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Abstract

Generative adversarial networks have been shown to alleviate the problem of limited training data for supervised learning
problems in medical image computing. However, most generative models for medical images focus on image-to-image trans-
lation rather than de novo image synthesis. In many clinical applications, image acquisition is multiparametric, i.e. includes
contrast-enchanced or diffusion-weighted imaging. We present a generative adversarial network that synthesizes a sequence of
temporally consistent contrast-enhanced breast MR image patches. Performance is evaluated quantitatively using the Fréchet
Inception Distance, achieving a minimum FID of 21.03. Moreover; a qualitative human reader test shows that even a radiologist

cannot differentiate between real and fake images easily.
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1. Introduction

Contemporary methods of medical image segmentation and classi-
fication are mostly driven by machine learning algorithms that learn
from data in a supervised fashion. This is problematic in several
ways: Firstly, supervised learning algorithms rely on large amounts
of annotated data. Especially with clinical data, requiring expert
knowledge for annotation, the annotation process is costly and
time-consuming. As a consequence, algorithms are often trained
and evaluated on datasets that are too small to unfold the full po-
tential of a neural network. Secondly, domain shift limits the ap-
plicability of many machine learning models. The implicit assump-
tion of supervised learning that training and test data arise from
the same distribution as real-world data often does not hold, which
leads to poor inference performance.

Generative adversarial networks (GANs) [GPAM™* 14] have the
potential to solve these problems by modelling the latent distri-
bution of the training data effectively. In medical image com-
puting, GANs have successfully been applied to image-to-image
translation [WLVI17, OSDU18], segmentation [KBS*17], synthe-
sis [WLI18] and many other subfields. Furthermore, it has been
shown that supervised training of neural networks for segmenta-
tion [?, ?] and classification [FAKA* 18, MMKSM18] with addi-
tional synthetic training data improves prediction performance on
real test data.

Clinical acquisition protocols often involve MR imaging with
several contrasts or multiparametric imaging such as dynamic
contrast-enhanced (DCE) or diffusion-weighted imaging (DWI).
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For this kind of data, there are very few works on image synthesis
using data-driven generative models so far. Beers et al. [BBC*18]
trained a Progressive Growing GAN [KALL17] to generate several
contrasts of brain MR images. The vast majority of other works es-
sentially performs image-to-image translation rather than de novo
synthesis [WKLI18]. However, a model capable of synthesizing
a set of images that is consistent across contrasts and parametric
maps would be very helpful for image segmentation and classifica-
tion. Potential applications may be breast or prostate MR-imaging
that both notoriously suffer from small datasets and high biological
variance.

Therefore, in this work we present a setup that is able to syn-
thesize consistent DCE-MR image patches (64 x 64 crops) of the
breast de novo that could be utilized to improve breast lesion ma-
lignancy classification [TSH*19] in the future. Our contributions
is that we extend two GAN algorithms, deep convolutional GANs
(DCGANSs) and Wasserstein GANs (WGANSs), to synthesize dy-
namic contrast-enhanced MR images conditioned on healthy tissue,
benign lesions and malignant lesions, respectively.

2. Data

Our dataset consists of multiparametric contrast-enhanced bilateral
breast MR images of 408 patients. All images were acquired ac-
cording to a clinical routine standard protocol [KSB*17], which
consists of a T2-weighted turbo spin-echo sequence (acquisition
matrix 512 x 512) and a T1-weighted gradient echo dynamic series,
which are both acquired in axial orientation. The dynamic series is
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comprised of one precontrast image and four images acquired every
70 seconds after administration of contrast agent.

All suspicious lesions were manually segmented on every slice
by a radiologist with 13 years of experience using an in-house de-
veloped software. Malignancy was determined based on histology
or 12 month follow-up if no histology was available. More details
on the dataset are provided in Tab. 1.

. Lesions Patches
Subjects
benign malignant benign malignant healthy
408 478 664 1149 2206 401,525
Table 1: Description of the dataset.
3. Methods

We aimed to keep the preprocessing pipeline as simple as possible
to ensure that the synthesized images closely resemble images in
clinical practice. To this end, we did not perform a bias field cor-
rection but simply rescaled image intensities to a fixed range of [0,
1023]. Since all data originates from a highly standardized proto-
col, i.e. slice thickness and in-plane resolution are approximately
the same for all training data, the training images were resampled
to a fixed resolution of 512 x 512 x 32.

