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Abstract
Pediatric brain tumor radiotherapy research is investigating how radiation influences the development and function of a pa-
tient’s brain. To better understand how brain growth is affected by the treatment, the brain structures of the patient need to be
explored and analyzed pre- and post-treatment. In this way, anatomical changes are observed over a long period and are as-
sessed as potential early markers of cognitive or functional damage. In this early work, we propose an automated approach for
the visual assessment of the growth prediction of brain structures in pediatric brain tumor radiotherapy patients. Our approach
reduces the need for re-segmentation and the time required for it. We employ as a basis pre-treatment Computed Tomography
(CT) scans with manual delineations (i.e., segmentation masks) of specific brain structures of interest. These pre-treatment
masks are used as initialization, to predict the corresponding masks on multiple post-treatment follow-up Magnetic Resonance
(MR) images, using an active contour model approach. For the accuracy quantification of the automatically predicted post-
treatment masks, a support vector regressor (SVR) with features related to geometry, intensity, and gradients is trained on the
pre-treatment data. Finally, a distance transform is employed to calculate the distances between pre- and post-treatment data
and to visualize the predicted growth of a brain structure, along with its respective accuracy. Although segmentations of larger
structures are more accurately predicted, the growth behavior of all structures is learned correctly, as indicated by the SVR
results. This suggests that our pipeline is a positive initial step for the visual assessment of brain structure growth prediction.

CCS Concepts
• Applied computing → Life and medical sciences; • Human-centered computing → Visualization;

1. Introduction

Radiotherapy (RT) is a well-established and essential treatment
modality for children with brain tumors. It uses high-energy ion-
izing radiation to kill tumor cells, but surrounding normal tissues
might also be affected. This can lead to anatomical, cognitive, or
functional impairment in young patients, who are particularly sen-
sitive to radiation [BKL∗16]. To investigate how RT influences the
growth and cognitive development of a child’s brain, numerous
brain structures of interest need to be segmented and visualized
over time in a longitudinal manner [TIS∗19]. This facilitates track-
ing and analyzing anatomical changes, during and after the treat-
ment period. However, during this follow-up period, the anatomy of
the patient, but also scanning protocols and/or modalities change.
This implies that the follow-up data need to be re-segmented and
re-assessed—incurring significant overhead.

In this early work, we propose an approach for the visual as-
sessment of the growth prediction of brain structures in pedi-
atric brain tumor RT patients, which mitigates the overhead of re-
segmentation. The contributions of this work are: (1) The design
of a pipeline to automatically predict segmentation masks for se-
lected brain structures in post-treatment MR images, based on pre-

treatment CT data; (2) an approach to assess the accuracy of the
predicted segmentations of the brain structures; and (3) an inter-
face to visualize structure growth, focusing on how one structure
changes over treatment time, along with the prediction accuracy.

2. Related Work

A recent survey discusses how visual computing approaches
can support different steps within the RT planning work-
flow [SRM∗19]. Although there is no specific previous work on
the visual assessment of brain growth after RT, we position our
work close to approaches revolving around the use (i.e., support,
enhancement, assessment) of (semi-) automated segmentation al-
gorithms within RT. De Geus et al. [DGW96] propose an approach
for the detection, modeling, and visual stylization of structures
of interest from CT images. Zindy et al. [ZMBL00] propose as-
sisted contouring based on scattered data interpolation methods.
Raidou et al. use visual analytics to facilitate the assessment of
outcomes and errors of segmentation methods for cohort and indi-
vidual patient investigation [RMB∗16]. Schlachter et al. [SFA∗17]
propose a visualization framework for rapid quality assessment of
segmentation, targeting temporal fusion data. Other recent related
works address the exploration and analysis of anatomical variabil-
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Figure 1: The workflow employed for the visual assessment of predicted brain structure growth: After pre-processing, the segmentation
of brain structures is predicted in the post-treatment imaging (t1− t3) using the pre-treatment segmentation (t0) through an active contour
model. Then, the prediction accuracy is quantified with a support vector regressor (SVR). Finally, the predicted segmentation is visualized
together with its accuracy on the underlying CT/MRI data.

ity [KLR∗13,RCMA∗18,FGM∗20] and the prediction of anatomi-
cal motion through treatment [FMCM∗21]. Finally, uncertainty and
its quantification has been tackled multiple times in relation to the
medical domain [RPHL14, GSWS21].

