in one direction yield
similar triangulations which are just shifted versions of each other. This
explains why these two types of vertices behave similarly.
Additionally, when an aggressive threshold value is chosen, we can
observe more pronounced compression artefacts in regions where the
texture undergoes a sharp transition. The PSNR-vs-threshold curves
in Fig. 14d suggest that the triangle centroids outperform the other
cell types. However, all three experience a sharp deterioration for high
threshold values.

7. Conclusion
We proposed icosahedral maps, data structures that are ideally suited
to store the connectivity information of different cell configurations

in the ICON model. Our icosahedral maps convert the cell geometry to
a common hexagonal representation irrespective of the cell type. This is
achieved via a hexagonal fan sweeping scheme that is adapted to the ge-
ometry of the different cell types. We further demonsrated how to apply
a hexagonal wavelet scheme to the icosahedral maps in order to render
scalar data at a coarser resolution or to compress it via thresholding.

Even though our tests have been limited to low resolution models, the
methodology presented in this paper can be easily extended to high res-
olution models. Since the icosahedral maps consist of simple 2D grids,
bricking schemes commonly employed in rendering high resolution
volumetric data [BHP15] are directly applicable. The maps/bricks can
be stored in the texture memory of modern GPUs. This paves the way
for visibility-driven and out-of-core rendering strategies on the GPU.

In future, besides conducting a more thorough evaluation with
the domain experts, we would like to explore the scalability of our
icosahedral maps. We are also interested in reducing the footprint of
the maps associated with the triangle centroids. The use of non-dyadic
wavelets in this context is also a topic that deserves further attention.
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