To generate MR images that are useful for a future lesion classi-
fication, axial 64 x 64 patches were extracted as follows:

1. Patches of benign and malignant lesions were extracted by crop-
ping based on the centers of mass of the segmentation masks of
individual lesions.

2. Patches of healthy tissue were extracted by random sampling of
centerpoints from locations inside the breast with no clinically
relevant findings in a 32 x 32 neighborhood. Following that pro-
cedure we extracted 401,525 patches in total, which is equiva-
lent to sampling 984 patches from each patient or 15 patches
per breast and axial slice on average. The resulting patches par-
tially overlap which can be interpreted as an augmentation of
the dataset. A summary is provided in Tab. 1. An example set of
patches is given in Fig. 1.

(@) Tlpre  (b) Tlposta (c) 2 (9) T2

Figure 1: Contrasts of an example patch depicting an invasive car-
cinoma. The pre and post indices refer to images that were acquired
prior or after administration of contrast agent. The subtraction im-
age (Sub) is calculated by Sub = Tlpost1 — Tlpre.

The pace of progress in generative models is fast. It has been shown
that there is no clear consensus concerning which GAN algorithm
is better than another and many of the recently proposed models
achieve comparable performance [LKM*18]. For this reason we
compare deep convolutional GAN (DCGAN) [RMC15] because

of it’s simplicity and Wasserstein GANs (WGANs) [ACB17] be-
caue of it’s successfull prior application in medical image synthe-
sis [WLI18].

3.1. Deep Convolutional GAN

The DCGAN framework as proposed in [RMC15] is a baseline
model. The discriminator D is composed of four layers of 2D
strided convolutions, batch normalization, LeakyReLLU activation
functions and a fully-connected layer. The generator G consists of
four layers of upconvolutions, batch normalization, ReLU activa-
tion and finally an upconvolution with tanh activation function. In
contrast to the original implementation, we modified the upconvo-
lutions to the “better upconvolution” as proposed in [ODO16] to
reduce checkerboard artifacts. Furthermore, we changed the gener-
ator output to have seven channels, i.e. one channel for each MR
contrast or DCE time point. We denote the real and generated data
distributions as P and P;. The generator G generates new samples
% = G(z) from a random noise vector z ~ p(z) following a Gaus-
sian distribution and the optimization objective is defined as

rrgnmgxxiEPr[logD(x)] — i]NE]Pg [log(D(X))]. 1

Optimization was performed using a batch size of 64 and Adam
optimizer with all hyperparameters set as suggested in [RMC15].

3.2. Wasserstein GANs

In Wasserstein GANs [ACB17], the generator is trained to min-
imize an approximation of the Earth Mover’s (EM) distance be-
tween the distributions of real and synthetic data. Loosely speak-
ing, the EM distance can be interpreted as moving a pile of dirt fol-
lowing a certain distribution into another distribution at minimum
cost. In this setting, the discriminator no longer classifies samples
as real or fake but approximates the EM distance. As compared to
the original GAN loss in Eq. 1, the Wasserstein GAN framework
propagates stronger gradients to the generator, which reduces the
risk of mode collapse during training [ACB17]. The objective then
becomes

minpax £ [D()] -~ B D). @

However, in order to approximate the EM distance, the discrimi-
nator is required to be Lipschitz continuous. This was initially im-
plemented by clipping the weights of the discriminator, which has
several drawbacks: Firstly, clipping weights effectively prevents the
network from learning and using it’s full capacity. Secondly, a new
hyperparameter, the clip value c, is introduced that is very sensi-
tive to small changes. However, the authors claim that despite these
drawbacks, the WGAN practically provides high quality results. As
suggested by Arjovsky et al. [ACB17], we set the update ratio of
discriminator updates per generator update to five.