3. Background

Current Workflow: Pediatric brain tumor RT investigates the
effects of radiation doses delivered to different brain struc-
tures [BKL∗16, TIS∗19]. The response of distinct brain structures
to different RT doses and treatment modalities is studied through
radiobiological models that evaluate different treatment strategies
and their respective dose/volume parameters. The quantitative pre-
treatment assessment of the dose delivered to pre-defined structures
ensures that radiation limits are respected, thereby limiting the risk
of side effects for the patient. The qualitative (i.e., visual) pre- and
post-treatment assessment of the growth patterns of these structures
enables to follow the patient’s cognitive and functional develop-
ment over time. Both approaches require that the brain structures
of interest are accurately delineated. This is most commonly done
manually by medical experts (e.g., radiation oncologists) and is a
very time-consuming procedure—especially, with a high number of
structures in a long follow-up period. Automatizing this step could
reduce significantly processing time.

Dataset: The available dataset consists of 20 folders, correspond-
ing to 20 pediatric patients with previously treated brain tumors.
The data includes CT pre-treatment scans (referred to as t0, in this
paper) and 1–3 additional pre- and post-treatment MRI data (re-
ferred to as t1 − t3). All the data are registered to the coordinate
system of each patient. For the pre-treatment CT scans, segmen-
tation masks of over 100 structures are available. For this project,
21 brain structures were selected as the most relevant, based on
previous work that associates these structures with cognitive side
effects [TIS∗19].

Tasks: The current workflow could improve significantly through
the integration of:

[T1] Segmentation Prediction: Predict the segmentations of brain
structures post-treatment, based on pre-treatment data.

[T2] Accuracy Quantification: Quantify the accuracy of the pre-
dicted segmentations.

[T3] Comprehensive Visualization: Visualize structure evolution
over time (pre-, post-treatment), along with its accuracy.

4. Visual Assessment of Predicted Brain Structure Growth

In this section, we describe the workflow for the visual assessment
of the predicted growth of brain structures in pediatric RT patients.
The workflow is schematically depicted in Figure 1. First, a pre-
processing step is conducted. This is followed by the segmentation
prediction, where an active contour model is initialized with the di-
lated version of the pre-treatment segmented structures to predict
the post-treatment segmentations. Here, a hyperparameter search
is conducted to obtain adequate parametrizations of the algorithm.
Subsequently, the prediction accuracy is quantified using a support
vector regressor (SVR), trained on the pre-treatment data. Finally,
the visualization of the predicted segmentation and its accuracy
supports the visual assessment of brain structure growth.

Pre-processing: The CT and MRI images are stored as DICOM
files. The first step is to extract the voxel data and convert their
world coordinates to image coordinates, considering translation
and scaling with voxel spacing (default: 0.97 mm x 0.97 mm x
1 mm). The segmentation masks for the pre-treatment CT scans are
also stored using the DICOM format, and for each structure a bi-
nary mask is available. The folders 1–15 are used for developing
the pipeline, while folders 16–20 are locked and kept for testing.

Segmentation Prediction: Segmentation masks are only available
for pre-treatment CT scans. From these, the segmentation masks
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for post-treatment MRI data need to be predicted [T1]. Concep-
tually, the growth of brain structures is anticipated to be similar
to a “dilation”. An active contour model, initialized with a dilated
pre-treatment segmentation, fits well to the anticipated growth pat-
tern. Figure 2 illustrates the pipeline for the predicted segmenta-
tion of a brain structure. First, the segmentation contour from the
pre-treatment CT scan (t0) undergoes a morphological dilation, to
generate a larger mask. The reason for this is that all structures are
expected to grow over time. Then, the dilated mask is used as the
initialization (initial snake coordinates) for the active contour opti-
mization in the post-treatment MRI scans. This is possible, as the
data are co-registered.

Brain structures range from very small to almost area-filling
shapes and might comprise a single or multiple components. Ad-
ditionally, most brain structures have a clear boundary, but adja-
cent tissues have similar intensity values. To identify a method that
can handle all these variations, we empirically tested several ap-
proaches, among which the basic active contour model [KWT88],
the Chan Vese algorithm [CV99], morphological active con-
tours without edges (MorphACWE) [MBA14], and morphological
geodesic active contours (MorphGAC) [MBA14]. MorphACWE
and MorphGAC do not yield satisfying results, given the similar-
ity of intensity values and the effort required for their initializa-
tion, respectively. The most feasible and satisfying initial results
are achieved with the active contour model.

The active contour parameters and the kernel size of the dila-
tion are hyperparameters, which need to be adequately chosen. This
choice is not trivial [DR12]. Three parameters—kernel size of di-
lation k, smoothness of the snake shape β, and maximal number of
iterations used to optimize the snake n—influence mainly the re-
sult. We perform a sparse grid search on half of the data (folders
1–10) to determine favorable settings for each structure.