To overcome the aforementioned drawbacks of WGANTS,
adding a gradient penalty to the Wasserstein loss was proposed
in [GAA™17], which regularizes the loss from Eq. 2 to

i X o 2
minmax B (D))~ E [DW]+A E [(IV2D®)l2= 1)
®
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where Py is the distribution of linear interpolations between pairs
of samples from the data and generator distribution, respectively.
This enforces a local Lipschitz continuity and eliminates the need
for weight clipping. However, in experiments that are beyond the
scope of this work we found that the Wasserstein loss with gradient
penalty as in Eq. 3 was extremely sensitive to the the weighting
factor A, which lead to unstable and diverging training. Therefore,
all experiments in this work are based on the Wasserstein loss as
introduced in Eq. 1 despite it’s theoretical shortcomings.

In order to generate images that are coherent across MRI con-
trasts and time points, we adapt the channel dimensions of our gen-
erator networks to match the number of channels, i.e. contrasts and
time points for 2D+t data. We trained the WGAN with 64 samples
per batch using the RMSProp optimizer and set all hyperparameters
as suggested in [GAA™17].

In order to generate patches of the three relevant patch
classes, we conditioned the GANs with a condition y €
{benign, malignant, no findings} [MO14]. This is implemented by
concatenating the one-hot-encoded vector y to the noise vector z.

4. Experiments

For evaluating synthetic data, several aspects need to be consid-
ered: Obviously, image quality needs to be assessed. To this end,
we evaluate Fréchet Inception Distance (FID) [HRU*17] and per-
form a human reader test. Moreover, we assess image diversity by
means of calculating the 1-nearst-neighbor (1-NN) classification
accuracy as suggested in [XHY*18].

4.1. Quantitative Evaluation

Quantitaive evaluation of image synthesis is challenging because
the field still lacks a widely-accepted measure. Previously pro-
posed distance measures such as the Inception Distance (ID) and
the Fréchet Inception Distance (FID) are constructed for natural
RGB images rather than medical images.

Fréchet Inception Distance [HRU" 17] has been shown to be su-
perior in terms of consistency to the previously proposed Inception
score [SGZ*16]. In FID, the Inception-v3 network is utilized to ex-
tract activations from the poo1l3 layer. With X, ~ N (ur,X,) and
Xg ~ N (g, X,) denoting the distributions of those features for real
and generated data, respectively, FID is defined as

FID = [ — gl |+ Tr(Z, + 2 —2(5,%0)' ). (4)

More similar activation distributions lead to lower values for FID.
Hence, smaller values correspond to higher similarity. To make our
data fit the Inception-v3 network we selected the T2, Tlpre and
Tlpos1 images as R, G and B channel, respectively. As Kuhl et
al. reported in [KSS™14], diagnostic accuracy based on this abbre-
viated protocol is equivalent to the full protocol. To calculate the
distribution statistics we used 1000 randomly chosen real samples
of the dataset and an equal amount of generated samples. We ran
the calculation with 10 different sets of real and fake samples and
averaged the scores.

FID scores for all models are depicted in Tab. 2. The best FID
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FID,;, 1-NNreal I1-NN fake
ben DCGAN 27.14 0272 0.221
enign WGAN 3390  0.229 0.166
salienay.  PCGAN 2023 0.306 0.268
& WGAN 2451  0.264 0.21
o findines DCGAN 2103 0.428 0.223
8  WGAN 2948 0337 0.151

Table 2: FID and I-NN accuracies for DCGAN and WGAN for
benign, malignant and healthy tissue. All results are based on
the “best” training epoch determined by the lowest FID value
(FIDpin).

of 20.23 is achieved by training a DCGAN on malignant patches.
Consistently, the DCGAN achieves better FIDs than the WGAN.

1-Nearest-Neighbor accuracy has been proposed in [LPO16] to
measure quality of generated images [XHY*18]. With two sets,
Sy ~ [P consisting of real samples and Sg; ~ [P of fake samples,
we assign Sy positive labels and Sg negative labels, respectively.
Then, the accuracy of a 1-nearest-neighbor classifier trained on S,
and S, is computed for the two sets seperately. In theory, if the
images are perfectly diverse, the 1-NN classifier achieves 50% ac-
curacy on both sets. 1-NN accuracies for our experiments with
|Sr| = |S¢| = 1000 are depicted in Tab. 2. The best 1-NN accuracies
are achieved by the DCGAN.