Since the ground truth information is available, we can quan-
tify its deviation from the predicted segmentation within the hy-

Figure 2: The predicted segmentation pipeline: The pre-treatment
segmentation mask (t0, red dotted line) is dilated (green) and em-
ployed as initialization for segmentation of the post-treatment data
(t1− t3) using active contours (result shown in blue). Then, a hy-
perparameter search is employed to fine-tune the parametrization.

perparameter search for each structure. For this, we use the Dice
Coefficient, defined as 2|A

⋂
B|

|A|+|B| , where A and B are the volumes of
the predicted structure segmentation and the ground truth data, re-
spectively. This procedure is performed for each structure and each
patient, in two rounds. In the first round, we investigate all pos-
sible combinations of the following parametrizations: k ∈ {5,10},
β ∈ {0.05,0.1,0.2}, and n ∈ {2,5,8,15,20,30}. This results in 36
different settings for the sparse grid search. In the second round,
the local neighborhood of the best values is revisited. To obtain the
optimal parameter setting for the entire segmentation workflow, the
final parameter values per structure are derived by a majority vote
over the data of all training patients (i.e., folders 1–10). This en-
sures that our pipeline will also work for unseen data. The final
values for all structures are included in the supplementary material.

Accuracy Quantification: After the prediction, we need a quanti-
tative measurement for the segmentation accuracy [T2]. We employ
a support vector regressor (SVR), trained on the pre-treatment data,
as illustrated in Figure 3. Our approach is based on the learning ap-
proach by Kohlberger et al. [KSA∗12]. First, the segmentation of
the pre-treatment data (t0) are re-generated using the active con-
tour model. Together with the ground truth information, they build
the training data for the SVR. At test time, the accuracy of post-
treatment segmentations (t1− t3) is predicted.

The SVR is set up similarly to the work of Kohlberger et al. The
variables are calculated per structure, and for each data slice. The
35 employed independent variables are a combination of geometry,
intensity and gradient features, and selected ratios of those. Since
the feature values have a large range and SVR is not scale-invariant,
they are standardized by subtracting the mean and dividing by stan-
dard deviation. Five error metrics are implemented as dependent
variables: Jaccard distance, Dice Coefficient, Hausdorff distance,
modified Hausdorff distance, and average surface error [KSA∗12].
The scikit-learn implementation of SVR with a radial basis func-
tion kernel and ε = 0.01 is used. The best value for the regular-
ization parameter C ∈ [1,99] is determined with 5-fold cross vali-
dation [HCL03]. Therefore, the dataset is split into five parts. One
part is used for testing, and the remaining four are used for fitting
the SVR with a specific C value. This is done five times, so that

Figure 3: Our approach for training the support vector regressor
(SVR) and for quantifying the accuracy of the prediction.
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each partition is used once as test set. Then, the results for each
C are averaged and compared to the results for other C values for
each structure (see also supplementary material). To evaluate the
SVR performance, the coefficient of determination R2 of prediction
is used. In addition, we test which dependent variable combination
works best per brain structure labels (21 in total). The best single-
output SVR was with Jaccard distance (10/21 labels), followed by
the Dice Coefficient (6/21 labels). The best multi-output combina-
tion is Dice Coefficient with Jaccard distance (14/21 labels).

Comprehensive Visualization: For the visual assessment of the
predicted brain structure growth, we display structural changes over
time for each structure for one patient, along with the prediction
accuracy [T3]. We opt for a simple 2D slice-based view on the
three anatomical planes, due to its simplicity and widespread use
in the clinical setting. We refrain from employing a 3D rendering,
due to visibility challenges—especially, for inner structures.

To get the distances between a timestep and its successor,
distance transform is applied to the segmentation mask of one
timestep, and is clipped to the area enclosing the other timestep.
If a structure grows in one direction and shrinks in another, the dis-
tance transform needs to be applied to both segmentation masks to
obtain the distances in all directions. The distances are encoded by
per-voxel intensity values (0 to 255, where 255 corresponds to the
largest distance between two timesteps). Our approach only takes
timelines into account—not the point-correspondence between two
timesteps. Thus, note that voxel values do not vary from 0 to 255
following a streakline; instead, the maximal value on a streakline is
scaled with respect to the maximal distance of the overall mask.