4.2. Human Reader Test

For a systematic approach to visual human inspection, we asked
a radiologist and a layperson with no technical or medical back-
ground to classify sets of images as real or fake. To this end, we
presented a T1 dynamic series with corresponding subtraction im-
ages as well as the T2 image to the human raters as depticted in
Fig. 4 and 5. For DCGAN and WGAN, respectively, we generated
40 random samples from the generator and drew 40 random sam-
ples of real data for each benign, malignant and healthy patches. In
total this leads to 240 real and 240 fake images that were assessed
by the human readers. The experiment was started with a warm up
phase, in which the human readers were shown 24 real and 24 fake
samples and their respective origin to get used to the task. Results
of the human reader tests are listed in Tab. 3. The radiologist per-
formed about 10 % better than the layperson.

Real DCGAN WGAN
Layperson  64.6% 62.5% 70.0%
Radiologist 73.3%  75.0% 76.7%

Table 3: Fraction of correctly classified samples from human
reader tests.

Example images for both DCGAN and WGAN are depicted in
Fig. 2 and 3. Additional patches showing the temporal and struc-
tural consistency accross time points in the dynamic series and con-
trasts are provided in Fig. 4 and 5. The images are structurally



14 C. Haarburger et al. / Multiparametric MRI Synthesis using GANs

highly consistent across time points and contrasts. As expected,
some parts of the image show a contrast agent enhancement, which
mostly occurs between Tlpre and T1pog1 -

Figure 2: Example patches for fake malignant native Tl images
generated by a DCGAN.

el

Figure 3: Example patches for fake malignant native T1 images
generated by a WGAN.

5. Discussion

We present a method for synthesis of multiparametric breast MR
image patches. Our results show that both DCGAN and WGAN are
able to generate sequences of T2 and T1-DCE image patches that
are spatially and temporally coherent, such that even a radiologist
cannot differentiate between real and fake images easily.

FID values are in a range that is comparable to other works
reporting FID for DCGAN and WGAN based on ImageNet and
CIFAR-10 datasets [ODM18]. In terms of FID and 1-NN accura-
cies, the DCGAN is superior to WGAN. Interestingly, 1-NN accu-
racy and FID are strongly correlated which may indicate that FID

Figure 4: Sequence of fake benign T1 dynamic series (top five left)
and T2 image (top right) and subtraction images of Tl dynamic
series (bottom) generated by DCGAN.

Figure S: Sequence of fake malignant T1 dynamic series (top seven
left) and T2 image (top right) and subtraction images of T1 dynamic
series (bottom) generated by WGAN.

actually captures image quality for multiparametric MR images de-
spite the fact that it was designed for RGB images. Moreover, we
observed that tuning WGAN-specific hyperparameters can be chal-
lengig and may lead to unstable training.

The human readers are able to differentiate between real and fake
images in most cases. The radiolgist could identify real and fake
images with comparable accuracies with only a minor difference
between fake images from DCGAN and WGAN, respectively. In
order to fool the radiologist, the images not only need to look mor-
phologically realistic but also the enhancement pattern needs to ap-
pear highly coherent and realistic. We observed that the GAN’s even
produced common artifacts such as fat-shift artifacts.

Our work has several limitations: Firstly, the FID is designed for
natural RGB images rather than multiparametric MR images. Since
there is no accepted quality measure for these type of images we
decided to evaluate using the FID despite this limitation and add 1-
NN accuracy as an additional measure. Moreover, the human reader
test was performed by only two raters which limits it’s validity.

For future work, other GAN frameworks such das Progressive
Growing GANs [KALL17] could be used in the future to synthe-
size not only patches but whole axial slices of MR images. Lastly,
the influence of the synthesized image patches on a breast lesion
classifier as in [TSH*19] will be evaluated.

6. Conclusion

The evaluated GANSs achieve similar performance in producing re-
alistic multiparametric MR images of the breast. The synthesized
images are diverse and realistic to a degree that they may help for
training a classifier in the future.

(© 2019 The Author(s)
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