After generating the distance masks, a lookup table is applied to
the data, to map distance values to respective colors. We select the
HSV color space to encode the timestep transition, using the hue,
and the prediction accuracy, using the formula for the saturation s:

s(a) =


0.2, f or a≤ 0.5
0.5, f or 0.5 < a≤ 0.75
0.9, f or 0.75 < a≤ 0.9
1.0, f or 0.9 < a≤ 1

where a is the prediction accuracy. The cut-offs and values for the
saturation formula are empirically tested, and they are chosen in
a non-linear way to highlight the segmentation masks with higher
accuracy (i.e., more certain predictions are more prominent). For
example, the initial timesteps (t0) are always fully saturated, as
they are not predictions, but actual segmentation data. The user
can choose between three different color maps: a qualitative RGBO
color map following the ColorBrewer guidelines, a binned plasma,
and a binned viridis colormap. All three colormaps are defined for
a maximum of four bins (i.e., timesteps), which is the maximum
in our application. For a small number of timesteps higher than
four, the approach can be easily extended, but for a high number of
timesteps, it might need to be reworked in the future. If a dataset
contains less timesteps, then only the first few colors are used.

The segmentation contours are additionally displayed to provide
further context of the structure boundaries at the scanning time-
points. The colors match the colors assigned to their respective seg-
mentation mask and they are shown with full saturation, to make
the boundary more prominent and to provide a link between the

segmentation mask and the boundary. The segmentations and their
contours are overlaid on top of the respective CT/MRI data fol-
lowing common clinical practice, to provide anatomical contexts
and the additional possibility to verify the predicted segmentation
masks. This part is implemented in Python, using PyQT and the
Visualization Toolkit (VTK), and is presented in Figure 4.

5. Results and Discussion

The predicted error metrics of our segmentation pipeline show a
wide range for different brain structures. The average Jaccard dis-
tance is higher for large structures, such as the brain (0.81), tem-
poral lobe (0.74), and scalp (0.66), as compared to smaller struc-
tures, such as the thalamus anterior (0.09), hypothalamus (0.11),
and cingulum (0.10). The same behavior is observed for other error
metrics. However, in the k-fold cross validation, the SVR is able
to predict the Jaccard distance with a mean squared error between
0.03− 0.08, which means that the behavior observed in the train-
ing dataset is learned correctly. The SVR scores and the best error
metrics for the k-fold cross validation are presented in detail for all
investigated brain structures in the supplementary material.

Although our approach delivers satisfactory results, regardless
the underlying image modality, a drawback is that the segmenta-
tion prediction and feature calculation for feeding the SVR cannot
be performed in real-time, due to computation duration and used
memory storage. Our next steps will focus on obtaining a more
efficient implementation that could speed up the process and fa-
cilitate in-line integration. As an alternative, a deep learning ap-
proach for semantic segmentation could replace the prediction and
the accuracy quantification [RFB15], given the built-in probability
of certainty that a voxel belongs to a specific prediction class in
neural networks. This could also resolve the speed and memory is-
sues. Yet, a sufficient amount of data and a dedicated training phase
would be a strong pre-requisite.

Figure 4: 2D views for the visual assessment of the predicted seg-
mentations and their accuracy with different color schemes. Hue
indicates the timestep and saturation the accuracy.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

34

https://colorbrewer2.org/
https://www.qt.io/qt-for-python
https://www.vtk.org/


C. Magg et al. / Visual Assessment of Growth Prediction in Brain Structures after Pediatric Radiotherapy

The visualization could also be improved and/or extended.
Streaklines to show the point-correspondence between segmenta-
tions could be employed in addition to the timelines, by utilizing
a 2D color map [SBM∗15], or by integrating other state-of-the-art
visual designs, which could handle better 3D views. For this, in
the future, we intend to look further into the domain of illustrative
flow visualization, which could provide significant inspiration for
the representation of growth [BCP∗12]. Additionally, the extension
to the simultaneous visualization of multiple structures for multiple
patients, also within a comparative context would be an interesting
direction to support cohort analysis and patient stratification. This
case would be particularly useful and challenging (in terms of visu-
alization design) if combined with co-occurring assessment of RT
plans, to analyze and predict which strategy would be more suitable
for each patient case [FMCM∗21]. Finally, a thorough quantitative
evaluation with a higher number of patients and a thorough user
study would be required to assess the suitability of our approach
for use within the clinical workflow.

6. Conclusion

The main contribution of this work is the design of a reusable
pipeline to predict segmentations for new follow-up post-treatment
data on the basis of pre-treatment scans, and the quantification of
the respective prediction accuracy. These are conducted using, re-
spectively, an adapted active contours methodology and a SVR ap-
proach. To visualize the predicted segmentations along with their
prediction accuracy on top of imaging data, we provide a simple,
proof-of-concept visualization for the time evolution of the seg-
mentation masks. This is an initial step towards the visual assess-
ment of the predicted growth of brain structures of pediatric RT
patients, with good initial results and interesting future directions.
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